WO2021027342A1 - 一种冷凝式脱硫系统 - Google Patents

一种冷凝式脱硫系统 Download PDF

Info

Publication number
WO2021027342A1
WO2021027342A1 PCT/CN2020/088911 CN2020088911W WO2021027342A1 WO 2021027342 A1 WO2021027342 A1 WO 2021027342A1 CN 2020088911 W CN2020088911 W CN 2020088911W WO 2021027342 A1 WO2021027342 A1 WO 2021027342A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
liquid
condensing
flue gas
demister
Prior art date
Application number
PCT/CN2020/088911
Other languages
English (en)
French (fr)
Inventor
徐连春
李安平
Original Assignee
南京凯盛国际工程有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京凯盛国际工程有限公司 filed Critical 南京凯盛国际工程有限公司
Publication of WO2021027342A1 publication Critical patent/WO2021027342A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D50/00Combinations of methods or devices for separating particles from gases or vapours
    • B01D50/40Combinations of devices covered by groups B01D45/00 and B01D47/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/265Drying gases or vapours by refrigeration (condensation)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/80Semi-solid phase processes, i.e. by using slurries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/96Regeneration, reactivation or recycling of reactants

Definitions

  • the invention relates to the technical field of wet desulfurization, in particular to a condensation type desulfurization system that can further reduce the emission concentration of sulfur dioxide in flue gas.
  • the absorption tower system In wet desulfurization absorption technology, the absorption tower system is the core equipment of the technology, and the design of the absorption tower system determines the desulfurization efficiency of the system. Based on the current increasingly stringent sulfur dioxide emission limit, how to improve the desulfurization efficiency without major transformation of the absorption tower system is an urgent problem to be solved.
  • one of the objectives of the present invention is to provide a condensing desulfurization system, which combines a heat exchanger with a circulation pipeline, while retaining the advantages of the traditional empty tower spray technology, by reducing the reaction of the slurry in contact with the flue gas Temperature, thereby reducing the flue gas volume and flue gas flow rate under working conditions, increasing the reaction residence time of flue gas and slurry, and improving the dissolution and absorption efficiency of sulfur dioxide in the flue gas, while reducing the water content of saturated flue gas, thereby improving the desulfurization efficiency.
  • a condensing desulfurization system comprising: a tower body, including a liquid inlet installation port, a liquid outlet installation port, and a flue gas inlet communicating with the internal space of the tower body And the flue gas outlet; the spray assembly is installed in the liquid inlet installation port, the inner end of which extends into the tower body, and the outer end is located outside the tower body; the circulating pump, which includes a liquid suction port and a liquid discharge port , The liquid suction port is connected to the liquid outlet installation port through a first circulation pipe, and the liquid discharge port is connected to the outer end of the spray assembly through a second circulation pipe; the heat exchanger is disposed in the forward direction.
  • the middle section of the second circulation pipe and, a condensing type mist eliminator, which is arranged inside the tower body and between the flue gas outlet and the spray assembly.
  • the liquid inlet installation port is provided on the upper part of the liquid outlet installation port and the flue gas inlet; the liquid outlet installation port is provided on the tower body The bottom; the flue gas outlet is provided at the top of the tower.
  • the heat exchanger includes the slurry inlet, the slurry outlet, the coolant inlet, and the coolant outlet, and the slurry inlet and the slurry outlet are also connected with
  • a cooling liquid channel is arranged between the interlayers of the spiral slurry channel, and the cooling liquid channel is respectively communicated with the cooling liquid inlet and the cooling liquid outlet.
  • the second circulating pipe includes a first pipe section and a second pipe section; one end of the first pipe section is connected with the discharge port of the circulating pump, The other end is connected with the slurry inlet of the heat exchanger; one end of the second pipe section is connected with the slurry outlet of the heat exchanger, and the other end is connected with the outer end of the spray assembly.
  • the condensing demister is equipped with a demister module, and the demister module is composed of a plurality of parallel demister blades, and the demister blades are folded Curved shape, with a hollow channel in which cooling liquid flows; the demister blades are arranged side by side and connected to the supporting side plates at both ends, and the hollow channel is connected to the channel in the supporting side plate A through coolant channel is formed, and the coolant flows in from one side of the supporting side plate, and the through coolant channel flows through each demister blade in turn, and flows out from the other side of the supporting side plate .
