WO2021027930A1 - 测量方法、终端设备和网络设备 - Google Patents

测量方法、终端设备和网络设备 Download PDF

Info

Publication number
WO2021027930A1
WO2021027930A1 PCT/CN2020/109231 CN2020109231W WO2021027930A1 WO 2021027930 A1 WO2021027930 A1 WO 2021027930A1 CN 2020109231 W CN2020109231 W CN 2020109231W WO 2021027930 A1 WO2021027930 A1 WO 2021027930A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
rrm
mode
rrm measurement
terminal device
Prior art date
Application number
PCT/CN2020/109231
Other languages
English (en)
French (fr)
Inventor
陈力
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to JP2022509083A priority Critical patent/JP7461457B2/ja
Priority to EP20853399.2A priority patent/EP4017069A4/en
Priority to KR1020227007395A priority patent/KR20220046599A/ko
Priority to BR112022002675A priority patent/BR112022002675A2/pt
Publication of WO2021027930A1 publication Critical patent/WO2021027930A1/zh
Priority to US17/668,655 priority patent/US20220167370A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0248Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal dependent on the time of the day, e.g. according to expected transmission activity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0251Power saving arrangements in terminal devices using monitoring of local events, e.g. events related to user activity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to the field of communication technology, and in particular to a measurement method, terminal equipment and network equipment.
  • UE User Equipment
  • the UE can accurately perceive whether it is in a moving state, and related movement information such as the speed while in the moving state.
  • the UE can also obtain its own motion state or environment information or beam coverage information through various sensors carried by itself, so that more control optimizations can be performed on the UE based on the above information, such as the idle state and
  • the radio resource management (RRM) measurement of the inactive UE is optimized to achieve the purpose of power saving.
  • RRM radio resource management
  • the RRM measurement in the idle state generally follows a unified condition to trigger the measurement of the neighboring cell, and the measurement of the local cell or the neighboring cell complies with the unified measurement requirement.
  • the RRM measurement in the idle state generally follows a unified condition to trigger the measurement of the neighboring cell, and the measurement of the local cell or the neighboring cell complies with the unified measurement requirement.
  • the channel environment does not change much, it is not conducive to the power saving of the UE.
  • the RRM measurement relaxation mode is introduced, which can relax the RRM measurement of the UE, such as extending the measurement period, reducing the number of samples for layer 1 measurement, etc., which can be based on the status of the UE or
  • the threshold configured by the network device determines whether to enter the RRM measurement relaxation mode from the RRM common measurement mode.
  • the purpose of the embodiments of the present disclosure is to provide a measurement method, terminal equipment, and network equipment, so that the UE can effectively adjust the RRM measurement mode and avoid the ping-pong effect of measurement.
  • embodiments of the present disclosure provide a measurement method applied to a terminal device, and the method includes:
  • Receive measurement and adjustment related parameters configured by network equipment
  • the radio resource management RRM measurement mode is adjusted.
  • embodiments of the present disclosure provide a terminal device, and the terminal device includes:
  • the receiving module is used to receive measurement and adjustment related parameters configured by the network device;
  • the measurement module is used to adjust the relevant parameters according to the measurement and adjust the RRM measurement mode of the radio resource management.
  • embodiments of the present disclosure provide a terminal device, which includes a memory, a processor, and a computer program stored on the memory and capable of running on the processor, and the computer program is The processor implements the steps of the method described in the first aspect when executed.
  • embodiments of the present disclosure provide a computer-readable storage medium having a computer program stored on the computer-readable storage medium, and when the computer program is executed by a processor, the steps of the method described in the first aspect are implemented .
  • embodiments of the present disclosure provide a measurement method applied to a network device, and the method includes:
  • embodiments of the present disclosure provide a network device, the network device including:
  • the sending module is configured to send measurement adjustment related parameters to the terminal device, where the measurement adjustment related parameters are used to adjust the radio resource management RRM measurement mode of the terminal device.
  • embodiments of the present disclosure provide a network device, which includes a memory, a processor, and a computer program stored on the memory and capable of running on the processor, and the computer program is The processor implements the steps of the method described in the fifth aspect when executed.
  • embodiments of the present disclosure provide a computer-readable storage medium, wherein a computer program is stored on the computer-readable storage medium, and when the computer program is executed by a processor, the Steps of the method.
  • the wireless resource management RRM measurement mode is adjusted through the measurement adjustment related parameters configured by the network device, which can realize the effective switching adjustment between different RRM measurement modes, and save the power consumption of the terminal device while avoiding measurement
  • the ping-pong effect can prevent the terminal equipment from frequently adjusting the configuration of RRM measurement and also maintain the flexibility of network equipment configuration.
  • FIG. 1 is a schematic flowchart of a measurement method in an embodiment of the present disclosure
  • FIG. 2 is a schematic flowchart of a second measurement method in an embodiment of the present disclosure
  • FIG. 3 is a schematic structural diagram of a terminal device in an embodiment of the present disclosure.
  • Figure 4 is a schematic diagram of the structure of a network device in an embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of a second terminal device in an embodiment of the present disclosure.
  • Fig. 6 is a schematic structural diagram of a second type of network device in an embodiment of the present disclosure.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • GSM Wideband Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution Advanced
  • NR New Radio
  • User-side UE which can also be called terminal equipment (Mobile Terminal), mobile user equipment, etc.
  • RAN Radio Access Network
  • the user equipment can be terminal equipment ,
  • they can be portable, pocket-sized, handheld, computer-built or vehicle-mounted mobile devices, which exchange language and information with wireless access networks. / Or data.
  • Network equipment also called a base station
  • a base station can be a base station (Base Transceiver Station, BTS) in GSM or CDMA, a base station (NodeB) in WCDMA, or an evolutional base station (evolutional Node B) in LTE ENB or e-NodeB) and 5G base station (gNB), the embodiments of the present disclosure are not limited, but for the convenience of description, the following embodiments take gNB as an example for description.
  • BTS Base Transceiver Station
  • NodeB base station
  • evolutional Node B evolutional Node B
  • 5G base station 5G base station
  • FIG. 1 shows a schematic flowchart of a measurement method provided by an embodiment of the present disclosure.
  • the method may be executed by an electronic device, such as a terminal device.
  • the method can be executed by software or hardware installed in the terminal device.
  • the method can include the following steps:
  • Step 101 Receive measurement and adjustment related parameters configured by a network device.
  • Step 103 Adjust the relevant parameters according to the measurement, and adjust the RRM measurement mode of the radio resource management.
  • the radio resource management RRM measurement mode is adjusted through the measurement adjustment related parameters configured by the network device, which can realize the effective switching adjustment between different RRM measurement modes, and save the power consumption of the terminal device while avoiding measurement.
  • the ping-pong effect can prevent terminal equipment from frequently adjusting the configuration of RRM measurement and maintain the flexibility of network equipment configuration.
  • the aforementioned measurement adjustment related parameters include one of the following:
  • the network equipment configures the parameters separately for the terminal equipment, that is, the Per-UE configuration, that is, the network equipment can configure separate measurement and adjustment related parameters for each terminal equipment, so that the parameters are different from the type, performance, and configuration
  • the terminal equipment is more adapted.
  • the parameters configured by the network device for the current cell of the terminal device namely Per-cell configuration, that is, the network device can configure consistent parameters within a cell range, and the terminal device applies the relevant parameters within the current cell range.
  • the network equipment is the parameter configured by the terminal equipment in the range of each frequency, carrier, frequency band or bandwidth part, namely Per-UE per-frequency, carrier, band or BWP configuration, that is, the network equipment can be configured for each
  • Each terminal device is configured with consistent parameters within a frequency, carrier, band, or BWP range.
  • the network device configures the parameters for each beam corresponding to the terminal device, that is, the Per-Beam configuration, that is, the terminal device can apply this parameter when the corresponding beam performs RRM measurement.
  • step 101 may be specifically executed as follows:
  • the measurement adjustment related parameters are received through the RRC connection release message, the RRC connection suspension message or the broadcast message.
  • the method may further include the following content:
  • the measurement adjustment request includes a request for obtaining measurement adjustment related parameters.
  • the measurement adjustment related parameters used to adjust the RRM measurement mode are acquired, so as to adjust the measurement mode according to the specific instructions of the network device.
  • the measurement adjustment request may also include a request for obtaining configuration information of the RRM measurement mode, so as to perform RRM measurement according to the relevant specific configuration.
  • the above-mentioned RRM measurement mode may include at least the RRM measurement relaxation mode, the RRM normal measurement mode, and the RRM measurement enhancement mode, that is, the terminal device can adjust the relevant parameters according to the measurement. Switch and adjust between different RRM measurement modes.
  • the RRM measurement relaxation mode can save the energy consumption of the terminal device.
  • the RRM measurement relaxation mode may at least include RRM measurement in which the terminal device is in a radio resource control (Radio Resource Control, RRC) connected state, an RRC idle state, or an RRC inactive state Relaxation mode.
  • RRC Radio Resource Control
  • the relevant configuration parameters of the RRM measurement relaxation mode may include one of the following:
  • the measurement period in the RRM measurement relaxed mode is greater than the measurement period in the RRM normal measurement mode.
  • the RRM measurement relaxation mode includes the time domain RRM measurement relaxation mode
  • the extension of the measurement period may include the extension of the L1 layer measurement period or the L2 layer measurement period or the L3 layer measurement period.
  • the number of sampling samples in a measurement period in the RRM measurement relaxed mode is less than the number of samples in a measurement period in the RRM normal measurement mode.
  • the RRM measurement relaxation mode includes a time-domain RRM measurement relaxation mode, and the number of sampling samples in one measurement period includes the number of samples of L1 layer sampling or L2 layer sampling or L3 layer sampling.
  • the measurement frequency in the RRM measurement relaxation mode is less than the measurement frequency in the RRM normal measurement mode.
  • the measurement frequency may be 0, that is, no RRM measurement is performed within the fourth preset time.
  • the number of adjacent cells for RRM measurement in RRM measurement relaxed mode is less than the number of adjacent cells for RRM measurement in RRM normal measurement mode.
  • neighboring cells may include intra-frequency neighboring cells of the same frequency, inter-frequency neighboring cells of different frequencies, or inter-RAT neighboring cells of different systems.
  • the number of target objects for inter-frequency RRM measurement or inter-system measurement in RRM relaxation mode is less than the number of target objects for inter-frequency RRM measurement or inter-system measurement in RRM normal measurement mode.
  • the target objects include carrier and frequency. , At least one of frequency band and bandwidth part.
  • the above-mentioned RRM measurement enhancement mode includes the RRM measurement enhancement mode in which the terminal device is in a radio resource control RRC connected state, an RRC idle state, or an RRC inactive state.
  • the relevant configuration parameters of the RRM measurement enhancement mode may include one of the following:
  • the measurement period in the RRM measurement enhancement mode is smaller than the measurement period in the RRM normal measurement mode.
  • the RRM measurement relaxation mode includes a time domain RRM measurement relaxation mode
  • the extension of the measurement period may include the extension of the L1 layer measurement period or the L2 layer measurement period or the L3 layer measurement period.
  • the number of sampling samples in one measurement period in RRM measurement enhancement mode is greater than the number of sampling samples in one measurement period in RRM normal measurement mode.
  • the RRM measurement relaxation mode includes a time-domain RRM measurement relaxation mode, and the number of sampling samples in one measurement period includes the number of samples of L1 layer sampling or L2 layer sampling or L3 layer sampling.
  • the measurement frequency in the RRM measurement enhancement mode is greater than the measurement frequency in the RRM normal measurement mode.
  • the number of adjacent cells for RRM measurement in the RRM measurement enhancement mode is greater than the number of adjacent cells for RRM measurement in the RRM normal measurement mode.
  • neighboring cells may include intra-frequency neighboring cells of the same frequency, inter-frequency neighboring cells of different frequencies, or inter-RAT neighboring cells of different systems.
  • the number of target objects for inter-frequency RRM measurement or inter-system measurement in RRM measurement enhancement mode is greater than the number of target objects for inter-frequency RRM measurement or inter-system measurement in RRM normal measurement mode.
  • the target objects include carrier and frequency , At least one of frequency band and bandwidth part.
  • step 103 may be specifically executed as follows:
  • the RRM measurement mode of at least one of the current cell and the neighboring cell of the terminal device is adjusted.
  • the RRM measurement mode when adjusted according to measurement adjustment related parameters, it may involve at least one of the RRM measurement mode of the current cell and the RRM measurement mode of the neighboring cell.
  • the RRM measurement relaxation mode may include at least one of the RRM measurement relaxation mode of the cell and the RRM measurement relaxation mode of the neighboring cell
  • the RRM measurement enhancement mode may include the RRM measurement relaxation mode of the cell. At least one of the RRM measurement enhancement mode and the RRM measurement enhancement mode of the neighboring cell.
  • the foregoing RRM measurement relaxation mode includes the RRM measurement relaxation mode of the current cell
  • the foregoing RRM measurement enhancement mode includes the RRM measurement enhancement mode of the current cell
  • the measurement adjustment related parameters configured by the network device may include multiple types of parameters, so that the terminal device can perform the RRM measurement mode according to different specific measurement adjustment related parameters. Effective adjustment of the network device, while ensuring the flexibility of network equipment configuration.
  • the aforementioned measurement adjustment related parameters may include at least one of a measurement adjustment threshold, a measurement adjustment duration parameter, a preset cell, and a preset beam coverage.
  • step 103 may be executed as different content, which may be specifically described in conjunction with the following embodiments.
  • the aforementioned measurement adjustment related parameters include a measurement adjustment threshold
  • the aforementioned step 103 may be specifically executed as follows:
  • the foregoing RRM measurement result may at least include: Reference Signal Received Power (RSRP), Reference Signal Received Quality (RSRQ), Signal-to-Noise Ratio (Signal-to-Noise) and Interference Ratio, SINR) and Channel Quality Indicator (CQI).
  • RSRP Reference Signal Received Power
  • RSRQ Reference Signal Received Quality
  • Signal-to-Noise Signal-to-Noise Ratio
  • SINR Interference Ratio
  • CQI Channel Quality Indicator
  • the foregoing RRM measurement result includes at least one of the following:
  • a second result obtained by performing RRM measurement on a neighboring cell of the terminal device where the second result includes at least one of the measurement result of the cell and the measurement result of the beam.
  • the foregoing RRM measurement result includes at least one of the RRM measurement result of the current cell and the RRM measurement result of the neighboring cell.
  • the RRM measurement result may include the measurement result of the cell and the measurement result of the beam.
  • the measurement results may include synchronization signal/physical broadcast channel signal block (Synchronization Signal and PBCH Block, SSB), channel state information reference signal (Channel State Information RS, CSI-RS), demodulation reference signal (Demodulation Reference Signal, DMRS) ) Or other reference signals obtained by RRM measurement.
  • different thresholds can be used for comparison, that is, the RRM measurement result of the current cell and the RRM measurement result of the neighboring cell are used when comparing with different thresholds. ; Or only use the RRM measurement result of the current cell or the RRM measurement result of the neighboring cell to compare with the corresponding threshold.
  • the above-mentioned current cell includes the current serving cell of the terminal equipment, a camping cell in an idle state, or a camping cell in an inactive state;
  • the above-mentioned neighboring cells include intra-frequency neighboring cells, inter-frequency neighboring cells, Different radio access system inter-RAT (Radio Access Technology) cell.
  • the aforementioned measurement adjustment threshold that is, the first threshold and the second threshold may be the same or different. At least one of the first threshold and the second threshold may be the same as or different from the threshold of the S-measure (S criterion measurement) mechanism that controls the RRM measurement of neighboring cells in the current connected state or idle state or inactive state.
  • the first threshold when the aforementioned measurement adjustment threshold is used to control the adjustment of the RRM measurement mode of the cell, the first threshold may be higher than or equal to the threshold of the S-measure mechanism or the first threshold may also be lower than or equal to the S-measure mechanism.
  • the threshold of the mechanism when the above-mentioned measurement adjustment threshold is used to control the adjustment of the RRM measurement mode of the neighboring cell, both the first threshold and the second threshold are lower than or equal to the threshold of the S-measure mechanism.
  • the first threshold and the second threshold are different, they may have different magnitude relationships according to different specific situations. Further optionally, the second threshold is lower than the first threshold.
  • the foregoing solution for adjusting the RRM measurement mode according to the measurement adjustment threshold and the RRM measurement result may be specifically implemented as follows:
  • the first RRM measurement mode is used to perform the RRM measurement, and the first RRM measurement mode includes the RRM measurement relaxation mode or the RRM normal measurement mode.
  • the terminal device can use the RRM measurement relaxation mode for RRM measurement, otherwise use the RRM normal measurement mode or the RRM measurement enhancement mode for RRM measurement; or in the RRM measurement result When it is higher than or equal to the first threshold, the terminal device may also use the RRM common measurement mode to perform RRM measurement, otherwise, use the RRM measurement enhanced mode to perform RRM measurement.
  • the second RRM measurement mode is used to perform the RRM measurement, and the second RRM measurement mode includes the RRM normal measurement mode or the RRM measurement enhancement mode.
  • the terminal device can use the normal RRM measurement mode to perform RRM measurement, otherwise use the RRM measurement relaxation mode to perform RRM measurement; or when the RRM measurement result is lower than or equal to the first In the case of two thresholds, the terminal device can also use the RRM measurement enhanced mode to perform RRM measurement, otherwise, use the RRM measurement relaxed mode or the RRM normal measurement mode to perform RRM measurement.
  • the above-mentioned measurement adjustment related parameters may further include a first measurement adjustment duration parameter on the basis of the measurement adjustment threshold, and then the above-mentioned RRM measurement mode is adjusted based on the measurement adjustment threshold and the RRM measurement result.
