WO2021026930A1 - 一种通信方法和装置 - Google Patents

一种通信方法和装置 Download PDF

Info

Publication number
WO2021026930A1
WO2021026930A1 PCT/CN2019/100885 CN2019100885W WO2021026930A1 WO 2021026930 A1 WO2021026930 A1 WO 2021026930A1 CN 2019100885 W CN2019100885 W CN 2019100885W WO 2021026930 A1 WO2021026930 A1 WO 2021026930A1
Authority
WO
WIPO (PCT)
Prior art keywords
scg
access network
network node
base station
indication information
Prior art date
Application number
PCT/CN2019/100885
Other languages
English (en)
French (fr)
Inventor
王瑞
徐海博
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2019/100885 priority Critical patent/WO2021026930A1/zh
Priority to CN201980098970.0A priority patent/CN114208389B/zh
Priority to EP19941746.0A priority patent/EP4017203B1/en
Publication of WO2021026930A1 publication Critical patent/WO2021026930A1/zh
Priority to US17/670,135 priority patent/US20220167449A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • H04W76/16Involving different core network technologies, e.g. a packet-switched [PS] bearer in combination with a circuit-switched [CS] bearer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • H04L5/0098Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/10Access point devices adapted for operation in multiple networks, e.g. multi-mode access points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/20Interfaces between hierarchically similar devices between access points

Definitions

  • the embodiments of the present application relate to the field of communication technologies, and in particular, to a communication method and device.
  • the terminal device When the terminal device works in the dual-connectivity (DC) mode, the terminal can simultaneously transmit data on the two air interface links of the primary serving cell group (Master Cell Group, MCG) and the secondary serving cell group (Secondary Cell Group, SCG) ,
  • MCG Master Cell Group
  • SCG Secondary Cell Group
  • the power consumption is large.
  • the data rate of the terminal fluctuates frequently, for example, it is often in a low data rate state.
  • the energy consumption of the SCG link is a waste.
  • a network configuration terminal is used to perform DC operation in a high data rate state, that is, a secondary node (SN) is added; when the terminal enters a low data rate state, the network configuration terminal releases the DC operation , That is, SN is released to save the power of network equipment and terminal equipment.
  • SN secondary node
  • the terminal needs to completely release the SCG configuration, and when the SN is increased, a complete set of SCG configuration is added again.
  • the configuration of the SN for the terminal does not need to be updated, and the terminal can continue to use the original configuration. Therefore, frequent addition and release of the SN increases the overhead of air interface signaling and the delay is large.
  • the embodiments of the present application provide a communication method and device, which can reduce the overhead of air interface signaling and delay while reducing the power consumption of network equipment and terminals.
  • a communication method includes: a first access network node determines to deactivate a secondary cell group SCG or activates the SCG; and the first access network node sends a message to the second access network node Send first instruction information, the first instruction information is used to instruct the second access network node to send a deactivate SCG command or an SCG activation command to the terminal; wherein, the first access network node and the second access network node It belongs to a first base station, and the first base station is a primary node or a secondary node of the aforementioned terminal in dual-connection communication; the aforementioned SCG is one or more cells managed by the secondary node.
  • first access network node and second access network node may be the CU and DU of the MN or SN, respectively, that is, this application uses the MN or SN to perform signaling interaction under the CU-DU architecture to achieve SCG deactivation and
  • the activation operation can be adapted to different network deployments, making the deactivation and activation operations of the SCG more flexible.
  • the above method further includes: the first access network node sends second indication information to the second base station, where the second indication information is used to instruct the second base station to deactivate
  • the aforementioned SCG may activate the aforementioned SCG; wherein, the first base station is a master node and the second base station is a secondary node.
  • the above method further includes: the first access network node sends a first notification message to the second base station, and the A notification message is used to notify the second base station that the first base station deactivates the SCG or activates the SCG; wherein, the first base station is a secondary node and the second base station is a master node.
  • the MN can suspend/resume the data transmission tunnel established on the X2/Xn interface corresponding to the bearer of the SN. This solution can retain the relevant configuration of the SCG , And through the activation operation, the SCG link communication can be quickly restored.
  • the first access network node includes a first device and a second device; the first device is used to perform the foregoing The control plane function of the first access network node, and the second device is used to execute the user plane function of the first access network node.
  • the function of the first access network node can be composed of the first device and the second device.
  • the first device can be CU-CP, and the second device can be CU-UP. That is, this solution can be used in MN or SN.
  • the CU carries out signaling interaction under the architecture of CP and UP to realize the deactivation and activation of SCG.
  • the first access network node determining to deactivate the secondary cell group SCG or to activate the SCG includes: the first device Determining to deactivate the SCG or to activate the SCG; the sending of the first indication information by the first access network node to the second access network node includes: the first device sending the first indication information to the second access network node .
  • the above-mentioned first device and second device may be the CU-CP and CU-UP of the MN or SN, respectively, that is, this application implements signaling interaction under an architecture in which the CU of the MN or SN includes CP and UP.
  • the deactivation and activation operations of the SCG can be adapted to different network deployments, making the deactivation and activation operations of the SCG more flexible.
  • the above method further includes: the first device sends third instruction information to the second device, and the third instruction The information is used to instruct the second device to deactivate the SCG or activate the SCG. Based on this solution, the first device may also send instruction information to the second device to instruct the second device to deactivate the SCG or activate the SCG.
  • the first access network node determining to deactivate the secondary cell group SCG or to activate the SCG includes: the second device Determining to deactivate the SCG or to activate the SCG; sending the first indication information to the second access network node by the first access network node includes: the second device sends a notification message to the first device to notify the first The device sends the first indication information to the second access network node.
  • the above-mentioned first device and second device may be the CU-CP and CU-UP of the MN or SN, respectively, that is, this application implements signaling interaction under an architecture in which the CU of the MN or SN includes CP and UP.
  • the deactivation and activation operations of the SCG can be adapted to different network deployments, making the deactivation and activation operations of the SCG more flexible.
  • the first access network node determines to deactivate the secondary cell group SCG or activate the SCG, including: the first access The network access node determines to deactivate the SCG or activate the SCG according to any one or more of the auxiliary information sent by the second base station, the auxiliary information sent by the terminal, and the data transmission conditions carried by the first base station; When the first base station is the master node, the second base station is the secondary node; or, when the first base station is the secondary node, the second base station is the master node. Based on this solution, the first access network node can determine to deactivate the SCG or activate the SCG according to at least one of the auxiliary information sent by the second base station, the auxiliary information sent by the terminal, and the data transmission situation carried by the first base station.
  • a second aspect of the embodiments of the present application provides a communication method.
  • the method includes: a second access network node receives first indication information sent by a first access network node, where the first indication information is used to indicate the second The access network node sends a deactivation secondary cell group SCG command or an activation SCG command to the terminal; wherein, the first access network node and the second access network node belong to the first base station, and the first base station is the terminal in the dual The primary node or secondary node during connection communication; the above-mentioned SCG is one or more cells managed by the secondary node; the above-mentioned second access network node sends the above-mentioned deactivating SCG command or activating SCG command to the above-mentioned terminal.
  • first access network node and second access network node may be the CU and DU of the MN or SN, respectively, that is, this application uses the MN or SN to perform signaling interaction under the CU-DU architecture to achieve SCG deactivation and
  • the activation operation can be adapted to different network deployments, making the deactivation and activation operations of the SCG more flexible.
  • the first access network node includes a first device and a second device; the first device is configured to execute the control plane function of the first access network node, and The second device is configured to execute the user plane function of the first access network node; the second access network node receiving the first indication information sent by the first access network node includes: the second access network node receiving the above The foregoing first indication information sent by the first device.
  • the above-mentioned first device and second device may be the CU-CP and CU-UP of the MN or SN, respectively, that is, this application implements signaling interaction under an architecture in which the CU of the MN or SN includes CP and UP.
  • the deactivation and activation operations of the SCG can be adapted to different network deployments, making the deactivation and activation operations of the SCG more flexible.
  • a third aspect of the embodiments of the present application provides a communication method.
  • the method includes: a first access network node determines to deactivate a secondary cell group SCG or activates the SCG; and the first access network node sends the first Indication information, the first indication information is used to instruct the second base station to send a deactivation SCG command or an activation SCG command to the terminal; wherein, the first access network node belongs to the first base station, and the first base station is the terminal in the dual Connect the master node or the slave node during communication, and when the first base station is the master node, the second base station is the slave node; or, when the first base station is the slave node, the second base station is the master node;
  • the SCG is one or more cells managed by the secondary node.
  • first access network node and second access network node may be the CU and DU of the MN or SN, respectively, that is, this application uses the MN or SN to perform signaling interaction under the CU-DU architecture to achieve SCG deactivation and
  • the activation operation can be adapted to different network deployments, making the deactivation and activation operations of the SCG more flexible.
  • the above method further includes: the first access network node sends second indication information to the second access network node, and the second indication information is used to indicate the second The access network node deactivates the SCG or activates the SCG; the second access network node belongs to the first base station. Based on this solution, after the first access network node confirms to deactivate the SCG or activate the SCG, it notifies the second access network node, so that the second access network node deactivates the SCG or activates the SCG.
  • the first access network node includes a first device and a second device; the first device is used to perform the foregoing The control plane function of the first access network node, and the second device is used to execute the user plane function of the first access network node.
  • the function of the first access network node can be composed of the first device and the second device.
  • the first device can be CU-CP, and the second device can be CU-UP. That is, this solution can be used in MN or SN.
  • the CU carries out signaling interaction under the architecture of CP and UP to realize the deactivation and activation of SCG.
  • the foregoing first access network node determining to deactivate the secondary cell group SCG or to activate the SCG includes: the foregoing first device Determining to deactivate the SCG or to activate the SCG; the sending of the first indication information by the first access network node to the second base station includes: the first device sending the first indication information to the second base station.
  • the above-mentioned first device and second device may be the CU-CP and CU-UP of the MN or SN, respectively, that is, this application implements signaling interaction under an architecture in which the CU of the MN or SN includes CP and UP.
  • the deactivation and activation operations of the SCG can be adapted to different network deployments, making the deactivation and activation operations of the SCG more flexible.
  • the above method further includes: the first device sends third indication information to the second device, the third indication The information is used to instruct the second device to deactivate the SCG or activate the SCG. Based on this solution, the first device may also send instruction information to the second device to instruct the second device to deactivate the SCG or activate the SCG.
  • the foregoing first access network node determines to deactivate the secondary cell group SCG or activate the SCG, including: the foregoing second device Determining to deactivate the SCG or to activate the SCG; the first access network node sending the first indication information to the second base station includes: the second device sends a notification message to the first device, notifying the first device to send a notification message to the first device The second base station sends the above-mentioned first indication information.
  • the above-mentioned first device and second device may be the CU-CP and CU-UP of the MN or SN, respectively, that is, this application implements signaling interaction under an architecture in which the CU of the MN or SN includes CP and UP.
  • the deactivation and activation operations of the SCG can be adapted to different network deployments, making the deactivation and activation operations of the SCG more flexible.
  • the first access network node determines to deactivate the secondary cell group SCG or activates the SCG, including: the first access The network access node determines to deactivate the SCG or activate the SCG according to any one or more of the auxiliary information sent by the second base station, the auxiliary information sent by the terminal, and the data transmission conditions carried by the first base station. Based on this solution, the first access network node can determine to deactivate the SCG or activate the SCG according to at least one of the auxiliary information sent by the second base station, the auxiliary information sent by the terminal, and the data transmission situation carried by the first base station.
  • a fourth aspect of the embodiments of the present application provides a communication method.
  • the method includes: a second base station receives first indication information sent by a first access network node, where the first indication information is used to instruct the second base station to send a terminal Send the deactivate secondary cell group SCG command or activate the SCG command; where the first access network node belongs to the first base station, the second base station is the primary node or the secondary node of the terminal in dual-connection communication, and when the first When the second base station is the master node, the first base station is the secondary node; or, when the second base station is the secondary node, the first base station is the master node; the SCG is one or more cells managed by the secondary node; The second base station sends the aforementioned deactivation SCG command or the aforementioned activation SCG command to the aforementioned terminal.
  • first access network node and second access network node may be the CU and DU of the MN or SN, respectively, that is, this application uses the MN or SN to perform signaling interaction under the CU-DU architecture to achieve SCG deactivation and
  • the activation operation can be adapted to different network deployments, making the deactivation and activation operations of the SCG more flexible.
  • the first access network node includes a first device and a second device; the first device is configured to perform the control plane function of the first access network node, and The second device is configured to execute the user plane function of the first access network node; the second base station receiving the first indication information sent by the first access network node includes: the second base station receives all the information sent by the first device The first instruction information.
  • the function of the first access network node can be composed of the first device and the second device.
  • the first device can be CU-CP, and the second device can be CU-UP. That is, this solution can be used in MN or SN.
  • the CU carries out signaling interaction under the architecture of CP and UP to realize the deactivation and activation of SCG.
  • the above-mentioned second base station includes an access network node for executing the function of a high-level protocol stack and a node for executing a low-level protocol stack Functional access network node.
  • the access network node used to perform the high-level protocol stack function may be a CU
  • the access network node used to perform the low-level protocol stack function may be a DU
  • the second base station may also be a CU-DU architecture.
  • the first access network node is used to execute the radio resource control RRC protocol Stack, service data adaptation protocol SDAP protocol stack, and packet data convergence protocol PDCP layer functions; the second access network node is used to execute the radio link control RLC protocol stack, the medium access control MAC protocol stack, and the physical layer The function of the PHY protocol stack.
  • the RRC protocol stack, SDAP protocol stack, and PDCP layer can be divided into the first access network node according to the protocol layer, and the RLC protocol stack, MAC protocol stack, and physical layer can be divided into the second access network node.
  • the first access network node may be a CU
  • the second access network node may be a DU.
  • the embodiment of the present application does not limit the specific division method of the CU-DU, which is only an exemplary description here.
  • a fifth aspect of the embodiments of the present application provides a communication method.
  • the method includes: a first access network node determines to deactivate a secondary cell group SCG or activates the SCG; the first access network node sends the deactivated SCG to the terminal Command or activate the SCG command; the first access network node belongs to the first base station, and the first base station is the primary node or the secondary node of the terminal in dual connectivity communication; the above SCG is one or more cells managed by the secondary node.
  • first access network node and second access network node may be the DU and CU of the MN or SN, respectively. That is, this application uses the MN or SN to perform signaling interaction under the CU-DU architecture to achieve SCG deactivation and The activation operation can be adapted to different network deployments, making the deactivation and activation operations of the SCG more flexible.
  • the above method further includes: the first access network node sends second indication information to the second access network node, where the second indication information is used to indicate the second
  • the access network node deactivates the SCG or activates the SCG, and the second access network node belongs to the first base station.
  • the second access network node includes a first device and a second device, and the first device is configured to perform the foregoing The control plane function of the first access network node, where the second device is configured to execute the user plane function of the first access network node, and the first access network node sends second indication information to the second access network node,
  • the method includes: the first access network node sends the second indication information to the first device.
  • the function of the second access network node can be realized by the first device and the second device.
  • the first device can be CU-CP
  • the second device can be CU-UP. That is, the solution can be used in MN or SN.
  • the CU includes CP and UP for signaling interaction to realize SCG deactivation and activation operations.
  • the first access network node determines to deactivate the secondary cell group SCG or activate the SCG, including: the first access The network access node determines to deactivate the SCG or activate the SCG according to any one or more of the auxiliary information sent by the second base station, the auxiliary information sent by the terminal, and the data transmission conditions carried by the first base station; When the first base station is a master node, the second base station is a secondary node; or, when the first base station is a secondary node, the second base station is a master node. Based on this solution, the first access network node can determine to deactivate the SCG or activate the SCG according to at least one of the auxiliary information sent by the second base station, the auxiliary information sent by the terminal, and the data transmission situation carried by the first base station.
  • a sixth aspect of the embodiments of the present application provides a communication method, the method includes: a second access network node receives first indication information sent by a first access network node, the first indication information is used to indicate the second The access network node deactivates the secondary cell group SCG or activates the SCG, the second access network node belongs to the first base station, and the first base station is the primary node or the secondary node of the terminal in dual connectivity communication; the SCG is the secondary node One or more cells under management; the second access network node deactivates the SCG or activates the SCG according to the first indication information.
  • the above-mentioned first access network node and second access network node may be the DU and CU of the MN or SN, respectively. That is, this application uses the MN or SN to perform signaling interaction under the CU-DU architecture to achieve SCG deactivation and The activation operation can be adapted to different network deployments, making the deactivation and activation operations of the SCG more flexible.
  • the above method further includes: the second access network node sends a first notification message to the second base station, where the first notification message is used to notify the second base station,
  • the first base station deactivates the SCG or activates the SCG; wherein, the first base station is a secondary node and the second base station is a master node.
  • the foregoing method further includes: the foregoing second access network node sends second indication information to the second base station, and the first The second indication information is used to instruct the second base station to deactivate the SCG or activate the SCG; wherein, the first base station is a master node and the second base station is a secondary node.
  • the second access network node includes a first device and a second device, and the first device is configured to perform the foregoing The control plane function of the first access network node, the second device is configured to execute the user plane function of the first access network node, and the second access network node receives the first indication information sent by the first access network node , Including: the first device receiving the first indication information sent by the first access network node.
  • the function of the second access network node can be realized by the first device and the second device.
  • the first device can be CU-CP
  • the second device can be CU-UP. That is, the solution can be used in MN or SN.
  • the CU includes CP and UP for signaling interaction to realize SCG deactivation and activation operations.
  • the above method further includes: the first device sends third indication information to the second device, and the third indication The information is used to instruct the second device to deactivate the SCG or activate the SCG. Based on this solution, the first device may also send instruction information to the second device to instruct the second device to deactivate the SCG or activate the SCG.
  • a communication method includes: a first access network node determines to deactivate a secondary cell group SCG or activates an SCG; and the first access network node sends a message to the second access network node Send a notification message to notify the second access network node to send first indication information to the second base station, where the first indication information is used to instruct the second base station to send a deactivation SCG command or an activation SCG command to the terminal; wherein, the first The access network node and the second access network node belong to a first base station, and the first base station is a primary node or a secondary node of the terminal in dual-connection communication, and when the first base station is the primary node, the second base station Is a secondary node; or, when the first base station is a secondary node, the second base station is a primary node; and the SCG is one or more cells managed by the secondary node.
  • the above-mentioned first access network node and second access network node may be the DU and CU of the MN or SN, respectively. That is, this application uses the MN or SN to perform signaling interaction under the CU-DU architecture to achieve SCG deactivation and The activation operation can be adapted to different network deployments, making the deactivation and activation operations of the SCG more flexible.
  • the second access network node includes a first device and a second device, and the first device is configured to perform a control plane function of the first access network node.
  • the second device is configured to execute the user plane function of the first access network node.
  • the first access network node sends a notification message to the second access network node, including: the first access network node sends the notification message to the first device Send the above notification message.
  • the function of the second access network node can be realized by the first device and the second device.
  • the first device can be CU-CP
  • the second device can be CU-UP. That is, the solution can be used in MN or SN.
  • the CU includes CP and UP for signaling interaction to realize SCG deactivation and activation operations.
  • the first access network node determines to deactivate the secondary cell group SCG or activate the SCG, including: the first access The network access node determines to deactivate the SCG or activate the SCG according to any one or more of the auxiliary information sent by the second base station, the auxiliary information sent by the terminal, and the data transmission conditions carried by the first base station. Based on this solution, the first access network node can determine to deactivate the SCG or activate the SCG according to at least one of the auxiliary information sent by the second base station, the auxiliary information sent by the terminal, and the data transmission situation carried by the first base station.
  • An eighth aspect of the embodiments of the present application provides a communication method, the method includes: a second access network node receives a notification message sent by a first access network node, the notification message is used to notify the second access network node Send first indication information to the second base station, where the first indication information is used to instruct the second base station to send a deactivation secondary cell group SCG command or an activation SCG command to the terminal; wherein the first access network node is connected to the second connection
  • the network access node belongs to the first base station, and the first base station is the primary node or the secondary node of the terminal in dual connectivity communication, and when the first base station is the primary node, the second base station is the secondary node; or, when the above When the first base station is a secondary node, the second base station is the master node; the SCG is one or more cells managed by the secondary node; and the second access network node sends the first indication information to the second base station.
  • the above-mentioned first access network node and second access network node may be the DU and CU of the MN or SN, respectively. That is, this application uses the MN or SN to perform signaling interaction under the CU-DU architecture to achieve SCG deactivation and The activation operation can be adapted to different network deployments, making the deactivation and activation operations of the SCG more flexible.
  • the second access network node includes a first device and a second device, and the first device is configured to perform a control plane function of the first access network node.
  • the second device is configured to perform the user plane function of the first access network node, and the second access network node receiving the notification message sent by the first access network node includes: the first device receiving the first access network node
  • the notification message sent by the node; the second access network node sending the first indication information to the second base station includes: the first device sends the first indication information to the second base station.
  • the function of the second access network node can be realized by the first device and the second device.
  • the first device can be CU-CP
  • the second device can be CU-UP. That is, the solution can be used in MN or SN.
  • the CU includes CP and UP for signaling interaction to realize SCG deactivation and activation operations.
  • the above method further includes: the first device sends second indication information to the second device, and the second indication The information is used to instruct the second device to deactivate the SCG or activate the SCG.
  • the CU-CP can send indication information to the CU-UP to instruct the CU-UP to deactivate the SCG or activate the SCG.
  • the above-mentioned first access network node is used to execute the radio link control RLC protocol Stack, media access control MAC protocol stack, and physical layer PHY protocol stack; the above-mentioned second access network node is used to execute the radio resource control RRC protocol stack, the service data adaptation protocol SDAP protocol stack, and the packet data convergence protocol PDCP The function of the layer.
  • the RLC protocol stack, MAC protocol stack, and physical layer can be divided into the first access network node according to the protocol layer, and the RRC protocol stack, SDAP protocol stack, and PDCP layer can be divided into the second access network node.
  • the first access network node may be a DU
  • the second access network node may be a CU.
  • the embodiment of the present application does not limit the specific division method of the CU-DU, which is only an exemplary description here.
  • a ninth aspect of the embodiments of the present application provides a communication method.
  • the method includes: a second base station receives first indication information sent by a second access network node, where the first indication information is used to instruct the second base station to send to the terminal Deactivate the secondary cell group SCG command or activate the SCG command; wherein, the second access network node belongs to the first base station, the second base station is the primary node or the secondary node of the terminal in dual connectivity communication, and when the second When the base station is the master node, the first base station is the secondary node; or, when the second base station is the secondary node, the first base station is the master node; the SCG is one or more cells managed by the secondary node; The second base station sends the aforementioned deactivation SCG command or activation SCG command to the aforementioned terminal.
  • the above-mentioned second access network node may be the CU of MN or SN respectively, that is, this application uses MN or SN to perform signaling interaction under the CU-DU architecture to realize SCG deactivation and activation operations, which can be adapted to different networks Deployment makes the SCG deactivation and activation operations more flexible.
  • the second access network node includes a first device and a second device, and the first device is configured to perform a control plane function of the first access network node.
  • the second device is configured to perform the user plane function of the first access network node, and the second base station receives the first indication information sent by the second access network node, including: the second base station receives the above information sent by the first device The first instruction information.
  • the function of the second access network node can be realized by the first device and the second device.
  • the first device can be CU-CP
  • the second device can be CU-UP. That is, the solution can be used in MN or SN.
  • the CU includes CP and UP for signaling interaction to realize SCG deactivation and activation operations.
  • the above-mentioned second access network node is used to execute the radio resource control RRC protocol stack and the service data adaptation protocol SDAP protocol Stack, and the functions of the PDCP layer of the Packet Data Convergence Protocol.
  • the RRC protocol stack, the SDAP protocol stack, and the PDCP layer can be divided into the second access network node according to the protocol layer, and the second access network node can be a CU.
  • the embodiment of the present application does not limit the specific division method of the CU-DU, which is only an exemplary description here.
  • the aforementioned deactivation of the SCG includes at least one of the following operations: suspending the data transmission of the secondary cell group radio link control bearer SCG RLC bearer; suspending the PDCP termination bearer on the secondary node SN terminated data transmission on the Bearer ; Suspend the data transmission on the SCG RLC entity (RLC entity); Suspend the data transmission on the SN PDCP entity.
  • deactivating the SCG may include at least one of suspending data transmission on the SCG RLC Bearer, suspending data transmission on the SN terminated Bearer, suspending data transmission on the SCG RLC entity, and suspending data transmission on the SN PDCP entity.
  • the aforementioned deactivate SCG command or activate SCG command is carried in the media access control layer control element MAC CE signaling, physical layer signaling, or radio resource control RRC signaling. Based on this solution, the deactivate SCG command or the activate SCG command can be carried in MAC CE signaling, physical layer signaling, or RRC signaling.
  • a tenth aspect of the embodiments of the present application provides a computer storage medium in which computer program code is stored, and when the computer program code runs on a processor, the processor is caused to execute any of the above The communication method described in the aspect.
  • An eleventh aspect of the embodiments of the present application provides a computer program product that stores computer software instructions executed by the above-mentioned processor, and the computer software instructions include a program for executing the solution described in the above-mentioned aspect.
  • a twelfth aspect of the embodiments of the present application provides a communication device, which includes a processor, and may also include a transceiver and a memory.
  • the transceiver is used to send and receive information or to communicate with other network elements;
  • the memory Used to store computer-executed instructions;
  • the processor is used to execute the computer-executed instructions to support the terminal device or the communication device to implement the communication method described in any one of the above aspects.
  • the thirteenth aspect of the embodiments of the present application provides a communication device, which may exist in the form of a chip product.
  • the structure of the device includes a processor and may also include a memory for coupling with the processor, The program instructions and data necessary for the device are saved, and the processor is used to execute the program instructions stored in the memory to support the terminal device or the communication device to execute the method described in any of the above aspects.
  • the fourteenth aspect of the embodiments of the present application provides a communication device that can exist in the form of a chip product.
  • the structure of the device includes a processor and an interface circuit.
  • the processor is used to communicate with other devices through a receiving circuit. , So that the device executes the communication method described in any of the foregoing aspects.
  • a communication system which includes a first base station and a second base station.
  • the first base station includes a first access network node and a second access network node.
  • the network node is used to execute the communication method described in the first aspect
  • the second access network node is used to execute the communication method described in the second aspect.
  • the sixteenth aspect of the embodiments of the present application provides a communication system, including a first base station and a second base station.
  • the first base station includes a first access network node and a second access network node.
  • the network node is used to execute the communication method described in the third aspect
  • the second base station is used to execute the communication method described in the fourth aspect.
  • a communication system which includes a first base station and a second base station.
  • the first base station includes a first access network node and a second access network node.
  • the network node is used to execute the communication method described in the fifth aspect
  • the second access network node is used to execute the communication method described in the sixth aspect.
  • An eighteenth aspect of the embodiments of the present application provides a communication system, including a first base station and a second base station.
  • the first base station includes a first access network node and a second access network node.
  • the network node is used to perform the communication method described in the seventh aspect
  • the second access network node is used to perform the communication method described in the eighth aspect
  • the second base station is used to perform the communication method described in the ninth aspect.
  • FIG. 1 is a schematic structural diagram of a communication system provided by an embodiment of this application.
  • FIG. 2 is a schematic diagram of a CU-DU architecture provided by an embodiment of the application
  • FIG. 3 is a schematic diagram of another CU-DU architecture provided by an embodiment of the application.
  • FIG. 4 is a schematic diagram of another CU-DU architecture provided by an embodiment of the application.
  • FIG. 5 is a schematic diagram of the architecture of a dual-connection network provided by an embodiment of this application.
  • FIG. 6 is a schematic diagram of another dual-connection network architecture provided by an embodiment of this application.
  • FIG. 7 is a schematic diagram of another dual-connection network architecture provided by an embodiment of this application.
  • FIG. 8 is a schematic diagram of a user plane architecture in an EN-DC network architecture provided by an embodiment of this application.
  • FIG. 9 is a schematic flowchart of a communication method provided by an embodiment of this application.
  • FIG. 10 is a schematic flowchart of another communication method provided by an embodiment of this application.
  • FIG. 11 is a schematic flowchart of another communication method provided by an embodiment of this application.
  • FIG. 12 is a schematic flowchart of another communication method provided by an embodiment of this application.
  • FIG. 13 is a schematic flowchart of another communication method provided by an embodiment of this application.
  • FIG. 14 is a schematic flowchart of another communication method provided by an embodiment of this application.
  • 16 is a schematic flowchart of another communication method provided by an embodiment of this application.
  • FIG. 17 is a schematic flowchart of another communication method provided by an embodiment of this application.
  • FIG. 20 is a schematic flowchart of another communication method provided by an embodiment of this application.
  • 21 is a schematic flowchart of another communication method provided by an embodiment of this application.
  • FIG. 23 is a schematic flowchart of another communication method provided by an embodiment of this application.
  • 25 is a schematic flowchart of another communication method provided by an embodiment of this application.
  • FIG. 26 is a schematic flowchart of another communication method provided by an embodiment of this application.
  • FIG. 27 is a schematic flowchart of another communication method provided by an embodiment of this application.
  • FIG. 28 is a schematic diagram of the composition of a communication device provided by an embodiment of this application.
  • FIG. 29 is a schematic diagram of the composition of another communication device provided by an embodiment of this application.
  • FIG. 30 is a schematic diagram of the composition of a terminal provided by an embodiment of this application.
  • FIG. 31 is a schematic diagram of the composition of another communication device provided by an embodiment of this application.
  • FIG. 32 is a schematic diagram of the composition of another communication device provided by an embodiment of this application.
  • FIG. 33 is a schematic diagram of the composition of another communication device provided by an embodiment of this application.
  • At least one of a, b, or c can mean: a, b, c, a-b, a-c, b-c or a-b-c, where a, b, and c can be single or multiple.
  • the embodiment of this application defines the one-way communication link from the access network to the terminal as the downlink, the data transmitted on the downlink is the downlink data, and the transmission direction of the downlink data is called the downlink direction; and the one from the terminal to the access network
  • the unidirectional communication link is the uplink, and the data transmitted on the uplink is the uplink data, and the transmission direction of the uplink data is called the uplink direction.
  • the resources described in the embodiments of the present application may also be referred to as transmission resources, including one or more of time domain resources, frequency domain resources, and code channel resources, and may be used to carry data in the uplink communication process or the downlink communication process. Or signaling.
  • B corresponding to A means that B is associated with A, and B can be determined according to A.
  • determining B according to A does not mean that B is determined only according to A, and B can also be determined according to A and/or other information.
