WO2021027879A1 - 能量转换装置及车辆 - Google Patents

能量转换装置及车辆 Download PDF

Info

Publication number
WO2021027879A1
WO2021027879A1 PCT/CN2020/108925 CN2020108925W WO2021027879A1 WO 2021027879 A1 WO2021027879 A1 WO 2021027879A1 CN 2020108925 W CN2020108925 W CN 2020108925W WO 2021027879 A1 WO2021027879 A1 WO 2021027879A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
energy conversion
conversion device
coil
capacitor
Prior art date
Application number
PCT/CN2020/108925
Other languages
English (en)
French (fr)
Inventor
廉玉波
凌和平
李吉成
潘华
谢飞跃
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Priority to JP2022509036A priority Critical patent/JP7389227B2/ja
Priority to US17/635,620 priority patent/US11801764B2/en
Priority to AU2020328756A priority patent/AU2020328756B2/en
Priority to EP20852950.3A priority patent/EP4015297A4/en
Publication of WO2021027879A1 publication Critical patent/WO2021027879A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/1552Boost converters exploiting the leakage inductance of a transformer or of an alternator as boost inductor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/11DC charging controlled by the charging station, e.g. mode 4
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/22Constructional details or arrangements of charging converters specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/24Using the vehicle's propulsion converter for charging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L55/00Arrangements for supplying energy stored within a vehicle to a power network, i.e. vehicle-to-grid [V2G] arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/14Preventing excessive discharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/27Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by heating
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0068Battery or charger load switching, e.g. concurrent charging and load supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/66Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal
    • H02M7/68Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters
    • H02M7/72Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/79Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/797Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage

Definitions

  • the present disclosure relates to the field of vehicle technology, in particular to an energy conversion device and a vehicle.
  • the purpose of the present disclosure is to provide an energy conversion device and a vehicle, which can discharge electric equipment or receive charging from charging equipment.
  • the present disclosure is achieved in this way.
  • the first aspect of the present disclosure provides an energy conversion device including a reversible PWM rectifier, a motor coil connected to the reversible PWM rectifier, a unidirectional conduction module, and a capacitor.
  • the reversible PWM rectifier also includes a first A bus terminal and a second bus terminal, the neutral line of the motor coil is connected to the first terminal of the capacitor, and the second bus terminal of the reversible PWM rectifier is also connected to the second terminal of the capacitor;
  • the unidirectional conduction module is connected between the second end of the capacitor and the first end of the external DC port, and the second end of the external DC port is connected to the first end of the capacitor,
  • the second terminal of the capacitor is connected to the negative terminal of the external battery, and the positive terminal of the external battery is connected to the first bus terminal of the reversible PWM rectifier.
  • a second aspect of the present disclosure provides an energy conversion device, including:
  • a unidirectional conduction module includes a diode, the anode and the cathode of the diode are respectively the first end and the second end of the unidirectional conduction module;
  • a reversible PWM rectifier includes multiple bridge arms, the first ends of the multiple bridge arms are commonly connected to form a first bus terminal, and the second ends of the multiple bridge arms are commonly connected to form a second bus terminal;
  • a motor coil one end of the motor coil is respectively connected to the midpoint of the multi-path bridge arm, and the other end of the motor coil is connected to the first end of the unidirectional conducting module and the first end of the capacitor through a neutral wire.
  • One end is connected, and the second end of the capacitor is connected to the second bus end;
  • a charging or discharging connection terminal group which includes a first charging or discharging connection terminal and a second charging or discharging connection terminal.
  • the first charging or discharging connection terminal is connected to the second terminal of the capacitor through a first switching device.
  • the second charging or discharging connection terminal is connected to the second terminal of the unidirectional conduction module, and the first terminal of the capacitor is connected to the second terminal of the unidirectional conduction module through a first switching device; or
  • the first charging or discharging connection terminal is connected to the first terminal of the unidirectional conduction module, and the second terminal of the capacitor is connected to the first terminal of the unidirectional conduction module through a first switching device.
  • the second charging or discharging connection terminal is connected to the first terminal of the capacitor through the first switching device.
  • a third aspect of the present disclosure provides a vehicle, which further includes the energy conversion device provided in the first aspect.
  • the present disclosure provides an energy conversion device and a vehicle.
  • the energy conversion device includes a reversible PWM rectifier, a motor coil connected to the reversible PWM rectifier, a unidirectional conduction module, and a capacitor.
  • the neutral line of the motor coil is connected to the capacitor, and the reversible PWM rectifier also Connected to the capacitor;
  • the external DC port forms a DC charging circuit or a DC discharge circuit with the external battery through the energy conversion device, and the external battery forms a drive circuit with the reversible PWM rectifier and the motor coil in the energy conversion device.
  • a DC charging circuit or a DC discharging circuit is formed in the device to receive charging or discharging externally, so as to receive the charging of the charging equipment when the power battery is low or discharge to the electrical equipment when the power battery is high, and the DC charging circuit or DC Reversible PWM rectifiers and motors are used in both the discharging circuit and the driving circuit to realize the functions of DC charging and discharging and driving the motor with a simple circuit structure.
  • FIG. 2 is another schematic diagram of the structure of an energy conversion device provided by Embodiment 1 of the present disclosure
  • FIG. 3 is another schematic structural diagram of an energy conversion device provided by Embodiment 1 of the present disclosure.
  • FIG. 4 is another schematic structural diagram of an energy conversion device provided by Embodiment 1 of the present disclosure.
  • FIG. 5 is a schematic structural diagram of a motor in an energy conversion device provided by Embodiment 1 of the present disclosure
  • FIG. 7 is another structural schematic diagram of a motor in an energy conversion device provided by Embodiment 1 of the present disclosure.
  • FIG. 8 is another structural schematic diagram of a motor in an energy conversion device provided by Embodiment 1 of the present disclosure.
  • FIG. 9 is a schematic diagram of another structure in an energy conversion device provided by Embodiment 1 of the present disclosure.
  • FIG. 10 is another structural schematic diagram of an energy conversion device provided by Embodiment 1 of the present disclosure.
  • FIG. 11 is a circuit diagram of an energy conversion device provided by Embodiment 1 of the present disclosure.
  • FIG. 12 is another circuit diagram of an energy conversion device provided by Embodiment 1 of the present disclosure.
  • FIG. 13 is another circuit diagram of an energy conversion device provided by Embodiment 1 of the present disclosure.
  • FIG. 14 is another circuit diagram of an energy conversion device provided by Embodiment 1 of the present disclosure.
  • FIG. 16 is another circuit diagram of an energy conversion device provided by Embodiment 1 of the present disclosure.
  • FIG. 17 is another circuit diagram of an energy conversion device provided by Embodiment 1 of the present disclosure.
  • Fig. 18 is a current flow diagram of an energy conversion device according to the second embodiment of the present disclosure.
  • 21 is another current flow diagram of an energy conversion device provided by the second embodiment of the present disclosure.
  • FIG. 22 is another current flow diagram of an energy conversion device provided by the second embodiment of the present disclosure.
  • FIG. 23 is another current flow diagram of an energy conversion device provided in the second embodiment of the present disclosure.
  • 25 is a schematic diagram of a current waveform of an energy conversion device provided in the second embodiment of the present disclosure.
  • FIG. 26 is a schematic diagram of a structure in an energy conversion device provided by Embodiment 3 of the present disclosure.
  • FIG. 27 is another schematic structural diagram of an energy conversion device provided by Embodiment 3 of the present disclosure.
  • FIG. 28 is a schematic structural diagram of a vehicle provided in the fourth embodiment of the present disclosure.
  • the first embodiment of the present disclosure provides an energy conversion device, which includes a reversible PWM rectifier 102, a motor coil 103 connected to the reversible PWM rectifier 102, a unidirectional conduction module 104, and a capacitor 110.
  • the reversible PWM rectifier 102 also includes a first bus terminal and a second Two bus ends, the neutral line of the motor coil 103 is connected to the first end of the capacitor 110, and the second bus end of the reversible PWM rectifier 102 is also connected to the second end of the capacitor 110;
  • the external DC port 105 forms a charging circuit or a discharge circuit with the external battery 101 through the energy conversion device, and the external battery 101 forms a drive circuit with the reversible PWM rectifier 102 and the motor coil 103 in the energy conversion device;
  • the unidirectional conduction module 104 is connected between the first end of the capacitor 110 and the second end of the external DC port 105, and the first end of the external DC port 105 is connected to the second end of the capacitor 110 and the external battery 101.
  • the negative terminal, the positive terminal of the external battery 101 is connected to the first bus terminal of the reversible PWM rectifier 102;
  • the unidirectional conduction module 104 is connected between the second end of the capacitor 110 and the first end of the external DC port 105, and the second end of the external DC port 105 is connected to the first end of the capacitor 110 and the second end of the capacitor 110
  • the terminal is connected to the negative terminal of the external battery 101, and the positive terminal of the external battery 101 is connected to the first bus terminal of the reversible PWM rectifier 102.
  • the number of poles of the motor coil 103 depends on the parallel structure of the internal windings of the motor, and the number of center lines drawn And the number of parallel poles of the neutral line inside the motor is determined by the actual use of the scheme;
  • the reversible PWM rectifier 102 includes multi-phase bridge arms, the number of bridge arms is configured according to the number of phases of the motor coil 103, and each phase includes two power switch units
  • the power switch unit can be a transistor, IGBT, MOSFET, SiC tube and other device types.
  • the connection point of the two power switch units in the bridge arm is connected to a phase coil in the motor.
  • the power switch unit in the reversible PWM rectifier 102 can be controlled by external The signal is turned on and off; the unidirectional conduction module 104 is used to realize the unidirectional conduction of current in the branch where it is located. When the voltage at the input terminal of the unidirectional conduction module 104 is greater than the voltage at the output terminal, the unidirectional conduction can be realized.
  • the conversion device also includes a control module, which is connected to the reversible PWM rectifier 102 and sends a control signal to the reversible PWM rectifier 102.
  • the control module may include a vehicle controller, a control circuit of the reversible PWM rectifier 102, and a BMS battery manager circuit.
  • the capacitor 110 is used for storage during charging and discharging.
  • the capacitor 110 can form an LC resonant circuit with the motor coil 103, which can achieve LC oscillation.
  • the voltage of the capacitor 110 gradually increases in a period of time, while the current of the motor coil 103 gradually decreases, and in another period of time The voltage of the capacitor 110 gradually decreases, while the current of the motor coil 103 gradually increases, so that energy can be stored in the motor coil 103 or the capacitor 110.
  • the neutral wire of the motor coil 103 is connected to the first end of the capacitor 110 and the first end of the unidirectional conducting module 104, and the second end of the unidirectional conducting module 104 is connected to the external The DC port 105, the reversible PWM rectifier 102 is connected to the second end of the capacitor 110 and the external DC port 105.
  • the neutral line of the motor coil 103 is connected to the first end of the capacitor 110 and the external DC port 105, and the first end of the unidirectional conduction module 104 is connected to the external DC port 105 ,
  • the reversible PWM rectifier 102 is connected to the second end of the capacitor 110 and the second end of the unidirectional conduction module 104.
  • the energy conversion device can work in a driving mode and a DC discharge mode.
  • the external battery 101 forms a drive circuit with the reversible PWM rectifier 102 and the motor coil 103.
  • the external battery 101 provides direct current to the reversible PWM rectifier 102, and the reversible PWM rectifier 102 rectifies the direct current into three-phase AC power, and input three-phase AC power to the motor coil 103 to drive the motor to run.
  • the first terminal and the second terminal of the unidirectional conduction module 104 are the input terminal and the output terminal, respectively, and the external battery 101, the energy conversion device, and the external DC port 105 form a DC discharge Circuit, the external DC port 105 is connected to the DC power equipment, and the DC discharge circuit provides DC power for the DC power equipment.
  • the energy conversion device can work in a driving mode and a DC charging mode.
  • the external battery 101 forms a drive circuit with the reversible PWM rectifier 102 and the motor coil 103.
  • the external battery 101 provides direct current to the reversible PWM rectifier 102, and the reversible PWM rectifier 102 rectifies the direct current into three-phase AC power, and input three-phase AC power to the motor coil 103 to drive the motor to run.
  • the first terminal and the second terminal of the unidirectional conduction module 104 are the output terminal and the input terminal, respectively, and the external DC port 105, the energy conversion device, and the external battery 101 form a DC charging Circuit, the external DC port 105 is connected to DC power supply equipment and provides DC power for the DC charging circuit,
  • the technical effect of the energy conversion device of the embodiment of the present invention is that the external DC port 105, the reversible PWM rectifier 102, the motor coil 103, the unidirectional conduction module 104, the capacitor 110 and the external battery 101 form a DC charging circuit or DC discharge
  • the circuit makes the energy conversion device work in the driving mode and the DC charging mode or the driving mode and the DC discharging mode.
  • the external battery 101 forms a drive circuit with the reversible PWM rectifier 102 and the motor coil 103.
  • the external DC port 105, the reversible PWM rectifier 102, the motor coil 103, the unidirectional conduction module 104, the capacitor 110 and the external battery 101 form a DC charging circuit.
  • the external battery 101, The reversible PWM rectifier 102, the motor coil 103, the unidirectional conduction module 104, the capacitor 110, and the external DC port 105 form a DC discharge circuit, which is discharged through the DC discharge circuit, so that the external battery 101 has a high power to the electrical equipment Discharge, or receive charging through the DC charging circuit, which realizes the charging of the power supply equipment when the external battery 101 is insufficient, and both the DC charging and discharging circuit and the DC boosting charging and discharging circuit adopt the reversible PWM rectifier 102 and the motor coil 103.
  • the charging port capacitor 110 realizes the function of DC charging and discharging with a simple circuit structure.
  • the energy conversion device includes a first switching device 107, which is connected in parallel with the unidirectional conduction module 104; the external battery 101 passes through the energy conversion device
  • the reversible PWM rectifier 102, the motor coil 103, the first switching device 107 and the external DC port 105 form the first DC discharge circuit;
  • the external battery 101 passes through the reversible PWM rectifier 102, the motor coil 103 and the single
  • the guide module 104 and the external DC port 105 form a second DC discharge circuit; the energy conversion device selects the first DC discharge circuit or the second DC discharge circuit to work according to the external control signal.
  • the external battery 101 forms a first DC discharge circuit through the reversible PWM rectifier 102, the motor coil 103, the first switching device 107 and the external DC port 105 in the energy conversion device.
  • the external DC port 105 is connected to DC electrical equipment, the external battery 101 provides DC power for the DC electrical equipment through the first DC discharge circuit, the external battery 101, the reversible PWM rectifier 102, the motor coil 103, and the first switch
  • the device 107, the DC power equipment connected to the external DC port 105 form the first DC discharge energy storage circuit, the reversible PWM rectifier 102, the motor coil 103, the first switching device 107, and the DC power equipment connected to the external DC port 105
  • a first DC discharge energy storage release circuit is formed.
  • the first DC discharge circuit includes a first DC discharge energy storage circuit and a first DC discharge energy storage release circuit.
  • the external battery 101 outputs electric energy to the first DC discharge energy storage circuit and stores the electric energy in the motor coil 103.
  • the motor coil 103 stores energy through the first DC discharge circuit.
  • the energy release circuit discharges the DC electric device, and realizes the process of discharging the DC electric device by the external battery 101 through the first DC discharge circuit.
  • the unidirectional conduction module 104 includes a diode, the anode and cathode of the diode are the first and second ends of the unidirectional conduction module 104, respectively, and the external battery 101 passes through the reversible PWM rectifier in the energy conversion device 102.
  • the motor coil 103, the diode and the external DC port 105 form a second DC discharge circuit.
  • the external DC port 105 is connected to a DC power device, and the external battery 101 is used for DC through the second DC discharge circuit
  • the electrical equipment provides DC power.
  • the external battery 101 forms a first direct current through the reversible PWM rectifier 102, the motor coil 103, the first switching device 107, and the external direct current port 105 in the energy conversion device.
  • Discharging circuit the external battery 101 forms a second DC discharge circuit through the DC electrical equipment connected to the reversible PWM rectifier 102, the motor coil 103, the unidirectional conduction module 104 and the external DC port 105 in the energy conversion device, so that the energy conversion
  • the device works in the driving mode and the discharging mode in a time-sharing mode, and discharges externally through the first DC discharge circuit and the second DC discharge circuit, so that when the external battery 101 is fully charged, the DC electric equipment is discharged and the circuit is driven.
  • the DC discharge loop adopts the motor coil 103 and the reversible PWM rectifier 102, which not only simplifies the circuit structure, but also improves the integration degree, thereby achieving the purpose of reducing the volume and cost, and solving the complex and integrated structure of the existing control circuit.
  • the problem of low power, large volume and high cost, and the embodiment of the present disclosure is to set the motor coil 103 and the capacitor 110 in the energy conversion device to form an LC resonance module to form an LC oscillation.
  • the external DC port 105 is connected to a DC power device, It is possible to realize that the external battery 101 boosts and discharges the electric equipment through the resonance circuit, and realizes the discharge of a wide voltage range.
  • the energy conversion device includes a first switching device 107, which is connected in parallel with the unidirectional conduction module 104; the external DC port 105 passes energy conversion
  • the first switching device 107, the motor coil 103, the reversible PWM rectifier 102 and the external battery 101 in the device form a first charging circuit;
  • the external DC port 105 forms a first charging circuit through the first switching device 107, the motor coil 103, the reversible PWM rectifier 102 and the external battery 101 in the energy conversion device, and the external DC port 105 is connected DC power supply equipment, DC power supply equipment, first switching device 107, motor coil 103, reversible PWM rectifier 102 form a first DC charging energy storage circuit, DC power supply equipment, first switching device 107, motor coil 103, reversible PWM rectifier 102 ,
  • the external battery 101 forms a first DC charging and energy storage release circuit.
  • the DC charging circuit includes a first DC charging and energy storage circuit and a first DC charging and energy storage release circuit.
  • the electrical energy is stored in the motor coil 103 by outputting electrical energy to the first DC charging and energy storage circuit.
  • the DC power supply device and the motor coil 103 pass the first A DC charging and energy storage release circuit charges the external battery 101, which realizes the process of charging the external battery 101 by the DC power supply device through the first DC charging circuit.
  • the external DC port 105 forms a second charging circuit through the diode in the energy conversion device, the motor coil 103, the reversible PWM rectifier 102, and the external battery 101.
  • the external DC port 105 is connected to DC power supply equipment, DC power supply equipment, diodes, and motor coils. 103.
  • the reversible PWM rectifier 102 forms a second DC charging and energy storage circuit.
  • the DC power supply equipment, diodes, motor coils 103, the reversible PWM rectifier 102, and an external battery 101 form a second DC charging and energy storage release circuit.
  • the DC charging circuit includes a second The DC charging and energy storage circuit and the second DC charging and energy storage release circuit.
  • the DC power supply device stores the electric energy in the motor coil by outputting electric energy to the second DC charging and energy storage circuit.
  • the DC power supply device and the motor coil together charge the external battery through the second DC charging and energy storage release circuit, so that the DC power supply device can charge the external battery through the second DC charging circuit. The process of charging.
  • the technical effect of the embodiments of the present disclosure is that the first switching device, the motor coil, the reversible PWM rectifier and the external battery in the energy conversion device form the first DC charging circuit through the external DC port, and the external DC port uses energy conversion
  • the unidirectional conduction module, the motor coil, the reversible PWM rectifier and the external battery in the device form the second DC charging circuit, so that the energy conversion device works in the driving mode and the charging mode in a time-sharing manner.
  • the first DC charging circuit and the second The DC charging circuit receives charging and realizes the charging of the DC power supply equipment when the external battery power is insufficient.
  • Motor coils and reversible PWM rectifiers are used in the drive circuit and the DC charging circuit, thus simplifying the circuit structure and improving the integration