  • the plan can be specifically implemented as:
  • the RRM measurement mode is adjusted according to the measurement adjustment threshold, the RRM measurement result, and the first measurement adjustment duration parameter, where the first measurement adjustment duration parameter includes the first preset time or the second preset time.
  • the condition triggers the switch and adjustment of the RRM measurement mode to avoid the ping-pong effect of the measurement, thereby avoiding the terminal device from frequently adjusting the RRM measurement configuration.
  • the foregoing solution for adjusting the RRM measurement mode according to the measurement adjustment threshold, the RRM measurement result, and the first measurement adjustment duration parameter can be specifically implemented as follows:
  • the first RRM measurement mode is used to perform the RRM measurement, and the first RRM measurement mode includes the RRM measurement relaxation mode or the RRM normal measurement mode.
  • the terminal device can use the RRM measurement relaxation mode to perform RRM measurement, otherwise use the RRM normal measurement mode or the RRM measurement enhancement mode to perform RRM measurement.
  • the terminal device may also use the RRM common measurement mode to perform RRM measurement, otherwise use the RRM measurement enhanced mode to perform RRM measurement.
  • the second RRM measurement mode is used to perform the RRM measurement.
  • the second RRM measurement mode includes the RRM normal measurement mode or the RRM measurement enhancement mode.
  • the terminal device can use the normal RRM measurement mode to perform RRM measurement, otherwise, use the RRM measurement relaxed mode to perform RRM measurement; or If the RRM measurement result is lower than or equal to the second threshold within the second preset time, the terminal device may also use the RRM measurement enhanced mode to perform RRM measurement, otherwise, use the RRM measurement relaxed mode or the RRM normal measurement mode to perform RRM measurement.
  • the above-mentioned measurement adjustment related parameters may further include a first measurement adjustment duration parameter on the basis of the measurement adjustment threshold, and the above-mentioned measurement adjustment threshold, RRM measurement result, and first measurement adjustment
  • the duration parameter and the scheme for adjusting the RRM measurement mode can also be specifically implemented as:
  • the first RRM measurement mode is used for RRM measurement, and the first RRM measurement mode includes RRM Measurement relaxation mode or RRM normal measurement mode.
  • the terminal device can use the RRM measurement relaxation mode to perform RRM measurement. Otherwise, use RRM normal measurement mode or RRM measurement enhancement mode to perform RRM measurement; or if the RRM measurement result is higher than or equal to the first threshold, and the RRM measurement result is higher than or equal to the second threshold within the first preset time, The terminal device can also use the RRM common measurement mode to perform RRM measurement, otherwise, use the RRM measurement enhanced mode to perform RRM measurement.
  • the second RRM measurement mode is used for RRM measurement, and the second RRM measurement mode includes RRM Normal measurement mode or RRM measurement enhancement mode.
  • the terminal device can use the RRM normal measurement mode to perform RRM measurement , Otherwise use RRM measurement relaxation mode to perform RRM measurement; or when the RRM measurement result is lower than or equal to the second threshold, and the RRM measurement result is lower than or equal to the first threshold within the second preset time, the terminal device It is also possible to use the RRM measurement enhancement mode for RRM measurement, otherwise use the RRM measurement relaxation mode or the RRM normal measurement mode for RRM measurement.
  • the above-mentioned measurement adjustment related parameters include a second measurement adjustment duration parameter, where the second measurement adjustment duration parameter includes a third preset time, then the above step 103 can be specifically performed for:
  • the third RRM measurement mode includes RRM measurement relaxation mode or RRM measurement enhancement mode
  • the RRM measurement mode includes the RRM common measurement mode
  • the RRM measurement mode it is specifically possible to determine whether to adjust the RRM measurement mode according to the second measurement adjustment duration parameter configured by the network device, that is, to trigger the switch of the RRM measurement mode by determining whether the condition of the second measurement adjustment duration parameter is satisfied
  • the adjustment can specifically be performed after the third preset time after the terminal device uses the RRM measurement relaxation mode or the RRM measurement enhancement mode to perform RRM measurement, it can automatically switch back to the RRM normal measurement mode to avoid the ping-pong effect of the measurement, thereby avoiding frequent terminal devices Adjust the RRM measurement configuration.
  • the foregoing third preset time includes one of the following:
  • RRM measures the set time of the timer.
  • the terminal device uses the RRM measurement relaxation mode or the RRM measurement enhancement mode to start the RRM measurement
  • the RRM measurement timer is started, and the RRM measurement timer can automatically return to the RRM normal measurement mode when the RRM measurement timer expires.
  • the RRM measurement period counter can be used for statistics.
  • the terminal device uses the RRM measurement relaxation mode or the RRM measurement enhancement mode to perform RRM measurement on the second preset number of RRM measurement sample samples, it automatically returns to the RRM normal measurement mode; specifically, the RRM measurement sample sample counter can be used Count the total number of RRM measurement sample samples that use RRM measurement relaxation mode or RRM measurement enhancement mode for RRM measurement.
  • the third preset time may also be a time parameter value directly configured by the network device.
  • the above-mentioned measurement adjustment related parameters include a preset cell or a preset beam coverage
  • the above-mentioned step 103 may be specifically performed as follows:
  • the fifth RRM measurement mode is used for RRM measurement, and the fifth RRM measurement mode includes the RRM measurement relaxation mode or the RRM measurement enhancement mode; or
  • the sixth RRM measurement mode is used to perform RRM measurement, and the sixth RRM measurement mode includes the RRM common measurement mode.
  • the RRM measurement mode adjustment can be determined according to the preset cell or preset beam coverage configured by the network device, that is, RRM can be triggered by determining whether the conditions based on the preset cell or preset beam coverage are met.
  • the switching adjustment of the measurement mode avoids the ping-pong effect of the measurement, thereby avoiding frequent adjustment of the RRM measurement configuration by the terminal device.
  • the terminal device may receive the reference signal of the corresponding cell or beam within the aforementioned preset beam coverage.
  • the terminal device adjusts the relevant parameters according to the measurement configured by the network device, at least between the RRM measurement relaxation mode and the RRM normal measurement mode, the RRM measurement relaxation mode and the RRM measurement enhancement mode, and the RRM measurement mode. Automatic switch adjustment between measurement mode and RRM measurement enhancement mode.
  • FIG. 2 shows a schematic flowchart of a measurement method provided by an embodiment of the present disclosure.
  • the method may be executed by an electronic device, such as a network device.
  • the method can be executed by software or hardware installed on a network device.
  • the method can include the following steps:
  • Step 201 Send measurement adjustment related parameters to the terminal device, where the measurement adjustment related parameters are used to adjust the radio resource management RRM measurement mode of the terminal device.
  • the terminal device can adjust the related parameters according to the measurement to achieve effective switching adjustment between different RRM measurement modes, which saves the power consumption of the terminal device while avoiding
  • the occurrence of the ping-pong effect of the measurement further prevents the terminal equipment from frequently adjusting the configuration of the RRM measurement and maintains the flexibility of the network equipment configuration.
  • step 201 may be specifically executed as follows:
  • the measurement adjustment related parameters are sent to the terminal equipment in the RRC idle state or the RRC inactive state.
  • the measurement method of the embodiment of the present disclosure may specifically include the following content:
  • a measurement adjustment request sent by a terminal device is received, where the measurement adjustment request includes a request for obtaining measurement adjustment related parameters.
  • the terminal device is configured with measurement adjustment related parameters for adjusting the RRM measurement mode.
  • the measurement adjustment request may also include a request for obtaining configuration information of the RRM measurement mode, so that the terminal device performs RRM measurement according to the relevant specific configuration.
  • the aforementioned measurement adjustment related parameters are used to adjust the RRM measurement mode of at least one of the current cell and the neighboring cell of the terminal device.
  • the measurement adjustment related parameters configured for the terminal device may be used to adjust at least one of the RRM measurement mode of the current cell of the terminal device and the RRM measurement mode of the neighboring cell.
  • the aforementioned measurement adjustment related parameters include one of the following:
  • the parameters configured separately for the terminal equipment namely Per-UE configuration, that is to say, the network equipment can configure a separate measurement and adjustment related parameter for each terminal equipment, so that the parameter is different from the type, performance, and configuration of the terminal
  • the equipment is more adaptable.
  • the parameters configured for the current cell of the terminal device that is, the Per-cell configuration, that is, the network device can configure consistent parameters within a cell range, and the terminal device applies the relevant parameters within the current cell range.
  • the network equipment can be configured for each terminal equipment Configure consistent parameters within a frequency, carrier, band, or BWP range.
  • the parameter configured for each beam corresponding to the terminal device that is, the Per-Beam configuration, that is, the terminal device can apply the parameter when the corresponding beam performs RRM measurement.
  • the aforementioned measurement adjustment related parameters configured by the network device may include multiple types of parameters, so that the terminal device can perform RRM measurement mode adjustment according to different specific measurement adjustment related parameters. Effective adjustment, while ensuring the flexibility of network equipment configuration.
  • the aforementioned measurement adjustment related parameters include at least one of a measurement adjustment threshold, a measurement adjustment duration parameter, a preset cell, and a preset beam coverage.
  • the above-mentioned RRM measurement mode includes at least one of the RRM normal measurement mode, the RRM measurement relaxation mode, and the RRM measurement enhancement mode.
  • the above-mentioned RRM measurement relaxation mode can save the energy consumption of the terminal device.
  • the RRM measurement relaxation mode may at least include the RRM measurement relaxation mode in which the terminal device is in a radio resource control RRC connected state, an RRC idle state or an RRC inactive state.
  • the relevant configuration parameters of the RRM measurement relaxation mode may include one of the following:
  • the measurement period in the RRM measurement relaxed mode is greater than the measurement period in the RRM normal measurement mode.
  • the RRM measurement relaxation mode includes a time domain RRM measurement relaxation mode
  • the extension of the measurement period may include the extension of the L1 layer measurement period or the L2 layer measurement period or the L3 layer measurement period.
  • the number of sampling samples in a measurement period in the RRM measurement relaxed mode is less than the number of samples in a measurement period in the RRM normal measurement mode.
  • the RRM measurement relaxation mode includes a time-domain RRM measurement relaxation mode, and the number of sampling samples in one measurement period includes the number of samples of L1 layer sampling or L2 layer sampling or L3 layer sampling.
  • the measurement frequency in the RRM measurement relaxation mode is less than the measurement frequency in the RRM normal measurement mode.
  • the measurement frequency may be 0, that is, no RRM measurement is performed within the fourth preset time.
  • the number of adjacent cells for RRM measurement in RRM measurement relaxed mode is less than the number of adjacent cells for RRM measurement in RRM normal measurement mode.
  • neighboring cells may include intra-frequency neighboring cells of the same frequency, inter-frequency neighboring cells of different frequencies, or inter-RAT neighboring cells of different systems.
  • the number of target objects for inter-frequency RRM measurement or inter-system measurement in RRM relaxation mode is less than the number of target objects for inter-frequency RRM measurement or inter-system measurement in RRM normal measurement mode.
  • the target objects include carrier and frequency. , At least one of frequency band and bandwidth part.
  • the above-mentioned RRM measurement enhancement mode includes the RRM measurement enhancement mode in which the terminal device is in a radio resource control RRC connected state, an RRC idle state, or an RRC inactive state.
  • the relevant configuration parameters of the RRM measurement enhancement mode may include one of the following:
  • the measurement period in the RRM measurement enhancement mode is smaller than the measurement period in the RRM normal measurement mode.
  • the RRM measurement relaxation mode includes a time domain RRM measurement relaxation mode
  • the extension of the measurement period may include the extension of the L1 layer measurement period or the L2 layer measurement period or the L3 layer measurement period.
  • the number of sampling samples in one measurement period in RRM measurement enhancement mode is greater than the number of sampling samples in one measurement period in RRM normal measurement mode.
  • the RRM measurement relaxation mode includes a time-domain RRM measurement relaxation mode, and the number of sampling samples in one measurement period includes the number of samples of L1 layer sampling or L2 layer sampling or L3 layer sampling.
  • the measurement frequency in the RRM measurement enhancement mode is greater than the measurement frequency in the RRM normal measurement mode.
  • the number of adjacent cells for RRM measurement in the RRM measurement enhancement mode is greater than the number of adjacent cells for RRM measurement in the RRM normal measurement mode.
  • neighboring cells may include intra-frequency neighboring cells of the same frequency, inter-frequency neighboring cells of different frequencies, or inter-RAT neighboring cells of different systems.
  • the number of target objects for inter-frequency RRM measurement or inter-system measurement in RRM measurement enhancement mode is greater than the number of target objects for inter-frequency RRM measurement or inter-system measurement in RRM normal measurement mode.
  • the target objects include carrier and frequency , At least one of frequency band and bandwidth part.
  • the terminal device may adjust the RRM measurement mode according to the measurement adjustment threshold and the RRM measurement result, where the measurement adjustment threshold includes the first threshold and the second threshold At least one of them.
  • the terminal device can determine whether to adjust the RRM measurement mode according to the measurement adjustment threshold configured by the network device, that is, by determining whether the condition based on the measurement adjustment threshold is met, the switching adjustment of the RRM measurement mode is triggered to avoid measurement failure. Ping-pong effect, thereby avoiding frequent adjustment of RRM measurement configuration by terminal equipment.
  • the aforementioned measurement adjustment threshold that is, the first threshold and the second threshold may be the same or different. At least one of the first threshold and the second threshold may be the same as or different from the threshold of the S-measure (S criterion measurement) mechanism that controls the RRM measurement of neighboring cells in the current connected state or idle state or inactive state.
  • the first threshold may be higher than or equal to the threshold of the S-measure mechanism or the first threshold may also be lower than or equal to S- Threshold of the measure mechanism.
  • both the first threshold and the second threshold are lower than or equal to the threshold of the S-measure mechanism.
  • the first threshold and the second threshold are different, they may have different magnitude relationships according to different specific situations. Further optionally, the second threshold is lower than the first threshold.
  • the terminal device may use the RRM measurement relaxation mode or the RRM normal measurement mode to perform RRM measurement when the RRM measurement result is higher than or equal to the first threshold; or when the RRM measurement result is lower than or equal to the second threshold In the case of RRM measurement, you can use RRM normal measurement mode or RRM measurement enhanced mode for RRM measurement.
  • the terminal device may adjust the RRM according to the measurement adjustment threshold, the RRM measurement result, and the first measurement adjustment duration parameter.
  • the first measurement adjustment duration parameter includes the third preset time or the fourth preset time.
  • the terminal device can determine whether to adjust the RRM measurement mode according to the measurement adjustment threshold configured by the network device and the first measurement adjustment duration parameter, that is, by determining whether the adjustment based on the measurement adjustment threshold and the first measurement adjustment duration are satisfied
  • the condition of the time parameter triggers the switch and adjustment of the RRM measurement mode to avoid the ping-pong effect of the measurement, thereby avoiding the terminal device from frequently adjusting the RRM measurement configuration.
  • the terminal device may use the RRM measurement relaxation mode or the RRM normal measurement mode to perform RRM measurement when the above RRM measurement results are higher than or equal to the first threshold within the third preset time; or in the above RRM measurement results When the fourth preset time is lower than or equal to the second threshold, the RRM normal measurement mode or the RRM measurement enhanced mode may be used to perform RRM measurement.
  • the terminal device may use RRM measurement relaxed mode or RRM normal mode.
  • RRM measurement in the measurement mode or when the RRM measurement result is lower than or equal to the second threshold, and the RRM measurement result is lower than or equal to the first threshold within the fourth preset time, the RRM normal measurement mode or RRM measurement enhancement mode for RRM measurement.
  • the terminal device may start to use the RRM measurement to relax After the fifth preset time for RRM measurement in RRM measurement mode or RRM measurement enhancement mode, switch to use the RRM common measurement mode to perform RRM measurement.
  • the fifth preset time includes one of the following:
  • RRM measures the set time of the timer.
  • the terminal device uses the RRM measurement relaxation mode or the RRM measurement enhancement mode to start the RRM measurement
  • the RRM measurement timer is started, and the RRM measurement timer can automatically return to the RRM normal measurement mode when the RRM measurement timer expires.
  • the RRM measurement period counter can be used for statistics.
  • the terminal device uses the RRM measurement relaxation mode or the RRM measurement enhancement mode to perform RRM measurement on the second preset number of RRM measurement sample samples, it automatically returns to the RRM normal measurement mode; specifically, the RRM measurement sample sample counter can be used Count the total number of RRM measurement sample samples that use RRM measurement relaxation mode or RRM measurement enhancement mode for RRM measurement.
  • the fifth preset time may also be a time parameter value directly configured by the network device.
  • the terminal device can use the RRM measurement relaxation mode or the preset beam coverage when moving into the preset cell or preset beam coverage.
  • the RRM measurement enhancement mode performs RRM measurement; or in the case of moving out of the preset cell or preset beam coverage, the RRM normal measurement mode is used for RRM measurement.
  • the network device configures measurement adjustment related parameters for the terminal device, so that the terminal device can adjust the related parameters according to the measurement at least between the RRM measurement relaxation mode and the RRM normal measurement mode, the RRM measurement relaxation mode and Automatic switching adjustment between RRM measurement enhancement modes, RRM normal measurement mode and RRM measurement enhancement mode.
  • FIG. 3 shows a schematic structural diagram of a terminal device provided by an embodiment of the present disclosure.
  • the terminal device 300 includes a receiving module 301 and a measuring module 303.
  • the above-mentioned receiving module 301 is configured to receive measurement and adjustment related parameters configured by the network device;
  • the above-mentioned measurement module 303 is configured to adjust related parameters according to measurement and adjust the RRM measurement mode of the radio resource management.
  • the aforementioned measurement adjustment related parameters include a measurement adjustment threshold