  • the heat exchanger is arranged on only one set of the second circulation pipe, or is arranged on several sets of the second circulation pipe respectively
  • the heat exchanger is arranged in series on a set of the second circulation tube, or several sets of the second circulation tube are connected in parallel to share one heat exchanger.
  • the slurry inlet is arranged at the lower part of the side of the heat exchanger or at the bottom of the heat exchanger.
  • the heat exchanger adopts a plate heat exchanger or a tube heat exchanger.
  • the condensing demister is composed of a plurality of the demister modules, and the demister modules are in the shape of a roof, a flat plate or a straight tube.
  • the material of the defogging blade is plastic or stainless steel.
  • the present invention retains the advantages of the traditional empty tower spray technology, and reduces the reaction temperature of the slurry in contact with the flue gas, thereby reducing the amount of flue gas under working conditions And flue gas flow rate, increase the reaction residence time of flue gas and slurry, and improve the dissolution and absorption efficiency of sulfur dioxide in the flue gas, thereby improving the desulfurization efficiency and reducing the moisture content of the flue gas; and adopting a mist eliminator equipped with cooling blades , To improve the condensation effect of the mist droplets of the mist eliminator, on the basis of the original mist eliminator bending and defogging, further collect the sulfur-containing moisture at the flue gas outlet to improve the desulfurization efficiency.
  • Figure 1 is a diagram of the overall system structure of the present invention.
  • Figure 2 shows the internal structure of the heat exchanger.
  • Figure 3 is a top view of the internal structure of the heat exchanger.
  • Figure 4 is a schematic diagram of another form of the heat exchange slurry inlet of the heat exchanger.
  • Figure 5 is an elevation view of the demister module (ridge shape) of the condensing demister.
  • Figure 6 is an enlarged cross-sectional view of the demister module of the condensing demister.
  • Figure 7 is a view of the demister module of the condensing demister from the direction A.
  • the “one embodiment” or “embodiment” referred to herein refers to a specific feature, structure, or characteristic that can be included in at least one implementation of the present invention.
  • the appearances of "in one embodiment” in different places in this specification do not all refer to the same embodiment, nor are they separate or selectively mutually exclusive embodiments with other embodiments.
  • the condensing desulfurization system includes a tower body 100, a spray assembly 200, a circulation pump 300, a first circulation pipe 400, a second circulation pipe 500, a heat exchanger 600, and a condensation demister 700.
  • the tower body 100 has an accommodating space inside, and the tower body 100 also includes a liquid inlet installation port 101, a liquid outlet installation port 102, a flue gas inlet 103, and a flue gas outlet 104 communicating with the internal space of the tower body 100.
  • the installation port 101 is used to feed the slurry for desulfurization into the tower body 100;
  • the outlet installation port 102 is used to discharge the absorbed slurry out of the tower body 100;
  • the flue gas inlet 103 is used to pass flue gas into the tower body 100 ;
  • the flue gas outlet 104 is used to discharge the desulfurized gas in the tower body 100.
  • liquid inlet installation port 101 is provided at the upper part of the liquid outlet installation port 102 and the flue gas inlet 103; the liquid outlet installation port 102 is provided at the bottom of the tower body 100; the flue gas outlet 104 is provided on the top of the tower body 100, which is convenient Full contact of slurry and flue gas.
  • the spray assembly 200 can be used as the spray layer of the tower body 100 and is installed in the liquid inlet installation port 101.
  • the inner end of the spray assembly 200 extends into the tower body 100 and the outer end is located outside the tower body 100.
  • the circulating pump 300 includes a liquid suction port 301 and a liquid discharge port 302.
  • the liquid suction port 301 is connected to the discharge installation port 102 through the first circulation pipe 400, and the discharge port 302 is connected to the outer end of the spray assembly 200 through the second circulation pipe 500. connection.
  • the heat exchanger 600 is disposed in the middle section of the second circulation pipe 500 in the forward direction.
  • the heat exchanger 600 includes a slurry inlet 601, a slurry outlet 602, a coolant inlet 603, and a coolant outlet 604.
  • a spiral slurry channel 605 located inside the heat exchanger 600 is also connected between the slurry inlet 601 and the slurry outlet 602.
  • the slurry flows in from the slurry inlet 601, flows through the spiral slurry channel 605, and then flows out from the slurry outlet 602 at the top; at the same time, the coolant flows in from the coolant inlet 603 at the bottom and flows through the coolant channel After 606, it flows out from the cooling liquid outlet 604 on the right side, and the two channels are arranged in a spiral form adjacent to each other alternately in the heat exchanger.
