WO2021027590A1 - 突发ofdm数据传输的帧同步方法及系统 - Google Patents

突发ofdm数据传输的帧同步方法及系统 Download PDF

Info

Publication number
WO2021027590A1
WO2021027590A1 PCT/CN2020/105987 CN2020105987W WO2021027590A1 WO 2021027590 A1 WO2021027590 A1 WO 2021027590A1 CN 2020105987 W CN2020105987 W CN 2020105987W WO 2021027590 A1 WO2021027590 A1 WO 2021027590A1
Authority
WO
WIPO (PCT)
Prior art keywords
fourier transform
frequency domain
signal
maximum power
chirp signal
Prior art date
Application number
PCT/CN2020/105987
Other languages
English (en)
French (fr)
Inventor
唐晓柯
赵东艳
李铮
赵旭
赵亚红
李德建
张玉冰
袁旭
刘继超
Original Assignee
北京智芯微电子科技有限公司
国网信息通信产业集团有限公司
国家电网有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京智芯微电子科技有限公司, 国网信息通信产业集团有限公司, 国家电网有限公司 filed Critical 北京智芯微电子科技有限公司
Publication of WO2021027590A1 publication Critical patent/WO2021027590A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2656Frame synchronisation, e.g. packet synchronisation, time division duplex [TDD] switching point detection or subframe synchronisation