  • the aforementioned measurement module 303 can be specifically used for:
  • the above-mentioned measurement module 303 may be specifically used for:
  • the first RRM measurement mode includes RRM measurement relaxation mode or RRM normal measurement mode; or
  • the second RRM measurement mode is used to perform the RRM measurement, and the second RRM measurement mode includes the RRM normal measurement mode or the RRM measurement enhancement mode.
  • the aforementioned measurement adjustment related parameters further include a first measurement adjustment duration parameter
  • the aforementioned measurement module 303 can be specifically used for:
  • the RRM measurement mode is adjusted according to the measurement adjustment threshold, the RRM measurement result, and the first measurement adjustment duration parameter, where the first measurement adjustment duration parameter includes the first preset time or the second preset time.
  • the above-mentioned measurement module 303 may be specifically used for:
  • the first RRM measurement mode includes RRM measurement relaxation mode or RRM normal measurement mode; or
  • the second RRM measurement mode is used to perform the RRM measurement.
  • the second RRM measurement mode includes the RRM normal measurement mode or the RRM measurement enhancement mode.
  • the above-mentioned measurement module 303 may be specifically used for:
  • the first RRM measurement mode is used for RRM measurement, and the first RRM measurement mode includes RRM Measurement relaxation mode or RRM normal measurement mode; or
  • the second RRM measurement mode is used for RRM measurement, and the second RRM measurement mode includes RRM Normal measurement mode or RRM measurement enhancement mode.
  • the foregoing RRM measurement result includes at least one of the following:
  • a second result obtained by performing RRM measurement on a neighboring cell of the terminal device where the second result includes at least one of the measurement result of the cell and the measurement result of the beam.
  • the aforementioned measurement adjustment related parameters include a second measurement adjustment duration parameter, and the second measurement adjustment duration parameter includes a third preset time;
  • the aforementioned measurement module 303 can be specifically used for:
  • the third RRM measurement mode includes RRM measurement relaxation mode or RRM measurement enhancement mode
  • the RRM measurement mode includes the RRM common measurement mode
  • the foregoing third preset time includes one of the following:
  • the aforementioned measurement adjustment related parameters include a preset cell or a preset beam coverage
  • the aforementioned measurement module 303 can be specifically used for:
  • the fifth RRM measurement mode is used for RRM measurement, and the fifth RRM measurement mode includes the RRM measurement relaxation mode or the RRM measurement enhancement mode; or
  • the sixth RRM measurement mode is used to perform RRM measurement, and the sixth RRM measurement mode includes the RRM common measurement mode.
  • the above-mentioned RRM measurement relaxation mode includes the RRM measurement relaxation mode in which the terminal device is in a radio resource control RRC connected state, an RRC idle state, or an RRC inactive state.
  • the measurement period in the foregoing RRM measurement relaxed mode is greater than the measurement period in the foregoing RRM normal measurement mode
  • the number of sampling samples in one measurement period in the above-mentioned RRM measurement relaxation mode is less than the number of sampling samples in one measurement period in the above-mentioned RRM normal measurement mode;
  • the measurement frequency in the RRM measurement relaxation mode is less than the measurement frequency in the RRM normal measurement mode
  • the number of adjacent cells for RRM measurement in the foregoing RRM measurement relaxed mode is less than the number of adjacent cells for RRM measurement in the foregoing RRM normal measurement mode;
  • the number of target objects for inter-frequency RRM measurement or inter-system measurement in the above-mentioned RRM measurement relaxation mode is less than the number of target objects for inter-frequency RRM measurement or inter-system measurement in the above-mentioned RRM normal measurement mode.
  • the target objects include carrier, frequency, At least one of the frequency band and the bandwidth part; or
  • the above-mentioned RRM measurement enhancement mode includes the RRM measurement enhancement mode in which the terminal device is in a radio resource control RRC connected state, an RRC idle state or an RRC inactive state.
  • the measurement period in the aforementioned RRM measurement enhanced mode is smaller than the measurement period in the aforementioned RRM normal measurement mode;
  • the number of sampling samples in one measurement period in the above-mentioned RRM measurement enhancement mode is greater than the number of sampling samples in one measurement period in the above-mentioned RRM normal measurement mode;
  • the measurement frequency in the RRM measurement enhancement mode is greater than the measurement frequency in the RRM ordinary measurement mode
  • the number of neighboring cells for RRM measurement in the aforementioned RRM measurement enhancement mode is greater than the number of neighboring cells for RRM measurement in the aforementioned RRM normal measurement mode;
  • the number of target objects for inter-frequency RRM measurement or inter-system measurement in the above-mentioned RRM measurement enhancement mode is greater than the number of target objects for inter-frequency RRM measurement or inter-system measurement in the above-mentioned RRM normal measurement mode.
  • the target objects include carrier, frequency, At least one of the frequency band and the bandwidth part; or
  • the terminal device 300 of the embodiment of the present disclosure may specifically include:
  • the sending module is configured to send a measurement adjustment request to the network device before receiving the measurement adjustment related parameter configured by the network device, the measurement adjustment request including a request for obtaining the measurement adjustment related parameter.
  • the above-mentioned receiving module 301 may be specifically used for:
  • the measurement adjustment related parameters are received through the RRC connection release message, the RRC connection suspension message or the broadcast message.
  • the aforementioned measurement adjustment related parameters include one of the following:
  • Network equipment is a parameter configured separately for terminal equipment
  • the parameters configured by the network equipment for the current cell of the terminal equipment are configured by the network equipment for the current cell of the terminal equipment.
  • Network equipment is a parameter configured by terminal equipment within each frequency, carrier, frequency band or bandwidth part;
  • the network device configures parameters for each beam corresponding to the terminal device.
  • the above-mentioned measurement module 303 may be specifically used for:
  • the RRM measurement mode of at least one of the current cell and the neighboring cell of the terminal device is adjusted.
  • the terminal device 300 provided in the embodiments of the present disclosure can implement the aforementioned measurement method performed by the terminal device 300, and the relevant explanations about the measurement method are applicable to the terminal device 300, and will not be repeated here.
  • the radio resource management RRM measurement mode is adjusted through the measurement adjustment related parameters configured by the network device, which can realize the effective switching adjustment between different RRM measurement modes, and save the power consumption of the terminal device while avoiding measurement.
  • the ping-pong effect can prevent terminal equipment from frequently adjusting the configuration of RRM measurement and maintain the flexibility of network equipment configuration.
  • FIG. 4 shows a schematic structural diagram of a network device provided by an embodiment of the present disclosure.
  • the network device 400 includes:
  • the sending module 401 is configured to send measurement adjustment related parameters to a terminal device, where the measurement adjustment related parameters are used to adjust a radio resource management RRM measurement mode of the terminal device.
  • the above-mentioned measurement adjustment related parameters are used to adjust the RRM measurement mode of at least one of the local cell and the neighboring cell of the terminal device.
  • the aforementioned measurement adjustment related parameters include one of the following:
  • Parameters configured for the current cell of the terminal device
  • Parameters configured within the range of each frequency, carrier, frequency band or bandwidth part
  • Parameters configured for each beam corresponding to the terminal device.
  • the aforementioned measurement adjustment related parameters include at least one of a measurement adjustment threshold, a measurement adjustment duration parameter, a preset cell, and a preset beam coverage.
  • the above-mentioned RRM measurement mode includes at least one of the RRM normal measurement mode, the RRM measurement relaxed mode, and the RRM measurement enhanced mode.
  • the foregoing RRM measurement relaxation mode includes the RRM measurement relaxation mode in which the terminal device is in a radio resource control RRC connected state, an RRC idle state, or an RRC inactive state.
  • the measurement period in the foregoing RRM measurement relaxed mode is greater than the measurement period in the foregoing RRM normal measurement mode
  • the number of sampling samples in one measurement period in the above-mentioned RRM measurement relaxation mode is less than the number of sampling samples in one measurement period in the above-mentioned RRM normal measurement mode;
  • the measurement frequency in the RRM measurement relaxation mode is less than the measurement frequency in the RRM normal measurement mode
  • the number of adjacent cells for RRM measurement in the foregoing RRM measurement relaxed mode is less than the number of adjacent cells for RRM measurement in the foregoing RRM normal measurement mode;
  • the number of target objects for inter-frequency RRM measurement or inter-system measurement in the RRM measurement relaxation mode is less than the number of target objects for inter-frequency RRM measurement or inter-system measurement in the RRM normal measurement mode, and the target objects include At least one of carrier, frequency, frequency band and bandwidth part; or
  • the aforementioned RRM measurement enhancement mode includes the RRM measurement enhancement mode in which the terminal device is in a radio resource control RRC connected state, an RRC idle state, or an RRC inactive state.
  • the measurement period in the above-mentioned RRM measurement enhanced mode is smaller than the measurement period in the above-mentioned RRM normal measurement mode;
  • the number of sampling samples in one measurement period in the above-mentioned RRM measurement enhancement mode is greater than the number of sampling samples in one measurement period in the above-mentioned RRM normal measurement mode;
  • the measurement frequency in the RRM measurement enhancement mode is greater than the measurement frequency in the RRM normal measurement mode
  • the number of neighboring cells for RRM measurement in the aforementioned RRM measurement enhancement mode is greater than the number of neighboring cells for RRM measurement in the aforementioned RRM normal measurement mode;
  • the number of target objects for inter-frequency RRM measurement or inter-system measurement in the above-mentioned RRM measurement enhancement mode is greater than the number of target objects for inter-frequency RRM measurement or inter-system measurement in the RRM normal measurement mode, and the target objects include At least one of carrier, frequency, frequency band and bandwidth part; or
  • the sending module 401 may be specifically used for:
  • the measurement adjustment related parameters are sent to the terminal device in the RRC idle state or the RRC inactive state through an RRC connection release message, an RRC connection suspension message or a broadcast message.
  • the network device 400 of the embodiment of the present disclosure may further include:
  • the receiving module is configured to receive a measurement adjustment request sent by the terminal device before sending the measurement adjustment related parameter to the terminal device, where the measurement adjustment request includes a request for obtaining the measurement adjustment related parameter.
  • the network device 400 provided by the embodiment of the present disclosure can implement the aforementioned measurement method performed by the network device 400, and the relevant explanations about the measurement method are applicable to the network device 400, and will not be repeated here.
  • the terminal device can adjust the related parameters according to the measurement to achieve effective switching adjustment between different RRM measurement modes, which saves the power consumption of the terminal device while avoiding
  • the occurrence of the ping-pong effect of the measurement further prevents the terminal equipment from frequently adjusting the configuration of the RRM measurement and maintains the flexibility of the network equipment configuration.
  • Fig. 5 is a block diagram of a terminal device according to another embodiment of the present disclosure.
  • the terminal device 500 shown in FIG. 5 includes: at least one processor 501, a memory 502, at least one network interface 504, and a user interface 503.
  • the various components in the terminal device 500 are coupled together through the bus system 505.
  • the bus system 505 is used to implement connection and communication between these components.
  • the bus system 505 also includes a power bus, a control bus, and a status signal bus.
  • various buses are marked as the bus system 505 in FIG. 5.
  • the user interface 503 may include a display, a keyboard, or a pointing device (for example, a mouse, a trackball (trackball), a touch panel or a touch screen, etc.).
  • a pointing device for example, a mouse, a trackball (trackball), a touch panel or a touch screen, etc.
  • the memory 502 in the embodiment of the present disclosure may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • DDRSDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM, ESDRAM Synchronous Link Dynamic Random Access Memory
  • Synchlink DRAM Synchronous Link Dynamic Random Access Memory
  • DRRAM Direct Rambus RAM
  • the memory 502 stores the following elements, executable modules or data structures, or a subset of them, or an extended set of them: operating system 5021 and application programs 5022.
  • the operating system 5021 includes various system programs, such as a framework layer, a core library layer, a driver layer, etc., for implementing various basic services and processing hardware-based tasks.
  • the application program 5022 includes various application programs, such as a media player (Media Player), a browser (Browser), etc., for implementing various application services.
  • a program for implementing the method of the embodiment of the present disclosure may be included in the application program 5022.
  • the terminal device 500 further includes: a computer program stored in the memory 502 and capable of running on the processor 501.
  • a computer program stored in the memory 502 and capable of running on the processor 501.
  • Receive measurement and adjustment related parameters configured by network equipment
  • the methods disclosed in the foregoing embodiments of the present disclosure may be applied to the processor 501 or implemented by the processor 501.
  • the processor 501 may be an integrated circuit chip with signal processing capability. In the implementation process, the steps of the foregoing method can be completed by an integrated logic circuit of hardware in the processor 501 or instructions in the form of software.
  • the aforementioned processor 501 may be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (Field Programmable Gate Array, FPGA) or other Programmable logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC application specific integrated circuit
  • FPGA Field Programmable Gate Array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present disclosure can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in combination with the embodiments of the present disclosure may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module may be located in a mature computer readable storage medium in the field, such as random access memory, flash memory, read only memory, programmable read only memory, or electrically erasable programmable memory, registers.
  • the computer-readable storage medium is located in the memory 502, and the processor 501 reads the information in the memory 502, and completes the steps of the foregoing method in combination with its hardware.
  • a computer program is stored on the computer-readable storage medium, and when the computer program is executed by the processor 501, each step of the above-mentioned measurement method embodiment is implemented.
  • the embodiments described in the embodiments of the present disclosure may be implemented by hardware, software, firmware, middleware, microcode, or a combination thereof.
  • the processing unit can be implemented in one or more Application Specific Integrated Circuits (ASIC), Digital Signal Processing (DSP), Digital Signal Processing Equipment (DSP Device, DSPD), programmable Logic Device (Programmable Logic Device, PLD), Field-Programmable Gate Array (Field-Programmable Gate Array, FPGA), general-purpose processors, controllers, microcontrollers, microprocessors, and others for performing the functions described in this disclosure Electronic unit or its combination.
  • ASIC Application Specific Integrated Circuits
  • DSP Digital Signal Processing
  • DSP Device Digital Signal Processing Equipment
  • PLD programmable Logic Device
  • PLD Field-Programmable Gate Array
  • FPGA Field-Programmable Gate Array
  • the technology described in the embodiments of the present disclosure can be implemented through modules (for example, procedures, functions, etc.) that perform the functions described in the embodiments of the present disclosure.
  • the software codes can be stored in the memory and executed by the processor.
  • the memory can be implemented in the processor or external to the processor.
  • the radio resource management RRM measurement mode is adjusted through the measurement adjustment related parameters configured by the network device, which can realize the effective switching adjustment between different RRM measurement modes, and save the power consumption of the terminal device while avoiding measurement.
  • the ping-pong effect can prevent terminal equipment from frequently adjusting the configuration of RRM measurement and maintain the flexibility of network equipment configuration.
  • the terminal device 500 can implement the various processes implemented by the terminal device in the foregoing embodiments, and to avoid repetition, details are not described herein again.
  • FIG. 6 is a structural diagram of a network device applied in an embodiment of the present disclosure, which can realize the details of the aforementioned measurement method performed by the network device and achieve the same effect.
  • the network device 600 includes: a processor 601, a transceiver 602, a memory 603, a user interface 604, and a bus interface 605, where:
  • the network device 600 further includes: a computer program that is stored in the memory 603 and can run on the processor 601, and the computer program is executed by the processor 601 to implement the following steps:
  • the measurement adjustment related parameters are sent to the terminal device, where the measurement adjustment related parameters are used to adjust the radio resource management RRM measurement mode of the terminal device.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 601 and various circuits of the memory represented by the memory 603 are linked together. The bus architecture can also link various other circuits such as peripherals, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, no further descriptions are provided herein.
  • the bus interface 605 provides an interface.
  • the transceiver 602 may be a plurality of elements, that is, including a transmitter and a receiver, and provide a unit for communicating with various other devices on the transmission medium.
  • the user interface 604 may also be an interface capable of connecting externally and internally with the required equipment.
  • the connected equipment includes but is not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 601 is responsible for managing the bus architecture and general processing, and the memory 603 can store data used by the processor 601 when performing operations.
  • the terminal device can adjust the related parameters according to the measurement to achieve effective switching adjustment between different RRM measurement modes, which saves the power consumption of the terminal device while avoiding
  • the occurrence of the ping-pong effect of the measurement further prevents the terminal equipment from frequently adjusting the configuration of the RRM measurement and maintains the flexibility of the network equipment configuration.
  • the embodiments of the present disclosure also provide a computer-readable storage medium on which a computer program is stored.
  • a computer program is stored.
  • the computer program is executed by a processor, each process of the above-mentioned measurement method embodiment is realized, and the same technical effect can be achieved. To avoid repetition, I won’t repeat it here.
  • the computer readable storage medium such as read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk, etc.
  • the technical solution of the present disclosure essentially or the part that contributes to the existing technology can be embodied in the form of a software product, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, The optical disc) includes several instructions to make a terminal (which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) execute the methods described in the various embodiments of the present disclosure.
  • a terminal which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例公开了一种测量方法、终端设备和网络设备,其中,测量方法包括:接收网络设备配置的测量调整相关参数;根据测量调整相关参数,调整无线资源管理RRM测量模式。通过本公开实施例,能够实现不同的RRM测量模式间的有效切换调整,在节省终端设备功耗的同时,避免发生测量的乒乓效应,从而避免终端设备频繁调整RRM测量的配置,并保持了网络设备配置的灵活度。