  • connection appearing in the embodiments of this application refers to various connection modes such as direct connection or indirect connection to realize communication between devices, which is not limited in the embodiments of this application.
  • transmission in the embodiments of this application refers to two-way transmission, including sending and/or receiving actions.
  • transmission in the embodiments of the present application includes the sending of data, the receiving of data, or the sending of data and the receiving of data.
  • the data transmission here includes uplink and/or downlink data transmission.
  • Data may include channels and/or signals.
  • Uplink data transmission means uplink channel and/or uplink signal transmission
  • downlink data transmission means downlink channel and/or downlink signal transmission.
  • the terminal and/or the base station can perform some or all of the steps in the embodiments of the present application. These steps or operations are only examples. In the embodiments of the present application, other operations or various operations may also be performed. Deformation of operation. In addition, each step may be executed in a different order presented in the embodiment of the present application, and it may not be necessary to perform all the operations in the embodiment of the present application.
  • the communication method provided by the embodiment of the present application can be applied to the communication system shown in FIG. 1.
  • the terminal supports dual connectivity (DC), and the master node (Master Node, MN) and the secondary node (secondary node, SN) jointly provide data transmission services for the terminal.
  • the MN is connected to the Core Network (Core Network, CN) through the S1/NG interface.
  • the MN and the core network include at least a control plane connection and a user plane connection.
  • the S1 interface includes S1-U/NG-U and S1-C/NG-C. Among them, S1-U/NG-U stands for user plane connection, and S1-C/NG-C stands for control plane connection.
  • the MN can also be called a primary base station or a primary access network device, and the SN can also be called a secondary base station or a secondary access network device.
  • the communication system in this application may be a long term evolution (LTE) wireless communication system, or a fifth generation (5G) mobile communication system such as a new radio (NR) system, or other Other next generation (NG) communication systems, etc., are not limited in the embodiment of this application.
  • LTE long term evolution
  • 5G fifth generation
  • NR new radio
  • NG next generation
  • the above-mentioned MN and SN may be base stations defined by the LTE third generation partnership project (3rd generation partnership project, 3GPP).
  • 3rd generation partnership project 3rd generation partnership project, 3GPP
  • it can be the base station equipment in the LTE system, that is, evolved NodeB (eNB/eNodeB); it can also be the access network side equipment in the NR system, including gNB, transmission point (trasmission/reception point, TRP). )Wait.
  • the foregoing MN and SN may be composed of a centralized unit (CU) and a distributed unit (DU).
  • the CU-DU structure can be used to split the protocol layer of the base station.
  • the functions of the protocol layer are centrally controlled by the CU, and some or all of the functions of the protocol layer are distributed in the DU, and the DU is centrally controlled by the CU, which can save costs and facilitate network expansion.
  • the MN and SN may include one or more CUs and one or more DUs.
  • the CU may be used to perform high-level protocol stack functions, and the DU may be used to perform low-level protocol stack functions.
  • the high-level protocol stack may be a protocol stack above the Radio Link Control (RLC) layer, and the low-level protocol stack may be a protocol stack below the RLC layer; or, the high-level protocol stack may include radio resource control (Radio Resource Control, RRC). ) Protocol stack, Service Data Adaptation Protocol (SDAP) protocol stack and PDCP layer.
  • RRC Radio Resource Control
  • SDAP Service Data Adaptation Protocol
  • the low-level protocol stack includes RLC layer, Media Access Control (MAC) layer and Physical layer (PHY) ); or, the high-level protocol stack may include the RRC protocol stack and the SDAP protocol stack, and the low-level protocol stack includes the PDCP layer, the RLC layer, the MAC layer, and the physical layer.
  • the embodiments of the present application do not limit the specific protocol stacks included in the high-level protocol stack and the low-level protocol stack, and are only illustrative here.
  • the CU is used to perform the functions of the RRC protocol stack, the SDAP protocol stack, and the PDCP layer, and the DU is used to perform the functions of the RLC layer, the MAC layer, and the physical layer.
  • CU and DU are connected through F1 interface.
  • CU-DU architecture as shown in FIG. 3, CU is used to perform functions of RRC protocol stack and SDAP protocol stack, and DU is used to perform functions of PDCP, RLC, MAC, physical layer, etc.
  • the schematic diagrams of the CU-DU architecture shown in FIG. 2 to FIG. 3 are only exemplary descriptions of the division of the protocol layer, and the embodiment of the present application does not limit the specific division of the CU-DU architecture.
  • part of the functions of the RLC layer and the functions of the protocol layer above the RLC layer may be set in the CU, and the remaining functions of the RLC layer and the functions of the protocol layer below the RLC layer may be set in the DU.
  • the function of the CU may be implemented by one entity or by different entities.
  • the CU under the CU-DU architecture can be subdivided into CU-CP (Central Unit-Control Plane, centralized unit-control plane), CU-UP (Central Unit-User Plane, centralized unit -User plane) architecture.
  • the CU-CP and CU-UP can be implemented by different functional entities, and the CU-CP and CU-UP can be coupled with the DU to jointly complete the function of the base station.
  • a base station may have one CU-CP, one or more CU-UPs and one or more DUs.
  • One CU-CP connects to multiple CU-UPs through the E1 interface, one CU-CP can connect to multiple DUs through the F1-C interface, and one DU can connect to multiple CU-UPs through the F1-U interface.
  • FIG. 4 only takes the base station including two DUs as an example for illustration.
  • the base station may be a 4G base station or a 5G base station, which is not limited in the embodiment of the present application.
  • dual connectivity can be implemented between access network devices of different standards, as shown in FIG. 5, which is a schematic diagram of an LTE-NR dual connectivity (E-UTRA-NR Dual Connectivity, EN-DC) network.
  • the EN-DC network is a dual connection between 4G radio access network and 5G NR, with LTE base station (LTE eNB) as MN, and NR base station (NR gNB) as SN.
  • LTE eNB LTE base station
  • NR gNB NR base station
  • S1 interface between the LTE eNB and the evolved Packet Core (EPC) of the LTE system, and there is at least a control plane connection and possibly a user plane connection.
  • EPC evolved Packet Core
  • there is an S1-U interface between the NR gNB and the EPC that is, there can only be a user plane connection.
  • FIG. 6 it is a schematic diagram of a NR-LTE dual connectivity (NR-E-UTRA Dual Connectivity, NE-DC) network.
  • the NE-DC network is a dual connection between the 4G radio access network under the 5G core network and 5G NR.
  • the NR base station (gNB) serves as the MN
  • the LTE base station (ng-eNB) serves as the SN
  • both MN and SN are connected to the 5G core network ( 5th Generation Core Network, 5GC).
  • 5GC 5th Generation Core Network
  • there is an NG interface between the gNB and 5GC which can establish a control plane connection and a user plane connection for the terminal, and the ng-eNB sends user plane data to the 5GC through the gNB.
  • FIG. 7 it is a schematic diagram of a 5G core network LTE-NR (Next Generation E-UTRA-NR Dual Connectivity, NGEN-DC) network.
  • the NGEN-DC network is a dual connection between the 4G radio access network under the 5G core network and 5G NR.
  • the LTE base station (ng-eNB) serves as the MN
  • the NR base station (gNB) serves as the SN
  • both MN and SN are connected to the 5GC.
  • ng-eNB serves as the MN
  • gNB NR base station
  • both MN and SN are connected to the 5GC.
  • an NG interface between the ng-eNB and the 5GC, which can establish a control plane connection and a user plane connection for the terminal, and the gNB sends user plane data to the 5GC through the ng-eNB.
  • there is an NG-U interface between the gNB and 5GC which only establishes a user plane connection for the terminal, and the gNB directly send
  • the SN and the core network may not establish a user plane connection, but transmit data via the MN.
  • the terminal For example, in the downlink direction, the terminal’s data arrives at the MN first, and the MN is at the PDCP layer.
  • the data of the terminal is shunted to the SN, where the form of the shunted data is, for example, a PDCP protocol data unit (Protocol Data Unit, PDU).
  • PDU Packed Data Unit
  • the communication method provided in the embodiments of this application can be adapted to traditional LTE dual connectivity, can also be adapted to the EN-DC network, NE-DC network, or NGEN-DC network of the 5G system, and can also be adapted to the 5G core Network NR-NR Dual Connectivity (NR-NR Dual Connectivity, NR-DC) and other DC architectures in the future, the embodiment of the application does not limit the specific architecture of the dual-connectivity network to which the communication method is adapted.
  • Figures 5-7 are illustrative.
  • the EN-DC network architecture is taken as an example to describe the communication method provided in the embodiments of the present application.
  • the data radio bearer (DRB) established by the terminal and the access network side can be independently provided by the MN or the SN, or can be provided by the MN and the SN at the same time.
  • the bearer provided by the MN is called the Master Cell Group (MCG) bearer, where the MCG includes at least one MN-managed cell used to provide air interface resources for the terminal; the bearer provided by the SN is called the Secondary Cell Group (Secondary Cell Group).
  • Cell Group, SCG Cell Group
  • the bearer in which the MN and SN provide air interface resources at the same time is called a split bearer.
  • the cell When there is only one cell in the MCG, the cell is the primary cell (Primary cell, PCell) of the terminal. When there is only one cell in the SCG, this cell is the primary and secondary cell (Primary Secondary Cell, PSCell) of the terminal. PCell and PSCell can be collectively referred to as a special cell (Special Cell, SpCell). When there are multiple cells in each of the MCG or the SCG, all cells other than the SpCell may be referred to as a secondary cell (Secondary Cell, SCell). At this time, SCells and SpCells in each cell group perform carrier aggregation (carrier aggregation, CA) to jointly provide transmission resources for the terminal.
  • carrier aggregation carrier aggregation
  • the PSCell belongs to the cells of the SCG, and the UE is instructed to perform random access or initial PUSCH transmission.
  • the SCell is a cell working on the secondary carrier. Once the RRC connection is established, the SCell may be configured to provide additional radio resources.
  • the data plane radio bearer can be independently served by the MN or SN, or simultaneously served by the MN and SN.
  • the bearer is an MCG bearer (Bearer).
  • the bearer is only provided by the SN, that is, when the data stream is only flowed from the core network to the SN, the bearer is an SCG bearer.
  • the bearer is provided by the MN and the SN at the same time, that is, when the data stream is split between the MN or SN, the bearer is a split bearer.
  • each bearer type has corresponding PDCP layer processing and RLC layer processing.
  • RLC Bearer transmitted through MCG air interface resources is called MCG RLC Bearer
  • RLC Bearer transmitted through SCG air interface resources is called SCG RLC Bearer.
  • the PDCP entity can be terminated in the MN or SN.
  • the PDCP-terminated bearer on the MN is called the MN terminated Bearer, that is, the downlink data directly arrives at the MN from the core network, is processed by the MN and then sent to the terminal via the RLC Bearer.
  • the PDCP-terminated bearer on the SN is called SN terminated Bearer, that is, the downlink data directly arrives at the SN from the core network, is processed by the SN, and then sent to the terminal through the RLC Bearer.
  • the bearers in DC can be divided into the following types, including: MCG bearer terminated in MN (MN terminated MCG Bearer), SCG bearer terminated in MN (MN terminated SCG Bearer, MN terminated split Bearer, SN terminated MCG Bearer, SN terminated SCG Bearer, SN terminated SCG Bearer, SN terminated split bearer ( SN terminated split Bearer), where, for the bearer terminated in the MN, the PDCP entity is established in the MN, and the user plane connection with the core network is terminated in the MN, that is, the MN is used as the anchor; for the bearer terminated in the SN, PDCP The entity is established in the SN, and the user plane connection with the core network is terminated in the SN, that is, the SN is the anchor point.
  • the bearer terminates at the MN or the SN indicates whether the data transmission with the core network is performed through the MN or the SN.
  • the MCG or SCG is provided.
  • the MN terminated SCG bearer the downlink issued by the core network
  • all the data is transferred to the RLC layer and the MAC layer of the SN for further processing and sent to the terminal through the SCG; correspondingly, the uplink data sent by the terminal is processed by the MAC layer and the RLC layer of the SN and all transferred to the MN.
  • the PDCP layer processes and sends to the core network device through the interface between the MN and the core network.
  • the downlink data sent by the core network is processed by the PDCP layer of the MN, and part of the data is transferred to the SN and sent to the terminal through the SCG, while the rest is still sent by the MN to the terminal through the MCG; correspondingly, the terminal sends Part of the uplink data is sent to the MN through MCG, and the other part is sent to the SN through SCG.
  • the two parts of data are aggregated to the PDCP layer of the MN for processing and sent to the core network device through the interface between the MN and the core network.
  • the network configuration terminal performs DC operation in the high data rate state, that is, SN addition; when the terminal enters the low data rate state, the network configuration terminal releases the DC operation , That is, SN release (SN release) to save the power of network equipment and terminal equipment.
  • SN release SN release
  • the process of performing SN addition and SN release involves much between MN and SN.
  • Information exchange, and the configuration of the SN for the terminal may not need to be updated, and the terminal can continue to use the original configuration.
  • MN and SN are CU-DU separated architectures, how to solve the problem of high power consumption of base stations and terminals caused by dual links that maintain DC for a long time.
  • the embodiments of the present application provide a communication method, which can reduce the overhead of air interface signaling and delay while reducing the power consumption of network equipment and terminals; it can also be adapted to different network deployments, and the processing is more flexible.
  • the communication method includes steps S901-S907.
  • the first access network node determines to deactivate the SCG or activate the SCG.
  • the first access network node belongs to a first base station
  • the first base station is a primary node (MN) or a secondary node (SN) of the terminal in dual-connectivity communication
  • the aforementioned SCG is one or more managed by the SN Community.
  • the first access network node is the centralized unit CU of the first base station.
  • the first access network node may be MN CU or SN CU. That is, when the first base station has a CU-DU architecture, the first access network node is the CU of the first base station.
  • deactivating the SCG described above may also refer to suspending the configuration of the SCG, and activating the SCG refers to restoring the configuration of the suspended SCG.
  • the meaning of suspension is equivalent to stopping or suspending. After the configuration of the SCG is suspended, data transmission through the SCG is no longer performed.
  • deactivating SCG may include at least one of the following operations: suspending data transmission on SCG RLC Bearer; suspending data transmission on SN terminated Bearer; suspending data transmission on SCG RLC entity (RLC entity); suspending SN PDCP entity
  • Data transfer on Activating the SCG may include at least one of the following operations: restoring data transmission on the SCG RLC Bearer; restoring data transmission on the SN terminated Bearer; restoring data transmission on the SCG RLC entity; restoring data transmission on the SN PDCP entity.
  • the determination by the first access network node in step S901 to deactivate the SCG or to activate the SCG may include: the first access network node according to the auxiliary information sent by the second base station, the auxiliary information sent by the terminal, and the first base station In any one or more of the data transmission conditions of the bearer, it is determined to deactivate the SCG or activate the SCG.
  • the second base station is SN; or, when the first base station is SN, the second base station is MN.
  • step S901 may include: the MN CU determines to deactivate the SCG or activate the SCG according to any one or more of the auxiliary information sent by the SN, the auxiliary information sent by the terminal, and the data transmission situation carried by the MN.
  • step S901 may also include: the SN CU determines to deactivate the SCG or activate the SCG according to any one or more of the auxiliary information sent by the MN, the auxiliary information sent by the terminal, and the data transmission conditions carried by the SN.
  • the auxiliary information sent by the MN/SN may include a power saving instruction.
  • the auxiliary information sent by the terminal may include the active status of the SCG data of the terminal, the terminal has a power saving requirement, or the terminal instructs the first base station to suspend the SCG configuration.
  • the activity of the SCG data can be measured by the amount of data, for example, there is data, no data, or the amount of data is high, medium or low.
  • the first access network node may determine to deactivate the SCG according to the power saving instruction sent by the second base station, so as to save the power consumption of the base station and the terminal. For another example, the first access network node may determine to deactivate the SCG according to the power saving instruction sent by the terminal. For another example, the first access network node may determine to deactivate the SCG according to the SCG suspension indication sent by the terminal. For another example, the first access network node may send the terminal according to the amount of data transmitted by the terminal through the SCG. If the amount of data transmitted by the terminal through the SCG is less than a preset threshold, the first access network node determines to deactivate the SCG. The amount of transmitted data is greater than or equal to the preset threshold, and the first access network node determines to activate the SCG.
  • the above step S901 may further include: An access network node receives the auxiliary information sent by the second base station, and/or receives the auxiliary information sent by the terminal.
  • the SN CU can receive auxiliary information sent by the terminal, and the auxiliary information can be carried in SRB3 (Signal Radio Bearer), which is between the terminal and the SN Or, the terminal carries the auxiliary information in SRB1 and sends it to the MN, and then the MN sends it to the SN CU.
  • SRB1 is the radio bearer between the terminal and the MN.
  • the first access network node determining to deactivate the SCG or activate the SCG includes: the first access network node deactivates the SCG or activates the SCG.
  • the first access network node determines to deactivate the SCG it can perform at least one of the following operations: suspend data transmission on SCG RLC Bearer; suspend data transmission on SN terminated Bearer; suspend data on SCG RLC entity Transmission; suspend data transmission on the SN PDCP entity.
  • the first access network node is SN CU, taking the CU-DU architecture shown in Figure 2 as an example, the PDCP layer is deployed on CU, SN CU determines to suspend SN terminated Bearer, SN CU can terminate SN terminated Bearer The SN CU determines to suspend the SCG RLC Bearer according to the auxiliary information sent by the SN DU, and the SN CU can suspend the data transmission on the SCG RLC Bearer.
  • the PDCP layer is deployed in the CU, and the MN CU determines to suspend the SN terminated Bearer and SN according to the auxiliary information sent by the SN. / Or SCG RLC Bearer, MN CU can suspend data transmission on SN terminated Bearer and/or SCG RLC Bearer.
  • the first access network node determining to deactivate the SCG or to activate the SCG includes: the first access network node suspends/resumes data of the X2/Xn interface corresponding to the bearer established on the SN Transmission tunnel.
  • the first access network node sends first indication information to the second access network node, where the first indication information is used to instruct the second access network node to send an SCG deactivation command or an SCG activation command to the terminal.
  • the second access network node and the first access network node belong to the first base station.
  • the second access network node may be MN DU or SN DU. That is, when the first base station is in the CU-DU architecture, the second access network node is the DU of the first base station. That is, the first access network node and the second access network node may be the CU and DU of the first base station, respectively.
  • step S902 specifically includes: the MN CU sends first indication information to the MN DU, instructing the MN DU to send a deactivation SCG command or an activation SCG command to the terminal.
  • step S902 specifically includes: the SN CU sends first indication information to the SN DU, instructing the SN DU to send a deactivation SCG command or an activation SCG command to the terminal.
  • the deactivating SCG command may also be referred to as a deactivating SCG instruction
  • the activating SCG command may also be referred to as an activating SCG instruction, which is not limited in this embodiment of the application.
  • the second access network node receives the first indication information.
  • step S903 specifically includes: the MN DU receives the first indication information sent by the MN CU.
  • step S903 specifically includes: the SN DU receives the first indication information sent by the SN CU.
  • the second access network node may also deactivate the SCG or activate the SCG.
  • the second access network node may perform at least one of the following operations: suspend data transmission on SCG RLC Bearer; suspend data transmission on SN terminated Bearer; suspend SCG RLC entity Data transmission; suspend the data transmission on the SN PDCP entity.
  • the second access network node is an SN DU, taking the CU-DU architecture shown in Figure 2 as an example, the RLC layer is deployed in the DU. If the SN CU determines to suspend the SCG RLC Bearer in step S901, the SN DU can be suspended SCG RLC data transmission on Bearer.
  • the second access network node may also suspend/resume the establishment of the data transmission tunnel on the X2/Xn interface corresponding to the bearer of the SN.
  • the second access network node is MN DU, taking the CU-DU architecture shown in Figure 2 as an example, the RLC layer is deployed in DU. If MN CU determines to suspend SN terminated MCG RLC Bearer, MN DU in step S901 The data transmission tunnel of the X2/Xn interface corresponding to SN terminated MCG RLC Bearer can be suspended. It is understandable that the suspension of the SN terminated MCG RLC Bearer in the embodiment of the present application refers to the PDCP entity that suspended the SN terminated Bearer, or refers to the suspension of the PDCP entity on the SN.
  • the method further includes S904.
  • the second access network node sends an Acknowledgement (ACK) message to the first access network node.
  • ACK Acknowledgement
  • the ACK message is used to indicate that the second access network node has successfully received the first indication information sent by the first access network node.
  • step S904 specifically includes: the MN DU sends an ACK message to the MN CU.
  • step S904 specifically includes: the SN DU sends an ACK message to the SN CU.
  • the second access network node sends an SCG deactivation command or an SCG activation command to the terminal.
  • the SN DU or MN DU sends a deactivation SCG command or an activation SCG command to the terminal.
  • the aforementioned deactivate SCG command is used to instruct the terminal to deactivate the SCG.
  • the deactivation of the SCG may mean that the terminal temporarily stops data transmission through the communication link on the SCG, but the terminal retains or stores part or all of the SN configuration to Used to quickly restore the communication link of the SCG. Deactive can also be called suspend or hibernation.
  • the activate SCG command is used to instruct the terminal to activate the SCG.
  • the terminal activation of the SCG may mean that the terminal restores the configuration of the SN, and performs data transmission through the communication link on the SCG. Activation can also be called recovery (resumption/recovery).
  • the aforementioned SCG deactivation command or SCG activation command may be carried in MAC CE (Control Element), physical layer signaling, or RRC signaling.
  • the physical layer signaling may be Downlink Control Information (DCI).
  • the deactivation command or the activation command may be one or more bits in the MAC CE.
  • the MAC CE may be a MAC CE used to indicate the deactivation or activation state of the SCell, or it may be a MAC CE specially designed for deactivation commands, which is not limited in this embodiment of the application.
  • S906 The terminal receives the deactivate SCG command or the activate SCG command.
  • the terminal receives an SCG deactivation command or an SCG activation command sent by the MN DU or SN DU.
  • the terminal when the SCG deactivation command or the SCG activation command is carried in the MAC CE, when the terminal receives the MAC CE, the terminal can read the content of the MAC CE, and determine to deactivate the SCG or activate the SCG according to the MAC CE.
  • a bit in the MAC CE indicates that the PSCell is in the deactivated/activated state, and the other bits are used to indicate the state of the SCell.
  • S907 The terminal performs a deactivation operation or an activation operation on the SCG according to the deactivate SCG command or the activate SCG command.
  • the terminal when the terminal performs an SCG deactivation operation on the SCG, the terminal retains the configuration of the SCG, and the configuration of the SCG is used for DC communication between the SN and the terminal.
  • the terminal deactivating the SCG operation of the SCG may include: the terminal suspends the SCG RLC bearer and/or the PDCP entity of the SN terminated bearer corresponding to the bearer established on the SN.
  • the SCG RLC bearer may be the SCG RLC bearer corresponding to the SN terminated bearer and/or the SCG RLC bearer corresponding to the MN terminated bearer, namely SN terminated SCG RLC bearer and/or MN terminated SCG RLC bearer.
  • the above PDCP entity that suspends SCG RLC bearer and SN terminated bearer means suspends all SN terminated bearers.
  • the above suspension may refer to data transmission not through the PDCP entity of the SCG RLC bearer and/or SN terminated bearer, or to stop providing SCG air interface transmission resources to the terminal. It is understandable that suspending MN terminated SCG RLC Bearer in the embodiments of this application refers to suspending SCG RLC Bearer; suspending SN terminated MCG RLC Bearer refers to suspending the PDCP entity of SN terminated Bearer, or in other words, suspending SN. PDCP entity.
  • the terminal may continue to suspend the PDCP/SDAP entity of the SN, that is, the PDCP/SDAP entity of the SN is not used for data processing and transmission.
  • suspending the PDCP/SDAP entity can be implemented by freezing PDCP/SDAP or PDCP/SDAP recovery (recovery).
  • the PDCP/SDAP entity of the SN may be shared with the MN or used independently by the SN, which is not limited in the embodiment of the present application.
  • the PDCP/SDAP entity of the SN may also be referred to as the PDCP/SDAP entity terminated on the SN.
  • the configuration of the reserved SCG is used in the DC communication between the SN and the terminal when the SCG is deactivated. That is, the terminal reapplies the stored configuration of the SCG for DC.
  • the terminal's SCG activation operation on the SCG may include: the terminal recovers (recovery) the SCG RLC bearer and/or the PDCP entity of the SN terminated bearer corresponding to the bearer established on the SN. That is, the terminal continues to transmit data through the PDCP entity of the SCG RLC bearer and/or SN terminated Bearer. In other words, the terminal can reuse the air interface resources of the SN.
  • the deactivation operation in this application corresponds to the activation operation.
  • the terminal After the terminal performs a deactivation operation for the SCG, when the SCG is activated, the corresponding activation (recovery) operation is performed, for example, deactivation ( Suspend) SCG RLC bearer activates (resume) SCG RLC bearer correspondingly.
  • the various activation (recovery) operations performed by the terminal reference may be made to the corresponding deactivation operations described above, and similar content will not be repeated.
  • the terminal when the terminal defaults all SCells to the deactivated state according to the deactivation instruction, the terminal can activate (restore) all SCells during the SCG activation operation, or only activate (restore) one or more of them as required SCell.
  • the first access network node determines whether to deactivate the SCG or activate the SCG; the first access network node sends first indication information to the second access network node, and the first indication information is used to indicate The second access network node sends the deactivate SCG command or activate the SCG command to the terminal; the second access network node receives the first indication information; the second access network node sends the deactivate SCG command or activate the SCG command to the terminal; the terminal receives Deactivate the SCG command or activate the SCG command; according to the deactivate SCG command or activate the SCG command, the terminal performs the deactivation operation or activation operation on the SCG.
  • the relevant configuration of the SCG can be retained, and through the activation operation, the link communication of the SCG can be quickly restored. Therefore, compared with the prior art, there is no need to increase and release the SN. While the power consumption of the small network side and the terminal, the overhead of air interface signaling is reduced, the delay is reduced, and the communication efficiency is improved.
  • the above-mentioned first access network node and the second access network node may be the CU and DU of the MN or SN, respectively, that is, in this embodiment, the MN or SN performs signaling interaction under the CU-DU architecture to realize the deactivation of SCG. And activation operations can be adapted to different network deployments, making the SCG deactivation and activation operations more flexible.
  • Steps S901-S907 may also include steps S908-S910.
  • the first access network node sends second indication information to the second base station, where the second indication information is used to instruct the second base station to deactivate the SCG or activate the SCG.
  • the MN determines that the suspended bearer is the PDCP entity of the SCG RLC Bearer and/or SN terminated Bearer, and the MN CU sends the second indication information to the SN to instruct the SN to deactivate the SCG or activate the SCG.
  • the above step S908 includes: the MN CU sends second indication information to the SN CU; or, the above step S908 may also include: the MN CU sends second indication information to the SN CU , SN CU informs SN DU to deactivate SCG or activate SCG.
  • the MN CU when the MN determines that the suspended bearer is the PDCP entity of the SN terminated Bearer, and the PDCP layer is divided into the SN CU, the MN CU sends the second indication information to the SN CU; the MN determines that the suspended bearer is the SCG RLC Bearer, and when the RLC layer is divided into SN DU, MN CU sends second indication information to SN CU, and SN CU notifies SN DU to deactivate SCG or activate SCG.
  • the MN determines that the suspended bearer is the SN terminated MCG RLC Bearer, and the CU-DU architecture of the SN is shown in Figure 2.
  • the PDCP layer is deployed in the CU, and the MN CU sends the second indication information to the SN CU.
  • the MN determines that the suspended bearer is MN terminated SCG RLC Bearer, and the CU-DU architecture of the SN is shown in Figure 2.
  • the RLC layer is deployed in the DU, the MN CU sends the second indication information to the SN CU, and the SN CU informs the SN DU deactivates SCG or activates SCG.
  • step S908 can be performed before step S902, can also be performed after step S902, and can also be performed simultaneously with step S902.
  • the embodiment of the present application does not limit the sequence of performing step S908 and step S902.
  • the second base station receives second indication information.
  • the SN receives the second indication information sent by the MN CU.
  • the above step S909 includes: the SN CU receives the second indication information sent by the MN CU; or, the above step S909 includes: the SN CU receives the second indication information sent by the MN CU, The SN DU receives the notification message sent by the SN CU, and informs the SN DU to deactivate the SCG or activate the SCG.
  • the second base station may send an ACK message to the first access network node, which is used to indicate that the second base station has successfully received the second indication information sent by the first access network node.
  • the second base station performs a deactivation operation or an activation operation on the SCG according to the second indication information.
  • the above step S910 includes: the SN CU deactivates the SCG or activates the SCG; and/or the SN DU deactivates the SCG or activates the SCG.
  • the MN determines that the suspended bearer is the PDCP entity of the SN terminated Bearer, and the PDCP layer is divided into the SN CU, the SN CU suspends or resumes the bearer; the MN determines that the suspended bearer is the SCG RLC Bearer, And when the RLC layer is divided into SN DU, SN DU suspends or resumes the bearer.
  • the MN determines that the suspended bearer is SN terminated MCG RLC Bearer, and the CU-DU architecture of the SN is shown in Figure 2.
  • the PDCP layer is deployed in the CU, the MN CU sends the second indication information to the SN CU, and the SN CU receives the MN CU After the second indication information is sent, the SN CU suspends or resumes the PDCP entity of the SN terminated Bearer.
  • the MN determines that the suspended bearer is MN terminated SCG RLC Bearer, and the CU-DU architecture of the SN is shown in Figure 2.
  • the RLC layer is deployed in the DU, the MN CU sends the second indication information to the SN CU, and the SN CU informs the SN DU deactivates SCG or activates SCG, SN DU suspends or resumes SCG RLC Bearer.
  • the MN when the MN determines to deactivate the SCG or activate the SCG, it will notify the SN and instruct the SN to deactivate the SCG or activate the SCG, so that the SN can retain the relevant configuration of the SCG and can quickly restore the SCG through the activation operation. Therefore, compared with the prior art, there is no need to increase and release SN. While reducing the power consumption of the network side and the terminal, it also reduces the overhead of air interface signaling, reduces the delay, and improves Communication efficiency.
  • Steps S901-S907 may also include steps S911-S912.
  • the first access network node sends a first notification message to the second base station, where the first notification message is used to notify the second base station that the first base station deactivates the SCG or activates the SCG.
  • the SN determines that the suspended bearer is MN terminated SCG RLC Bearer and/or SN terminated MCG RLC Bearer, and the SN CU sends a first notification message to the MN to notify the MN, and the SN deactivates the SCG or activates the SCG.
