WO2021027475A1 - 信息传输方法及终端 - Google Patents

信息传输方法及终端 Download PDF

Info

Publication number
WO2021027475A1
WO2021027475A1 PCT/CN2020/102098 CN2020102098W WO2021027475A1 WO 2021027475 A1 WO2021027475 A1 WO 2021027475A1 CN 2020102098 W CN2020102098 W CN 2020102098W WO 2021027475 A1 WO2021027475 A1 WO 2021027475A1
Authority
WO
WIPO (PCT)
Prior art keywords
sci
pssch
dmrs
configuration
control information
Prior art date
Application number
PCT/CN2020/102098
Other languages
English (en)
French (fr)
Inventor
彭淑燕
邬华明
纪子超
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to JP2022507697A priority Critical patent/JP7340689B2/ja
Priority to BR112022002400A priority patent/BR112022002400A2/pt
Priority to EP20851489.3A priority patent/EP4012962A4/en
Priority to KR1020227007842A priority patent/KR20220046630A/ko
Publication of WO2021027475A1 publication Critical patent/WO2021027475A1/zh
Priority to US17/667,780 priority patent/US20220271892A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0064Rate requirement of the data, e.g. scalable bandwidth, data priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/029Location-based management or tracking services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present disclosure relates to the field of communication technology, and in particular to an information transmission method and terminal.
  • the current Long Term Evolution (LTE) system can support sidelink (sidelink, or translated as secondary link, side link, side link, etc.) for end user equipment (User Equipment). , UE) does not directly transmit data through network equipment.
  • sidelink sidelink, or translated as secondary link, side link, side link, etc.
  • end user equipment User Equipment
  • UE does not directly transmit data through network equipment.
  • sidelink transmission is mainly divided into broadcast (broadcast), multicast (groupcast), unicast (unicast) several transmission forms.
  • unicast is one-to-one transmission.
  • Multicast is one-to-many transmission. Broadcasting is also one-to-many transmission, but broadcasting does not have the concept that UEs belong to the same group.
  • the UE sends sidelink control information (Sidelink Control Information, SCI) through the Physical Sidelink Control Channel (PSCCH), and schedules the transmission of the Physical Sidelink Shared Channel (PSSCH) to send data .
  • SCI Sidelink Control Information
  • PSCCH Physical Sidelink Control Channel
  • PSSCH Physical Sidelink Shared Channel
  • LTE sidelink is suitable for specific public safety affairs (such as emergency communication in fire sites or disaster sites such as earthquakes), or vehicle to everything (V2X) communications.
  • IoV communications include various services, such as basic safety communications, advanced (automated) driving, formation, sensor expansion, and so on. Since LTE sidelink only supports broadcast communications, it is mainly used for basic security communications. Other advanced V2X services with strict QoS requirements in terms of delay and reliability will be supported through the new air interface NR sidelink.
  • unicast and multicast support Hybrid Automatic Repeat reQuest (HARQ) feedback mechanism, Channel State Information (CSI) measurement and other mechanisms, but broadcast does not support HARQ feedback mechanism.
  • HARQ Hybrid Automatic Repeat reQuest
  • CSI Channel State Information
  • broadcast does not support HARQ feedback mechanism.
  • the SCI for scheduling unicast or multicast transmission is much larger than the SCI for scheduling broadcast transmission. If the size of the broadcast SCI is filled with 0 or 1 to reach the size of the unicast/multicast SCI, the performance of the broadcast SCI will be reduced. If it is not filled, the complexity of detecting SCI of different sizes at the receiving end will be higher.
  • the terminal can be supported to report the measured CSI report to the sending end UE.
  • the CSI report information is a part of Sidelink Feedback Control Information (SFCI).
  • SFCI Sidelink Feedback Control Information
  • the embodiments of the present disclosure provide an information transmission method and terminal to realize the transmission of the second-level SCI or SFCI of the two-level SCI.
  • embodiments of the present disclosure provide an information transmission method, including:
  • the side link control information SCI and target control information are transmitted; wherein, the resource mapping pattern is used to indicate the transmission resources of the physical side link shared channel PSSCH and target control information scheduled by the SCI, and the target The control information is the next level of SCI or side link feedback control information SFCI.
  • the embodiments of the present disclosure also provide a terminal, including:
  • the transmission module is used to transmit the side link control information SCI and target control information according to the resource mapping pattern; wherein the resource mapping pattern is used to indicate the transmission of the physical side link shared channel PSSCH and the target control information scheduled by the SCI Resources, the target control information is the next level SCI or side link feedback control information SFCI.
  • the embodiments of the present disclosure also provide a terminal, including a processor, a memory, and a computer program stored on the memory and capable of running on the processor, the computer program being executed by the processor When realizing the steps of the information transmission method described above.
  • the embodiments of the present disclosure also provide a computer-readable storage medium having a computer program stored on the computer-readable storage medium, and when the computer program is executed by a processor, the above-mentioned information transmission method is implemented. step.
  • the SCI and target control information (the next level of SCI or SFCI) will be transmitted according to the resource mapping pattern (used to indicate the transmission resources of the PSSCH scheduled by the SCI and the target control information) to ensure the performance of the SCI or SFCI
  • the PSSCH demodulation performance and system capacity are improved.
  • Figure 1 is a schematic diagram of data transmission supported by the terminal
  • FIG. 2 is a schematic flowchart of an information transmission method according to an embodiment of the disclosure
  • FIG. 3 is one of the application schematic diagrams of the method of the embodiment of the disclosure.
  • FIG. 4 is the second schematic diagram of application of the method of the embodiment of the disclosure.
  • FIG. 5 is the third application schematic diagram of the method of the embodiment of the disclosure.
  • FIG. 6 is the fourth application schematic diagram of the method of the embodiment of the disclosure.
  • FIG. 7 is the fifth application schematic diagram of the method of the embodiment of the disclosure.
  • FIG. 8 is the sixth application diagram of the method of the embodiment of the disclosure.
  • FIG. 9 is the seventh application schematic diagram of the method of the embodiment of the disclosure.
  • FIG. 10 is the eighth application schematic diagram of the method of the embodiment of the disclosure.
  • FIG. 11 is the ninth application diagram of the method of the embodiment of the disclosure.
  • FIG. 12 is the tenth application diagram of the method of the embodiment of the disclosure.
  • FIG. 13 is the eleventh application diagram of the method of the embodiment of the disclosure.
  • FIG. 14 is the twelfth application diagram of the method of the embodiment of the disclosure.
  • 15 is a schematic structural diagram of a terminal according to an embodiment of the disclosure.
  • FIG. 16 is a schematic structural diagram of a terminal according to another embodiment of the present disclosure.
  • an information transmission method includes:
  • Step 201 Transmit the side link control information SCI and target control information according to the resource mapping pattern; wherein the resource mapping pattern is used to indicate the transmission resources of the physical side link shared channel PSSCH and the target control information scheduled by the SCI,
  • the target control information is the next level SCI or side link feedback control information SFCI.
  • the terminal applying the method of the embodiment of the present disclosure will transmit SCI and target control information (the next level of SCI or SFCI) according to the resource mapping pattern, where the resource mapping pattern is used to indicate the PSSCH scheduled by the SCI and the target control Information transmission resources to achieve two-level SCI or SFCI transmission.
  • the terminal to which the method of the embodiment of the present disclosure is applied may be the sending end or the receiving end.
  • the SCI scheduling PSSCH can be scheduled by one level of SCI or two levels of SCI, that is, the SCI and the next level of SCI are jointly scheduled.
  • the target control information is mapped from a first position in the time domain, and mapped from a second position in the frequency domain; wherein, the first position and/or the The second position is determined based on at least one of the following information:
  • the position of the DMRS of the PSSCH is:
  • N is an integer greater than or equal to 1;
  • the transmission configuration parameter includes: at least one of the number of layers, load, and code rate.
  • the transmission configuration parameter corresponds to at least one of the number of layers, load, and code rate of the next level of SCI; for the mapping of SFCI, the transmission configuration parameter corresponds to the number of SFCI layers, At least one of load and bit rate.
  • the configuration of the used DMRS includes at least one of DMRS type, number of symbols, and multiplexing mode.
  • the DMRS used refers to the DMRS used for demodulation of target control information (the next level of SCI or SFCI).
  • the multiplexing methods include but are not limited to code division multiplexing CDM and frequency division multiplexing FDM.
  • the type of DMRS can be type 1 or type 2, and the number of symbols can be 1 symbol or 2 symbols.
  • the configuration information of the SFCI includes: whether to carry the SFCI;
  • the SFCI configuration information further includes: the transmission resource of the SFCI and/or the information size carried by the SFCI.
  • whether to carry the SFCI can be explicitly indicated through specific information, or implicitly.
  • Nbit is used to indicate the transmission resource or information size of SFCI. If all 0s (one code point indicator), it means that SFCI is not carried; if not all 0s, it means that SFCI is carried and indicates information. Corresponding to the transmission resources of SFCI.
  • the service type of the transmission includes: multicast, unicast or broadcast.
  • the resources allocated by the PSSCH include: frequency domain resources allocated by the PSSCH and/or time domain resources allocated by the PSSCH.
  • the frequency domain resources allocated by the PSSCH may be bandwidth, physical resource block PRB or subchannel.
  • the time domain resources allocated by the PSSCH can be symbols, time slots, subframes or frames.
  • the position of the DMRS of the PSSCH is indicated by SCI, terminal radio resource control RRC configuration, protocol pre-defined, network downlink control information DCI configuration, network RRC configuration or network pre-configuration;
  • the transmission configuration parameter is indicated by SCI, terminal RRC configuration, protocol pre-defined, network DCI configuration, network RRC configuration or network pre-configuration;
  • the number of layers of the PSSCH is indicated by SCI, terminal RRC configuration, protocol pre-defined, network DCI configuration, network RRC configuration or network pre-configuration;
  • the configuration of the DMRS used is SCI indication, terminal RRC configuration, protocol pre-defined, network DCI configuration, network RRC configuration or network pre-configuration;
  • the configuration information of the SFCI is indicated by SCI, terminal RRC configuration, protocol pre-defined, network DCI configuration, network RRC configuration or network pre-configuration;
  • the transmitted service type is indicated by SCI, terminal RRC configuration, protocol pre-defined, network DCI configuration, network RRC configuration or network pre-configuration;
  • the resources allocated by the PSSCH are SCI instructions, terminal RRC configuration, protocol pre-defined, network DCI configuration, network RRC configuration or network pre-configuration.
  • the above-mentioned information used to determine the first position and/or the second position may be SCI indication, terminal radio resource control RRC configuration, protocol predefinition, network downlink control information DCI configuration, network RRC, in addition to the resource configuration of SCI. Configuration or network pre-configuration.