Description

测量方法、终端设备和网络设备
相关申请的交叉引用
本申请主张在2019年08月15日在中国提交的中国专利申请号201910755817.2的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,尤其涉及一种测量方法、终端设备和网络设备。
背景技术
随着终端设备(User Equipment,UE)技术的快速发展,UE上的传感器越来越多,也越来越智能。在很多场景中,UE可以精准地感知自己是否处于移动状态,以及处于移动状态时的速度等相关的移动信息。此外,UE还可以通过自身携带的各种感应器,获得自身的运动状态或者所处的环境信息或者波束覆盖信息,从而可以根据上述信息对UE进行更多的控制优化,比如对处于空闲态和非激活态的UE的无线资源管理(Radio Resource Management,RRM)测量进行优化,从而达到省电的目的。
对于无论处于静止状态、低速移动状态还是高速移动状态的UE,空闲态的RRM测量一般遵循统一的条件触发邻小区的测量,而无论是对于本小区还是邻小区的测量都遵守统一的测量需求,也就是说,对于UE的不同的运动状态、所处的不同环境或者不同的波束覆盖范围都没有进行差异化配置。但是,这对于某些处于静止状态或移动速度非常低的UE,如果信道环境变化不大,则不利于UE的省电。对于这类UE,在考虑UE节能时,引入了RRM测量放松模式,可以对UE的RRM测量进行放松,比如延长测量周期、减少层1测量的抽样样本数等,其中,可以根据UE的状态或者网络设备配置的门限来判断是否由RRM普通测量等模式进入RRM测量放松模式。
因此,目前需要一种测量方案,使得UE能够有效地调整RRM测量模式,避免发生测量的乒乓效应。
发明内容
本公开实施例的目的是提供一种测量方法、终端设备和网络设备,以使得UE能够有效地调整RRM测量模式,避免发生测量的乒乓效应。
第一方面,本公开实施例提供一种测量方法,应用于终端设备,所述方法包括:
接收网络设备配置的测量调整相关参数;
根据所述测量调整相关参数,调整无线资源管理RRM测量模式。
第二方面,本公开实施例提供一种终端设备,所述终端设备包括:
接收模块,用于接收网络设备配置的测量调整相关参数;
测量模块,用于根据所述测量调整相关参数,调整无线资源管理RRM测量模式。
第三方面,本公开实施例提供一种终端设备,该终端设备包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如第一方面所述的方法的步骤。
第四方面,本公开实施例提供一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如第一方面所述的方法的步骤。
第五方面,本公开实施例提供一种测量方法,应用于网络设备,所述方法包括:
向终端设备发送测量调整相关参数,其中,所述测量调整相关参数用于调整所述终端设备的无线资源管理RRM测量模式。
第六方面,本公开实施例提供一种网络设备,所述网络设备包括:
发送模块,用于向终端设备发送测量调整相关参数,其中,所述测量调整相关参数用于调整所述终端设备的无线资源管理RRM测量模式。
第七方面,本公开实施例提供一种网络设备,该网络设备包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如第五方面所述的方法的步骤。
第八方面,本公开实施例提供一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如第五方面所述的方法的步骤。
本公开实施例中,通过网络设备配置的测量调整相关参数进行无线资源管理RRM 测量模式的调整,能够实现不同的RRM测量模式间的有效切换调整,在节省终端设备功耗的同时,避免发生测量的乒乓效应,从而避免终端设备频繁调整RRM测量的配置,并还保持了网络设备配置的灵活度。
附图说明
此处所说明的附图用来提供对本公开的进一步理解,构成本公开的一部分,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1是本公开实施例中一种测量方法的流程示意图;
图2是本公开实施例中第二种测量方法的流程示意图;
图3是本公开实施例中一种终端设备的结构示意图;
图4是本公开实施例中一种网络设备的结构示意图;
图5是本公开实施例中第二种终端设备的结构示意图;
图6是本公开实施例中第二种网络设备的结构示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
本公开的技术方案,可以应用于各种通信系统,例如:全球移动通讯系统(Global System of Mobile communication,GSM),码分多址(Code Division Multiple Access,CDMA)系统,宽带码分多址(Wideband Code Division Multiple Access,WCDMA),通用分组无线业务(General Packet Radio Service,GPRS),长期演进(Long Term Evolution,LTE)/增强长期演进(Long Term EvolutionAdvanced,LTE-A),NR(New Radio)等。
用户端UE,也可称之为终端设备(Mobile Terminal)、移动用户设备等,可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,用户 设备可以是终端设备,如移动电话(或称为“蜂窝”电话)和具有终端设备的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。
网络设备,也可称之为基站,可以是GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB),还可以是LTE中的演进型基站(evolutional Node B,eNB或e-NodeB)及5G基站(gNB),本公开实施例并不限定,但为描述方便,下述实施例以gNB为例进行说明。
以下结合附图,详细说明本公开各实施例提供的技术方案。
图1示出本公开实施例提供的一种测量方法的流程示意图,该方法可以由电子设备执行,例如终端设备。换言之,方法可以由安装在终端设备的软件或硬件来执行。如1图所示,该方法可以包括以下步骤:
步骤101:接收网络设备配置的测量调整相关参数。
步骤103:根据测量调整相关参数,调整无线资源管理RRM测量模式。
本公开实施例中,通过网络设备配置的测量调整相关参数进行无线资源管理RRM测量模式的调整,能够实现不同的RRM测量模式间的有效切换调整,在节省终端设备功耗的同时,避免发生测量的乒乓效应,从而避免终端设备频繁调整RRM测量的配置,并保持了网络设备配置的灵活度。
可选地,在本公开实施例的测量方法中,上述测量调整相关参数包括以下之一:
(1)网络设备为终端设备单独配置的参数,即Per-UE配置,也就是说,网络设备可以为每个终端设备配置单独的测量调整相关参数,以使该参数与类型、性能、配置不同的终端设备更加适配。
(2)网络设备为终端设备的当前小区配置的参数,即Per-cell配置,也就是说,网络设备可以在一个小区范围内配置一致的参数,终端设备在该当前小区范围内应用相关参数。
(3)网络设备在每个频率、载波、频段或带宽部分的范围内配置的参数,即Per-frequency、carrier、band或BWP(Bandwidth Part)配置,也就是说,网络设备在一个frequency、carrier、band或BWP范围内配置一致的参数。
(4)网络设备为终端设备在每个频率、载波、频段或带宽部分的范围内配置的参数,即Per-UE per-frequency、carrier、band或BWP配置,也就是说,网络设备可以为每个终端设备在一个frequency、carrier、band或BWP范围内配置一致的参数。
(5)网络设备为终端设备对应的每个波束配置的参数,即Per-Beam配置,也就是说,终端设备可以在对应的波束进行RRM测量时应用该参数。
可选地,在本公开实施例的测量方法中,上述步骤101,具体可以执行为:
在终端设备处于RRC连接态的情况下,通过RRC专用消息或广播消息接收测量调整相关参数;或者
在终端设备处于RRC空闲态或RRC非激活态的情况下,通过RRC连接释放消息、RRC连接挂起消息或广播消息接收测量调整相关参数。
进一步可选地,本公开实施例的测量方法,在上述步骤101之前,该方法还可以包括以下内容:
向网络设备发送测量调整请求,测量调整请求包括用于获取测量调整相关参数的请求。
可以理解,通过主动向网络设备发送测量调整请求的方式,获取用于调整RRM测量模式的测量调整相关参数,以根据网络设备的具体指示进行调整测量模式。
进一步可选地,上述测量调整请求还可以包括用于获取RRM测量模式的配置信息的请求,以根据相关的具体配置进行RRM测量。
可选地,在本公开实施例的测量方法中,上述RRM测量模式至少可以包括RRM测量放松模式、RRM普通测量模式和RRM测量增强模式,也就是说,终端设备可以根据测量调整相关参数在上述不同的RRM测量模式间进行切换调整。
其中,上述RRM测量放松模式可以节省终端设备的能耗,该RRM测量放松模式至少可以包括终端设备处于无线资源控制(Radio Resource Control,RRC)连接态、RRC空闲态或RRC非激活态的RRM测量放松模式。该RRM测量放松模式的相关配置参数可以包括以下之一:
(1)RRM测量放松模式下的测量周期大于RRM普通测量模式下的测量周期。
可选地,RRM测量放松模式包括时域RRM测量放松模式,测量周期的扩长可以包 括L1层测量周期或L2层测量周期或L3层测量周期的扩长。
(2)RRM测量放松模式下在一个测量周期内的抽样样本数小于RRM普通测量模式下在一个测量周期内的抽样样本数。
可选地,RRM测量放松模式包括时域RRM测量放松模式,一个测量周期内的抽样样本数包括L1层抽样或L2层抽样或L3层抽样的样本数。
(3)在第四预设时间内,RRM测量放松模式下的测量频次小于RRM普通测量模式的测量频次。
可选地,测量频次可以为0,即在该第四预设时间内不进行RRM测量。
(4)RRM测量放松模式下进行RRM测量的邻小区数量小于RRM普通测量模式下进行RRM测量的邻小区数量。
可选地,邻小区可以包括同频intra-frequency邻小区、异频inter-frequency邻小区或异系统Inter-RAT邻小区。
(5)RRM测量放松模式下进行异频RRM测量或异系统测量的目标对象的数量小于RRM普通测量模式下的进行异频RRM测量或异系统测量的目标对象的数量,目标对象包括载波、频率、频段和带宽部分中的至少一个。
(6)使用附加的参考信号(additional Reference Signal)进行RRM测量。
其中,上述RRM测量增强模式包括终端设备处于无线资源控制RRC连接态、RRC空闲态或RRC非激活态的RRM测量增强模式。该RRM测量增强模式的相关配置参数可以包括以下之一:
(1)RRM测量增强模式下的测量周期小于RRM普通测量模式下的测量周期。
可选地,RRM测量放松模式包括时域RRM测量放松模式,测量周期的扩长可以包括L1层测量周期或L2层测量周期或L3层测量周期的扩长。
(2)RRM测量增强模式下在一个测量周期内的抽样样本数大于RRM普通测量模式下在一个测量周期内的抽样样本数。
可选地,RRM测量放松模式包括时域RRM测量放松模式,一个测量周期内的抽样样本数包括L1层抽样或L2层抽样或L3层抽样的样本数。
(3)在第五预设时间内,RRM测量增强模式下的测量频次大于RRM普通测量模式 的测量频次。
(4)RRM测量增强模式下进行RRM测量的邻小区数量大于RRM普通测量模式下进行RRM测量的邻小区数量。
可选地,邻小区可以包括同频intra-frequency邻小区、异频inter-frequency邻小区或异系统Inter-RAT邻小区。
(5)RRM测量增强模式下进行异频RRM测量或异系统测量的目标对象的数量大于RRM普通测量模式下的进行异频RRM测量或异系统测量的目标对象的数量,目标对象包括载波、频率、频段和带宽部分中的至少一个。
(6)使用附加的参考信号(additional Reference Signal)进行RRM测量。
可选地,在本公开实施例的测量方法中,上述步骤103,具体可以执行为:
根据测量调整相关参数,调整终端设备的本小区和邻小区中的至少一个的RRM测量模式。
可以理解,根据测量调整相关参数进行RRM测量模式调整时,可以涉及本小区的RRM测量模式和邻小区的RRM测量模式中的至少一个。
具体的,当存在邻小区的RRM测量时,上述RRM测量放松模式可以包括本小区的RRM测量放松模式和邻小区的RRM测量放松模式中的至少一个,以及上述RRM测量增强模式可以包括本小区的RRM测量增强模式和邻小区的RRM测量增强模式中的至少一个。或者
当不存在邻小区的RRM测量时,上述RRM测量放松模式包括本小区的RRM测量放松模式,以及上述RRM测量增强模式包括本小区的RRM测量增强模式。
可选地,在本公开实施例的测量方法中,上述由网络设备配置的测量调整相关参数可以包括多种类型的参数,以使得终端设备能够根据不同的具体的测量调整相关参数进行RRM测量模式的有效调整,同时能够保证网络设备配置的灵活度。
其中,上述测量调整相关参数可以包括测量调整门限、测量调整持续时间参数、预设小区和预设波束覆盖范围中的至少一个。
可选地,在测量调整相关参数不同的情况下,上述步骤103可以执行为不同的内容,具体可以结合以下实施例进行说明。
具体实施例一
可选地,在该具体实施例一中,上述测量调整相关参数包括测量调整门限,则上述步骤103可以具体执行为:
根据测量调整门限和RRM测量结果,调整RRM测量模式,其中,测量调整门限包括第一门限和第二门限中的至少一个。
可以理解,具体可以根据网络设备配置的测量调整门限判断是否进行RRM测量模式的调整,也就是说,通过判断是否满足基于测量调整门限的条件触发RRM测量模式的切换调整,避免发生测量的乒乓效应,从而避免终端设备频繁调整RRM测量配置。
可选地,上述RRM测量结果至少可以包括:参考信号接收功率(Reference Signal Received Power,RSRP)、参考信号接收质量(Reference Signal Received Quality,RSRQ)、信号与干扰加噪声比(Signal-to-Noise and Interference Ratio,SINR)和信道质量指示(Channel Quality Indicator,CQI)。
可选地,上述RRM测量结果包括以下至少之一:
对终端设备的本小区进行RRM测量得到的第一结果,第一结果包括小区的测量结果和波束的测量结果中的至少一个;
对终端设备的邻小区进行RRM测量得到的第二结果,第二结果包括小区的测量结果和波束的测量结果中的至少一个。
可以理解,上述RRM测量结果包括本小区的RRM测量结果和邻小区的RRM测量结果中的至少一个,进一步地,该RRM测量结果可以包括小区的测量结果和波束的测量结果,其中,该波束的测量结果可以包括基于对同步信号/物理广播信道信号块(Synchronization Signal and PBCH Block,SSB)、信道状态信息参考信号(Channel State Information RS,CSI-RS)、解调参考信号(Demodulation Reference Signal,DMRS)或者其它参考参考信号进行RRM测量得到的。
可选地,对于本小区的RRM测量结果和邻小区的RRM测量结果,可以分别使用不同的门限进行比较,即与不同门限比较的时候分别使用本小区的RRM测量结果和邻小区的RRM测量结果;或者只使用本小区的RRM测量结果或者邻小区的RRM测量结果与相应的门限进行比较。
其中,上述本小区包括终端设备的当前服务小区、空闲idle态的驻留小区或非激活Inactive态的驻留小区;上述邻小区包括同频intra-frequency邻小区、异频inter-frequency邻小区、异无线接入系统inter-RAT(Radio Access Technology)小区。
可选地,上述测量调整门限即第一门限和第二门限可以相同也可以不同。第一门限和第二门限中的至少一个可以与当前连接态或空闲态或非激活态控制邻小区的RRM测量的S-measure(S准则测量)机制的门限相同,也可以不同。可选地,当上述测量调整门限用于控制本小区的RRM测量模式的调整时,第一门限可以高于或等于S-measure机制的门限或者该第一门限也可以低于或等于S-measure机制的门限。进一步可选地,当上述测量调整门限用于控制邻小区的RRM测量模式的调整时,该第一门限和第二门限都低于或等于S-measure机制的门限。
可选地,在第一门限和第二门限不同的情况下,可以根据具体情况的不同具有不同的大小关系。进一步可选地,第二门限低于第一门限。
可选地,上述根据测量调整门限和RRM测量结果,调整RRM测量模式的方案,可以具体执行为:
若RRM测量结果高于或等于第一门限,则使用第一RRM测量模式进行RRM测量,第一RRM测量模式包括RRM测量放松模式或RRM普通测量模式。
可以理解,在RRM测量结果高于或等于第一门限的情况下,终端设备可以使用RRM测量放松模式进行RRM测量,否则使用RRM普通测量模式或RRM测量增强模式进行RRM测量;或者在RRM测量结果高于或等于第一门限的情况下,终端设备还可以使用RRM普通测量模式进行RRM测量,否则使用RRM测量增强模式进行RRM测量。
或者
若RRM测量结果低于或等于第二门限,则使用第二RRM测量模式进行RRM测量,第二RRM测量模式包括RRM普通测量模式或RRM测量增强模式。
可以理解,在RRM测量结果低于或等于第二门限的情况下,终端设备可以使用RRM普通测量模式进行RRM测量,否则使用RRM测量放松模式进行RRM测量;或者在RRM测量结果低于或等于第二门限的情况下,终端设备还可以使用RRM测量增强模式进行 RRM测量,否则使用RRM测量放松模式或RRM普通测量模式进行RRM测量。
具体实施例二