  • the coolant passing into the coolant inlet 603 and the slurry before entering the spray assembly 200 perform indirect heat exchange and cooling in the heat exchanger 600.
  • the second circulation pipe 500 includes a first pipe section 501 and a second pipe section 502; wherein, one end of the first pipe section 501 is connected to the discharge port 302 of the circulating pump 300, and the other end is connected to the slurry inlet 601 of the heat exchanger 600 One end of the second pipe section 502 is connected to the slurry outlet 602 of the heat exchanger 600, and the other end is connected to the outer end of the spray assembly 200.
  • the slurry inlet 601 may be arranged at the lower part of the side of the heat exchanger 600 or at the bottom of the heat exchanger 600.
  • the heat exchanger 600 in the present invention may adopt a plate heat exchanger or a tube heat exchanger.
  • the heat exchanger 600 adopts a spiral plate heat exchanger, which utilizes a single-channel spiral flow of fluid to generate a self-washing effect and cause the slurry to flow inside.
  • the condensing mist eliminator 700 is arranged inside the tower body 100 and located between the flue gas outlet 104 and the spray assembly 200.
  • the condensing defogger 700 is equipped with a defogging module 701.
  • the defogging module 701 consists of a number of parallel defogging blades 702.
  • the defogging blades 702 are bent in one or more rows; the defogging blades 702 are provided There is a hollow channel 703 into which cooling liquid can pass.
  • the defogging blades 702 are arranged side by side and connected to the supporting side plates 705 at both ends.
  • the hollow channel 703 is connected with the channels in the supporting side plate 705 to form a through cooling liquid channel. It flows in from one side, and flows through each defogging blade 702 through the penetrating coolant channel in turn, and flows out from the other side of the supporting side plate 705, thereby reducing the surface temperature of the defogging blade 702 and increasing the condensing defogger 700 Condensation defogging effect.
  • the heat exchanger 600 is only provided on one set of the second circulating pipe 500, or may be provided on several sets of second circulating pipes 500; in addition, the heat exchanger 600 may be provided on a set of first circulating pipes 500. Multiple sets of second circulation tubes 500 are arranged in series, or several sets of second circulation tubes 500 are connected in parallel to share one heat exchanger 600.
  • the condensing defogger 700 is composed of multiple defogging modules 701, and the defogging modules 701 may be in the shape of a roof, a flat plate or a straight tube.
  • the defogging blade 702 can be made of plastic or stainless steel.
  • the original flue gas enters from the flue gas inlet 103 on the side of the tower body 100, and performs the desulfurization reaction with the slurry sprayed from the spray layer (spray assembly 200); the heat exchanger 600 is set to reduce the temperature of the slurry in the second circulation pipe 500 , Thereby reducing the temperature of the slurry sprayed in the spray layer, increasing the dissolution rate of sulfur dioxide flue gas in the slurry, and improving the desulfurization efficiency, while reducing the flue gas temperature in the tower, thereby reducing the moisture content of the flue gas.
  • the flue gas after the desulfurization reaction with the slurry sprayed from the spray layer is bent and condensed and defogged by the condensing defogger 700 to further collect the sulfur-containing moisture at the flue gas outlet 104 to reduce white fog and stack rain form.
  • the kiln tail flue gas volume is 560,000Nm3/h
  • the temperature of the slurry in the circulating pipeline is 50°C during wet desulfurization operation
  • the flue gas temperature at the flue gas outlet after desulfurization is 45°C.
  • the invention combines the heat exchanger with the circulation pipeline, while retaining the advantages of the traditional empty tower spray technology, while reducing the reaction temperature of the slurry in contact with the flue gas, thereby reducing the flue gas volume and flue gas flow rate under working conditions, and improving the flue gas
  • the reaction residence time of gas and slurry and improve the dissolution and absorption efficiency of sulfur dioxide in the flue gas, thereby improving the desulfurization efficiency, while reducing the moisture content of the flue gas; and by adopting a mist eliminator equipped with cooling blades, the mist of the mist eliminator is improved Condensation effect.
  • the sulfur-containing moisture at the flue gas outlet is further collected, so as to improve the desulfurization efficiency, reduce the cost of equipment transformation, and achieve the environmental protection emission index, which has significant economic and social benefits .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Treating Waste Gases (AREA)