  • the transmission of target control information (the next level of SCI or SFCI) is not limited to a single layer. Therefore, optionally, in the resource mapping pattern, the target control information on the target layer starts from the first position in the time domain. Start mapping, start mapping from the second position in the frequency domain, where the target layer is a single layer or multiple layers.
  • the next level of SCI or SFCI is mapped on the target layer to complete the corresponding single-layer or multi-layer transmission.
  • the target layer is predefined or indicated by the SCI.
  • the target layer may also be indicated by DCI or pre-configured or network-configured.
  • the SCI indicating the target layer is achieved by indicating the number of layers and/or the layer index of the next level of SCI or SFCI mapping in the SCI.
  • the number of layers of the target layer is related to the number of layers of the PSSCH or the physical side link control channel PSCCH through predefined or indicated by the SCI.
  • the SCI indicates that the number of layers of the target layer is the same as the number of layers of the PSSCH, or the number of layers of the predefined target layer is one layer.
  • the mapping of target control information can be selected in a frequency domain first or time domain first.
  • the target control information is mapped in the time domain from the Nth DMRS or the Nth DMRS set of the PSSCH or the symbol where the preamble DMRS is located or the Lth symbol after the symbol, and is allocated from the PSSCH in the frequency domain
  • the M-th PRB in the physical resource block PRB starts mapping; where M is an integer greater than or equal to 1, and L is an integer greater than or equal to 1.
  • the first position is the symbol where the Nth DMRS of the PSSCH is located or the Lth symbol after the symbol; or, the symbol where the Nth DMRS set is located or the Lth symbol after the symbol; or, the preamble type The symbol where the DMRS is located or the Lth symbol after it.
  • the second position is the Mth PRB in the PRBs allocated by the PSSCH.
  • the target control information is mapped from the symbol where the Nth DMRS or the Nth DMRS set or the pre-type DMRS is located; or, from the Nth DMRS or the Nth DMRS set or The L-th symbol after the symbol where the pre-type DMRS is located starts mapping.
  • mapping starts from the M-th PRB among the PRBs allocated by the PSSCH.
  • the value of M can be the highest PRB or the lowest PRB in the PRB allocated by the PSSCH; the value of M can also be the edge PRB of a target frequency domain region (the highest PRB or the lowest PRB in the region), and the target frequency
  • the domain area is determined based on the size of the frequency domain resources to be occupied by the next level of SCI or SFCI. For example, the next level of SCI or SFCI needs to occupy 50 PRBs in the frequency domain.
  • the target frequency domain region is 100 PRBs allocated by the PSSCH.
  • the middle 50 PRBs (the center of the PSSCH allocation bandwidth).
  • the target control information is mapped from the P-th symbol after the SCI in the time domain, and mapped from the Q-th PRB of the SCI in the frequency domain; wherein Q is an integer greater than or equal to 1, and P is an integer greater than or equal to 1.
  • the first position is the P-th symbol after the SCI
  • the second position is the Q-th PRB of the SCI.
  • the next level of SCI or SFCI is mapped from the Pth symbol after the SCI.
  • the mapping starts from the Qth PRB of the SCI.
  • the target control information is mapped from the first available symbol allocated by the PSSCH or the first available symbol that does not carry DMRS in the time domain.
  • the first position is the first available symbol allocated by the PSSCH or the first available symbol that does not carry DMRS.
  • the target control information is the first available symbol or the first symbol allocated from the PSSCH.
  • the available symbols that do not carry DMRS are mapped.
  • the second position may be the M-th PRB among the PRBs allocated by the PSSCH. The value of M is as described above and will not be repeated here.
  • mapping of the next level of SCI in the two levels of SCI because there may be SFCI transmission, optionally, in the resource mapping pattern, if the SFCI is carried, the mapping of the next level of SCI will The location of the SFCI is rate-matched or punched.
  • SFCI is configured and SFCI resources are reserved in the network configuration
  • the reserved SFCI resources will be rate-matched.
  • the position of the SFCI can also be punched during the next level of SCI mapping.
  • the terminal may need to perform measurement and report. Therefore, optionally, in the case that the transmitted service type is multicast or unicast, the resource mapping In the pattern, the mapping of the next level of SCI will perform rate matching or perforation on the position of the SFCI.
  • next level of SCI or SFCI may not be mapped.
  • one or more DMRS configurations are set corresponding to the target control information
  • the DMRS configuration used is determined by pre-definition or the SCI.
  • the configuration of the DMRS for the demodulation target control information can be flexibly set, and can be one type or multiple types.
  • the configuration of the DMRS used can be determined by predefined or SCI indication or the network through RRC indication or the network through DCI indication or the terminal through RRC indication. Determining the configuration of DMRS to demodulate the target control information.
  • the configuration of the DMRS used by the target control information is pre-defined or indicated by the SCI, and is the same as the configuration of the DMRS of the PSSCH.
  • the pre-defined or SCI-indicated DMRS configuration may be the specific configuration information of the DMRS, or it may directly indicate the configuration of the DMRS using the PSSCH.
  • the configuration of the DMRS used by the target control information is the same as the configuration of the DMRS of the PSSCH, that is, the target control information shares the configuration of the DMRS of the PSSCH.
  • the target control information is multiplexed with the first DMRS or front-loaded DMRS or the first DMRS set of the PSSCH; or the target control information is multiplexed with the DMRS overlapping the PSSCH; or, the time domain of the DMRS used by the target control information
  • the density is the same as the time domain density of DMRS of PSSCH.
  • the SCI or the next-level SCI indicates the configuration of the DMRS of the PSSCH and/or the number of layers of the PSSCH.
  • the configuration of the DMRS of the PSSCH and/or the number of layers of the PSSCH can be obtained through the SCI or the next level of SCI.
  • the ratio of the energy EPRE of the unit resource element of the target control information to the EPRE of the used DMRS is determined according to at least one of the following information:
  • the number of layers of the target control information is the number of layers of the target control information
  • mapping method of data on PSSCH The mapping method of data on PSSCH.
  • beta is 0dB (that is, the EPRE of the target control information is equal to the EPRE of the used DMRS).
  • beta is 3dB (that is, the EPRE of the target control information is twice the EPRE of the used DMRS), or beta is 4.77dB (that is, the EPRE of the target control information Three times the EPRE of DMRS).
  • the ratio beta of the EPRE of the target control information to the EPRE of the used DMRS is related to the multiplexing mode of the used DMRS, the number of layers of the target control information, and the number of PSSCH layers:
  • the EPRE of the target control information is half of the EPRE of the used DMRS.
  • the EPRE of the target control information is equal to the EPRE of the used DMRS.
  • the EPRE of the target control information is equal to the EPRE of the used DMRS.
  • the EPRE of the target control information is twice that of the used DMRS.
  • the ratio beta of the EPRE of the target control information to the EPRE of the used DMRS is related to the multiplexing mode of the used DMRS, the number of layers of the target control information, the number of PSSCH layers, and the mapping mode of data on the PSSCH:
  • the multiplexing mode of DMRS used is FDM
  • the number of layers of the next level of SCI is less than the number of layers of PSSCH
  • the PSSCH data rate matches the target control information resource
  • the EPRE of the target control information is equal to the used EPRE of DMRS.
  • the EPRE of the target control information is the used DMRS Half of EPRE.
  • the multiplexing mode of the DMRS used is CDM
  • the number of layers of the next level of SCI is less than the number of layers of the PSSCH
  • the PSSCH data rate matches the target control information resource
  • the EPRE of the target control information is the used DMRS Twice the EPRE.
  • the multiplexing mode of DMRS used is CDM
  • the number of layers of the next level of SCI is less than the number of layers of PSSCH
  • the data of PSSCH punctures the target control information resource
  • the EPRE of the target control information is equal to the used DMRS EPRE.
  • Scenario 1 The protocol predefines the time domain resources of the first SCI as the second and third symbols.
  • the first SCI starts from the second symbol and is mapped on the allocated available resources in a time-domain priority manner.
  • Protocol predefined/network configuration PSSCH DMRS pattern is 1 symbol DMRS, type 1 (type 1) configuration.
  • the DMRS used by the second SCI is the first DMRS of the PSSCH.
  • the second SCI When determining the next symbol of the first DMRS configured for the PSSCH at the first position, the second SCI starts mapping on the next symbol of the first DMRS configured for the PSSCH. And it is mapped on the associated DMRS port/PSSCH layer (for example: layer one) of the predefined/network pre-configuration.
  • the DMRS of the PSSCH is a comb 2 mapping.
  • the data on the PSSCH is mapped from the symbol where the first DMRS of the PSSCH is located, and the position of the second SCI is rate matched.
  • the ratio beta of the EPRE of the second SCI to the DMRS of the PSSCH is 0 dB.
  • the PSSCH uses rate matching/puncturing for the time-frequency domain resources of the second SCI (see Figure 4). That is, if the second SCI is only transmitted in a single layer, the two layers of PSSCH do not map PSSCH data on the time-frequency domain resources (that is, RE) corresponding to the SCI. In this example, the second SCI is only mapped on the fifth symbol of layer one, and no PSSCH data is mapped on the fifth symbol of layer one and two.
  • the ratio beta of the EPRE of the second SCI to the DMRS of the PSSCH is 0 dB.
  • the PSSCH performs rate matching/puncturing in the time-frequency domain of the second SCI-mapped layer (as shown in Figure 5). That is, if the second SCI is only transmitted in a single layer, the second SCI and PSSCH are encoded and then bit-interleaved and/or concatenated, and then modulated, etc., to map the modulated information on two layers, so that the second SCI is mapped in the associated On a certain PSSCH layer (layer one)/DMRS port. In this example, the second SCI is only mapped on the 5th symbol of layer 1, and the 5th symbol of layer 2 is mapped to PSSCH data.
  • the EPRE of the second SCI is half of the EPRE of the DMRS of the PSSCH.
  • the second SCI may be fully mapped on the 5th symbol, may only occupy part of the resources, or may need to be mapped to the 6th symbol or more, which will not be repeated here.
  • the design rule ensures that the PSSCH used by the receiving terminal to demodulate the second SCI.
  • the DMRS power of DMRS port 1 has nothing to do with the number of PSSCH layers, and the symbol position of the second SCI has nothing to do with the number of PSSCH layers. Therefore, The configuration of the DMRS of the PSSCH may be carried in the second SCI.
  • the receiving terminal on the PSSCH DMRS port 1, detects the second SCI from the fifth symbol, uses the first DMRS to demodulate the second SCI, and obtains the PSSCH DMRS configuration and/or PSSCH layer number, according to the PSSCH DMRS The configuration and predefined configuration demodulate PSSCH.
  • Scenario 2 The network pre-configures the time domain resources of the first SCI as the second and third symbols.
  • the first SCI starts from the second symbol and is mapped on the allocated available resources in a time domain first manner.
  • Protocol predefined/network configuration PSSCH DMRS pattern (pattern) is 1 symbol DMRS, type 1 (type 1) configuration.
  • the first SCI indicates the configuration of PSSCH DMRS and/or the number of PSSCH layers.
  • the DMRS used by the second SCI is the first DMRS of the PSSCH.
  • the second SCI When determining the symbol where the first DMRS configured for the PSSCH is located at the first position, the second SCI starts mapping at the symbol where the first DMRS configured for the PSSCH is located. And it is mapped on a predefined/network pre-configured associated DMRS port/PSSCH layer (for example: layer one).