可选地,在该具体实施例二中,上述测量调整相关参数在测量调整门限的基础上还可以包括第一测量调整持续时间参数,则上述根据测量调整门限和RRM测量结果,调整RRM测量模式的方案,可以具体执行为:
根据测量调整门限、RRM测量结果和第一测量调整持续时间参数,调整RRM测量模式,第一测量调整持续时间参数包括第一预设时间或第二预设时间。
可以理解,具体可以根据网络设备配置的测量调整门限和第一测量调整持续时间参数判断是否进行RRM测量模式的调整,也就是说,通过判断是否满足基于测量调整门限和第一测量调整持续时间参数的条件触发RRM测量模式的切换调整,避免发生测量的乒乓效应,从而避免终端设备频繁调整RRM测量配置。
进一步可选地,上述根据测量调整门限、RRM测量结果和第一测量调整持续时间参数,调整RRM测量模式的方案,具体可以执行为:
若RRM测量结果在第一预设时间内都高于或等于第一门限,则使用第一RRM测量模式进行RRM测量,第一RRM测量模式包括RRM测量放松模式或RRM普通测量模式。
可以理解,在RRM测量结果于第一预设时间内都高于或等于第一门限的情况下,终端设备可以使用RRM测量放松模式进行RRM测量,否则使用RRM普通测量模式或RRM测量增强模式进行RRM测量;或者在RRM测量结果于第一预设时间内高于或等于第一门限的情况下,终端设备还可以使用RRM普通测量模式进行RRM测量,否则使用RRM测量增强模式进行RRM测量。
或者
若RRM测量结果在第二预设时间内都低于或等于第二门限,则使用第二RRM测量模式进行RRM测量,第二RRM测量模式包括RRM普通测量模式或RRM测量增强模式。
可以理解,在RRM测量结果于第二预设时间内都低于或等于第二门限的情况下,终端设备可以使用RRM普通测量模式进行RRM测量,否则使用RRM测量放松模式进行RRM测量;或者在RRM测量结果于第二预设时间内都低于或等于第二门限的情况下,终端设备还可以使用RRM测量增强模式进行RRM测量,否则使用RRM测量放松模式或 RRM普通测量模式进行RRM测量。
具体实施例三
可选地,在该具体实施例三中,上述测量调整相关参数在测量调整门限的基础上还可以包括第一测量调整持续时间参数,则上述根据测量调整门限、RRM测量结果和第一测量调整持续时间参数,调整RRM测量模式的方案,具体还可以执行为:
若RRM测量结果高于或等于第一门限,且RRM测量结果在第一预设时间内都高于或等于第二门限,则使用第一RRM测量模式进行RRM测量,第一RRM测量模式包括RRM测量放松模式或RRM普通测量模式。
可以理解,在RRM测量结果高于或等于第一门限,且RRM测量结果于第一预设时间内都高于或等于第二门限的情况下,终端设备可以使用RRM测量放松模式进行RRM测量,否则使用RRM普通测量模式或RRM测量增强模式进行RRM测量;或者RRM测量结果高于或等于第一门限,且RRM测量结果于第一预设时间内都高于或等于第二门限的情况下,终端设备还可以使用RRM普通测量模式进行RRM测量,否则使用RRM测量增强模式进行RRM测量。
或者
若RRM测量结果低于或等于第二门限,且RRM测量结果在第二预设时间内都低于或等于第一门限,则使用第二RRM测量模式进行RRM测量,第二RRM测量模式包括RRM普通测量模式或RRM测量增强模式。
可以理解,在RRM测量结果低于或等于第二门限,且RRM测量结果于于第二预设时间内都低于或等于第一门限的情况下,终端设备可以使用RRM普通测量模式进行RRM测量,否则使用RRM测量放松模式进行RRM测量;或者在RRM测量结果低于或等于第二门限,且RRM测量结果于于第二预设时间内都低于或等于第一门限的情况下,终端设备还可以使用RRM测量增强模式进行RRM测量,否则使用RRM测量放松模式或RRM普通测量模式进行RRM测量。
具体实施例四
可选地,在该具体实施例四中,上述测量调整相关参数包括第二测量调整持续时间参数,其中,该第二测量调整持续时间参数包括第三预设时间,则上述步骤103可 以具体执行为:
在开始使用第三RRM测量模式进行RRM测量的第三预设时间后,切换使用第四RRM测量模式进行RRM测量,其中,第三RRM测量模式包括RRM测量放松模式或RRM测量增强模式,第四RRM测量模式包括RRM普通测量模式。
可以理解,具体可以根据网络设备配置的第二测量调整持续时间参数判断是否进行RRM测量模式的调整,也就是说,通过判断是否满足基于第二测量调整持续时间参数的条件触发RRM测量模式的切换调整,具体可以在终端设备使用RRM测量放松模式或RRM测量增强模式进行RRM测量后的第三预设时间后,可以自动切换回RRM普通测量模式,避免发生测量的乒乓效应,从而避免终端设备频繁调整RRM测量配置。
可选地,上述第三预设时间包括以下之一:
(1)RRM测量定时器的设定时间。
可以理解,在终端设备使用RRM测量放松模式或RRM测量增强模式开始进行RRM测量时,启动该RRM测量定时器,则可以在该RRM测量定时器超时的情况下,则自动回到RRM普通测量模式。
(2)第一预设数量的RRM测量周期对应的时间。
可以理解,在终端设备使用RRM测量放松模式或RRM测量增强模式进行RRM测量的第一预设数量的RRM测量周期后,则自动回到RRM普通测量模式;其中,具体可以通过RRM测量周期计数器统计使用RRM测量放松模式或RRM测量增强模式进行RRM测量的RRM测量周期的总数。
(3)对第二预设数量的RRM测量抽样样本进行RRM测量所需的时间。
可以理解,在终端设备使用RRM测量放松模式或RRM测量增强模式对第二预设数量的RRM测量抽样样本进行RRM测量后,自动回到RRM普通测量模式;其中,具体可以通过RRM测量抽样样本计数器统计使用RRM测量放松模式或RRM测量增强模式进行RRM测量的RRM测量抽样样本的总数。
需要说明的是,第三预设时间除了包括上述情况下,还可以为网络设备直接配置的时间参数值。
具体实施例五
可选地,在该具体实施例五中,上述测量调整相关参数包括预设小区或预设波束覆盖范围,则上述步骤103可以具体执行为:
若终端设备移入预设小区或预设波束覆盖范围,则使用第五RRM测量模式进行RRM测量,第五RRM测量模式包括RRM测量放松模式或RRM测量增强模式;或者
若终端设备移出预设小区或预设波束覆盖范围,则使用第六RRM测量模式进行RRM测量,第六RRM测量模式包括RRM普通测量模式。
可以理解,具体可以根据网络设备配置的预设小区或预设波束覆盖范围判断是否进行RRM测量模式的调整,也就是说,通过判断是否满足基于预设小区或预设波束覆盖范围的条件触发RRM测量模式的切换调整,避免发生测量的乒乓效应,从而避免终端设备频繁调整RRM测量配置。其中,终端设备可以在上述预设波束覆盖范围内接收到对应小区或者波束的参考信号。
需要说明的是,上述各个预设时间的取值,可以根据实际情况进行设置。
通过本公开实施例的测量方法,终端设备根据网络设备配置的测量调整相关参数,至少可以在RRM测量放松模式和RRM普通测量模式之间、RRM测量放松模式和RRM测量增强模式之间、RRM普通测量模式和RRM测量增强模式之间进行自动切换调整。
图2示出本公开实施例提供的一种测量方法的流程示意图,该方法可以由电子设备执行,例如网络设备。换言之,方法可以由安装在网络设备的软件或硬件来执行。如2图所示,该方法可以包括以下步骤:
步骤201:向终端设备发送测量调整相关参数,其中,测量调整相关参数用于调整终端设备的无线资源管理RRM测量模式。
本公开实施例中,通过为终端设备配置测量调整相关参数,从而使终端设备能够根据该测量调整相关参数实现不同的RRM测量模式间的有效切换调整,在节省终端设备功耗的同时,避免了发生测量的乒乓效应,进一步避免了终端设备频繁调整RRM测量的配置,并保持了网络设备配置的灵活度。
可选地,在本公开实施例的测量方法中,上述步骤201,具体可以执行为:
通过RRC专用消息或广播消息,向处于RRC连接态的终端设备发送测量调整相关参数;或者
通过RRC连接释放消息、RRC连接挂起消息或广播消息,向处于RRC空闲态或RRC非激活态的终端设备发送测量调整相关参数。
可选地,本公开实施例的测量方法,在上述步骤201之前,具体还可以包括以下内容:
接收终端设备发送的测量调整请求,测量调整请求包括用于获取测量调整相关参数的请求。
可以理解,根据终端设备的测量调整请求,为终端设备配置用于调整RRM测量模式的测量调整相关参数。
进一步可选地,上述测量调整请求还可以包括用于获取RRM测量模式的配置信息的请求,以使终端设备根据相关的具体配置进行RRM测量。
可选地,在本公开实施例的测量方法中,上述测量调整相关参数用于调整终端设备的本小区和邻小区中的至少一个的RRM测量模式。
可以理解,为终端设备配置的测量调整相关参数,可以用于调整终端设备的本小区的RRM测量模式和邻小区的RRM测量模式中的至少一个。
可选地,在本公开实施例的测量方法中,上述测量调整相关参数包括以下之一:
(1)为终端设备单独配置的参数,即Per-UE配置,也就是说,网络设备可以为每个终端设备配置单独的测量调整相关参数,以使该参数与类型、性能、配置不同的终端设备更加适配。
(2)为终端设备的当前小区配置的参数,即Per-cell配置,也就是说,网络设备可以在一个小区范围内配置一致的参数,终端设备在该当前小区范围内应用相关参数。
(3)在每个频率、载波、频段或带宽部分的范围内配置的参数,即Per-frequency、carrier、band或BWP配置,也就是说,网络设备在一个frequency、carrier、band或BWP范围内配置一致的参数。
(4)为终端设备在每个频率、载波、频段或带宽部分的范围内配置的参数,Per-UE per-frequency、carrier、band或BWP配置,也就是说,网络设备可以为每个终端设备在一个frequency、carrier、band或BWP范围内配置一致的参数。
(5)为终端设备对应的每个波束配置的参数,即Per-Beam配置,也就是说,终端设备可以在对应的波束进行RRM测量时应用该参数。
可选地,在本公开实施例的测量方法中,网络设备配置的上述测量调整相关参数可以包括多种类型的参数,以使得终端设备能够根据不同的具体的测量调整相关参数进行RRM测量模式的有效调整,同时能够保证网络设备配置的灵活度。
其中,上述测量调整相关参数包括测量调整门限、测量调整持续时间参数、预设小区和预设波束覆盖范围中的至少一个。
可选地,在本公开实施例的测量方法中,上述RRM测量模式包括RRM普通测量模式、RRM测量放松模式和RRM测量增强模式中的至少一个。
其中,上述RRM测量放松模式可以节省终端设备的能耗,该RRM测量放松模式至少可以包括终端设备处于无线资源控制RRC连接态、RRC空闲态或RRC非激活态的RRM测量放松模式。该RRM测量放松模式的相关配置参数可以包括以下之一:
(1)RRM测量放松模式下的测量周期大于RRM普通测量模式下的测量周期。
可选地,RRM测量放松模式包括时域RRM测量放松模式,测量周期的扩长可以包括L1层测量周期或L2层测量周期或L3层测量周期的扩长。
(2)RRM测量放松模式下在一个测量周期内的抽样样本数小于RRM普通测量模式下在一个测量周期内的抽样样本数。
可选地,RRM测量放松模式包括时域RRM测量放松模式,一个测量周期内的抽样样本数包括L1层抽样或L2层抽样或L3层抽样的样本数。
(3)在第一预设时间内,RRM测量放松模式下的测量频次小于RRM普通测量模式的测量频次。
可选地,测量频次可以为0,即在该第四预设时间内不进行RRM测量。
(4)RRM测量放松模式下进行RRM测量的邻小区数量小于RRM普通测量模式下进行RRM测量的邻小区数量。
可选地,邻小区可以包括同频intra-frequency邻小区、异频inter-frequency邻小区或异系统Inter-RAT邻小区。
(5)RRM测量放松模式下进行异频RRM测量或异系统测量的目标对象的数量小于 RRM普通测量模式下的进行异频RRM测量或异系统测量的目标对象的数量,目标对象包括载波、频率、频段和带宽部分中的至少一个。
(6)使用附加的参考信号进行RRM测量。
其中,上述RRM测量增强模式包括终端设备处于无线资源控制RRC连接态、RRC空闲态或RRC非激活态的RRM测量增强模式。该RRM测量增强模式的相关配置参数可以包括以下之一:
(1)RRM测量增强模式下的测量周期小于RRM普通测量模式下的测量周期。
可选地,RRM测量放松模式包括时域RRM测量放松模式,测量周期的扩长可以包括L1层测量周期或L2层测量周期或L3层测量周期的扩长。
(2)RRM测量增强模式下在一个测量周期内的抽样样本数大于RRM普通测量模式下在一个测量周期内的抽样样本数。
可选地,RRM测量放松模式包括时域RRM测量放松模式,一个测量周期内的抽样样本数包括L1层抽样或L2层抽样或L3层抽样的样本数。
(3)在第二预设时间内,RRM测量增强模式下的测量频次大于RRM普通测量模式的测量频次。
(4)RRM测量增强模式下进行RRM测量的邻小区数量大于RRM普通测量模式下进行RRM测量的邻小区数量。
可选地,邻小区可以包括同频intra-frequency邻小区、异频inter-frequency邻小区或异系统Inter-RAT邻小区。
(5)RRM测量增强模式下进行异频RRM测量或异系统测量的目标对象的数量大于RRM普通测量模式下的进行异频RRM测量或异系统测量的目标对象的数量,目标对象包括载波、频率、频段和带宽部分中的至少一个。
(6)使用附加的参考信号进行RRM测量。
举例来说,当为终端设备配置的测量调整相关参数包括测量调整门限时,终端设备可以根据测量调整门限和RRM测量结果,调整RRM测量模式,其中,测量调整门限包括第一门限和第二门限中的至少一个。
也就是说,终端设备可以根据网络设备配置的测量调整门限判断是否进行RRM测 量模式的调整,也就是说,通过判断是否满足基于测量调整门限的条件触发RRM测量模式的切换调整,避免发生测量的乒乓效应,从而避免终端设备频繁调整RRM测量配置。
可选地,上述测量调整门限即第一门限和第二门限可以相同也可以不同。第一门限和第二门限中的至少一个可以与当前连接态或空闲态或非激活态控制邻小区的RRM测量的S-measure(S准则测量)机制的门限相同,也可以不同。进一步可选地,当上述测量调整门限用于控制本小区的RRM测量模式的调整时,第一门限可以高于或等于S-measure机制的门限或者该第一门限也可以低于或等于S-measure机制的门限。进一步可选地,当上述测量调整门限用于控制邻小区的RRM测量模式的调整时,该第一门限和第二门限都低于或等于S-measure机制的门限。
可选地,在第一门限和第二门限不同的情况下,可以根据具体情况的不同具有不同的大小关系。进一步可选地,第二门限低于第一门限。
进一步具体的,终端设备在上述RRM测量结果高于或等于第一门限的情况下,可以使用RRM测量放松模式或RRM普通测量模式进行RRM测量;或者在上述RRM测量结果低于或等于第二门限的情况下,可以使用RRM普通测量模式或RRM测量增强模式进行RRM测量。
举例来说,当为终端设备配置的测量调整相关参数包括测量调整门限和第一测量调整持续时间参数时,终端设备可以根据测量调整门限、RRM测量结果和第一测量调整持续时间参数,调整RRM测量模式,第一测量调整持续时间参数包括第三预设时间或第四预设时间。
也就是说,终端设备可以根据网络设备配置的测量调整门限和第一测量调整持续时间参数判断是否进行RRM测量模式的调整,也就是说,通过判断是否满足基于测量调整门限和第一测量调整持续时间参数的条件触发RRM测量模式的切换调整,避免发生测量的乒乓效应,从而避免终端设备频繁调整RRM测量配置。
具体的,终端设备在上述RRM测量结果在第三预设时间内都高于或等于第一门限的情况下,可以使用RRM测量放松模式或RRM普通测量模式进行RRM测量;或者在上述RRM测量结果在第四预设时间内都低于或等于第二门限的情况下,可以使用RRM普 通测量模式或RRM测量增强模式进行RRM测量。
或者
具体的,终端设备在上述RRM测量结果高于或等于第一门限,且RRM测量结果在第三预设时间内都高于或等于第二门限的情况下,可以使用RRM测量放松模式或RRM普通测量模式进行RRM测量;或者在上述RRM测量结果低于或等于第二门限,且RRM测量结果在第四预设时间内都低于或等于第一门限的情况下,可以使用RRM普通测量模式或RRM测量增强模式进行RRM测量。
举例来说,当为终端设备配置的测量调整相关参数包括第二测量调整持续时间参数时,其中,该第二测量调整持续时间参数包括第五预设时间;终端设备可以在开始使用RRM测量放松模式或RRM测量增强模式进行RRM测量的第五预设时间后,切换使用RRM普通测量模式进行RRM测量。
可选地,上述第五预设时间包括以下之一:
(1)RRM测量定时器的设定时间。
可以理解,在终端设备使用RRM测量放松模式或RRM测量增强模式开始进行RRM测量时,启动该RRM测量定时器,则可以在该RRM测量定时器超时的情况下,则自动回到RRM普通测量模式。
(2)第一预设数量的RRM测量周期对应的时间。
可以理解,在终端设备使用RRM测量放松模式或RRM测量增强模式进行RRM测量的第一预设数量的RRM测量周期后,则自动回到RRM普通测量模式;其中,具体可以通过RRM测量周期计数器统计使用RRM测量放松模式或RRM测量增强模式进行RRM测量的RRM测量周期的总数。
(3)对第二预设数量的RRM测量抽样样本进行RRM测量所需的时间。
可以理解,在终端设备使用RRM测量放松模式或RRM测量增强模式对第二预设数量的RRM测量抽样样本进行RRM测量后,自动回到RRM普通测量模式;其中,具体可以通过RRM测量抽样样本计数器统计使用RRM测量放松模式或RRM测量增强模式进行RRM测量的RRM测量抽样样本的总数。
需要说明的是,第五预设时间除了包括上述情况下,还可以为网络设备直接配置 的时间参数值。
举例来说,当为终端设备配置的测量调整相关参数包括预设小区或预设波束覆盖范围时,终端设备可以在移入预设小区或预设波束覆盖范围的情况下,使用RRM测量放松模式或RRM测量增强模式进行RRM测量;或者在移出预设小区或预设波束覆盖范围的情况下,用RRM普通测量模式进行RRM测量。
需要说明的是,上述各个预设时间的取值,可以根据实际情况进行设置。
通过本公开实施例的测量方法,网络设备为终端设备配置测量调整相关参数,使得终端设备可以根据该测量调整相关参数至少可以在RRM测量放松模式和RRM普通测量模式之间、RRM测量放松模式和RRM测量增强模式之间、RRM普通测量模式和RRM测量增强模式之间进行自动切换调整。