Definitions

  • This application relates to the field of wireless communication technology, in particular to a frame synchronization method and system for burst OFDM data transmission.
  • Burst Orthogonal Frequency Division Multiplexing (OFDM) technology data transmission systems often use repetitive sequences to help the receiving end do synchronization acquisition.
  • This scheme uses sliding autocorrelation calculations. Within a certain initial frequency deviation range, when When the receiving window slides to the starting position of the repeated signal, the auto-correlation amplitude reaches the maximum, and the angle of the auto-correlation value can estimate the frequency deviation.
  • this synchronization acquisition scheme using sliding cross-correlation usually works in the case of a large signal-to-noise ratio (at least 0dB or more).
  • the acquisition probability of this scheme is difficult to meet the requirements, the timing accuracy and frequency offset estimation accuracy are also relatively limited, or more synchronization head data needs to be paid, resulting in a decrease in system efficiency and an increase
  • the storage and logic operation unit requirements and cost of the receiver are improved.
  • the purpose of this application is to provide a frame synchronization method and system for burst OFDM data transmission, without setting more synchronization header data, without increasing hardware costs, to meet the requirements of a signal-to-noise ratio lower than 0dB or a wide signal-to-noise ratio working range
  • the synchronization acquisition probability requirements and timing accuracy requirements of the receiver are not limited to 0dB or a wide signal-to-noise ratio working range.
  • the present application provides a frame synchronization method for burst OFDM data transmission, which includes: a receiver receives air interface data, down-converts and filters to baseband sampling data, wherein the frame synchronization header of the baseband sampling data Including chirp signals and time domain constant modulus signals.
  • the chirp signal includes an upper chirp signal and a lower chirp signal; the receiver performs a synchronous search on the chirp signal; the receiver performs a synchronous search on the time domain constant modulus signal.
  • the synchronization search by the receiver on the chirp signal includes: the receiver performs a point-wise conjugate multiplication of the local chirp signal with the baseband sample data of the same length, And perform the first Fourier transform on the data obtained by performing point-wise conjugate multiplication of the upper chirp signal in the local chirp signal, and perform the point-wise conjugate multiplication on the lower chirp signal of the local chirp signal Perform the second Fourier transform on the data; respectively search for the maximum power spectral lines in the frequency domain of the first Fourier transform and the second Fourier transform, and respectively record the numbers corresponding to the respective maximum power spectral lines , And respectively calculate the frequency domain average power of the first Fourier transform and the second Fourier transform; the maximum power spectral line in the frequency domain of the first Fourier transform is greater than that of the first Fourier transform The frequency domain average power of a Fourier transform is compared with the product of a first preset threshold, and the maximum power spectrum line in the frequency domain of the second
  • the frequency domain average power is compared with the product of the first preset threshold, and if the maximum power spectral line in the frequency domain of the first Fourier transform is greater than the frequency domain average power of the first Fourier transform and The product of the first preset threshold and the maximum power spectrum line in the frequency domain of the second Fourier transform is greater than the product of the frequency domain average power of the second Fourier transform and the first preset threshold, It is determined that the synchronization search of the chirp signal is successful, otherwise, the synchronization search of the chirp signal is continued after sliding the baseband sample data by an offset of a predetermined length until the synchronization search of the chirp signal is successful.
  • the synchronous search of the time domain constant modulus signal by the receiver includes: according to the number of the maximum power spectrum of the first Fourier transform and the second Fourier transform The number of the transformed maximum power spectrum line is calculated to calculate the timing deviation; then according to the timing deviation and the time interval between the chirp signal and the time domain constant modulus signal in the frame synchronization header of the baseband sampling data, the obtained The data of the time-domain constant modulus signal part of the baseband sampling signal is point-by-point conjugate multiplied with the local time-domain constant modulus signal of the receiver, and the third Fourier transform is performed; The maximum power spectrum line in the frequency domain of the third Fourier transform, and record the number of the maximum power spectrum line, and calculate the frequency domain average power of the third Fourier transform, if the third Fourier transform If the maximum power spectral line in the frequency domain of the leaf transform is greater than the product of the frequency average power of the third Fourier transform and the second preset threshold, it is determined that the time domain constant modulus signal synchron
  • the local chirp signal is generated by the receiver or stored in advance.
  • the frame synchronization method further includes: after the time domain constant modulus signal synchronization search in the frame synchronization header is successful, according to the maximum value in the frequency domain of the third Fourier transform The number and frequency resolution of the power spectrum calculate the initial frequency offset.
  • This application also provides a frame synchronization system for burst OFDM data transmission, which includes: a sampling unit, a Fourier transform unit, a maximum power spectrum search unit, a frequency domain average power calculation unit, a synchronization judgment unit, and a timing deviation calculation unit.
  • the sampling unit is used to receive air interface data, down-convert and filter it to baseband sampled data, wherein the frame synchronization header of the baseband sampled data includes a chirp signal and a time domain constant modulus signal;
  • the Fourier transform unit is similar to the sampling unit Coupling, used for point-by-point conjugate multiplication of the local chirp signal of the receiver with the baseband sample data of the same length, and point-wise conjugate multiplication of the upper chirp signal in the local chirp signal Perform the first Fourier transform on the data of the local chirp signal, and perform the second Fourier transform on the data obtained by point-by-point conjugate multiplication of the lower chirp signal of the local chirp signal; the maximum power spectral line search unit and the Fourier transform
  • the leaf transform unit is coupled to search for the maximum power spectral line in the frequency domain of the first Fourier transform and the second Fourier transform, and respectively record the number corresponding to the respective maximum power spectral line;
  • the average power calculation unit
  • the local chirp signal is generated by the receiver or stored in advance.
  • the frame synchronization system further includes: an initial frequency offset calculation unit, which is coupled to the synchronization judgment unit, and is configured to perform a synchronization search for the time domain constant modulus signal in the frame synchronization header.
  • the initial frequency offset is calculated according to the number and frequency resolution of the maximum power spectral line in the frequency domain of the third Fourier transform.
  • a new type of synchronization header signal is designed to use as little synchronization data as possible to achieve the timing accuracy requirements and frequency offset estimation of the terminal Accuracy requirements and high probability of detection success, and low signal-to-noise ratio (such as below 0dB), wide signal-to-noise ratio range (-10 ⁇ 50dB) and multipath-rich wireless environment can still meet synchronization and capture probability And accuracy requirements.
  • the synchronization header signal is suitable for the receiver end to use the existing hardware unit FFT to complete, no additional terminal synchronization logic is needed, which reduces the complexity of the terminal and saves the cost of the terminal.
  • Fig. 1 is a step composition of a frame synchronization method for burst OFDM data transmission according to an embodiment of the present application
  • Fig. 2 is a basic synchronization header frame structure according to an embodiment of the present application
  • Fig. 3 is a basic synchronization header frame structure according to an embodiment of the present application.
  • FIG. 4 is a block diagram of a frame synchronization system for burst OFDM data transmission according to an embodiment of the present application
  • FIG. 5 is a graph of frame synchronization detection performance in an additive white Gaussian noise channel according to an embodiment of the present application.
  • Fig. 6 is a graph of frame synchronization detection performance under an extended pedestrian channel according to an embodiment of the present application.
  • Fig. 7 is a graph of frame synchronization detection performance under an extended vehicle channel model according to an embodiment of the present application.
  • FIG. 8 is a graph of frame synchronization detection performance under an extended typical urban channel model according to an embodiment of the present application.
  • this application provides a frame synchronization method and system for burst OFDM data transmission, by designing a new type of synchronization header signal, using as little synchronization data as possible to achieve the timing accuracy requirements of the terminal And frequency offset estimation accuracy requirements and a high probability of detection success, and low signal-to-noise ratio (such as below 0dB) and wide signal-to-noise ratio range (-10 ⁇ 50dB) and multipath-rich wireless environment can still meet synchronization It can meet the requirements of capture probability and accuracy.
  • the synchronization header signal is suitable for the receiver end to use the existing hardware unit FFT to complete, no additional terminal synchronization logic is needed, which reduces the complexity of the terminal and saves the cost of the terminal.
  • this application is also applicable to other communication systems such as single-carrier wireless or wired burst communication systems with rich multipath.
  • chirp signals including up chirp signals and down chirp signals
  • time domain constant modulus signals are used to complete
  • the initial frequency offset estimation after timing is used to overcome the inability to meet the required accuracy of the frequency offset estimation using Chirp signals under multipath fading channels. All acquisition and estimation processes can be completed using FFT operations, without additional logic design cost of the OFDM receiver.
  • the frame synchronization method for burst OFDM data transmission includes: step S1 to step S3.
  • step S1 the receiver receives air interface data, down-converts and filters it to baseband sampled data, where the frame synchronization header of the baseband sampled data includes a chirp signal and a time domain constant modulus signal.
  • the chirp signal includes an up chirp signal and a down chirp signal
  • the time domain constant modulus signal may specifically be a complex single tone signal.
  • FIG. 2 shows the burst frame synchronization header and frame structure of this embodiment.
  • Figure 3 is a burst frame synchronization header and frame structure with increased redundancy on the basis of Figure 2.
  • a similar frame structure design can include three basic signals (up chirp signal, down chirp signal and time domain constant modulus). The length of the signal) is changed to increase the processing flexibility of the receiver, which may reduce the processing efficiency. However, when the following data frame is much longer than the length of the sync header, the efficiency loss is very small.
  • N t represents the duration of the chirp signal relative to the multiple of the FFT length
  • N f represents the number of time domain baseband sampling points of the chirp signal