Abstract

提供一种冷凝式脱硫系统,包括塔体(100),包括与所述塔体(100)的内部空间连通的进液安装口(101)、出液安装口(102)、烟气进口(103)和烟气出口(104);喷淋组件(200),安装于所述进液安装口(101)内,其内端伸入所述塔体(100)内,外端位于所述塔体(100)的外部;循环泵(300),其包括吸液口(301)和排液口(302),所述吸液口(301)通过第一循环管(400)与所述出液安装口(102)连接,所述排液口(302)通过第二循环管(500)与所述喷淋组件(200)的外端连接;换热器(600),正向设置于所述第二循环管(500)的中段;以及,冷凝式除雾器(700),设置于所述塔体(100)的内部,并位于所述烟气出口(104)和喷淋组件(200)之间。所述冷凝式脱硫系统,能够提高脱硫效率,同时降低烟气的含水量。

Description

一种冷凝式脱硫系统 技术领域
本发明涉及湿法脱硫技术领域,特别是一种能进一步降低烟气中二氧化硫排放浓度的冷凝式脱硫系统。
背景技术
消减二氧化硫的排放量,控制大气二氧化硫污染、保护大气环境质量,是目前及未来相当长时间内我国环境保护的重要课题之一。国家环保要求日益严格,以水泥行业为例,二氧化硫排放限值从200mg/Nm3降至100mg/Nm3,再降至目前的50mg/Nm3,部分地区甚至要求排放限值35mg/Nm3。
二氧化硫污染控制技术颇多,分源头治理和末端治理等,其中末端治理为主要选择方式。末端治理中烟气脱硫的方法很多,根据物理及化学的基本原理,大体上可分为吸收法、吸附法及催化法三种。吸收法是净化烟气中二氧化硫的最重要的、应用最广泛的方法,吸收法又分为干法和湿法,并以湿法脱硫为主。
湿法脱硫吸收技术中,吸收塔系统为该技术的核心装备,吸收塔系统的设计决定了该系统的脱硫效率。基于目前二氧化硫排放限值日益严格的情况,如何在不对吸收塔系统进行大幅改造的前提下,提高脱硫效率是亟待解决的问题。
针对以上情况,为保证环保排放指标,提高脱硫效率,湿法脱硫吸收系统需要在不明显增加设备投入和运行成本的条件下做进一步优化,需要提供一种冷凝式脱硫系统,提高现有系统的脱硫效率。
发明内容
本部分的目的在于概述本发明的实施例的一些方面以及简要介绍一些较佳实施例。在本部分以及本申请的说明书摘要和发明名称中可能会做些简化或省略以避免使本部分、说明书摘要和发明名称的目的模糊,而这种简化或省略不能用于限制本发明的范围。
鉴于上述和/或现有现有技术的不足,提出了本发明。
因此,本发明其中的一个目的是提供一种冷凝式脱硫系统,其将换热器与循环管路相结合,在保留传统空塔喷淋技术优点的同时,通过降低与烟气接触的浆液反应温度,从而降低工况烟气量和烟气流速,提高烟气与浆液的反应停留时间,并提高烟气中二氧化硫的溶解吸收效率,同时降低饱和烟气的含水量,从而提高脱硫效率。
为解决上述技术问题,本发明提供如下技术方案:一种冷凝式脱硫系统,其包括:塔体,包括与所述塔体的内部空间连通的进液安装口、出液安装口、烟气进口和烟气出口;喷淋组件,安装于所述进液安装口内,其内端伸入所述塔体内,外端位于所述塔体的外部;循环泵,其包括吸液口和排液口,所述吸液口通过第一循环管与所述出液安装口连接,所述排液口通过第二循环管与所述喷淋组件的外端连接;换热器,正向设置于所述第二循环管的中段;以及,冷凝式除雾器,设置于所述塔体的内部,并位于所述烟气出口和喷淋组件之间。
作为本发明所述冷凝式脱硫系统的一种优选方案,其中:所述进液安装口设置于所述出液安装口以及烟气进口的上部;所述出液安装口设置于所述塔体的底部;所述烟气出口设置于所述塔体的顶部。
作为本发明所述冷凝式脱硫系统的一种优选方案,其中:换热器包括所述浆液进口、浆液出口、冷却液进口以及冷却液出口,所述浆液进口与浆液出口之间还连接有位于所述换热器内部的螺旋浆液通道,所述螺旋浆液通道的夹层之间具有冷却液通道,所述冷却液通道分别与所述冷却液进口和冷却液出口连通。
作为本发明所述冷凝式脱硫系统的一种优选方案,其中:所述第二循环管包括第一管段和第二管段;所述第一管段的一端与所述循环泵的排液口连接,另一端与所述换热器的浆液进口连接;所述第二管段的一端与所述换热器的浆液出口连接,另一端与所述喷淋组件的外端连接。