图3示出本公开实施例提供的一种终端设备的结构示意图,该终端设备300包括:接收模块301和测量模块303。
其中,上述接收模块301,用于接收网络设备配置的测量调整相关参数;
上述测量模块303,用于根据测量调整相关参数,调整无线资源管理RRM测量模式。
可选地,在本公开实施例的终端设备300中,上述测量调整相关参数包括测量调整门限;
其中,上述测量模块303,具体可以用于:
根据测量调整门限和RRM测量结果,调整RRM测量模式,其中,测量调整门限包括第一门限和第二门限中的至少一个。
可选地,在本公开实施例的终端设备300中,上述测量模块303,具体可以用于:
若RRM测量结果高于或等于第一门限,则使用第一RRM测量模式进行RRM测量,第一RRM测量模式包括RRM测量放松模式或RRM普通测量模式;或者
若RRM测量结果低于或等于第二门限,则使用第二RRM测量模式进行RRM测量,第二RRM测量模式包括RRM普通测量模式或RRM测量增强模式。
可选地,在本公开实施例的终端设备300中,上述测量调整相关参数还包括第一测量调整持续时间参数;
其中,上述测量模块303,具体可以用于:
根据测量调整门限、RRM测量结果和第一测量调整持续时间参数,调整RRM测量模式,第一测量调整持续时间参数包括第一预设时间或第二预设时间。
可选地,在本公开实施例的终端设备300中,上述测量模块303,具体可以用于:
若RRM测量结果在第一预设时间内都高于或等于第一门限,则使用第一RRM测量模式进行RRM测量,第一RRM测量模式包括RRM测量放松模式或RRM普通测量模式;或者
若RRM测量结果在第二预设时间内都低于或等于第二门限,则使用第二RRM测量模式进行RRM测量,第二RRM测量模式包括RRM普通测量模式或RRM测量增强模式。
可选地,在本公开实施例的终端设备300中,上述测量模块303,具体可以用于:
若RRM测量结果高于或等于第一门限,且RRM测量结果在第一预设时间内都高于或等于第二门限,则使用第一RRM测量模式进行RRM测量,第一RRM测量模式包括RRM测量放松模式或RRM普通测量模式;或者
若RRM测量结果低于或等于第二门限,且RRM测量结果在第二预设时间内都低于或等于第一门限,则使用第二RRM测量模式进行RRM测量,第二RRM测量模式包括RRM普通测量模式或RRM测量增强模式。
可选地,在本公开实施例的终端设备300中,上述RRM测量结果包括以下至少之一:
对终端设备的本小区进行RRM测量得到的第一结果,第一结果包括小区的测量结果和波束的测量结果中的至少一个;
对终端设备的邻小区进行RRM测量得到的第二结果,第二结果包括小区的测量结果和波束的测量结果中的至少一个。
可选地,在本公开实施例的终端设备300中,上述测量调整相关参数包括第二测量调整持续时间参数,第二测量调整持续时间参数包括第三预设时间;
其中,上述测量模块303,具体可以用于:
在开始使用第三RRM测量模式进行RRM测量的第三预设时间后,切换使用第四RRM测量模式进行RRM测量,其中,第三RRM测量模式包括RRM测量放松模式或RRM测量增强模式,第四RRM测量模式包括RRM普通测量模式。
可选地,在本公开实施例的终端设备300中,上述第三预设时间包括以下之一:
RRM测量定时器的设定时间;
第一预设数量的RRM测量周期对应的时间;
对第二预设数量的RRM测量抽样样本进行RRM测量所需的时间。
可选地,在本公开实施例的终端设备300中,上述测量调整相关参数包括预设小区或预设波束覆盖范围;
其中,上述测量模块303,具体可以用于:
若终端设备移入预设小区或预设波束覆盖范围,则使用第五RRM测量模式进行RRM测量,第五RRM测量模式包括RRM测量放松模式或RRM测量增强模式;或者
若终端设备移出预设小区或预设波束覆盖范围,则使用第六RRM测量模式进行RRM测量,第六RRM测量模式包括RRM普通测量模式。
可选地,在本公开实施例的终端设备300中,上述RRM测量放松模式包括终端设备处于无线资源控制RRC连接态、RRC空闲态或RRC非激活态的RRM测量放松模式。
可选地,在本公开实施例的终端设备300中,上述RRM测量放松模式下的测量周期大于上述RRM普通测量模式下的测量周期;或者
上述RRM测量放松模式下在一个测量周期内的抽样样本数小于上述RRM普通测量模式下在一个测量周期内的抽样样本数;或者
在第四预设时间内,上述RRM测量放松模式下的测量频次小于上述RRM普通测量模式的测量频次;或者
上述RRM测量放松模式下进行RRM测量的邻小区数量小于上述RRM普通测量模式下进行RRM测量的邻小区数量;或者
上述RRM测量放松模式下进行异频RRM测量或异系统测量的目标对象的数量小于上述RRM普通测量模式下的进行异频RRM测量或异系统测量的目标对象的数量,目标对象包括载波、频率、频段和带宽部分中的至少一个;或者
使用附加的参考信号进行RRM测量。
可选地,在本公开实施例的终端设备300中,上述RRM测量增强模式包括终端设备处于无线资源控制RRC连接态、RRC空闲态或RRC非激活态的RRM测量增强模式。
可选地,在本公开实施例的终端设备300中,上述RRM测量增强模式下的测量周期小于上述RRM普通测量模式下的测量周期;或者
上述RRM测量增强模式下在一个测量周期内的抽样样本数大于上述RRM普通测量模式下在一个测量周期内的抽样样本数;或者
在第五预设时间内,上述RRM测量增强模式下的测量频次大于上述RRM普通测量模式的测量频次;或者
上述RRM测量增强模式下进行RRM测量的邻小区数量大于上述RRM普通测量模式下进行RRM测量的邻小区数量;或者
上述RRM测量增强模式下进行异频RRM测量或异系统测量的目标对象的数量大于上述RRM普通测量模式下的进行异频RRM测量或异系统测量的目标对象的数量,目标对象包括载波、频率、频段和带宽部分中的至少一个;或者
使用附加的参考信号进行RRM测量。
可选地,本公开实施例的终端设备300,具体还可以包括:
发送模块,用于在接收网络设备配置的测量调整相关参数之前,向网络设备发送测量调整请求,测量调整请求包括用于获取测量调整相关参数的请求。
可选地,在本公开实施例的终端设备300中,上述接收模块301,具体可以用于:
在终端设备处于RRC连接态的情况下,通过RRC专用消息或广播消息接收测量调整相关参数;或者
在终端设备处于RRC空闲态或RRC非激活态的情况下,通过RRC连接释放消息、RRC连接挂起消息或广播消息接收测量调整相关参数。
可选地,在本公开实施例的终端设备300中,上述测量调整相关参数包括以下之一:
网络设备为终端设备单独配置的参数;
网络设备为终端设备的当前小区配置的参数;
网络设备在每个频率、载波、频段或带宽部分的范围内配置的参数;
网络设备为终端设备在每个频率、载波、频段或带宽部分的范围内配置的参数;
网络设备为终端设备对应的每个波束配置的参数。
可选地,在本公开实施例的终端设备300中,上述测量模块303,具体可以用于:
根据测量调整相关参数,调整终端设备的本小区和邻小区中的至少一个的RRM测量模式。
能够理解,本公开实施例提供的终端设备300,能够实现前述由终端设备300执行的测量方法,关于测量方法的相关阐述均适用于终端设备300,此处不再赘述。
本公开实施例中,通过网络设备配置的测量调整相关参数进行无线资源管理RRM测量模式的调整,能够实现不同的RRM测量模式间的有效切换调整,在节省终端设备功耗的同时,避免发生测量的乒乓效应,从而避免终端设备频繁调整RRM测量的配置,并保持了网络设备配置的灵活度。
图4示出本公开实施例提供的一种网络设备的结构示意图,该网络设备400包括:
发送模块401,用于向终端设备发送测量调整相关参数,其中,所述测量调整相关参数用于调整所述终端设备的无线资源管理RRM测量模式。
可选地,在本公开实施例的网络设备400中,上述测量调整相关参数用于调整所述终端设备的本小区和邻小区中的至少一个的RRM测量模式。
可选地,在本公开实施例的网络设备400中,上述测量调整相关参数包括以下之一:
为所述终端设备单独配置的参数;
为所述终端设备的当前小区配置的参数;
在每个频率、载波、频段或带宽部分的范围内配置的参数;
为所述终端设备在每个频率、载波、频段或带宽部分的范围内配置的参数;
为所述终端设备对应的每个波束配置的参数。
可选地,在本公开实施例的网络设备400中,上述测量调整相关参数包括测量调整门限、测量调整持续时间参数、预设小区和预设波束覆盖范围中的至少一个。
可选地,在本公开实施例的网络设备400中,上述RRM测量模式包括RRM普通测量模式、RRM测量放松模式和RRM测量增强模式中的至少一个。
可选地,在本公开实施例的网络设备400中,上述RRM测量放松模式包括所述终端设备处于无线资源控制RRC连接态、RRC空闲态或RRC非激活态的RRM测量放松模 式。
可选地,在本公开实施例的网络设备400中,上述RRM测量放松模式下的测量周期大于上述RRM普通测量模式下的测量周期;或者
上述RRM测量放松模式下在一个测量周期内的抽样样本数小于上述RRM普通测量模式下在一个测量周期内的抽样样本数;或者
在第一预设时间内,上述RRM测量放松模式下的测量频次小于上述RRM普通测量模式的测量频次;或者
上述RRM测量放松模式下进行RRM测量的邻小区数量小于上述RRM普通测量模式下进行RRM测量的邻小区数量;或者
上述RRM测量放松模式下进行异频RRM测量或异系统测量的目标对象的数量小于上述RRM普通测量模式下的进行异频RRM测量或异系统测量的所述目标对象的数量,所述目标对象包括载波、频率、频段和带宽部分中的至少一个;或者
使用附加的参考信号进行RRM测量。
可选地,在本公开实施例的网络设备400中,上述RRM测量增强模式包括所述终端设备处于无线资源控制RRC连接态、RRC空闲态或RRC非激活态的RRM测量增强模式。
可选地,在本公开实施例的网络设备400中,上述RRM测量增强模式下的测量周期小于上述RRM普通测量模式下的测量周期;或者
上述RRM测量增强模式下在一个测量周期内的抽样样本数大于上述RRM普通测量模式下在一个测量周期内的抽样样本数;或者
在第二预设时间内,上述RRM测量增强模式下的测量频次大于上述RRM普通测量模式的测量频次;或者
上述RRM测量增强模式下进行RRM测量的邻小区数量大于上述RRM普通测量模式下进行RRM测量的邻小区数量;或者
上述RRM测量增强模式下进行异频RRM测量或异系统测量的目标对象的数量大于上述RRM普通测量模式下的进行异频RRM测量或异系统测量的所述目标对象的数量,所述目标对象包括载波、频率、频段和带宽部分中的至少一个;或者
使用附加的参考信号进行RRM测量。
可选地,在本公开实施例的网络设备400中,上述发送模块401,具体可以用于:
通过RRC专用消息或广播消息,向处于RRC连接态的所述终端设备发送所述测量调整相关参数;或者
通过RRC连接释放消息、RRC连接挂起消息或广播消息,向处于RRC空闲态或RRC非激活态的所述终端设备发送所述测量调整相关参数。
可选地,本公开实施例的网络设备400,还可以包括:
接收模块,用于在向终端设备发送测量调整相关参数之前,接收所述终端设备发送的测量调整请求,所述测量调整请求包括用于获取所述测量调整相关参数的请求。
能够理解,本公开实施例提供的网络设备400,能够实现前述由网络设备400执行的测量方法,关于测量方法的相关阐述均适用于网络设备400,此处不再赘述。
本公开实施例中,通过为终端设备配置测量调整相关参数,从而使终端设备能够根据该测量调整相关参数实现不同的RRM测量模式间的有效切换调整,在节省终端设备功耗的同时,避免了发生测量的乒乓效应,进一步避免了终端设备频繁调整RRM测量的配置,并保持了网络设备配置的灵活度。
图5是本公开另一个实施例的终端设备的框图。图5所示的终端设备500包括:至少一个处理器501、存储器502、至少一个网络接口504和用户接口503。终端设备500中的各个组件通过总线系统505耦合在一起。可理解,总线系统505用于实现这些组件之间的连接通信。总线系统505除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图5中将各种总线都标为总线系统505。
其中,用户接口503可以包括显示器、键盘或者点击设备(例如,鼠标,轨迹球(trackball)、触感板或者触摸屏等。
可以理解,本公开实施例中的存储器502可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器 (Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本公开实施例描述的系统和方法的存储器502旨在包括但不限于这些和任意其它适合类型的存储器。
在一些实施方式中,存储器502存储了如下的元素,可执行模块或者数据结构,或者他们的子集,或者他们的扩展集:操作系统5021和应用程序5022。
其中,操作系统5021,包含各种系统程序,例如框架层、核心库层、驱动层等,用于实现各种基础业务以及处理基于硬件的任务。应用程序5022,包含各种应用程序,例如媒体播放器(Media Player)、浏览器(Browser)等,用于实现各种应用业务。实现本公开实施例方法的程序可以包含在应用程序5022中。
在本公开实施例中,终端设备500还包括:存储在存储器上502并可在处理器501上运行的计算机程序,计算机程序被处理器501执行时实现如下步骤:
接收网络设备配置的测量调整相关参数;
根据测量调整相关参数,调整无线资源管理RRM测量模式。
上述本公开实施例揭示的方法可以应用于处理器501中,或者由处理器501实现。处理器501可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器501中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器501可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本公开实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规 的处理器等。结合本公开实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的计算机可读存储介质中。该计算机可读存储介质位于存储器502,处理器501读取存储器502中的信息,结合其硬件完成上述方法的步骤。具体地,该计算机可读存储介质上存储有计算机程序,计算机程序被处理器501执行时实现如上述测量方法实施例的各步骤。
可以理解的是,本公开实施例描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,处理单元可以实现在一个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processing,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本公开所述功能的其它电子单元或其组合中。
对于软件实现,可通过执行本公开实施例所述功能的模块(例如过程、函数等)来实现本公开实施例所述的技术。软件代码可存储在存储器中并通过处理器执行。存储器可以在处理器中或在处理器外部实现。
本公开实施例中,通过网络设备配置的测量调整相关参数进行无线资源管理RRM测量模式的调整,能够实现不同的RRM测量模式间的有效切换调整,在节省终端设备功耗的同时,避免发生测量的乒乓效应,从而避免终端设备频繁调整RRM测量的配置,并保持了网络设备配置的灵活度。
终端设备500能够实现前述实施例中终端设备实现的各个过程,为避免重复,这里不再赘述。
请参阅图6,图6是本公开实施例应用的网络设备的结构图,能够实现前述由网络设备执行的测量方法的细节,并达到相同的效果。如图6所示,网络设备600包括:处理器601、收发机602、存储器603、用户接口604和总线接口605,其中:
在本公开实施例中,网络设备600还包括:存储在存储器上603并可在处理器601 上运行的计算机程序,计算机程序被处理器601、执行时实现如下步骤:
向终端设备发送测量调整相关参数,其中,测量调整相关参数用于调整终端设备的无线资源管理RRM测量模式。
在图6中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器601代表的一个或多个处理器和存储器603代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口605提供接口。收发机602可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口604还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器601负责管理总线架构和通常的处理,存储器603可以存储处理器601在执行操作时所使用的数据。
本公开实施例中,通过为终端设备配置测量调整相关参数,从而使终端设备能够根据该测量调整相关参数实现不同的RRM测量模式间的有效切换调整,在节省终端设备功耗的同时,避免了发生测量的乒乓效应,进一步避免了终端设备频繁调整RRM测量的配置,并保持了网络设备配置的灵活度。
本公开实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现上述测量方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同 要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本公开各个实施例所述的方法。
上面结合附图对本公开的实施例进行了描述,但是本公开并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本公开的启示下,在不脱离本公开宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本公开的保护之内。