  • the above step S911 includes: the SN CU sends a first notification message to the MN CU; or, the above step S911 may also include: the SN CU sends a first notification message to the MN CU , The MN CU notifies the MN DU to send the notification message to inform the MN DU that the SN deactivates the SCG or activates the SCG.
  • the SN CU when the SN determines that the suspended bearer is the PDCP entity of the MN terminated Bearer, and the PDCP layer is divided into the MN CU, the SN CU sends the first notification message to the MN CU; the SN determines that the suspended bearer is the MCG RLC Bearer, and when the RLC layer is divided into MN DU, SN CU sends a first notification message to MN CU, MN CU notifies MN DU, SN deactivates SCG or activates SCG.
  • the SN determines that the suspended bearer is MN terminated SCG RLC Bearer, and the CU-DU architecture of the MN is shown in Figure 2.
  • the PDCP layer is deployed in the CU, and the SN CU sends the first notification message to the MN CU.
  • the SN determines that the suspended bearer is SN terminated MCG RLC Bearer, and the MN's CU-DU architecture is shown in Figure 2.
  • the RLC layer is deployed in the DU, the SN CU sends the first notification message to the MN CU, and the MN CU notifies the MN DU, SN deactivate SCG or activate SCG.
  • step S911 may be executed before step S902, may also be executed after step S902, or may be executed simultaneously with step S902.
  • the embodiment of the present application does not limit the sequence of execution of step S911 and step S902.
  • the second base station receives the first notification message sent by the first access network node.
  • the MN receives the first notification message sent by the SN CU.
  • the foregoing step S912 includes: the MN CU receives the first notification message sent by the SN CU; or, the foregoing step S912 includes: the MN CU receives the first notification message sent by the SN CU, The MN DU receives the notification message sent by the MN CU and informs the MN DU that the SN deactivates the SCG or activates the SCG.
  • the SN may further include: MN suspends/resumes the data transmission tunnel established on the X2/Xn interface corresponding to the bearer of the SN.
  • the SN determines that the suspended bearer is the MN terminated SCG RLC Bearer.
  • the MN can also suspend the data transmission tunnel of the X2/Xn interface corresponding to the MN terminated SCG RLC Bearer.
  • the SN determines that the suspended bearer is SN terminated MCG RLC Bearer.
  • the MN can also suspend the data transmission tunnel of the X2/Xn interface corresponding to the SN terminated MCG RLC bearer.
  • the MN can further suspend the data transmission tunnel of the X2/Xn interface corresponding to the MN terminated SCG RLC Bearer; in the SN When it is determined that the suspended bearer is SN terminated MCG RLC Bearer, after the SN suspends the PDCP entity of SN terminated Bearer, the MN can further suspend the data transmission tunnel of the X2/Xn interface corresponding to SN terminated MCG RLC Bearer.
  • the second base station may send an ACK message to the first access network node, which is used to indicate that the second base station has successfully received the first notification message sent by the first access network node.
  • the SN when the SN determines to deactivate the SCG or activate the SCG, it will notify the MN so that the MN can suspend/resume the data transmission tunnel established on the X2/Xn interface corresponding to the bearer of the SN.
  • This solution can retain the SCG
  • the SCG link communication can be quickly restored through the activation operation. Therefore, compared with the prior art, there is no need to increase and release the SN. While reducing the power consumption of the network side and the terminal, the air interface is reduced. The overhead of signaling reduces time delay and improves communication efficiency.
  • the embodiment of the present application also provides a communication method. As shown in FIG. 12, the communication method includes steps S1201-S1207.
  • the first access network node determines to deactivate the secondary cell group SCG or activate the SCG.
  • the first access network node belongs to the first base station, the first base station is the MN or SN of the terminal in dual connectivity communication, and the aforementioned SCG is one or more cells managed by the SN.
  • the first access network node is the CU of the first base station.
  • the first access network node may be MN CU or SN CU.
  • step S1201 the specific implementation manner of the first access network node determining the deactivation of the secondary cell group SCG or the activation of the SCG in step S1201 may refer to the related description of step S901, which will not be repeated here.
  • the first access network node sends third indication information to the second base station, where the third indication information is used to instruct the second base station to send an SCG deactivation command or an SCG activation command to the terminal.
  • the second base station is the MN or SN when the terminal is in dual-connection communication, and when the second base station is MN, the first base station is SN; or, when the second base station is SN, the first base station is MN.
  • the first base station is the MN and the second base station is the SN.
  • the above step S1202 may include: the MN CU sends third indication information to the SN, instructing the SN to send a deactivation SCG command or an activation SCG command to the terminal.
  • the second base station may have a CU-DU architecture.
  • the above step S1202 includes: the MN CU sends third indication information to the SN CU, instructing the SN CU to notify the SN DU Send the deactivate SCG command or activate the SCG command to the terminal.
  • the first base station is an SN and the second base station is an MN.
  • the above step S1202 may include: the SN CU sends third indication information to the MN, instructing the MN to send a deactivation SCG command or an activation SCG command to the terminal.
  • the second base station may have a CU-DU architecture.
  • the above step S1202 includes: the SN CU sends third indication information to the MN CU, instructing the MN CU to notify the MN DU Send the deactivate SCG command or activate the SCG command to the terminal.
  • the second base station receives third indication information.
  • the SN when the first base station is an MN and the second base station is an SN, the SN receives the third indication information sent by the MN CU.
  • the SN CU receives the third indication information sent by the MN CU, and the SN DU receives the notification message sent by the SN CU, and informs the SN DU to send the deactivate SCG command or activate the SCG command to the terminal .
  • the second base station (SN) after the third indication information, it also includes the SN deactivating or activating the SCG.
  • the SN is the CU-DU architecture, specifically, the SN CU and/or SN DU deactivate or activate the SCG.
  • the MN receives the third indication information sent by the SN CU.
  • the MN CU receives the third indication information sent by the SN CU, and the MN DU receives the notification message sent by the MN CU, and informs the MN DU to send a deactivation SCG command or activate the SCG to the terminal command.
  • the MN suspends/resumes the data transmission tunnel established on the X2/Xn interface corresponding to the bearer of the SN.
  • the MN is in the CU-DU architecture, specifically, the MN CU and/or MN DU suspends/resumes and establishes a data transmission tunnel on the X2/Xn interface corresponding to the bearer of the SN.
  • the method further includes S1204.
  • the second base station sends an ACK message to the first access network node.
  • the ACK message is used to indicate that the second base station has successfully received the third indication information sent by the first access network node.
  • step S1204 specifically includes: the SN sends an ACK message to the MN CU.
  • the SN CU sends an ACK message to the MN CU
  • the SN DU sends an ACK message to the SN CU.
  • step S1204 specifically includes: the MN sends an ACK message to the SN CU.
  • the MN CU sends an ACK message to the SN CU
  • the MN DU sends an ACK message to the MN CU.
  • the second base station sends an SCG deactivation command or an SCG activation command to the terminal.
  • step S1205 specifically includes: the SN sends an SCG deactivation command or an SCG activation command to the terminal.
  • the SN DU sends a deactivation SCG command or an activation SCG command to the terminal.
  • step S1205 specifically includes: the MN sends an SCG deactivation command or an SCG activation command to the terminal.
  • the MN DU sends a deactivation SCG command or an activation SCG command to the terminal.
  • step S905 for the relevant description of the deactivating SCG command or the activating SCG command, and the carrying manner of the deactivating SCG command or activating SCG command, etc., please refer to step S905, which will not be repeated here.
  • the terminal receives a deactivation SCG command or an activation SCG command.
  • the terminal receives an SCG deactivation command or an SCG activation command sent by the MN or SN.
  • the terminal receives the deactivation SCG command or the activation SCG command sent by the MN DU;
  • the terminal receives the deactivation SCG sent by the SN DU Command or activate SCG command.
  • S1207 The terminal performs a deactivation operation or an activation operation on the SCG according to the deactivate SCG command or the activate SCG command.
  • step S1207 can refer to step S907, which will not be repeated here.
  • the first access network node determines to deactivate the secondary cell group SCG or activates the SCG; the first access network node sends third indication information to the second base station, and the third indication information is used to indicate
  • the second base station sends the deactivate SCG command or the activate SCG command to the terminal; the second base station receives the third indication information; the second base station sends the deactivate SCG command or the activate SCG command to the terminal; the terminal receives the deactivate SCG command or activate the SCG command;
  • the terminal performs a deactivation operation or an activation operation on the SCG according to the deactivate SCG command or the activate SCG command.
  • the relevant configuration of the SCG can be retained, and through the activation operation, the link communication of the SCG can be quickly restored. Therefore, compared with the prior art, there is no need to increase and release the SN. While the power consumption of the small network side and the terminal, the overhead of air interface signaling is reduced, the delay is reduced, and the communication efficiency is improved. Moreover, the MN or SN performs signaling interaction under the CU-DU architecture to realize the deactivation and activation operations of the SCG, which can be adapted to different network deployments, making the deactivation and activation operations of the SCG more flexible.
  • the above method may further include steps S1208-S1210 on the basis of steps S1201-S1207.
  • the first access network node sends fourth indication information to the second access network node.
  • the fourth indication information is used to instruct the second access network node to deactivate the SCG or to activate the SCG, or the fourth indication information is used to notify the second access network node that the SN deactivates the SCG or activates the SCG.
  • the second access network node and the first access network node belong to the first base station.
  • the second access network node may be MN DU or SN DU.
  • step S1208 includes: the MN CU sends the fourth indication information to the MN DU to notify the MN DU, and the SN deactivates the SCG or activates the SCG.
  • step S1208 includes: the SN CU sends fourth indication information to the SN DU, instructing the SN DU to deactivate the SCG or activate the SCG.
  • the SN CU can send the above fourth to the SN DU.
  • Indication information instruct SN DU to deactivate SCG or activate SCG.
  • step S1208 may be executed before step S1202, may also be executed after step S1202, or may be executed simultaneously with step S1202.
  • the embodiment of the present application does not limit the sequence of execution of step S1208 and step S1202.
  • the second access network node receives fourth indication information.
  • step S1209 includes: the MN DU receives the fourth indication information sent by the MN CU.
  • the MN DU suspends/resumes the data transmission tunnel established on the X2/Xn interface corresponding to the bearer of the SN.
  • step S1209 includes: the SN DU receives the fourth indication information sent by the SN CU.
  • the SN DU receives the fourth indication information, it further includes that the SN DU deactivates or activates the SCG.
  • the method further includes S1210.
  • the second access network node sends an ACK message to the first access network node.
  • the ACK message is used to indicate that the second access network node has successfully received the fourth indication information sent by the first access network node.
  • step S1210 when the first base station is an MN, step S1210 includes: the MN DU sends an ACK message to the MN CU.
  • step S1210 includes: the SN DU sends an ACK message to the SN CU.
  • the first base station when the first base station is an SN, when the first access network node determines to deactivate the SCG or activates the SCG, it will notify the second access network node, so that the first access network node determines to suspend Or the restored bearer is SCG RLC Bearer, and the RLC layer is divided into the second access network node, the second access network node can perform deactivation or activation operations on the bearer; when the first base station is an MN, the first access When the network access node determines to deactivate the SCG or activate the SCG, it will notify the second access network node, so that the second access network node suspends/resumes the data transmission tunnel established on the X2/Xn interface corresponding to the bearer of the SN.
  • This solution enables the SN to retain the relevant configuration of the SCG and quickly restore the SCG link communication through the activation operation, which can reduce the power consumption of the network side and the terminal, and reduce the overhead of air interface signaling and time Delay, improve communication
  • the embodiment of the present application also provides a communication method. As shown in FIG. 14, the method may include steps S1401-S1404.
  • the second access network node determines to deactivate the SCG or activate the SCG.
  • the second access network node belongs to the first base station, the first base station is the MN or SN when the terminal is in dual-connection communication, and the aforementioned SCG is one or more cells managed by the SN.
  • the second access network node is the DU of the first base station.
  • the second access network node may be MN DU or SN DU.
  • the second access network node determines the specific implementation manner of deactivating the SCG or activating the SCG in step S1401. You can refer to the implementation manner of determining the deactivation of the SCG or activating the SCG by the first access network node in step S901. Repeat it again.
  • the second access network node sends an SCG deactivation command or an SCG activation command to the terminal.
  • the MN DU or SN DU sends an SCG deactivation command or an SCG activation command to the terminal.
  • step S905 for the relevant description of the deactivating SCG command or the activating SCG command, and the carrying manner of the deactivating SCG command or activating SCG command, etc., please refer to step S905, which will not be repeated here.
  • the terminal receives the SCG deactivation command or the SCG activation command.
  • the terminal receives an SCG deactivation command or an SCG activation command sent by the MN DU or SN DU.
  • S1404 The terminal performs a deactivation operation or an activation operation on the SCG according to the deactivate SCG command or the activate SCG command.
  • step S1404 can refer to step S907, which will not be repeated here.
  • the second access network node determines to deactivate the SCG or activate the SCG; the second access network node sends the deactivate SCG command or activate the SCG command to the terminal; the terminal receives the deactivate SCG command or activation SCG command: According to the deactivate SCG command or activate the SCG command, the terminal will deactivate or activate the SCG.
  • the deactivating the SCG by deactivating the SCG, the relevant configuration of the SCG can be retained, and through the activation operation, the link communication of the SCG can be quickly restored. Therefore, compared with the prior art, there is no need to increase and release the SN.
  • the MN or SN performs signaling interaction under the CU-DU architecture to realize the deactivation and activation operations of the SCG, which can be adapted to different network deployments, making the deactivation and activation operations of the SCG more flexible.
  • the foregoing method may further include S1405-S1407.
  • the second access network node sends fifth indication information to the first access network node.
  • the fifth indication information is used to instruct the first access network node to deactivate the SCG or to activate the SCG, or the fifth indication information is used to notify the second access network node that the SN deactivates the SCG or activates the SCG.
  • the first access network node also belongs to the first base station.
  • the first access network node may be MN CU or SN CU.
  • step S1405 includes: the MN DU sends fifth indication information to the MN CU to notify the MN CU, and the SN deactivates the SCG or activates the SCG.
  • the first access network node includes a first device and a second device.
  • the first device is used to perform the control plane function of the first access network node
  • the second device is used to perform the control plane function of the first access network node.
  • User plane function For example, the first device is MN CU-CP
  • the second device is MN CU-UP.
  • the above step S1405 includes: MN DU sends fifth indication information to MN CU-CP to notify MN CU-CP, SN deactivates SCG or activates SCG; or MN DU sends fifth indication information to MN CU-CP, MN CU-CP CP informs MN CU-UP, SN deactivates SCG or activates SCG.
  • step S1405 includes: the SN DU sends fifth indication information to the SN CU, instructing the SN CU to deactivate the SCG or activate the SCG.
  • the first access network node includes a first device and a second device.
  • the first device is used to perform the control plane function of the first access network node
  • the second device is used to perform the control plane function of the first access network node.
  • User plane function For example, the first device is SN CU-CP, and the second device is SN CU-UP.
  • the above step S1405 includes: SN DU sends fifth indication information to SN CU-CP, instructing SN CU-CP to deactivate SCG or activate SCG; or SN DU sends fifth indication information to SN CU-CP, SN CU-CP informs SN CU-UP deactivates SCG or activates SCG.
  • the second access network node may send the above-mentioned fifth indication information to the first access network node to instruct the first access network node to deactivate the SCG or activate the SCG.
  • the first base station is an MN
  • the second access network node determines to deactivate the SCG or activate the SCG, it will notify the first access network node, so that the first access network node suspends/resumes the bearer correspondence established in the SN X2/Xn interface data transmission tunnel.
  • step S1405 may be executed before step S1402, may also be executed after step S1402, or may be executed simultaneously with step S1402.
  • the embodiment of the present application does not limit the sequence of execution of step S1405 and step S1402.
  • S1406 The first access network node receives fifth indication information.
  • step S1406 includes: the MN CU receives the fifth indication information sent by the MN DU.
  • step S1406 includes: MN CU-CP receives fifth indication information sent by MN DU Or, the MN CU-CP receives the fifth indication information sent by the MN DU, and the MN CU-UP receives the notification message sent by the MN CU-CP to deactivate the SCG or activate the SCG.
  • the MN CU after the MN CU receives the fifth indication information, it also includes that the MN CU suspends/resumes the data transmission tunnel established on the X2/Xn interface corresponding to the bearer of the SN. Specifically, the MN CU-CP and/or MN CU-UP suspends/resumes the data transmission tunnel established on the X2/Xn interface corresponding to the bearer of the SN.
  • step S1406 includes: the SN CU receives the fifth indication information sent by the SN DU.
  • step S1406 includes: SN CU-CP receives fifth indication information sent by SN DU
  • the SN CU-CP receives the fifth indication information sent by the SN DU
  • the SN CU-UP receives the notification message sent by the SN CU-CP to deactivate the SCG or activate the SCG.
  • the SN CU after the SN CU receives the fifth indication information, it also includes the SN CU deactivating or activating the SCG.
  • the SN CU-CP and/or SN CU-UP deactivate or activate the SCG.
  • the method further includes S1407.
  • the first access network node sends an ACK message to the second access network node.
  • the ACK message is used to indicate that the first access network node has successfully received the fifth indication information sent by the second access network node.
  • step S1407 includes: the MN CU sends an ACK message to the MN DU.
  • step S1407 includes: MN CU-CP sends an ACK to MN DU Message; or, the MN CU-UP sends an ACK message to the MN CU-CP, and the MN CU-CP sends an ACK message to the MN DU.
  • step S1407 includes: the SN CU sends an ACK message to the SN DU.
  • step S1407 includes: SN CU-CP sends an ACK to SN DU Message; or, the SN CU-UP sends an ACK message to the SN CU-CP, and the SN CU-CP sends an ACK message to the SN DU.
  • the first base station when the first base station is an SN, when the second access network node determines to deactivate the SCG or activates the SCG, it will notify the first access network node, so that the second access network node determines to suspend Or the restored bearer is the PDCP entity of the SN terminated Bearer, and the PDCP layer is divided into the first access network node, the first access network node can perform deactivation or activation operations on the bearer, so that the SN can retain the SCG related Configure and quickly restore SCG link communication through activation operations, which can reduce the power consumption of the network side and the terminal, while reducing the overhead of air interface signaling, reducing delay, and improving communication efficiency.
  • the first base station is MN and the second base station is SN
  • the first access network node is MN CU
  • the second access network node is MN DU.
  • the above method also Can include S1408-S1410.
  • the first access network node sends sixth indication information to the second base station, where the sixth indication information is used to instruct the second base station to deactivate the SCG or activate the SCG.
  • the specific implementation manner of the first access network node sending the sixth indication information to the second base station in step S1408 may refer to the implementation manner of the first access network node sending the second indication information to the second base station in step S908 , I won’t repeat it here.
  • Step S1408 includes: the first device MN CU-CP sends sixth indication information to the second base station.
  • the second base station SN may have a CU-DU architecture, and the SN CU may include SN CU-CP and SN CU-UP.
  • Step S1408 includes: the first device SN CU-CP sends sixth indication information to the second base station.
  • the second base station MN may have a CU-DU architecture, and the MN CU may include MN CU-CP and MN CU-UP.
  • the second base station receives sixth indication information.
  • the second base station may perform a deactivation operation or an activation operation on the SCG according to the sixth indication information.
  • the second base station may perform a deactivation operation or an activation operation on the SCG according to the sixth indication information.
  • the second base station performs deactivation or activation operations on the SCG, including: SN CU deactivates SCG or activates SCG, and/or SN DU deactivates SCG or activates SCG .
  • the MN determines that the suspended bearer is the PDCP entity of the SN terminated Bearer, and the PDCP layer is divided into the SN CU, the SN CU suspends or resumes the bearer; the MN determines that the suspended bearer is the SCG RLC Bearer, And when the RLC layer is divided into SN DU, SN DU suspends or resumes the bearer.
  • the MN determines that the suspended bearer is SN terminated MCG RLC Bearer, and the CU-DU architecture of the SN is shown in Figure 2.
  • the PDCP layer is deployed in the CU, the MN CU sends the second indication information to the SN CU, and the SN CU receives the MN CU After the second indication information is sent, the SN CU suspends or resumes the PDCP entity of the SN terminated Bearer.
  • the MN determines that the suspended bearer is MN terminated SCG RLC Bearer, and the CU-DU architecture of the SN is shown in Figure 2.
  • the RLC layer is deployed in the DU, the MN CU sends the second indication information to the SN CU, and the SN CU informs the SN DU deactivates SCG or activates SCG, SN DU suspends or resumes SCG RLC Bearer.
  • Step S1409 includes: the SN receives the sixth indication information sent by the first device MN CU-CP.
  • the second base station SN may have a CU-DU architecture, and the SN CU may include SN CU-CP and SN CU-UP.
  • Step S1409 includes: the MN receives the sixth indication information sent by the first device SN CU-CP.
  • the second base station MN may have a CU-DU architecture, and the MN CU may include MN CU-CP and MN CU-UP.
  • the method further includes S1410.
  • the second base station sends an ACK message to the first access network node.
  • the ACK message is used to indicate that the second base station has successfully received the sixth indication information sent by the first access network node.
  • Step S1410 includes: the SN sends an ACK message to the MN CU-CP.
  • the second base station SN may have a CU-DU architecture, and the SN CU may include SN CU-CP and SN CU-UP.
  • Step S1410 includes: the MN sends an ACK message to the SN CU-CP.
  • the second base station MN may have a CU-DU architecture, and the MN CU may include MN CU-CP and MN CU-UP.
  • the MN when the MN determines to deactivate the SCG or activate the SCG, it will notify the SN and instruct the SN to deactivate the SCG or activate the SCG, so that the SN can retain the relevant configuration of the SCG and can quickly restore the SCG through the activation operation. Therefore, compared with the prior art, there is no need to increase and release SN. While reducing the power consumption of the network side and the terminal, it also reduces the overhead of air interface signaling, reduces the delay, and improves Communication efficiency.
  • the first base station is an SN and the second base station is an MN
  • the first access network node is an SN CU
  • the second access network node is an SN DU.
  • the above method also Can include S1411-S1413.
  • the first access network node sends a second notification message to the second base station, where the second notification message is used to notify the second base station that the first base station deactivates the SCG or activates the SCG.
  • the specific implementation manner of the first access network node sending the second notification message to the second base station in step S1411 may refer to the first access network node sending the first notification message to the second base station in step S911, where No longer.
  • the second base station receives the second notification message.
  • the method further includes S1413.
  • the second base station sends an ACK message to the first access network node.
  • the ACK message is used to indicate that the second base station has successfully received the second notification message sent by the first access network node.
  • the SN when the SN determines to deactivate the SCG or activate the SCG, it will notify the MN so that the MN can suspend/resume the data transmission tunnel established on the X2/Xn interface corresponding to the bearer of the SN.
  • This solution can retain the SCG
  • the SCG link communication can be quickly restored through the activation operation. Therefore, compared with the prior art, there is no need to increase and release the SN. While reducing the power consumption of the network side and the terminal, the air interface is reduced. The overhead of signaling reduces time delay and improves communication efficiency.
  • the communication method includes steps S1801-S1810.
  • the second access network node determines to deactivate the secondary cell group SCG or activate the SCG.
  • the second access network node belongs to the first base station, the first base station is the MN or SN when the terminal is in dual-connection communication, and the aforementioned SCG is one or more cells managed by the SN.
  • the second access network node is the distributed unit DU of the first base station.
  • the second access network node may be MN DU or SN DU.
  • the second access network node determines the specific implementation manner of deactivating the SCG or activating the SCG in step S1801. You can refer to the implementation manner of determining the deactivation of the SCG or activating the SCG by the first access network node in step S901. Repeat it again.
  • the second access network node sends a third notification message to the first access network node to notify the first access network node to send seventh indication information to the second base station.
  • the seventh indication information is used to instruct the second base station to send an SCG deactivation command or an SCG activation command to the terminal.
  • the first access network node and the second access network node belong to the first base station.
  • the first access network node may be MN CU or SN CU.
  • the above-mentioned second base station is the MN or SN when the terminal is in dual connectivity communication, and when the second base station is MN, the first base station is SN; or, when the second base station is SN, the first base station is MN.
  • step S1802 when the first base station is an MN, step S1802 includes: the MN DU sends a third notification message to the MN CU; when the first base station is an SN, step S1802 includes: the SN DU sends a third notification message to the SN CU.
  • the first access network node receives the third notification message sent by the second access network node.
  • step S1803 includes: the MN CU receives the third notification message sent by the MN DU; optionally, the MN CU can also suspend/resume the X2/Xn interface corresponding to the bearer established on the SN Data transmission tunnel.
  • step S1803 includes: the SN CU receives the third notification message sent by the SN DU.
  • the SN CU can also deactivate the SCG or activate the SCG.
  • the first base station is an SN
  • the second access network node determines that the suspended or resumed bearer is the PDCP entity of the SN terminated Bearer, and the PDCP layer is divided into the first access network node
  • the above-mentioned first access network node After an access network node receives the third notification message sent by the second access network node, it may also include the first access network node suspending or resuming the bearer.
  • the method further includes S1804.
  • the first access network node sends an ACK message to the second access network node.
  • the ACK message is used to indicate that the first access network node has successfully received the third notification message sent by the second access network node.
  • the first access network node sends seventh indication information to the second base station.
  • the seventh indication information is used to instruct the second base station to send an SCG deactivation command or an SCG activation command to the terminal.
  • the specific implementation manner of the first access network node sending the seventh indication information to the second base station in step S1805 may refer to the implementation manner of the first access network node sending the third indication information to the second base station in step S1202 , I won’t repeat it here.
  • the second base station receives seventh indication information.
  • the method further includes S1807.
  • the second base station sends an ACK message to the first access network node.
  • the ACK message is used to indicate that the second base station has successfully received the seventh indication information sent by the first access network node.
  • the specific implementation manner of the second base station sending the ACK message to the first access network node in step S1807 can refer to the implementation manner of the second base station sending the ACK message to the first access network node in step S1204. Repeat it again.
  • the second base station sends an SCG deactivation command or an SCG activation command to the terminal.
  • the terminal receives a deactivation SCG command or an activation SCG command.
  • the terminal performs a deactivation operation or an activation operation on the SCG according to the deactivate SCG command or the activate SCG command.
  • the second access network node determines to deactivate the SCG or activate the SCG; the second access network node sends a third notification message to the first access network node to notify the first access network node Send the seventh indication information to the second base station; the first access network node receives the third notification message sent by the second access network node; the first access network node sends the seventh indication information to the second base station; the second base station receives Seventh indication information; the second base station sends the deactivate SCG command or activate the SCG command to the terminal; the terminal receives the deactivate SCG command or activate the SCG command; the terminal deactivates or activates the SCG according to the deactivate SCG command or activate the SCG command operating.
  • the relevant configuration of the SCG can be retained, and through the activation operation, the link communication of the SCG can be quickly restored. Therefore, compared with the prior art, there is no need to increase and release the SN. While the power consumption of the small network side and the terminal, the overhead of air interface signaling is reduced, the delay is reduced, and the communication efficiency is improved. Moreover, the MN or SN performs signaling interaction under the CU-DU architecture to realize the deactivation and activation operations of the SCG, which can be adapted to different network deployments, making the deactivation and activation operations of the SCG more flexible.
  • the first access network node when the first access network node includes the first device and the second device, an embodiment of the present application also provides a communication method. As shown in FIG. 19, the method includes steps S1901-S1907.
  • the first device is used to perform the control plane function of the first access network node
  • the second device is used to perform the user plane function of the first access network node
  • the first access network node belongs to the first base station
  • the first base station It is the MN or SN when the terminal is in dual-connection communication.
  • the first device determines to deactivate the SCG or activate the SCG.
  • the first device is used to perform the control plane function of the first access network node
  • the first access network node is MN CU or SN CU
  • the first device is MN CU-CP or SN CU-CP.
  • the first device determines the specific implementation manner of deactivating the SCG or activating the SCG in step S1901, and may refer to the implementation manner of determining the deactivation of the SCG or activating the SCG by the first access network node in step S901, which will not be repeated here.
  • the first device sends eighth indication information to the second access network node.
  • the second access network node also belongs to the first base station.
  • the second access network node may be MN DU or SN DU.
  • step S1902 specifically includes: the MN CU-CP sends eighth indication information to the MN DU, instructing the MN DU to send an SCG deactivation command or an SCG activation command to the terminal.
  • step S1902 specifically includes: the SN CU-CP sends eighth indication information to the SN DU, instructing the SN DU to send a deactivation SCG command or an activation SCG command to the terminal.
  • the second access network node receives eighth indication information.
  • step S1903 specifically includes: the MN DU receives the eighth indication information sent by the MN CU-CP.
  • step S1903 specifically includes: the SN DU receives the eighth indication information sent by the SN CU-CP.
  • the second access network node may also deactivate the SCG or activate the SCG.
  • the second access network node may perform at least one of the following operations: suspend data transmission on SCG RLC Bearer; suspend data transmission on SN terminated Bearer; suspend SCG RLC entity Data transmission; suspend the data transmission on the SN PDCP entity.
  • the second access network node is an SN DU, taking the CU-DU architecture shown in Figure 2 as an example, the RLC layer is deployed in the DU. If the SN CU-CP determines to suspend SCG RLC Bearer, SN DU in step S1901 The data transmission on SCG RLC Bearer can be suspended.
  • the second access network node may also suspend/resume the establishment of the data transmission tunnel on the X2/Xn interface corresponding to the bearer of the SN.
  • the second access network node is MN DU, taking the CU-DU architecture shown in Figure 2 as an example, the RLC layer is deployed in DU. If MN CU-CP determines to suspend SN terminated MCG RLC Bearer in step S1901, The MN DU can suspend the data transmission tunnel of the X2/Xn interface corresponding to the SN terminated MCG RLC Bearer.
  • the method further includes S1904.
  • the second access network node sends an ACK message to the first device.
  • the ACK message is used to indicate that the second access network node has successfully received the eighth indication information sent by the first device.
  • step S1904 specifically includes: the MN DU sends an ACK message to the MN CU-CP.
  • step S1904 specifically includes: the SN DU sends an ACK message to the SN CU-CP.
  • the second access network node sends an SCG deactivation command or an SCG activation command to the terminal.
  • S1906 The terminal receives a deactivation SCG command or an activation SCG command.
  • S1907 The terminal performs a deactivation operation or an activation operation on the SCG according to the deactivate SCG command or the activate SCG command.