  • the DMRS of PSSCH is the mapping of comb2.
  • the PSSCH is sent from the symbol next to the symbol where the first DMRS of the PSSCH is located, and the second SCI is rate-matched or punctured.
  • the EPRE ratio beta of the EPRE of the second SCI and the DMRS of the PSSCH is 0 dB.
  • PSSCH uses rate matching/puncturing for the time-frequency domain resources of the second SCI (as shown in Figure 7). That is, the second SCI is only transmitted in a single layer, and no PSSCH data is mapped on the time-frequency domain resources corresponding to the two-layer PSSCH. In this example, the second SCI is only mapped on the 4th and 5th symbols of the layer 1, and the PSSCH data is not mapped on the 4th and 5th symbols of the layer 1 and layer 2.
  • the ratio beta of the EPRE of the second SCI to the DMRS of the PSSCH is 3dB.
  • the PSSCH is rate-matched/punctured in the time-frequency domain of the second SCI-mapped layer (as shown in Figure 8). That is, the second SCI is only transmitted in a single layer, and the second SCI and PSSCH are encoded and then bit-interleaved and/or concatenated, and then modulated, etc., to map the modulated information on two layers, so that the second SCI is mapped on the associated PSSCH layer (layer 1)/DMRS port.
  • the second SCI is only mapped on the 4th and 5th symbols of the layer 1
  • the PSSCH data is mapped on the 5th symbol of the layer 2
  • the PSSCH data is mapped on the 4th and 5th symbols of the layer 2.
  • the ratio beta of the EPRE of the second SCI to the EPRE of the DMRS of the PSSCH is 0 dB.
  • the PSSCH used by the receiving terminal to demodulate the second SCI used by the receiving terminal to demodulate the second SCI.
  • the DMRS power of DMRS port 1 is related to the number of PSSCH layers. Before demodulating the second SCI, the number of PSSCH layers and/or DMRS can be obtained from the first SCI. Configure to determine the power of the DMRS.
  • the receiving terminal receives and demodulates the first SCI, and obtains the configuration of the DMRS of the PSSCH and/or the number of PSSCH layers. After that, the power and pattern of the layer 1 DMRS are obtained.
  • the second SCI is detected at the 4th symbol, and the second SCI is demodulated according to the layer one DMRS. Further obtain additional PSSCH scheduling information, and demodulate the PSSCH.
  • the network pre-configures the time domain resources of the first SCI as the second and third symbols.
  • the first SCI starts from the second symbol and is mapped on the allocated available resources in a time domain first manner.
  • the configuration of the DMRS of the PSSCH in the first SCI adopts the multiplexing mode of CDM.
  • the second SCI is predefined to be transmitted at the PSSCH layer, and the mapped layer and port.
  • Protocol predefined/network configuration PSSCH DMRS pattern (pattern) is 1 symbol DMRS, type 1 (type 1) configuration.
  • the configuration of the DMRS used by the second SCI is the same as the configuration of the DMRS of the PSSCH.
  • the DMRS used by the second SCI is the first DMRS of the PSSCH.
  • the second SCI When determining the symbol where the first DMRS configured for the PSSCH is located at the first position, the second SCI starts mapping at the symbol where the first DMRS configured for the PSSCH is located at the predefined DMRS port/PSSCH layer (for example: layer 1) ⁇ Map.
  • the EPRE ratio beta of the EPRE of the second SCI and the DMRS of the PSSCH is 0Db, as shown in Figure 6.
  • the receiving-side terminal receives and demodulates the first SCI, obtains the configuration of the DMRS of the PSSCH, and solves the PSSCH DMRS as CDM multiplexing. Then the receiving-side terminal receives the second SCI on the layer one corresponding to the PSSCH DMRS port, and detects the second SCI from the fourth symbol.
  • the FDM multiplexing mode is adopted.
  • the second SCI starts to map on the next symbol of the first DMRS configured for the PSSCH, at the predefined DMRS port/PSSCH layer (for example: layer A) On mapping.
  • the EPRE ratio beta of the EPRE of the second SCI and the DMRS of the PSSCH is 0dB, as shown in Figure 4.
  • the receiving-side terminal receives and demodulates the first SCI, obtains the configuration of the DMRS of the PSSCH, and solves the PSSCH DMRS as FDM multiplexing. Then, the receiving-side terminal receives the second SCI on the layer one corresponding to the PSSCH DMRS port, and detects the second SCI from the fifth symbol.
  • the DMRS is flexibly configured and can be a multiplexing mode of FDM or CDM.
  • the UE adopts a corresponding mapping rule for the second SCI according to the multiplexing mode.
  • the network pre-configures the time domain resources of the first SCI as the second and third symbols.
  • the first SCI starts from the second symbol and is mapped on the allocated available resources in a time domain first manner.
  • the configuration of the DMRS of the PSSCH is configured in the first SCI, and the PSSCH is a two-layer transmission.
  • the number of predefined second SCI mapping layers is the same as the number of PSSCH layers (that is, the second SCI is two-layer transmission), or the first SCI indicates that the second SCI is two-layer transmission.
  • Protocol predefined/network configuration PSSCH DMRS pattern (pattern) is 1 symbol DMRS, type 1 (type 1) configuration.
  • the configuration of the DMRS used by the second SCI is the same as the configuration of the DMRS of the PSSCH.
  • the DMRS used by the second SCI is the first DMRS of the PSSCH.
  • the second SCI When determining the symbol or the next symbol of the first DMRS configured for the PSSCH at the first position, the second SCI starts mapping at the symbol or the next symbol of the first DMRS configured for the PSSCH.
  • the second SCI starts to map on the symbol where the first DMRS of the PSSCH configuration is located, and is mapped on the two layers of the PSSCH. That is, after the second SCI and PSSCH are encoded, bit interleaving and/or concatenation are performed, and then after modulation, etc., the modulated information is mapped to two layers, so that the second SCI is mapped at the corresponding position of the two layers of the PSSCH (layer 1, The 4th and 5th symbols of layer two).
  • the ratio beta of the EPRE of the second SCI to the DMRS of the PSSCH is 0 dB.
  • the second SCI starts to be mapped on the next symbol of the first DMRS configured on the PSSCH and is mapped on the two layers of the PSSCH. That is, after the second SCI and PSSCH are encoded, bit interleaving and/or concatenation are performed, and then after modulation, etc., the modulated information is mapped to two layers, so that the second SCI is mapped at the corresponding position of the two layers of the PSSCH (layer 1, The fifth symbol of layer two).
  • the ratio beta of the EPRE of the second SCI to the DMRS of the PSSCH is -3dB.
  • Scenario 5 The network pre-configures the time domain resources of the first SCI as the second and third symbols.
  • the first SCI starts from the second symbol and is mapped on the allocated available resources in a time domain first manner.
  • the second SCI When it is determined that the first position is the first symbol after the first SCI, the second SCI is mapped from the fourth symbol (the first symbol after the first SCI). If it is single-port transmission as shown in Figure 11, the EPRE ratio beta of the EPRE of the second SCI and the DMRS of the PSCCH is 0 dB. If Figure 12 is two-port transmission, the EPRE ratio beta of the EPRE of the second SCI and the DMRS of the PSCCH is 3dB.
  • the receiving terminal uses the DMRS of the first SCI to demodulate the second SCI.
  • the network pre-configures the time domain resources of the first SCI as the second and third symbols.
  • the first SCI starts from the second symbol and is mapped on the allocated available resources in a time-domain priority manner.
  • the number of layers indicating the second SCI in the first SCI is one layer, or the number of layers indicating the PSSCH in the first SCI is one layer, and the number of layers in the second SCI and PSSCH is the same (that is, the number of layers in the second SCI is one layer ).
  • the configuration of the DMRS used by the second SCI can be independently defined.
  • the DMRS used by the second SCI is comb4.
  • the second SCI starts from the fourth symbol (the first symbol after the first SCI) and is mapped in layer one, as shown in FIG. 13.
  • the receiving-side terminal demodulates the first SCI and obtains the number of layers of the second SCI. Demodulate the second SCI according to the number of second SCI layers and independently defined DMRS.
  • the second SCI and the PSSCH have the same number of layers (that is, the layers of the second SCI The number is two floors).
  • the first position is the first symbol after the first SCI
  • the second SCI is mapped on two layers starting from the fourth symbol (the first symbol after the first SCI), as shown in FIG. 14.
  • the receiving-side terminal demodulates the first SCI and obtains the number of layers of the second SCI. Demodulate the second SCI according to the number of second SCI layers and independently defined DMRS.
  • the method of the embodiment of the present disclosure will transmit the SCI and the target control information according to the resource mapping pattern (used to indicate the transmission resources of the PSSCH scheduled by the SCI and the target control information) to realize the transmission of the target control information to the target
  • the terminal at the end while ensuring the performance of SCI or SFCI, improves the demodulation performance of PSSCH and the capacity of the system.
  • FIG. 15 is a block diagram of a terminal according to an embodiment of the present disclosure.
  • the terminal 1500 shown in FIG. 15 includes a transmission module 1510.
  • the transmission module 1510 is configured to transmit side link control information SCI and target control information according to a resource mapping pattern; wherein, the resource mapping pattern is used to indicate the difference between the physical side link shared channel PSSCH scheduled by the SCI and the target control information Transmission resource, the target control information is the next level SCI or side link feedback control information SFCI.
  • the target control information is mapped from a first position in the time domain, and mapped from a second position in the frequency domain;
  • the first position and/or the second position are determined according to at least one of the following information:
  • the position of the DMRS of the PSSCH is:
  • N is an integer greater than or equal to 1;
  • the transmission configuration parameters include: at least one of the number of layers, load, and code rate.
  • the configuration of the DMRS used includes at least one of the type of DMRS, the number of symbols, and the multiplexing mode.
  • the configuration information of the SFCI includes: whether to carry the SFCI;
  • the SFCI configuration information further includes: the transmission resource of the SFCI and/or the information size carried by the SFCI.
  • the service type of the transmission includes: multicast, unicast or broadcast.
  • the resources allocated by the PSSCH include: frequency domain resources allocated by the PSSCH and/or time domain resources allocated by the PSSCH.
  • the target control information on the target layer is mapped from a first position in the time domain, and mapped from a second position in the frequency domain, wherein the target layer is a single Layer or multiple layers.
  • the target layer is predefined or indicated by the SCI.
  • the layer number of the target layer is pre-defined or indicated by the SCI, and is related to the layer number of the PSSCH or the physical side link control channel PSCCH.
  • the target control information is from the Nth DMRS or the Nth DMRS set of the PSSCH or the symbol of the pre-type DMRS or the Lth symbol after the symbol in the time domain.
  • Start mapping start mapping in the frequency domain from the M-th PRB in the physical resource block PRB allocated by the PSSCH; wherein the M-th PRB is the highest PRB or the lowest PRB or the edge PRB of the target frequency domain region, and M is greater than or An integer equal to 1, and L is an integer greater than or equal to 1.
  • the target control information is mapped from the P-th symbol after the SCI in the time domain, and mapped from the Q-th PRB of the SCI in the frequency domain; wherein Q is an integer greater than or equal to 1, and P is an integer greater than or equal to 1.
  • the target control information is mapped from the first available symbol allocated by the PSSCH or the first available symbol that does not carry DMRS in the time domain.
  • the mapping of the next level of SCI may perform rate matching or puncturing on the location of the SFCI.
  • the mapping of the next level of SCI will perform rate matching or puncturing on the location of the SFCI.
  • one or more DMRS configurations are correspondingly set in the target control information