Claims (34)

  1. 一种测量方法,应用于终端设备,所述方法包括:
    接收网络设备配置的测量调整相关参数;
    根据所述测量调整相关参数,调整无线资源管理RRM测量模式。
  2. 根据权利要求1所述的方法,其中,所述测量调整相关参数包括测量调整门限;
    其中,所述根据所述测量调整相关参数,调整无线资源管理RRM测量模式,包括:
    根据所述测量调整门限和RRM测量结果,调整所述RRM测量模式,其中,所述测量调整门限包括第一门限和第二门限中的至少一个。
  3. 根据权利要求2所述的方法,其中,所述根据所述测量调整门限和RRM测量结果,调整所述RRM测量模式,包括:
    若所述RRM测量结果高于或等于所述第一门限,则使用第一RRM测量模式进行RRM测量,所述第一RRM测量模式包括RRM测量放松模式或RRM普通测量模式;或者
    若所述RRM测量结果低于或等于所述第二门限,则使用第二RRM测量模式进行RRM测量,所述第二RRM测量模式包括RRM普通测量模式或RRM测量增强模式。
  4. 根据权利要求2所述的方法,其中,所述测量调整相关参数还包括第一测量调整持续时间参数;
    其中,所述根据所述测量调整门限和RRM测量结果,调整所述RRM测量模式,包括:
    根据所述测量调整门限、所述RRM测量结果和所述第一测量调整持续时间参数,调整所述RRM测量模式,所述第一测量调整持续时间参数包括第一预设时间或第二预设时间。
  5. 根据权利要求4所述的方法,其中,所述根据所述测量调整门限、所述RRM测量结果和所述第一测量调整持续时间参数,调整所述RRM测量模式,包括:
    若所述RRM测量结果在所述第一预设时间内都高于或等于所述第一门限,则使用第一RRM测量模式进行RRM测量,所述第一RRM测量模式包括RRM测量放松模式或RRM普通测量模式;或者
    若所述RRM测量结果在所述第二预设时间内都低于或等于所述第二门限,则使用第二RRM测量模式进行RRM测量,所述第二RRM测量模式包括RRM普通测量模式或RRM测量增强模式。
  6. 根据权利要求4所述的方法,其中,所述根据所述测量调整门限、所述RRM测量结果和所述第一测量调整持续时间参数,调整所述RRM测量模式,包括:
    若所述RRM测量结果高于或等于所述第一门限,且所述RRM测量结果在所述第一预设时间内都高于或等于所述第二门限,则使用第一RRM测量模式进行RRM测量,所述第一RRM测量模式包括RRM测量放松模式或RRM普通测量模式;或者
    若所述RRM测量结果低于或等于所述第二门限,且所述RRM测量结果在所述第二预设时间内都低于或等于所述第一门限,则使用第二RRM测量模式进行RRM测量,所述第二RRM测量模式包括RRM普通测量模式或RRM测量增强模式。
  7. 根据权利要求2ˉ6中任一项所述的方法,其中,所述RRM测量结果包括以下至少之一:
    对所述终端设备的本小区进行RRM测量得到的第一结果,所述第一结果包括小区的测量结果和波束的测量结果中的至少一个;
    对所述终端设备的邻小区进行RRM测量得到的第二结果,所述第二结果包括小区的测量结果和波束的测量结果中的至少一个。
  8. 根据权利要求1所述的方法,其中,所述测量调整相关参数包括第二测量调整持续时间参数,所述第二测量调整持续时间参数包括第三预设时间;
    其中,所述根据所述测量调整相关参数,调整无线资源管理RRM测量模式,包括:
    在开始使用第三RRM测量模式进行RRM测量的所述第三预设时间后,切换使用第四RRM测量模式进行RRM测量,其中,所述第三RRM测量模式包括RRM测量放松模式或RRM测量增强模式,所述第四RRM测量模式包括RRM普通测量模式。
  9. 根据权利要求8所述的方法,其中,所述第三预设时间包括以下之一:
    RRM测量定时器的设定时间;
    第一预设数量的RRM测量周期对应的时间;
    对第二预设数量的RRM测量抽样样本进行RRM测量所需的时间。
  10. 根据权利要求1所述的方法,其中,所述测量调整相关参数包括预设小区或预设波束覆盖范围;
    其中,所述根据所述测量调整相关参数,调整无线资源管理RRM测量模式,包括:
    若所述终端设备移入所述预设小区或所述预设波束覆盖范围,则使用第五RRM测量模式进行RRM测量,所述第五RRM测量模式包括RRM测量放松模式或RRM测量增强模式;或者
    若所述终端设备移出所述预设小区或所述预设波束覆盖范围,则使用第六RRM测量模式进行RRM测量,所述第六RRM测量模式包括RRM普通测量模式。
  11. 根据权利要求3、5、6、8或10所述的方法,其中,所述RRM测量放松模式包括所述终端设备处于无线资源控制RRC连接态、RRC空闲态或RRC非激活态的RRM测量放松模式。
  12. 根据权利要求11所述的方法,其中,
    所述RRM测量放松模式下的测量周期大于所述RRM普通测量模式下的测量周期;或者
    所述RRM测量放松模式下在一个测量周期内的抽样样本数小于所述RRM普通测量模式下在一个测量周期内的抽样样本数;或者
    在第四预设时间内,所述RRM测量放松模式下的测量频次小于所述RRM普通测量模式的测量频次;或者
    所述RRM测量放松模式下进行RRM测量的邻小区数量小于所述RRM普通测量模式下进行RRM测量的邻小区数量;或者
    所述RRM测量放松模式下进行异频RRM测量或异系统测量的目标对象的数量小于所述RRM普通测量模式下的进行异频RRM测量或异系统测量的所述目标对象的数量,所述目标对象包括载波、频率、频段和带宽部分中的至少一个;或者
    使用附加的参考信号进行RRM测量。
  13. 根据权利要求3、5、6、8或10所述的方法,其中,所述RRM测量增强模式包括所述终端设备处于无线资源控制RRC连接态、RRC空闲态或RRC非激活态的RRM测量增强模式。
  14. 根据权利要求13所述的方法,其中,
    所述RRM测量增强模式下的测量周期小于所述RRM普通测量模式下的测量周期;或者
    所述RRM测量增强模式下在一个测量周期内的抽样样本数大于所述RRM普通测量模式下在一个测量周期内的抽样样本数;或者
    在第五预设时间内,所述RRM测量增强模式下的测量频次大于所述RRM普通测量模式的测量频次;或者
    所述RRM测量增强模式下进行RRM测量的邻小区数量大于所述RRM普通测量模式下进行RRM测量的邻小区数量;或者
    所述RRM测量增强模式下进行异频RRM测量或异系统测量的目标对象的数量大于所述RRM普通测量模式下的进行异频RRM测量或异系统测量的所述目标对象的数量,所述目标对象包括载波、频率、频段和带宽部分中的至少一个;或者
    使用附加的参考信号进行RRM测量。
  15. 根据权利要求1所述的方法,其中,在所述接收网络设备配置的测量调整相关参数之前,所述方法还包括:
    向所述网络设备发送测量调整请求,所述测量调整请求包括用于获取所述测量调整相关参数的请求。
  16. 根据权利要求1所述的方法,其中,所述接收网络设备配置的测量调整相关参数,包括:
    在所述终端设备处于RRC连接态的情况下,通过RRC专用消息或广播消息接收所述测量调整相关参数;或者
    在所述终端设备处于RRC空闲态或RRC非激活态的情况下,通过RRC连接释放消息、RRC连接挂起消息或广播消息接收所述测量调整相关参数。
  17. 根据权利要求1所述的方法,其中,所述测量调整相关参数包括以下之一:
    所述网络设备为所述终端设备单独配置的参数;
    所述网络设备为所述终端设备的当前小区配置的参数;
    所述网络设备在每个频率、载波、频段或带宽部分的范围内配置的参数;
    所述网络设备为所述终端设备在每个频率、载波、频段或带宽部分的范围内配置的参数;
    所述网络设备为所述终端设备对应的每个波束配置的参数。
  18. 根据权利要求1所述的方法,其中,所述根据所述测量调整相关参数,调整无线资源管理RRM测量模式,包括:
    根据所述测量调整相关参数,调整所述终端设备的本小区和邻小区中的至少一个的RRM测量模式。
  19. 一种测量方法,应用于网络设备,所述方法包括:
    向终端设备发送测量调整相关参数,其中,所述测量调整相关参数用于调整所述终端设备的无线资源管理RRM测量模式。
  20. 根据权利要求19所述的方法,其中,所述测量调整相关参数用于调整所述终端设备的本小区和邻小区中的至少一个的RRM测量模式。
  21. 根据权利要求19所述的方法,其中,所述测量调整相关参数包括以下之一:
    为所述终端设备单独配置的参数;
    为所述终端设备的当前小区配置的参数;
    在每个频率、载波、频段或带宽部分的范围内配置的参数;
    为所述终端设备在每个频率、载波、频段或带宽部分的范围内配置的参数;
    为所述终端设备对应的每个波束配置的参数。
  22. 根据权利要求19所述的方法,其中,所述测量调整相关参数包括测量调整门限、测量调整持续时间参数、预设小区和预设波束覆盖范围中的至少一个。
  23. 根据权利要求19所述的方法,其特征在于,所述RRM测量模式包括RRM普通测量模式、RRM测量放松模式和RRM测量增强模式中的至少一个。
  24. 根据权利要求23所述的方法,其中,所述RRM测量放松模式包括所述终端设备处于无线资源控制RRC连接态、RRC空闲态或RRC非激活态的RRM测量放松模式。
  25. 根据权利要求24所述的方法,其中,
    所述RRM测量放松模式下的测量周期大于所述RRM普通测量模式下的测量周期;或者
    所述RRM测量放松模式下在一个测量周期内的抽样样本数小于所述RRM普通测量模式下在一个测量周期内的抽样样本数;或者
    在第一预设时间内,所述RRM测量放松模式下的测量频次小于所述RRM普通测量模式的测量频次;或者
    所述RRM测量放松模式下进行RRM测量的邻小区数量小于所述RRM普通测量模式下进行RRM测量的邻小区数量;或者
    所述RRM测量放松模式下进行异频RRM测量或异系统测量的目标对象的数量小于所述RRM普通测量模式下的进行异频RRM测量或异系统测量的所述目标对象的数量,所述目标对象包括载波、频率、频段和带宽部分中的至少一个;或者
    使用附加的参考信号进行RRM测量。
  26. 根据权利要求23所述的方法,其中,所述RRM测量增强模式包括所述终端设备处于无线资源控制RRC连接态、RRC空闲态或RRC非激活态的RRM测量增强模式。
  27. 根据权利要求26所述的方法,其中,
    所述RRM测量增强模式下的测量周期小于所述RRM普通测量模式下的测量周期;或者
    所述RRM测量增强模式下在一个测量周期内的抽样样本数大于所述RRM普通测量模式下在一个测量周期内的抽样样本数;或者
    在第二预设时间内,所述RRM测量增强模式下的测量频次大于所述RRM普通测量模式的测量频次;或者
    所述RRM测量增强模式下进行RRM测量的邻小区数量大于所述RRM普通测量模式下进行RRM测量的邻小区数量;或者
    所述RRM测量增强模式下进行异频RRM测量或异系统测量的目标对象的数量大于所述RRM普通测量模式下的进行异频RRM测量或异系统测量的所述目标对象的数量,所述目标对象包括载波、频率、频段和带宽部分中的至少一个;或者
    使用附加的参考信号进行RRM测量。
  28. 根据权利要求19ˉ27中任一项所述的方法,其中,所述向终端设备发送测量调整相关参数,包括:
    通过RRC专用消息或广播消息,向处于RRC连接态的所述终端设备发送所述测量调整相关参数;或者
    通过RRC连接释放消息、RRC连接挂起消息或广播消息,向处于RRC空闲态或RRC非激活态的所述终端设备发送所述测量调整相关参数。
  29. 根据权利要求19ˉ27中任一项所述的方法,其中,在所述向终端设备发送测量调整相关参数之前,所述方法还包括:
    接收所述终端设备发送的测量调整请求,所述测量调整请求包括用于获取所述测量调整相关参数的请求。
  30. 一种终端设备,所述终端设备包括:
    接收模块,用于接收网络设备配置的测量调整相关参数;
    测量模块,用于根据所述测量调整相关参数,调整无线资源管理RRM测量模式。
  31. 一种网络设备,所述网络设备包括:
    发送模块,用于向终端设备发送测量调整相关参数,其中,所述测量调整相关参数用于调整所述终端设备的无线资源管理RRM测量模式。
  32. 一种终端设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求1至18中任一项所述的方法的步骤。
  33. 一种网络设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求19至29中任一项所述的方法的步骤。
  34. 一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至29中任一项所述的方法的步骤。
PCT/CN2020/109231 2019-08-15 2020-08-14 测量方法、终端设备和网络设备 WO2021027930A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2022509083A JP7461457B2 (ja) 2019-08-15 2020-08-14 測定方法、端末機器及びネットワーク機器
EP20853399.2A EP4017069A4 (en) 2019-08-15 2020-08-14 MEASUREMENT PROCESS, TERMINAL DEVICE AND NETWORK DEVICE
KR1020227007395A KR20220046599A (ko) 2019-08-15 2020-08-14 측정 방법, 단말 기기 및 네트워크 기기
BR112022002675A BR112022002675A2 (pt) 2019-08-15 2020-08-14 Método de medição, dispositivo terminal e dispositivo de rede.
US17/668,655 US20220167370A1 (en) 2019-08-15 2022-02-10 Measurement method, terminal device, and network device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910755817.2 2019-08-15
CN201910755817.2A CN111800800B (zh) 2019-08-15 2019-08-15 测量方法、终端设备和网络设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/668,655 Continuation US20220167370A1 (en) 2019-08-15 2022-02-10 Measurement method, terminal device, and network device