  • the first device determines to deactivate the SCG or activate the SCG; the first device sends the eighth indication information to the second access network node; the second access network node receives the eighth indication information; The second access network node sends an ACK message to the first device; the second access network node sends a deactivation SCG command or an activation SCG command to the terminal; the terminal receives a deactivation SCG command or an activation SCG command; the terminal according to the deactivation SCG command or activation The SCG command is used to deactivate or activate the SCG.
  • the relevant configuration of the SCG can be retained, and through the activation operation, the link communication of the SCG can be quickly restored. Therefore, compared with the prior art, there is no need to increase and release the SN. While the power consumption of the small network side and the terminal, the overhead of air interface signaling is reduced, the delay is reduced, and the communication efficiency is improved.
  • the CU of the MN or SN performs signaling interaction under the architecture including CP and UP to realize the deactivation and activation operations of the SCG, which can be adapted to different network deployments, making the deactivation and activation operations of the SCG more flexible.
  • the above method may further include steps S1908-S1910 on the basis of steps S1901-S1907.
  • the first device sends ninth indication information to the second base station, where the ninth indication information is used to instruct the second base station to deactivate the SCG or activate the SCG.
  • the MN determines that the suspended bearer is the PDCP entity of the SCG RLC Bearer and/or SN terminated Bearer, and the MN CU-CP sends the ninth indication information to the SN to instruct the SN to deactivate the SCG or activate the SCG.
  • the above step S1908 includes: the MN CU-CP sends the ninth indication information to the SN CU; or the above step S1908 may also include: the MN CU-CP sends to the SN CU In the ninth indication information, the SN CU informs the SN DU to deactivate the SCG or activate the SCG.
  • the MN CU when the MN determines that the suspended bearer is the PDCP entity of the SN terminated Bearer, and the PDCP layer is divided into the SN CU, the MN CU sends the ninth indication information to the SN CU; the MN determines that the suspended bearer is the SCG RLC Bearer, and when the RLC layer is divided into SN DU, MN CU sends ninth indication information to SN CU, and SN CU notifies SN DU to deactivate SCG or activate SCG.
  • the above step S1908 includes: MN CU-CP sends ninth indication information to SN CU-CP; or, MN CU-CP sends SN
  • the CU-CP sends the ninth indication information
  • the SN CU-CP informs the SN CU-UP and/or SN DU to deactivate the SCG or activate the SCG.
  • step S1908 may be executed before step S1902, may also be executed after step S1902, or may be executed simultaneously with step S1902.
  • the embodiment of the present application does not limit the sequence of execution of step S1908 and step S1902.
  • the second base station receives the ninth indication information.
  • the SN receives the ninth indication information sent by the MN CU.
  • the above step S1909 includes: the SN CU receives the ninth indication information sent by the MN CU-CP; or, the above step S1909 includes: the SN CU receives the first sent by the MN CU-CP
  • the SN DU receives the notification message sent by the SN CU and informs the SN DU to deactivate the SCG or activate the SCG.
  • the above step S1909 includes: the SN CU-CP receives the ninth indication information sent by the MN CU-CP; or, the above step S1909 includes: The SN CU-CP receives the ninth indication message sent by the MN CU-CP, and the SN CU-UP and/or SN DU receives the notification message sent by the SN CU-CP and informs the SN CU-UP and/or SN DU to deactivate the SCG or activate SCG.
  • the second base station may send an ACK message to the first device to indicate that the second base station has successfully received the ninth indication information sent by the first device.
  • the second base station performs a deactivation operation or an activation operation on the SCG according to the ninth indication information.
  • the above step S1910 includes: the SN CU deactivates the SCG or activates the SCG; or the SN DU deactivates the SCG or activates the SCG.
  • step S1910 includes: SN CU-CP and/or SN CU-UP to deactivate SCG or activate SCG; and/or, SN DU deactivates SCG or activates SCG.
  • the MN when the MN determines to deactivate the SCG or activate the SCG, it will notify the SN and instruct the SN to deactivate the SCG or activate the SCG, so that the SN can retain the relevant configuration of the SCG and can quickly restore the SCG through the activation operation. Therefore, compared with the prior art, there is no need to increase and release SN. While reducing the power consumption of the network side and the terminal, it also reduces the overhead of air interface signaling, reduces the delay, and improves Communication efficiency.
  • the above-mentioned first access network node is SN CU
  • the second access network node is SN DU
  • the first device is SN CU-CP
  • the second device is SN CU-UP.
  • the above method may further include steps S1911-S1912 on the basis of steps S1901-S1907.
  • the first device sends a fourth notification message to the second base station, where the fourth notification message is used to notify the second base station that the first base station deactivates the SCG or activates the SCG.
  • the above step S1911 includes: the SN CU-CP sends a fourth notification message to the MN CU; or the above step S1911 may also include: the SN CU-CP sends to the MN CU In the fourth notification message, the MN CU notifies the MN DU, and the SN deactivates the SCG or activates the SCG.
  • the above step S1911 includes: the SN CU-CP sends a fourth notification message to the MN CU-CP; or, the above step S1911 may also include : SN CU-CP sends a fourth notification message to MN CU-CP, MN CU-CP notifies MN CU-UP and/or MN DU, SN deactivates SCG or activates SCG.
  • step S1911 may be executed before step S1902, may also be executed after step S1902, or may be executed simultaneously with step S1902.
  • the embodiment of the present application does not limit the sequence of execution of step S1911 and step S1902.
  • the second base station receives the fourth notification message.
  • the MN receives the fourth notification message sent by the SN CU-CP.
  • the above step S1912 includes: the MN CU receives the fourth notification message sent by the SN CU-CP; or, the above step S1912 includes: the MN CU receives the first notification message sent by the SN CU-CP Fourth notification message: MN DU receives notification message sent by MN CU, notifies MN DU, SN deactivates SCG or activates SCG.
  • the above step S1912 includes: the MN CU-CP receives the fourth notification message sent by the SN CU-CP; or, the above step S1912 includes: MN CU-CP receives the fourth notification message sent by SN CU-CP, MN CU-UP and/or MN DU receives the notification message sent by MN CU-CP, notifies MN CU-UP and/or MN DU, and SN deactivates SCG Or activate SCG.
  • the second base station may send an ACK message to the first device to indicate that the second base station has successfully received the fourth notification message sent by the first device.
  • the SN when the SN determines to deactivate the SCG or activate the SCG, it will notify the MN so that the MN can suspend/resume the data transmission tunnel established on the X2/Xn interface corresponding to the bearer of the SN.
  • This solution can retain the SCG
  • the SCG link communication can be quickly restored through the activation operation. Therefore, compared with the prior art, there is no need to increase and release the SN. While reducing the power consumption of the network side and the terminal, the air interface is reduced. The overhead of signaling reduces time delay and improves communication efficiency.
  • the first access network node when the first access network node includes the first device and the second device, an embodiment of the present application also provides a communication method. As shown in FIG. 22, the method includes steps S2201-S2210.
  • the first device is used to perform the control plane function of the first access network node
  • the second device is used to perform the user plane function of the first access network node
  • the first access network node belongs to the first base station
  • the first base station It is the MN or SN when the terminal is in dual-connection communication.
  • the second device determines to deactivate the SCG or activate the SCG.
  • the second device is used to perform the user plane function of the first access network node
  • the first access network node is MN CU or SN CU
  • the second device is MN CU-UP or SN CU-UP.
  • the second device determines the specific implementation manner of deactivating the SCG or activating the SCG in step S2201, and may refer to the implementation manner of determining the deactivation of the SCG or activating the SCG by the first access network node in step S901, which will not be repeated here.
  • the second device sends a fifth notification message to the first device, notifying the first device to send tenth indication information to the second access network node.
  • the tenth indication information is used to instruct the second access network node to send an SCG deactivation command or an SCG activation command to the terminal.
  • the first device is used to perform the control plane function of the first access network node, and the first device is MN CU-CP or SN CU-CP.
  • step S2202 specifically includes: the MN CU-UP sends a fifth notification message to the MN CU-CP to notify the MN CU-CP to send the tenth indication information to the MN DU.
  • step S2202 specifically includes: the SN CU-UP sends a fifth notification message to the SN CU-CP to notify the SN CU-CP to send the tenth indication information to the SN DU.
  • the first device receives the fifth notification message.
  • step S2203 specifically includes: the MN CU-CP receives the fifth notification message sent by the MN CU-UP.
  • step S2203 specifically includes: the SN CU-CP receives the fifth notification message sent by the SN CU-UP.
  • the method further includes S2204.
  • the first device sends an ACK message to the second device.
  • the ACK message is used to indicate that the first device has successfully received the fifth notification message sent by the second device.
  • step S2204 specifically includes: the MN CU-CP sends an ACK message to the MN CU-UP.
  • step S2204 specifically includes: the SN CU-CP sends an ACK message to the SN CU-UP.
  • the first device sends tenth indication information to the second access network node.
  • step S2205 specifically includes: the MN CU-CP sends the tenth indication information to the MN DU.
  • step S2205 specifically includes: the SN CU-CP sends the tenth indication information to the SN DU.
  • S2206 The second access network node receives tenth indication information.
  • step S2206 specifically includes: the MN DU receives the tenth indication information sent by the MN CU-CP.
  • the MN DU can also suspend/resume the data transmission tunnel established on the X2/Xn interface corresponding to the bearer of the SN.
  • step S2206 specifically includes: the SN DU receives the tenth indication information sent by the SN CU-CP.
  • the SN DU can also perform deactivation or activation operations on the SCG.
  • the method further includes S2207.
  • the second access network node sends an ACK message to the first device.
  • step S2207 specifically includes: the MN DU sends an ACK message to the MN CU-CP.
  • step S2207 specifically includes: the SN DU sends an ACK message to the SN CU-CP.
  • the second access network node sends an SCG deactivation command or an SCG activation command to the terminal.
  • the terminal receives a deactivation SCG command or an activation SCG command.
  • the terminal performs a deactivation operation or an activation operation on the SCG according to the deactivate SCG command or the activate SCG command.
  • the foregoing communication method may further include steps S1908-S1910 or steps S1911-S1922 on the basis of the foregoing steps S2201-S2210.
  • steps S1908-S1910 or steps S1911-S1922 on the basis of the foregoing steps S2201-S2210.
  • the second device determines whether to deactivate the SCG or activate the SCG; the second device sends a fifth notification message to the first device to notify the first device to send tenth indication information to the second access network node ;
  • the first device receives the fifth notification message; the first device sends the tenth indication information to the second access network node; the second access network node receives the tenth indication information;
  • the second access network node sends the deactivated SCG to the terminal Command or activate the SCG command;
  • the terminal receives the deactivate SCG command or activate the SCG command; the terminal performs the deactivation operation or activation operation on the SCG according to the deactivation SCG command or the activate SCG command.
  • the relevant configuration of the SCG can be retained, and through the activation operation, the link communication of the SCG can be quickly restored. Therefore, compared with the prior art, there is no need to increase and release the SN. While the power consumption of the small network side and the terminal, the overhead of air interface signaling is reduced, the delay is reduced, and the communication efficiency is improved.
  • the CU of the MN or SN performs signaling interaction under the architecture including CP and UP to realize the deactivation and activation operations of the SCG, which can be adapted to different network deployments, making the deactivation and activation operations of the SCG more flexible.
  • the first access network node when the first access network node includes the first device and the second device, an embodiment of the present application also provides a communication method. As shown in FIG. 23, the method includes steps S2301-S2307.
  • the first device is used to perform the control plane function of the first access network node
  • the second device is used to perform the user plane function of the first access network node
  • the first access network node belongs to the first base station
  • the first base station It is the MN or SN when the terminal is in dual-connection communication.
  • the first device determines to deactivate the SCG or activate the SCG.
  • the first device is used to perform the control plane function of the first access network node
  • the first access network node is MN CU or SN CU
  • the first device is MN CU-CP or SN CU-CP.
  • the first device determines the specific implementation manner of deactivating the SCG or activating the SCG in step S2301, and may refer to the implementation manner of determining the deactivation of the SCG or activating the SCG by the first access network node in step S901, which will not be repeated here.
  • the first device sends eleventh indication information to the second base station, where the eleventh indication information is used to instruct the second base station to send a deactivation SCG command or an activation SCG command to the terminal.
  • the second base station is the MN or SN when the terminal is in dual-connection communication, and when the second base station is MN, the first base station is SN; or, when the second base station is SN, the first base station is MN.
  • step S2302 includes: the MN CU-CP sends the eleventh indication information to the SN CU, and the SN CU informs The SN DU sends an SCG deactivation command or an SCG activation command to the terminal.
  • the above step S2302 includes: the MN CU-CP sends the eleventh indication information to the SN CU-CP, and the SN CU-CP notifies the SN DU Send the deactivate SCG command or activate the SCG command to the terminal.
  • step S2302 includes: the SN CU-CP sends the eleventh indication information to the MN CU, and the MN CU informs The MN DU sends an SCG deactivation command or an SCG activation command to the terminal.
  • step S2302 includes: SN CU-CP sends the eleventh indication information to MN CU-CP, and MN CU-CP notifies MN DU Send the deactivate SCG command or activate the SCG command to the terminal.
  • the second base station receives the eleventh indication information.
  • step S2303 includes: SN CU receives the eleventh indication information sent by MN CU-CP, SN DU Receive notification messages sent by SN CU.
  • the SN CU and/or SN DU can also deactivate or activate the SCG.
  • the above step S2303 includes: SN CU-CP receives the eleventh indication information sent by MN CU-CP, and SN DU receives SN CU- Notification message sent by CP.
  • the SN CU-CP and/or SN DU can also deactivate or activate the SCG.
  • the above step S2303 includes: the MN CU receives the eleventh indication information sent by the SN CU-CP, MN DU Receive the notification message sent by the MN CU.
  • the MN CU and/or MN DU can also suspend/resume the establishment of the data transmission tunnel on the X2/Xn interface corresponding to the bearer of the SN.
  • the above step S2303 includes: MN CU-CP receives the eleventh indication information sent by SN CU-CP, MN DU receives MN CU- Notification message sent by CP.
  • the MN CU-CP and/or MN DU can also suspend/resume the establishment of the data transmission tunnel on the X2/Xn interface corresponding to the bearer of the SN.
  • the method further includes S2304.
  • the second base station sends an ACK message to the first device.
  • step S2304 includes: SN CU sends an ACK message to MN CU-CP, and SN DU sends SN CU ACK message.
  • step S2304 includes: SN CU-CP sends an ACK message to MN CU-CP, and SN DU sends an ACK message to SN CU-CP .
  • step S2304 includes: MN CU sends an ACK message to SN CU-CP, and MN DU sends MN CU ACK message.
  • step S2304 includes: MN CU-CP sends an ACK message to SN CU-CP, and MN DU sends an ACK message to MN CU-CP .
  • the second base station sends an SCG deactivation command or an SCG activation command to the terminal.
  • the terminal receives a deactivation SCG command or an activation SCG command.
  • S2307 The terminal performs a deactivation operation or an activation operation on the SCG according to the deactivate SCG command or the activate SCG command.
  • the first device determines whether to deactivate the SCG or activate the SCG; the first device sends the eleventh indication information to the second base station, and the eleventh indication information is used to instruct the second base station to send to the terminal Activate the SCG command or activate the SCG command; the second base station receives the eleventh indication information; the second base station sends the deactivate SCG command or activate the SCG command to the terminal; the terminal receives the deactivate SCG command or activate the SCG command; the terminal according to the deactivate SCG command Or activate the SCG command to deactivate or activate the SCG.
  • the relevant configuration of the SCG can be retained, and through the activation operation, the link communication of the SCG can be quickly restored. Therefore, compared with the prior art, there is no need to increase and release the SN. While the power consumption of the small network side and the terminal, the overhead of air interface signaling is reduced, the delay is reduced, and the communication efficiency is improved.
  • the CU of the MN or SN performs signaling interaction under the architecture including CP and UP to realize the deactivation and activation operations of the SCG, which can be adapted to different network deployments, making the deactivation and activation operations of the SCG more flexible.
  • the first device in the above steps S2301-S2307 is MN CU-CP, and the second device is MN CU-UP, as shown in Figure 24
  • the aforementioned communication method may further include steps S2308-S2313.
  • the first device sends a sixth notification message to the second device to notify the second device that the first base station deactivates the SCG or activates the SCG.
  • the MN CU-CP sends the sixth notification message to the MN CU-UP to inform the MN CU-UP that the first base station deactivates the SCG or activates the SCG.
  • the second device receives the sixth notification message.
  • the MN CU-UP receives the sixth notification message sent by the MN CU-CP, and learns that the first base station (SN) deactivates the SCG or activates the SCG.
  • the MN CU-UP can suspend/resume the data transmission tunnel established on the X2/Xn interface corresponding to the bearer of the SN.
  • the method further includes S2310.
  • the second device sends an ACK message to the first device.
  • the ACK message is used to indicate that the MN CU-UP has successfully received the sixth notification message sent by the MN CU-CP.
  • the first device sends a seventh notification message to the second access network node to notify the second access network node that the first base station deactivates the SCG or activates the SCG.
  • the second access network node is MN DU.
  • the MN CU-CP sends the seventh notification message to the MN DU to inform the MN DU that the first base station deactivates the SCG or activates the SCG.
  • the second access network node receives the seventh notification message.
  • the MN DU receives the seventh notification message sent by the MN CU-CP, and learns that the first base station (SN) deactivates the SCG or activates the SCG.
  • the MN DU may suspend/resume the data transmission tunnel established on the X2/Xn interface corresponding to the bearer of the SN.
  • the method further includes S2313.
  • the second access network node sends an ACK message to the first device.
  • the ACK message is used to indicate that the MN DU has successfully received the seventh notification message sent by the MN CU-CP.
  • this embodiment will notify the MN CU-CP and/or MN DU when the MN CU-CP determines to deactivate the SCG or activate the SCG, so that the suspension/resumption of the MN CU-CP and/or MN DU is established at
  • the SN bearer corresponds to the data transmission tunnel of the X2/Xn interface. Therefore, compared with the prior art, there is no need to increase and release the SN. While reducing the power consumption of the network side and the terminal, the air interface signaling is reduced. Overhead, reducing time delay and improving communication efficiency.
  • the first device in the above steps S2301-S2307 is SN CU-CP, and the second device is SN CU-UP, as shown in FIG. 25
  • the aforementioned communication method may further include steps S2314-S2319.
  • the first device sends twelfth indication information to the second device, instructing the second device to deactivate the SCG or activate the SCG.
  • the SN CU-CP sends the twelfth indication information to the SN CU-UP, instructing the SN CU-UP to deactivate the SCG or activate the SCG.
  • the second device receives the twelfth indication information.
  • the SN CU-UP receives the twelfth indication information sent by the SN CU-CP, and the SN CU-UP deactivates the SCG or activates the SCG.
  • the method further includes S2316.
  • the second device sends an ACK message to the first device.
  • the ACK message is used to indicate that the SN CU-UP has successfully received the twelfth indication information sent by the SN CU-CP.
  • the first device sends thirteenth indication information to the second access network node, instructing the second access network node to deactivate the SCG or activate the SCG.
  • the second access network node is SN DU.
  • the SN CU-CP sends the thirteenth indication information to the SN DU, instructing the SN DU to deactivate the SCG or activate the SCG.
  • the second access network node receives the thirteenth indication information.
  • the SN DU receives the thirteenth indication information sent by the SN CU-CP, and the SN DU deactivates the SCG or activates the SCG.
  • the method further includes S2319.
  • the second access network node sends an ACK message to the first device.
  • the ACK message is used to indicate that the SN DU has successfully received the thirteenth indication information sent by the SN CU-CP.
  • SN CU-CP when SN CU-CP determines to deactivate SCG or activate SCG, it will notify SN CU-UP and/or SN DU, and instruct SN CU-UP and/or SN DU to deactivate SCG or activate SCG Therefore, the SN can retain the relevant configuration of the SCG and can quickly restore the SCG link communication through the activation operation. Therefore, compared with the prior art, there is no need to increase and release the SN, which reduces the power consumption of the network side and the terminal. At the same time, the overhead of air interface signaling is reduced, time delay is reduced, and communication efficiency is improved.
  • the first access network node when the first access network node includes the first device and the second device, an embodiment of the present application also provides a communication method. As shown in FIG. 26, the method includes steps S2601-S2610.
  • the first device is used to perform the control plane function of the first access network node
  • the second device is used to perform the user plane function of the first access network node
  • the first access network node belongs to the first base station
  • the first base station It is the MN or SN when the terminal is in dual-connection communication.
  • the second device determines to deactivate the SCG or activate the SCG.
  • the second device is used to perform the user plane function of the first access network node
  • the first access network node is MN CU or SN CU
  • the second device is MN CU-UP or SN CU-UP.
  • the second device determines the specific implementation manner of deactivating the SCG or activating the SCG in step S2601, and may refer to the implementation manner of determining the deactivation of the SCG or activating the SCG by the first access network node in step S901, which will not be repeated here.
  • the second device sends thirteenth indication information to the first device.
  • the thirteenth indication information instructs the first device to notify the second base station to send a deactivation SCG command or an activation SCG command to the terminal.
  • step S2602 specifically includes: the MN CU-UP sends the thirteenth indication information to the MN CU-CP.
  • step S2602 specifically includes: the SN CU-UP sends the thirteenth indication information to the SN CU-CP.
  • the first device receives the thirteenth instruction information.
  • step S2603 specifically includes: the MN CU-CP receives the thirteenth indication information sent by the MN CU-UP.
  • the MN CU-CP can also suspend/resume the data transmission tunnel established on the X2/Xn interface corresponding to the bearer of the SN.
  • step S2603 specifically includes: the SN CU-CP receives the thirteenth indication information sent by the SN CU-UP.
  • the SN CU-CP can also deactivate or activate the SCG.
  • the method further includes S2604.
  • the first device sends an ACK message to the second device.
  • the ACK message is used to indicate that the first device has successfully received the thirteenth indication information sent by the second device.
  • step S2604 specifically includes: the MN CU-CP sends an ACK message to the MN CU-UP.
  • step S2604 specifically includes: the SN CU-CP sends an ACK message to the SN CU-UP.
  • the first device sends fourteenth indication information to the second base station, where the fourteenth indication information is used to instruct the second base station to send a deactivation SCG command or an activation SCG command to the terminal.
  • the second base station is the MN or SN when the terminal is in dual-connection communication, and when the second base station is MN, the first base station is SN; or, when the second base station is SN, the first base station is MN.
  • the second base station receives the fourteenth indication information.
  • the method further includes S2607.
  • the second base station sends an ACK message to the first device.
  • the second base station sends an SCG deactivation command or an SCG activation command to the terminal.
  • S2609 The terminal receives a deactivation SCG command or an activation SCG command.
  • the terminal performs a deactivation operation or an activation operation on the SCG according to the deactivate SCG command or the activate SCG command.
  • steps S2605-S2610 reference may be made to the related descriptions of steps S2302-S2307, which will not be repeated here.
  • the second device determines to deactivate the SCG or activate the SCG; the second device sends the thirteenth instruction information to the first device; the first device receives the thirteenth instruction information; the first device sends the The second base station sends fourteenth indication information, the fourteenth indication information is used to instruct the second base station to send a deactivation SCG command or an activation SCG command to the terminal; the second base station receives the fourteenth indication information; the second base station sends deactivation to the terminal The SCG command or the activate SCG command; the terminal receives the deactivate SCG command or the activate SCG command; the terminal performs the deactivation operation or activation operation on the SCG according to the deactivate SCG command or activate the SCG command.
  • the relevant configuration of the SCG can be retained, and through the activation operation, the link communication of the SCG can be quickly restored. Therefore, compared with the prior art, there is no need to increase and release the SN. While the power consumption of the small network side and the terminal, the overhead of air interface signaling is reduced, the delay is reduced, and the communication efficiency is improved.
  • the CU of the MN or SN performs signaling interaction under the architecture including CP and UP to realize the deactivation and activation operations of the SCG, which can be adapted to different network deployments, making the deactivation and activation operations of the SCG more flexible.
  • the first access network node when the first access network node includes the first device and the second device, an embodiment of the present application also provides a communication method. As shown in FIG. 27, the method includes steps S2701-S2710.
  • the first device is used to perform the control plane function of the first access network node
  • the second device is used to perform the user plane function of the first access network node
  • the first access network node belongs to the first base station
  • the first base station It is the MN or SN when the terminal is in dual-connection communication.
  • the second access network node determines to deactivate the SCG or activate the SCG.
  • the second access network node and the first access network node both belong to the first base station, the first base station is the MN or SN when the terminal is in dual-connection communication, and the aforementioned SCG is one or more cells managed by the SN .
  • the second access network node is the distributed unit DU of the first base station.
  • the second access network node may be MN DU or SN DU.
  • the second access network node determines the specific implementation manner of deactivating SCG or activating SCG in step S2701. You can refer to the implementation manner of determining deactivation of SCG or activating SCG by the first access network node in step S901. Repeat it again.
  • the second access network node sends fifteenth indication information to the first device, where the fifteenth indication information is used to instruct the first device to notify the second base station to send a deactivation SCG command or an activation SCG command to the terminal.
  • step S2702 includes: the MN DU sends the fifteenth indication information to the MN CU-CP.
  • step S2702 includes: the SN DU sends the fifteenth indication information to the SN CU-CP.
  • the first device receives the fifteenth instruction information.
  • step S2703 includes: the MN CU-CP receives the fifteenth indication information sent by the MN DU.
  • the MN CU-CP can also suspend/resume the data transmission tunnel established on the X2/Xn interface corresponding to the bearer of the SN.
  • step S2703 includes: the SN CU-CP receives the fifteenth indication information sent by the SN DU.
  • the SN CU-CP can also deactivate or activate the SCG.
  • the method further includes S2704.
  • the first device sends an ACK message to the second access network node.
  • the ACK message is used to indicate that the first device has successfully received the fifteenth indication information sent by the second access network node.
  • step S2704 includes: the MN CU-CP sends an ACK message to the MN DU.
  • step S2704 includes: the SN CU-CP sends an ACK message to the SN DU.
  • the first device sends sixteenth indication information to the second base station, where the sixteenth indication information is used to instruct the second base station to send a deactivation SCG command or an activation SCG command to the terminal.
  • the second base station is the MN or SN when the terminal is in dual-connection communication, and when the second base station is MN, the first base station is SN; or, when the second base station is SN, the first base station is MN.
  • the second base station receives the sixteenth indication information.
  • the method further includes S2707.
  • the second base station sends an ACK message to the first device.
  • the second base station sends an SCG deactivation command or an SCG activation command to the terminal.
  • the terminal receives the SCG deactivation command or the SCG activation command.
  • the terminal performs a deactivation operation or an activation operation on the SCG according to the deactivate SCG command or the activate SCG command.
  • steps S2705-S2710 can refer to the implementation manners of steps S2302-S2307, which will not be repeated here.
  • the second access network node determines to deactivate the SCG or activate the SCG; the second access network node sends the fifteenth indication information to the first device; the first device receives the fifteenth indication information The first device sends the sixteenth indication information to the second base station, the sixteenth indication information is used to instruct the second base station to send the deactivate SCG command or activate the SCG command to the terminal; the second base station receives the sixteenth indication information; second The base station sends a deactivation SCG command or an activation SCG command to the terminal; the terminal receives a deactivation SCG command or an activation SCG command; the terminal performs a deactivation operation or an activation operation on the SCG according to the deactivation SCG command or the activation SCG command.
  • the relevant configuration of the SCG can be retained, and through the activation operation, the link communication of the SCG can be quickly restored. Therefore, compared with the prior art, there is no need to increase and release the SN. While the power consumption of the small network side and the terminal, the overhead of air interface signaling is reduced, the delay is reduced, and the communication efficiency is improved.
  • the CU of the MN or SN performs signaling interaction under the architecture including CP and UP to realize the deactivation and activation operations of the SCG, which can be adapted to different network deployments, making the deactivation and activation operations of the SCG more flexible.
  • the embodiment of the present application may divide the CU and the DU into functional modules according to the foregoing method examples.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules. It should be noted that the division of modules in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • FIG. 28 shows a possible structural diagram of a communication device.
  • the communication device may be the first access network node in the above-mentioned embodiment, and the first access network node may be CU.
  • the communication device 2800 includes a processing unit 2801 and a transceiver unit 2802.
  • the processing unit 2801 is used to determine to deactivate the SCG or activate the SCG.
  • the transceiver unit 2802 is configured to send first indication information to the second access network node, where the first indication information is used to instruct the second access network node to send a deactivation SCG command or an activation SCG command to the terminal.
  • the second access network node and the first access network node belong to the same first base station, the first base station may be MN or SN, and the second access network node may be MN DU or SN DU.
  • the transceiver unit 2802 is further configured to receive an ACK message sent by the second access network node, where the ACK message is used to indicate that the second access network node successfully receives the message sent by the transceiver unit 2802.
  • the first instruction information is further configured to indicate that the second access network node successfully receives the message sent by the transceiver unit 2802.
  • the transceiver unit 2802 is further configured to send second indication information to the second base station, where the second indication information is used to instruct the second base station to deactivate the SCG or activate the SCG.
  • the transceiver unit 2802 is further configured to receive an ACK message sent by the second base station, where the ACK message is used to indicate that the second base station has successfully received the second indication information sent by the first access network node.
  • the transceiver unit 2802 is further configured to send a first notification message to the second base station, and the first notification message is used to notify the second base station that the first base station deactivates the SCG or activates the SCG.
  • the transceiver unit 2802 is further configured to receive an ACK message sent by the second base station, where the ACK message is used to indicate that the second base station has successfully received the first notification message sent by the first access network node.
  • the aforementioned processing unit 2801 may also be used to execute step S1201 in FIG. 12 and/or other processes used in the technology described herein.
  • the transceiver unit 2802 can also be used to perform, for example, step S1202 in FIG. 12, or, S1208 in FIG. 13, or, S1406 and S1407 in FIG. 15, or, S1408 in FIG. 16, or, S1411 in FIG. 17, Or, S1803, S1804, and S1805 in FIG. 18, and/or other processes used in the techniques described herein.
  • all relevant content of each step involved in the above method embodiment can be cited in the function description of the corresponding function module, and will not be repeated here.
  • FIG. 29 shows a possible structural diagram of a communication device that can perform the operations of the second access network node in the above-mentioned embodiment.
  • the communication device 2900 includes a processing unit 2901 and a transceiver unit 2902.
  • the transceiver unit 2902 is configured to receive first indication information sent by the first access network node, where the first indication information is used to instruct the second access network node to send a deactivation SCG command or an activation SCG command to the terminal.
  • the processing unit 2901 is configured to deactivate the SCG or activate the SCG.
  • the first access network node and the second access network node belong to the same first base station, the first base station may be an MN or an SN, and the first access network node may be an MN CU or SN CU.