  • the DMRS configuration used is determined by pre-definition or the SCI.
  • the configuration of the DMRS used by the target control information is pre-defined or indicated by the SCI, and is the same as the configuration of the DMRS of the PSSCH.
  • the SCI or the next-level SCI indicates the configuration of the DMRS of the PSSCH and/or the number of layers of the PSSCH.
  • the ratio of the energy EPRE of the unit resource element of the target control information to the EPRE of the used DMRS is determined according to at least one of the following information:
  • the number of layers of the target control information is the number of layers of the target control information
  • mapping method of data on PSSCH The mapping method of data on PSSCH.
  • the terminal is a terminal to which the information transmission method of the foregoing embodiment is applied, and the implementation of the information transmission method of the foregoing embodiment is applicable to the terminal, and the same technical effect can also be achieved.
  • the terminal 1500 can implement the various processes implemented by the terminal in the method embodiments of FIG. 2 to FIG. 14. To avoid repetition, details are not described herein again.
  • the terminal of the embodiment of the present disclosure will transmit SCI and target control information according to the resource mapping pattern (used to indicate the transmission resources of the PSSCH scheduled by the SCI and the target control information) to ensure the performance of the SCI or SFCI and improve the demodulation of the PSSCH. Performance and system capacity.
  • the terminal 1600 includes but is not limited to: a radio frequency unit 1601, a network module 1602, an audio output unit 1603, an input unit 1604, a sensor 1605, a display unit 1606, User input unit 1607, interface unit 1608, memory 1609, processor 1610, power supply 1611 and other components.
  • a radio frequency unit 1601 includes but is not limited to: a radio frequency unit 1601, a network module 1602, an audio output unit 1603, an input unit 1604, a sensor 1605, a display unit 1606, User input unit 1607, interface unit 1608, memory 1609, processor 1610, power supply 1611 and other components.
  • terminal structure shown in FIG. 16 does not constitute a limitation on the terminal, and the terminal may include more or fewer components than those shown in the figure, or combine certain components, or arrange different components.
  • terminals include, but are not limited to, mobile phones, tablet computers, notebook computers, palmtop computers, vehicle-mounted terminals, wearable devices, and pedometers.
  • the radio frequency unit 1601 is configured to transmit side link control information SCI and target control information according to a resource mapping pattern; wherein, the resource mapping pattern is used to indicate the physical side link shared channel PSSCH scheduled by the SCI and target control Information transmission resources, the target control information is the next level SCI or side link feedback control information SFCI.
  • the terminal will transmit SCI and target control information (the next level of SCI or SFCI) according to the resource mapping pattern (used to indicate the transmission resources of the PSSCH scheduled by the SCI and the target control information) to ensure the performance of the SCI or SFCI while improving The demodulation performance of PSSCH and system capacity are improved.
  • the radio frequency unit 1601 can be used for receiving and sending signals in the process of sending and receiving information or talking. Specifically, the downlink data from the base station is received and processed by the processor 1610; in addition, Uplink data is sent to the base station.
  • the radio frequency unit 1601 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the radio frequency unit 1601 can also communicate with the network and other devices through a wireless communication system.
  • the terminal provides users with wireless broadband Internet access through the network module 1602, such as helping users to send and receive emails, browse web pages, and access streaming media.
  • the audio output unit 1603 may convert the audio data received by the radio frequency unit 1601 or the network module 1602 or stored in the memory 1609 into audio signals and output them as sounds. Moreover, the audio output unit 1603 may also provide audio output related to a specific function performed by the terminal 1600 (for example, call signal reception sound, message reception sound, etc.).
  • the audio output unit 1603 includes a speaker, a buzzer, a receiver, and the like.
  • the input unit 1604 is used to receive audio or video signals.
  • the input unit 1604 may include a graphics processing unit (GPU) 16041 and a microphone 16042.
  • the graphics processor 16041 is configured to respond to images of still pictures or videos obtained by an image capture device (such as a camera) in a video capture mode or an image capture mode. Data is processed.
  • the processed image frame can be displayed on the display unit 1606.
  • the image frame processed by the graphics processor 16041 may be stored in the memory 1609 (or other storage medium) or sent via the radio frequency unit 1601 or the network module 1602.
  • the microphone 16042 can receive sound, and can process such sound into audio data.
  • the processed audio data can be converted into a format that can be sent to the mobile communication base station via the radio frequency unit 1601 for output in the case of a telephone call mode.
  • the terminal 1600 also includes at least one sensor 1605, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor includes an ambient light sensor and a proximity sensor.
  • the ambient light sensor can adjust the brightness of the display panel 16061 according to the brightness of the ambient light.
  • the proximity sensor can close the display panel 16061 and/or when the terminal 1600 is moved to the ear. Or backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in various directions (usually three-axis), and can detect the magnitude and direction of gravity when stationary, and can be used to identify terminal posture (such as horizontal and vertical screen switching, related games, Magnetometer attitude calibration), vibration recognition related functions (such as pedometer, percussion), etc.; sensors 1605 can also include fingerprint sensors, pressure sensors, iris sensors, molecular sensors, gyroscopes, barometers, hygrometers, thermometers, infrared Sensors, etc., will not be repeated here.
  • the display unit 1606 is used to display information input by the user or information provided to the user.
  • the display unit 1606 may include a display panel 16061, and the display panel 16061 may be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), etc.
  • LCD liquid crystal display
  • OLED organic light-emitting diode
  • the user input unit 1607 may be used to receive inputted number or character information, and generate key signal input related to user settings and function control of the terminal.
  • the user input unit 1607 includes a touch panel 16071 and other input devices 16072.
  • the touch panel 16071 also known as a touch screen, can collect user touch operations on or near it (for example, the user uses any suitable objects or accessories such as fingers, stylus, etc.) on the touch panel 16071 or near the touch panel 16071. operating).
  • the touch panel 16071 may include two parts: a touch detection device and a touch controller.
  • the touch detection device detects the user's touch position, detects the signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts it into contact coordinates, and then sends it To the processor 1610, the command sent by the processor 1610 is received and executed.
  • the touch panel 16071 can be realized in multiple types such as resistive, capacitive, infrared, and surface acoustic wave.
  • the user input unit 1607 may also include other input devices 16072.
  • other input devices 16072 may include, but are not limited to, a physical keyboard, function keys (such as volume control buttons, switch buttons, etc.), trackball, mouse, and joystick, which will not be repeated here.
  • the touch panel 16071 can cover the display panel 16061. When the touch panel 16071 detects a touch operation on or near it, it will be transmitted to the processor 1610 to determine the type of the touch event. The type of event provides corresponding visual output on the display panel 16061.
  • the touch panel 16071 and the display panel 16061 are used as two independent components to realize the input and output functions of the terminal, but in some embodiments, the touch panel 16071 and the display panel 16061 may be integrated. Realize the input and output functions of the terminal, which are not limited here.
  • the interface unit 1608 is an interface for connecting an external device with the terminal 1600.
  • the external device may include a wired or wireless headset port, an external power source (or battery charger) port, a wired or wireless data port, a memory card port, a port for connecting a device with an identification module, audio input/output (I/O) port, video I/O port, headphone port, etc.
  • the interface unit 1608 can be used to receive input (for example, data information, power, etc.) from an external device and transmit the received input to one or more elements in the terminal 1600 or can be used to communicate between the terminal 1600 and the external device. Transfer data between.
  • the memory 1609 can be used to store software programs and various data.
  • the memory 1609 may mainly include a storage program area and a storage data area.
  • the storage program area may store an operating system, an application program required by at least one function (such as a sound playback function, an image playback function, etc.), etc.; Data (such as audio data, phone book, etc.) created by the use of mobile phones.
  • the memory 1609 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.
  • the processor 1610 is the control center of the terminal. It uses various interfaces and lines to connect various parts of the entire terminal. It executes by running or executing software programs and/or modules stored in the memory 1609, and calling data stored in the memory 1609. Various functions of the terminal and processing data, so as to monitor the terminal as a whole.
  • the processor 1610 may include one or more processing units; optionally, the processor 1610 may integrate an application processor and a modem processor, where the application processor mainly processes the operating system, user interface and application programs, etc.
  • the adjustment processor mainly deals with wireless communication. It can be understood that the above modem processor may not be integrated into the processor 1610.
  • the terminal 1600 may also include a power source 1611 (such as a battery) for supplying power to various components.
  • a power source 1611 such as a battery
  • the power source 1611 may be logically connected to the processor 1610 through a power management system, so as to manage charging, discharging, and power consumption management through the power management system. And other functions.
  • the terminal 1600 includes some functional modules not shown, which will not be repeated here.
  • an embodiment of the present disclosure further provides a terminal, including a processor, a memory, and a computer program stored in the memory and running on the processor, and the computer program is executed by the processor to implement the foregoing information transmission method
  • a terminal including a processor, a memory, and a computer program stored in the memory and running on the processor, and the computer program is executed by the processor to implement the foregoing information transmission method
  • the embodiments of the present disclosure also provide a computer-readable storage medium on which a computer program is stored.
  • a computer program When the computer program is executed by a processor, each process of the above-mentioned information transmission method embodiment is realized, and the same technology can be achieved. The effect, in order to avoid repetition, will not be repeated here.
  • the computer readable storage medium such as read-only memory (Read-Only Memory, ROM for short), random access memory (Random Access Memory, RAM for short), magnetic disk or optical disk, etc.
  • the method of the above embodiments can be implemented by means of software plus the necessary general hardware platform. Of course, it can also be implemented by hardware, but in many cases the former is better. ⁇
  • the technical solution of the present disclosure essentially or the part that contributes to the related technology can be embodied in the form of a software product, which is stored in a storage medium (such as ROM/RAM, magnetic disk, optical disk) )
  • a storage medium such as ROM/RAM, magnetic disk, optical disk
  • a terminal which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.