  • W B represents the effective signal bandwidth occupied by the chirp signal
  • Tu represents OFDM
  • N fft represents the FFT length of the OFDM system
  • N sc represents the number of effective frequency domain subcarriers of the OFDM system
  • f s represents the baseband sampling rate
  • represents the slope of frequency change
  • represents the baseband of the chirp signal The phase of the signal at the sampling point.
  • step S2 the receiver performs a synchronization search for the chirp signal. Specifically, the receiver performs point-by-point conjugate multiplication of the local chirp signal with baseband sample data of the same length, and performs the first point-by-point conjugate multiplication of the upper chirp signal in the local chirp signal.
  • Fourier transform, the second Fourier transform is performed on the data of the point-wise conjugate multiplication of the lower chirp signal of the local chirp signal; the receiver searches for the first Fourier transform and the second Fourier transform respectively The maximum power spectral line in the frequency domain, and record the number corresponding to the maximum power spectral line respectively, and calculate the frequency domain average power of the first Fourier transform and the second Fourier transform respectively.
  • the maximum power spectral line in the frequency domain is greater than the product of the frequency domain average power of the first Fourier transform and the first preset threshold, and the maximum power spectral line in the frequency domain of the second Fourier transform is greater than the second Fourier transform
  • the product of the average power in the frequency domain of the leaf transform and the first preset threshold determines that the chirp signal synchronization search is successful. Otherwise, the baseband sampling data is shifted by a predetermined length and then the chirp signal synchronization search is continued until the chirp signal Synchronous search is successful.
  • the local chirp signal can be generated by the receiver or stored in advance.
  • step S3 the receiver performs a synchronous search for the time domain constant modulus signal.
  • the timing deviation is calculated, and then based on the timing deviation and the chirp signal in the frame synchronization header of the baseband sampling data
  • the time interval between the time domain constant modulus signal and the time domain constant modulus signal, the data of the time domain constant modulus signal part of the baseband sampling signal is obtained, and it is multiplied by the local time domain constant modulus signal of the receiver by the point-wise conjugate, and the third Fourier transform, search for the maximum power spectral line in the frequency domain of the third Fourier transform, and record the number of the maximum power spectral line, and calculate the frequency domain average power of the third Fourier transform, if the third Fourier transform If the maximum power spectral line in the frequency domain of the inner transform is greater than the product of the frequency average power of the third Fourier transform and the second preset
  • n ⁇ (M U- M D )/2.0)*N fft /(N sc +1).
  • the frame synchronization method further includes: when the time domain constant modulus signal in the frame synchronization header is successfully searched for synchronization, according to the number and frequency resolution of the maximum power spectral line in the frequency domain of the third Fourier transform Calculate the initial frequency offset.
  • N f N t *N fft .
  • N f is the FFT length in the FFT calculation, and the maximum spectral line number corresponding to the spectral line number corresponding to the maximum power is M T ⁇ [0,N f -1];
  • the frame synchronization system includes: a sampling unit 10, a Fourier transform unit 11.
  • the sampling unit 10 is used for receiving air interface data, down-converting and filtering to baseband sampled data, where the frame synchronization header of the baseband sampled data includes a chirp signal and a time domain constant modulus signal.
  • the Fourier transform unit 11 is coupled with the sampling unit 10, and is used to perform point-by-point conjugate multiplication of the local chirp signal of the receiver with the baseband sampling data of the same length, and to multiply the upper chirp signal in the local chirp signal
  • the data subjected to point-wise conjugate multiplication is subjected to the first Fourier transform, and the data subjected to the point-wise conjugate multiplication of the lower chirp signal of the local chirp signal is subjected to the second Fourier transform.
  • the local chirp signal is generated by the receiver or stored in advance.
  • the maximum power spectral line search unit 12 is coupled with the Fourier transform unit 11, and is used to search for the maximum power spectral lines in the frequency domain of the first Fourier transform and the second Fourier transform, and respectively record the respective maximum power spectra The number corresponding to the line.
  • the frequency domain average power calculation unit 13 is coupled with the Fourier transform unit 11 and is used to calculate the frequency domain average power of the first Fourier transform and the second Fourier transform.
  • the synchronization judgment unit 14 is coupled with the maximum power spectral line search unit 12 and the frequency domain average power calculation unit 13, and is used to compare the maximum power spectral line in the frequency domain of the first Fourier transform with that of the first Fourier transform.
  • the product of the frequency domain average power and the first preset threshold is compared, and the maximum power spectral line in the frequency domain of the second Fourier transform and the frequency domain average power of the second Fourier transform are compared with the first preset threshold If the maximum power spectral line in the frequency domain of the first Fourier transform is greater than the product of the frequency domain average power of the first Fourier transform and the first preset threshold, and the frequency of the second Fourier transform If the maximum power spectral line in the domain is greater than the product of the frequency domain average power of the second Fourier transform and the first preset threshold, it is determined that the synchronization search of the chirp signal is successful, otherwise the baseband sampling data is shifted by a predetermined length and continues Carry out the synchronization search of the chirp signal
  • the timing deviation calculation unit 15 is coupled with the synchronization judgment unit 14 and is used to calculate the timing deviation according to the number of the maximum power spectrum line of the first Fourier transform and the number of the maximum power spectrum line of the second Fourier transform.
  • the Fourier transform unit 11 is also coupled with the timing deviation calculation unit 15, and is also used to obtain baseband samples according to the timing deviation and the time interval between the chirp signal in the frame synchronization header of the baseband sample data and the time domain constant modulus signal.
  • the data of the time domain constant modulus signal part of the data is multiplied point by point with the local time domain constant modulus signal of the receiver, and the third Fourier transform is performed.
  • the maximum power spectral line searching unit 12 is also used to search for the maximum power spectral line in the frequency domain of the third Fourier transform, and record the number of the maximum power spectral line.
  • the frequency domain average power calculation unit 13 is also used to calculate the frequency domain average power of the third Fourier transform.
  • the synchronization judgment unit 14 is also used to compare the maximum power spectrum line in the frequency domain of the third Fourier transform and the product of the frequency average power of the third Fourier transform and the second preset threshold. If the maximum power spectral line in the frequency domain is greater than the product of the frequency average power of the third Fourier transform and the second preset threshold, it is determined that the time domain constant modulus signal synchronization search in the frame synchronization header is successful.
  • the frame synchronization system further includes: an initial frequency offset calculation unit, which is coupled to the synchronization judgment unit 14, and is used for when the time domain constant modulus signal synchronization search in the frame synchronization header is successful Calculate the initial frequency offset according to the number and frequency resolution of the maximum power spectral line in the frequency domain of the third Fourier transform.
  • a new type of synchronization header signal is designed to use as little synchronization data as possible to achieve the timing accuracy requirements and frequency offset estimation accuracy requirements of the terminal and Achieve a high probability of detection success, and the wireless environment with low signal-to-noise ratio (such as below 0dB) and wide signal-to-noise ratio range (-10 ⁇ 50dB), as well as multipath-rich wireless environment can still meet the requirements of synchronization and acquisition probability and accuracy.
  • the synchronization header signal is suitable for the receiver end to use the existing hardware unit FFT to complete, no additional terminal synchronization logic is needed, which reduces the complexity of the terminal and saves the cost of the terminal.
  • the multipath amplitude obeys the Rayleigh distribution, and the maximum delay
  • the number of effective sub-carriers was 312, the sub-carrier spacing was 10416.
  • FFT length 512 using the basic synchronization header frame structure in Figure 2, the length of the up chirp signal, down chirp signal and complex tone signal are 1024 points of baseband sampling data, and the frame synchronization is reasonably defined If the estimated timing deviation is within 26 sampling ranges and the frequency offset estimation error is within 0.5 sub-carrier frequency intervals, the frame synchronization is correct, otherwise a frame synchronization error occurs.
  • the overall frame detection probability is defined as the overall frame synchronization statistics number divided by the total simulation frame (where the designed synchronization header and data are protected, and the position of the synchronization header in the simulation frame is completely random, and the maximum expected frequency is added to the received signal
  • the random frequency offset determined by the deviation, and the number of the multipath channel and the additive white Gaussian noise channel is the synchronization detection probability, which defines the frame synchronization when the overall frame synchronization passes, the number of frames with correct frame synchronization divided by the overall frame synchronization number is the frame synchronization
  • the probability of correctness defines the probability of synchronization detection & correctness by dividing the number of frames whose overall frame synchronization has passed and the frame synchronization is correct divided by the total number of simulated frames.
  • Figure 5 shows the frame synchronization detection performance under the additive white Gaussian noise channel
  • Figure 6 shows the frame synchronization detection performance under the extended pedestrian channel
  • Figure 7 shows the frame synchronization detection performance under the extended vehicle channel model
  • Figure 8 shows the extended typical city Frame synchronization detection performance under the channel model. From Figure 5 to Figure 8, it can be seen that the performance of the reference receiver is good, the detection and correct probability can meet the requirements, and the problem of the correct probability of frequency offset estimation under the multipath channel is solved.
  • the additive white Gaussian noise channel can work in- 10dB signal-to-noise ratio and wide signal-to-noise ratio range of -10 ⁇ 50.
  • the embodiments of the present application can be provided as methods, systems, or computer program products. Therefore, the present application may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, this application may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program codes.
  • a computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing functions specified in a flow or multiple flows in the flowchart and/or a block or multiple blocks in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Abstract