作为本发明所述冷凝式脱硫系统的一种优选方案,其中:所述冷凝式除雾器配备除雾模块,所述除雾模块由若干并列的除雾叶片构成,所述除雾叶片为折弯形,其内设有中空通道,所述中空通道内通入冷却液;所述除雾叶片并排设置并与两端的支撑侧板连接,所述中空通道与所述支撑侧板内的通道相连形成贯穿的冷却液通道,冷却液由所述支撑侧板的一侧流入,通过该贯穿的所述冷却液通道依次流经每个除雾叶片,并从所述支撑侧板的另一侧流出。
作为本发明所述冷凝式脱硫系统的一种优选方案,其中:所述换热器,仅在一套所述第二循环管上设置,或是在若干套所述第二循环管上分别设置;所述换热器在一套所述第二循环管上串联设置多个,或是若干套所述第二循环管并联共用一个换热器。
作为本发明所述冷凝式脱硫系统的一种优选方案,其中:所述换热器中, 所述浆液进口设置在所述换热器侧边的下部或设置在所述换热器的底部。
作为本发明所述冷凝式脱硫系统的一种优选方案,其中:所述换热器采用板面式换热器或管式换热器。
作为本发明所述冷凝式脱硫系统的一种优选方案,其中:所述冷凝式除雾器由多件所述除雾模块构成,所述除雾模块为屋脊形、平板形或直管形。
作为本发明所述冷凝式脱硫系统的一种优选方案,其中:所述除雾叶片,其叶片材质采用塑料或不锈钢。
本发明的有益效果:本发明通过将换热器与循环管路相结合,在保留传统空塔喷淋技术优点的同时,通过降低与烟气接触的浆液反应温度,从而降低工况烟气量和烟气流速,提高烟气与浆液的反应停留时间,并提高烟气中二氧化硫的溶解吸收效率,从而提高脱硫效率,同时降低烟气的含水量;并通过采用配有冷却叶片的除雾器,提高除雾器的雾滴冷凝效果,在原有除雾器折弯除雾的基础上,进一步收集烟气出口处的含硫水分,提高脱硫效率。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其它的附图。其中:
图1为本发明整体系统结构图。
图2为换热器的内部结构图。
图3为换热器的内部结构俯视图。
图4为换热器的换热浆液进口的另一种形式示意图。
图5为冷凝式除雾器的除雾模块(屋脊形)的立面图。
图6为冷凝式除雾器的除雾模块的断面放大图。
图7为冷凝式除雾器的除雾模块的A向示图。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合说明书附图对本发明的具体实施方式做详细的说明。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是本发明还可以采用其他不同于在此描述的其它方式来实施,本领域技术人员可以在不 违背本发明内涵的情况下做类似推广,因此本发明不受下面公开的具体实施例的限制。
其次,此处所称的“一个实施例”或“实施例”是指可包含于本发明至少一个实现方式中的特定特征、结构或特性。在本说明书中不同地方出现的“在一个实施例中”并非均指同一个实施例,也不是单独的或选择性的与其他实施例互相排斥的实施例。
参照图1~7,为本发明第一个实施例,该实施例提供了一种冷凝式脱硫系统。所述冷凝式脱硫系统包括塔体100、喷淋组件200、循环泵300、第一循环管400、第二循环管500、换热器600和冷凝式除雾器700。
塔体100的内部具有容置空间,塔体100还包括与塔体100的内部空间连通的进液安装口101、出液安装口102、烟气进口103和烟气出口104,其中,进液安装口101用于向塔体100内送入用于脱硫的浆液;出液安装口102用于将吸收后的浆液排出塔体100;烟气进口103用于向塔体100内通入烟气;烟气出口104用于将塔体100内经过脱硫的气体进行排出。
进一步的,进液安装口101设置于出液安装口102以及烟气进口103的上部;出液安装口102设置于塔体100的底部;烟气出口104设置于塔体100的顶部,如此便于浆液与烟气的充分接触。
喷淋组件200可以作为塔体100的喷淋层,其安装于进液安装口101内,喷淋组件200的内端伸入塔体100内,外端位于塔体100的外部。
循环泵300包括吸液口301和排液口302,吸液口301通过第一循环管400与出液安装口102连接,排液口302通过第二循环管500与喷淋组件200的外端连接。