Abstract

本公开提供一种信息传输方法及终端,涉及通信技术领域。该方法包括:按照资源映射图样,传输旁链路控制信息SCI和目标控制信息;其中,所述资源映射图样用于指示所述SCI调度的物理旁链路共享信道PSSCH与目标控制信息的传输资源,所述目标控制信息为下一级SCI或旁链路反馈控制信息SFCI。本公开的方案用以实现两级SCI的第二级SCI或SFCI的传输。

Description

信息传输方法及终端
相关申请的交叉引用
本申请主张在2019年8月9日在中国提交的中国专利申请号No.201910736219.0的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,特别涉及一种信息传输方法及终端。
背景技术
如图1所示,目前长期演进(Long Term Evolution,LTE)系统可支持旁链路(sidelink,或译为副链路,侧链路,边链路等),用于终端用户设备(User Equipment,UE)之间不通过网络设备进行直接数据传输。
其中,sidelink传输也主要分广播(broadcast),组播(groupcast),单播(unicast)几种传输形式。单播顾名思义就是one to one的传输。组播为one to many的传输。广播也是one to many的传输,但是广播并没有UE属于同一个组的概念。UE通过物理旁链路控制信道(Physical Sidelink Control Channel,PSCCH)发送旁链路控制信息(Sidelink Control Information,SCI),调度物理旁链路共享信道(Physical Sidelink Shared Channel,PSSCH)的传输以发送数据。
LTE sidelink的设计适用于特定的公共安全事务(如火灾场所或地震等灾难场所进行紧急通讯),或车联网(vehicle to everything,V2X)通信等。车联网通信包括各种业务,例如,基本安全类通信,高级(自动)驾驶,编队,传感器扩展等等。由于LTE sidelink只支持广播通信,因此主要用于基本安全类通信,其他在时延、可靠性等方面具有严格QoS需求的高级V2X业务将通过新空口NR sidelink支持。
然而,目前的NR sidelink中,单播和组播支持混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)反馈机制,信道状态信息(Channel State Information,CSI)测量等机制,但广播不支持HARQ反馈机制。会导致调度 单播或组播传输的SCI比调度广播传输的SCI大很多。若将广播SCI的大小填补0或1达到单播/组播的SCI的大小,会降低广播SCI的性能。如果不填补,接收端检测不同大小的SCI的复杂性会更高。
另外,在单播和组播中,可以支持终端将测量得到的CSI report上报给发送端UE。CSI report信息属于旁链路反馈控制信息(Sidelink Feedback Control Information,SFCI)的一部分,目前SFCI如何在信道中还没有具体的设计。
发明内容
本公开实施例提供一种信息传输方法及终端,以实现两级SCI的第二级SCI或SFCI的传输。
为了解决上述技术问题,本公开是这样实现的:
第一方面,本公开的实施例提供了一种信息传输方法,包括:
按照资源映射图样,传输旁链路控制信息SCI和目标控制信息;其中,所述资源映射图样用于指示所述SCI调度的物理旁链路共享信道PSSCH与目标控制信息的传输资源,所述目标控制信息为下一级SCI或旁链路反馈控制信息SFCI。
第二方面,本公开的实施例还提供了一种终端,包括:
传输模块,用于按照资源映射图样,传输旁链路控制信息SCI和目标控制信息;其中,所述资源映射图样用于指示所述SCI调度的物理旁链路共享信道PSSCH与目标控制信息的传输资源,所述目标控制信息为下一级SCI或旁链路反馈控制信息SFCI。
第三方面,本公开实施例还提供了一种终端,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如上所述的信息传输方法的步骤。
第四方面,本公开实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如上所述的信息传输方法的步骤。
这样,本公开实施例中,会按照资源映射图样(用于指示SCI调度的PSSCH与目标控制信息的传输资源),传输SCI和目标控制信息(下一级SCI 或SFCI),保证SCI或SFCI性能的同时,提高了PSSCH的解调性能及系统的容量。
附图说明
图1为终端支持的数据传输示意图;
图2为本公开实施例的信息传输方法的流程示意图;
图3为本公开实施例的方法的应用示意图之一;
图4为本公开实施例的方法的应用示意图之二;
图5为本公开实施例的方法的应用示意图之三;
图6为本公开实施例的方法的应用示意图之四;
图7为本公开实施例的方法的应用示意图之五;
图8为本公开实施例的方法的应用示意图之六;
图9为本公开实施例的方法的应用示意图之七;
图10为本公开实施例的方法的应用示意图之八;
图11为本公开实施例的方法的应用示意图之九;
图12为本公开实施例的方法的应用示意图之十;
图13为本公开实施例的方法的应用示意图之十一;
图14为本公开实施例的方法的应用示意图之十二;
图15为本公开实施例的终端的结构示意图;
图16为本公开另一实施例的终端的结构示意图。
具体实施方式
为使本公开要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。
如图2所示,本公开实施例的一种信息传输方法,包括:
步骤201,按照资源映射图样,传输旁链路控制信息SCI和目标控制信息;其中,所述资源映射图样用于指示所述SCI调度的物理旁链路共享信道PSSCH与目标控制信息的传输资源,所述目标控制信息为下一级SCI或旁链路反馈控制信息SFCI。
通过上述步骤,应用本公开实施例的方法的终端,会按照资源映射图样,传输SCI和目标控制信息(下一级SCI或SFCI),其中该资源映射图样用于指示SCI调度的PSSCH与目标控制信息的传输资源,从而实现两级SCI或SFCI传输。
而应用本公开实施例的方法的终端,可以是发送端,也可以是接收端。
应该知道的是,该实施例中,SCI调度PSSCH,可由一级SCI调度,也可由两级SCI,即SCI和下一级SCI联合调度。可选地,所述资源映射图样中,所述目标控制信息在时域上从第一位置开始映射,在频域上从第二位置开始映射;其中,所述第一位置和/或所述第二位置是根据以下信息的至少一项确定:
PSSCH的解调参考信号DMRS的位置;
传输配置参数;
PSSCH的层数;
使用的DMRS的配置;
SFCI的配置信息;
传输的业务类型;
PSSCH分配的资源;
SCI的资源配置。
其中,所述PSSCH的DMRS的位置为:
PSSCH的第N个DMRS或第N个DMRS集合的位置,N为大于或者等于1的整数;或者
PSSCH中前置型DMRS的位置。
其中,所述传输配置参数包括:层数、负载和码率中的至少一项。
对于下一级SCI的映射,该传输配置参数则对应为下一级SCI的层数、负载和码率中的至少一项;对于SFCI的映射,该传输配置参数则对应为SFCI的层数、负载和码率中的至少一项。
其中,所述使用的DMRS的配置包括:DMRS的类型、符号数和复用方式中的至少一项。
这里,该使用的DMRS是指目标控制信息(下一级SCI或SFCI)解调 所使用的DMRS。其复用方式包括但不限于码分复用CDM和频分复用FDM。DMRS的类型可以是type 1或者type 2,符号数可以是1符号或者2符号。
其中,所述SFCI的配置信息包括:是否携带SFCI;
若携带SFCI,所述SFCI配置信息还包括:SFCI的传输资源和/或SFCI携带的信息大小。
这里,是否携带SFCI可通过特定信息来明确指示,也可通过隐含方式来指示。具体的隐含方式有多种,例如,Nbit来指示SFCI的传输资源或信息大小,如果全0(一个码点指示),即表示没有携带SFCI;若非全0,则表示携带SFCI,且指示信息对应SFCI的传输资源。
其中,所述传输的业务类型包括:组播、单播或者广播。
其中,所述PSSCH分配的资源包括:PSSCH分配的频域资源和/或PSSCH分配的时域资源。
这里,PSSCH分配的频域资源可以为带宽、物理资源块PRB或者子信道。PSSCH分配的时域资源可以为符号、时隙、子帧或者帧。
可选地,所述PSSCH的DMRS的位置是SCI指示、终端无线资源控制RRC配置、协议预定义、网络下行控制信息DCI配置、网络RRC配置或者网络预配置的;
所述传输配置参数是SCI指示、终端RRC配置、协议预定义、网络DCI配置、网络RRC配置或者网络预配置的;
所述PSSCH的层数是SCI指示、终端RRC配置、协议预定义、网络DCI配置、网络RRC配置或者网络预配置的;
所述使用的DMRS的配置是SCI指示、终端RRC配置、协议预定义、网络DCI配置、网络RRC配置或者网络预配置的;
所述SFCI的配置信息是SCI指示、终端RRC配置、协议预定义、网络DCI配置、网络RRC配置或者网络预配置的;
所述传输的业务类型是SCI指示、终端RRC配置、协议预定义、网络DCI配置、网络RRC配置或者网络预配置的;
所述PSSCH分配的资源是SCI指示、终端RRC配置、协议预定义、网络DCI配置、网络RRC配置或者网络预配置的。
如此,上述用于确定第一位置和/或第二位置的信息,除SCI的资源配置外,可以是SCI指示、终端无线资源控制RRC配置、协议预定义、网络下行控制信息DCI配置、网络RRC配置或者网络预配置的。
另外,目标控制信息(下一级SCI或SFCI)的传输不限于单层,因此,可选地,所述资源映射图样中,目标层上的所述目标控制信息在时域上从第一位置开始映射,在频域上从第二位置开始映射,其中,所述目标层为单层或者多层。
这里,该资源映射图样中,下一级SCI或SFCI映射在目标层上,完成相应的单层或多层传输。
其中,所述目标层为预定义的或所述SCI指示的。
当然,该目标层还可以是DCI指示的或者预配置的或者是网络配置的。具体的,SCI指示目标层,是通过SCI中指示下一级SCI或SFCI映射的层数和/或层标识(layer index)实现。
而且,可选地,所述目标层的层数通过预定义或所述SCI指示,与PSSCH或物理旁链路控制信道PSCCH的层数相关。
例如,SCI中指示目标层的层数与PSSCH的层数相同,或者预定义目标层的层数为一层。
当然,资源映射图样中,目标控制信息的映射可以选择以频域优先或以时域优先的方式映射。
可选地,所述资源映射图样中,
所述目标控制信息在时域上从PSSCH的第N个DMRS或第N个DMRS集合或前置型DMRS所在的符号或所在符号之后的第L个符号开始映射,在频域上从PSSCH分配的物理资源块PRB中的第M个PRB开始映射;其中M为大于或者等于1的整数,L为大于或者等于1的整数。
如此,第一位置为PSSCH的第N个DMRS所在的符号或所在符号之后的第L个符号;或者,第N个DMRS集合所在的符号或所在符号之后的第L个符号;或者,前置型DMRS所在的符号或所在符号之后的第L个符号。第二位置为PSSCH分配的PRB中的第M个PRB。如此,在目标层的时域上,目标控制信息是从第N个DMRS或第N个DMRS集合或前置型DMRS所在 的符号开始映射;或,从第N个DMRS或第N个DMRS集合或前置型DMRS所在符号之后的第L个符号开始映射。在目标层的频域上,从PSSCH分配的PRB中的第M个PRB开始映射。
其中,M的取值可以是PSSCH分配的PRB中的最高PRB或最低PRB;M的取值也可以是一目标频域区域的边缘PRB(区域中的最高PRB或最低PRB),而该目标频域区域是基于下一级SCI或SFCI所要占用的频域资源大小确定的,例如,下一级SCI或SFCI在频域上需要占用50个PRB,该目标频域区域是PSSCH分配的100个PRB的中间50个PRB(PSSCH分配带宽的中心)。
可选地,所述资源映射图样中,所述目标控制信息在时域上从所述SCI之后的第P个符号开始映射,在频域上从所述SCI的第Q个PRB开始映射;其中Q为大于或等于1的整数,P为大于或者等于1的整数。
这里,第一位置为SCI之后的第P个符号,第二位置为SCI的第Q个PRB。在目标层的时域上,该下一级SCI或SFCI从SCI之后的第P个符号开始映射。在目标层的频域上,从SCI的第Q个PRB开始映射。
可选地,所述资源映射图样中,所述目标控制信息在时域上从PSSCH分配的第一个可用符号或第一个不携带DMRS的可用符号开始映射。
这里,第一位置是PSSCH分配的第一个可用符号或第一个不携带DMRS的可用符号,在目标层的时域上,该目标控制信息从PSSCH分配的第一个可用符号或第一个不携带DMRS的可用符号开始映射。此时,第二位置可以是PSSCH分配的PRB中的第M个PRB。M的取值如上所述,在此不再赘述。
此外,两级SCI中下一级SCI的映射过程中,因可能存在SFCI的传输,可选地,所述资源映射图样中,在携带SFCI的情况下,所述下一级SCI的映射会对SFCI的位置进行速率匹配或打孔。
例如,配置了SFCI,且网络配置预留了SFCI的资源,则下一级SCI映射时,会对预留的SFCI的资源进行速率匹配。当然,也可以在下一级SCI映射时,对SFCI的位置进行打孔。
还应该知道的是,在单播和组播中,是可能需要终端进行测量上报的,所以,可选地,在所述传输的业务类型为组播或者单播的情况下,所述资源 映射图样中,所述下一级SCI的映射会对SFCI的位置进行速率匹配或打孔。
对于广播传输,则可不映射下一级SCI或SFCI。