本申请公开了一种突发OFDM数据传输的帧同步方法及系统,该方法包括:接收机接收空口数据、下变频并滤波到基带采样数据,其中所述基带采样数据的帧同步头中包括啁啾信号以及时域恒模信号。其中所述啁啾信号中包括上啁啾信号和下啁啾信号;所述接收机对所述啁啾信号进行同步搜索;所述接收机对所述时域恒模信号进行同步搜索。本申请的突发OFDM数据传输的帧同步方法及系统,无需设置更多的同步头数据,无需增加硬件成本,即可以满足信噪比低于0dB或宽信噪比工作范围的接收机的同步捕获概率要求以及定时精度要求。

Description

突发OFDM数据传输的帧同步方法及系统
相关申请的交叉引用
本申请基于申请号为201910748061.9、申请日为2019年08月14日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请是关于无线通信技术领域,特别是关于一种突发OFDM数据传输的帧同步方法及系统。
背景技术
突发正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)技术数据传输系统中常使用重复序列帮助接收端做同步捕获,这种方案使用滑动自相关运算,在一定的初始频率偏差范围内,当接收窗滑动到重复信号的起始位置时,自相关幅度达到最大,此时自相关值的角度可以估计频偏。
发明人在实现本申请的过程中发现,使用滑动互相关的这种同步捕获方案通常工作在信噪比较大的情况下(至少0dB以上)。当期望系统工作的信噪比低于0dB以下时,该方案的捕获概率难以满足要求,定时精度和频偏估计精度也比较有限,或者需要付出更多的同步头数据,导致系统效率下降,增加了接收机的存贮和逻辑运算单元要求及成本。
公开于该背景技术部分的信息仅仅旨在增加对本申请的总体背景的理解,而不应当被视为承认或以任何形式暗示该信息构成已为本领域一般技术人员所公知的现有技术。
发明内容
本申请的目的在于提供一种突发OFDM数据传输的帧同步方法及系统,无需设置更多的同步头数据,无需增加硬件成本,即可以满足信噪比低于0dB或宽信噪比工作范围的接收机的同步捕获概率要求以及定时精度要求。
为实现上述目的,本申请提供了一种突发OFDM数据传输的帧同步方法,其包括:接收机接收空口数据、下变频并滤波到基带采样数据,其中所述基带采样数据的帧同步头中包括啁啾信号以及时域恒模信号。其中所述啁啾信号中包括上啁啾信号和下啁啾信号;所述接收机对所述啁啾信号进行同步搜索;所述接收机对所述时域恒模信号进行同步搜索。
在本申请的一实施方式中,所述接收机对所述啁啾信号进行同步搜索包括:所述接收机将本地啁啾信号与相同长度的所述基带采样数据进行逐点共轭相乘,并对所述本地啁啾信号中的上啁啾信号进行逐点共轭相乘的数据进行第一傅里叶变换,对所述本地啁啾信号的下啁啾信号进行逐点共轭相乘的数据进行第二傅里叶变换;分别搜索所述第一傅里叶变换和所述第二傅里叶变换的频域中的最大功率谱线,并分别记录各自最大功率谱线对应的编号,并且分别计算所述第一傅里叶变换和所述第二傅里叶变换的频域平均功率;将所述第一傅里叶变换的频域中的最大功率谱线大与所述第一傅里叶变换的频域平均功率与第一预设阈值的乘积进行比较,以及将所述第二傅里叶变换的频域中的最大功率谱线与所述第二傅里叶变换的频域平均功率与所述第一预设阈值的乘积进行比较,若所述第一傅里叶变换的频域中的最大功率谱线大于所述第一傅里叶变换的频域平均功率与第一预设阈值的乘积且所述第二傅里叶变换的频域中的最大功率谱线大于所述第二傅里叶变换的频域平均功率与所述第一预设阈值的乘积,则判定所述啁啾信号同步搜索成功,否则滑动所述基带采样数据一个预定长度的偏移后继续进行所述啁啾信号的同步搜索,直至所述啁啾信号同步搜索成功。
在本申请的一实施方式中,所述接收机对所述时域恒模信号进行同步搜索包括:根据所述第一傅里叶变换的最大功率谱线的编号和所述第二傅里叶变换的最大功率谱线的编号,计算定时偏差;然后根据所述定时偏差以及所述基带采样数据的帧同步头中的所述啁啾信号与所述时域恒模信号的时间间隔,获取所述基带采样信号中的时域恒模信号部分的数据,并将其与所述接收机的本地时域恒模信号进行逐点共轭相乘,并进行第三傅里叶变换;然后搜索所述第三傅里叶变换的频域中的最大功率谱线,并记录该最大功率谱线的编号,并且计算所述第三傅里叶变换的频域平均功率,若所述第三傅里叶变换的频域中的最大功率谱线大于所述第三傅里叶变换的频率平均功率与第二预设阈值的乘积,则判定所述帧同步头中的时域恒模信号同步搜索成功。
在本申请的一实施方式中,所述本地啁啾信号由所述接收机生成或预先存储的。
在本申请的一实施方式中,所述帧同步方法还包括:当所述帧同步头中的时域恒模信号同步搜索成功后,根据所述第三傅里叶变换的频域中的最大功率谱线的编号和频率分辨率计算初始频率偏移。
本申请还提供了一种突发OFDM数据传输的帧同步系统,其包括:采样单元、傅里叶变换单元、最大功率谱线搜索单元、频域平均功率计算单元、同步判断单元、定时偏差计算单元。采样单元用于接收空口数据、下变频并滤波到基带采样数据,其中所述基带采样数据的帧同步头中包括啁啾信号以及时域恒模信号;傅里叶变换单元与所述采样单元相耦合,用于将接收机的本地啁啾信号与相同长度的所述基带采样数据进行逐点共轭相乘,并对所述本地啁啾信号中的上啁啾信号进行逐点共轭相乘的数据进行第一傅里叶变换,对所述本地啁啾信号的下啁啾信号进行逐点共轭相乘的数据进行第二傅里叶变换;最大功率谱线搜索单元与所述傅里叶变换单元相耦合,用于搜索所述第一傅里叶变换和所述第二傅里叶变换的频域中的 最大功率谱线,并分别记录各自最大功率谱线对应的编号;频域平均功率计算单元与所述傅里叶变换单元相耦合,用于计算所述第一傅里叶变换和所述第二傅里叶变换的频域平均功率;同步判断单元与所述最大功率谱线搜索单元以及所述频域平均功率计算单元相耦合,用于将所述第一傅里叶变换的频域中的最大功率谱线大与所述第一傅里叶变换的频域平均功率与第一预设阈值的乘积进行比较,以及将所述第二傅里叶变换的频域中的最大功率谱线与所述第二傅里叶变换的频域平均功率与所述第一预设阈值的乘积进行比较,若所述第一傅里叶变换的频域中的最大功率谱线大于所述第一傅里叶变换的频域平均功率与第一预设阈值的乘积且所述第二傅里叶变换的频域中的最大功率谱线大于所述第二傅里叶变换的频域平均功率与所述第一预设阈值的乘积,则判定所述啁啾信号同步搜索成功,否则滑动所述基带采样数据一个预定长度的偏移后继续进行所述啁啾信号的同步搜索,直至所述啁啾信号同步搜索成功;定时偏差计算单元与所述同步判断单元相耦合,用于根据所述第一傅里叶变换的最大功率谱线的编号和所述第二傅里叶变换的最大功率谱线的编号计算所述定时偏差;其中,所述傅里叶变换单元还与所述定时偏差计算单元相耦合,还用于根据所述定时偏差以及所述基带采样数据的帧同步头中的所述啁啾信号与所述时域恒模信号的时间间隔,获取所述基带采样数据中时域恒模信号部分的数据,并将其与所述接收机的本地时域恒模信号进行逐点共轭相乘,并进行第三傅里叶变换;所述最大功率谱线搜索单元还用于搜索所述第三傅里叶变换的频域中的最大功率谱线,并记录该最大功率谱线的编号;所述频域平均功率计算单元还用于计算所述第三傅里叶变换的频域平均功率;所述同步判断单元还用于比较所述第三傅里叶变换的频域中的最大功率谱线与所述第三傅里叶变换的频率平均功率与第二预设阈值的乘积,若所述第三傅里叶变换的频域中的最大功率谱线大于所述第三傅里叶变换的频率平均功率与第二预设阈值的乘积,则判定所述帧同步头中的时域恒模信号同步搜索成功。