Publications (1)

Publication Number Publication Date
WO2021027930A1 true WO2021027930A1 (zh) 2021-02-18

Family

ID=72804935

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/109231 WO2021027930A1 (zh) 2019-08-15 2020-08-14 测量方法、终端设备和网络设备

Country Status (7)

Country Link
US (1) US20220167370A1 (zh)
EP (1) EP4017069A4 (zh)
JP (1) JP7461457B2 (zh)
KR (1) KR20220046599A (zh)
CN (1) CN111800800B (zh)
BR (1) BR112022002675A2 (zh)
WO (1) WO2021027930A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113302967A (zh) * 2021-04-13 2021-08-24 北京小米移动软件有限公司 测量配置、测量上报方法及装置、存储介质
WO2023137363A1 (en) * 2022-01-14 2023-07-20 Qualcomm Incorporated Dynamic idle mode search and measurement scheduling based on reference signal measurement

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114449556A (zh) * 2020-10-30 2022-05-06 维沃移动通信有限公司 测量调整方法和终端
CN114449527A (zh) * 2020-11-05 2022-05-06 维沃移动通信有限公司 资源测量的调整方法及装置、终端及可读存储介质
CN114697992B (zh) * 2020-12-31 2024-02-09 维沃移动通信有限公司 监测行为的调整方法、装置及终端
EP4236429A4 (en) * 2021-02-07 2023-11-29 Guangdong Oppo Mobile Telecommunications Corp., Ltd. MEASURING METHOD, TERMINAL DEVICE AND NETWORK DEVICE
CN115413416A (zh) * 2021-03-29 2022-11-29 北京小米移动软件有限公司 测量放松配置处理方法及装置、通信设备及存储介质
WO2022217460A1 (zh) * 2021-04-13 2022-10-20 北京小米移动软件有限公司 测量放松方法、装置及存储介质
CN115623877A (zh) * 2021-05-14 2023-01-17 北京小米移动软件有限公司 一种放松测量处理方法、装置及可读存储介质
WO2023279351A1 (zh) * 2021-07-08 2023-01-12 北京小米移动软件有限公司 一种测量放松指示方法、装置、用户设备、基站及存储介质
CN115696392A (zh) * 2021-07-28 2023-02-03 华为技术有限公司 通信方法和通信装置
CN115943659A (zh) * 2021-08-04 2023-04-07 北京小米移动软件有限公司 测量放松的方法、装置、通信设备及存储介质
WO2023010476A1 (en) * 2021-08-05 2023-02-09 Apple Inc. Radio resource management relaxation for radio resource control connected mode
CN115967958A (zh) * 2021-10-13 2023-04-14 华为技术有限公司 通信方法及装置
CN117561741A (zh) * 2021-10-15 2024-02-13 Oppo广东移动通信有限公司 小区测量方法、消息发送方法、装置、设备及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106941658A (zh) * 2016-01-04 2017-07-11 中国移动通信集团公司 一种无线资源的移动性管理方法及装置
WO2018028426A1 (zh) * 2016-08-10 2018-02-15 中兴通讯股份有限公司 波束管理方法及装置
CN109041098A (zh) * 2017-06-12 2018-12-18 维沃移动通信有限公司 一种终端测量配置方法、终端及基站

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101503926B1 (ko) * 2007-08-06 2015-03-18 삼성전자주식회사 유휴 모드에 있는 ue의 전력 소비를 줄이는 방법
KR101830738B1 (ko) * 2011-02-22 2018-04-04 엘지전자 주식회사 무선 통신 시스템에서 단말의 상향링크 송신 전력 제어 방법 및 이를 위한 장치
EP2963965B1 (en) * 2013-03-27 2022-02-16 Huawei Technologies Co., Ltd. Method, apparatus, and device for measuring radio resource management information
CN106165326A (zh) * 2014-03-04 2016-11-23 Lg 电子株式会社 接收用于接收发现参考信号的控制信息的方法及其装置
CN105309001B (zh) * 2014-04-03 2019-05-28 华为技术有限公司 一种tdd系统中rrm测量方法及装置
US10542447B2 (en) * 2014-12-30 2020-01-21 Lg Electronics Inc. Method and device for reporting measurement result by terminal in coverage expansion area
CN107872819B (zh) * 2016-09-28 2021-07-20 华为技术有限公司 资源管理指示方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106941658A (zh) * 2016-01-04 2017-07-11 中国移动通信集团公司 一种无线资源的移动性管理方法及装置
WO2018028426A1 (zh) * 2016-08-10 2018-02-15 中兴通讯股份有限公司 波束管理方法及装置
CN109041098A (zh) * 2017-06-12 2018-12-18 维沃移动通信有限公司 一种终端测量配置方法、终端及基站

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
OPPO: "Measurement configuration enhancement to enable faster SN addition for EN-DC", 3GPP DRAFT; R2-1711479 MEASUREMENTS CONFIGURATION ENHANCEMENT TO ENABLE FASTER SN ADDITION FOR EN-DC, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Prague, Czech Republic; 20171009 - 20171013, 29 September 2017 (2017-09-29), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051355585 *
See also references of EP4017069A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113302967A (zh) * 2021-04-13 2021-08-24 北京小米移动软件有限公司 测量配置、测量上报方法及装置、存储介质
WO2023137363A1 (en) * 2022-01-14 2023-07-20 Qualcomm Incorporated Dynamic idle mode search and measurement scheduling based on reference signal measurement

Also Published As

Publication number Publication date
CN111800800B (zh) 2022-02-08
JP2022543902A (ja) 2022-10-14
EP4017069A1 (en) 2022-06-22
JP7461457B2 (ja) 2024-04-03
KR20220046599A (ko) 2022-04-14
BR112022002675A2 (pt) 2022-05-03
US20220167370A1 (en) 2022-05-26
CN111800800A (zh) 2020-10-20
EP4017069A4 (en) 2022-10-19

Similar Documents

Publication Publication Date Title
WO2021027930A1 (zh) 测量方法、终端设备和网络设备
US11546106B2 (en) Method and device for determining beam failure detection reference signal resource
EP3692736B1 (en) Dynamic change of measurement gaps
US20200322071A1 (en) Measurement Method, Terminal, Device, and Access Network Device
JP6833225B2 (ja) 基準信号送信及び測定のための方法及びデバイス
US11425556B2 (en) Method for reporting user equipment capability, method for resource scheduling, user equipment and network device
US20220124528A1 (en) Measurement method, user equipment, and network side device
US20120252432A1 (en) Method, apparatus and computer program product for obtaining deactivated secondary cell measurements while a mobile terminal is in motion
WO2020147820A1 (zh) 测量方法及设备
KR20130049811A (ko) 위치 측정 활성화를 위한 방법 및 장치
US11134405B2 (en) Measurement method and user equipment
WO2020200084A1 (zh) 用于无线资源管理rrm测量的方法和装置
KR20210119406A (ko) Ue 절전을 위한 방법
KR20210043650A (ko) 통신 방법 및 기기
US11102685B2 (en) Method of switching measurement mode and device thereof
WO2020211094A1 (zh) 一种测量处理方法、网络设备、终端设备
CN114982274A (zh) 早期测量报告下的ue节能机制
US20220353763A1 (en) Method and device for measurement relaxation
WO2021196007A1 (zh) 一种无线资源管理测量方法、电子设备及存储介质
CN111757374B (zh) 一种波束管理方法及装置
CN114786207A (zh) 测量调度方法、装置、用户设备及存储介质
WO2020164390A1 (zh) 一种测量的方法和通信装置
US20220167201A1 (en) Mobility measurement method in rrc idle or inactive state and device
WO2021197287A1 (zh) 测量方法、终端设备和网络设备
WO2021093670A1 (zh) 测量方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20853399

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022509083

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022002675

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20227007395

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020853399

Country of ref document: EP

Effective date: 20220315

ENP Entry into the national phase

Ref document number: 112022002675

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220211