  • the embodiment of the present disclosure is provided with a motor coil and a capacitor in the energy conversion device.
  • the LC resonance module forms an LC oscillation.
  • the motor coil 103 includes x sets of windings, where x ⁇ 1, and x is an integer;
  • the first number of phases is m x x sets of phase windings, each phase winding winding including n-sets of x-x coils branches, each branch coils x n-phase winding phase end connected in common to form a first x
  • One coil branch of the n x coil branches of each phase winding in the set of windings is also connected to one of the n x coil branches in the other phase windings to form n x connection points, Among them, n x ⁇ 1, m x ⁇ 2, and m x and n x are integers;
  • connection points Two connecting points form T neutral points, and T neutral points lead to N neutral lines, of which:
  • Range of T Range of N: T ⁇ N ⁇ 1, and T and N are integers;
  • the reversible PWM rectifier 102 includes K groups of M x road bridge arms.
  • the midpoint of at least one bridge arm in a group of M x road bridge arms is connected to one phase end point of a set of m x phase windings.
  • the bridge arms connected to any two phase end points are not Same, where M x ⁇ m x , K ⁇ x , and K and M x are integers.
  • the motor coil includes x sets of windings, m x phase means that the number of phases of the xth set of windings is m x , for example, the number of phases of the first set of windings is m 1 , which are respectively the 11th phase windings , The 12th phase winding up to the 1m 1 phase winding, the second set of windings have the number of phases m 2 , which are the 21st phase winding, the 22nd phase winding up to the 2nd m 2 phase windings, and the xth set of winding phases are m x, respectively, the first phase windings x1, x2 of the first phase winding until the phase winding XM x; x sets of windings for each phase winding comprises coils branches n-x, x n-coils of each phase winding branches connected in common A phase end point is formed.
  • the above n 1 coil branches are connected to form a phase end point
  • the 1m 1 phase winding in the first set of windings includes n 1 coil branches, They are respectively the 1m 1 -1 phase coil branch, the 1m 1 -2 phase coil branch to the 1m 1 -n 1 phase coil branch, the above n 1 coil branches are connected to form a phase end point
  • the second set The 21st phase winding in the winding includes n 2 coil branches, which are respectively the 21-1 phase coil branch, the 21-2 phase coil branch and the 21-n 2- phase coil branch.
  • the above n 2 coils The branches are connected together to form a phase end point.
  • the 22nd phase winding in the second set of windings includes n 2 coil branches, which are the 22-1 phase coil branch, the 22-2 phase coil branch and the 22nd phase winding branch respectively.
  • n 2- phase coil branches, the above n 2 coil branches are connected together to form a phase end point
  • the 2m 2 phase winding in the second set of windings includes n 2 coil branches, which are respectively the 2m 2 -1 phase coil branches Circuit
  • the above n 2 coil branches are connected together to form a phase end
  • the x1 phase winding in the x set of windings includes n x
  • There are two coil branches namely the x1-1th phase coil branch, the x1-2th phase coil branch and the x1-n xth phase coil branch.
  • the above n x coil branches are connected to form a phase end point.
  • the x2-th phase winding in the x sets of windings includes n x coil branches, which are the x2-1-th phase coil branch, the x2-th phase coil branch and the x2-n x -th phase coil branch.
  • the above n x The two coil branches are connected together to form a phase end point.
  • the xm x- th phase winding in the x- th winding includes n x coil branches, which are respectively the xm x -1 phase coil branch and the xm x -2 phase coil branch. Path to the xm x -n x- th phase coil branch, the n x coil branches are connected together to form a phase end point.
  • n x connection points means that the number of connection points formed by n x coil branches of the x- th winding is n x , and one coil branch of a phase winding in each winding is also connected to the other phase windings.
  • a coil branch is connected to form a connection point, usually a coil branch is connected to a connection point, for example, the 11th phase coil branch in the 11th phase winding in the first set of windings, and the 12th phase winding in the 12th phase winding -1-phase coil and the first leg 1 -1 1M 1M first phase coil arm 1 in the phase winding connected in common to form a first connection point, and so, the first set of windings remaining branches are formed of two The connection point up to the n 1 connection point, the first set of windings form a total of n 1 connection points, the second set of windings form a total of n 2 , until the xth set of windings form a total of n x connection points, and the x sets of windings form a total of ( n 1 +n 2 + whil+n x ) connection points, the neutral point is formed by the connection point, it can be one connection point forming a neutral point, or two or more connection points are connected together A neutral point,
  • each set of m x phase windings can be used as a basic unit, and each basic unit can be independently controlled by the traditional motor vector control.
  • each set of m x phases can make the motor run.
  • the technical effect of the embodiment of the present invention is that by setting x sets of windings in the motor, the number of phases of the xth set of windings is m x phases, and each phase winding in the xth set of windings includes n x coil branches, each The n x coil branches of the phase winding are connected together to form a phase end point.
  • One of the n x coil branches of each phase winding in the x- th set of windings is also connected with n x in the other phase windings.
  • One of the coil branches is connected to form n x connection points, and x sets of windings are formed Connection points, Two connection points form T neutral points, and T neutral points lead to N neutral lines.
  • the neutral point of the motor has different ability to pass current.
  • select an appropriate number of connection points in parallel to form a neutral point to lead to the neutral line obtain the required charging power and inductance, and meet the charging power while improving Charging and discharging performance;
  • the equivalent inductance of the motor is the largest, the ripple on the inductance is the smallest, the current carrying capacity is the smallest, and the current
  • the loop resistance is large and the loop loss is large;
  • the current carrying capacity of the motor can be increased, which is suitable for high-power charging, multi-line Parallel connection can reduce the current loop resistance, and the loop loss is small; when the neutral point formed by one connection
  • each phase winding includes 4 coil branches and forms 4 connection points, and the neutral point formed by one connection point leads to a neutral line.
  • the three-phase windings are A-phase windings, B-phase windings, and C-phase windings.
  • the A-phase windings include A1 phase coils, A2 phase coils, A3 phase coils, and A4 phase coils.
  • B phase windings include B1 phase coils, B2 phase coils, B3 phase coil, B4 phase coil
  • C phase winding includes C1 phase coil, C2 phase coil, C3 phase coil, C4 phase coil, the first end of A1 phase coil, A2 phase coil, A3 phase coil and A4 phase coil form the first Common end, the first end of the B1 phase coil, the B2 phase coil, the B3 phase coil and the B4 phase coil form the second common end, and the first end of the C1 phase coil, the C2 phase coil, the C3 phase coil and the C4 phase coil form the third At the common end, the A1 phase coil, B1 phase coil and C1 phase coil in the first three-phase coil form a connection point n1, and the A2 phase coil, B2 phase coil and C2 phase coil in the second three-phase coil form a connection point n2 , The A3 phase coil, B3 phase coil and C3 phase coil in the third three-phase coil form a connection point n3, and the A4 phase coil, B4
  • each phase winding includes 4 coil branches and forms 4 connection points.
  • the neutral point formed by the 3 connection points leads to a neutral line.
  • connection point n1 the neutral point formed by the connection point n1, the connection point n2, and the connection point n3 leads to a neutral line.
  • the technical effect of this embodiment is that a neutral line is formed by connecting a plurality of connection points together to form a neutral point, and by setting the neutral points of different connection points in parallel, the equivalent phase inductance of the motor is different and the motor According to the difference of the current flowing in the reversible PWM rectifier 102, by setting the connection method of the bridge arm in the reversible PWM rectifier 102 and the coil in the motor, the number of poles of the motor coil 103 can be estimated, and the required charging power and inductance can be obtained, meeting the charging power and improving the charging and discharging performance. .
  • the motor coil 103 includes a first winding unit and a second winding unit.
  • the first winding unit includes a set of m 1 phase windings.
  • Each phase winding of the m 1 phase windings includes n 1 coil branches. a coil branches connected to form a common terminal phase, the midpoint of each bridge arm of a bridge arm, with m endpoint and m m 1 1 phase windings correspondingly connected bridge arms, each phase winding 1 m a phase winding coil leg coil branches n 1 is also connected to a branch of the other coil winding n 1 phase coil branches to form the connection points n 1, n 1 connection points T 1 neutral points are formed, and T 1 neutral points lead to at least one neutral line, where n 1 ⁇ 1, m 1 ⁇ 1, T 1 ⁇ 1 and n 1 , m 1 , and T 1 are all integers;
  • a second winding unit comprises phase windings m 2, m 2 of each phase winding in the phase winding comprises coils branches n 2, n 2 coils of each phase winding branches connected in common to a phase end is formed, m 2
  • the phase end point of the phase winding is connected to the midpoint of each bridge arm of the m 2 bridge arm in the M 1 bridge arm, one of the n 2 coil branches of each phase winding in the m 2 phase winding It is also connected to one of the n 2 coil branches in the other phase windings to form n 2 connection points, n 2 connection points form T 2 neutral points, and T 2 neutral points are at least A neutral line is drawn, where n 2 ⁇ 1, m 2 ⁇ 1, M 1 ⁇ m 1 +m 2 , T 2 ⁇ 1, and n 1 , m 1 , M 1 , and T 2 are all integers.
  • the first winding unit forms two connection points, and one of the connection points forms a neutral point and leads to the first neutral line,
  • the second winding unit forms two connection points, and one of the connection points forms a neutral point and leads to a second neutral line.
  • the first winding unit forms two connection points, and the two connection points are connected together to form a neutral point and lead to the first neutral point.
  • the second winding unit forms 2 connection points, and the 2 connection points form a neutral point and lead to the second neutral line.
  • the power switch control mode of the reversible PWM rectifier 102 can be any one or a combination of several of the following: for example, selecting at least one bridge arm in the inverter to control, which is flexible and simple.
  • the motor current increases at the same time when it is turned on, and decreases at the same time when it is turned off, which is beneficial for the motor current to become more equal at any instant, so that the motor synthesizes the magnetic field.
  • the motive force tends to zero, so the stator magnetic field tends to zero, and the motor basically has no torque.
  • the two phases are staggered by about 180° phase control, so that the positive and negative ripples of the two-phase coils are superimposed and canceled each other, so that the total ripple can be greatly reduced .
  • the control method for the three-phase bridge arm can be any one or a combination of the following: for example, any bridge arm or any two bridge arms of the three-phase A, B, C can be realized , And a total of 7 control heating methods with three bridge arms, which are flexible and simple.
  • the switching of the bridge arms can facilitate the selection of large, medium and small heating power. 1. You can select any phase bridge arm power switch for control, and the three-phase bridge arms can be switched in turn.
  • the A-phase bridge arms work alone first to control the second The first power switch unit and the second power switch unit are heated for a period of time, then the B-phase bridge arm works alone, and the third and fourth power switch units are controlled to perform heating for the same length of time, and then the C-phase bridge arm works alone , Control the fifth power switch unit and the sixth power switch unit to implement heating for the same long time, and then switch to the A-phase bridge arm to work, so as to realize the three-phase inverter and the three-phase coil wheel circulation heating; 2.
  • the AB-phase bridge arm works first to control the first power switch unit, the second power switch unit, the third power switch unit and the fourth power switch The unit implements heating for a period of time, and then the BC phase bridge arm works, and controls the third power switch unit, the fourth power switch unit, the fifth power switch unit and the sixth power switch unit to implement heating for the same length of time, and then the CA phase bridge arm Work, control the fifth power switch unit, the second power switch unit, the first power switch unit and the sixth power switch unit to perform heating for the same length of time, and then switch to the AB-phase bridge arm to work, and the cycle is repeated to achieve the three-phase reverse Inverter; 3.
  • three-phase bridge arm power switches can be selected for simultaneous control, that is, the three-phase upper bridge arms are turned on at the same time, and the three-phase lower bridge arms are turned off at the same time; and the three-phase upper bridge arms are turned off at the same time, three-phase The lower bridge arms are turned on at the same time.
  • the three-phase power bridge arm is equivalent to a single DC/DC, and because the three-phase circuit is theoretically balanced, the three-phase current is balanced, and the three-phase inverter and the three-phase coil heating balance are achieved.
  • the phase current is basically DC, and its average value is basically the same, and because the three-phase windings are symmetrical, the three-phase composite magnetomotive force inside the motor is basically zero at this time, so the stator magnetic field is basically zero, and the motor basically has no torque. It is beneficial to greatly reduce the stress of the drive train.
  • the energy conversion device includes an inductor, one end of the inductor is connected to the neutral line, and the other end of the inductor is connected to the first end of the unidirectional conduction module 104 and the first end of the capacitor 110.
  • the energy conversion device causes the third discharge circuit to periodically work in the first working stage, the second working stage, and the third working stage according to the external control signal;
  • the electric energy of the external battery 101 flows back to the external battery 101 after passing through the reversible PWM rectifier 102, the motor coil 103, the inductor 112, and the capacitor 110;
  • the motor coil 103, the inductor 112, the capacitor 110, and the reversible PWM rectifier 102 form a circulating current.
  • the electrical energy output by the motor coil 103 and the inductor 112 passes through the unidirectional conduction module 104, DC power equipment, and the reversible PWM rectifier 102 Then flow back to the motor coil 103;
  • the electric energy output by the capacitor 110 flows back to the capacitor 110 through the motor coil 103 and the reversible PWM rectifier 102.
  • the energy conversion device further includes an inductor 112.
  • the inductor 112 and the capacitor 110 form an LC resonant module.
  • the voltage of the capacitor 110 gradually increases while the current of the inductor 112 gradually decreases during a period of time, while the voltage of the capacitor 110 gradually decreases while the current of the inductor 112 gradually decreases during another period of time. Increase, and then can realize energy storage in the inductor 112 or the capacitor 110.
  • an LC resonance module is installed in the energy conversion device, so that the LC resonance module and the power battery 101 module, the reversible PWM rectifier 102, the motor coil 103, the unidirectional conduction module 104 and the external DC port 105 form a resonance circuit, and the LC resonance
  • the module includes inductor 112 and capacitor 110 modules, and forms LC oscillation through the motor coil 103, inductor 112 and capacitor 110 in the resonant circuit.
  • the external DC port 105 is connected to DC electrical equipment, the external battery 101 can be realized through the resonant circuit. Boost and discharge DC power equipment.
  • the external battery 101 passes through the reversible PWM rectifier 102, the motor coil 103, the capacitor 110, the unidirectional conduction module 104 and the DC power in the energy conversion device.
  • the device forms a fourth discharge circuit
  • the energy conversion device causes the fourth discharge circuit to periodically work in the first working stage, the second working stage, and the third working stage according to the external control signal;
  • the electric energy of the external battery 101 flows back to the external battery 101 after passing through the reversible PWM rectifier 102, the motor coil 103, and the capacitor 110;
  • the motor coil 103, the capacitor 110, and the reversible PWM rectifier 102 form a circulating current.
  • the electrical energy output by the motor coil 103 flows back to the motor coil after passing through the unidirectional conduction module 104, DC power equipment, and the reversible PWM rectifier 102 103;
  • the electric energy output by the capacitor 110 flows through the motor coil 103, the reversible PWM rectifier 102 and then flows back to the capacitor 110.
  • the energy conversion device includes a first switching device 107 and an inductor 112.
  • the inductor 112 is connected between the motor coil 103 and the capacitor 110, and the first switching device 107 is connected in parallel with the unidirectional conduction module 104. connection;
  • the external battery 101 When the external DC port 105 is connected to DC electrical equipment, the external battery 101 forms a second through the reversible PWM rectifier 102, motor coil 103, inductor 112, capacitor 110, first switching device 107 and DC electrical equipment in the energy conversion device.
  • the energy conversion device causes the fifth discharge circuit to periodically work in the first working stage and the second working stage according to the external control signal
  • the electric energy of the external battery 101 flows back to the external battery 101 after passing through the reversible PWM rectifier 102, the motor coil 103, the inductor 112, the capacitor 110, and the DC power equipment;
  • the electrical energy output by the motor coil 103 flows back to the motor coil 103 after passing through the inductor 112, the first switching device 107, the direct current electrical equipment, and the reversible PWM rectifier 102.
  • the electric energy of the external battery 101 passes through the reversible PWM rectifier 102, the motor coil 103, the capacitor 110, and the DC power equipment to store the energy of the motor coil 103 and the inductor 112.
  • the motor coil The electrical energy output by 103 and inductor 112 passes through the first switching device 107, DC power equipment, and reversible PWM rectifier 102 to store and release the DC power equipment, and realize the DC power consumption through the alternating between the first working phase and the second phase The discharge of the device.
  • a first switch module and a first energy storage module are provided between the external battery 101 and the energy conversion device, the positive terminal of the battery 101 is connected to the first terminal of the first switch module, and the negative terminal of the battery 101 is connected to the first terminal of the first switch module.
  • the second end of a switch module, the third end of the first switch module is connected to the first end of the first energy storage module, and the fourth end of the first switch module is connected to the second end of the first energy storage module.
  • the first switch module is located between the battery 101 and the first energy storage module, and the first switch module can connect or disconnect the battery 101 and the first energy storage module according to the control signal, thereby connecting the battery 101 and the reversible PWM rectifier 102 Or disconnected; the first energy storage module can be an energy storage device such as a capacitor 110.
  • the battery 101 precharges the first energy storage module through the first switch module until the first energy storage module is full Electricity.
  • the technical effect of this embodiment is that a first switch module is provided between the external battery 101 and the energy conversion device, and the connection or disconnection between the battery 101 and other modules of the energy conversion device is realized by controlling the first switch module, and the The energy storage module connects the first energy storage module in parallel with the battery 101 through the first switch module, which can play a filtering role. Since the first energy storage module has the function of charging and discharging, when the voltage of the battery 101 fluctuates, it passes through the first storage The charging and discharging of the energy module can reduce the voltage fluctuation of the power battery 101.
  • the first switch module includes a first switch and a third switch, the first terminal of the first switch is the first terminal of the first switch module, and the second terminal of the first switch Is the third terminal of the first switch module, the first terminal of the third switch is the second terminal of the first switch module, and the second terminal of the third switch is the fourth terminal of the first switch module.
  • the technical effect of this embodiment is that two switches, a first switch and a third switch, are provided in the first switch module, and the battery 101 can charge the first energy storage module by controlling the first switch and the third switch, and The control battery 101 is connected or disconnected from other modules of the energy conversion device.
  • the first switch module only includes the above-mentioned first switch or third switch.
  • this embodiment has one switch less. Since the first switch and the third switch are connected between the battery 101 and the first energy storage module in the above-mentioned embodiment, one switch can also be used. Achieve the same function.