在本申请的一实施方式中,所述本地啁啾信号由所述接收机生成或预先存储的。
在本申请的一实施方式中,所述帧同步系统还包括:初始频率偏移计算单元,与所述同步判断单元相耦合,用于当所述帧同步头中的时域恒模信号同步搜索成功后,根据所述第三傅里叶变换的频域中的最大功率谱线的编号和频率分辨率计算初始频率偏移。
与现有技术相比,根据本申请的突发OFDM数据传输的帧同步方法及系统,通过设计一种新型的同步头信号,使用尽可能少的同步数据实现终端的定时精度要求及频偏估计精度要求以及实现较高的检测成功概率,并且在低信噪比(如0dB以下)和宽信噪比范围(-10~50dB)以及多径丰富的无线环境仍然能够满足同步也能满足捕获概率和精度要求。并且同步头信号适于接收机端使用现有的硬件单元FFT完成,不需要额外增加终端同步逻辑,降低了终端的复杂度,节省了终端成本。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
图1是根据本申请一实施方式的突发OFDM数据传输的帧同步方法的步骤组成;
图2是根据本申请一实施方式的基本同步头帧结构;
图3是根据本申请一实施方式的基本同步头帧结构;
图4是根据本申请一实施方式的突发OFDM数据传输的帧同步系统的模块组成;
图5是根据本申请一实施方式的加性高斯白噪声信道下的帧同步检测性能曲线图;
图6是根据本申请一实施方式的扩展步行者信道下的帧同步检测性能 曲线图;
图7是根据本申请一实施方式的扩展车辆信道模型下的帧同步检测性能曲线图;
图8是根据本申请一实施方式的扩展典型城市信道模型下的帧同步检测性能曲线图。
具体实施方式
下面结合附图,对本申请的具体实施方式进行详细描述,但应当理解本申请的保护范围并不受具体实施方式的限制。
除非另有其它明确表示,否则在整个说明书和权利要求书中,术语“包括”或其变换如“包含”或“包括有”等等将被理解为包括所陈述的元件或组成部分,而并未排除其它元件或其它组成部分。
为了克服现有技术中的问题,本申请提供了一种突发OFDM数据传输的帧同步方法及系统,通过设计一种新型的同步头信号,使用尽可能少的同步数据实现终端的定时精度要求及频偏估计精度要求以及实现较高的检测成功概率,并且在低信噪比(如0dB以下)和宽信噪比范围(-10~50dB)以及多径丰富的无线环境仍然能够满足同步也能满足捕获概率和精度要求。并且同步头信号适于接收机端使用现有的硬件单元FFT完成,不需要额外增加终端同步逻辑,降低了终端的复杂度,节省了终端成本。另外本申请也适用于多径丰富的单载波无线或有线突发通信系统等其他通信系统。
如图1所示,在本申请的一实施方式中,使用啁啾信号(包括上啁啾信号和下啁啾信号)完成一定初始频偏范围内的定时捕获,并使用时域恒模信号完成定时后的初始频率偏移估计以克服使用Chirp信号的频率偏移估计在多径衰落信道下无法满足要求的精度。全部捕获及估计过程都可以使用FFT运算完成,没有额外增加OFDM接收机的逻辑设计成本。
具体地,该突发OFDM数据传输的帧同步方法包括:步骤S1~步骤S3。
在步骤S1中,接收机接收空口数据、下变频并滤波到基带采样数据,其中基带采样数据的帧同步头中包括啁啾信号以及时域恒模信号。其中,啁啾信号中包括上啁啾和下啁啾信号,时域恒模信号具体可以为复单音信号。图2是本实施方式的突发帧同步头及帧结构。图3是在图2基础上的增加了冗余的突发帧同步头及帧结构,类似的帧结构设计可以在包含三种基本信号(上啁啾信号、下啁啾信号以及时域恒模信号)的基础上作长度变化以增加接收机的处理灵活性,可能带来处理效率的降低,但在后面的数据帧远长于同步头的长度的情况下,这种效率损失是很小的。
其中,基带啁啾信号的产生方法如下:N t=1 or 2;Nf=N t*N fft;W B=(N sc+1)/T u;f s=(N fft)/T u;μ=W B/(N f/f s);θ 0=0;
Figure PCTCN2020105987-appb-000001
上啁啾信号S UpChirp(n)=exp(j*θ),n=0,1,…,N f-1;下啁啾信号S DnChirp(n)=exp(-j*θ),n=0,1,…,N f-1。其中,N t表示啁啾信号持续的时域长度相对于FFT长度的倍数,N f表示啁啾信号持续的时域基带采样点数,W B表示啁啾信号占用的有效信号带宽,T u表示OFDM系统的有用符号时间,N fft表示OFDM系统的FFT长度,N sc表示OFDM系统的频域有效子载波个数,f s表示基带采样速率,μ表示频率变化的斜率,θ表示啁啾信号的基带采样点上的信号相位。
时域恒模信号可以使用复单音信号,可选复单音信号为频率为f singleTone=f s/4或附近的频率。时域恒模信号
Figure PCTCN2020105987-appb-000002
Figure PCTCN2020105987-appb-000003
在步骤S2中,接收机对啁啾信号进行同步搜索。具体而言,接收机将本地啁啾信号与相同长度的基带采样数据进行逐点共轭相乘,并对本地啁啾信号中的上啁啾信号进行逐点共轭相乘的数据进行第一傅里叶变换,对 本地啁啾信号的下啁啾信号进行逐点共轭相乘的数据进行第二傅里叶变换;接收机分别搜索第一傅里叶变换和第二傅里叶变换的频域中的最大功率谱线,并分别记录各自最大功率谱线对应的编号,并且分别计算第一傅里叶变换和第二傅里叶变换的频域平均功率,若第一傅里叶变换的频域中的最大功率谱线大于第一傅里叶变换的频域平均功率与第一预设阈值的乘积且第二傅里叶变换的频域中的最大功率谱线大于第二傅里叶变换的频域平均功率与第一预设阈值的乘积,则判定啁啾信号同步搜索成功,否则滑动基带采样数据一个预定长度的偏移后继续进行啁啾信号的同步搜索,直至啁啾信号同步搜索成功。其中,本地啁啾信号可以由接收机生成,也可以预先存储。
在步骤S3中,接收机对时域恒模信号进行同步搜索。根据第一傅里叶变换的最大功率谱线的编号和第二傅里叶变换的最大功率谱线的编号,计算定时偏差,然后根据定时偏差以及基带采样数据的帧同步头中的啁啾信号与时域恒模信号的时间间隔,获取基带采样信号中的时域恒模信号部分的数据,并将其与接收机的本地时域恒模信号进行逐点共轭相乘,并进行第三傅里叶变换,搜索第三傅里叶变换的频域中的最大功率谱线,并记录该最大功率谱线的编号,并且计算第三傅里叶变换的频域平均功率,若第三傅里叶变换的频域中的最大功率谱线大于第三傅里叶变换的频率平均功率与第二预设阈值的乘积,则判定帧同步头中的时域恒模信号同步搜索成功。