还应该了解的是,在该实施例中,可选地,所述目标控制信息对应设置了一种或者多种DMRS的配置;
当所述目标控制信息对应设置多种DMRS的配置时,通过预定义或所述SCI确定所使用的DMRS的配置。
解调目标控制信息的DMRS的配置可以灵活设置,可以为一种,也可以为多种。而为使解调更具有明确性,在具有多种DMRS的配置时,可通过预定义或SCI指示或网络通过RRC指示或网络通过DCI指示或终端通过RRC指示确定所使用的DMRS的配置,从而以确定的DMRS的配置进行目标控制信息的解调。
其中,所述目标控制信息使用的DMRS的配置通过预定义或所述SCI指示,与PSSCH的DMRS的配置相同。
如此,预定义或SCI指示的DMRS的配置可以是DMRS的配置具体信息,也可以直接指示采用PSSCH的DMRS的配置。
其中,目标控制信息使用的DMRS的配置与PSSCH的DMRS的配置相同,也就是说目标控制信息共享PSSCH的DMRS的配置。如,目标控制信息复用PSSCH的第一个DMRS或front-loaded DMRS或第一个DMRS集合;或,目标控制信息复用其与PSSCH重叠的DMRS;或,目标控制信息使用的DMRS的时域密度与PSSCH的DMRS的时域密度相同。
可选地,所述SCI或所述下一级SCI指示PSSCH的DMRS的配置和/或PSSCH的层数。
如此,PSSCH的DMRS的配置和/或PSSCH的层数可通过SCI,也可通过下一级SCI获知。
在该实施例中,可选地,所述目标控制信息的单位资源元素的能量EPRE与使用的DMRS的EPRE的比值是根据以下信息的至少一项确定的:
使用的DMRS的类型;
使用的DMRS的复用方式;
使用的DMRS的码分复用CDM组的数目;
所述目标控制信息的层数;
PSSCH的层数;
PSSCH的时频资源位置;
PSSCH上数据的映射方式。
当目标控制信息的EPRE与使用的DMRS的EPRE的比值beta与使用的DMRS的复用方式相关:
a)若使用的DMRS为FDM的复用方式,beta为0dB(也就是,目标控制信息的EPRE等于使用的DMRS的EPRE)。
b)若使用的DMRS为CDM的复用方式,beta为3dB(也就是,目标控制信息的EPRE为使用的DMRS的EPRE的两倍),或者beta为4.77dB(也就是,目标控制信息的EPRE为DMRS的EPRE的三倍)。
当目标控制信息的EPRE与使用的DMRS的EPRE的比值beta与使用的DMRS的复用方式、目标控制信息的层数和PSSCH的层数相关:
a)如果使用的DMRS的复用方式为FDM,下一级SCI的层数等于PSSCH的层数,则目标控制信息的EPRE为使用的DMRS的EPRE的一半。
b)如果使用的DMRS的复用方式为FDM,下一级SCI的层数小于PSSCH的层数,则目标控制信息的EPRE等于使用的DMRS的EPRE。
c)如果使用的DMRS的复用方式为CDM,下一级SCI的层数等于PSSCH的层数,则目标控制信息的EPRE等于使用的DMRS的EPRE。
d)如果使用的DMRS的复用方式为CDM,下一级SCI的层数小于PSSCH的层数,则目标控制信息的EPRE为使用的DMRS的EPRE的两倍。
当目标控制信息的EPRE与使用的DMRS的EPRE的比值beta与使用的DMRS的复用方式、目标控制信息的层数、PSSCH的层数和PSSCH上数据的映射方式相关:
a)如果使用的DMRS的复用方式为FDM,下一级SCI的层数小于PSSCH的层数,且PSSCH的数据对目标控制信息的资源进行速率匹配,则目标控制信息的EPRE是等于使用的DMRS的EPRE。
b)如果使用的DMRS的复用方式为FDM,下一级SCI的层数小于PSSCH的层数,且PSSCH的数据对目标控制信息的资源进行打孔,则目标控制信 息的EPRE是使用的DMRS的EPRE一半。
c)如果使用的DMRS的复用方式为CDM,下一级SCI的层数小于PSSCH的层数,且PSSCH的数据对目标控制信息的资源进行速率匹配,则目标控制信息的EPRE是使用的DMRS的EPRE的两倍。
d)如果使用的DMRS的复用方式为CDM,下一级SCI的层数小于PSSCH的层数,且PSSCH的数据对目标控制信息的资源进行打孔,则目标控制信息的EPRE等于使用的DMRS的EPRE。
下面结合具体场景,以两级SCI联合调度PSSCH的情况说明本公开实施例的方法的应用,将SCI记为第一SCI,下一级SCI记为第二SCI:
场景一、协议预定义第一SCI的时域资源为第二,三符号。第一SCI从第二个符号开始,以时域优先的方式映射在分配的可用资源上。协议预定义/网络配置PSSCH的DMRS的样式(pattern)为1符号DMRS,类型1(type1)的配置。如第二SCI使用的DMRS是PSSCH的第一个DMRS。
在确定第一位置为PSSCH配置的第一个DMRS的下一个符号时,第二SCI在PSSCH配置的第一个DMRS的下一个符号开始映射。且在预定义/网络预配置的关联的DMRS端口/PSSCH层(例如:层一)上映射。
a)若如图3所示的单端口传输,PSSCH的DMRS为梳comb 2的映射。PSSCH上数据从PSSCH第一个DMRS所在的符号开始映射,对第二SCI的位置进行速率匹配。第二SCI的EPRE与PSSCH的DMRS的比值beta为0dB。
b)若如图4或图5所示的两端口传输,且PSSCH的两端口DMRS采用FDM的方式映射。
i.PSSCH对第二SCI的时频域资源采用速率匹配/打孔(如图4)。也就是,若第二SCI只在单层传输,两层PSSCH在SCI对应的时频域资源(也就是RE)上都不映射PSSCH的数据。此例中第二SCI只在层一的第5个符号上映射,层一、层二的第5个符号上都不映射PSSCH的数据。第二SCI的EPRE与PSSCH的DMRS的比值beta为0dB。
ii.或者,PSSCH在第二SCI映射的层的时频域进行速率匹配/打孔(如图5)。也就是,若第二SCI只在单层传输,第二SCI和PSSCH编码后进行比特交织和/或串联,再经过调制等,将调制后的信息映射在两层,使得第二 SCI映射在关联的某个PSSCH层(层一)/DMRS端口上。此例中第二SCI只在层一的第5个符号上映射,层二的第5个符号上有映射PSSCH的数据。第二SCI的EPRE为PSSCH的DMRS的EPRE的一半。当然,基于负载大小,第二SCI在第5个符号上可能全部映射,可能只占用部分资源,也可能需映射到第6个符号或更多符号,在此不再赘述。
该场景中,设计规则保证了接收侧终端解调第二SCI所用的PSSCH DMRS端口1的DMRS功率与PSSCH的层数无关,且第二级SCI的符号位置与PSSCH的层数也无关,所以,PSSCH的DMRS的配置可以在第二SCI中携带。
接收侧终端,在PSSCH DMRS端口1上,从第五个符号开始检测第二SCI,使用第一个DMRS解调第二SCI,得到PSSCH的DMRS的配置和/或PSSCH层数,根据PSSCH的DMRS的配置及预定义的配置解调PSSCH。
场景二、网络预配置第一SCI的时域资源为第二,三符号。第一SCI从第2个符号开始,以时域优先的方式映射在分配的可用资源上。协议预定义/网络配置PSSCH的DMRS的样式(pattern)为1符号DMRS,类型1(type 1)的配置。第一SCI中指示PSSCH DMRS的配置和/或PSSCH的层数。第二SCI使用的DMRS是PSSCH的第一个DMRS。
在确定第一位置为PSSCH配置的第一个DMRS所在的符号时,第二SCI在PSSCH配置的第一个DMRS所在的符号开始映射。且在预定义的/网络预配置的关联的DMRS端口/PSSCH层(例如:层一)上映射。
a)若如图6所示的单端口传输,PSSCH的DMRS为comb 2的映射。PSSCH从PSSCH第一个DMRS所在的符号的下一个符号开始发送,对第二SCI进行速率匹配或打孔。第二SCI的EPRE与PSSCH的DMRS的EPRE比值beta为0dB。
b)若如图7或图8所示的两端口传输,且PSSCH的两端口DMRS采用CDM的方式复用。
i.PSSCH对第二SCI的时频域资源采用速率匹配/打孔(如图7)。也就是,第二SCI只在单层传输,两层PSSCH对应的时频域资源上都不映射PSSCH的数据。此例中第二SCI只在层一的第4、5个符号上映射,层一、 层二的第4、5个符号上都不映射PSSCH的数据。第二SCI的EPRE与PSSCH的DMRS的比值beta为3dB。
ii.或者,PSSCH在第二SCI映射的层的时频域进行速率匹配/打孔(如图8)。也就是,第二SCI只在单层传输,第二SCI和PSSCH编码后进行比特交织和/或串联,再经过调制等,将调制后的信息映射在两层,使得第二SCI映射在关联的PSSCH层(层一)/DMRS端口上。此例中第二SCI只在层一的第4、5个符号上映射,层二的第5个符号上映射PSSCH的数据,层二的第4、5个符号上有映射PSSCH的数据。第二SCI的EPRE与PSSCH的DMRS的EPRE的比值beta为0dB。
该场景中,接收侧终端解调第二SCI所用的PSSCH DMRS端口1的DMRS功率与PSSCH的层数相关,解调第二SCI前,从第一SCI中可以获取PSSCH的层数和/或DMRS配置,从而确定DMRS的功率。
接收侧终端,接收并解调第一SCI,获取PSSCH的DMRS的配置和/或PSSCH的层数。之后获取到层一的DMRS的功率及样式。在第4个符号开始检测第二SCI,并根据层一DMRS解调第二SCI。进一步获取额外的PSSCH的调度信息,解调PSSCH。
场景三、网络预配置第一SCI的时域资源为第二,三符号。第一SCI从第2个符号开始,以时域优先的方式映射在分配的可用资源上。第一SCI中配置PSSCH的DMRS的配置,采用CDM的复用方式。预定义第二SCI为在PSSCH层一传输,以及映射的层及端口。协议预定义/网络配置PSSCH的DMRS的样式(pattern)为1符号DMRS,类型1(type 1)的配置。第二SCI使用的DMRS的配置与PSSCH的DMRS的配置相同。如第二SCI使用的DMRS是PSSCH的第一个DMRS。
在确定第一位置为PSSCH配置的第一个DMRS所在的符号时,第二SCI在PSSCH配置的第一个DMRS所在的符号开始映射,在预定义的DMRS端口/PSSCH层(例如:层一)上映射。第二SCI的EPRE与PSSCH的DMRS的EPRE比值beta为0Db,如图6。
接收侧终端接收并解调第一SCI,获取PSSCH的DMRS的配置,解得PSSCH DMRS为CDM复用。则接收侧终端在PSSCH DMRS端口对应的层 一上接收第二SCI,从第4个符号开始检测第二SCI。
其中,若第一SCI中配置PSSCH的DMRS的配置,采用FDM的复用方式。在确定第一位置为PSSCH配置的第一个DMRS的下一个符号时,第二SCI在PSSCH配置的第一个DMRS的下一个符号开始映射,在预定义的DMRS端口/PSSCH层(例如:层一)上映射。第二SCI的EPRE与PSSCH的DMRS的EPRE比值beta为0dB,如图4。此时,接收侧终端接收并解调第一SCI,获取PSSCH的DMRS的配置,解得PSSCH DMRS为FDM复用。则接收侧终端在PSSCH DMRS端口对应的层一上接收第二SCI,从第五个符号开始检测第二SCI。
该场景中,DMRS是灵活配置的,可以是FDM或者CDM的复用方式,UE根据复用方式,对第二SCI采用相应的映射规则。
场景四、网络预配置第一SCI的时域资源为第二,三符号。第一SCI从第2个符号开始,以时域优先的方式映射在分配的可用资源上。第一SCI中配置PSSCH的DMRS的配置,PSSCH为两层传输。预定义第二SCI映射层数与PSSCH层数相同(也就是,第二SCI为两层传输),或者,第一SCI中指示第二SCI为两层传输。协议预定义/网络配置PSSCH的DMRS的样式(pattern)为1符号DMRS,类型1(type 1)的配置。第二SCI使用的DMRS的配置与PSSCH的DMRS的配置相同。如第二SCI使用的DMRS是PSSCH的第一个DMRS。
在确定第一位置为PSSCH配置的第一个DMRS所在的符号或下一个符号时,第二SCI在PSSCH配置的第一个DMRS所在的符号或下一个符号开始映射。
a)若如图9所示,PSSCH的DMRS为CDM复用,则第二SCI在PSSCH配置的第一个DMRS所在的符号开始映射,在PSSCH的两层上映射。也就是,第二SCI和PSSCH编码后进行比特交织和/或串联,再经过调制等,将调制后的信息映射在两层,使得第二SCI映射在PSSCH两层的相应的位置(层一、层二的第4、5个符号)上。第二SCI的EPRE与PSSCH的DMRS的比值beta为0dB。
b)若如图10所示PSSCH的DMRS为FDM复用,则第二SCI在PSSCH 配置的第一个DMRS的下一个符号开始映射,在PSSCH的两层上映射。也就是,第二SCI和PSSCH编码后进行比特交织和/或串联,再经过调制等,将调制后的信息映射在两层,使得第二SCI映射在PSSCH两层的相应的位置(层一、层二的第5个符号)上。第二SCI的EPRE与PSSCH的DMRS的比值beta为-3dB。
场景五、网络预配置第一SCI的时域资源为第二,三符号。第一SCI从第2个符号开始,以时域优先的方式映射在分配的可用资源上。
在确定第一位置为第一SCI之后的第1个符号时,第二SCI从第4个符号(第一SCI之后的第1个符号)开始映射。若如图11为单端口传输,第二SCI的EPRE与PSCCH的DMRS的EPRE比值beta为0dB。若图12为两端口传输,第二SCI的EPRE与PSCCH的DMRS的EPRE比值beta为3dB。
接收侧终端采用第一SCI的DMRS解调第二SCI。