  • the technical effect of this embodiment is that a switch is provided in the first switch module to simplify the circuit structure.
  • the first switch module includes a first switch, a second switch, a resistor, and a third switch.
  • the first terminal of the first switch is connected to the first terminal of the second switch and forms a The first end of a switch module, the second end of the second switch is connected to the first end of the resistor, the second end of the resistor is connected to the second end of the first switch and constitutes the third end of the first switch module, the third switch
  • the first terminal of is the second terminal of the first switch module, and the second terminal of the third switch is the fourth terminal of the first switch module.
  • this embodiment adds a branch circuit, which is provided with a second switch and a resistor, and this branch circuit is used to realize the pre-charging of the first energy storage module by the battery 101, namely When the second switch is turned on first to enable the battery 101 to charge the first energy storage module, the pre-charge current can be controlled due to the setting of a resistor. After the pre-charge is completed, the second switch is controlled to be turned off and the first switch is turned on.
  • the technical effect of this embodiment is that by providing a branch circuit for precharging in the first switch module, the control of the charging current output from the battery 101 to the first energy storage module is realized, and the charging process of the rechargeable battery is improved. 101 and the charging safety of the first energy storage module.
  • a second energy storage device and a second switch module are arranged between the DC port 105 and the energy conversion device, and the first end of the second energy storage device is connected to the first end of the second switch module.
  • the second end of the second energy storage device is commonly connected to the second end of the second switch module, the third end of the second switch module is connected to the first end of the DC port 105, and the fourth end of the second switch module Connect with the second end of the DC port 105.
  • the second switch module includes a fifth switch and a sixth switch
  • the first terminal and the second terminal of the fifth switch are the first terminal and the fourth terminal of the second switch module
  • the first terminal and the second terminal of the sixth switch The two ends are the second end and the third end of the second switch module.
  • the external DC port 105 is connected to DC power equipment or DC charging equipment.
  • the technical effect of this embodiment is that by providing an energy storage module, it is possible to realize that the energy conversion device is connected to DC power equipment, whether the DC power equipment meets the discharge conditions and discharges the DC power equipment, and the energy conversion device is connected to DC Charging equipment, detecting whether DC electrical equipment meets the charging conditions and receiving charging from the DC charging equipment.
  • it can store electrical energy to assist the completion of the interaction process when the energy conversion device is charged or discharged, and the energy conversion device is charged Or in the process of discharging, filter the current passed by the motor on the N line to further reduce the current ripple.
  • the unidirectional conduction module 104 includes a diode.
  • the energy conversion device can charge the electrical equipment through the diode, especially when the voltage of the external battery 101 is lower than the voltage of the electrical equipment, through reversible PWM
  • the rectifier 102 and the motor boost the external battery 101 and discharge the electrical equipment through the diode.
  • the energy conversion device further includes a third switch module, which is connected between the motor coil 103 and the external DC port 105.
  • the third switch module includes a fourth switch, and the fourth switch is used to switch on and off between the motor coil 103 and the external DC port 105.
  • the energy conversion device includes a first switch module and a first energy storage module.
  • the first switch module includes a switch K1, a switch K2, a switch K3, and a resistor R.
  • the first energy storage module includes a capacitor C1 and a reversible PWM rectifier.
  • 102 includes a first power switch unit, a second power switch unit, a third power switch unit, a fourth power switch unit, a fifth power switch, and a sixth power switch.
  • each power switch unit is connected to the control module, and the three-phase In the inverter, the first power switch unit and the second power switch unit constitute the A-phase bridge arm, the third power switch unit and the fourth power switch unit constitute the B-phase bridge arm, and the fifth power switch unit and the sixth power switch unit constitute C-phase bridge arm, the first power switch unit includes a first upper bridge arm VT1 and a first upper bridge diode VD1, the second power switch unit includes a second lower bridge arm VT2 and a second lower bridge diode VD2, and the third power switch unit It includes a third upper bridge arm VT3 and a third upper bridge diode VD3, the fourth power switch unit includes a fourth lower bridge arm VT4 and a fourth lower bridge diode VD4, and the fifth power switch unit includes a fifth upper bridge arm VT5 and a fifth The upper bridge diode VD5, the sixth power switch unit includes a sixth lower bridge arm VT6 and a sixth lower bridge diode VD6, the motor 103 includes
  • the energy conversion device includes a reversible PWM rectifier 102, a motor coil 103, a switch K1, a switch K2, a resistor R, a switch K3, and a capacitor C1.
  • the positive pole of the external battery 101 is connected to the first end of the switch K1 and The first terminal of the switch K2, the second terminal of the switch K1 and the second terminal of the switch K2 are connected to the first terminal of the capacitor C1, the negative electrode of the external battery 101 is connected to the first terminal of the switch K3, and the second terminal of the switch K3 is connected to the capacitor
  • the reversible PWM rectifier 102 includes a six-phase bridge arm, the first phase bridge arm includes a first power switch unit and a second power switch unit connected in series, and the second phase bridge arm includes a third power switch connected in series Unit and a fourth power switch unit, the third phase bridge arm includes a fifth power switch unit and a sixth power switch unit connected in series, and the fourth phase bridge arm includes a seventh power switch
  • the first power switch unit includes a first upper bridge arm VT1 and a first upper bridge
  • the second power switch unit includes a second lower bridge arm VT2 and a second lower bridge diode VD2
  • the third power switch unit includes a third upper bridge arm VT3 and a third upper bridge diode VD3
  • the fourth power switch unit includes a first Four lower bridge arms VT4 and a fourth lower bridge diode VD4
  • the fifth power switch unit includes a fifth upper bridge arm VT5 and a fifth upper bridge diode VD5
  • the sixth power switch unit includes a sixth lower bridge arm VT6 and a sixth lower bridge
  • the seventh power switch unit includes a seventh upper bridge arm VT7 and a seventh upper bridge diode VD7
  • the eighth power switch unit includes an eighth lower bridge arm VT8 and an eighth lower bridge diode VD8
  • the ninth power switch unit includes a first The ninth upper bridge arm VT9 and the ninth upper bridge diode VD9
  • the first connection point n1 and the second connection point n2 are connected together to form a neutral point and lead to a neutral line.
  • the energy conversion module also includes a direct switch K4, a switch K5, and a switch K6.
  • Capacitor C2, diode D1 the first end of the external DC port 105 is connected to the first end of the switch K6, and the second end of the external DC port 105 is connected to the first end of the switch K5 and the cathode of the diode D1.
  • the anode is connected to the second terminal of switch K5, the first terminal of switch K4 and the first terminal of capacitor C2, the second terminal of switch K4 is connected to the neutral line, and the second terminal of switch K6 is connected to the second terminal of capacitor C2 and the reversible PWM The second confluence end of the rectifier 102.
  • the energy conversion module includes a switch K7, the second connection point n2 forms a first neutral point and leads to a first neutral line, and the first neutral line is connected to the first neutral line of the switch K4.
  • the difference from Figure 13 is: the first connection point n1 and the second connection point n2 are connected together to form a first neutral point and lead to the first neutral line, the third connection point n3 and the fourth connection point Point n4 forms a second neutral point and leads to a second neutral line, which is connected to the second end of switch K7.
  • the difference from FIG. 15 is that the first connection point n1 and the second connection point n2 in the motor coil 103 form a neutral point and lead to a neutral line.
  • the difference from FIG. 15 is that the anode of the diode D1 is connected to the DC port 105, and the cathode of the diode is connected to the second end of the capacitor C2.
  • the second embodiment of the present invention provides a discharge method. Based on the energy conversion device of the first embodiment, the discharge method includes:
  • the connection status refers to whether the DC port 105 is connected to an external device, and the DC port 105 is connected to the voltage acquisition module.
  • the voltage collection module will collect the voltage of the power consumption module according to the voltage on the voltage collection module Determine the change of the connection status.
  • Step S20 When the DC port 105 is connected to the electric module and it is detected that the electric module meets the discharge condition, the reversible PWM rectifier 102 is controlled to make the energy conversion device discharge the electric module.
  • step S20 it is determined according to the collected voltage change that the DC port 105 module is connected to the power consumption module, and then according to the collected voltage, it is judged whether the power consumption module satisfies the discharge condition.
  • the discharge condition may be the voltage range of the obtained rechargeable battery 101, When the discharge condition is met, the reversible PWM rectifier 102 can form a DC charging and discharging circuit according to the external control signal, so that the energy conversion device can discharge the DC electrical equipment.
  • the second embodiment of the present invention provides a discharging method with the technical effect that the reversible PWM rectifier 102 and the motor coil 103 are provided in the energy conversion device to form a DC charging and discharging circuit with the external battery 101, and the DC charging and discharging circuit is used for external discharge. It realizes the discharge to the electric equipment when the external battery 101 has a high power, and the DC charging and discharging circuit adopts the reversible PWM rectifier 102 and the motor coil 103, which realizes the function of DC charging and discharging with a simple circuit structure.
  • detecting that the electric module meets the discharge condition includes:
  • the output voltage range of the battery 101 can be obtained by connecting the battery 101 to the energy storage module, precharging the energy storage module through the battery 101 before discharging the battery 101, and detecting the energy storage through the battery 101 manager The voltage of the module then detects the output voltage range of the battery 101, and then determines whether the power-consuming module meets the DC discharge condition based on whether the collected voltage is within the output voltage range.
  • controlling the reversible PWM rectifier 102 to cause the energy conversion device to discharge the electric module includes:
  • the reversible PWM rectifier 102 is controlled so that the charging process of the battery 101 to the coil of the motor and the discharging process of the coil of the motor to the electric module alternately, so that the energy conversion device discharges the electric module.
  • the multi-phase bridge arm of the motor can be in phase control or staggered phase control, and the phase of staggered phase control is staggered
  • the angle of 360/motor phase number, increase the equivalent inductance of the motor, reduce the discharge ripple of the battery 101, through the alternate conduction of the upper and lower bridge arms, the motor winding coils are stored and the winding coils are stored and released ,
  • the bus voltage is reduced to the required voltage for output or the output current is controlled at the required value, and the battery 101 step-down discharge output is performed.
  • Figure 18 is a schematic diagram of the current flow in the inductive energy storage phase of the car's external step-down discharge motor, where the external battery 101, switch K1, reversible PWM rectifier 102 (first upper bridge arm VT1, third upper bridge arm VT3, fifth upper bridge arm VT5), motor coil 103, switch K4, switch K5, DC port 105, DC electrical equipment , Switch K6, switch K3 form a DC energy storage circuit, the current flow is: battery 101 positive, switch K1, reversible PWM rectifier 102 (first upper bridge arm VT1, third upper bridge arm VT3, fifth upper bridge arm VT5), AC motor winding, connection point n1 and connection point n2 of the motor coil, neutral line N of the motor coil, switch K4, switch K5, external DC port 105, DC power module, switch K6, switch K3, external battery 101
  • the negative pole of the motor is used for energy storage of the motor inductance.
  • FIG 19 is a schematic diagram of the current flow in the inductive energy storage release phase of the external step-down discharge motor of the vehicle.
  • the reversible PWM rectifier 102 (second lower bridge diode VD2, fourth lower bridge diode VD4, sixth lower bridge diode VD6), motor coil 103, switch K4, switch K5, external DC port 105, DC electrical equipment, and switch K6 form a DC discharge circuit, and the current flows: reversible PWM rectifier 102, AC motor winding, connection point n1 and connection point n2 of the motor coil N, switch K4, switch K5, DC port 105, DC power module, switch K6, reversible PWM rectifier 102 (second lower bridge diode VD2, fourth lower bridge diode VD4, sixth lower bridge diode VD6), The stored energy of the motor inductance is released.
  • the switch K2 and the switch K5 are disconnected, and the switch K1, the switch K3, the switch K4, and the switch K6 are closed to control the upper and lower arms of the reversible PWM rectifier 102
  • the alternate conduction of can be in-phase control or staggered-phase control.
  • the angle of phase shift 360/the number of motor phases, preferably the same phase for LC resonance control.
  • the external battery 101 discharges the inductance of the motor coil, the external inductance energy storage, and the capacitor charging stage current flow diagram.
  • the external battery 101, switch K1, reversible PWM rectifier 102 (first upper The bridge arm VT1, the third upper bridge arm VT3, the fifth upper bridge arm VT5), the motor coil 103, the switch K4, the inductor L, and the capacitor C2 form an energy storage circuit, and the current flow is: the positive pole of the external battery 101, the switch K1 Reversible PWM rectifier 102 (first upper arm VT1, third upper arm VT3, fifth upper arm VT5), AC motor winding, motor N line, inductance L, capacitor C2, switch K3, negative pole of external battery 101 ,
  • the energy storage of the motor inductance, the external inductance, and the charging of the capacitor 110 are performed; this process functions as the resonant circuit vibration and the discharge of the battery 101 during the resonance process to supplement the energy of the resonant circuit.
  • the motor inductance and external inductance during the LC resonance process are schematic diagrams of the current flow during the charging phase of the capacitor 110.
  • the reversible PWM rectifier 102 (the second lower bridge diode VD2, the fourth lower bridge diode VD4, and the sixth lower Bridge diode VD6), motor coil 103, switch K4, inductor L, capacitor C2 form a freewheeling loop, and the current flows: AC motor winding, motor N line, inductor L, capacitor C2, reversible PWM rectifier 102 (second lower bridge diode VD2 , The fourth lower bridge diode VD4, the sixth lower bridge diode VD6) flow back to the AC motor windings. In this process, the energy in the motor inductance and external inductance is transferred to the capacitor C2.
  • the current flow is: AC motor winding, motor N line, switch K4, Inductance L, capacitor C2 (passing diode D1 to DC port 105 at the same time), reversible PWM rectifier 102 (second lower bridge diode VD2, fourth lower bridge diode VD4, sixth lower bridge diode VD6) flow back to the AC motor windings, this process
  • the energy in the inductor is transferred to the capacitor C2.
  • the voltage of the capacitor C2 is higher than the voltage at the DC port.
  • the energy in the motor inductance and external inductor is released to the external DE DC port until the energy stored in the motor inductance and external inductor is released. So far.
  • the capacitor discharge in the LC resonance process has a schematic diagram of the current flow in the reverse energy storage phase of the motor inductance and the external inductor.
  • the capacitor C2, the inductor L, the switch K4, the motor coil 103, and the reversible PWM rectifier 102 form a reverse energy storage loop, and the current flow is: capacitor C2, inductor L, motor N line, AC motor winding, reversible PWM rectifier 102 (second lower Bridge arm VT2, fourth lower bridge arm VT4, sixth lower bridge arm VT6), this process is that the energy in capacitor C2 is transferred to the motor inductance and external inductance, and the voltage in capacitor C2 ends when the voltage is zero.
  • inductor L inductor L
  • switch K4 motor N line
  • AC motor winding AC motor winding
  • reversible PWM rectifier 102 second Lower bridge arm VT2, fourth lower bridge arm VT4, sixth lower bridge arm VT6
  • capacitor C2 this process is the transfer of energy in the motor inductance and external inductance to capacitor C2, the current in the motor inductance and external inductance is Zero ends.
  • the capacitor discharge during the resonance process has a schematic diagram of the current flow in the motor inductance and external inductance energy storage stage.
  • Motor coil 103, switch K4, inductor L, capacitor C2, reversible PWM rectifier 102 (second lower bridge diode VD2, The fourth lower bridge diode VD4, the sixth lower bridge diode VD6) form an energy storage circuit, and the current flows: capacitor C2, reversible PWM rectifier 102 (second lower bridge diode VD2, fourth lower bridge diode VD4, sixth lower bridge diode VD6 ), AC motor windings, motor N line, inductor L, capacitor C2, this process is that the energy in capacitor C2 is transferred to motor inductance and external inductance, and the voltage in capacitor C2 ends when the voltage is zero.
  • Figure 25 is a schematic diagram of the current waveform of a control process of the car's external discharge LC resonance boost discharge.
  • the third embodiment of the present disclosure provides an energy conversion device, as shown in FIG. 26 and FIG. 27, including:
  • the unidirectional conduction module 104 includes a diode, and the anode and the cathode of the diode are the first end and the second end of the unidirectional conduction module, respectively;
  • the reversible PWM rectifier 102 includes multiple bridge arms, the first ends of the multiple bridge arms are connected together to form a first bus terminal, and the second ends of the multiple bridge arms are connected together to form a second bus terminal;
  • the motor coil 103 and one end of the motor coil 103 are respectively connected to the midpoint of the multi-channel bridge arm.
  • the other end of the motor coil 103 is connected to the first end of the unidirectional conduction module 104 and the first end of the capacitor 110 through a neutral wire.
  • the second end of 110 is connected to the second bus end;
  • the charging or discharging connection terminal group 121 includes a first charging or discharging connection terminal and a second charging or discharging connection terminal.
  • the first charging or discharging connection terminal is connected to the second terminal of the capacitor 110 through a first switching device.
  • the discharge connection terminal is connected to the second terminal of the unidirectional conduction module 104, and the first terminal of the capacitor 110 and the second terminal of the unidirectional conduction module 104 are connected through the first switching device 107; or the first charging or discharging connection terminal Connected to the first end of the unidirectional conduction module 104, the second end of the capacitor and the first end of the unidirectional conduction module 104 are connected through the first switching device 107, and the second charging or discharging connection terminal is connected through the first switching device 107 Connected to the first end of the capacitor 110.
  • the fourth embodiment of the present disclosure provides a vehicle, which further includes the energy conversion device provided in the first and second embodiments above.
  • the heating and cooling circuit of the battery pack includes the following circuits: motor drive system cooling circuit, battery cooling system circuit, and air conditioning system cooling circuit.
  • the battery cooling system loop is integrated with the air conditioning cooling system through the heat exchange plate; the battery cooling system loop is connected through the four-way valve and the motor drive system cooling loop.
  • the cooling circuit of the motor drive system connects and disconnects the radiator through the switching of the three-way valve.
  • the motor drive system cooling circuit and the battery cooling system circuit are switched through the valve body to change the flow direction of the cooling liquid in the pipeline, so that the cooling liquid heated by the motor drive system flows to the battery cooling system, completing the transfer of heat from the motor drive system to the battery cooling;
  • the driving system is in the non-heating mode, and the three-way valve and the four-way valve are switched.
  • the motor drive system coolant goes through the A circuit, and the battery cooling system coolant goes through the C circuit; the motor is in the heating mode and is switched through the three-way valve and the four-way valve ,
  • the cooling liquid of the motor drive system goes through the B circuit, so that the cooling liquid heated by the motor drive system flows to the battery pack cooling circuit to heat the battery.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Inverter Devices (AREA)
  • Rectifiers (AREA)