换热器600正向设置于第二循环管500的中段。具体的,换热器600包括浆液进口601、浆液出口602、冷却液进口603以及冷却液出口604,浆液进口601与浆液出口602之间还连接有位于换热器600内部的螺旋浆液通道605,螺旋浆液通道605的夹层之间具有冷却液通道606,冷却液通道606分别与冷却液进口603和冷却液出口604连通。在换热器600的工作过程中,浆液从浆液进口601流入,流经螺旋浆液通道605后从顶部的浆液出口602流出;同时,冷却液从底部的冷却液进口603流入,流经冷却液通道606后从右侧的冷却液出口604流出,两个通道采用螺旋形式相邻交替布置在换热器内。本发明中,通入冷却液进口603的冷却液与进入喷淋组件200前的浆液在换热器600内进 行间接换热降温。
进一步的,第二循环管500包括第一管段501和第二管段502;其中,第一管段501的一端与循环泵300的排液口302连接,另一端与换热器600的浆液进口601连接;第二管段502的一端与换热器600的浆液出口602连接,另一端与喷淋组件200的外端连接。
进一步的,在换热器600中,浆液进口601可以设置在换热器600侧边的下部或设置在换热器600的底部。
进一步的,本发明中的换热器600可以采用板面式换热器或管式换热器。较佳的,换热器600采用螺旋板式换热器,利用流体单通道螺旋流动,产生自冲刷作用,使浆液在内部流动。
冷凝式除雾器700设置于塔体100的内部,并位于烟气出口104和喷淋组件200之间。冷凝式除雾器700配备除雾模块701,除雾模块701由若干并列的除雾叶片702构成,除雾叶片702为折弯形,折弯为1道或几道;除雾叶片702内设有中空通道703,中空通道703内能够通入冷却液。
在除雾模块701中,除雾叶片702并排设置并与两端的支撑侧板705连接,中空通道703与支撑侧板705内的通道相连形成贯穿的冷却液通道,冷却液由支撑侧板705的一侧流入,通过该贯穿的冷却液通道依次流经每个除雾叶片702,并从支撑侧板705的另一侧流出,从而降低除雾叶片702表面温度,提高冷凝式除雾器700的冷凝除雾效果。
进一步的,在本发明中,换热器600仅在一套第二循环管500上设置,或是可以在若干套第二循环管500上分别设置;此外,换热器600可以在一套第二循环管500上串联设置多个,或是若干套第二循环管500并联共用一个换热器600。
进一步的,冷凝式除雾器700由多件除雾模块701构成,除雾模块701可以为屋脊形、平板形或直管形。
进一步的,所述除雾叶片702,其叶片材质可以采用塑料或不锈钢。
原烟气从塔体100一侧的烟气进口103进入,与喷淋层(喷淋组件200)喷射下来的浆液进行脱硫反应;设置换热器600,使得第二循环管500中浆液温度降低,从而降低喷淋层中喷射的浆液温度,提高二氧化硫烟气在浆液中的溶解率,并提高脱硫效率,同时降低塔内烟气温度,从而降低烟气的含水量。
与喷淋层喷射下来的浆液进行脱硫反应后的烟气,经过冷凝式除雾器700的折弯和冷凝除雾,进一步收集烟气出口104处的含硫水分,减少白雾和烟囱雨的形成。
在一个实施例中:某水泥厂,窑尾烟气量为560000Nm3/h,湿法脱硫运行时,循环管道内浆液的温度为50℃,烟气出口处脱硫后的烟气温度为45℃。当通过换热器将循环管道内浆液的温度从50℃降低至45℃时,二氧化硫的溶解率提高了18%,烟气流速降低了1.5%,同时系统的脱硫效率提高了2%。另外,当通过冷凝除雾器将烟气出口处的烟气温度从45℃降低至40℃时,新冷凝下7.9t/h的冷凝水,收集烟气出口处的含硫水分,从而进一步提高脱硫效率。
本发明通过换热器与循环管路相结合,在保留传统空塔喷淋技术优点的同时,通过降低与烟气接触的浆液反应温度,从而降低工况烟气量和烟气流速,提高烟气与浆液的反应停留时间,并提高烟气中二氧化硫的溶解吸收效率,从而提高脱硫效率,同时降低烟气的含水量;并通过采用配有冷却叶片的除雾器,提高除雾器的雾滴冷凝效果,在原有除雾器折弯除雾的基础上,进一步收集烟气出口处的含硫水分,提高脱硫效率,降低设备改造成本,达到环保排放指标,具有显著的经济效益和社会效益。
应说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (9)