场景六、网络预配置第一SCI的时域资源为第二,三符号。第一SCI从第二个符号开始,以时域优先的方式映射在分配的可用资源上。第一SCI中指示第二SCI的层数为一层,或者,第一SCI中指示PSSCH的层数为一层,第二SCI与PSSCH层数相同(即,第二SCI的层数为一层)。第二SCI使用的DMRS的配置可独立定义,如第二SCI使用的DMRS为comb 4。
在确定第一位置为第一SCI之后的第1个符号时,第二SCI从第4个符号(第一SCI之后的第1个符号)开始在层一映射,如图13所示。
接收侧终端解调第一SCI,获取第二SCI的层数。根据第二SCI层数,及独立定义的DMRS解调第二SCI。
其中,若第一级SCI中指示第二SCI的层数为两层,或者,第一SCI中指示PSSCH的层数为两层,第二SCI与PSSCH层数相同(即,第二SCI的层数为两层)。在确定第一位置为第一SCI之后的第1个符号时,第二SCI从第4个符号(第一SCI之后的第1个符号)开始在两层上映射,如图14所示。接收侧终端解调第一SCI,获取第二SCI的层数。根据第二SCI层数,及独立定义的DMRS解调第二SCI。
当然,上述场景均是以两级SCI调度PSSCH的情况进行说明,而一级SCI调度PSSCH时传输SFCI的情况同样适用,在此不再一一列举。
综上所述,本公开实施例的方法,会按照资源映射图样(用于指示SCI调度的PSSCH与目标控制信息的传输资源),传输SCI和目标控制信息从而实现将该目标控制信息传输到对端的终端,保证SCI或SFCI性能的同时,提高了PSSCH的解调性能及系统的容量。
图15是本公开一个实施例的终端的框图。图15所示的终端1500包括传输模块1510。
传输模块1510,用于按照资源映射图样,传输旁链路控制信息SCI和目标控制信息;其中,所述资源映射图样用于指示所述SCI调度的物理旁链路共享信道PSSCH与目标控制信息的传输资源,所述目标控制信息为下一级SCI或旁链路反馈控制信息SFCI。
可选地,所述资源映射图样中,所述目标控制信息在时域上从第一位置开始映射,在频域上从第二位置开始映射;其中,
所述第一位置和/或所述第二位置是根据以下信息的至少一项确定:
PSSCH的解调参考信号DMRS的位置;
传输配置参数;
PSSCH的层数;
使用的DMRS的配置;
SFCI的配置信息;
传输的业务类型;
PSSCH分配的资源;
SCI的资源配置。
可选地,所述PSSCH的DMRS的位置为:
PSSCH的第N个DMRS或第N个DMRS集合的位置,N为大于或者等于1的整数;或者
PSSCH中前置型DMRS的位置。
可选地,所述传输配置参数包括:层数、负载和码率中的至少一项。
可选地,所述使用的DMRS的配置包括:DMRS的类型、符号数和复用方式中的至少一项。
可选地,所述SFCI的配置信息包括:是否携带SFCI;
若携带SFCI,所述SFCI配置信息还包括:SFCI的传输资源和/或SFCI携带的信息大小。
可选地,所述传输的业务类型包括:组播、单播或者广播。
可选地,所述PSSCH分配的资源包括:PSSCH分配的频域资源和/或PSSCH分配的时域资源。
可选地,所述资源映射图样中,目标层上的所述目标控制信息在时域上从第一位置开始映射,在频域上从第二位置开始映射,其中,所述目标层为单层或者多层。
可选地,所述目标层为预定义的或所述SCI指示的。
可选地,所述目标层的层数通过预定义或所述SCI指示,与PSSCH或物理旁链路控制信道PSCCH的层数相关。
可选地,所述资源映射图样中,所述目标控制信息在时域上从PSSCH的第N个DMRS或第N个DMRS集合或前置型DMRS所在的符号或所在符号之后的第L个符号开始映射,在频域上从PSSCH分配的物理资源块PRB中的第M个PRB开始映射;其中所述第M个PRB为最高PRB或最低PRB或目标频域区域的边缘PRB,M为大于或者等于1的整数,L为大于或者等于1的整数。
可选地,所述资源映射图样中,所述目标控制信息在时域上从所述SCI之后的第P个符号开始映射,在频域上从所述SCI的第Q个PRB开始映射;其中Q为大于或等于1的整数,P为大于或者等于1的整数。
可选地,所述资源映射图样中,所述目标控制信息在时域上从PSSCH分配的第一个可用符号或第一个不携带DMRS的可用符号开始映射。
可选地,所述资源映射图样中,在携带SFCI的情况下,所述下一级SCI的映射会对SFCI的位置进行速率匹配或打孔。
可选地,在所述传输的业务类型为组播或者单播的情况下,所述资源映射图样中,所述下一级SCI的映射会对SFCI的位置进行速率匹配或打孔。
可选地,所述目标控制信息对应设置了一种或者多种DMRS的配置;
当所述目标控制信息对应设置多种DMRS的配置时,通过预定义或所述SCI确定所使用的DMRS的配置。
可选地,所述目标控制信息使用的DMRS的配置通过预定义或所述SCI指示,与PSSCH的DMRS的配置相同。
可选地,所述SCI或所述下一级SCI指示PSSCH的DMRS的配置和/或PSSCH的层数。
可选地,所述目标控制信息的单位资源元素的能量EPRE与使用的DMRS的EPRE的比值是根据以下信息的至少一项确定的:
使用的DMRS的类型;
使用的DMRS的复用方式;
使用的DMRS的码分复用CDM组的数目;
所述目标控制信息的层数;
PSSCH的层数;
PSSCH的时频资源位置;
PSSCH上数据的映射方式。
需要说明的是,该终端是应用了上述实施例的信息传输方法的终端,上述实施例的信息传输方法的实现方式适用于该终端,也能达到相同的技术效果。
终端1500能够实现图2至图14的方法实施例中终端实现的各个过程,为避免重复,这里不再赘述。本公开实施例的终端,会按照资源映射图样(用于指示SCI调度的PSSCH与目标控制信息的传输资源),传输SCI和目标控制信息,保证SCI或SFCI性能的同时,提高了PSSCH的解调性能及系统的容量。
图16为实现本公开各个实施例的一种终端的硬件结构示意图,该终端1600包括但不限于:射频单元1601、网络模块1602、音频输出单元1603、输入单元1604、传感器1605、显示单元1606、用户输入单元1607、接口单元1608、存储器1609、处理器1610、以及电源1611等部件。本领域技术人员可以理解,图16中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。在本公开实施例中,终端包括但不限于手机、平板电脑、笔记本电脑、掌上电脑、车载终端、可穿戴设备、以及计步器等。
其中,射频单元1601,用于按照资源映射图样,传输旁链路控制信息SCI和目标控制信息;其中,所述资源映射图样用于指示所述SCI调度的物理旁链路共享信道PSSCH与目标控制信息的传输资源,所述目标控制信息为下一级SCI或旁链路反馈控制信息SFCI。
可见,该终端会按照资源映射图样(用于指示SCI调度的PSSCH与目标控制信息的传输资源),传输SCI和目标控制信息(下一级SCI或SFCI),保证SCI或SFCI性能的同时,提高了PSSCH的解调性能及系统的容量。
应理解的是,本公开实施例中,射频单元1601可用于收发信息或通话过程中,信号的接收和发送,具体的,将来自基站的下行数据接收后,给处理器1610处理;另外,将上行的数据发送给基站。通常,射频单元1601包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。此外,射频单元1601还可以通过无线通信系统与网络和其他设备通信。
终端通过网络模块1602为用户提供了无线的宽带互联网访问,如帮助用户收发电子邮件、浏览网页和访问流式媒体等。
音频输出单元1603可以将射频单元1601或网络模块1602接收的或者在存储器1609中存储的音频数据转换成音频信号并且输出为声音。而且,音频输出单元1603还可以提供与终端1600执行的特定功能相关的音频输出(例如,呼叫信号接收声音、消息接收声音等等)。音频输出单元1603包括扬声器、蜂鸣器以及受话器等。
输入单元1604用于接收音频或视频信号。输入单元1604可以包括图形处理器(Graphics Processing Unit,GPU)16041和麦克风16042,图形处理器16041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。处理后的图像帧可以显示在显示单元1606上。经图形处理器16041处理后的图像帧可以存储在存储器1609(或其它存储介质)中或者经由射频单元1601或网络模块1602进行发送。麦克风16042可以接收声音,并且能够将这样的声音处理为音频数据。处理后的音频数据可以在电话通话模式的情况下转换为可经由射频单元1601发送到移动通信基站的格式输出。
终端1600还包括至少一种传感器1605,比如光传感器、运动传感器以 及其他传感器。具体地,光传感器包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板16061的亮度,接近传感器可在终端1600移动到耳边时,关闭显示面板16061和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别终端姿态(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;传感器1605还可以包括指纹传感器、压力传感器、虹膜传感器、分子传感器、陀螺仪、气压计、湿度计、温度计、红外线传感器等,在此不再赘述。
显示单元1606用于显示由用户输入的信息或提供给用户的信息。显示单元1606可包括显示面板16061,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板16061。
用户输入单元1607可用于接收输入的数字或字符信息,以及产生与终端的用户设置以及功能控制有关的键信号输入。具体地,用户输入单元1607包括触控面板16071以及其他输入设备16072。触控面板16071,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板16071上或在触控面板16071附近的操作)。触控面板16071可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器1610,接收处理器1610发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板16071。除了触控面板16071,用户输入单元1607还可以包括其他输入设备16072。具体地,其他输入设备16072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
进一步的,触控面板16071可覆盖在显示面板16061上,当触控面板16071检测到在其上或附近的触摸操作后,传送给处理器1610以确定触摸事件的类型,随后处理器1610根据触摸事件的类型在显示面板16061上提供相应的视 觉输出。虽然在图16中,触控面板16071与显示面板16061是作为两个独立的部件来实现终端的输入和输出功能,但是在某些实施例中,可以将触控面板16071与显示面板16061集成而实现终端的输入和输出功能,具体此处不做限定。
接口单元1608为外部装置与终端1600连接的接口。例如,外部装置可以包括有线或无线头戴式耳机端口、外部电源(或电池充电器)端口、有线或无线数据端口、存储卡端口、用于连接具有识别模块的装置的端口、音频输入/输出(I/O)端口、视频I/O端口、耳机端口等等。接口单元1608可以用于接收来自外部装置的输入(例如,数据信息、电力等等)并且将接收到的输入传输到终端1600内的一个或多个元件或者可以用于在终端1600和外部装置之间传输数据。
存储器1609可用于存储软件程序以及各种数据。存储器1609可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器1609可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器1610是终端的控制中心,利用各种接口和线路连接整个终端的各个部分,通过运行或执行存储在存储器1609内的软件程序和/或模块,以及调用存储在存储器1609内的数据,执行终端的各种功能和处理数据,从而对终端进行整体监控。处理器1610可包括一个或多个处理单元;可选的,处理器1610可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器1610中。
终端1600还可以包括给各个部件供电的电源1611(比如电池),可选的,电源1611可以通过电源管理系统与处理器1610逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
另外,终端1600包括一些未示出的功能模块,在此不再赘述。
可选的,本公开实施例还提供一种终端,包括处理器、存储器及存储在 存储器上并可在所述处理器上运行的计算机程序,该计算机程序被处理器执行时实现上述信息传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本公开实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现上述信息传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本公开各个实施例所述的方法。
上面结合附图对本公开的实施例进行了描述,但是本公开并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本公开的启示下,在不脱离本公开宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本公开的保护之内。