Abstract

一种能量转换装置及车辆,涉及车辆技术领域,能量转换装置包括可逆PWM整流器、连接至所述可逆PWM整流器的电机线圈、单向导通模块以及电容,外部的直流口通过能量转换装置与外部的电池形成直流充电电路或者直流放电电路,外部的电池与能量转换装置中的可逆PWM整流器和电机线圈形成驱动回路;其中,单向导通模块连接在电容的第一端和外部的直流口的第二端之间,或者,单向导通模块连接在电容的第二端和外部的直流口的第一端之间。

Description

能量转换装置及车辆
相关申请的交叉引用
本公开要求于2019年8月15日提交的申请号为201910755870.2、名称为“能量转换装置及车辆”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及车辆技术领域,尤其涉及一种能量转换装置及车辆。
背景技术
由于纯电动车辆续驶里程的限制,车辆驾驶员十分关心车辆由于动力电源耗尽而抛锚的问题。虽然许多车辆制造企业通过车辆仪表或者其他方式提醒车辆驾驶员电池剩余电量信息和电量过低报警信息,但是不可避免的会出现车辆剩余电量不能满足车辆行驶到充电设施位置或者驾驶员无意识的把车辆电量耗尽的情况。
发明内容
本公开的目的在于提供一种能量转换装置及车辆,能够实现对用电设备进行放电或者接收充电设备的充电。
本公开是这样实现的,本公开第一方面提供一种能量转换装置,包括可逆PWM整流器、连接至所述可逆PWM整流器的电机线圈、单向导通模块以及电容,所述可逆PWM整流器还包括第一汇流端和第二汇流端,所述电机线圈的中性线与所述电容的第一端连接,所述可逆PWM整流器的第二汇流端还与所述电容的第二端连接;
外部的直流口通过所述能量转换装置与外部的电池形成直流充电电路或者直流放电电路,外部的电池与所述能量转换装置中的所述可逆PWM整流器和所述电机线圈形成驱动回路;
其中,所述单向导通模块连接在所述电容的第一端和所述外部的直流口的第二端之间,所述外部的直流口的第一端连接所述电容的第二端和所述外部的电池的负极端,所述外部的电池的正极端连接所述可逆PWM整流器的第一汇流端;
或者,所述单向导通模块连接在所述电容的第二端和所述外部的直流口的第一端之间,所述外部的直流口的第二端连接所述电容的第一端,所述电容的第二端连接所述外部的电池的负极端,所述外部的电池的正极端连接所述可逆PWM整流器的第一汇流端。
本公开第二方面提供一种能量转换装置,包括:
单向导通模块,所述单向导通模块包括二极管,所述二极管的阳极和阴极分别为所述单向导通模块的第一端和第二端;
电容;
可逆PWM整流器,所述可逆PWM整流器包括多路桥臂,所述多路桥臂的第一端共接形成第一汇流端,所述多路桥臂的第二端共接形成第二汇流端;
电机线圈,所述电机线圈的一端分别与所述多路桥臂的中点连接,所述电机线圈的另一端通过引出中性线与所述单向导通模块的第一端、所述电容的第一端连接,所述电容的第二端与所述第二汇流端连接;
充电或放电连接端组,其包括第一充电或放电连接端和第二充电或放电连接端,所述第一充电或放电连接端通过第一开关器件与所述电容的第二端连接,所述第二充电或放电连接端与所述单向导通模块的第二端连接,所述电容的第一端与所述单向导通模块的第二端之间通过第一开关器件连接;或者所述第一充电或放电连接端与所述单向导通模块的第一端连接,所述电容的第二端与所述单向导通模块的第一端之间通过第一开关器件连接,所述第二充电或放电连接端通过第一开关器件与所述电容的第一端连接。
本公开第三方面提供一种车辆,所述车辆还包括第一方面提供的所述能量转换装置。
本公开提出了一种能量转换装置及车辆,能量转换装置包括可逆PWM整流器、连接至可逆PWM整流器的电机线圈、单向导通模块以及电容,电机线圈的中性线与电容连接,可逆PWM整流器还与电容连接;外部的直流口通过所述能量转换装置与外部的电池形成直流充电电路或者直流放电电路,外部的电池与能量转换装置中的可逆PWM整流器和电机线圈形成驱动回路,通过在能量转换装置中形成直流充电电路或者直流放电电路接收充电或者对外进行放电,实现在动力电池电量不足时接收充电设备的充电或者在动力电池电量较高时向用电设备进行放电,并且直流充电回路或者直流放电回路和驱动回路中均采用可逆PWM整流器以及电机,实现了采用简单电路结构进行直流充放电和驱动电机的功能。
附图说明
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本公开实施例一提供的一种能量转换装置的结构示意图;
图2是本公开实施例一提供的一种能量转换装置的另一结构示意图;
图3是本公开实施例一提供的一种能量转换装置的另一结构示意图;
图4是本公开实施例一提供的一种能量转换装置的另一结构示意图;
图5是本公开实施例一提供的一种能量转换装置中的电机的结构示意图;
图6是本公开实施例一提供的一种能量转换装置中的电机的另一结构示意图;
图7是本公开实施例一提供的一种能量转换装置中的电机的另一结构示意图;
图8是本公开实施例一提供的一种能量转换装置中的电机的另一结构示意图;
图9是本公开实施例一提供的一种能量转换装置中的另一结构示意图;
图10是本公开实施例一提供的一种能量转换装置中的另一结构示意图;
图11是本公开实施例一提供的一种能量转换装置的电路图;
图12是本公开实施例一提供的一种能量转换装置的另一电路图;
图13是本公开实施例一提供的一种能量转换装置的另一电路图;
图14是本公开实施例一提供的一种能量转换装置的另一电路图;
图15是本公开实施例一提供的一种能量转换装置的另一电路图;
图16是本公开实施例一提供的一种能量转换装置的另一电路图;
图17是本公开实施例一提供的一种能量转换装置的另一电路图;
图18是本公开实施例二提供的一种能量转换装置的电流流向图;
图19是本公开实施例二提供的一种能量转换装置的另一电流流向图;
图20是本公开实施例二提供的一种能量转换装置的电流流向图;
图21是本公开实施例二提供的一种能量转换装置的另一电流流向图;
图22是本公开实施例二提供的一种能量转换装置的另一电流流向图;
图23是本公开实施例二提供的一种能量转换装置的另一电流流向图;
图24是本公开实施例二提供的一种能量转换装置的另一电流流向图;
图25是本公开实施例二提供的一种能量转换装置的电流波形示意图;
图26是本公开实施例三提供的一种能量转换装置中的一结构示意图;
图27是本公开实施例三提供的一种能量转换装置中的另一结构示意图;
图28是本公开实施例四提供的一种车辆的结构示意图。
具体实施方式
为了使本公开的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本公开进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本公开,并不用于限定本公开。
为了说明本公开的技术方案,下面通过具体实施例来进行说明。
本公开实施例一提供一种能量转换装置,包括可逆PWM整流器102、连接至可逆PWM整流器102的电机线圈103、单向导通模块104以及电容110,可逆PWM整流器102还包括第一汇流端和第二汇流端,电机线圈103的中性线与电容110的第一端连接,可逆PWM整流器102的第二汇流端还与电容110的第二端连接;
外部的直流口105通过能量转换装置与外部的电池101形成充电电路或者放电电路,外部的电池101与能量转换装置中的可逆PWM整流器102和电机线圈103形成驱动回路;
其中,单向导通模块104连接在电容110的第一端和外部的直流口105的第二端之间,外部的直流口105的第一端连接电容110的第二端和外部的电池101的负极端,外部的电 池101的正极端连接可逆PWM整流器102的第一汇流端;
或者,单向导通模块104连接在电容110的第二端和外部的直流口105的第一端之间,外部的直流口105的第二端连接电容110的第一端,电容110的第二端连接外部的电池101的负极端,外部的电池101的正极端连接可逆PWM整流器102的第一汇流端。
其中,电机可以是同步电机(含无刷同步机)或者异步电机,电机线圈103的相数大于等于2(如三相电机、五相电机、六相电机、九相电机、十五相等等),且电机线圈103的连接点形成中性点引出中性线,电机线圈103的中性线可以是多根数引出,电机线圈103的极点数量取决于电机内部绕组并联结构,引出中心线的数量以及中性线在电机内部的并联极点数量由实际方案的使用情况确定;可逆PWM整流器102包括多相桥臂,桥臂数量根据电机线圈103的相数进行配置,每相包括两个功率开关单元,功率开关单元可以是晶体管、IGBT、MOSFET、SiC管等器件类型,桥臂中两个功率开关单元的连接点连接电机中的一相线圈,可逆PWM整流器102中的功率开关单元可以根据外部控制信号实现导通和关闭;单向导通模块104用于在其所在的支路内实现电流的单向导通,当单向导通模块104输入端的电压大于输出端的电压时,可以实现单向导通,能量转换装置还包括控制模块,控制模块与可逆PWM整流器102连接,并向可逆PWM整流器102发送控制信号,控制模块可以包括整车控制器、可逆PWM整流器102的控制电路和BMS电池管理器电路,三者通过CAN线连接,控制模块中的不同模块根据所获取的信息控制可逆PWM整流器102中功率开关的导通和关断以实现不同电流回路的导通,电容110用于在充放电过程中存储电能,电容110可以与电机线圈103形成LC谐振回路,可以实现LC振荡,例如,在一段时间内电容110的电压逐渐升高,而电机线圈103的电流却逐渐减少,而在另一段时间段内电容110的电压逐渐降低,而电机线圈103的电流却逐渐增加,进而可以实现能量存储电机线圈103或者电容110中。
作为一种实施方式,如图1所示,电机线圈103的中性线与电容110的第一端和单向导通模块104的第一端连接,单向导通模块104的第二端连接外部的直流口105,可逆PWM整流器102连接电容110的第二端和外部的直流口105。
作为另一种实施方式,如图2所示,电机线圈103的中性线与电容110的第一端和外部的直流口105连接,单向导通模块104的第一端连接外部的直流口105,可逆PWM整流器102连接电容110的第二端和单向导通模块104的第二端。
其中,对于第一种实施方式,该能量转换装置可以工作于驱动模式和直流放电模式。
当该能量转换装置工作于驱动模式时,外部的电池101与可逆PWM整流器102和电机线圈103形成驱动回路,外部的电池101向可逆PWM整流器102提供直流电,可逆PWM整流器102将直流电整流为三相交流电,并将三相交流电输入电机线圈103以驱动电机运转。
当该能量转换装置工作于直流放电模式时,单向导通模块104的第一端和第二端分别为输入端和输出端,外部的电池101、能量转换装置、外部的直流口105形成直流放电电 路,外部直流口105连接直流用电设备,直流放电电路为直流用电设备提供直流电源。
其中,对于第二种实施方式,该能量转换装置可以工作于驱动模式和直流充电模式。
当该能量转换装置工作于驱动模式时,外部的电池101与可逆PWM整流器102和电机线圈103形成驱动回路,外部的电池101向可逆PWM整流器102提供直流电,可逆PWM整流器102将直流电整流为三相交流电,并将三相交流电输入电机线圈103以驱动电机运转。
当该能量转换装置工作于直流充电模式时,单向导通模块104的第一端和第二端分别为输出端和输入端,外部的直流口105、能量转换装置、外部的电池101形成直流充电电路,外部直流口105连接直流供电设备,并为直流充电电路提供直流电源,
本发明实施例一种能量转换装置的技术效果在于:通过外部的直流口105、可逆PWM整流器102、电机线圈103、单向导通模块104、电容110以及外部的电池101形成直流充电电路或者直流放电电路,使得该能量转换装置工作于驱动模式和直流充电模式或者驱动模式和直流放电模式,当工作于驱动模式时,外部的电池101与可逆PWM整流器102、电机线圈103形成驱动回路,当工作于直流充电模式时,外部的直流口105、可逆PWM整流器102、电机线圈103、单向导通模块104、电容110与外部的电池101形成直流充电电路,当工作于放电模式时,外部的电池101、可逆PWM整流器102、电机线圈103、单向导通模块104、电容110、外部的直流口105形成直流放电电路,通过直流放电回路进行放电,实现了在外部的电池101电量较高时向用电设备进行放电,或者,通过直流充电回路接收充电,实现了在外部的电池101电量不足时接收供电设备的充电,并且直流充放电回路和直流升压充放电回路中均采用可逆PWM整流器102以及电机线圈103、充电口电容110,实现了采用简单电路结构进行直流充放电的功能。
作为一种实施方式,如图3和图10的实施例所示,能量转换装置包括第一开关器件107,第一开关器件107与单向导通模块104并联连接;外部的电池101通过能量转换装置中的可逆PWM整流器102、电机线圈103、第一开关器件107和外部的直流口105形成第一直流放电电路;外部的电池101通过能量转换装置中的可逆PWM整流器102、电机线圈103、单向导通模块104和外部直流口105形成第二直流放电电路;能量转换装置根据外部控制信号选择第一直流放电电路或者第二直流放电电路工作。
其中,在直流放电模式下,外部的电池101通过能量转换装置中的可逆PWM整流器102、电机线圈103、第一开关器件107和外部的直流口105形成第一直流放电电路,在上述放电模式下,外部的直流口105连接直流用电设备,外部的电池101通过第一直流放电电路为直流用电设备提供直流电源,外部的电池101、可逆PWM整流器102、电机线圈103、第一开关器件107、外部的直流口105连接的直流用电设备形成第一直流放电储能回路,可逆PWM整流器102、电机线圈103、第一开关器件107、外部的直流口105连接的直流用电设备形成第一直流放电储能释放回路,第一直流放电电路包括第一直流放电储能回路和第一直流放电储能释放回路,在第一直流放电储能回路工作过程中,外部的电池101通过向 第一直流放电储能回路输出电能并将电能存储在电机线圈103中,在第一直流放电储能释放回路工作过程中,电机线圈103通过第一直流放电储能释放回路为直流用电设备进行放电,实现了外部的电池101通过第一直流放电电路对直流用电设备进行放电的过程。
其中,在直流放电模式下,单向导通模块104包括二极管,二极管的阳极和阴极分别为单向导通模块104的第一端和第二端,外部的电池101通过能量转换装置中的可逆PWM整流器102、电机线圈103、二极管和外部的直流口105形成第二直流放电电路,在上述放电模式下,外部的直流口105连接直流用电设备,外部的电池101通过第二直流放电电路为直流用电设备提供直流电源,外部的电池101、可逆PWM整流器102、电机线圈103、二极管、外部的直流口105连接的直流用电设备形成第二直流放电储能回路,可逆PWM整流器102、电机线圈103、二极管、外部的直流口105连接的直流用电设备形成第二直流放电储能释放回路,第二极管直流放电电路包括第二极管直流放电储能回路和第二极管直流放电储能释放回路,在第二直流放电储能回路工作过程中,外部的电池101通过向第二直流放电储能回路输出电能并将电能存储在电机线圈103中,在第二直流放电储能释放回路工作过程中,电机线圈103通过第二直流放电储能释放回路为直流用电设备进行放电,实现了外部的电池101通过第二直流放电电路对直流用电设备进行放电的过程。
本公开实施方式的技术效果在于:外部的电池101通过能量转换装置中的可逆PWM整流器102、电机线圈103、第一开关器件107、外部的直流口105连接的直流用电设备形成第一直流放电电路,外部的电池101通过能量转换装置中的可逆PWM整流器102、电机线圈103、单向导通模块104和外部的直流口105连接的直流用电设备形成第二直流放电电路,使得该能量转换装置分时工作于驱动模式和放电模式,通过第一直流放电电路以及第二直流放电电路对外进行放电,实现了在在外部的电池101电量充足时向直流用电设备进行放电,并且驱动回路、直流放电回路中均采用电机线圈103、可逆PWM整流器102,从而既精简了电路结构,也提升了集成度,进而达到体积减小以及成本降低的目的,解决了现有控制电路结构复杂、集成度低、体积大且成本高的问题,并且本公开实施方式在能量转换装置中设置电机线圈103与电容110形成LC谐振模块,形成LC振荡,当外部的直流口105连接直流用电设备时,可以实现外部的电池101通过谐振回路对用电设备进行升压放电,实现宽电压范围的放电。
作为一种实施方式,如图4和图16的实施例所示,能量转换装置包括第一开关器件107,第一开关器件107与单向导通模块104并联连接;外部的直流口105通过能量转换装置中的第一开关器件107、电机线圈103、可逆PWM整流器102和外部的电池101形成第一充电电路;
外部的直流口105通过能量转换装置中的单向导通模块104、电机线圈103、可逆PWM整流器102和外部的电池101形成第二直流充电电路;
能量转换装置根据外部控制信号选择第一直流充电电路或者第二直流充电电路工作。
其中,在直流充电模式下,外部的直流口105通过能量转换装置中的第一开关器件107、电机线圈103、可逆PWM整流器102和外部的电池101形成第一充电电路,外部的直流口105连接直流供电设备,直流供电设备、第一开关器件107、电机线圈103、可逆PWM整流器102形成第一直流充电储能回路,直流供电设备、第一开关器件107、电机线圈103、可逆PWM整流器102、外部的电池101形成第一直流充电储能释放回路,直流充电电路包括第一直流充电储能回路和第一直流充电储能释放回路,在第一直流充电储能回路工作过程中,直流供电设备通过向第一直流充电储能回路输出电能将电能存储在电机线圈103中,在第一直流充电储能释放回路工作过程中,直流供电设备、电机线圈103一同通过第一直流充电储能释放回路为外部的电池101进行充电,实现了直流供电设备通过第一直流充电电路对外部的电池101进行充电的过程。
外部的直流口105通过能量转换装置中的二极管、电机线圈103、可逆PWM整流器102和外部的电池101形成第二充电电路,外部的直流口105连接直流供电设备,直流供电设备、二极管、电机线圈103、可逆PWM整流器102形成第二直流充电储能回路,直流供电设备、二极管、电机线圈103、可逆PWM整流器102、外部的电池101形成第二直流充电储能释放回路,直流充电电路包括第二直流充电储能回路和第二直流充电储能释放回路,在第二直流充电储能回路工作过程中,直流供电设备通过向第二直流充电储能回路输出电能将电能存储在电机线圈中,在第二直流充电储能释放回路工作过程中,直流供电设备、电机线圈一同通过第二直流充电储能释放回路为外部的电池进行充电,实现了直流供电设备通过第二直流充电电路对外部的电池进行充电的过程。