  1. 一种冷凝式脱硫系统,其特征在于:包括,
    塔体(100),包括与所述塔体(100)的内部空间连通的进液安装口(101)、出液安装口(102)、烟气进口(103)和烟气出口(104);
    喷淋组件(200),安装于所述进液安装口(101)内,其内端伸入所述塔体(100)内,外端位于所述塔体(100)的外部;
    循环泵(300),其包括吸液口(301)和排液口(302),所述吸液口(301)通过第一循环管(400)与所述出液安装口(102)连接,所述排液口(302)通过第二循环管(500)与所述喷淋组件(200)的外端连接;
    换热器(600),正向设置于所述第二循环管(500)的中段;以及,
    冷凝式除雾器(700),设置于所述塔体(100)的内部,并位于所述烟气出口(104)和喷淋组件(200)之间。
  2. 如权利要求1所述的冷凝式脱硫系统,其特征在于:所述进液安装口(101)设置于所述出液安装口(102)以及烟气进口(103)的上部;
    所述出液安装口(102)设置于所述塔体(100)的底部;所述烟气出口(104)设置于所述塔体(100)的顶部。
  3. 如权利要求2所述的冷凝式脱硫系统,其特征在于:换热器(600)包括浆液进口(601)、浆液出口(602)、冷却液进口(603)以及冷却液出口(604),所述浆液进口(601)与浆液出口(602)之间还连接有位于所述换热器(600)内部的螺旋浆液通道(605),所述螺旋浆液通道(605)的夹层之间具有冷却液通道(606),所述冷却液通道(606)分别与所述冷却液进口(603)和冷却液出口(604)连通。
  4. 如权利要求3所述的冷凝式脱硫系统,其特征在于:所述第二循环管(500)包括第一管段(501)和第二管段(502);
    所述第一管段(501)的一端与所述循环泵(300)的排液口(302)连接,另一端与所述换热器(600)的浆液进口(601)连接;
    所述第二管段(502)的一端与所述换热器(600)的浆液出口(602)连接,另一端与所述喷淋组件(200)的外端连接。
  5. 如权利要求4所述的冷凝式脱硫系统,其特征在于:所述冷凝式除雾器(700)配备除雾模块(701),所述除雾模块(701)由若干并列的除雾叶片(702)构成,所述除雾叶片(702)为折弯形,其内设有中空通道(703),所述中空通 道(703)内通入冷却液;
    所述除雾叶片(702)并排设置并与两端的支撑侧板(705)连接,所述中空通道(703)与所述支撑侧板(705)内的通道相连形成贯穿的冷却液通道,冷却液由所述支撑侧板(705)的一侧流入,通过该贯穿的所述冷却液通道依次流经每个除雾叶片(702),并从所述支撑侧板(705)的另一侧流出。
  6. 如权利要求5所述的冷凝式脱硫系统,其特征在于:所述换热器(600),仅在一套所述第二循环管(500)上设置,或是在若干套所述第二循环管(500)上分别设置;
    所述换热器(600)在一套所述第二循环管(500)上串联设置多个,或是若干套所述第二循环管(500)并联共用一个换热器(600)。
  7. 如权利要求6所述的冷凝式脱硫系统,其特征在于:所述换热器(600)中,所述浆液进口(601)设置在所述换热器(600)侧边的下部或设置在所述换热器(600)的底部。
  8. 如权利要求1~5或7任一所述的冷凝式脱硫系统,其特征在于:所述换热器(600)采用板面式换热器或管式换热器。
  9. 如权利要求1~5或7任一所述的冷凝式脱硫系统,其特征在于:所述冷凝式除雾器(700)由多件所述除雾模块(701)构成,所述除雾模块(701)为屋脊形、平板形或直管形。
PCT/CN2020/088911 2019-08-12 2020-05-07 一种冷凝式脱硫系统 WO2021027342A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910741755.XA CN110280114A (zh) 2019-08-12 2019-08-12 一种冷凝式脱硫系统
CN201910741755.X 2019-08-12