  • the foregoing transceiver unit 2902 is also used to send a deactivation SCG command or an activation SCG command to the terminal.
  • the transceiving unit 2902 is further configured to send an ACK message to the first access network node, where the ACK message is used to indicate that the communication device 2900 has successfully received the message sent by the first access network node.
  • the first instruction information is further configured to send an ACK message to the first access network node, where the ACK message is used to indicate that the communication device 2900 has successfully received the message sent by the first access network node.
  • the foregoing processing unit 2901 may also be used to perform step S1401 in FIG. 14, or S1801 in FIG. 18, and/or other processes used in the technology described herein.
  • the transceiver unit 2902 can also be used to perform, for example, steps S1209 and S1210 in FIG. 13, or, S1402 in FIG. 14, or, S1405 in FIG. 15, or, S1802 in FIG. 18, or, S1903, and S1903 in FIG. S1904 and S1905, or, S2206, S2207, and S2208 in FIG. 22, or, S2312 and S2313 in FIG. 24, or, S2318 and S2319 in FIG. 25, and/or other processes used in the techniques described herein.
  • all relevant content of each step involved in the above method embodiment can be cited in the function description of the corresponding function module, and will not be repeated here.
  • FIG. 30 shows a possible structural schematic diagram of a communication device.
  • the communication device may be the terminal in the foregoing embodiment, or a device used for the terminal, such as a chip.
  • the communication device 3000 includes a processing unit 3001 and a transceiver unit 3002.
  • the transceiver unit 3002 is configured to receive an SCG deactivation command or an SCG activation command sent by the second access network node.
  • the processing unit 3001 is configured to deactivate or activate the SCG according to the deactivate SCG command or activate the SCG command.
  • the above-mentioned processing unit 3001 may also be used to execute step S1207 in FIG. 12, or, S1404 in FIG. 14, or, S1810 in FIG. 18, or, S1907 in FIG. 19, or, in FIG. 22 S2210, or, S2307 in FIG. 23, or, S2610 in FIG. 26, and/or other processes used in the techniques described herein.
  • the transceiver unit 3002 can also be used to perform, for example, step S1206 in FIG. 12, or, S1403 in FIG. 14, or, S1809 in FIG. 18, or, S1906 in FIG. 19, or, S2209 in FIG. 22, or, S2306 in FIG. 23, or S2609 in FIG. 26, and/or other processes used in the techniques described herein.
  • all relevant content of each step involved in the above method embodiment can be cited in the function description of the corresponding function module, and will not be repeated here.
  • FIG. 31 shows a possible structural schematic diagram of a communication device.
  • the communication device may be a base station or a chip for the base station, and may perform operations as the second base station in the foregoing embodiment.
  • the communication device 3100 includes: a processing unit 3101, a transceiver unit 3102.
  • the base station can adopt a CU-DU separated structure, which will not be repeated.
  • the transceiver unit 3102 is configured to receive first indication information sent by the first access network node, where the first indication information is used to instruct the second access network node to send a deactivation SCG command or an SCG activation command to the terminal.
  • the processing unit 3101 is configured to perform a deactivation operation or an activation operation on the SCG according to the second instruction information.
  • the transceiver unit 3102 is further configured to send an ACK message to the first access network node, where the ACK message is used to indicate that the transceiver unit 3102 has successfully received the message sent by the first access network node.
  • the second instruction information is configured to send an ACK message to the first access network node, where the ACK message is used to indicate that the transceiver unit 3102 has successfully received the message sent by the first access network node.
  • the transceiver unit 3102 is further configured to receive a first notification message sent by the first access network node, where the first notification message is used to notify the second base station that the first base station deactivates the SCG or activates the SCG.
  • the processing unit 3101 is configured to suspend or resume the data transmission tunnel of the corresponding X2/Xn interface carried by the SCG according to the first notification message.
  • the transceiver unit 3102 is further configured to send an ACK message to the first access network node, where the ACK message is used to indicate that the transceiver unit 3102 has successfully received the message sent by the first access network node. The first notification message.
  • the aforementioned processing unit 3101 may also be used to execute step S1910 in FIG. 20, and/or other processes used in the technology described herein.
  • the transceiver unit 3102 can also be used to perform, for example, steps S1203, S1204, and S1205 in FIG. 12, or, S1409 and S1410 in FIG. 16, or, S1412 and S1413 in FIG. 17, or, S1806 and S1807 in FIG. 18.
  • All relevant content of each step involved in the above method embodiment can be cited in the function description of the corresponding function module, and will not be repeated here.
  • FIG. 32 shows a possible structural schematic diagram of a communication device that can perform the operations of the first device in the foregoing embodiment, and the first device can be used to perform the first device.
  • the control plane function of the access network node the first access network node belongs to the first base station, the first base station is MN or SN, the first access network node may be MN CU or SN CU, and the first device may be MN CU-CP or SN CU-CP.
  • the communication device 3200 includes a processing unit 3201 and a transceiver unit 3202.
  • the processing unit 3201 is used to control and manage the actions of the communication device 3200.
  • the above-mentioned processing unit 3201 may be used to execute step S1901 in FIG. 19, or S2301 in FIG. 23, and/or other processes used in the technology described herein.
  • the transceiver unit 3202 is used to send and receive information, or to communicate with other network elements.
  • the transceiving unit 3202 may be used to perform step S1902 in FIG. 19, or, S1908 in FIG. 20, or, S1911 in FIG. 21, or, S2203, S2204, and S2205 in FIG. 22, or, in FIG. 23 S2302, or, S2308 and S2311 in Fig. 24, or, S2314 and S2317 in Fig.
  • FIG. 33 shows a possible structural schematic diagram of a communication device that can perform the operations of the second device in the foregoing embodiment, and the second device can be used to perform the first
  • the user plane function of the access network node the first access network node belongs to the first base station, the first base station is MN or SN, the first access network node may be MN CU or SN CU, and the first device may It is MN CU-CP or SN CU-CP.
  • the communication device 3300 includes a processing unit 3301 and a transceiver unit 3302.
  • the processing unit 3301 is used to control and manage the actions of the communication device 3300.
  • the above-mentioned processing unit 3301 may be used to perform step S2201 in FIG. 22, or S2601 in FIG. 26, and/or other processes used in the technology described herein.
  • the transceiver unit 3302 is used to send and receive information, or to communicate with other network elements.
  • the transceiving unit 3302 may be used to perform step S2202 in FIG. 22, or, S2309 and S2310 in FIG. 24, or, S2315 and S2316 in FIG. 25, or, S2602 in FIG. 26, and/or for Other processes of the technique described in this article.
  • all relevant content of each step involved in the above method embodiment can be cited in the function description of the corresponding function module, and will not be repeated here.
  • the embodiment of the present application also provides a communication device, which includes a processor, and may also include a transceiver and a memory.
  • the transceiver is used for sending and receiving information or communicating with other network elements;
  • the memory is used for storing computer execution.
  • An embodiment of the present application also provides a computer storage medium, the computer storage medium stores computer program code, when the above-mentioned processor executes the computer program code, the electronic device executes the communication in any one of the embodiments in FIGS. 9 to 27 method.
  • the embodiments of the present application also provide a computer program product, which when the computer program product runs on a computer, causes the computer to execute the communication method in any one of the embodiments in FIGS. 9-27.
  • the embodiments of the present application also provide a communication device, which can exist in the form of a chip product.
  • the structure of the device includes a processor and an interface circuit.
  • the processor is used to communicate with other devices through a receiving circuit so that the device can execute The communication method in any one of the embodiments in FIG. 9 to FIG. 27 described above.
  • An embodiment of the present application also provides a communication system, including a terminal and an access network device, and the terminal and the access network device can execute the communication method in any of the foregoing embodiments in FIG. 9 to FIG. 27.
  • the steps of the method or algorithm described in conjunction with the disclosure of this application can be implemented in a hardware manner, or implemented in a manner in which a processor executes software instructions.
  • Software instructions can be composed of corresponding software modules, which can be stored in random access memory (Random Access Memory, RAM), flash memory, erasable programmable read-only memory (Erasable Programmable ROM, EPROM), and electrically erasable Programming read-only memory (Electrically EPROM, EEPROM), register, hard disk, mobile hard disk, CD-ROM or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor, so that the processor can read information from the storage medium and can write information to the storage medium.
  • the storage medium may also be an integral part of the processor.
  • the processor and the storage medium may be located in the ASIC.
  • the ASIC may be located in the core network interface device.
  • the processor and the storage medium may also exist as discrete components in the core network interface device.
  • the functions described in this application can be implemented by hardware, software, firmware or any combination thereof. When implemented by software, these functions can be stored in a computer-readable medium or transmitted as one or more instructions or codes on the computer-readable medium.
  • the computer-readable medium includes a computer storage medium and a communication medium, where the communication medium includes any medium that facilitates the transfer of a computer program from one place to another.
  • the storage medium may be any available medium that can be accessed by a general-purpose or special-purpose computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种通信方法和装置,涉及通信技术领域,解决了现有技术中频繁的进行SN的增加以及释放,增加了空口信令的开销,时延较大,导致通信效率降低的问题。具体方案为:第一接入网节点确定去激活辅小区组SCG或激活SCG;第一接入网节点向第二接入网节点发送第一指示信息,第一指示信息用于指示第二接入网节点向终端发送去激活SCG命令或激活SCG命令;其中,第一接入网节点与第二接入网节点属于第一基站,第一基站为终端在双连接通信时的主节点或者辅节点;SCG为辅节点管理的一个或多个小区。

Description

一种通信方法和装置 技术领域
本申请实施例涉及通信技术领域,尤其涉及一种通信方法和装置。
背景技术
终端设备工作在双连接(Dual Connectivity,DC)模式下时,终端可以同时在主服务小区组(Master Cell Group,MCG)和辅服务小区组(Secondary Cell Group,SCG)两个空口链路传输数据,耗电量较大。当终端的数据速率波动较频繁时,例如经常处于低数据速率状态,此时若终端一直在DC工作模式,则SCG链路的能量消耗是一种浪费。
现有技术中的一种通信方法,通过网络配置终端在高数据速率状态进行DC操作,即进行辅节点(Secondary Node,SN)增加;当终端进入低数据速率状态时,网络配置终端释放DC操作,即进行SN释放,以节省网络设备以及终端设备的电量。但是,该方案进行SN释放时,终端需要完全释放SCG的配置,进行SN增加时,再重新添加一套完整的SCG配置。然而在大部分时候,SN给终端的配置并不需要更新,终端延用原来的配置即可,因此,频繁的进行SN的增加以及释放,增加了空口信令的开销,时延较大。
发明内容
本申请实施例提供一种通信方法和装置,能够在减小空口信令的开销,降低时延的同时,减小网络设备和终端的电量消耗。
为达到上述目的,本申请实施例采用如下技术方案:
本申请实施例的第一方面,提供一种通信方法,该方法包括:第一接入网节点确定去激活辅小区组SCG或激活SCG;该第一接入网节点向第二接入网节点发送第一指示信息,该第一指示信息用于指示上述第二接入网节点向终端发送去激活SCG命令或激活SCG命令;其中,上述第一接入网节点与上述第二接入网节点属于第一基站,该第一基站为上述终端在双连接通信时的主节点或者辅节点;上述SCG为辅节点管理的一个或多个小区。基于本方案,通过对SCG进行去激活操作,能够保留SCG的相关配置,并通过激活操作,能够快速恢复SCG的链路通信,因此与现有技术相比,无需进行SN的增加以及释放,在减小网络侧和终端的电量消耗的同时,减小了空口信令的开销,降低了时延,提升了通信效率。而且上述第一接入网节点和第二接入网节点可以分别是MN或SN的CU和DU,即本申请通过MN或SN在CU-DU架构下进行信令交互,实现SCG的去激活和激活操作,能够适应于不同的网络部署,使得SCG的去激活和激活操作处理的更加灵活。
结合第一方面,在一种可能的实现方式中,上述方法还包括:上述第一接入网节点向第二基站发送第二指示信息,该第二指示信息用于指示该第二基站去激活上述SCG或激活上述SCG;其中,该第一基站为主节点且该第二基站为辅节点。基于本方 案,通过在MN确定去激活SCG或激活SCG时,通知SN,并指示SN去激活SCG或激活SCG,从而SN能够保留SCG的相关配置,并通过激活操作,能够快速恢复SCG的链路通信,因此与现有技术相比,无需进行SN的增加以及释放,在减小网络侧和终端的电量消耗的同时,减小了空口信令的开销,降低了时延,提升了通信效率。
结合第一方面或第一方面的任一可能的实现方式,在另一种可能的实现方式中,上述方法还包括:上述第一接入网节点向第二基站发送第一通知消息,该第一通知消息用于通知第二基站,上述第一基站去激活上述SCG或激活上述SCG;其中,该第一基站为辅节点且该第二基站为主节点。基于本方案,通过在SN确定去激活SCG或激活SCG时,通知MN,从而MN可以挂起/恢复建立在SN的承载对应的X2/Xn接口的数据传输隧道,该方案能够保留SCG的相关配置,并通过激活操作,快速恢复SCG的链路通信。
结合第一方面或第一方面的任一可能的实现方式,在另一种可能的实现方式中,上述第一接入网节点包括第一装置和第二装置;该第一装置用于执行上述第一接入网节点的控制面功能,该第二装置用于执行上述第一接入网节点的用户面功能。基于本方案,第一接入网节点的功能可以由第一装置和第二装置,该第一装置可以为CU-CP,第二装置可以为CU-UP,即本方案能够在MN或SN的CU包括CP和UP的架构下进行信令交互,实现SCG的去激活和激活操作。
结合第一方面或第一方面的任一可能的实现方式,在另一种可能的实现方式中,上述第一接入网节点确定去激活辅小区组SCG或激活SCG,包括:上述第一装置确定去激活上述SCG或激活上述SCG;上述第一接入网节点向第二接入网节点发送第一指示信息,包括:上述第一装置向上述第二接入网节点发送上述第一指示信息。基于本方案,上述第一装置和第二装置可以分别是MN或SN的CU-CP和CU-UP,即本申请通过在MN或SN的CU包括CP和UP的架构下进行信令交互,实现SCG的去激活和激活操作,能够适应于不同的网络部署,使得SCG的去激活和激活操作处理的更加灵活。
结合第一方面或第一方面的任一可能的实现方式,在另一种可能的实现方式中,上述方法还包括:上述第一装置向上述第二装置发送第三指示信息,该第三指示信息用于指示上述第二装置去激活上述SCG或激活上述SCG。基于本方案,第一装置还可以向第二装置发送指示信息,指示第二装置去激活SCG或激活SCG。
结合第一方面或第一方面的任一可能的实现方式,在另一种可能的实现方式中,上述第一接入网节点确定去激活辅小区组SCG或激活SCG,包括:上述第二装置确定去激活上述SCG或激活所述SCG;上述第一接入网节点向第二接入网节点发送第一指示信息,包括:上述第二装置向上述第一装置发送通知消息,通知上述第一装置向上述第二接入网节点发送上述第一指示信息。基于本方案,上述第一装置和第二装置可以分别是MN或SN的CU-CP和CU-UP,即本申请通过在MN或SN的CU包括CP和UP的架构下进行信令交互,实现SCG的去激活和激活操作,能够适应于不同的网络部署,使得SCG的去激活和激活操作处理的更加灵活。
结合第一方面或第一方面的任一可能的实现方式,在另一种可能的实现方式中,上述第一接入网节点确定去激活辅小区组SCG或激活SCG,包括:上述第一接入网节 点根据第二基站发送的辅助信息、上述终端发送的辅助信息、上述第一基站承载的数据传输情况中的任意一种或多种,确定去激活上述SCG或者激活上述SCG;其中,当第一基站为主节点时,第二基站为辅节点;或者,当第一基站为辅节点时,第二基站为主节点。基于本方案,第一接入网节点能够根据第二基站发送的辅助信息、终端发送的辅助信息、第一基站承载的数据传输情况中的至少一种,确定去激活SCG或激活SCG。
本申请实施例的第二方面,提供一种通信方法,该方法包括:第二接入网节点接收第一接入网节点发送的第一指示信息,该第一指示信息用于指示上述第二接入网节点向终端发送去激活辅小区组SCG命令或激活SCG命令;其中,上述第一接入网节点与上述第二接入网节点属于第一基站,该第一基站为上述终端在双连接通信时的主节点或者辅节点;上述SCG为辅节点管理的一个或多个小区;上述第二接入网节点向上述终端发送上述去激活SCG命令或激活SCG命令。基于本方案,通过对SCG进行去激活操作,能够保留SCG的相关配置,并通过激活操作,能够快速恢复SCG的链路通信,因此与现有技术相比,无需进行SN的增加以及释放,在减小网络侧和终端的电量消耗的同时,减小了空口信令的开销,降低了时延,提升了通信效率。而且上述第一接入网节点和第二接入网节点可以分别是MN或SN的CU和DU,即本申请通过MN或SN在CU-DU架构下进行信令交互,实现SCG的去激活和激活操作,能够适应于不同的网络部署,使得SCG的去激活和激活操作处理的更加灵活。
结合第二方面,在一种可能的实现方式中,上述第一接入网节点包括第一装置和第二装置;该第一装置用于执行上述第一接入网节点的控制面功能,该第二装置用于执行上述第一接入网节点的用户面功能;上述第二接入网节点接收第一接入网节点发送的第一指示信息,包括:上述第二接入网节点接收上述第一装置发送的上述第一指示信息。基于本方案,上述第一装置和第二装置可以分别是MN或SN的CU-CP和CU-UP,即本申请通过在MN或SN的CU包括CP和UP的架构下进行信令交互,实现SCG的去激活和激活操作,能够适应于不同的网络部署,使得SCG的去激活和激活操作处理的更加灵活。