本公开实施方式的技术效果在于:通过外部的直流口通过能量转换装置中的第一开关器件、电机线圈、可逆PWM整流器和外部的电池形成第一直流充电电路,外部的直流口通过能量转换装置中的单向导通模块、电机线圈、可逆PWM整流器和外部的电池形成第二直流充电电路,使得该能量转换装置分时工作于驱动模式和充电模式,通过第一直流充电电路以及第二直流充电电路接收充电,实现了在外部的电池电量不足时接收直流供电设备的充电,并且驱动回路、直流充电回路中均采用电机线圈、可逆PWM整流器,从而既精简了电路结构,也提升了集成度,进而达到体积减小以及成本降低的目的,解决了现有控制电路结构复杂、集成度低、体积大且成本高的问题,并且本公开实施方式在能量转换装置中设置电机线圈与电容形成LC谐振模块,形成LC振荡,当直流口连接直流供电设备时,可以实现直流供电设备通过谐振回路对外部的电池进行升压充电,实现宽电压范围的充电。
对于可逆PWM整流器102,作为一种实施方式,如图5所示,电机线圈103包括x套绕组,其中,x≥1,且x为整数;
第x套绕组的相数为m x相,第x套绕组中的每一相绕组包括n x个线圈支路,每一相绕组的n x个线圈支路共接形成一个相端点,第x套绕组中的每一相绕组的n x个线圈支路中 的一个线圈支路还分别与其他相绕组中的n x个线圈支路中的一个线圈支路连接以形成n x个连接点,其中,n x≥1,m x≥2,且m x,n x为整数;
x套绕组共形成
Figure PCTCN2020108925-appb-000001
个连接点,
Figure PCTCN2020108925-appb-000002
个连接点形成T个中性点,T个中性点引出N条中性线,其中:
T的范围:
Figure PCTCN2020108925-appb-000003
N的范围:T≥N≥1,且T、N均为整数;
可逆PWM整流器102包括K组M x路桥臂,一组M x路桥臂中至少一路桥臂的中点与一套m x相绕组中的一相端点连接,任意两个相端点连接的桥臂不相同,其中,M x≥m x,K≥x,且K、M x均为整数。
其中,如图5所示,电机线圈包括x套绕组,m x相是指第x套绕组的相数为m x,例如,第1套绕组的相数为m 1,分别为第11相绕组、第12相绕组直至第1m 1相绕组,第2套绕组的相数为m 2,分别为第21相绕组、第22相绕组直至第2m 2相绕组,第x套绕组的相数为m x,分别为第x1相绕组、第x2相绕组直至第xm x相绕组;x套绕组中的每一相绕组包括n x个线圈支路,每一相绕组的n x个线圈支路共接形成一个相端点,例如,第1套绕组中的第11相绕组包括n 1个线圈支路,分别为第11-1相线圈支路、第11-2相线圈支路直至第11-n 1相线圈支路,上述n 1个线圈支路共接形成一个相端点,第1套绕组中的第12相绕组包括n 1个线圈支路,分别为第12-1相线圈支路、第12-2相线圈支路直至第12-n 1相线圈支路,上述n 1个线圈支路共接形成一个相端点,第1套绕组中的第1m 1相绕组包括n 1个线圈支路,分别为第1m 1-1相线圈支路、第1m 1-2相线圈支路直至第1m 1-n 1相线圈支路,上述n 1个线圈支路共接形成一个相端点;第2套绕组中的第21相绕组包括n 2个线圈支路,分别为第21-1相线圈支路、第21-2相线圈支路直至第21-n 2相线圈支路,上述n 2个线圈支路共接形成一个相端点,第2套绕组中的第22相绕组包括n 2个线圈支路,分别为第22-1相线圈支路、第22-2相线圈支路直至第22-n 2相线圈支路,上述n 2个线圈 支路共接形成一个相端点,第2套绕组中的第2m 2相绕组包括n 2个线圈支路,分别为第2m 2-1相线圈支路、第2m 2-2相线圈支路直至第2m 2-n 2相线圈支路,上述n 2个线圈支路共接形成一个相端点;第x套绕组中的第x1相绕组包括n x个线圈支路,分别为第x1-1相线圈支路、第x1-2相线圈支路直至第x1-n x相线圈支路,上述n x个线圈支路共接形成一个相端点,第x套绕组中的第x2相绕组包括n x个线圈支路,分别为第x2-1相线圈支路、第x2-2相线圈支路直至第x2-n x相线圈支路,上述n x个线圈支路共接形成一个相端点,第x套绕组中的第xm x相绕组包括n x个线圈支路,分别为第xm x-1相线圈支路、第xm x-2相线圈支路直至第xm x-n x相线圈支路,上述n x个线圈支路共接形成一个相端点。
其中,n x个连接点是指第x套绕组的n x个线圈支路形成的连接点个数为n x,每套绕组中一相绕组的一个线圈支路还分别与其他相绕组中的一个线圈支路连接形成一个连接点,通常一个线圈支路与一个连接点相连,例如,第1套绕组中的第11相绕组中第11-1相线圈支路、第12相绕组中第12-1相线圈支路以及第1m 1相绕组中的第1m 1-1相线圈支路共接形成第1个连接点,以此类推,第1套绕组中的其余支路分别形成第2个连接点直至第n 1个连接点,第1套绕组共形成n 1个连接点,第2套绕组共形成n 2,直至第x套绕组共形成n x个连接点,x套绕组共形成(n 1+n 2+……+n x)个连接点,中性点由连接点形成,可以是一个连接点形成一个中性点,也可以是两个或者两个以上的连接点共接形成一个中性点,中性点用于引出中性线,中性点可以引出一条中性线,也可以不引出中性线,中性点引出的一条中性线也可以包括多个支路,中性线用于使电机与其余模块连接。
其中,可以将每一套的m x相个绕组作为一个基本单元,对每一个基本单元采用传统的电机矢量控制都可以独立的控制电机运行,通过采用电机矢量控制每一套的m x相个绕组均可使电机运行。
本发明实施例的技术效果在于:通过在电机中设置x套绕组,第x套绕组的相数为m x相,第x套绕组中的每一相绕组包括n x个线圈支路,每一相绕组的n x个线圈支路共接形成一个相端点,第x套绕组中的每一相绕组的n x个线圈支路中的一个线圈支路还分别与其他相绕组中的n x个线圈支路中的一个线圈支路连接,以形成n x个连接点,x套绕组共形成
Figure PCTCN2020108925-appb-000004
个连接点,
Figure PCTCN2020108925-appb-000005
个连接点形成T个中性点,T个中性点引出N条中性线,通过设置并联数量不同的连接点形成的中性点引出中性线,使电机等效相电感不同,并使电机的中性点中通电流的能力不同,根据充电功率和感量的需求,选择合适数量的连接点并联形成中性点引出中性线,得到需求的充电功率和电感,满足充电功率同时改善充放电性能;当从电机的一个连接点形成的中性点引出一条中性线作为电机的输出端时,此时电机的等效感量最大,电感上纹波最小,通电流能力最小,电流回路电阻较大,回路损耗大;当从电机的多个连接点形成中性点引出一条中性线作为电机的输出端时,可以增大电机的通电流能力,适合进行大功率充电,多线并联可以减小电流回路电阻,回路损耗小;当从电机的一个连接点形成的中性点以及多个连接点形成的中性点分别引出中性线作为电机的输出端时,可以均衡电机绕组线圈的使用寿命,并且提供多种等效感量及满足不同充电功率的需求。
作为一种实施方式,当K=1,x=1,M 1≥m 1≥2时,可逆PWM整流器102包括一组M 1路桥臂,电机线圈包括一套m 1相绕组,每一相绕组包括n 1个线圈支路,并形成n 1个连接点,n 1个连接点形成的中性点至少引出1条中性线,n 1≥1。
进一步的,当K=1,x=1,M 1=m 1=3时,可逆PWM整流器102包括一组三路桥臂,电机线圈包括一套三相绕组,每一相绕组包括n 1个线圈支路,并形成n 1个连接点,n 1个连接点形成的中性点至少引出1条中性线,n 1≥1。
如图6所示,每一相绕组包括4个线圈支路,并形成4个连接点,其中1个连接点形成的中性点引出1条中性线。
其中,三相绕组为A相绕组、B相绕组、C相绕组,A相绕组包括A1相线圈、A2相线圈、A3相线圈、A4相线圈,B相绕组包括B1相线圈、B2相线圈、B3相线圈、B4相线圈,C相绕组包括C1相线圈、C2相线圈、C3相线圈、C4相线圈,A1相线圈的第一端、A2相线圈、A3相线圈以及A4相线圈形成第一公共端,B1相线圈的第一端、B2相线圈、B3相线圈以及B4相线圈形成第二公共端,C1相线圈的第一端、C2相线圈、C3相线圈以及C4相线圈形成第三公共端,第一三相线圈中的A1相线圈、B1相线圈以及C1相线圈形成一个连接点n1,第二三相线圈中的A2相线圈、B2相线圈以及C2相线圈形成一个连接点n2,第三三相线圈中的A3相线圈、B3相线圈以及C3相线圈形成一个连接点n3,第四三相线圈中的A4相线圈、B4相线圈以及C4相线圈形成一个连接点n4,连接点n1形成中性点并引出1条中性线。
如图7所示,每一相绕组包括4个线圈支路,并形成4个连接点,其中3个连接点共接形成的中性点引出1条中性线。
其中,连接点n1、连接点n2、连接点n3共接形成的中性点引出1条中性线。
本实施方式的技术效果在于:通过将多个连接点共接形成中性点引出1条中性线,通过设置引出的并联数量不同连接点的中性点,使电机等效相电感不同以及电机中流过电流的不同,通过设置可逆PWM整流器102中的桥臂与电机中线圈的连接方式预计电机线圈103的引出极点数,可以得到需求的充电功率和电感,满足充电功率的同时改善充放电性能。
作为一种实施方式,如图8所示,可逆PWM整流器102包括K组M 1路桥臂,K≥1,K为整数;
电机线圈103包括第一绕组单元和第二绕组单元,第一绕组单元包括一套m 1相绕组,m 1相绕组中的每一相绕组包括n 1个线圈支路,每一相绕组的n 1个线圈支路共接形成一个相端点,m 1相绕组的相端点与M 1路桥臂中的m 1路桥臂的每路桥臂的中点一一对应连接,m 1相绕组中的每一相绕组的n 1个线圈支路中的一个线圈支路还分别与其他相绕组中的n 1个线圈支路中的一个线圈支路连接,以形成n 1个连接点,n 1个连接点形成T 1个中性点,T 1个中性点至少引出一条中性线,其中,n 1≥1,m 1≥1,T 1≥1且n 1,m 1,T 1均为整数;
第二绕组单元包括一套m 2相绕组,m 2相绕组中的每一相绕组包括n 2个线圈支路,每一相绕组的n 2个线圈支路共接形成一个相端点,m 2相绕组的相端点与M 1路桥臂中m 2路桥臂的每路桥臂的中点一一对应连接,m 2相绕组中的每一相绕组的n 2个线圈支路中的一个线圈支路还分别与其他相绕组中的n 2个线圈支路中的一个线圈支路连接,以形成n 2个连接点,n 2个连接点形成T 2个中性点,T 2个中性点至少引出一条中性线,其中,n 2≥1,m 2≥1,M 1≥m 1+m 2,T 2≥1且n 1,m 1,M 1,T 2均为整数。
进一步的,当m 1=m 2=3,M 1=6,n 1=2时,第一绕组单元形成2个连接点,其中一个连接点形成一个中性点并引出第一中性线,第二绕组单元形成2个连接点,其中一个连接点形成一个中性点并引出第二中性线。
进一步的,当m 1=m 2=3,M 1=6,n 1=2时,第一绕组单元形成2个连接点,2个连接点共接形成一个中性点并引出第一中性线,第二绕组单元形成2个连接点,2个连接点形 成一个中性点并引出第二中性线。
对于可逆PWM整流器102的功率开关控制方式可以是如下任一种或几种的组合:如选择逆变器中至少一个一桥臂控制,灵活简单。
优选的选择控制器桥臂同步控制方式,同步开通、同步关断,这样电机电流开通时同时增加,关断时也同时减小,有利于电机电流在任一瞬时更趋于相等,从而电机合成磁动势更趋于为零,从而定子磁场更趋于为零,电机基本无转矩产生。当电机本身的感量不满足纹波要求时,可以采用控制器错相位控制,错开的角度=360/电机相数,比如三相错开约120°相位控制,这样三相线圈的正负纹波相互叠加,相互抵消,从而可以使总的纹波大大降低,比如两相错开约180°相位控制,这样两相线圈的正负纹波相互叠加,相互抵消,从而可以使总的纹波大大降低。
可逆PWM整流器102包括三相桥臂时,对于三相桥臂的控制方式可以是如下任一种或几种的组合:如可以实现A、B、C三相任一桥臂或任两桥臂,以及三桥臂共7种控制加热方式,灵活简单。通过桥臂的切换可以有利于实现加热功率的大中小选择,1、可以选择任一相桥臂功率开关进行控制,且三相桥臂可以轮流切换,例如A相桥臂先单独工作,控制第一功率开关单元和第二功率开关单元实施加热一段时间,然后B相桥臂单独工作,控制第三功率开关单元和第四功率开关单元实施加热同样长的时间,再然后C相桥臂单独工作,控制第五功率开关单元和第六功率开关单元实施加热同样长的时间,再切换到A相桥臂工作,如此循环以实现三相逆变器和三相线圈轮流通电发热;2、可以选择任两相桥臂功率开关进行控制,且三相桥臂可以轮流切换,例如AB相桥臂先工作,控制第一功率开关单元、第二功率开关单元、第三功率开关单元和第四功率开关单元实施加热一段时间,然后BC相桥臂工作,控制第三功率开关单元、第四功率开关单元、第五功率开关单元和第六功率开关单元实施加热同样长的时间,再然后CA相桥臂工作,控制第五功率开关单元、第二功率开关单元、第一功率开关单元和第六功率开关单元实施加热同样长的时间,再然后切换到AB相桥臂工作,如此循环以实现三相逆变器;3、优选的可以选择三相桥臂功率开关同时进行控制,即三相上桥臂同时导通,三相下桥臂同时关断;以及三相上桥臂同时关断,三相下桥臂同时导通,此时三相功率桥臂相当于一个单DC/DC,且由于三相回路理论上均衡,从而三相电流均衡,实现三相逆变器和三相线圈发热均衡三相电流基本为直流,其平均值基本一致,以及由于三相绕组对称,此时电机内部的三相合成磁动势基本为零,从而定子磁场基本为零,电机基本无转矩产生,这有利于大大减小传动系的应力。
作为一种实施方式,能量转换装置包括电感,电感的一端连接中性线,电感的另一端连接单向导通模块104的第一端和电容110的第一端。
其中,如图9所示,当外部的直流口105连接直流用电设备时,外部的电池101、可逆PWM整流器102、电机线圈103、电感112、电容110、单向导通模块104和直流用电设备形成第三放电电路;
能量转换装置根据外部控制信号使第三放电电路周期工作于第一工作阶段、第二工作阶段以及第三工作阶段;
在第一工作阶段,外部的电池101的电能经过可逆PWM整流器102、电机线圈103、电感112、电容110后流回至外部的电池101;
在第二工作阶段,电机线圈103、电感112、电容110、可逆PWM整流器102形成环流,同时,电机线圈103和电感112输出的电能经过单向导通模块104、直流用电设备、可逆PWM整流器102后流回至电机线圈103;
在第三工作阶段,电容110输出的电能经过电机线圈103、可逆PWM整流器102在流回电容110。
本发明实施方式与上述实施方式的不同点在于:能量转换装置还包括电感112,电感112和电容110形成LC谐振模块,电容110可以为多个,与电感形成串联,通过将电感112和电容110串联可以实现LC振荡,例如,在一段时间内电容110的电压逐渐升高,而电感112的电流却逐渐减少,而在另一段时间段内电容110的电压逐渐降低,而电感112的电流却逐渐增加,,进而可以实现能量存储电感112或者电容110中。
本公开实施例在能量转换装置中设置LC谐振模块,使LC谐振模块与动力电池101模块、可逆PWM整流器102、电机线圈103、单向导通模块104以及外部的直流口105形成谐振回路,LC谐振模块包括电感112和电容110模块,并通过谐振回路中电机线圈103、电感112与电容110模块形成LC振荡,当外部的直流口105连接直流用电设备时,可以实现外部的电池101通过谐振回路对直流用电设备进行升压放电。
作为一种实施方式,当外部的直流口105连接直流用电设备时,外部的电池101通过能量转换装置中的可逆PWM整流器102、电机线圈103、电容110、单向导通模块104和直流用电设备形成第四放电电路;
能量转换装置根据外部控制信号使第四放电电路周期工作于第一工作阶段、第二工作阶段以及第三工作阶段;
在第一工作阶段,外部的电池101的电能经过可逆PWM整流器102、电机线圈103、电容110后流回至外部的电池101;
在第二工作阶段,电机线圈103、电容110、可逆PWM整流器102形成环流,同时,电机线圈103输出的电能经过单向导通模块104、直流用电设备、可逆PWM整流器102后流回至电机线圈103;
在第三工作阶段,电容110输出的电能流经电机线圈103、可逆PWM整流器102再流回电容110。
本实施方式与上述实施方式的不同点在于电机线圈103与电容110形成LC谐振模块,并通过谐振回路中电机线圈103与电容110模块形成LC振荡,当外部的直流口105连接用电设备时,可以实现外部的电池101通过谐振回路对直流用电设备进行升压放电。
作为一种实施方式,如图10所示,能量转换装置包括第一开关器件107和电感112,电感112连接在电机线圈103和电容110之间,第一开关器件107与单向导通模块104并联连接;
当外部的直流口105连接直流用电设备时,外部的电池101通过能量转换装置中的可逆PWM整流器102、电机线圈103、电感112、电容110、第一开关器件107和直流用电设备形成第五放电电路;
能量转换装置根据外部控制信号使第五放电电路周期工作于第一工作阶段和第二工作阶段;
在第一工作阶段,外部的电池101的电能经过可逆PWM整流器102、电机线圈103、电感112、电容110、直流用电设备后流回至外部的电池101;
在第二工作阶段,电机线圈103输出的电能经过电感112、第一开关器件107、直流用电设备、可逆PWM整流器102后流回至电机线圈103。
本实施方式在第一工作阶段,外部的电池101的电能经过可逆PWM整流器102、电机线圈103、电容110、直流用电设备对电机线圈103和电感112进行储能,在第二工作阶段电机线圈103和电感112输出的电能经过第一开关器件107、直流用电设备、可逆PWM整流器102对直流用电设备进行储能释放,通过第一工作阶段和第二阶段的交替进行实现对直流用电设备的放电。
作为一种实施方式,外部的电池101与能量转换装置之间设置第一开关模块以及第一储能模块,电池101的正极端连接第一开关模块的第一端,电池101的负极端连接第一开关模块的第二端,第一开关模块的第三端连接第一储能模块的第一端,第一开关模块的第四端连接第一储能模块的第二端。
其中,第一开关模块位于电池101与第一储能模块之间,第一开关模块可以根据控制信号使电池101与第一储能模块连通或者断开,进而使电池101与可逆PWM整流器102连通或者断开;第一储能模块可以为电容110等储能器件,当第一开关模块导通时,电池101通过第一开关模块对第一储能模块进行预充电直至第一储能模块充满电。
本实施方式的技术效果在于:在外部电池101与能量转换装置之间设置第一开关模块,通过控制第一开关模块实现控制电池101与能量转换装置的其他模块连接或者断开,通过设置第一储能模块,使第一储能模块通过第一开关模块与电池101并联连接,可以起到滤波作用,由于第一储能模块具有充放电的作用,当电池101电压波动时,通过第一储能模块的充放电可以减小动力电池101电压的波动。
对于第一开关模块,作为第一种实施方式,第一开关模块包括第一开关和第三开关,第一开关的第一端为第一开关模块的第一端,第一开关的第二端为第一开关模块的第三端,第三开关的第一端为第一开关模块的第二端,第三开关的第二端为第一开关模块的第四端。
本实施方式的技术效果在于:在第一开关模块中设置两个开关第一开关和第三开关,通过对第一开关和第三开关的控制实现电池101对第一储能模块的充电,以及实现控制电池101与能量转换装置的其他模块连接或者断开。
对于第一开关模块,作为第二种实施方式,第一开关模块仅包括上述的第一开关或者第三开关。