Publications (1)

Publication Number Publication Date
WO2021027342A1 true WO2021027342A1 (zh) 2021-02-18

Family

ID=68025120

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/088911 WO2021027342A1 (zh) 2019-08-12 2020-05-07 一种冷凝式脱硫系统

Country Status (2)

Country Link
CN (1) CN110280114A (zh)
WO (1) WO2021027342A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114288838A (zh) * 2021-12-21 2022-04-08 太仓联科工业设计有限公司 一种化工工厂排放废气脱硫脱硝净化塔
CN114560519A (zh) * 2022-03-02 2022-05-31 北京节度科技有限公司 一种燃煤电厂烟气脱硫废水蒸发塔
CN114849459A (zh) * 2022-05-16 2022-08-05 中国神华煤制油化工有限公司 湿法脱硫球型塔及其应用和湿法脱硫工艺
CN115055043A (zh) * 2022-06-07 2022-09-16 中国恩菲工程技术有限公司 一种脱硫系统
CN116099348A (zh) * 2023-02-15 2023-05-12 武汉科技大学 一种提高脱硫效率的多层喷淋脱硫塔
CN118079574A (zh) * 2024-04-29 2024-05-28 国能龙源环保有限公司 集液装置及脱硫除尘塔

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110280114A (zh) * 2019-08-12 2019-09-27 南京凯盛国际工程有限公司 一种冷凝式脱硫系统
CN110975544A (zh) * 2019-12-17 2020-04-10 江阴市尚时环境工程有限公司 低能耗高效率燃煤电厂锅炉烟气脱硫脱硝系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003103803A2 (en) * 2002-06-05 2003-12-18 Marsulex Environmental Technologies, Corp. Flue gas desulfurization process and apparatus for removing nitrogen oxides
CN206027336U (zh) * 2016-08-11 2017-03-22 杨忠民 一种冷凝式除雾器
CN107261699A (zh) * 2017-06-15 2017-10-20 上海交通大学 一种脱硫烟气超净除尘消白烟的装置和方法
CN108355457A (zh) * 2018-04-24 2018-08-03 青岛达能环保设备股份有限公司 湿法脱硫烟气消白系统
CN110280114A (zh) * 2019-08-12 2019-09-27 南京凯盛国际工程有限公司 一种冷凝式脱硫系统
CN210645810U (zh) * 2019-08-12 2020-06-02 南京凯盛国际工程有限公司 一种冷凝式脱硫系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003103803A2 (en) * 2002-06-05 2003-12-18 Marsulex Environmental Technologies, Corp. Flue gas desulfurization process and apparatus for removing nitrogen oxides
CN206027336U (zh) * 2016-08-11 2017-03-22 杨忠民 一种冷凝式除雾器
CN107261699A (zh) * 2017-06-15 2017-10-20 上海交通大学 一种脱硫烟气超净除尘消白烟的装置和方法
CN108355457A (zh) * 2018-04-24 2018-08-03 青岛达能环保设备股份有限公司 湿法脱硫烟气消白系统
CN110280114A (zh) * 2019-08-12 2019-09-27 南京凯盛国际工程有限公司 一种冷凝式脱硫系统
CN210645810U (zh) * 2019-08-12 2020-06-02 南京凯盛国际工程有限公司 一种冷凝式脱硫系统

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114288838A (zh) * 2021-12-21 2022-04-08 太仓联科工业设计有限公司 一种化工工厂排放废气脱硫脱硝净化塔
CN114560519A (zh) * 2022-03-02 2022-05-31 北京节度科技有限公司 一种燃煤电厂烟气脱硫废水蒸发塔
CN114849459A (zh) * 2022-05-16 2022-08-05 中国神华煤制油化工有限公司 湿法脱硫球型塔及其应用和湿法脱硫工艺
CN114849459B (zh) * 2022-05-16 2023-05-30 中国神华煤制油化工有限公司 湿法脱硫球型塔及其应用和湿法脱硫工艺
CN115055043A (zh) * 2022-06-07 2022-09-16 中国恩菲工程技术有限公司 一种脱硫系统
CN116099348A (zh) * 2023-02-15 2023-05-12 武汉科技大学 一种提高脱硫效率的多层喷淋脱硫塔
CN118079574A (zh) * 2024-04-29 2024-05-28 国能龙源环保有限公司 集液装置及脱硫除尘塔

Also Published As

Publication number Publication date
CN110280114A (zh) 2019-09-27

Similar Documents

Publication Publication Date Title
WO2021027342A1 (zh) 一种冷凝式脱硫系统
CN107008119A (zh) 一种消除湿法脱硫湿烟雨的装置及方法
CN108465368A (zh) 脱硫除尘消白深度净化装置
CN106914124A (zh) 湿法脱硫塔内热管换热节水除雾防石膏雨装置
CN110882611B (zh) 一种锅炉烟气脱白系统
CN203017796U (zh) 一种凝结烟气中水汽的除湿除雾装置
CN110559791A (zh) 湿烟气利用换热冷却后烟气凝结水循环喷淋降温消白的工艺
CN208927905U (zh) 一种低成本烟气深度净化装置
CN108031271A (zh) 一种烟气脱硫装置
CN210645810U (zh) 一种冷凝式脱硫系统
CN107875818A (zh) 一种浆液冷却的消白脱硫塔
CN205435409U (zh) 一种烟气除湿除雾装置
CN112391216A (zh) 一种三甘醇溶剂的再生装置和方法
CN110479090A (zh) 一种烟气节能降耗脱硫脱硝装置
CN207413149U (zh) 一种克劳斯尾气处理系统
CN114618274B (zh) 防止金属换热器腐蚀的方法
CN206867964U (zh) 一种消除湿法脱硫湿烟雨的装置
CN103256818A (zh) 一种罐式煅烧炉冷却水套
CN212757895U (zh) 一种用于脱硫吸收塔的冷凝管式除雾器
CN211753907U (zh) 一种湿法脱硫烟气消除白色烟羽的高效直接接触式冷凝系统
CN108392974B (zh) 一种减少火电厂白烟羽水汽排放量的系统
CN208449009U (zh) 烟气脱硫脱硝装置
CN211677160U (zh) 一种脱硫塔消白烟装置
CN207511828U (zh) 一种尾气中回收硫磺的装置
CN217220819U (zh) 湿法脱硫后脱硝系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20852860

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20852860

Country of ref document: EP

Kind code of ref document: A1