本申请实施例的第三方面,提供一种通信方法,该方法包括:第一接入网节点确定去激活辅小区组SCG或激活SCG;该第一接入网节点向第二基站发送第一指示信息,该第一指示信息用于指示上述第二基站向终端发送去激活SCG命令或激活SCG命令;其中,上述第一接入网节点属于第一基站,该第一基站为上述终端在双连接通信时的主节点或辅节点,且当上述第一基站为主节点时,上述第二基站为辅节点;或者,当上述第一基站为辅节点时,上述第二基站为主节点;上述SCG为辅节点管理的一个或多个小区。基于本方案,通过对SCG进行去激活操作,能够保留SCG的相关配置,并通过激活操作,能够快速恢复SCG的链路通信,因此与现有技术相比,无需进行SN的增加以及释放,在减小网络侧和终端的电量消耗的同时,减小了空口信令的开销,降低了时延,提升了通信效率。而且上述第一接入网节点和第二接入网节点可以分别是MN或SN的CU和DU,即本申请通过MN或SN在CU-DU架构下进行信令交互,实现SCG的去激活和激活操作,能够适应于不同的网络部署,使得SCG的去激活和激活操作处理的更加灵活。
结合第三方面,在一种可能的实现方式中,上述方法还包括:上述第一接入网节点向第二接入网节发送第二指示信息,该第二指示信息用于指示上述第二接入网节点去激活上述SCG或激活上述SCG;上述第二接入网节点属于上述第一基站。基于本方案,第一接入网节点确认去激活SCG或激活SCG后,通知第二接入网节点,以使得第二接入网节点去激活上述SCG或激活上述SCG。
结合第三方面或第三方面的任一可能的实现方式,在另一种可能的实现方式中,上述第一接入网节点包括第一装置和第二装置;该第一装置用于执行上述第一接入网节点的控制面功能,该第二装置用于执行上述第一接入网节点的用户面功能。基于本方案,第一接入网节点的功能可以由第一装置和第二装置,该第一装置可以为CU-CP,第二装置可以为CU-UP,即本方案能够在MN或SN的CU包括CP和UP的架构下进行信令交互,实现SCG的去激活和激活操作。
结合第三方面或第三方面的任一可能的实现方式,在另一种可能的实现方式中,上述第一接入网节点确定去激活辅小区组SCG或激活SCG,包括:上述第一装置确定去激活上述SCG或激活上述SCG;上述第一接入网节点向第二基站发送第一指示信息,包括:上述第一装置向上述第二基站发送所述第一指示信息。基于本方案,上述第一装置和第二装置可以分别是MN或SN的CU-CP和CU-UP,即本申请通过在MN或SN的CU包括CP和UP的架构下进行信令交互,实现SCG的去激活和激活操作,能够适应于不同的网络部署,使得SCG的去激活和激活操作处理的更加灵活。
结合第三方面或第三方面的任一可能的实现方式,在另一种可能的实现方式中,上述方法还包括:上述第一装置向上述第二装置发送第三指示信息,该第三指示信息用于指示上述第二装置去激活上述SCG或激活上述SCG。基于本方案,第一装置还可以向第二装置发送指示信息,指示第二装置去激活SCG或激活SCG。
结合第三方面或第三方面的任一可能的实现方式,在另一种可能的实现方式中,上述第一接入网节点确定去激活辅小区组SCG或激活SCG,包括:上述第二装置确定去激活上述SCG或激活上述SCG;上述第一接入网节点向第二基站发送第一指示信息,包括:上述第二装置向上述第一装置发送通知消息,通知上述第一装置向上述第二基站发送上述第一指示信息。基于本方案,上述第一装置和第二装置可以分别是MN或SN的CU-CP和CU-UP,即本申请通过在MN或SN的CU包括CP和UP的架构下进行信令交互,实现SCG的去激活和激活操作,能够适应于不同的网络部署,使得SCG的去激活和激活操作处理的更加灵活。
结合第三方面或第三方面的任一可能的实现方式,在另一种可能的实现方式中,上述第一接入网节点确定去激活辅小区组SCG或激活SCG,包括:上述第一接入网节点根据第二基站发送的辅助信息、上述终端发送的辅助信息、上述第一基站承载的数据传输情况中的任意一种或多种,确定去激活上述SCG或者激活上述SCG。基于本方案,第一接入网节点能够根据第二基站发送的辅助信息、终端发送的辅助信息、第一基站承载的数据传输情况中的至少一种,确定去激活SCG或激活SCG。
本申请实施例的第四方面,提供一种通信方法,该方法包括:第二基站接收第一接入网节点发送的第一指示信息,该第一指示信息用于指示该第二基站向终端发送去激活辅小区组SCG命令或激活SCG命令;其中,上述第一接入网节点属于第一基站, 上述第二基站为上述终端在双连接通信时的主节点或辅节点,且当上述第二基站为主节点时,上述第一基站为辅节点;或者,当上述第二基站为辅节点时,上述第一基站为主节点;上述SCG为上述辅节点管理的一个或多个小区;上述第二基站向上述终端发送上述去激活SCG命令或上述激活SCG命令。基于本方案,通过对SCG进行去激活操作,能够保留SCG的相关配置,并通过激活操作,能够快速恢复SCG的链路通信,因此与现有技术相比,无需进行SN的增加以及释放,在减小网络侧和终端的电量消耗的同时,减小了空口信令的开销,降低了时延,提升了通信效率。而且上述第一接入网节点和第二接入网节点可以分别是MN或SN的CU和DU,即本申请通过MN或SN在CU-DU架构下进行信令交互,实现SCG的去激活和激活操作,能够适应于不同的网络部署,使得SCG的去激活和激活操作处理的更加灵活。
结合第四方面,在一种可能的实现方式中,上述第一接入网节点包括第一装置和第二装置;该第一装置用于执行上述第一接入网节点的控制面功能,该第二装置用于执行上述第一接入网节点的用户面功能;上述第二基站接收第一接入网节点发送的第一指示信息,包括:上述第二基站接收上述第一装置发送的所述第一指示信息。基于本方案,第一接入网节点的功能可以由第一装置和第二装置,该第一装置可以为CU-CP,第二装置可以为CU-UP,即本方案能够在MN或SN的CU包括CP和UP的架构下进行信令交互,实现SCG的去激活和激活操作。
结合第四方面或第四方面的任一可能的实现方式,在另一种可能的实现方式中,上述第二基站包括用于执行高层协议栈功能的接入网节点以及用于执行低层协议栈功能的接入网节点。基于本方案,该用于执行高层协议栈功能的接入网节点可以为CU,用于执行低层协议栈功能的接入网节点可以为DU,即第二基站也可以为CU-DU架构。
结合第一方面、第二方面、第三方面以及第四方面的任一可能的实现方式,在另一种可能的实现方式中,所述第一接入网节点用于执行无线资源控制RRC协议栈、业务数据适配协议SDAP协议栈,以及分组数据汇聚协议PDCP层的功能;所述第二接入网节点用于执行无线链路控制RLC协议栈、介质访问控制MAC协议栈,以及物理层PHY协议栈的功能。基于本方案,可以按照协议层将RRC协议栈、SDAP协议栈以及PDCP层划分在第一接入网节点,将RLC协议栈、MAC协议栈,以及物理层划分在第二接入网节点,该第一接入网节点可以为CU,第二接入网节点可以为DU。本申请实施例对于CU-DU的具体划分方式并不进行限定,在此仅是示例性说明。
本申请实施例的第五方面,提供一种通信方法,该方法方法包括:第一接入网节点确定去激活辅小区组SCG或激活SCG;该第一接入网节点向终端发送去激活SCG命令或激活SCG命令;该第一接入网节点属于第一基站,该第一基站为上述终端在双连接通信时的主节点或者辅节点;上述SCG为辅节点管理的一个或多个小区。基于本方案,通过对SCG进行去激活操作,能够保留SCG的相关配置,并通过激活操作,能够快速恢复SCG的链路通信,因此与现有技术相比,无需进行SN的增加以及释放,在减小网络侧和终端的电量消耗的同时,减小了空口信令的开销,降低了时延,提升了通信效率。而且上述第一接入网节点和第二接入网节点可以分别是MN或SN的DU和CU,即本申请通过MN或SN在CU-DU架构下进行信令交互,实现SCG的去激活和激活操作,能够适应于不同的网络部署,使得SCG的去激活和激活操作处理的更加 灵活。
结合第五方面,在一种可能的实现方式中,上述方法还包括:上述第一接入网节点向第二接入网节点发送第二指示信息,该第二指示信息用于指示上述第二接入网节点去激活上述SCG或激活上述SCG,上述第二接入网节点属于上述第一基站。基于本方案,通过在DU确定去激活SCG或激活SCG时,通知CU,并指示CU去激活SCG或激活SCG,从而SN能够保留SCG的相关配置,并通过激活操作,能够快速恢复SCG的链路通信。
结合第五方面或第五方面的任一可能的实现方式,在另一种可能的实现方式中,上述第二接入网节点包括第一装置和第二装置,该第一装置用于执行上述第一接入网节点的控制面功能,该第二装置用于执行上述第一接入网节点的用户面功能,上述第一接入网节点向第二接入网节点发送第二指示信息,包括:上述第一接入网节点向上述第一装置发送上述第二指示信息。基于本方案,第二接入网节点的功能可以由第一装置和第二装置实现,该第一装置可以为CU-CP,第二装置可以为CU-UP,即本方案能够在MN或SN的CU包括CP和UP的架构下进行信令交互,实现SCG的去激活和激活操作。
结合第五方面或第五方面的任一可能的实现方式,在另一种可能的实现方式中,上述第一接入网节点确定去激活辅小区组SCG或激活SCG,包括:上述第一接入网节点根据第二基站发送的辅助信息、上述终端发送的辅助信息、上述第一基站承载的数据传输情况中的任意一种或多种,确定去激活所述SCG或者激活所述SCG;其中,当上述第一基站为主节点时,上述第二基站为辅节点;或者,当上述第一基站为辅节点时,上述第二基站为主节点。基于本方案,第一接入网节点能够根据第二基站发送的辅助信息、终端发送的辅助信息、第一基站承载的数据传输情况中的至少一种,确定去激活SCG或激活SCG。
本申请实施例的第六方面,提供一种通信方法,该方法包括:第二接入网节点接收第一接入网节点发送的第一指示信息,该第一指示信息用于指示上述第二接入网节点去激活辅小区组SCG或激活SCG,上述第二接入网节点属于第一基站,上述第一基站为终端在双连接通信时的主节点或者辅节点;上述SCG为上述辅节点管理的一个或多个小区;上述第二接入网节点根据上述第一指示信息去激活上述SCG或激活上述SCG。基于本方案,通过对SCG进行去激活操作,能够保留SCG的相关配置,并通过激活操作,能够快速恢复SCG的链路通信,因此与现有技术相比,无需进行SN的增加以及释放,在减小网络侧和终端的电量消耗的同时,减小了空口信令的开销,降低了时延,提升了通信效率。而且上述第一接入网节点和第二接入网节点可以分别是MN或SN的DU和CU,即本申请通过MN或SN在CU-DU架构下进行信令交互,实现SCG的去激活和激活操作,能够适应于不同的网络部署,使得SCG的去激活和激活操作处理的更加灵活。
结合第六方面,在一种可能的实现方式中,上述方法还包括:上述第二接入网节点向第二基站发送第一通知消息,该第一通知消息用于通知上述第二基站,上述第一基站去激活上述SCG或激活上述SCG;其中,上述第一基站为辅节点且上述第二基站为主节点。基于本方案,通过在SN确定去激活SCG或激活SCG时,通知MN,从而 MN可以挂起/恢复建立在SN的承载对应的X2/Xn接口的数据传输隧道,该方案能够保留SCG的相关配置,并通过激活操作,快速恢复SCG的链路通信。
结合第六方面或第六方面的任一可能的实现方式,在另一种可能的实现方式中,上述方法还包括:上述第二接入网节点向第二基站发送第二指示信息,该第二指示信息用于指示上述第二基站去激活上述SCG或激活上述SCG;其中,上述第一基站为主节点且上述第二基站为辅节点。基于本方案,通过在MN确定去激活SCG或激活SCG时,通知SN,并指示SN去激活SCG或激活SCG,从而SN能够保留SCG的相关配置,并通过激活操作,能够快速恢复SCG的链路通信,因此与现有技术相比,无需进行SN的增加以及释放,在减小网络侧和终端的电量消耗的同时,减小了空口信令的开销,降低了时延,提升了通信效率。
结合第六方面或第六方面的任一可能的实现方式,在另一种可能的实现方式中,上述第二接入网节点包括第一装置和第二装置,该第一装置用于执行上述第一接入网节点的控制面功能,该第二装置用于执行上述第一接入网节点的用户面功能,上述第二接入网节点接收第一接入网节点发送的第一指示信息,包括:上述第一装置接收上述第一接入网节点发送的上述第一指示信息。基于本方案,第二接入网节点的功能可以由第一装置和第二装置实现,该第一装置可以为CU-CP,第二装置可以为CU-UP,即本方案能够在MN或SN的CU包括CP和UP的架构下进行信令交互,实现SCG的去激活和激活操作。
结合第六方面或第六方面的任一可能的实现方式,在另一种可能的实现方式中,上述方法还包括:上述第一装置向上述第二装置发送第三指示信息,上述第三指示信息用于指示上述第二装置去激活上述SCG或激活上述SCG。基于本方案,第一装置还可以向第二装置发送指示信息,指示第二装置去激活SCG或激活SCG。
本申请实施例的第七方面,提供一种通信方法,该方法包括:第一接入网节点确定去激活辅小区组SCG或激活SCG;该第一接入网节点向第二接入网节点发送通知消息,通知上述第二接入网节点向第二基站发送第一指示信息,该第一指示信息用于指示第二基站向终端发送去激活SCG命令或激活SCG命令;其中,上述第一接入网节点与上述第二接入网节点属于第一基站,该第一基站为终端在双连接通信时的主节点或辅节点,且当上述第一基站为主节点时,上述第二基站为辅节点;或者,当上述第一基站为辅节点时,上述第二基站为主节点;上述SCG为上述辅节点管理的一个或多个小区。基于本方案,通过对SCG进行去激活操作,能够保留SCG的相关配置,并通过激活操作,能够快速恢复SCG的链路通信,因此与现有技术相比,无需进行SN的增加以及释放,在减小网络侧和终端的电量消耗的同时,减小了空口信令的开销,降低了时延,提升了通信效率。而且上述第一接入网节点和第二接入网节点可以分别是MN或SN的DU和CU,即本申请通过MN或SN在CU-DU架构下进行信令交互,实现SCG的去激活和激活操作,能够适应于不同的网络部署,使得SCG的去激活和激活操作处理的更加灵活。
结合第七方面,在一种可能的实现方式中,上述第二接入网节点包括第一装置和第二装置,该第一装置用于执行上述第一接入网节点的控制面功能,该第二装置用于执行上述第一接入网节点的用户面功能,上述第一接入网节点向第二接入网节点发送 通知消息,包括:上述第一接入网节点向上述第一装置发送上述通知消息。基于本方案,第二接入网节点的功能可以由第一装置和第二装置实现,该第一装置可以为CU-CP,第二装置可以为CU-UP,即本方案能够在MN或SN的CU包括CP和UP的架构下进行信令交互,实现SCG的去激活和激活操作。
结合第七方面或第七方面的任一可能的实现方式,在另一种可能的实现方式中,上述第一接入网节点确定去激活辅小区组SCG或激活SCG,包括:上述第一接入网节点根据第二基站发送的辅助信息、上述终端发送的辅助信息、上述第一基站承载的数据传输情况中的任意一种或多种,确定去激活上述SCG或者激活上述SCG。基于本方案,第一接入网节点能够根据第二基站发送的辅助信息、终端发送的辅助信息、第一基站承载的数据传输情况中的至少一种,确定去激活SCG或激活SCG。
本申请实施例的第八方面,提供一种通信方法,该方法包括:第二接入网节点接收第一接入网节点发送的通知消息,该通知消息用于通知上述第二接入网节点向第二基站发送第一指示信息,该第一指示信息用于指示第二基站向终端发送去激活辅小区组SCG命令或激活SCG命令;其中,上述第一接入网节点与上述第二接入网节点属于第一基站,该第一基站为上述终端在双连接通信时的主节点或辅节点,且当上述第一基站为主节点时,上述第二基站为辅节点;或者,当上述第一基站为辅节点时,上述第二基站为主节点;上述SCG为上述辅节点管理的一个或多个小区;上述第二接入网节点向上述第二基站发送上述第一指示信息。基于本方案,通过对SCG进行去激活操作,能够保留SCG的相关配置,并通过激活操作,能够快速恢复SCG的链路通信,因此与现有技术相比,无需进行SN的增加以及释放,在减小网络侧和终端的电量消耗的同时,减小了空口信令的开销,降低了时延,提升了通信效率。而且上述第一接入网节点和第二接入网节点可以分别是MN或SN的DU和CU,即本申请通过MN或SN在CU-DU架构下进行信令交互,实现SCG的去激活和激活操作,能够适应于不同的网络部署,使得SCG的去激活和激活操作处理的更加灵活。
结合第八方面,在一种可能的实现方式中,上述第二接入网节点包括第一装置和第二装置,该第一装置用于执行上述第一接入网节点的控制面功能,该第二装置用于执行上述第一接入网节点的用户面功能,上述第二接入网节点接收第一接入网节点发送的通知消息,包括:上述第一装置接收上述第一接入网节点发送的上述通知消息;上述第二接入网节点向上述第二基站发送上述第一指示信息,包括:上述第一装置向上述第二基站发送上述第一指示信息。基于本方案,第二接入网节点的功能可以由第一装置和第二装置实现,该第一装置可以为CU-CP,第二装置可以为CU-UP,即本方案能够在MN或SN的CU包括CP和UP的架构下进行信令交互,实现SCG的去激活和激活操作。
结合第八方面或第八方面的任一可能的实现方式,在另一种可能的实现方式中,上述方法还包括:上述第一装置向上述第二装置发送第二指示信息,该第二指示信息用于指示上述第二装置去激活上述SCG或激活上述SCG。基于本方案,CU-CP可以向CU-UP发送指示信息,指示CU-UP去激活上述SCG或激活上述SCG。
结合第五方面、第六方面、第七方面以及第八方面的任一可能的实现方式,在另一种可能的实现方式中,上述第一接入网节点用于执行无线链路控制RLC协议栈、介 质访问控制MAC协议栈,以及物理层PHY协议栈的功能;上述第二接入网节点用于执行无线资源控制RRC协议栈、业务数据适配协议SDAP协议栈,以及分组数据汇聚协议PDCP层的功能。基于本方案,可以按照协议层将RLC协议栈、MAC协议栈,以及物理层划分在第一接入网节点,将RRC协议栈、SDAP协议栈以及PDCP层划分在第二接入网节点,该第一接入网节点可以为DU,第二接入网节点可以为CU。本申请实施例对于CU-DU的具体划分方式并不进行限定,在此仅是示例性说明。
本申请实施例的第九方面,提供一种通信方法,该方法包括:第二基站接收第二接入网节点发送的第一指示信息,该第一指示信息用于指示第二基站向终端发送去激活辅小区组SCG命令或激活SCG命令;其中,上述第二接入网节点属于第一基站,上述第二基站为上述终端在双连接通信时的主节点或辅节点,且当上述第二基站为主节点时,上述第一基站为辅节点;或者,当上述第二基站为辅节点时,上述第一基站为主节点;上述SCG为上述辅节点管理的一个或多个小区;上述第二基站向上述终端发送上述去激活SCG命令或激活SCG命令。基于本方案,通过对SCG进行去激活操作,能够保留SCG的相关配置,并通过激活操作,能够快速恢复SCG的链路通信,因此与现有技术相比,无需进行SN的增加以及释放,在减小网络侧和终端的电量消耗的同时,减小了空口信令的开销,降低了时延,提升了通信效率。而且上述第二接入网节点可以分别是MN或SN的CU,即本申请通过MN或SN在CU-DU架构下进行信令交互,实现SCG的去激活和激活操作,能够适应于不同的网络部署,使得SCG的去激活和激活操作处理的更加灵活。
结合第九方面,在一种可能的实现方式中,上述第二接入网节点包括第一装置和第二装置,该第一装置用于执行上述第一接入网节点的控制面功能,该第二装置用于执行上述第一接入网节点的用户面功能,上述第二基站接收第二接入网节点发送的第一指示信息,包括:上述第二基站接收上述第一装置发送的上述第一指示信息。基于本方案,第二接入网节点的功能可以由第一装置和第二装置实现,该第一装置可以为CU-CP,第二装置可以为CU-UP,即本方案能够在MN或SN的CU包括CP和UP的架构下进行信令交互,实现SCG的去激活和激活操作。
结合第九方面或第九方面的任一可能的实现方式,在另一种可能的实现方式中,上述第二接入网节点用于执行无线资源控制RRC协议栈、业务数据适配协议SDAP协议栈,以及分组数据汇聚协议PDCP层的功能。基于本方案,可以按照协议层将RRC协议栈、SDAP协议栈以及PDCP层划分在第二接入网节点,该第二接入网节点可以为CU。本申请实施例对于CU-DU的具体划分方式并不进行限定,在此仅是示例性说明。
结合第一方面、第二方面、第三方面、第四方面、第五方面、第六方面、第七方面、第八方面以及第九方面的任一可能的实现方式,在另一种可能的实现方式中,上述去激活SCG包括以下操作中的至少一种:中止辅小区组无线链路控制承载SCG RLC Bearer上的数据传输;中止PDCP终结在辅节点上的承载SN terminated Bearer上的数据传输;中止SCG RLC实体(RLC entity)上的数据传输;中止SN PDCP实体上的数据传输。基于本方案,去激活SCG可以包括中止SCG RLC Bearer上的数据传输、中止SN terminated Bearer上的数据传输、中止SCG RLC实体上的数据传输、中止SN  PDCP实体上的数据传输中的至少一种。
结合第一方面、第二方面、第三方面、第四方面、第五方面、第六方面、第七方面、第八方面以及第九方面的任一可能的实现方式,在另一种可能的实现方式中,上述去激活SCG命令或激活SCG命令携带在媒体接入控制层控制元素MAC CE信令、物理层信令或者无线资源控制RRC信令中。基于本方案,可以在MAC CE信令、物理层信令或者RRC信令中携带去激活SCG命令或激活SCG命令。
本申请实施例的第十方面,提供一种计算机存储介质,所述计算机存储介质中存储有计算机程序代码,当所述计算机程序代码在处理器上运行时,使得所述处理器执行上述任一方面所述的通信方法。
本申请实施例的第十一方面,提供了一种计算机程序产品,该程序产品储存有上述处理器执行的计算机软件指令,该计算机软件指令包含用于执行上述方面所述方案的程序。
本申请实施例的第十二方面,提供了一种通信装置,该装置包括处理器,还可以包括收发器以及存储器,收发器,用于收发信息,或者用于与其他网元通信;存储器,用于存储计算机执行指令;处理器,用于执行所计算机执行指令,以支持终端设备或者通信设备实现上述任一方面所述的通信方法。
本申请实施例的第十三方面,提供了一种通信装置,该装置可以以芯片的产品形态存在,该装置的结构中包括处理器,还可以包括存储器,该存储器用于与处理器耦合,保存该装置必要的程序指令和数据,该处理器用于执行存储器中存储的程序指令,以支持终端设备或者通信设备执行上述任一方面所述的方法。
本申请实施例的第十四方面,提供了一种通信装置,该装置可以以芯片的产品形态存在,该装置的结构中包括处理器和接口电路,该处理器用于通过接收电路与其它装置通信,使得该装置执行上述任一方面所述的通信方法。
本申请实施例的第十五方面,提供了一种通信系统,包括第一基站和第二基站,第一基站包含第一接入网节点和第二接入网节点,所述第一接入网节点用于执行上述第一方面所述的通信方法,第二接入网节点用于执行上述第二方面所述的通信方法。
本申请实施例的第十六方面,提供了一种通信系统,包括第一基站和第二基站,第一基站包含第一接入网节点和第二接入网节点,所述第一接入网节点用于执行上述第三方面所述的通信方法,第二基站用于执行上述第四方面所述的通信方法。
本申请实施例的第十七方面,提供了一种通信系统,包括第一基站和第二基站,第一基站包含第一接入网节点和第二接入网节点,所述第一接入网节点用于执行上述第五方面所述的通信方法,第二接入网节点用于执行上述第六方面所述的通信方法。
本申请实施例的第十八方面,提供了一种通信系统,包括第一基站和第二基站,第一基站包含第一接入网节点和第二接入网节点,所述第一接入网节点用于执行上述第七方面所述的通信方法,第二接入网节点用于执行上述第八方面所述的通信方法,第二基站用于执行上述第九方面所述的通信方法。
附图说明
图1为为本申请实施例提供的一种通信系统的结构示意图;
图2为本申请实施例提供的一种CU-DU架构的示意图;
图3为本申请实施例提供的另一种CU-DU架构的示意图;
图4为本申请实施例提供的另一种CU-DU架构的示意图;
图5为本申请实施例提供的一种双连接网络的架构示意图;
图6为本申请实施例提供的另一种双连接网络的架构示意图;
图7为本申请实施例提供的另一种双连接网络的架构示意图;
图8为本申请实施例提供的一种EN-DC网络架构中用户面架构示意图;
图9为本申请实施例提供的一种通信方法的流程示意图;
图10为本申请实施例提供的另一种通信方法的流程示意图;
图11为本申请实施例提供的另一种通信方法的流程示意图;
图12为本申请实施例提供的另一种通信方法的流程示意图;
图13为本申请实施例提供的另一种通信方法的流程示意图;
图14为本申请实施例提供的另一种通信方法的流程示意图;
图15为本申请实施例提供的另一种通信方法的流程示意图;
图16为本申请实施例提供的另一种通信方法的流程示意图;
图17为本申请实施例提供的另一种通信方法的流程示意图;
图18为本申请实施例提供的另一种通信方法的流程示意图;
图19为本申请实施例提供的另一种通信方法的流程示意图;
图20为本申请实施例提供的另一种通信方法的流程示意图;
图21为本申请实施例提供的另一种通信方法的流程示意图;
图22为本申请实施例提供的另一种通信方法的流程示意图;
图23为本申请实施例提供的另一种通信方法的流程示意图;
图24为本申请实施例提供的另一种通信方法的流程示意图;
图25为本申请实施例提供的另一种通信方法的流程示意图;
图26为本申请实施例提供的另一种通信方法的流程示意图;
图27为本申请实施例提供的另一种通信方法的流程示意图;
图28为本申请实施例提供的一种通信装置的组成示意图;
图29为本申请实施例提供的另一种通信装置的组成示意图;
图30为本申请实施例提供的一种终端的组成示意图;
图31为本申请实施例提供的另一种通信装置的组成示意图;
图32为本申请实施例提供的另一种通信装置的组成示意图;
图33为本申请实施例提供的另一种通信装置的组成示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。在本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c或a-b-c,其中a、b 和c可以是单个,也可以是多个。
需要说明的是,本申请中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
本申请实施例定义接入网到终端的单向通信链路为下行链路,在下行链路上传输的数据为下行数据,下行数据的传输方向称为下行方向;而终端到接入网的单向通信链路为上行链路,在上行链路上传输的数据为上行数据,上行数据的传输方向称为上行方向。
本申请实施例中所述的资源也可以称为传输资源,包括时域资源、频域资源、码道资源中的一种或多种,可以用于在上行通信过程或者下行通信过程中承载数据或信令。
应理解,在本发明实施例中,“与A对应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
本申请实施例中出现的“多个”是指两个或两个以上。
本申请实施例中出现的第一、第二等描述,仅作示意与区分描述对象之用,没有次序之分,也不表示本申请实施例中对设备个数的特别限定,不能构成对本申请实施例的任何限制。
本申请实施例中出现的“连接”是指直接连接或者间接连接等各种连接方式,以实现设备间的通信,本申请实施例对此不做任何限定。
本申请实施例中出现的“传输”(transmit/transmission)如无特别说明,是指双向传输,包含发送和/或接收的动作。具体地,本申请实施例中的“传输”包含数据的发送,数据的接收,或者数据的发送和数据的接收。或者说,这里的数据传输包括上行和/或下行数据传输。数据可以包括信道和/或信号,上行数据传输即上行信道和/或上行信号传输,下行数据传输即下行信道和/或下行信号传输。
本申请实施例中出现的“网络”与“系统”表达的是同一概念,通信系统即为通信网络。
可以理解的,本申请实施例中,终端和/或基站可以执行本申请实施例中的部分或全部步骤,这些步骤或操作仅是示例,本申请实施例中,还可以执行其它操作或者各种操作的变形。此外,各个步骤可以按照本申请实施例呈现的不同的顺序来执行,并且有可能并非要执行本申请实施例中的全部操作。
本申请实施例提供的通信方法可以应用于图1所示的通信系统。如图1所示,终端支持双连接(Dual Connectivity,DC),主节点(Master Node,MN)和辅节点(secondary node,SN)共同为终端提供数据传输服务。MN与核心网(Core Network,CN)之间通过S1/NG接口连接。MN与核心网之间至少包括控制面连接,还可以有用户面连接,该S1接口包括S1-U/NG-U和S1-C/NG-C。其中,S1-U/NG-U代表用户面连接,S1-C/NG-C代表控制面连接。SN与核心网之间可以具有用户面连接,也可以不具有用户面连接。当SN与核心网之间不具有用户面连接时,终端的数据可以由MN在分组 数据汇聚协议(packet data convergence protocol,PDCP)层分流给SN。该MN又可被称为主基站或主接入网设备,SN又可被称为辅基站或辅接入网设备。
本申请中的通信系统可以是长期演进(long term evolution,LTE)无线通信系统,或者是新无线(new radio,NR)系统等第五代(5th generation,5G)移动通信系统、还可以是其他其他下一代(next generation,NG)通信系统等,本申请实施例对此不做限定。
示例性的,上述MN和SN可以为LTE第三代合作伙伴计划(3rd generation partnership project,3GPP)所定义的基站。例如,可以是LTE系统中的基站设备,即演进型节点B(evolved NodeB,eNB/eNodeB);还可以是NR系统中的接入网侧设备,包括gNB、传输点(trasmission/reception point,TRP)等。
示例性的,上述MN和SN可以是由集中式单元(Centralized Unit,CU)和分布式单元(Distributed Unit,DU)组成的,采用CU-DU的结构可以将基站的协议层拆分开,部分协议层的功能放在CU集中控制,剩下部分或全部协议层的功能分布在DU中,由CU集中控制DU,从而能够节省成本,易于网络扩展。示例性的,MN和SN可以包括一个或多个CU,以及一个或多个DU。
示例性的,CU可以用于执行高层协议栈功能,DU用于执行低层协议栈功能。该高层协议栈可以为无线链路控制(Radio Link Control,RLC)层以上的协议栈,低层协议栈为RLC层以下的协议栈;或者,高层协议栈可以包括无线资源控制(Radio Resource Control,RRC)协议栈、业务数据适配协议(Service Data Adaptation Protocol,SDAP)协议栈以及PDCP层,低层协议栈包括RLC层,媒体接入控制(Media Access Control,MAC)层和物理层(Physical layer,PHY);或者,高层协议栈可以包括RRC协议栈和SDAP协议栈,低层协议栈包括PDCP层、RLC层、MAC层和物理层。本申请实施例对于高层协议栈和低层协议栈包括的具体协议栈并不进行限定,在此仅是示例性说明。
例如,如图2所示的一种CU-DU架构,CU用于执行RRC协议栈、SDAP协议栈以及PDCP层的功能,而DU用于执行RLC层,MAC层,物理层等的功能。CU和DU之间通过F1接口连接。
再例如,如图3所示的一种CU-DU架构,CU用于执行RRC协议栈和SDAP协议栈的功能,DU用于执行PDCP、RLC、MAC、物理层等的功能。
可以理解的,图2-图3所示的CU-DU架构示意图仅是根据协议层划分的示例性说明,本申请实施例对于CU-DU架构的具体划分方式并不进行限定。例如,还可以将RLC层的部分功能和RLC层以上的协议层的功能设置在CU,将RLC层的剩余功能和RLC层以下的协议层的功能设置在DU。
示例性的,CU的功能可以由一个实体来实现也可以由不同的实体实现。例如,如图4所示,CU-DU架构下CU可以再细分为CU-CP(Central Unit-Control Plane,集中式单元-控制面),CU-UP(Central Unit-User Plane,集中式单元-用户面)架构。该CU-CP和CU-UP可以由不同的功能实体来实现,该CU-CP和CU-UP可以与DU相耦合,共同完成基站的功能。如图4所示,一个基站可以有一个CU-CP,一个或多个CU-UP和一个或多个DU。一个CU-CP通过E1接口连接多个CU-UP,一个CU-CP可以通过 F1-C接口连接多个DU,一个DU可以通过F1-U接口连接多个CU-UP。可以理解的,图4中仅以基站包括两个DU为例进行示意,该基站可以为4G基站,也可以为5G基站,本申请实施例对此并不进行限定。
可以理解的,上述图2-图4所示的CU-DU架构仅是示例性说明,本申请实施例对于CU-DU架构的具体组成并不进行限定,在此仅以图2-图4进行示例性说明。下述实施例中仅以图2所示的CU-DU架构进行示例性说明。
示例性的,双连接可以在不同制式的接入网设备之间实现,如图5所示,为LTE-NR双连接(E-UTRA-NR Dual Connectivity,EN-DC)网络的示意图。EN-DC网络是4G无线接入网与5G NR的双连接,LTE基站(LTE eNB)作为MN,NR基站(NR gNB)作为SN。如图5中的(a)所示,LTE eNB与LTE系统的演进型分组核心网(evolved Packet Core,EPC)之间存在S1接口,至少有控制面连接,可以还有用户面连接。如图5中的(b)所示,NR gNB和EPC之间存在S1-U接口,即只可以有用户面连接。
如图6所示,为NR-LTE双连接(NR-E-UTRA Dual Connectivity,NE-DC)网络的示意图。NE-DC网络是5G核心网下的4G无线接入网与5G NR的双连接,NR基站(gNB)作为MN,LTE基站(ng-eNB)作为SN,且MN和SN都连接5G核心网(5th Generation Core Network,5GC)。如图6中的(a)所示,gNB与5GC之间存在NG接口,可以为终端建立控制面连接和用户面连接,ng-eNB通过gNB向5GC发送用户面数据。如图6中的(b)所示,ng-eNB与5GC之间存在NG-U接口,仅为终端建立用户面连接,ng-eNB直接向5GC发送用户面数据。
如图7所示,为5G核心网LTE-NR双连接(Next Generation E-UTRA-NR Dual Connectivity,NGEN-DC)网络的示意图。NGEN-DC网络是5G核心网下的4G无线接入网与5G NR的双连接,LTE基站(ng-eNB)作为MN,NR基站(gNB)作为SN,且MN和SN都连接5GC。如图7中的(a)所示,ng-eNB与5GC之间存在NG接口,可以为终端建立控制面连接和用户面连接,gNB通过ng-eNB向5GC发送用户面数据。如图7中的(b)所示,gNB与5GC之间存在NG-U接口,仅为终端建立用户面连接,gNB直接向5GC发送用户面数据。
在图5至图7的双连接网络中,SN和核心网之间也可以不建立用户面连接,而是经由MN传递数据,例如,在下行方向上,终端的数据先到达MN,MN在PDCP层将终端的数据分流给SN,其中分流的数据的形式例如为PDCP协议数据单元(Protocol Data Unit,PDU PDU)。