其中,定时偏差的计算如下:N f=N t*N fft,设上啁啾和下啁啾对应的最大功率谱线编号分别为M U∈[0,N f-1],M D∈[0,N f-1],
if 
Figure PCTCN2020105987-appb-000004
M U=M U-N f
end
if 
Figure PCTCN2020105987-appb-000005
M D=M D-N f
end
定时偏差n Δ=(M U-M D)/2.0)*N fft/(N sc+1)。
在一实施方式中,帧同步方法还包括:当帧同步头中的时域恒模信号同步搜索成功后,根据第三傅里叶变换的频域中的最大功率谱线的编号和频率分辨率计算初始频率偏移。
其中,初始频率偏移的计算如下:N f=N t*N fft。N f为FFT计算中的FFT长度,设最大功率对应的谱线编号对应的最大谱线编号为M T∈[0,N f-1];
if 
Figure PCTCN2020105987-appb-000006
M T=M T-N f
end
f Δ=(M T)*N fft/T u/(N f)即为计算得到的初始频偏。
基于同样的发明构思,本申请还提供了一种突发OFDM数据传输的帧同步系统,如图4所示,在一实施方式中,该帧同步系统包括:采样单元10、傅里叶变换单元11、最大功率谱线搜索单元12、频域平均功率计算单元13、同步判断单元14、定时偏差计算单元15。
采样单元10用于接收空口数据、下变频并滤波到基带采样数据,其中基带采样数据的帧同步头中包括啁啾信号以及时域恒模信号。
傅里叶变换单元11与采样单元10相耦合,用于将接收机的本地啁啾信号与相同长度的基带采样数据进行逐点共轭相乘,并对本地啁啾信号中的上啁啾信号进行逐点共轭相乘的数据进行第一傅里叶变换,对本地啁啾信号的下啁啾信号进行逐点共轭相乘的数据进行第二傅里叶变换。其中,本地啁啾信号由接收机生成或预先存储的。
最大功率谱线搜索单元12与傅里叶变换单元11相耦合,用于搜索第一傅里叶变换和第二傅里叶变换的频域中的最大功率谱线,并分别记录各自最大功率谱线对应的编号。
频域平均功率计算单元13与傅里叶变换单元11相耦合,用于计算第一傅里叶变换和第二傅里叶变换的频域平均功率。
同步判断单元14与最大功率谱线搜索单元12以及频域平均功率计算单元13相耦合,用于将第一傅里叶变换的频域中的最大功率谱线大与第一傅里叶变换的频域平均功率与第一预设阈值的乘积进行比较,以及将第二傅里叶变换的频域中的最大功率谱线与第二傅里叶变换的频域平均功率与第一预设阈值的乘积进行比较,若第一傅里叶变换的频域中的最大功率谱线大于第一傅里叶变换的频域平均功率与第一预设阈值的乘积且第二傅里叶变换的频域中的最大功率谱线大于第二傅里叶变换的频域平均功率与第一预设阈值的乘积,则判定啁啾信号同步搜索成功,否则滑动基带采样数据一个预定长度的偏移后继续进行啁啾信号的同步搜索,直至啁啾信号同步搜索成功。
定时偏差计算单元15与同步判断单元14相耦合,用于根据第一傅里叶变换的最大功率谱线的编号和第二傅里叶变换的最大功率谱线的编号计算定时偏差。
其中,傅里叶变换单元11还与定时偏差计算单元15相耦合,还用于根据定时偏差以及基带采样数据的帧同步头中的啁啾信号与时域恒模信号的时间间隔,获取基带采样数据中时域恒模信号部分的数据,并将其与接收机的本地时域恒模信号进行逐点共轭相乘,并进行第三傅里叶变换。
最大功率谱线搜索单元12还用于搜索第三傅里叶变换的频域中的最大功率谱线,并记录该最大功率谱线的编号。
频域平均功率计算单元13还用于计算第三傅里叶变换的频域平均功率。
同步判断单元14还用于比较第三傅里叶变换的频域中的最大功率谱线 与第三傅里叶变换的频率平均功率与第二预设阈值的乘积,若第三傅里叶变换的频域中的最大功率谱线大于第三傅里叶变换的频率平均功率与第二预设阈值的乘积,则判定帧同步头中的时域恒模信号同步搜索成功。
在一实施方式中,帧同步系统还包括:初始频率偏移计算单元,初始频率偏移计算单元与同步判断单元14相耦合,用于当帧同步头中的时域恒模信号同步搜索成功后,根据第三傅里叶变换的频域中的最大功率谱线的编号和频率分辨率计算初始频率偏移。
综上,根据本实施方式的突发OFDM数据传输的帧同步方法及系统,通过设计一种新型的同步头信号,使用尽可能少的同步数据实现终端的定时精度要求及频偏估计精度要求以及实现较高的检测成功概率,并且在低信噪比(如0dB以下)和宽信噪比范围(-10~50dB)以及多径丰富的无线环境仍然能够满足同步也能满足捕获概率和精度要求。并且同步头信号适于接收机端使用现有的硬件单元FFT完成,不需要额外增加终端同步逻辑,降低了终端的复杂度,节省了终端成本。
为了验证本实施方式的效果,在加性高斯白噪声和典型准静态多径衰落信道(扩展步行者信道、扩展车辆信道模型以及扩展典型城市信道模型,多径幅度服从瑞利分布,最大时延5微秒)下进行了大量仿真实验,以多速率OFDM系统参数为蓝本,设计4M信道带宽下,有效子载波个数312,子载波间隔10416.6666赫兹,OFDM有用符号时间96微秒,保护间隔时间24微秒,FFT长度512,使用图2中的基本同步头帧结构,上啁啾信号、下啁啾信号及复单音信号的长度均为1024点基带采样数据,合理定义帧同步通过情况下,如果估计的定时偏差在26个采样范围内、频偏估计误差在0.5个子载波频率间隔范围内则帧同步正确,否则发生帧同步错误。进一步,定义整体帧检测概率为整体帧同步通过的统计数量除以总的仿真帧(其中保护设计的同步头和数据,并且同步头在仿真帧中的位置完全随机,接收信号中加入最大预计频率偏差确定的随机频率偏移,并经过多径信道和加 性高斯白噪声信道)数为同步检测概率,定义整体帧同步通过情况下,帧同步正确的帧数除以整体帧同步数为帧同步正确概率,定义整体帧同步通过并且帧同步正确的帧数除以总的仿真帧数为同步检测&正确的概率。图5为加性高斯白噪声信道下的帧同步检测性能,图6为扩展步行者信道下的帧同步检测性能,图7为扩展车辆信道模型下的帧同步检测性能,图8为扩展典型城市信道模型下的帧同步检测性能。从图5~图8中,可以看出,参考接收机性能良好,检测及正确概率可满足要求,解决了多径信道下的频偏估计正确概率问题,加性高斯白噪声信道可工作在-10dB信噪比和-10~50的宽信噪比范围。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个 流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
前述对本申请的具体示例性实施方案的描述是为了说明和例证的目的。这些描述并非想将本申请限定为所公开的精确形式,并且很显然,根据上述教导,可以进行很多改变和变化。对示例性实施例进行选择和描述的目的在于解释本申请的特定原理及其实际应用,从而使得本领域的技术人员能够实现并利用本申请的各种不同的示例性实施方案以及各种不同的选择和改变。本申请的范围意在由权利要求书及其等同形式所限定。