Claims (24)

  1. 一种信息传输方法,包括:
    按照资源映射图样,传输旁链路控制信息SCI和目标控制信息;其中,所述资源映射图样用于指示所述SCI调度的物理旁链路共享信道PSSCH与目标控制信息的传输资源,所述目标控制信息为下一级SCI或旁链路反馈控制信息SFCI。
  2. 根据权利要求1所述的方法,其中,所述资源映射图样中,所述目标控制信息在时域上从第一位置开始映射,在频域上从第二位置开始映射;其中,
    所述第一位置和/或所述第二位置是根据以下信息的至少一项确定:
    PSSCH的解调参考信号DMRS的位置;
    传输配置参数;
    PSSCH的层数;
    使用的DMRS的配置;
    SFCI的配置信息;
    传输的业务类型;
    PSSCH分配的资源;
    SCI的资源配置。
  3. 根据权利要求2所述的方法,其中,所述PSSCH的DMRS的位置为:
    PSSCH的第N个DMRS或第N个DMRS集合的位置,N为大于或者等于1的整数;或者
    PSSCH中前置型DMRS的位置。
  4. 根据权利要求2所述的方法,其中,所述传输配置参数包括:层数、负载和码率中的至少一项。
  5. 根据权利要求2所述的方法,其中,所述使用的DMRS的配置包括:DMRS的类型、符号数和复用方式中的至少一项。
  6. 根据权利要求2所述的方法,其中,所述SFCI的配置信息包括:是否携带SFCI;
    若携带SFCI,所述SFCI配置信息还包括:SFCI的传输资源和/或SFCI携带的信息大小。
  7. 根据权利要求2所述的方法,其中,所述传输的业务类型包括:组播、单播或者广播。
  8. 根据权利要求2所述的方法,其中,所述PSSCH分配的资源包括:PSSCH分配的频域资源和/或PSSCH分配的时域资源。
  9. 根据权利要求2所述的方法,其中,所述资源映射图样中,
    目标层上的所述目标控制信息在时域上从第一位置开始映射,在频域上从第二位置开始映射,其中,所述目标层为单层或者多层。
  10. 根据权利要求9所述的方法,其中,所述目标层为预定义的或所述SCI指示的。
  11. 根据权利要求10所述的方法,其中,所述目标层的层数通过预定义或所述SCI指示,与PSSCH或物理旁链路控制信道PSCCH的层数相关。
  12. 根据权利要求2所述的方法,其中,所述资源映射图样中,
    所述目标控制信息在时域上从PSSCH的第N个DMRS或第N个DMRS集合或前置型DMRS所在的符号或所在符号之后的第L个符号开始映射,在频域上从PSSCH分配的物理资源块PRB中的第M个PRB开始映射;其中所述第M个PRB为最高PRB或最低PRB或目标频域区域的边缘PRB,M为大于或者等于1的整数,L为大于或者等于1的整数。
  13. 根据权利要求2所述的方法,其中,所述资源映射图样中,
    所述目标控制信息在时域上从所述SCI之后的第P个符号开始映射,在频域上从所述SCI的第Q个PRB开始映射;其中Q为大于或等于1的整数,P为大于或者等于1的整数。
  14. 根据权利要求2所述的方法,其中,所述资源映射图样中,
    所述目标控制信息在时域上从PSSCH分配的第一个可用符号或第一个不携带DMRS的可用符号开始映射。
  15. 根据权利要求2所述的方法,其中,所述资源映射图样中,在携带SFCI的情况下,所述下一级SCI的映射会对SFCI的位置进行速率匹配或打孔。
  16. 根据权利要求2所述的方法,其中,在所述传输的业务类型为组播或者单播的情况下,所述资源映射图样中,所述下一级SCI的映射会对SFCI的位置进行速率匹配或打孔。
  17. 根据权利要求1所述的方法,其中,所述目标控制信息对应设置了一种或者多种DMRS的配置;
    当所述目标控制信息对应设置多种DMRS的配置时,通过预定义或所述SCI确定所使用的DMRS的配置。
  18. 根据权利要求1所述的方法,其中,所述目标控制信息使用的DMRS的配置通过预定义或所述SCI指示,与PSSCH的DMRS的配置相同。
  19. 根据权利要求1所述的方法,其中,所述SCI或所述下一级SCI指示PSSCH的DMRS的配置和/或PSSCH的层数。
  20. 根据权利要求1所述的方法,其中,所述目标控制信息的单位资源元素的能量EPRE与使用的DMRS的EPRE的比值是根据以下信息的至少一项确定的:
    使用的DMRS的类型;
    使用的DMRS的复用方式;
    使用的DMRS的码分复用CDM组的数目;
    所述目标控制信息的层数;
    PSSCH的层数;
    PSSCH的时频资源位置;
    PSSCH上数据的映射方式。
  21. 根据权利要求2所述的方法,其中,
    所述PSSCH的DMRS的位置是SCI指示、终端无线资源控制RRC配置、预定义、网络下行控制信息DCI配置、网络RRC配置或者网络预配置的;
    所述传输配置参数是SCI指示、终端RRC配置、预定义、网络DCI配置、网络RRC配置或者网络预配置的;
    所述PSSCH的层数是SCI指示、终端RRC配置、预定义、网络DCI配置、网络RRC配置或者网络预配置的;
    所述使用的DMRS的配置是SCI指示、终端RRC配置、预定义、网络 DCI配置、网络RRC配置或者网络预配置的;
    所述SFCI的配置信息是SCI指示、终端RRC配置、预定义、网络DCI配置、网络RRC配置或者网络预配置的;
    所述传输的业务类型是SCI指示、终端RRC配置、预定义、网络DCI配置、网络RRC配置或者网络预配置的;
    所述PSSCH分配的资源是SCI指示、终端RRC配置、预定义、网络DCI配置、网络RRC配置或者网络预配置的。
  22. 一种终端,包括:
    传输模块,用于按照资源映射图样,传输旁链路控制信息SCI和目标控制信息;其中,所述资源映射图样用于指示所述SCI调度的物理旁链路共享信道PSSCH与目标控制信息的传输资源,所述目标控制信息为下一级SCI或旁链路反馈控制信息SFCI。
  23. 一种终端,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求1至21中任一项所述的信息传输方法的步骤。
  24. 一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至21中任一项所述的信息传输方法的步骤。
PCT/CN2020/102098 2019-08-09 2020-07-15 信息传输方法及终端 WO2021027475A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2022507697A JP7340689B2 (ja) 2019-08-09 2020-07-15 情報伝送方法及び端末
BR112022002400A BR112022002400A2 (pt) 2019-08-09 2020-07-15 Método de transmissão de informações e terminal
EP20851489.3A EP4012962A4 (en) 2019-08-09 2020-07-15 INFORMATION TRANSMISSION METHOD AND TERMINAL
KR1020227007842A KR20220046630A (ko) 2019-08-09 2020-07-15 정보의 전송 방법 및 단말
US17/667,780 US20220271892A1 (en) 2019-08-09 2022-02-09 Information transmission method and terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910736219.0 2019-08-09
CN201910736219.0A CN111835486B (zh) 2019-08-09 2019-08-09 一种信息传输方法及终端

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/667,780 Continuation US20220271892A1 (en) 2019-08-09 2022-02-09 Information transmission method and terminal

Publications (1)

Publication Number Publication Date
WO2021027475A1 true WO2021027475A1 (zh) 2021-02-18

Family

ID=72911668

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/102098 WO2021027475A1 (zh) 2019-08-09 2020-07-15 信息传输方法及终端

Country Status (7)

Country Link
US (1) US20220271892A1 (zh)
EP (1) EP4012962A4 (zh)
JP (1) JP7340689B2 (zh)
KR (1) KR20220046630A (zh)
CN (1) CN111835486B (zh)
BR (1) BR112022002400A2 (zh)
WO (1) WO2021027475A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023065324A1 (zh) * 2021-10-22 2023-04-27 Oppo广东移动通信有限公司 侧行传输资源的指示方法、装置、设备及存储介质

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220190984A1 (en) * 2019-04-02 2022-06-16 Lg Electronics Inc. Method and device for transmitting pscch and pssch
US20210112525A1 (en) * 2019-10-15 2021-04-15 Qualcomm Incorporated Mapping two-stage sidelink control with multi-layer sidelink data channel
CN114765511A (zh) * 2021-01-15 2022-07-19 展讯通信(上海)有限公司 非授权频谱的辅链路传输方法及装置、计算机可读存储介质
CN116981048A (zh) * 2022-04-24 2023-10-31 维沃移动通信有限公司 旁链路定位处理方法、装置、终端及可读存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106717091A (zh) * 2014-09-04 2017-05-24 华为技术有限公司 用于针对d2d传送资源分配的系统和方法
CN107733818A (zh) * 2016-08-12 2018-02-23 中兴通讯股份有限公司 端到端设备的数据传输方法及装置
WO2019024116A1 (zh) * 2017-08-04 2019-02-07 Oppo广东移动通信有限公司 信息处理方法、通信设备和计算机存储介质

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10367561B2 (en) * 2015-01-23 2019-07-30 Lg Electronics Inc. Method and apparatus for generating signal by device-to-device communication terminal in wireless communication system
KR20170020145A (ko) * 2015-08-13 2017-02-22 주식회사 아이티엘 단말간 통신 기반 시스템에서 제어정보의 전송 장치 및 방법
EP3346785A4 (en) * 2015-09-01 2019-06-26 NTT DoCoMo, Inc. USER EQUIPMENT AND COMMUNICATION METHOD
CN107333334B (zh) * 2016-04-29 2020-01-31 普天信息技术有限公司 副链路半持续调度的配置方法和装置
IL264602B (en) * 2016-08-10 2022-08-01 Idac Holdings Inc A method for reporting channel status information in a massive antenna system
CN107889073B (zh) * 2016-09-30 2022-05-24 北京三星通信技术研究有限公司 一种v2x通信中的发送资源确定方法和设备
US11343770B2 (en) * 2017-02-06 2022-05-24 Lg Electronics Inc. Method and device for receiving signal through T-RPT in wireless communication system
CN109121214B (zh) * 2017-06-23 2023-11-24 北京三星通信技术研究有限公司 一种v2x通信中的资源选择方法和设备
CN108633065B (zh) * 2017-03-24 2023-12-22 北京三星通信技术研究有限公司 数据发送方法和相应的用户设备
CN108632781B (zh) * 2017-03-24 2023-10-31 北京三星通信技术研究有限公司 车对外界通信中的资源选择或重选方法及用户设备
CN109246659A (zh) * 2017-06-15 2019-01-18 中兴通讯股份有限公司 一种通信控制方法、装置及计算机可读存储介质
EP3450909A1 (en) * 2017-09-05 2019-03-06 Renishaw PLC Non-contact optical tool setting apparatus and method
US11291030B2 (en) * 2018-02-16 2022-03-29 Intel Corporation Sidelink control information for vehicle-to-vehicle communications
EP3823404A4 (en) * 2018-07-20 2022-02-23 Beijing Xiaomi Mobile Software Co., Ltd. INFORMATION TRANSMISSION METHOD AND DEVICE, AS WELL AS TERMINAL AND STORAGE MEDIUM
CN109691146B (zh) * 2018-11-29 2021-11-30 北京小米移动软件有限公司 资源碰撞解决方法、装置及存储介质

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106717091A (zh) * 2014-09-04 2017-05-24 华为技术有限公司 用于针对d2d传送资源分配的系统和方法
CN107733818A (zh) * 2016-08-12 2018-02-23 中兴通讯股份有限公司 端到端设备的数据传输方法及装置
WO2019024116A1 (zh) * 2017-08-04 2019-02-07 Oppo广东移动通信有限公司 信息处理方法、通信设备和计算机存储介质

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ASUSTEK: "Discussion on sidelink structure in NR V2X", 3GPP DRAFT; R1-1907367 DISCUSSION ON SIDELINK STRUCTURE IN NR V2X, vol. RAN WG1, 3 May 2019 (2019-05-03), Reno, USA, pages 1 - 6, XP051709388 *
SAMSUNG: "On Physical Layer Procedures for NR V2X", 3GPP DRAFT; R1-1904426, vol. RAN WG1, 3 April 2019 (2019-04-03), Xi’an, China, pages 1 - 14, XP051707209 *
VIVO: "Physical Layer Procedure for NR Sidelink", 3GPP DRAFT; R1-1812307, vol. RAN WG1, 16 November 2018 (2018-11-16), Spokane USA, pages 1 - 7, XP051478496 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023065324A1 (zh) * 2021-10-22 2023-04-27 Oppo广东移动通信有限公司 侧行传输资源的指示方法、装置、设备及存储介质

Also Published As

Publication number Publication date
JP2022543475A (ja) 2022-10-12
KR20220046630A (ko) 2022-04-14
CN111835486B (zh) 2023-07-11
BR112022002400A2 (pt) 2022-04-26
EP4012962A4 (en) 2022-09-28
JP7340689B2 (ja) 2023-09-07
EP4012962A1 (en) 2022-06-15
CN111835486A (zh) 2020-10-27
US20220271892A1 (en) 2022-08-25

Similar Documents

Publication Publication Date Title
WO2021027475A1 (zh) 信息传输方法及终端
EP3751923B1 (en) Method for transmitting uci, and user terminal
WO2019196690A1 (zh) 旁链路的传输方法和终端
CN110324859B (zh) 副链路的传输资源选择方法、配置方法、终端和网络设备
WO2021027482A1 (zh) 信息传输方法及终端
WO2021218742A1 (zh) 信息反馈、资源调度方法、终端及网络设备
CN111435901B (zh) 混合自动重传请求确认反馈方法、终端和网络设备
WO2021088751A1 (zh) 混合自动重传请求应答harq-ack反馈位置的确定方法及通信设备
WO2021063281A1 (zh) 旁链路资源的确定方法及终端
WO2021017976A1 (zh) 信息传输方法、装置、终端、设备及介质
CN111447686B (zh) 一种harq-ack反馈方法、终端和网络设备
WO2021228132A1 (zh) 信息发送方法、资源处理方法、装置及电子设备
WO2021228131A1 (zh) 信息传输方法、装置及电子设备
WO2021032001A1 (zh) 半持续调度物理下行共享信道的反馈方法及终端设备
WO2020119243A1 (zh) 物理上行控制信道传输方法、网络侧设备和终端
WO2021018227A1 (zh) 上行控制信息的传输方法、终端设备及存储介质
WO2021018130A1 (zh) 物理上行链路控制信道传输方法、装置、设备及介质
CN111278115B (zh) 传输方法、配置方法及相关设备
WO2021204046A1 (zh) Tbs的确定方法及相关设备
WO2021204150A1 (zh) Dmrs开销参考值确定方法和终端
WO2021147719A1 (zh) 资源选择方法及终端
WO2021147852A1 (zh) 周期资源选择方法、旁链路传输方法及终端
WO2021023298A1 (zh) 旁链路测量结果获取方法、发送方法和终端
CN113259061B (zh) Csi传输方法、触发csi传输的方法及相关设备
WO2021209032A1 (zh) 信息传输方法及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20851489

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022507697

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022002400

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20227007842

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020851489

Country of ref document: EP

Effective date: 20220309

ENP Entry into the national phase

Ref document number: 112022002400

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220208