可以理解的,本申请实施例提供的通信方法可以适应于传统LTE的双连接,也可以适用于5G系统的EN-DC网络、NE-DC网络,或NGEN-DC网络,还可以适应于5G核心网NR-NR双连接(NR-NR Dual Connectivity,NR-DC)以及未来的其他DC架构,本申请实施例对于该通信方法适应的双连接网络的具体架构并不进行限定,在此仅是以图5-图7进行示例性说明。下述实施例中以EN-DC网络架构为例,对本申请实施例提供的通信方法进行说明。
在双连接中,终端与接入网侧建立的数据无线承载(Data Radio Bearer,DRB)可以由MN或者SN独立提供,也可由MN和SN同时提供。由MN提供的承载称为主小区组(Master Cell Group,MCG)承载,其中,MCG包含用于为终端提供空口资源 的至少一个MN管理的小区;由SN提供的承载称为辅小区组(Secondary Cell Group,SCG)承载,其中,SCG包含用于为终端提供空口资源的至少一个SN管理的小区。此外,同时由MN和SN提供空口资源的承载称为分离承载(split Bearer)。
当MCG中仅有一个小区时,该小区为终端的主小区(Primary cell,PCell)。当SCG中仅一个小区时,该小区为终端的主辅小区(Primary Secondary Cell,PSCell)。PCell和PSCell可以统称为特别小区(Special Cell,SpCell)。当MCG或SCG中各有多个小区时,除了SpCell的小区都可以称为辅小区(Secondary Cell,SCell)。此时各个小区组中的SCell与SpCell进行载波聚合(carrier aggregation,CA),共同为终端提供传输资源。其中,PSCell属于SCG的小区中,UE被指示进行随机接入或者初始PUSCH传输的小区。SCell是工作在辅载波上的小区,一旦RRC连接建立,SCell就可能被配置以提供额外的无线资源。
下面以EN-DC网络为例,对EN-DC网络架构中用户面架构进行示例性说明。如图8所示,在该EN-DC网络中,数据面无线承载可以由MN或者SN独立服务,也可由MN和SN同时服务。当承载仅由MN提供,即数据流仅由核心网流向MN时,该承载为MCG承载(Bearer)。当承载仅由SN提供,即数据流仅由核心网流向SN时,该承载为SCG承载。当承载同时由MN和SN提供,即数据流在MN或SN分流时,该承载为分离承载(split Bearer)。
示例性的,结合图8所示,每一种承载类型都有相应的PDCP层处理和RLC层处理。对于通过MCG空口资源传输的RLC Bearer称为MCG RLC Bearer,通过SCG空口资源传输的RLC Bearer称为SCG RLC Bearer。图8中,PDCP实体可以终结在MN,也可以终结在SN。对于PDCP终结在MN上的承载,称为MN terminated Bearer,即下行数据从核心网直接到达MN,经由MN的PDCP处理后再经过RLC Bearer发送给终端。类似的,对于PDCP终结在SN上的承载,称为SN terminated Bearer,即下行数据从核心网直接到达SN,经由SN的PDCP处理后再经过RLC Bearer发送给终端。
示例性的,根据PDCP实体建立在MN还是SN,DC中的承载又可以分为如下几种类型,包括:终结在MN的MCG承载(MN terminated MCG Bearer),终结在MN的SCG承载(MN terminated SCG Bearer),终结在MN的split承载(MN terminated split Bearer),终结在SN的MCG承载(SN terminated MCG Bearer),终结在SN的SCG承载(SN terminated SCG Bearer),终结在SN的split承载(SN terminated split Bearer),其中,对于终结在MN的承载,PDCP实体建立在MN,与核心网的用户面连接终结在MN,即以MN为锚点(anchor);对于终结在SN的承载,PDCP实体建立在SN,与核心网的用户面连接终结在SN,即以SN为锚点。可以理解,承载终结在MN还是SN表示与核心网的数据传输通过MN进行还是SN进行,至于空口传输资源则由MCG或者SCG提供,例如,若采用MN terminated SCG bearer,则核心网下发的下行数据通过MN的PDCP层处理后全部转到SN的RLC层、MAC层进一步处理并通过SCG发送给终端;对应地,终端发送的上行数据通过SN的MAC层、RLC层处理后全部转到MN的PDCP层处理并通过MN与核心网的接口发送给核心网设备。若采用MN terminated split bearer,则核心网下发的下行数据通过MN的PDCP层处理后一部分数据转到SN,通过SCG发送给终端,其余部分仍由MN通过MCG发送给 终端;对应地,终端发送的上行数据一部分通过MCG发送到MN,另一部分通过SCG发送到SN,两部分数据汇聚到MN的PDCP层处理并通过MN与核心网的接口发送给核心网设备。
在终端与MN和SN的双连接通信过程中,通过网络配置终端在高数据速率状态进行DC操作,即进行SN增加(SN addition);当终端进入低数据速率状态时,网络配置终端释放DC操作,即进行SN释放(SN release),以节省网络设备以及终端设备的电量。但是,当采用SN释放(SN release)流程为终端释放DC操作,以及采用SN增加(SN addition)流程为终端再次添加SN时,由于进行SN增加和SN释放的过程涉及MN和SN之间的多条信息交互,而且SN给终端的配置可能并不需要更新,终端可以延用原来的配置即可,因此,频繁的进行SN的增加以及释放,增加了空口信令的开销,时延较大,导致通信效率降低。而且在MN和SN为CU-DU分离架构时,如何解决长时间维持DC的双链路导致基站和终端的高耗电问题。
为了解决现有技术中频繁的进行SN的增加以及释放,增加了空口信令的开销,时延较大,导致通信效率降低的问题,以及在MN和SN为CU-DU分离架构时,如何解决长时间维持DC的双链路导致基站和终端的高耗电问题。本申请实施例提供了一种通信方法,能够在减小空口信令的开销,降低时延的同时,减小网络设备和终端的电量消耗;而且能够适应于不同的网络部署,处理更加灵活。
结合图1-图8,如图9所示,为本申请实施例提供的一种通信方法,该通信方法包括步骤S901-S907。
S901、第一接入网节点确定去激活SCG或激活SCG。
示例性的,该第一接入网节点属于第一基站,该第一基站为终端在双连接通信时的主节点(MN)或者辅节点(SN),上述SCG为SN管理的一个或多个小区。该第一接入网节点为第一基站的集中式单元CU。例如,该第一接入网节点可以为MN CU或SN CU。即该第一基站为CU-DU架构时,第一接入网节点为第一基站的CU。
示例性的,上述去激活SCG也可以是指将SCG的配置挂起(suspend),激活SCG是指将挂起的SCG的配置恢复。挂起的含义相当于停止或中止,挂起SCG的配置后,不再通过SCG进行数据传输。例如,去激活SCG可以包括以下操作中的至少一种:中止SCG RLC Bearer上的数据传输;中止SN terminated Bearer上的数据传输;中止SCG RLC实体(RLC entity)上的数据传输;中止SN PDCP实体上的数据传输。激活SCG可以包括以下操作中的至少一种:恢复SCG RLC Bearer上的数据传输;恢复SN terminated Bearer上的数据传输;恢复SCG RLC实体上的数据传输;恢复SN PDCP实体上的数据传输。
示例性的,上述步骤S901中的第一接入网节点确定去激活SCG或激活SCG,可以包括:第一接入网节点根据第二基站发送的辅助信息、终端发送的辅助信息、第一基站承载的数据传输情况中的任意一种或多种,确定去激活SCG或者激活SCG。其中,当第一基站为MN时,第二基站为SN;或者,当第一基站为SN时,第二基站为MN。例如,步骤S901可以包括:MN CU根据SN发送的辅助信息、终端发送的辅助信息、MN承载的数据传输情况中的任意一种或多种,确定去激活SCG或激活SCG。再例如,步骤S901也以包括:SN CU根据MN发送的辅助信息、终端发送的辅助信息、SN承 载的数据传输情况中的任意一种或多种,确定去激活SCG或激活SCG。
示例性的,上述MN/SN发送的辅助信息可以包括节电指示。终端发送的辅助信息可以包括终端的SCG数据的活跃情况,终端有节电需求,或者终端指示第一基站挂起SCG的配置。该SCG数据的活跃情况可以用数据量来衡量,例如,有数据、无数据、或数据量高中低等。
例如,第一接入网节点可以根据第二基站发送的节电指示,确定去激活SCG,以节省基站和终端的电量消耗。再例如,第一接入网节点可以根据终端发送的节电指示确定去激活SCG。再例如,第一接入网节点可以根据终端发送的挂起SCG的指示确定去激活SCG。再例如,第一接入网节点可以根据终端发送的终端通过SCG传输的数据量,如果终端通过SCG传输的数据量小于预设阈值,第一接入网节点确定去激活SCG,如果终端通过SCG传输的数据量大于或等于预设阈值,第一接入网节点确定激活SCG。
可选的,在第一接入网节点根据第二基站发送的辅助信息,和/或,终端发送的辅助信息,确定去激活SCG或激活SCG的情况下,上述步骤S901之前还可以包括:第一接入网节点接收第二基站发送的辅助信息,和/或,接收终端发送的辅助信息。例如,当第一接入网节点为SN CU时,SN CU可以接收终端发送的辅助信息,该辅助信息可以携带在SRB3(信令无线承载,Signal Radio Bearer)中,SRB3是终端和SN之间的无线承载;或者,终端将该辅助信息携带在SRB1中发送给MN,再由MN发送给SN CU,SRB1是终端和MN之间的无线承载。
示例性的,在第一基站为SN时,第一接入网节点确定去激活SCG或激活SCG包括:第一接入网节点去激活SCG或激活SCG。示例性的,第一接入网节点确定去激活SCG,可以执行以下操作中的至少一种:中止SCG RLC Bearer上的数据传输;中止SN terminated Bearer上的数据传输;中止SCG RLC实体上的数据传输;中止SN PDCP实体上的数据传输。例如,当第一接入网节点为SN CU时,以图2所示的CU-DU架构为例,PDCP层部署在CU,SN CU确定挂起SN terminated Bearer,SN CU可以中止SN terminated Bearer上的数据传输;和/或,SN CU根据SN DU发送的辅助信息,确定挂起SCG RLC Bearer,SN CU可以中止SCG RLC Bearer上的数据传输。再例如,当第一接入网节点为MN CU时,以图2所示的CU-DU架构为例,PDCP层部署在CU,MN CU根据SN发送的辅助信息,确定挂起SN terminated Bearer和/或SCG RLC Bearer,MN CU可以中止SN terminated Bearer和/或SCG RLC Bearer上的数据传输。
可选的,在第一基站为MN时,第一接入网节点确定去激活SCG或激活SCG包括:第一接入网节点挂起/恢复建立在SN的承载对应的X2/Xn接口的数据传输隧道。
S902、第一接入网节点向第二接入网节点发送第一指示信息,第一指示信息用于指示第二接入网节点向终端发送去激活SCG命令或激活SCG命令。
该第二接入网节点与第一接入网节点同属于第一基站。例如,该第二接入网节点可以为MN DU或SN DU。即该第一基站为CU-DU架构时,第二接入网节点为第一基站的DU。也就是说,第一接入网节点和第二接入网节点可以分别是第一基站的CU和DU。
示例性的,当第一基站为MN时,步骤S902具体包括:MN CU向MN DU发送 第一指示信息,指示MN DU向终端发送去激活SCG命令或激活SCG命令。
示例性的,当第一基站为SN时,步骤S902具体包括:SN CU向SN DU发送第一指示信息,指示SN DU向终端发送去激活SCG命令或激活SCG命令。
示例性的,该去激活SCG命令也可以称为去激活SCG指示,激活SCG命令也可以称为激活SCG指示,本申请实施例对此并不进行限定。
S903、第二接入网节点接收第一指示信息。
示例性的,第一基站为MN时,步骤S903具体包括:MN DU接收MN CU发送的第一指示信息。
示例性的,第一基站为SN时,步骤S903具体包括:SN DU接收SN CU发送的第一指示信息。
可选的,当第一基站为SN时,第二接入网节点接收第一指示信息后,还可以去激活SCG或激活SCG。示例性的,第二接入网节点接收第一指示信息后,可以执行以下操作中的至少一种:中止SCG RLC Bearer上的数据传输;中止SN terminated Bearer上的数据传输;中止SCG RLC实体上的数据传输;中止SN PDCP实体上的数据传输。例如,当第二接入网节点为SN DU时,以图2所示的CU-DU架构为例,RLC层部署在DU,若步骤S901中SN CU确定挂起SCG RLC Bearer,SN DU可以中止SCG RLC Bearer上的数据传输。
可选的,当第一基站为MN时,第二接入网节点接收第一指示信息后,还可以挂起/恢复建立在SN的承载对应的X2/Xn接口的数据传输隧道。例如,当第二接入网节点为MN DU时,以图2所示的CU-DU架构为例,RLC层部署在DU,若步骤S901中MN CU确定挂起SN terminated MCG RLC Bearer,MN DU可以挂起SN terminated MCG RLC Bearer对应的X2/Xn接口的数据传输隧道。可以理解的,本申请实施例中挂起SN terminated MCG RLC Bearer是指挂起SN terminated Bearer的PDCP实体,或者说是指挂起SN上的PDCP实体。
可选的,在本申请的一个实施方式中,所述方法还包括S904、第二接入网节点向第一接入网节点发送肯定应答(Acknowledgement,ACK)消息。
该ACK消息用于指示第二接入网节点成功接收到了第一接入网节点发送的第一指示信息。
示例性的,当第一基站为MN时,步骤S904具体包括:MN DU向MN CU发送ACK消息。
示例性的,当第一基站为SN时,步骤S904具体包括:SN DU向SN CU发送ACK消息。
S905、第二接入网节点向终端发送去激活SCG命令或激活SCG命令。
示例性的,SN DU或MN DU向终端发送去激活SCG命令或激活SCG命令。
示例性的,上述去激活SCG命令用于指示终端去激活SCG,去激活SCG可以是指终端暂时停止通过SCG上的通信链路进行数据传输,但终端保留或存储SN的部分或全部配置,以用于快速恢复所述SCG的通信链路。去激活(deactive)也可以称为挂起(suspend)或者休眠。
示例性的,激活SCG命令用于指示终端激活SCG。终端激活SCG可以是指终端 恢复SN的配置,通过SCG上的通信链路进行数据传输。激活也可以称为恢复(resumption/recovery)。
示例性的,上述去激活SCG命令或激活SCG命令可以携带在MAC CE(控制元素,Control Element)、物理层信令或者RRC信令中。例如,该物理层信令可以为下行控制信息(Downlink Control Information,DCI)。可选的,去激活命令或激活命令可以为MAC CE中的一个或多个比特位。该MAC CE可以是用于指示SCell去激活或激活状态的MAC CE,也可以是专门为去激活命令设计的MAC CE,本申请实施例对此并不进行限定。
S906、终端接收去激活SCG命令或激活SCG命令。
示例性的,终端接收MN DU或SN DU发送的去激活SCG命令或激活SCG命令。
可选的,当去激活SCG命令或激活SCG命令携带在MAC CE中时,当终端接收到该MAC CE,终端可以读取MAC CE的内容,并根据该MAC CE确定去激活SCG或激活SCG。其中,MAC CE中某一比特指示了PSCell为去激活/激活状态,其他比特是用于指示SCell的状态。
S907、终端根据去激活SCG命令或激活SCG命令,对SCG进行去激活操作或激活操作。
示例性的,终端对SCG进行去激活SCG操作时,终端保留SCG的配置,该SCG的配置用于SN与终端的DC通信。
示例性的,终端对SCG进行去激活SCG操作可以包括:终端挂起建立在SN的承载对应的SCG RLC bearer和/或SN terminated bearer的PDCP实体。该SCG RLC bearer可以是SN terminated bearer对应的SCG RLC bearer和/或MN terminated bearer对应的SCG RLC bearer,即SN terminated SCG RLC bearer和/或MN terminated SCG RLC bearer。上述挂起SCG RLC bearer和SN terminated bearer的PDCP实体是指挂起全部SN terminated Bearer。上述挂起可以指不通过SCG RLC bearer和/或SN terminated bearer的PDCP实体进行数据传输,或者说停止向终端提供SCG的空口传输资源。可以理解的,本申请实施例中挂起MN terminated SCG RLC Bearer是指挂起SCG RLC Bearer;挂起SN terminated MCG RLC Bearer是指挂起SN terminated Bearer的PDCP实体,或者说是指挂起SN上的PDCP实体。
可选的,终端在挂起SCG RLC bearer的基础上,可以继续挂起该SN的PDCP/SDAP实体,即不通过SN的PDCP/SDAP实体进行数据处理和传输。具体的,挂起PDCP/SDAP实体可以由冻结PDCP/SDAP或者PDCP/SDAP恢复(recovery)实现。可以理解,该SN的PDCP/SDAP实体可以是与MN共用的或者SN独立使用的,本申请实施例对此不做限定。所述SN的PDCP/SDAP实体也可以称为终结在SN上的PDCP/SDAP实体。
示例性的,终端对SCG进行激活操作时,将在对SCG进行去激活操作时,保留的SCG的配置用于SN与终端的DC通信中。即终端重新应用已存储的用于DC的SCG的配置。
示例性的,终端对SCG进行激活SCG操作可以包括:终端恢复(recovery)建立在SN的承载对应的SCG RLC bearer和/或SN terminated Bearer的PDCP实体。即终端继续通过SCG RLC bearer和/或SN terminated Bearer的PDCP实体进行数据传输。 也就是说,终端可以重新利用SN的空口资源。
可以理解,本申请中的去激活操作与激活操作是对应的,当终端进行一项针对SCG的去激活操作后,在激活SCG时,则进行相应的激活(恢复)操作,例如,去激活(挂起)SCG RLC bearer对应激活(恢复)SCG RLC bearer。关于终端进行的各项激活(恢复)操作的描述可以参照前述对应的去激活操作,相似内容不做赘述。需要指出的是,当终端根据去激活指示默认所有SCell为去激活状态,在进行SCG激活操作时,终端可以激活(恢复)所有SCell,也可以根据需求只激活(恢复)其中的一个或多个SCell。
本申请实施例提供的通信方法,通过第一接入网节点确定去激活SCG或激活SCG;第一接入网节点向第二接入网节点发送第一指示信息,第一指示信息用于指示第二接入网节点向终端发送去激活SCG命令或激活SCG命令;第二接入网节点接收第一指示信息;第二接入网节点向终端发送去激活SCG命令或激活SCG命令;终端接收去激活SCG命令或激活SCG命令;终端根据去激活SCG命令或激活SCG命令,对SCG进行去激活操作或激活操作。本实施例通过对SCG进行去激活操作,能够保留SCG的相关配置,并通过激活操作,能够快速恢复SCG的链路通信,因此与现有技术相比,无需进行SN的增加以及释放,在减小网络侧和终端的电量消耗的同时,减小了空口信令的开销,降低了时延,提升了通信效率。而且上述第一接入网节点和第二接入网节点可以分别是MN或SN的CU和DU,即本实施例通过MN或SN在CU-DU架构下进行信令交互,实现SCG的去激活和激活操作,能够适应于不同的网络部署,使得SCG的去激活和激活操作处理的更加灵活。
可选的,在第一基站为MN且第二基站为SN的情况下,上述第一接入网节点为MN CU,第二接入网节点为MN DU,如图10所示,上述方法在步骤S901-S907的基础上还可以包括步骤S908-S910。
S908、第一接入网节点向第二基站发送第二指示信息,第二指示信息用于指示第二基站去激活SCG或激活SCG。
示例性的,MN确定挂起的承载为SCG RLC Bearer和/或SN terminated Bearer的PDCP实体,MN CU向SN发送第二指示信息,指示SN去激活SCG或激活SCG。
可选的,在第二基站为CU-DU架构时,上述步骤S908包括:MN CU向SN CU发送第二指示信息;或者,上述步骤S908还可以包括:MN CU向SN CU发送第二指示信息,SN CU通知SN DU去激活SCG或激活SCG。示例性的,在MN确定挂起的承载为SN terminated Bearer的PDCP实体,且PDCP层被划分到SN CU时,MN CU向SN CU发送第二指示信息;在MN确定挂起的承载为SCG RLC Bearer,且RLC层被划分到SN DU时,MN CU向SN CU发送第二指示信息,SN CU通知SN DU去激活SCG或激活SCG。
例如,MN确定挂起的承载为SN terminated MCG RLC Bearer,且SN的CU-DU架构如图2所示,PDCP层部署在CU,MN CU向SN CU发送第二指示信息。再例如,MN确定挂起的承载为MN terminated SCG RLC Bearer,且SN的CU-DU架构如图2所示,RLC层部署在DU,MN CU向SN CU发送第二指示信息,SN CU通知SN DU去激活SCG或激活SCG。
可选的,上述步骤S908可以在步骤S902之前执行,也可以在步骤S902之后执 行,还可以和步骤S902同时执行,本申请实施例对于步骤S908和步骤S902的先后执行顺序并不进行限定。
S909、第二基站接收第二指示信息。
示例性的,SN接收MN CU发送的第二指示信息。
示例性的,第二基站为CU-DU架构时,上述步骤S909包括:SN CU接收MN CU发送的第二指示信息;或者,上述步骤S909包括:SN CU接收MN CU发送的第二指示信息,SN DU接收SN CU发送的通知消息,通知SN DU去激活SCG或激活SCG。
可选的,上述步骤S909之后,第二基站可以向第一接入网节点发送ACK消息,用于指示第二基站成功接收到了第一接入网节点发送的第二指示信息。
S910、第二基站根据第二指示信息,对SCG进行去激活操作或激活操作。
示例性的,第二基站为CU-DU架构时,上述步骤S910包括:SN CU去激活SCG或激活SCG;和/或,SN DU去激活SCG或激活SCG。
示例性的,在MN确定挂起的承载为SN terminated Bearer的PDCP实体,且PDCP层被划分到SN CU时,SN CU挂起或恢复该承载;在MN确定挂起的承载为SCG RLC Bearer,且RLC层被划分到SN DU时,SN DU挂起或恢复该承载。
例如,MN确定挂起的承载为SN terminated MCG RLC Bearer,且SN的CU-DU架构如图2所示,PDCP层部署在CU,MN CU向SN CU发送第二指示信息,SN CU接收MN CU发送的第二指示信息后,SN CU挂起或恢复SN terminated Bearer的PDCP实体。再例如,MN确定挂起的承载为MN terminated SCG RLC Bearer,且SN的CU-DU架构如图2所示,RLC层部署在DU,MN CU向SN CU发送第二指示信息,SN CU通知SN DU去激活SCG或激活SCG,SN DU挂起或恢复SCG RLC Bearer。
可以理解的,本实施例在MN确定去激活SCG或激活SCG时,会通知SN,并指示SN去激活SCG或激活SCG,从而SN能够保留SCG的相关配置,并通过激活操作,能够快速恢复SCG的链路通信,因此与现有技术相比,无需进行SN的增加以及释放,在减小网络侧和终端的电量消耗的同时,减小了空口信令的开销,降低了时延,提升了通信效率。
可选的,在第一基站为SN且第二基站为MN的情况下,上述第一接入网节点为SN CU,第二接入网节点为SN DU,如图11所示,上述方法在步骤S901-S907的基础上还可以包括步骤S911-S912。
S911、第一接入网节点向第二基站发送第一通知消息,第一通知消息用于通知第二基站,第一基站去激活SCG或激活SCG。
示例性的,SN确定挂起的承载为MN terminated SCG RLC Bearer和/或SN terminated MCG RLC Bearer,SN CU向MN发送第一通知消息,通知MN,SN去激活SCG或激活SCG。
可选的,在第二基站为CU-DU架构时,上述步骤S911包括:SN CU向MN CU发送第一通知消息;或者,上述步骤S911还可以包括:SN CU向MN CU发送第一通知消息,MN CU通知MN DU发送该通知消息,以告知MN DU,SN去激活SCG或激活SCG。
示例性的,在SN确定挂起的承载为MN terminated Bearer的PDCP实体,且PDCP 层被划分到MN CU时,SN CU向MN CU发送第一通知消息;在SN确定挂起的承载为MCG RLC Bearer,且RLC层被划分到MN DU时,SN CU向MN CU发送第一通知消息,MN CU通知MN DU,SN去激活SCG或激活SCG。
例如,SN确定挂起的承载为MN terminated SCG RLC Bearer,且MN的CU-DU架构如图2所示,PDCP层部署在CU,SN CU向MN CU发送第一通知消息。再例如,SN确定挂起的承载为SN terminated MCG RLC Bearer,且MN的CU-DU架构如图2所示,RLC层部署在DU,SN CU向MN CU发送第一通知消息,MN CU通知MN DU,SN去激活SCG或激活SCG。
可选的,上述步骤S911可以在步骤S902之前执行,也可以在步骤S902之后执行,还可以和步骤S902同时执行,本申请实施例对于步骤S911和步骤S902的先后执行顺序并不进行限定。
S912、第二基站接收第一接入网节点发送的第一通知消息。
示例性的,MN接收SN CU发送的第一通知消息。
示例性的,第二基站为CU-DU架构时,上述步骤S912包括:MN CU接收SN CU发送的第一通知消息;或者,上述步骤S912包括:MN CU接收SN CU发送的第一通知消息,MN DU接收MN CU发送的通知消息,通知MN DU,SN去激活SCG或激活SCG。
可选的,在上述步骤S912之后还可以包括:MN挂起/恢复建立在SN的承载对应的X2/Xn接口的数据传输隧道。例如,SN确定挂起的承载为MN terminated SCG RLC Bearer,当SN挂起SCG RLC Bearer时,MN还可以挂起上述MN terminated SCG RLC Bearer对应的X2/Xn接口的数据传输隧道。再例如,SN确定挂起的承载为SN terminated MCG RLC Bearer,当SN挂起了SN terminated Bearer的PDCP实体时,MN还可以挂起上述SN terminated MCG RLC bearer对应的X2/Xn接口的数据传输隧道。
可以理解的,在SN确定挂起的承载为MN terminated SCG RLC Bearer时,SN挂起SCG RLC Bearer后,MN可以进一步挂起MN terminated SCG RLC Bearer对应的X2/Xn接口的数据传输隧道;在SN确定挂起的承载为SN terminated MCG RLC Bearer时,SN挂起SN terminated Bearer的PDCP实体后,MN可以进一步挂起SN terminated MCG RLC Bearer对应的X2/Xn接口的数据传输隧道。
可选的,上述步骤S912之后,第二基站可以向第一接入网节点发送ACK消息,用于指示第二基站成功接收到了第一接入网节点发送的第一通知消息。
可以理解的,本实施例在SN确定去激活SCG或激活SCG时,会通知MN,从而MN可以挂起/恢复建立在SN的承载对应的X2/Xn接口的数据传输隧道,该方案能够保留SCG的相关配置,并通过激活操作,快速恢复SCG的链路通信,因此与现有技术相比,无需进行SN的增加以及释放,在减小网络侧和终端的电量消耗的同时,减小了空口信令的开销,降低了时延,提升了通信效率。
本申请实施例还提供一种通信方法,如图12所示,该通信方法包括步骤S1201-S1207。
S1201、第一接入网节点确定去激活辅小区组SCG或激活SCG。
示例性的,该第一接入网节点属于第一基站,该第一基站为终端在双连接通信时 的MN或者SN,上述SCG为SN管理的一个或多个小区。该第一接入网节点为第一基站的CU。例如,该第一接入网节点可以为MN CU或SN CU。
可以理解的,步骤S1201中第一接入网节点确定去激活辅小区组SCG或激活SCG的具体实现方式,可以参考步骤S901的相关描述,在此不再赘述。
S1202、第一接入网节点向第二基站发送第三指示信息,第三指示信息用于指示第二基站向终端发送去激活SCG命令或激活SCG命令。
该第二基站为终端在双连接通信时的MN或者SN,且当第二基站为MN时,第一基站为SN;或者,当第二基站为SN时,第一基站为MN。
一种实现方式中,第一基站为MN,且第二基站为SN,上述步骤S1202可以包括:MN CU向SN发送第三指示信息,指示SN向终端发送去激活SCG命令或激活SCG命令。可选的,该第二基站可以为CU-DU架构,在第二基站为CU-DU架构的情况下,上述步骤S1202包括:MN CU向SN CU发送第三指示信息,指示SN CU通知SN DU向终端发送去激活SCG命令或激活SCG命令。
另一种实现方式中,第一基站为SN,且第二基站为MN,上述步骤S1202可以包括:SN CU向MN发送第三指示信息,指示MN向终端发送去激活SCG命令或激活SCG命令。可选的,该第二基站可以为CU-DU架构,在第二基站为CU-DU架构的情况下,上述步骤S1202包括:SN CU向MN CU发送第三指示信息,指示MN CU通知MN DU向终端发送去激活SCG命令或激活SCG命令。
S1203、第二基站接收第三指示信息。
示例性的,第一基站为MN,且第二基站为SN时,SN接收MN CU发送的第三指示信息。可选的,第二基站为CU-DU架构时,SN CU接收MN CU发送的第三指示信息,SN DU接收SN CU发送的通知消息,通知SN DU向终端发送去激活SCG命令或激活SCG命令。
可选的,第二基站(SN)接收第三指示信息后,还包括SN对SCG进行去激活或激活操作。在SN为CU-DU架构时,具体的,SN CU和/或SN DU对SCG进行去激活或激活操作。
示例性的,第一基站为SN,且第二基站为MN时,MN接收SN CU发送的第三指示信息。可选的,第二基站可以为CU-DU架构时,MN CU接收SN CU发送的第三指示信息,MN DU接收MN CU发送的通知消息,通知MN DU向终端发送去激活SCG命令或激活SCG命令。
可选的,第二基站(MN)接收第三指示信息后,还包括MN挂起/恢复建立在SN的承载对应的X2/Xn接口的数据传输隧道。在MN为CU-DU架构时,具体的,MN CU和/或MN DU挂起/恢复建立在SN的承载对应的X2/Xn接口的数据传输隧道。
可选的,在本申请的一个实施方式中,所述方法还包括S1204、第二基站向第一接入网节点发送ACK消息。
该ACK消息用于指示第二基站成功接收到了第一接入网节点发送的第三指示信息。
示例性的,第一基站为MN,且第二基站为SN时,步骤S1204具体包括:SN向MN CU发送ACK消息。可选的,第二基站为CU-DU架构时,SN CU向MN CU发送 ACK消息,SN DU向SN CU发送ACK消息。
示例性的,第一基站为SN,且第二基站为MN时,步骤S1204具体包括:MN向SN CU发送ACK消息。可选的,第二基站为CU-DU架构时,MN CU向SN CU发送ACK消息,MN DU向MN CU发送ACK消息。
S1205、第二基站向终端发送去激活SCG命令或激活SCG命令。
示例性的,第一基站为MN,且第二基站为SN时,步骤S1205具体包括:SN向终端发送去激活SCG命令或激活SCG命令。可选的,第二基站为CU-DU架构时,具体的,SN DU向终端发送去激活SCG命令或激活SCG命令。
示例性的,第一基站为SN,且第二基站为MN时,步骤S1205具体包括:MN向终端发送去激活SCG命令或激活SCG命令。可选的,第二基站为CU-DU架构时,具体的,MN DU向终端发送去激活SCG命令或激活SCG命令。
可以理解的,关于去激活SCG命令或激活SCG命令的相关描述,以及去激活SCG命令或激活SCG命令的携带方式等可以参考步骤S905,在此不再赘述。
S1206、终端接收去激活SCG命令或激活SCG命令。
示例性的,终端接收MN或SN发送的去激活SCG命令或激活SCG命令。在MN为CU-DU分离架构时,具体的,终端接收MN DU发送的去激活SCG命令或激活SCG命令;在SN为CU-DU分离架构时,具体的,终端接收SN DU发送的去激活SCG命令或激活SCG命令。
S1207、终端根据去激活SCG命令或激活SCG命令,对SCG进行去激活操作或激活操作。
可以理解的,步骤S1207的具体实现方式可以参考步骤S907,在此不再赘述。
本申请实施例提供的通信方法,通过第一接入网节点确定去激活辅小区组SCG或激活SCG;第一接入网节点向第二基站发送第三指示信息,第三指示信息用于指示第二基站向终端发送去激活SCG命令或激活SCG命令;第二基站接收第三指示信息;第二基站向终端发送去激活SCG命令或激活SCG命令;终端接收去激活SCG命令或激活SCG命令;终端根据去激活SCG命令或激活SCG命令,对SCG进行去激活操作或激活操作。本实施例通过对SCG进行去激活操作,能够保留SCG的相关配置,并通过激活操作,能够快速恢复SCG的链路通信,因此与现有技术相比,无需进行SN的增加以及释放,在减小网络侧和终端的电量消耗的同时,减小了空口信令的开销,降低了时延,提升了通信效率。而且通过MN或SN在CU-DU架构下进行信令交互,实现SCG的去激活和激活操作,能够适应于不同的网络部署,使得SCG的去激活和激活操作处理的更加灵活。
可选的,如图13所示,上述方法在步骤S1201-S1207的基础上,还可以包括步骤S1208-S1210。
S1208、第一接入网节点向第二接入网节点发送第四指示信息。
该第四指示信息用于指示第二接入网节点去激活SCG或激活SCG,或者,该第四指示信息用于通知第二接入网节点,SN去激活SCG或激活SCG。
第二接入网节点与所述第一接入网节点同属于所述第一基站。例如,该第二接入网节点可以为MN DU或SN DU。
示例性的,第一基站为MN时,步骤S1208包括:MN CU向MN DU发送第四指示信息,通知MN DU,SN去激活SCG或激活SCG。
示例性的,第一基站为SN时,步骤S1208包括:SN CU向SN DU发送第四指示信息,指示SN DU去激活SCG或激活SCG。
可以理解的,第一基站为SN时,在SN CU确定挂起或恢复的承载为SN terminated Bearer的PDCP实体,且PDCP层划分在SN DU的情况下,SN CU可以向SN DU发送上述第四指示信息,指示SN DU去激活SCG或激活SCG。