本实施方式与上述第一种实施方式相比,减少了一个开关,由于上述实施方式中第一开关和第三开关连接在电池101和第一储能模块之间,因此,采用一个开关也可以实现相同的功能。
本实施方式的技术效果在于:在第一开关模块中进设置一个开关,使电路结构更加简化。
对于第一开关模块,作为第三种实施方式,第一开关模块包括第一开关、第二开关、电阻以及第三开关,第一开关的第一端连接第二开关的第一端并构成第一开关模块的第一端,第二开关的第二端连接电阻的第一端,电阻的第二端连接第一开关的第二端并构成为第一开关模块的第三端,第三开关的第一端为第一开关模块的第二端,第三开关的第二端为第一开关模块的第四端。
本实施方式与第一种实施方式相比,增加了一条支路,该条支路上设有第二开关和电阻,该条支路用于实现电池101对第一储能模块进行预充电,即先导通第二开关使电池101对第一储能模块进行充电时,由于设置电阻,可以控制预充电的电流大小,当预充电完成后再控制第二开关断开以及第一开关导通。
本实施方式的技术效果在于:通过在第一开关模块中设置用于进行预充电的支路,实现了对电池101输出至第一储能模块的充电电流的控制,提升了充电过程中充电电池101和第一储能模块的充电安全性。
对于直流口105,作为一种实施方式,直流口105与能量装换装置之间设置第二储能器件和第二开关模块,第二储能器件的第一端与第二开关模块的第一端共接,第二储能器件的第二端与第二开关模块的第二端共接,第二开关模块的第三端连接直流口105的第一端,第二开关模块的第四端与直流口105的第二端连接。
其中,第二开关模块包括第五开关和第六开关,第五开关的第一端和第二端分别为第二开关模块的第一端和第四端,第六开关的第一端和第二端分别为第二开关模块的第二端和第三端,外部的直流口105连接直流用电设备或者直流充电设备,通过控制第五开关和第六开关,使能量转换装置对直流用电设备进行放电或者接收直流充电设备的充电。
本实施方式的技术效果在于:通过设置储能模块,可以实现能量转换装置连接直流用电设备、检测直流用电设备是否满足放电条件并对直流用电设备进行放电,以及实现能量转换装置连接直流充电设备、检测直流用电设备是否满足充电条件并接收直流充电设备的充电,此外,能够实现在能量转换装置进行充电或者放电启动时,存储电能以协助交互过 程完成,并且在能量转换装置进行充电或者放电的过程中,对电机在N线上通过的电流进行滤波,进一步减小电流纹波。
对于单向导通模块104,作为一种实施方式,单向导通模块104包括二极管。
本实施方式中通过设置二极管,当二极管输入端的电压大于输出端电压时,实现能量转换装置通过二极管对用电设备进行充电,尤其可以实现外部的电池101电压小于用电设备电压时,通过可逆PWM整流器102和电机对外部的电池101进行升压后通过二极管对用电设备进行放电。
作为一种实施方式,能量转换装置还包括第三开关模块,第三开关模块连接在电机线圈103和外部的直流口105之间。
第三开关模块包括第四开关,第四开关用于实现电机线圈103和外部的直流口105之间的导通和关断。
下面通过具体的电路结构对本公开实施例的技术方案进行具体说明:
如图11所示,能量转换装置包括第一开关模块以及第一储能模块,第一开关模块包括开关K1、开关K2、开关K3以及电阻R,第一储能模块包括电容C1,可逆PWM整流器102包括第一功率开关单元、第二功率开关单元、第三功率开关单元、第四功率开关单元、第五功率开关以及第六功率开关,每个功率开关单元的控制端连接控制模块,三相逆变器中第一功率开关单元和第二功率开关单元构成A相桥臂,第三功率开关单元和第四功率开关单元构成B相桥臂,第五功率开关单元和第六功率开关单元构成C相桥臂,第一功率开关单元包括第一上桥臂VT1和第一上桥二极管VD1,第二功率开关单元包括第二下桥臂VT2和第二下桥二极管VD2,第三功率开关单元包括第三上桥臂VT3和第三上桥二极管VD3,第四功率开关单元包括第四下桥臂VT4和第四下桥二极管VD4,第五功率开关单元包括第五上桥臂VT5和第五上桥二极管VD5,第六功率开关单元包括第六下桥臂VT6和第六下桥二极管VD6,电机103包括三相线圈,能量转换装置还包括第二储能器件和第二开关模块,第二储能器件包括电容C2,第二开关模块包括开关K5、开关K6,单相导通模块104包括二极管D1。
如图12所示,能量转换装置包括可逆PWM整流器102、电机线圈103,还包括开关K1、开关K2,电阻R、开关K3以及电容C1,外部的电池101的正极连接开关K1的第一端和开关K2的第一端,开关K1的第二端和开关K2的第二端连接电容C1的第一端,外部的电池101的负极连接开关K3的第一端,开关K3的第二端连接电容C1的第二端,可逆PWM整流器102包括六相桥臂,第一相桥臂包括串联连接的第一功率开关单元和第二功率开关单元,第二相桥臂包括串联连接的第三功率开关单元和第四功率开关单元,第三相桥臂包括串联连接的第五功率开关单元和第六功率开关单元,第四相桥臂包括串联连接的第七功率开关单元和第八功率开关单元,第五相桥臂包括串联连接的第九功率开关单元和第十功率开关单元,第六相桥臂包括串联连接的第十一功率开关单元和第十二功率开关单元,第一功率 开关单元的输入端、第三功率开关单元的输入端、第五功率开关单元的输入端、第七功率开关单元的输入端、第九功率开关单元的输入端、第十一功率开关单元的输入端共接于电容C1的第一端并形成第一汇流端,第二功率开关单元的输出端、第四功率开关单元的输出端、第六功率开关单元的输出端、第八功率开关单元的输出端、第十功率开关单元、第十二功率开关单元的输出端的输出端共接于电容C1的第二端并形成第二汇流端,第一功率开关单元包括第一上桥臂VT1和第一上桥二极管VD1,第二功率开关单元包括第二下桥臂VT2和第二下桥二极管VD2,第三功率开关单元包括第三上桥臂VT3和第三上桥二极管VD3,第四功率开关单元包括第四下桥臂VT4和第四下桥二极管VD4,第五功率开关单元包括第五上桥臂VT5和第五上桥二极管VD5,第六功率开关单元包括第六下桥臂VT6和第六下桥二极管VD6,第七功率开关单元包括第七上桥臂VT7和第七上桥二极管VD7,第八功率开关单元包括第八下桥臂VT8和第八下桥二极管VD8,第九功率开关单元包括第九上桥臂VT9和第九上桥二极管VD9,第十功率开关单元包括第十下桥臂VT10和第十下桥二极管VD10,第十一功率开关单元包括第十一上桥臂VT11和第十一上桥二极管VD11,第十二功率开关单元包括第十二下桥臂VT12和第十二下桥二极管VD12,电机线圈103包括第一绕组单元和第二绕组单元,第一绕组单元包括一套三相绕组,每相绕组包括两相线圈,第一相线圈中的线圈A1、线圈A2共接于第一相桥臂的中点A,第二相线圈中线圈B1、线圈B2共接于第二相桥臂的中点B,第三相线圈中线圈C1、线圈C2共接于第三相桥臂的中点C,线圈A1、线圈B1、线圈C1共接形成第一连接点n1,线圈A2、线圈B2、线圈C2共接形成第二连接点n2,第二绕组单元包括一套三相绕组,每相绕组包括两个线圈,第一相线圈中的线圈U1、线圈U2共接于第四相桥臂的中点U,第二相线圈中线圈V1、线圈V2共接于第五相桥臂的中点V,第三相线圈中线圈W1、线圈W2共接于第六相桥臂的中点W,线圈U1、线圈V1、线圈W1共接形成第三连接点n3,线圈U2、线圈V2、线圈W2共接形成第四连接点n4,第一连接点n1和第二连接点n2共接形成中性点并引出中性线,能量转换模块还包括直开关K4、开关K5、开关K6、电容C2、二极管D1,外部的直流口105的第一端连接开关K6的第一端,外部的直流口105的第二端连接开关K5的第一端和二极管D1的阴极,二极管D1的的阳极连接开关K5的第二端、开关K4的第一端以及电容C2的第一端,开关K4的第二端连接中性线,开关K6的第二端连接电容C2的第二端和可逆PWM整流器102的第二汇流端。
如图13所示,与图12的不同点在于:能量转换模块包括开关K7,第二连接点n2形成第一中性点并引出第一中性线,第一中性线连接开关K4的第二端,第四连接点n4形成第二中性点并引出第二中性线,第二中性线连接开关K7的第二端,开关K4的第一端与开关K7的第一端共接于二极管D1的阳极。
如图14所示,与图13的不同点在于:第一连接点n1和第二连接点n2共接形成第一中性点并引出第一中性线,第三连接点n3和第四连接点n4形成第二中性点并引出第二中 性线,第二中性线连接开关K7的第二端。
如图15所示,与图11的不同点在于:增加电感L,并与电容C2形成LC谐振模块。
如图16所示,与图15的不同点在于:电机线圈103中的第一连接点n1和第二连接点n2形成中性点并引出中性线。
如图17所示,与图15的不同点在于:二极管D1的阳极连接直流口105,二极管的阴极连接电容C2的第二端。
本发明实施例二提供一种放电方法,基于实施例一的能量转换装置,放电方法包括:
步骤S10.获取直流口105的连接状态。
在步骤S10,连接状态是指直流口105是否连接外部设备,直流口105连接电压采集模块,当直流口105连接用电模块时电压采集模块会采集用电模块的电压,根据电压采集模块上电压的变化判断连接状态的变化。
步骤S20.当直流口105连接用电模块,并检测用电模块满足放电条件时,控制可逆PWM整流器102使能量转换装置对用电模块进行放电。
在步骤S20中,根据采集的电压的变化判定直流口105模块连接用电模块,再根据所采集的电压判断是否用电模块满足放电条件,放电条件可以是所获取的充电电池101的电压范围,当满足放电条件时,可逆PWM整流器102根据外部控制信号可以形成直流充放电回路,使能量转换装置对直流用电设备进行放电。
本发明实施例二提供一种放电方法的技术效果在于:通过在能量转换装置中设置可逆PWM整流器102以及电机线圈103与外部的电池101形成直流充放电回路,通过直流充放电回路对外进行放电,实现了在外部的电池101电量较高时向用电设备进行放电,并且直流充放电回路采用可逆PWM整流器102以及电机线圈103,实现了采用简单电路结构进行直流充放电的功能。
作为一种实施方式,检测用电模块满足放电条件,包括:
获取电池101的输出电压范围,并采集用电模块的电压;
判断用电模块的电压是否位于输出电压范围内,是,则判定用电模块满足放电条件,否,则判定用电模块不满足直流放电条件。
在上述步骤中,电池101的输出电压范围可以通过以下方式获取:使电池101连接储能模块,在电池101进行放电前通过电池101对储能模块进行预充电,通过电池101管理器检测储能模块的电压进而检测电池101的输出电压范围,再根据判断采集的电压是否在输出电压范围内判断用电模块是否满足直流放电条件。
作为一种实施方式,控制可逆PWM整流器102使能量转换装置对用电模块进行放电,包括:
控制可逆PWM整流器102使电池101对电机的线圈的充电过程以及电机的线圈对用电模块的放电过程交替进行,以使能量转换装置对用电模块进行放电。
下面通过具体的电路结构对本实施例进行说明,如图18和图19所示,本实施例的工作过程图下:
驻车降压放电模式:
当直流口105连接直流用电设备时,控制开关K1、开关K3、开关K4、开关K5以及开关K6闭合,电机的多相桥臂可以是同相位控制或者错相位控制,错相位控制的相位错开的角度=360/电机相数,增大电机的等效电感,减小电池101放电纹波,通过上、下桥臂的交替导通,使电机绕组线圈进行储能和绕组线圈的储能释放,将母线电压降到需求的电压进行输出或者将输出电流控制在需求的值,进行电池101降压放电输出图18是车对外降压放电电机电感储能阶段电流流向示意图,其中,外部的电池101、开关K1、可逆PWM整流器102(第一上桥臂VT1、第三上桥臂VT3、第五上桥臂VT5)、电机线圈103、开关K4、开关K5、直流口105、直流用电设备、开关K6、开关K3形成直流储能回路,电流流向为:电池101正极、开关K1、可逆PWM整流器102(第一上桥臂VT1、第三上桥臂VT3、第五上桥臂VT5)、交流电机绕组、电机线圈的连接点n1和连接点n2、电机线圈的中性线N、开关K4、开关K5、外部的直流口105、直流用电模块、开关K6、开关K3、外部的电池101的负极,进行电机电感的储能。
图19是车对外降压放电电机电感储能释放阶段电流流向示意图,可逆PWM整流器102(第二下桥二极管VD2、第四下桥二极管VD4、第六下桥二极管VD6)、电机线圈103、开关K4、开关K5、外部的直流口105、直流用电设备、开关K6形成直流放电回路,电流流向:可逆PWM整流器102、交流电机绕组、电机线圈的连接点n1和连接点n2、电机线圈的中性线N、开关K4、开关K5、直流口105、直流用电模块、开关K6、可逆PWM整流器102(第二下桥二极管VD2、第四下桥二极管VD4、第六下桥二极管VD6),进行电机电感的储能释放。
如图20至图24所示,本实施例的驻车升压放电模式工作过程图下:
当直流口105需要输出的电压比电池101可输出的最大电压高时,开关K2和开关K5断开,开关K1、开关K3、开关K4、开关K6闭合,控制可逆PWM整流器102上、下桥臂的交替导通,可以是同相位控制或者错相位控制相位错开的角度=360/电机相数,优选同相位进行LC谐振控制。
如图20所示,LC谐振过程中外部的电池101放电对电机线圈的电感、外置电感储能、电容充电阶段电流流向示意图,外部的电池101、开关K1、可逆PWM整流器102(第一上桥臂VT1、第三上桥臂VT3、第五上桥臂VT5)、电机线圈103、开关K4、电感L、电容C2形成储能回路,电流流向为:外部的电池101的正极、开关K1、可逆PWM整流器102(第一上桥臂VT1、第三上桥臂VT3、第五上桥臂VT5)、交流电机绕组、电机N线、电感L、电容C2、开关K3、外部的电池101的负极,进行电机电感、外置电感的储能和电容110的充电;此过程作用为谐振电路的起振以及谐振过程中电池101放电对谐振电路的能量补 充的作用。
如图21所示,LC谐振过程中的电机电感、外置电感续流对电容110充电阶段电流流向示意图,可逆PWM整流器102(第二下桥二极管VD2、第四下桥二极管VD4、第六下桥二极管VD6)、电机线圈103、开关K4、电感L、电容C2形成续流回路,电流流向:交流电机绕组、电机N线、电感L、电容C2、可逆PWM整流器102(第二下桥二极管VD2、第四下桥二极管VD4、第六下桥二极管VD6)流回交流电机绕组,此过程是电机电感、外置电感中的能量转移到电容C2中。
如图22所示,LC谐振过程中电机电感、外置电感续流电容110充电对外放电阶段电流流向示意图,可逆PWM整流器102(第二下桥二极管VD2、第四下桥二极管VD4、第六下桥二极管VD6)、电机线圈103、开关K4、电感L、二极管D1、外部的直流口105、直流用电设备、开关K6形成放电回路,电流流向为:交流电机绕组、电机N线、开关K4、电感L、电容C2(同时经过二极管D1至直流口105)、可逆PWM整流器102(第二下桥二极管VD2、第四下桥二极管VD4、第六下桥二极管VD6)流回交流电机绕组,此过程是电感中的能量转移到电容C2,电容C2电压高于直流口处的电压,电机电感、外置电感中能量对外部DE直流口进行释放过程,一直到电机电感、外置电感中储能释放完毕为止。
如图23所示,LC谐振过程中电容放电对电机电感、外置电感反向储能阶段电流流向示意图,电容C2、电感L、开关K4、电机线圈103、可逆PWM整流器102(第二下桥臂VT2、第四下桥臂VT4、第六下桥臂VT6)形成反向储能回路,电流流向为:电容C2、电感L、电机N线、交流电机绕组、可逆PWM整流器102(第二下桥臂VT2、第四下桥臂VT4、第六下桥臂VT6),此过程是电容C2中的能量转移到电机电感、外置电感中,电容C2中电压为零结束。
如图23所示,谐振过程中电机电感、外置电感反向续流对电容110反向充电阶段电流流向示意图,电感L、开关K4、电机线圈103、可逆PWM整流器102(第二下桥臂VT2、第四下桥臂VT4、第六下桥臂VT6)、电容C2形成交流反向充电回路,电流流向:电感L、开关K4、电机N线、交流电机绕组、可逆PWM整流器102(第二下桥臂VT2、第四下桥臂VT4、第六下桥臂VT6)、电容C2,此过程是电机电感、外置电感中的能量转移到电容C2中,电机电感、外置电感中电流为零结束。
如图24所示,谐振过程中电容放电对电机电感、外置电感储能阶段电流流向示意图,电机线圈103、开关K4、电感L、电容C2、可逆PWM整流器102(第二下桥二极管VD2、第四下桥二极管VD4、第六下桥二极管VD6)形成储能回路,电流流向:电容C2、可逆PWM整流器102(第二下桥二极管VD2、第四下桥二极管VD4、第六下桥二极管VD6)、交流电机绕组、电机N线、电感L、电容C2,此过程是电容C2中的能量转移到电机电感、外置电感中,电容C2中电压为零结束。
图25是车对外放电LC谐振升压放电一种控制过程电流波形示意图。
本公开实施例三提供一种能量转换装置,如图26和图27所示,包括:
单向导通模块104,单向导通模块104包括二极管,二极管的阳极和阴极分别为单向导通模块的第一端和第二端;
电容110;
可逆PWM整流器102,可逆PWM整流器102包括多路桥臂,多路桥臂的第一端共接形成第一汇流端,多路桥臂的第二端共接形成第二汇流端;
电机线圈103,电机线圈103的一端分别与多路桥臂的中点连接,电机线圈103的另一端通过引出中性线与单向导通模块104的第一端、电容110的第一端连接,电容110的第二端与第二汇流端连接;
充电或放电连接端组121,其包括第一充电或放电连接端和第二充电或放电连接端,第一充电或放电连接端通过第一开关器件与电容110的第二端连接,第二充电或放电连接端与单向导通模块104的第二端连接,电容110的第一端与单向导通模块104的第二端之间通过第一开关器件107连接;或者第一充电或放电连接端与单向导通模块104的第一端连接,电容的第二端与单向导通模块104的第一端之间通过第一开关器件107连接,第二充电或放电连接端通过第一开关器件107与电容110的第一端连接。
其中,充电或放电连接端组121用于连接外部的充电口,本实施例的具体工作方式请参照实施例一,在此不再赘述。
本公开实施例四提供一种车辆,该车辆还包括上述实施例一和实施例二提供的能量转换装置。
如图28所示,电池包的加热和冷却回路包含以下回路:电机驱动系统冷却回路、电池冷却系统回路、空调系统的冷却回路。电池冷却系统回路通过换热板和空调冷却系统融合;电池冷却系统回路通过四通阀和电机驱动系统冷却回路贯通。电机驱动系统冷却回路通过三通阀的切换将散热器连接和断开。电机驱动系统冷却回路与电池冷却系统回路通过阀体切换,改变管道中冷却液流向,使电机驱动系统加热后的冷却液的流向电池冷却系统,完成热量从电机驱动系统到电池冷却的传递;电机驱动系统处于非加热模式,通过三通阀和四通阀切换,电机驱动系统冷却液走A回路,电池冷却系统的冷却液走C回路;电机处于加热模式,通过三通阀和四通阀切换,电机驱动系统冷却液走B回路,实现电机驱动系统加热后的冷却液流向电池包冷却回路来给电池加热。
以上实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的精神和范围,均应包含在本公开的保护范围之内。