Claims (8)

  1. 一种突发正交频分复用OFDM数据传输的帧同步方法,包括:
    接收机接收空口数据、下变频并滤波到基带采样数据,其中所述基带采样数据的帧同步头中包括啁啾信号以及时域恒模信号,其中所述啁啾信号中包括上啁啾信号和下啁啾信号;
    所述接收机对所述啁啾信号进行同步搜索;
    所述接收机对所述时域恒模信号进行同步搜索。
  2. 如权利要求1所述的突发OFDM数据传输的帧同步方法,其中,所述接收机对所述啁啾信号进行同步搜索包括:
    将本地啁啾信号与相同长度的所述基带采样数据进行逐点共轭相乘,并对所述本地啁啾信号中的上啁啾信号进行逐点共轭相乘的数据进行第一傅里叶变换,对所述本地啁啾信号的下啁啾信号进行逐点共轭相乘的数据进行第二傅里叶变换;
    分别搜索所述第一傅里叶变换和所述第二傅里叶变换的频域中的最大功率谱线,并分别记录各自最大功率谱线对应的编号,并且分别计算所述第一傅里叶变换和所述第二傅里叶变换的频域平均功率;
    将所述第一傅里叶变换的频域中的最大功率谱线大与所述第一傅里叶变换的频域平均功率与第一预设阈值的乘积进行比较,以及将所述第二傅里叶变换的频域中的最大功率谱线与所述第二傅里叶变换的频域平均功率与所述第一预设阈值的乘积进行比较,若所述第一傅里叶变换的频域中的最大功率谱线大于所述第一傅里叶变换的频域平均功率与第一预设阈值的乘积且所述第二傅里叶变换的频域中的最大功率谱线大于所述第二傅里叶变换的频域平均功率与所述第一预设阈值的乘积,则判定所述啁啾信号同步搜索成功,否则滑动所述基带采样数据一个预定长度的偏移后继续进行所述啁啾信号的同步搜索,直至所述啁啾信号同步搜 索成功。
  3. 如权利要求2所述的突发OFDM数据传输的帧同步方法,其中,所述接收机对所述时域恒模信号进行同步搜索包括:
    根据所述第一傅里叶变换的最大功率谱线的编号和所述第二傅里叶变换的最大功率谱线的编号,计算定时偏差;
    根据所述定时偏差以及所述基带采样数据的帧同步头中的所述啁啾信号与所述时域恒模信号的时间间隔,获取所述基带采样信号中的时域恒模信号部分的数据,并将其与所述接收机的本地时域恒模信号进行逐点共轭相乘,并进行第三傅里叶变换;
    搜索所述第三傅里叶变换的频域中的最大功率谱线,并记录该最大功率谱线的编号,并且计算所述第三傅里叶变换的频域平均功率,若所述第三傅里叶变换的频域中的最大功率谱线大于所述第三傅里叶变换的频率平均功率与第二预设阈值的乘积,则判定所述帧同步头中的时域恒模信号同步搜索成功。
  4. 如权利要求1所述的突发OFDM数据传输的帧同步方法,其中,所述本地啁啾信号由所述接收机生成或预先存储的。
  5. 如权利要求3所述的突发OFDM数据传输的帧同步方法,其中,所述帧同步方法还包括:
    当所述帧同步头中的时域恒模信号同步搜索成功后,根据所述第三傅里叶变换的频域中的最大功率谱线的编号和频率分辨率计算初始频率偏移。
  6. 一种突发OFDM数据传输的帧同步系统,包括:
    采样单元,用于接收空口数据、下变频并滤波到基带采样数据,其中所述基带采样数据的帧同步头中包括啁啾信号以及时域恒模信号;
    傅里叶变换单元,与所述采样单元相耦合,用于将接收机的本地啁啾信号与相同长度的所述基带采样数据进行逐点共轭相乘,并对所述本 地啁啾信号中的上啁啾信号进行逐点共轭相乘的数据进行第一傅里叶变换,对所述本地啁啾信号的下啁啾信号进行逐点共轭相乘的数据进行第二傅里叶变换;
    最大功率谱线搜索单元,与所述傅里叶变换单元相耦合,用于搜索所述第一傅里叶变换和所述第二傅里叶变换的频域中的最大功率谱线,并分别记录各自最大功率谱线对应的编号;
    频域平均功率计算单元,与所述傅里叶变换单元相耦合,用于计算所述第一傅里叶变换和所述第二傅里叶变换的频域平均功率;
    同步判断单元,与所述最大功率谱线搜索单元以及所述频域平均功率计算单元相耦合,用于将所述第一傅里叶变换的频域中的最大功率谱线大与所述第一傅里叶变换的频域平均功率与第一预设阈值的乘积进行比较,以及将所述第二傅里叶变换的频域中的最大功率谱线与所述第二傅里叶变换的频域平均功率与所述第一预设阈值的乘积进行比较,若所述第一傅里叶变换的频域中的最大功率谱线大于所述第一傅里叶变换的频域平均功率与第一预设阈值的乘积且所述第二傅里叶变换的频域中的最大功率谱线大于所述第二傅里叶变换的频域平均功率与所述第一预设阈值的乘积,则判定所述啁啾信号同步搜索成功,否则滑动所述基带采样数据一个预定长度的偏移后继续进行所述啁啾信号的同步搜索,直至所述啁啾信号同步搜索成功;
    定时偏差计算单元,与所述同步判断单元相耦合,用于根据所述第一傅里叶变换的最大功率谱线的编号和所述第二傅里叶变换的最大功率谱线的编号计算所述定时偏差;
    其中,所述傅里叶变换单元还与所述定时偏差计算单元相耦合,还用于根据所述定时偏差以及所述基带采样数据的帧同步头中的所述啁啾信号与所述时域恒模信号的时间间隔,获取所述基带采样数据中时域恒模信号部分的数据,并将其与所述接收机的本地时域恒模信号进行逐点 共轭相乘,并进行第三傅里叶变换;
    所述最大功率谱线搜索单元还用于搜索所述第三傅里叶变换的频域中的最大功率谱线,并记录该最大功率谱线的编号;
    所述频域平均功率计算单元还用于计算所述第三傅里叶变换的频域平均功率;
    所述同步判断单元还用于比较所述第三傅里叶变换的频域中的最大功率谱线与所述第三傅里叶变换的频率平均功率与第二预设阈值的乘积,若所述第三傅里叶变换的频域中的最大功率谱线大于所述第三傅里叶变换的频率平均功率与第二预设阈值的乘积,则判定所述帧同步头中的时域恒模信号同步搜索成功。
  7. 如权利要求6所述的突发OFDM数据传输的帧同步系统,其中,所述本地啁啾信号由所述接收机生成或预先存储的。
  8. 如权利要求6所述的突发OFDM数据传输的帧同步系统,其中,所述帧同步系统还包括:
    初始频率偏移计算单元,与所述同步判断单元相耦合,用于当所述帧同步头中的时域恒模信号同步搜索成功后,根据所述第三傅里叶变换的频域中的最大功率谱线的编号和频率分辨率计算初始频率偏移。
PCT/CN2020/105987 2019-08-14 2020-07-30 突发ofdm数据传输的帧同步方法及系统 WO2021027590A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910748061.9 2019-08-14
CN201910748061.9A CN110430156B (zh) 2019-08-14 2019-08-14 突发ofdm数据传输的帧同步方法及系统