Claims (18)

  1. 一种能量转换装置,所述能量转换装置包括可逆PWM整流器、连接至所述可逆PWM整流器的电机线圈、单向导通模块以及电容,所述可逆PWM整流器还包括第一汇流端和第二汇流端,所述电机线圈的中性线与所述电容的第一端连接,所述可逆PWM整流器的第二汇流端还与所述电容的第二端连接;
    外部的直流口通过所述能量转换装置与外部的电池形成直流充电电路或者直流放电电路,外部的电池与所述能量转换装置中的所述可逆PWM整流器和所述电机线圈形成驱动回路;
    其中,所述单向导通模块连接在所述电容的第一端和所述外部的直流口的第二端之间,所述外部的直流口的第一端连接所述电容的第二端和所述外部的电池的负极端,所述外部的电池的正极端连接所述可逆PWM整流器的第一汇流端;
    或者,所述单向导通模块连接在所述电容的第二端和所述外部的直流口的第一端之间,所述外部的直流口的第二端连接所述电容的第一端,所述电容的第二端连接所述外部的电池的负极端,所述外部的电池的正极端连接所述可逆PWM整流器的第一汇流端。
  2. 如权利要求1所述的能量转换装置,其中,所述单向导通模块的第一端连接所述电容的第一端,所述单向导通模块的第二端连接所述外部的直流口的第二端;
    所述能量转换装置包括第一开关器件,所述第一开关器件与所述单向导通模块并联连接;
    所述外部的电池通过所述能量转换装置中的所述可逆PWM整流器、所述电机线圈、所述第一开关器件和所述外部放电口形成第一直流放电电路;
    所述外部的电池通过所述能量转换装置中的所述可逆PWM整流器、所述电机线圈、所述单向导通模块和所述外部放电口形成第二直流放电电路;
    所述能量转换装置根据外部控制信号选择所述第一直流放电电路或者所述第二直流放电电路工作。
  3. 如权利要求1所述的能量转换装置,其中,所述单向导通模块的第一端连接所述外部的直流口的第一端,所述电容的第二端和所述单向导通模块的第二端连接;
    所述能量转换装置包括第一开关器件,所述第一开关器件与所述单向导通模块并联连接;
    所述外部的直流口通过所述能量转换装置中的所述第一开关器件、所述电机线圈、所述可逆PWM整流器和所述外部的电池形成第一直流充电电路;
    所述外部的直流口通过所述能量转换装置中的所述单向导通模块、所述电机线圈、所述可逆PWM整流器和所述外部的电池形成第二直流充电电路;
    所述能量转换装置根据外部控制信号选择所述第一直流充电电路或者所述第二直流 充电电路工作。
  4. 如权利要求2或者3所述的能量转换装置,其中,所述单向导通模块包括二极管,所述二极管的阳极和阴极分别为所述单向导通模块的第一端和第二端。
  5. 如权利要求1所述的能量转换装置,其中,所述电机线圈包括x套绕组,其中,x≥1,且x为整数;
    第x套绕组的相数为m x相,所述第x套绕组中的每一相绕组包括n x个线圈支路,每一相绕组的n x个线圈支路共接形成一个相端点,所述第x套绕组中的每一相绕组的n x个线圈支路中的一个线圈支路还分别与其他相绕组中的n x个线圈支路中的一个线圈支路连接以形成n x个连接点,其中,n x≥1,m x≥2,且m x,n x为整数;
    所述x套绕组共形成
    Figure PCTCN2020108925-appb-100001
    个连接点,所述
    Figure PCTCN2020108925-appb-100002
    个连接点形成T个中性点,所述T个中性点引出N条中性线,其中:
    T的范围:
    Figure PCTCN2020108925-appb-100003
    N的范围:T≥N≥1,且T、N均为整数;
    所述可逆PWM整流器包括K组M x路桥臂,一组M x路桥臂中至少一路桥臂的中点与一套m x相绕组中的一相端点连接,任意两个相端点连接的桥臂不相同,其中,M x≥m x,K≥x,且K、M x均为整数。
  6. 如权利要求5所述的能量转换装置,其中,当K=1,x=1,M 1≥m 1≥2时,所述可逆PWM整流器包括一组M 1路桥臂,所述电机线圈包括一套m 1相绕组,每一相绕组包括n 1个线圈支路,并形成n 1个连接点,所述n 1个连接点形成的中性点至少引出1条中性线,n 1≥1。
  7. 如权利要求5所述的能量转换装置,其中,当K=1,x=1,M 1=m 1=3,时,所述可逆PWM整流器包括一组三路桥臂,所述电机线圈包括一套三相绕组,每一相绕组包括n 1个线圈支路,并形成n 1个连接点,所述n 1个连接点形成的中性点至少引出1条中性线,n 1≥1。
  8. 如权利要求7所述的能量转换装置,其中,每一相绕组包括1个线圈支路,并形成1个连接点,所述1个连接点形成的中性点引出1条中性线。
  9. 如权利要求7所述的能量转换装置,其中,每一相绕组包括4个线圈支路,并形成4个连接点,其中2个连接点形成的中性点引出1条中性线。
  10. 如权利要求5所述的能量转换装置,其中,所述可逆PWM整流器包括K组M 1路桥臂,K≥1,K为整数;
    所述电机线圈包括第一绕组单元和第二绕组单元,所述第一绕组单元包括一套m 1相绕组,所述m 1相绕组中的每一相绕组包括n 1个线圈支路,每一相绕组的n 1个线圈支路共接形成一个相端点,所述m 1相绕组的相端点与所述M 1路桥臂中的m 1路桥臂的每路桥臂的中点一一对应连接,所述m 1相绕组中的每一相绕组的n 1个线圈支路中的一个线圈支路还分别与其他相绕组中的n 1个线圈支路中的一个线圈支路连接,以形成n 1个连接点,所述n 1个连接点形成T 1个中性点,所述T 1个中性点至少引出一条中性线,其中,n 1≥1,m 1≥1,T 1≥1且n 1,m 1,T 1均为整数;
    所述第二绕组单元包括一套m 2相绕组,所述m 2相绕组中的每一相绕组包括n 2个线圈支路,每一相绕组的n 2个线圈支路共接形成一个相端点,所述m 2相绕组的相端点与所述M 1路桥臂中m 2路桥臂的每路桥臂的中点一一对应连接,所述m 2相绕组中的每一相绕组的n 2个线圈支路中的一个线圈支路还分别与其他相绕组中的n 2个线圈支路中的一个线圈支路连接,以形成n 2个连接点,所述n 2个连接点形成T 2个中性点,所述T 2个中性点至少引出一条中性线,其中,n 2≥1,m 2≥1,M 1≥m 1+m 2,T 2≥1且n 1,m 1,M 1,T 2均为整数。
  11. 如权利要求10所述的能量转换装置,其中,当m 1=m 2=3,M 1=6,n 1=2时,所述第一绕组单元形成2个连接点,其中一个连接点形成一个中性点并引出第一中性线,所述第二绕组单元形成2个连接点,其中一个连接点形成一个中性点并引出第二中性线。
  12. 如权利要求10所述的能量转换装置,其中,当m 1=m 2=3,M 1=6,n 1=2时,所述第一绕组单元形成2个连接点,所述2个连接点共接形成一个中性点并引出第一中性线,所述第二绕组单元形成2个连接点,所述2个连接点形成一个中性点并引出第二中性线。
  13. 如权利要求2所述的能量转换装置,其中,所述能量转换装置包括电感,所述电感的一端连接所述中性线,所述电感的另一端连接所述单向导通模块的第一端和所述电容的第一端。
  14. 如权利要求13所述的能量转换装置,其中,当所述外部的直流口连接直流用电设备时,所述外部的电池通过所述能量转换装置中的所述可逆PWM整流器、所述电机线圈、 所述电感、所述电容、所述单向导通模块和所述直流用电设备形成第三直流放电电路;
    所述能量转换装置根据外部控制信号使所述第三直流放电电路周期工作于第一工作阶段、第二工作阶段以及第三工作阶段;
    在所述第一工作阶段,所述外部的电池的电能经过所述可逆PWM整流器、所述电机线圈、所述电感、所述电容后流回至所述外部的电池;
    在所述第二工作阶段,所述电机线圈、所述电感、所述电容、所述可逆PWM整流器形成环流,同时,所述电机线圈输出的电能经过所述电感、所述单向导通模块、所述直流用电设备、所述可逆PWM整流器后流回至所述电机线圈;
    在所述第三工作阶段,所述电容输出的电能经过所述电感、所述电机线圈、所述可逆PWM整流器在流回所述电容。
  15. 如权利要求2所述的能量转换装置,其中,当所述外部的直流口连接直流用电设备时,所述外部的电池通过所述能量转换装置中的所述可逆PWM整流器、所述电机线圈、所述电容、所述单向导通模块和所述直流用电设备形成第四放电电路;
    所述能量转换装置根据外部控制信号使所述第四放电电路周期工作于第一工作阶段、第二工作阶段以及第三工作阶段;
    在所述第一工作阶段,所述外部的电池的电能经过所述可逆PWM整流器、所述电机线圈、所述电容后流回至所述外部的电池;
    在所述第二工作阶段,所述电机线圈、所述电容、所述可逆PWM整流器形成环流,同时,所述电机线圈输出的电能经过所述单向导通模块、所述直流用电设备、所述可逆PWM整流器后流回至所述电机线圈;
    在所述第三工作阶段,所述电容输出的电能流经所述电机线圈、所述可逆PWM整流器再流回所述电容。
  16. 如权利要求15所述的能量转换装置,其中,所述能量转换装置包括第一开关器件和电感,所述电感连接在所述电机线圈和所述电容之间,所述第一开关器件与所述单向导通模块并联连接;
    当所述外部的直流口连接直流用电设备时,所述外部的电池、所述可逆PWM整流器、所述电机线圈、所述电感、所述第一开关器件和所述直流用电设备形成第五放电电路;
    所述能量转换装置根据外部控制信号使所述第五放电电路周期工作于第一工作阶段和第二工作阶段;
    在所述第一工作阶段,所述外部的电池的电能经过所述可逆PWM整流器、所述电机线圈、所述电感、所述电容、所述直流用电设备后流回至所述外部的电池;
    在所述第二工作阶段,所述电机线圈和所述电感输出的电能经过所述第一开关器件、所述直流用电设备、所述可逆PWM整流器后流回至所述电机线圈。
  17. 一种能量转换装置,所述能量转换装置包括:
    单向导通模块,所述单向导通模块包括二极管,所述二极管的阳极和阴极分别为所述单向导通模块的第一端和第二端;
    电容;
    可逆PWM整流器,所述可逆PWM整流器包括多路桥臂,所述多路桥臂的第一端共接形成第一汇流端,所述多路桥臂的第二端共接形成第二汇流端;
    电机线圈,所述电机线圈的一端分别与所述多路桥臂的中点连接,所述电机线圈的另一端通过引出中性线与所述单向导通模块的第一端、所述电容的第一端连接,所述电容的第二端与所述第二汇流端连接;
    充电或放电连接端组,其包括第一充电或放电连接端和第二充电或放电连接端,所述第一充电或放电连接端通过第一开关器件与所述电容的第二端连接,所述第二充电或放电连接端与所述单向导通模块的第二端连接,所述电容的第一端与所述单向导通模块的第二端之间通过第一开关器件连接;或者所述第一充电或放电连接端与所述单向导通模块的第一端连接,所述电容的第二端与所述单向导通模块的第一端之间通过第一开关器件连接,所述第二充电或放电连接端通过第一开关器件与所述电容的第一端连接。
  18. 一种车辆,所述车辆包括权利要求1至16任一项或者权利要求17所述的能量转换装置。
PCT/CN2020/108925 2019-08-15 2020-08-13 能量转换装置及车辆 WO2021027879A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022509036A JP7389227B2 (ja) 2019-08-15 2020-08-13 エネルギー変換装置及び車両
US17/635,620 US11801764B2 (en) 2019-08-15 2020-08-13 Energy conversion device and vehicle
AU2020328756A AU2020328756B2 (en) 2019-08-15 2020-08-13 Energy conversion apparatus and vehicle
EP20852950.3A EP4015297A4 (en) 2019-08-15 2020-08-13 ENERGY CONVERSION DEVICE AND VEHICLE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910755870.2A CN112389270B (zh) 2019-08-15 2019-08-15 能量转换装置及车辆
CN201910755870.2 2019-08-15

Publications (1)

Publication Number Publication Date
WO2021027879A1 true WO2021027879A1 (zh) 2021-02-18

Family

ID=74570543

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/108925 WO2021027879A1 (zh) 2019-08-15 2020-08-13 能量转换装置及车辆

Country Status (6)

Country Link
US (1) US11801764B2 (zh)
EP (1) EP4015297A4 (zh)
JP (1) JP7389227B2 (zh)
CN (1) CN112389270B (zh)
AU (1) AU2020328756B2 (zh)
WO (1) WO2021027879A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101454958A (zh) * 2006-05-29 2009-06-10 丰田自动车株式会社 电力控制装置和具有该电力控制装置的车辆
CN101459344A (zh) * 2007-11-22 2009-06-17 株式会社电装 具有多相电机和多相逆变器的电源系统
CN102684248A (zh) * 2011-03-18 2012-09-19 富士电机株式会社 车辆间充电装置
JP2014161142A (ja) * 2013-02-19 2014-09-04 Nissan Motor Co Ltd 充電装置、充電方法及びモータ駆動方法
CN109789799A (zh) * 2016-10-05 2019-05-21 沃土电机股份有限公司 电动车辆

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2803447B1 (fr) 1999-12-30 2003-08-29 Renault Systeme de generation de puissance pour un reseau bitension
DE102013200674A1 (de) * 2013-01-17 2014-07-17 Bayerische Motoren Werke Aktiengesellschaft Fahrzeug mit einer elektrischen Maschine und zwei Teilbordnetzen
JP6026952B2 (ja) * 2013-05-17 2016-11-16 株式会社日本自動車部品総合研究所 電力変換装置
JP6101809B2 (ja) * 2013-09-25 2017-03-22 株式会社日立製作所 エネルギー変換システム
JP6439282B2 (ja) * 2014-06-09 2018-12-19 日産自動車株式会社 充電システム、給電車両、充電車両、及び充電方法
US20190031125A1 (en) 2017-07-25 2019-01-31 Hamilton Sundstrand Corporation Electric system architecture for range extended electric vehicles
DE112018003754T5 (de) * 2017-09-29 2020-04-16 Aisin Aw Co., Ltd. Invertersteuerungsvorrichtung
CN107979321B (zh) * 2017-12-27 2020-07-07 南京航空航天大学 复用励磁绕组的电励磁双凸极电机驱动充电一体化系统
CN109687722B (zh) * 2019-02-01 2023-11-14 华南理工大学 一种电动汽车用集成多模式功率转换器及其控制方法
CN109823234B (zh) * 2019-04-23 2019-07-16 上海汽车集团股份有限公司 一种驱动系统的控制方法、驱动系统及新能源汽车

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101454958A (zh) * 2006-05-29 2009-06-10 丰田自动车株式会社 电力控制装置和具有该电力控制装置的车辆
CN101459344A (zh) * 2007-11-22 2009-06-17 株式会社电装 具有多相电机和多相逆变器的电源系统
CN102684248A (zh) * 2011-03-18 2012-09-19 富士电机株式会社 车辆间充电装置
JP2014161142A (ja) * 2013-02-19 2014-09-04 Nissan Motor Co Ltd 充電装置、充電方法及びモータ駆動方法
CN109789799A (zh) * 2016-10-05 2019-05-21 沃土电机股份有限公司 电动车辆

Also Published As

Publication number Publication date
JP7389227B2 (ja) 2023-11-29
EP4015297A1 (en) 2022-06-22
AU2020328756B2 (en) 2024-02-01
US20220289053A1 (en) 2022-09-15
CN112389270A (zh) 2021-02-23
US11801764B2 (en) 2023-10-31
EP4015297A4 (en) 2022-10-19
AU2020328756A1 (en) 2022-04-07
CN112389270B (zh) 2022-07-15
JP2022544306A (ja) 2022-10-17

Similar Documents

Publication Publication Date Title
CN110971173B (zh) 动力电池的充电方法、电机控制电路及车辆
CN210225008U (zh) 能量转换装置及车辆
CN111391719B (zh) 能量转换装置及车辆
CN112810467B (zh) 能量转换装置及车辆
CN111355430B (zh) 电机控制电路、充放电方法、加热方法及车辆
CN112550022B (zh) 能量转换装置及车辆
CN112389234B (zh) 能量转换装置及车辆
CN112398183B (zh) 预充电路、能量转换装置及车辆
CN112224056B (zh) 一种车辆及其能量转换装置
WO2021027879A1 (zh) 能量转换装置及车辆
CN112398185A (zh) 能量转换装置及其车辆
CN112398184B (zh) 能量转换装置及车辆
CN112389232B (zh) 能量转换装置及车辆
CN112389231B (zh) 能量转换装置及车辆
CN112389228B (zh) 能量转换装置及车辆
CN112389214B (zh) 能量转换装置及车辆
CN112389236B (zh) 一种汽车及能量转换装置
CN112389230B (zh) 能量转换装置及车辆
CN112389229B (zh) 能量转换装置及车辆
CN112389209B (zh) 能量转换装置及车辆
CN112389227B (zh) 能量转换装置及车辆
CN112448515B (zh) 一种汽车、电机及能量转换装置
CN112389233B (zh) 能量转换装置及车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20852950

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022509036

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020852950

Country of ref document: EP

Effective date: 20220315

ENP Entry into the national phase

Ref document number: 2020328756

Country of ref document: AU

Date of ref document: 20200813

Kind code of ref document: A