Publications (1)

Publication Number Publication Date
WO2021027590A1 true WO2021027590A1 (zh) 2021-02-18

Family

ID=68414536

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/105987 WO2021027590A1 (zh) 2019-08-14 2020-07-30 突发ofdm数据传输的帧同步方法及系统

Country Status (2)

Country Link
CN (1) CN110430156B (zh)
WO (1) WO2021027590A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110430156B (zh) * 2019-08-14 2021-06-01 北京智芯微电子科技有限公司 突发ofdm数据传输的帧同步方法及系统
CN113692045B (zh) * 2021-08-24 2024-05-14 重庆两江卫星移动通信有限公司 一种大频偏下的帧同步方法及系统
CN114337982B (zh) * 2022-03-16 2022-07-15 深圳市华普微电子有限公司 一种啁啾导频信号的产生及时频估计方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130135141A1 (en) * 2011-11-30 2013-05-30 Ivan William Selesnick Prescribed modulus chirp-like waveforms with multiple frequency notches
CN103929395A (zh) * 2014-04-29 2014-07-16 重庆大学 基于恒定包络调制的ofdm系统频偏同步方法
US9729378B1 (en) * 2015-04-13 2017-08-08 The United States Of America As Represented By The Secretary Of The Navy Receiver architecture for constant envelope OFDM
CN108347399A (zh) * 2017-01-22 2018-07-31 上海矽久微电子有限公司 一种前导信号的生成和接收方法以及接收装置
CN105471469B (zh) * 2014-09-30 2019-01-18 商升特公司 无线通信方法
CN110430156A (zh) * 2019-08-14 2019-11-08 北京智芯微电子科技有限公司 突发ofdm数据传输的帧同步方法及系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7426175B2 (en) * 2004-03-30 2008-09-16 Motorola, Inc. Method and apparatus for pilot signal transmission
EP2767847B1 (en) * 2013-02-14 2016-04-20 Semtech Corporation Ranging and positioning system
CN103618686B (zh) * 2013-11-22 2017-01-18 江苏科技大学 水声ofdm多普勒因子精确估计方法
US9326295B1 (en) * 2014-12-10 2016-04-26 Sony Corporation Method and apparatus for transmitting a-priori information in a communication system
CN104901918B (zh) * 2015-06-15 2019-01-18 电子科技大学 基于Chirp信号产生OFDM数据序列的方法及同步方法
EP3273607B1 (en) * 2016-07-20 2023-01-18 Semtech Corporation Method and system of timing and localizing a radio signal

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130135141A1 (en) * 2011-11-30 2013-05-30 Ivan William Selesnick Prescribed modulus chirp-like waveforms with multiple frequency notches
CN103929395A (zh) * 2014-04-29 2014-07-16 重庆大学 基于恒定包络调制的ofdm系统频偏同步方法
CN105471469B (zh) * 2014-09-30 2019-01-18 商升特公司 无线通信方法
US9729378B1 (en) * 2015-04-13 2017-08-08 The United States Of America As Represented By The Secretary Of The Navy Receiver architecture for constant envelope OFDM
CN108347399A (zh) * 2017-01-22 2018-07-31 上海矽久微电子有限公司 一种前导信号的生成和接收方法以及接收装置
CN110430156A (zh) * 2019-08-14 2019-11-08 北京智芯微电子科技有限公司 突发ofdm数据传输的帧同步方法及系统

Also Published As

Publication number Publication date
CN110430156B (zh) 2021-06-01
CN110430156A (zh) 2019-11-08

Similar Documents

Publication Publication Date Title
WO2021027590A1 (zh) 突发ofdm数据传输的帧同步方法及系统
US7027429B2 (en) Method and apparatus for time and frequency synchronization of OFDM communication systems
CN104125190B (zh) 适于低信噪比信道环境的ofdm系统符号定时同步实现方法
CN107370699A (zh) 一种NB‑IoT小区搜索系统
CN102075486A (zh) 一种ofdm系统的同步方法
CN104717174B (zh) 一种复杂多径信道下的ofdm抗干扰同步方法
TWI587642B (zh) A synchronization estimation method and a receiving device
CN105516045B (zh) 一种ofdm训练序列构造及同步方法
CN101714965B (zh) 符号定时方法/装置、细频偏估计方法/装置
CN103095624B (zh) 一种帧同步方法
CN1283059C (zh) 一种载频同步的方法和装置
CN1859345A (zh) 一种基于ofdm系统的快速频率捕获方法
CN101242390B (zh) 基于已知序列相干自相关的载波频偏估计算法及其实现装置
CN1455533A (zh) 用于多载波码分多址系统的时间同步方法
CN106100692A (zh) Mimo‑ofdm水声通信系统多普勒扩展估计方法
CN106330251A (zh) 基于零相关带序列的水声通信系统多普勒扩展估计方法
CN104199064B (zh) 基于相关波动的boc信号参数盲估计方法
CN110445740B (zh) 基于重复序列的频偏估计方法及系统
CN111865854B (zh) 突发ofdm系统的帧捕获及同步方法
CN104901918B (zh) 基于Chirp信号产生OFDM数据序列的方法及同步方法
CN103701489A (zh) 水声扩频通信中的基于相关峰位置信息的时间同步方法
CN110677318A (zh) 一种基于线性调频z变换的水声信道时延估计方法
CN101997792B (zh) 基于循环前缀的盲信道长度估计方法
CN101808055B (zh) 一种mb-ofdm uwb系统符号精同步方法和装置
CN102123128B (zh) 一种基于循环结构的盲定时同步方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20853484

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20853484

Country of ref document: EP

Kind code of ref document: A1