可选的,上述步骤S1208可以在步骤S1202之前执行,也可以在步骤S1202之后执行,还可以和步骤S1202同时执行,本申请实施例对于步骤S1208和步骤S1202的先后执行顺序并不进行限定。
S1209、第二接入网节点接收第四指示信息。
示例性的,第一基站为MN时,步骤S1209包括:MN DU接收MN CU发送的第四指示信息。可选的,MN DU接收第四指示信息后,还包括MN DU挂起/恢复建立在SN的承载对应的X2/Xn接口的数据传输隧道。
示例性的,第一基站为SN时,步骤S1209包括:SN DU接收SN CU发送的第四指示信息。可选的,SN DU接收第四指示信息后,还包括SN DU对SCG进行去激活或激活操作。
可选的,在本申请的一个实施方式中,所述方法还包括S1210、第二接入网节点向第一接入网节点发送ACK消息。
该ACK消息用于指示第二接入网节点成功接收到了第一接入网节点发送的第四指示信息。
示例性的,第一基站为MN时,步骤S1210包括:MN DU向MN CU发送ACK消息。第一基站为SN时,步骤S1210包括:SN DU向SN CU发送ACK消息。
可以理解的,本实施例在第一基站为SN时,第一接入网节点确定去激活SCG或激活SCG时,会通知第二接入网节点,从而使得第一接入网节点确定挂起或恢复的承载为SCG RLC Bearer,且RLC层划分在第二接入网节点时,第二接入网节点可以对该承载执行去激活或激活操作;在第一基站为MN时,第一接入网节点确定去激活SCG或激活SCG时,会通知第二接入网节点,从而使得第二接入网节点挂起/恢复建立在SN的承载对应的X2/Xn接口的数据传输隧道。该方案使得SN能够保留SCG的相关配置,并通过激活操作,快速恢复SCG的链路通信,能够在减小网络侧和终端的电量消耗的同时,减小了空口信令的开销,降低了时延,提升了通信效率。
本申请实施例还提供一种通信方法,如图14所示,该方法可以包括步骤S1401-S1404。
S1401、第二接入网节点确定去激活SCG或激活SCG。
示例性的,该第二接入网节点属于第一基站,第一基站为终端在双连接通信时的MN或者SN,上述SCG为SN管理的一个或多个小区。该第二接入网节点为第一基站的DU。例如,该第二接入网节点可以为MN DU或SN DU。
可以理解的,步骤S1401中第二接入网节点确定去激活SCG或激活SCG的具体实现方式,可以参考步骤S901中第一接入网节点确定去激活SCG或激活SCG的实现 方式,在此不再赘述。
S1402、第二接入网节点向终端发送去激活SCG命令或激活SCG命令。
示例性的,MN DU或SN DU向终端发送去激活SCG命令或激活SCG命令。
可以理解的,关于去激活SCG命令或激活SCG命令的相关描述,以及去激活SCG命令或激活SCG命令的携带方式等可以参考步骤S905,在此不再赘述。
S1403、终端接收去激活SCG命令或激活SCG命令。
示例性的,终端接收MN DU或SN DU发送的去激活SCG命令或激活SCG命令。
S1404、终端根据去激活SCG命令或激活SCG命令,对SCG进行去激活操作或激活操作。
可以理解的,步骤S1404的具体实现方式可以参考步骤S907,在此不再赘述。
本申请实施例提供的通信方法,通过第二接入网节点确定去激活SCG或激活SCG;第二接入网节点向终端发送去激活SCG命令或激活SCG命令;终端接收去激活SCG命令或激活SCG命令;终端根据去激活SCG命令或激活SCG命令,对SCG进行去激活操作或激活操作。本实施例通过对SCG进行去激活操作,能够保留SCG的相关配置,并通过激活操作,能够快速恢复SCG的链路通信,因此与现有技术相比,无需进行SN的增加以及释放,在减小网络侧和终端的电量消耗的同时,减小了空口信令的开销,降低了时延,提升了通信效率。而且通过MN或SN在CU-DU架构下进行信令交互,实现SCG的去激活和激活操作,能够适应于不同的网络部署,使得SCG的去激活和激活操作处理的更加灵活。
可选的,如图15所示,在上述步骤S1401-S1404的基础上,上述方法还可以包括S1405-S1407。
S1405、第二接入网节点向第一接入网节点发送第五指示信息。
该第五指示信息用于指示第一接入网节点去激活SCG或激活SCG,或者,该第五指示信息用于通知第二接入网节点,SN去激活SCG或激活SCG。
第一接入网节点也属于第一基站。例如,该第一接入网节点可以为MN CU或SN CU。
示例性的,第一基站为MN时,步骤S1405包括:MN DU向MN CU发送第五指示信息,通知MN CU,SN去激活SCG或激活SCG。
可选的,第一接入网节点包括可以第一装置和第二装置,第一装置用于执行第一接入网节点的控制面功能,第二装置用于执行第一接入网节点的用户面功能。例如,该第一装置为MN CU-CP,第二装置为MN CU-UP。上述步骤S1405包括:MN DU向MN CU-CP发送第五指示信息,通知MN CU-CP,SN去激活SCG或激活SCG;或者,MN DU向MN CU-CP发送第五指示信息,MN CU-CP通知MN CU-UP,SN去激活SCG或激活SCG。
示例性的,第一基站为SN时,步骤S1405包括:SN DU向SN CU发送第五指示信息,指示SN CU去激活SCG或激活SCG。
可选的,第一接入网节点包括可以第一装置和第二装置,第一装置用于执行第一接入网节点的控制面功能,第二装置用于执行第一接入网节点的用户面功能。例如,该第一装置为SN CU-CP,第二装置为SN CU-UP。上述步骤S1405包括:SN DU向 SN CU-CP发送第五指示信息,指示SN CU-CP去激活SCG或激活SCG;或者,SN DU向SN CU-CP发送第五指示信息,SN CU-CP通知SN CU-UP去激活SCG或激活SCG。
可以理解的,本实施例在第一基站为SN时,在第二接入网节点确定挂起或恢复的承载为为SCG RLC Bearer,且RLC层划分在第一接入网节点的情况下,第二接入网节点可以向第一接入网节点发送上述第五指示信息,指示第一接入网节点去激活SCG或激活SCG。在第一基站为MN时,第二接入网节点确定去激活SCG或激活SCG时,会通知第一接入网节点,从而使得第一接入网节点挂起/恢复建立在SN的承载对应的X2/Xn接口的数据传输隧道。
可选的,上述步骤S1405可以在步骤S1402之前执行,也可以在步骤S1402之后执行,还可以和步骤S1402同时执行,本申请实施例对于步骤S1405和步骤S1402的先后执行顺序并不进行限定。
S1406、第一接入网节点接收第五指示信息。
示例性的,第一基站为MN时,步骤S1406包括:MN CU接收MN DU发送的第五指示信息。在第一接入网节点(MN CU)包括第一装置为MN CU-CP和第二装置为MN CU-UP的情况下,步骤S1406包括:MN CU-CP接收MN DU发送的第五指示信息;或者,MN CU-CP接收MN DU发送的第五指示信息,MN CU-UP接收MN CU-CP发送的通知消息,去激活SCG或激活SCG。可选的,MN CU接收第五指示信息后,还包括MN CU挂起/恢复建立在SN的承载对应的X2/Xn接口的数据传输隧道。具体的,MN CU-CP和/或MN CU-UP挂起/恢复建立在SN的承载对应的X2/Xn接口的数据传输隧道。
示例性的,第一基站为SN时,步骤S1406包括:SN CU接收SN DU发送的第五指示信息。在第一接入网节点(SN CU)包括第一装置为SN CU-CP和第二装置为SN CU-UP的情况下,步骤S1406包括:SN CU-CP接收SN DU发送的第五指示信息;或者,SN CU-CP接收SN DU发送的第五指示信息,SN CU-UP接收SN CU-CP发送的通知消息,去激活SCG或激活SCG。可选的,SN CU接收第五指示信息后,还包括SN CU对SCG进行去激活或激活操作。具体的,SN CU-CP和/或SN CU-UP对SCG进行去激活或激活操作。
可选的,在本申请的一个实施方式中,所述方法还包括S1407、第一接入网节点向第二接入网节点发送ACK消息。
该ACK消息用于指示第一接入网节点成功接收到了第二接入网节点发送的第五指示信息。
示例性的,第一基站为MN时,步骤S1407包括:MN CU向MN DU发送ACK消息。可选的,在第一接入网节点(MN CU)包括第一装置为MN CU-CP和第二装置为MN CU-UP的情况下,步骤S1407包括:MN CU-CP向MN DU发送ACK消息;或者,MN CU-UP向MN CU-CP发送ACK消息,MN CU-CP向MN DU发送ACK消息。
示例性的,第一基站为SN时,步骤S1407包括:SN CU向SN DU发送ACK消息。可选的,在第一接入网节点(SN CU)包括第一装置为SN CU-CP和第二装置为SN CU-UP的情况下,步骤S1407包括:SN CU-CP向SN DU发送ACK消息;或者, SN CU-UP向SN CU-CP发送ACK消息,SN CU-CP向SN DU发送ACK消息。
可以理解的,本实施例在第一基站为SN时,第二接入网节点确定去激活SCG或激活SCG时,会通知第一接入网节点,从而使得第二接入网节点确定挂起或恢复的承载为SN terminated Bearer的PDCP实体,且PDCP层划分在第一接入网节点时,第一接入网节点可以对该承载执行去激活或激活操作,从而使得SN能够保留SCG的相关配置,并通过激活操作,快速恢复SCG的链路通信,能够在减小网络侧和终端的电量消耗的同时,减小了空口信令的开销,降低了时延,提升了通信效率。
可选的,在第一基站为MN且第二基站为SN的情况下,上述第一接入网节点为MN CU,第二接入网节点为MN DU,如图16所示,上述方法还可以包括S1408-S1410。
S1408、第一接入网节点向第二基站发送第六指示信息,第六指示信息用于指示第二基站去激活SCG或激活SCG。
可以理解的,步骤S1408中第一接入网节点向第二基站发送第六指示信息的具体实现方式,可以参考步骤S908中第一接入网节点向第二基站发送第二指示信息的实现方式,在此不再赘述。
可选的,第一基站为MN且第二基站为SN时,在第一接入网节点(MN CU)包括第一装置为MN CU-CP和第二装置为MN CU-UP的情况下,步骤S1408包括:第一装置MN CU-CP向第二基站发送第六指示信息。可选的,该第二基站SN可以为CU-DU架构,该SN CU可以包括SN CU-CP和SN CU-UP。
可选的,第一基站为SN且第二基站为MN时,在第一接入网节点(SN CU)包括第一装置为SN CU-CP和第二装置为SN CU-UP的情况下,步骤S1408包括:第一装置SN CU-CP向第二基站发送第六指示信息。可选的,该第二基站MN可以为CU-DU架构,该MN CU可以包括MN CU-CP和MN CU-UP。
S1409、第二基站接收第六指示信息。
可以理解的,步骤S1409中第二基站接收第六指示信的具体实现方式,可以参考步骤S909中第二基站接收第二指示信息的实现方式,在此不再赘述。
第二基站接收第六指示信息后,第二基站可以根据第六指示信息对SCG进行去激活操作或激活操作。示例性的,第二基站为CU-DU架构时,第二基站对SCG进行去激活操作或激活操作,包括:SN CU去激活SCG或激活SCG,和/或,SN DU去激活SCG或激活SCG。
示例性的,在MN确定挂起的承载为SN terminated Bearer的PDCP实体,且PDCP层被划分到SN CU时,SN CU挂起或恢复该承载;在MN确定挂起的承载为SCG RLC Bearer,且RLC层被划分到SN DU时,SN DU挂起或恢复该承载。
例如,MN确定挂起的承载为SN terminated MCG RLC Bearer,且SN的CU-DU架构如图2所示,PDCP层部署在CU,MN CU向SN CU发送第二指示信息,SN CU接收MN CU发送的第二指示信息后,SN CU挂起或恢复SN terminated Bearer的PDCP实体。再例如,MN确定挂起的承载为MN terminated SCG RLC Bearer,且SN的CU-DU架构如图2所示,RLC层部署在DU,MN CU向SN CU发送第二指示信息,SN CU通知SN DU去激活SCG或激活SCG,SN DU挂起或恢复SCG RLC Bearer。
可选的,第一基站为MN且第二基站为SN时,在第一接入网节点(MN CU)包 括第一装置为MN CU-CP和第二装置为MN CU-UP的情况下,步骤S1409包括:SN接收第一装置MN CU-CP发送的第六指示信息。可选的,该第二基站SN可以为CU-DU架构,该SN CU可以包括SN CU-CP和SN CU-UP。
可选的,第一基站为SN且第二基站为MN时,在第一接入网节点(SN CU)包括第一装置为SN CU-CP和第二装置为SN CU-UP的情况下,步骤S1409包括:MN接收第一装置SN CU-CP发送的第六指示信息。可选的,该第二基站MN可以为CU-DU架构,该MN CU可以包括MN CU-CP和MN CU-UP。
可选的,在本申请的一个实施方式中,所述方法还包括S1410、第二基站向第一接入网节点发送ACK消息。
该ACK消息用于指示第二基站成功接收到了第一接入网节点发送的第六指示信息。
可选的,第一基站为MN且第二基站为SN时,在第一接入网节点(MN CU)包括第一装置为MN CU-CP和第二装置为MN CU-UP的情况下,步骤S1410包括:SN向MN CU-CP发送ACK消息。可选的,该第二基站SN可以为CU-DU架构,该SN CU可以包括SN CU-CP和SN CU-UP。
可选的,第一基站为SN且第二基站为MN时,在第一接入网节点(SN CU)包括第一装置为SN CU-CP和第二装置为SN CU-UP的情况下,步骤S1410包括:MN向SN CU-CP发送ACK消息。可选的,该第二基站MN可以为CU-DU架构,该MN CU可以包括MN CU-CP和MN CU-UP。
可以理解的,本实施例在MN确定去激活SCG或激活SCG时,会通知SN,并指示SN去激活SCG或激活SCG,从而SN能够保留SCG的相关配置,并通过激活操作,能够快速恢复SCG的链路通信,因此与现有技术相比,无需进行SN的增加以及释放,在减小网络侧和终端的电量消耗的同时,减小了空口信令的开销,降低了时延,提升了通信效率。
可选的,在第一基站为SN且第二基站为MN的情况下,上述第一接入网节点为SN CU,第二接入网节点为SN DU,如图17所示,上述方法还可以包括S1411-S1413。
S1411、第一接入网节点向第二基站发送第二通知消息,第二通知消息用于通知第二基站,第一基站去激活SCG或激活SCG。
可以理解的,步骤S1411中第一接入网节点向第二基站发送第二通知消息的具体实现方式,可以参考步骤S911中第一接入网节点向第二基站发送第一通知消息,在此不再赘述。
S1412、第二基站接收第二通知消息。
可以理解的,步骤S1412中第二基站接收第二通知消息的具体实现方式,可以参考步骤S912中第二基站接收第一接入网节点发送的第一通知消息,在此不再赘述。
可选的,在本申请的一个实施方式中,所述方法还包括S1413、第二基站向第一接入网节点发送ACK消息。
该ACK消息用于指示第二基站成功接收到了第一接入网节点发送的第二通知消息。
可以理解的,本实施例在SN确定去激活SCG或激活SCG时,会通知MN,从而 MN可以挂起/恢复建立在SN的承载对应的X2/Xn接口的数据传输隧道,该方案能够保留SCG的相关配置,并通过激活操作,快速恢复SCG的链路通信,因此与现有技术相比,无需进行SN的增加以及释放,在减小网络侧和终端的电量消耗的同时,减小了空口信令的开销,降低了时延,提升了通信效率。
本申请还提供一实施例,如图18所示,该通信方法包括步骤S1801-S1810。
S1801、第二接入网节点确定去激活辅小区组SCG或激活SCG。
示例性的,该第二接入网节点属于第一基站,第一基站为终端在双连接通信时的MN或者SN,上述SCG为SN管理的一个或多个小区。该第二接入网节点为第一基站的分布式单元DU。例如,该第二接入网节点可以为MN DU或SN DU。
可以理解的,步骤S1801中第二接入网节点确定去激活SCG或激活SCG的具体实现方式,可以参考步骤S901中第一接入网节点确定去激活SCG或激活SCG的实现方式,在此不再赘述。
S1802、第二接入网节点向第一接入网节点发送第三通知消息,通知第一接入网节点向第二基站发送第七指示信息。
该第七指示信息用于指示第二基站向终端发送去激活SCG命令或激活SCG命令。该第一接入网节点与第二接入网节点同属于第一基站。例如,该第一接入网节点可以为MN CU或SN CU。
上述第二基站为终端在双连接通信时的MN或者SN,且当第二基站为MN时,第一基站为SN;或者,当第二基站为SN时,第一基站为MN。
示例性的,第一基站为MN时,步骤S1802包括:MN DU向MN CU发送第三通知消息;第一基站为SN时,步骤S1802包括:SN DU向SN CU发送第三通知消息。
S1803、第一接入网节点接收第二接入网节点发送的第三通知消息。
示例性的,第一基站为MN时,步骤S1803包括:MN CU接收MN DU发送的第三通知消息;可选的,MN CU还可以挂起/恢复建立在SN的承载对应的X2/Xn接口的数据传输隧道。
示例性的,第一基站为SN时,步骤S1803包括:SN CU接收SN DU发送的第三通知消息。可选的,SN CU还可以去激活SCG或激活SCG。
示例性的,第一基站为SN时,在第二接入网节点确定挂起或恢复的承载为SN terminated Bearer的PDCP实体,且PDCP层划分在第一接入网节点的情况下,上述第一接入网节点接收第二接入网节点发送的第三通知消息后,还可以包括第一接入网节点挂起或恢复该承载。
可选的,在本申请的一个实施方式中,所述方法还包括S1804、第一接入网节点向第二接入网节点发送ACK消息。
该ACK消息用于指示第一接入网节点成功接收到了第二接入网节点发送的第三通知消息。
S1805、第一接入网节点向第二基站发送第七指示信息。
该第七指示信息用于指示第二基站向终端发送去激活SCG命令或激活SCG命令。
可以理解的,步骤S1805中第一接入网节点向第二基站发送第七指示信息的具体实现方式,可以参考步骤S1202中第一接入网节点向第二基站发送第三指示信息的实 现方式,在此不再赘述。
S1806、第二基站接收第七指示信息。
可以理解的,步骤S1806中第二基站接收第七指示信息的具体实现方式,可以参考步骤S1203中第二基站接收第三指示信息的实现方式,在此不再赘述。
可选的,在本申请的一个实施方式中,所述方法还包括S1807、第二基站向第一接入网节点发送ACK消息。
该ACK消息用于指示第二基站成功接收到了第一接入网节点发送的第七指示信息。
可以理解的,步骤S1807中第二基站向第一接入网节点发送ACK消息的具体实现方式,可以参考步骤S1204中第二基站向第一接入网节点发送ACK消息的实现方式,在此不再赘述。
S1808、第二基站向终端发送去激活SCG命令或激活SCG命令。
S1809、终端接收去激活SCG命令或激活SCG命令。
S1810、终端根据去激活SCG命令或激活SCG命令,对SCG进行去激活操作或激活操作。
可以理解的,上述步骤S1808-S1810的具体实现方式,可以参考步骤S1205-S1207的实现方式,在此不再赘述。
本申请实施例提供的通信方法,通过第二接入网节点确定去激活SCG或激活SCG;第二接入网节点向第一接入网节点发送第三通知消息,通知第一接入网节点向第二基站发送第七指示信息;第一接入网节点接收第二接入网节点发送的第三通知消息;第一接入网节点向第二基站发送第七指示信息;第二基站接收第七指示信息;第二基站向终端发送去激活SCG命令或激活SCG命令;终端接收去激活SCG命令或激活SCG命令;终端根据去激活SCG命令或激活SCG命令,对SCG进行去激活操作或激活操作。本实施例通过对SCG进行去激活操作,能够保留SCG的相关配置,并通过激活操作,能够快速恢复SCG的链路通信,因此与现有技术相比,无需进行SN的增加以及释放,在减小网络侧和终端的电量消耗的同时,减小了空口信令的开销,降低了时延,提升了通信效率。而且通过MN或SN在CU-DU架构下进行信令交互,实现SCG的去激活和激活操作,能够适应于不同的网络部署,使得SCG的去激活和激活操作处理的更加灵活。
示例性的,在第一接入网节点包括第一装置和第二装置的情况下,本申请实施例还提供一种通信方法,如图19所示,该方法包括步骤S1901-S1907。该第一装置用于执行第一接入网节点的控制面功能,第二装置用于执行第一接入网节点的用户面功能,该第一接入网节点属于第一基站,第一基站为终端在双连接通信时的MN或者SN。
S1901、第一装置确定去激活SCG或激活SCG。
示例性的,该第一装置用于执行第一接入网节点的控制面功能,第一接入网节点为MN CU或SN CU,该第一装置为MN CU-CP或SN CU-CP。
可以理解的,步骤S1901中第一装置确定去激活SCG或激活SCG的具体实现方式,可以参考步骤S901中第一接入网节点确定去激活SCG或激活SCG的实现方式,在此不再赘述。
S1902、第一装置向第二接入网节点发送第八指示信息。
示例性的,该第二接入网节点也属于第一基站。例如,该第二接入网节点可以为MN DU或SN DU。
示例性的,当第一基站为MN时,步骤S1902具体包括:MN CU-CP向MN DU发送第八指示信息,指示MN DU向终端发送去激活SCG命令或激活SCG命令。
示例性的,当第一基站为SN时,步骤S1902具体包括:SN CU-CP向SN DU发送第八指示信息,指示SN DU向终端发送去激活SCG命令或激活SCG命令。
S1903、第二接入网节点接收第八指示信息。
示例性的,第一基站为MN时,步骤S1903具体包括:MN DU接收MN CU-CP发送的第八指示信息。
示例性的,第一基站为SN时,步骤S1903具体包括:SN DU接收SN CU-CP发送的第八指示信息。
可选的,当第一基站为SN时,第二接入网节点接收第八指示信息后,还可以去激活SCG或激活SCG。示例性的,第二接入网节点接收第八指示信息后,可以执行以下操作中的至少一种:中止SCG RLC Bearer上的数据传输;中止SN terminated Bearer上的数据传输;中止SCG RLC实体上的数据传输;中止SN PDCP实体上的数据传输。例如,当第二接入网节点为SN DU时,以图2所示的CU-DU架构为例,RLC层部署在DU,若步骤S1901中SN CU-CP确定挂起SCG RLC Bearer,SN DU可以中止SCG RLC Bearer上的数据传输。
可选的,当第一基站为MN时,第二接入网节点接收第八指示信息后,还可以挂起/恢复建立在SN的承载对应的X2/Xn接口的数据传输隧道。例如,当第二接入网节点为MN DU时,以图2所示的CU-DU架构为例,RLC层部署在DU,若步骤S1901中MN CU-CP确定挂起SN terminated MCG RLC Bearer,MN DU可以挂起SN terminated MCG RLC Bearer对应的X2/Xn接口的数据传输隧道。
可选的,在本申请的一个实施方式中,所述方法还包括S1904、第二接入网节点向第一装置发送ACK消息。
该ACK消息用于指示第二接入网节点成功接收到了第一装置发送的第八指示信息。
示例性的,当第一基站为MN时,步骤S1904具体包括:MN DU向MN CU-CP发送ACK消息。
示例性的,当第一基站为SN时,步骤S1904具体包括:SN DU向SN CU-CP发送ACK消息。
S1905、第二接入网节点向终端发送去激活SCG命令或激活SCG命令。
S1906、终端接收去激活SCG命令或激活SCG命令。
S1907、终端根据去激活SCG命令或激活SCG命令,对SCG进行去激活操作或激活操作。
可以理解的,上述步骤S1905-S1907的具体实现方式可以参考步骤S905-S907,在此不再赘述。
本申请实施例提供的通信方法,通过第一装置确定去激活SCG或激活SCG;第一 装置向第二接入网节点发送第八指示信息;第二接入网节点接收第八指示信息;第二接入网节点向第一装置发送ACK消息;第二接入网节点向终端发送去激活SCG命令或激活SCG命令;终端接收去激活SCG命令或激活SCG命令;终端根据去激活SCG命令或激活SCG命令,对SCG进行去激活操作或激活操作。本实施例通过对SCG进行去激活操作,能够保留SCG的相关配置,并通过激活操作,能够快速恢复SCG的链路通信,因此与现有技术相比,无需进行SN的增加以及释放,在减小网络侧和终端的电量消耗的同时,减小了空口信令的开销,降低了时延,提升了通信效率。而且通过MN或SN的CU包括CP和UP的架构下进行信令交互,实现SCG的去激活和激活操作,能够适应于不同的网络部署,使得SCG的去激活和激活操作处理的更加灵活。
可选的,在第一基站为MN且第二基站为SN的情况下,上述第一接入网节点为MN CU,第二接入网节点为MN DU,第一装置为MN CU-CP,第二装置为MN CU-UP,如图20所示,上述方法在步骤S1901-S1907的基础上还可以包括步骤S1908-S1910。
S1908、第一装置向第二基站发送第九指示信息,第九指示信息用于指示第二基站去激活SCG或激活SCG。
示例性的,MN确定挂起的承载为SCG RLC Bearer和/或SN terminated Bearer的PDCP实体,MN CU-CP向SN发送第九指示信息,指示SN去激活SCG或激活SCG。
可选的,在第二基站为CU-DU架构时,上述步骤S1908包括:MN CU-CP向SN CU发送第九指示信息;或者,上述步骤S1908还可以包括:MN CU-CP向SN CU发送第九指示信息,SN CU通知SN DU去激活SCG或激活SCG。示例性的,在MN确定挂起的承载为SN terminated Bearer的PDCP实体,且PDCP层被划分到SN CU时,MN CU向SN CU发送第九指示信息;在MN确定挂起的承载为SCG RLC Bearer,且RLC层被划分到SN DU时,MN CU向SN CU发送第九指示信息,SN CU通知SN DU去激活SCG或激活SCG。
可选的,在第二基站的CU包括CU-CP和CU-UP的情况下,上述步骤S1908包括:MN CU-CP向SN CU-CP发送第九指示信息;或者,MN CU-CP向SN CU-CP发送第九指示信息,SN CU-CP通知SN CU-UP和/或SN DU去激活SCG或激活SCG。
可选的,上述步骤S1908可以在步骤S1902之前执行,也可以在步骤S1902之后执行,还可以和步骤S1902同时执行,本申请实施例对于步骤S1908和步骤S1902的先后执行顺序并不进行限定。
S1909、第二基站接收第九指示信息。
示例性的,SN接收MN CU发送的第九指示信息。
示例性的,第二基站为CU-DU架构时,上述步骤S1909包括:SN CU接收MN CU-CP发送的第九指示信息;或者,上述步骤S1909包括:SN CU接收MN CU-CP发送的第九指示信息,SN DU接收SN CU发送的通知消息,通知SN DU去激活SCG或激活SCG。
可选的,在第二基站的CU包括CU-CP和CU-UP的情况下,上述步骤S1909包括:SN CU-CP接收MN CU-CP发送的第九指示信息;或者,上述步骤S1909包括:SN CU-CP接收MN CU-CP发送的第九指示信息,SN CU-UP和/或SN DU接收SN CU-CP发送的通知消息,通知SN CU-UP和/或SN DU去激活SCG或激活SCG。
可选的,上述步骤S1909之后,第二基站可以向第一装置发送ACK消息,用于指示第二基站成功接收到了第一装置发送的第九指示信息。
S1910、第二基站根据第九指示信息,对SCG进行去激活操作或激活操作。
示例性的,第二基站为CU-DU架构时,上述步骤S1910包括:SN CU去激活SCG或激活SCG;或者,SN DU去激活SCG或激活SCG。
示例性的,在第二基站的CU包括CU-CP和CU-UP的情况下,上述步骤S1910包括:SN CU-CP和/或SN CU-UP去激活SCG或激活SCG;和/或,SN DU去激活SCG或激活SCG。
可以理解的,本实施例在MN确定去激活SCG或激活SCG时,会通知SN,并指示SN去激活SCG或激活SCG,从而SN能够保留SCG的相关配置,并通过激活操作,能够快速恢复SCG的链路通信,因此与现有技术相比,无需进行SN的增加以及释放,在减小网络侧和终端的电量消耗的同时,减小了空口信令的开销,降低了时延,提升了通信效率。
可选的,在第一基站为SN且第二基站为MN的情况下,上述第一接入网节点为SN CU,第二接入网节点为SN DU,第一装置为SN CU-CP,第二装置为SN CU-UP,如图21所示,上述方法在步骤S1901-S1907的基础上还可以包括步骤S1911-S1912。
S1911、第一装置向第二基站发送第四通知消息,第四通知消息用于通知第二基站,第一基站去激活SCG或激活SCG。
示例性的,在第二基站为CU-DU架构时,上述步骤S1911包括:SN CU-CP向MN CU发送第四通知消息;或者,上述步骤S1911还可以包括:SN CU-CP向MN CU发送第四通知消息,MN CU通知MN DU,SN去激活SCG或激活SCG。
可选的,在第二基站的CU包括CU-CP和CU-UP的情况下,上述步骤S1911包括:SN CU-CP向MN CU-CP发送第四通知消息;或者,上述步骤S1911还可以包括:SN CU-CP向MN CU-CP发送第四通知消息,MN CU-CP通知MN CU-UP和/或MN DU,SN去激活SCG或激活SCG。
可选的,上述步骤S1911可以在步骤S1902之前执行,也可以在步骤S1902之后执行,还可以和步骤S1902同时执行,本申请实施例对于步骤S1911和步骤S1902的先后执行顺序并不进行限定。
S1912、第二基站接收第四通知消息。
示例性的,MN接收SN CU-CP发送的第四通知消息。
示例性的,第二基站为CU-DU架构时,上述步骤S1912包括:MN CU接收SN CU-CP发送的第四通知消息;或者,上述步骤S1912包括:MN CU接收SN CU-CP发送的第四通知消息,MN DU接收MN CU发送的通知消息,通知MN DU,SN去激活SCG或激活SCG。
可选的,在第二基站的CU包括CU-CP和CU-UP的情况下,上述步骤S1912包括:MN CU-CP接收SN CU-CP发送的第四通知消息;或者,上述步骤S1912包括:MN CU-CP接收SN CU-CP发送的第四通知消息,MN CU-UP和/或MN DU接收MN CU-CP发送的通知消息,通知MN CU-UP和/或MN DU,SN去激活SCG或激活SCG。
可选的,上述步骤S1912之后,第二基站可以向第一装置发送ACK消息,用于 指示第二基站成功接收到了第一装置发送的第四通知消息。
可以理解的,本实施例在SN确定去激活SCG或激活SCG时,会通知MN,从而MN可以挂起/恢复建立在SN的承载对应的X2/Xn接口的数据传输隧道,该方案能够保留SCG的相关配置,并通过激活操作,快速恢复SCG的链路通信,因此与现有技术相比,无需进行SN的增加以及释放,在减小网络侧和终端的电量消耗的同时,减小了空口信令的开销,降低了时延,提升了通信效率。
示例性的,在第一接入网节点包括第一装置和第二装置的情况下,本申请实施例还提供一种通信方法,如图22所示,该方法包括步骤S2201-S2210。该第一装置用于执行第一接入网节点的控制面功能,第二装置用于执行第一接入网节点的用户面功能,该第一接入网节点属于第一基站,第一基站为终端在双连接通信时的MN或者SN。
S2201、第二装置确定去激活SCG或激活SCG。
示例性的,该第二装置用于执行第一接入网节点的用户面功能,第一接入网节点为MN CU或SN CU,该第二装置为MN CU-UP或SN CU-UP。
可以理解的,步骤S2201中第二装置确定去激活SCG或激活SCG的具体实现方式,可以参考步骤S901中第一接入网节点确定去激活SCG或激活SCG的实现方式,在此不再赘述。
S2202、第二装置向第一装置发送第五通知消息,通知第一装置向第二接入网节点发送第十指示信息。
该第十指示信息用于指示第二接入网节点向终端发送去激活SCG命令或激活SCG命令。
示例性的,该第一装置用于执行第一接入网节点的控制面功能,该第一装置为MN CU-CP或SN CU-CP。
示例性的,当第一基站为MN时,步骤S2202具体包括:MN CU-UP向MN CU-CP发送第五通知消息,通知MN CU-CP向MN DU发送第十指示信息。
示例性的,当第一基站为SN时,步骤S2202具体包括:SN CU-UP向SN CU-CP发送第第五通知消息,通知SN CU-CP向SN DU发送第十指示信息。
S2203、第一装置接收第五通知消息。
示例性的,第一基站为MN时,步骤S2203具体包括:MN CU-CP接收MN CU-UP发送的第五通知消息。
示例性的,第一基站为SN时,步骤S2203具体包括:SN CU-CP接收SN CU-UP发送的第五通知消息。
可选的,在本申请的一个实施方式中,所述方法还包括S2204、第一装置向第二装置发送ACK消息。
该ACK消息用于指示第一装置成功接收到了第二装置发送的第五通知消息。
示例性的,当第一基站为MN时,步骤S2204具体包括:MN CU-CP向MN CU-UP发送ACK消息。
示例性的,当第一基站为SN时,步骤S2204具体包括:SN CU-CP向SN CU-UP发送ACK消息。
S2205、第一装置向第二接入网节点发送第十指示信息。
示例性的,当第一基站为MN时,步骤S2205具体包括:MN CU-CP向MN DU发送第十指示信息。
示例性的,当第一基站为SN时,步骤S2205具体包括:SN CU-CP向SN DU发送第十指示信息。
S2206、第二接入网节点接收第十指示信息。
示例性的,当第一基站为MN时,步骤S2206具体包括:MN DU接收MN CU-CP发送的第十指示信息。可选的,MN DU还可以挂起/恢复建立在SN的承载对应的X2/Xn接口的数据传输隧道。
示例性的,当第一基站为SN时,步骤S2206具体包括:SN DU接收SN CU-CP发送的第十指示信息。可选的,SN DU还可以对SCG执行去激活或激活操作。
可选的,在本申请的一个实施方式中,所述方法还包括S2207、第二接入网节点向第一装置发送ACK消息。
示例性的,当第一基站为MN时,步骤S2207具体包括:MN DU向MN CU-CP发送ACK消息。
示例性的,当第一基站为SN时,步骤S2207具体包括:SN DU向SN CU-CP发送ACK消息。
S2208、第二接入网节点向终端发送去激活SCG命令或激活SCG命令。
S2209、终端接收去激活SCG命令或激活SCG命令。
S2210、终端根据去激活SCG命令或激活SCG命令,对SCG进行去激活操作或激活操作。
可以理解的,上述步骤S2208-S2210的具体实现方式可以参考步骤S905-S907,在此不再赘述。
可选的,上述通信方法在上述步骤S2201-S2210的基础上还可以包括步骤S1908-S1910或者步骤S1911-S1922,具体可以参考前一实施例的相关描述,在此不再赘述。
本申请实施例提供的通信方法,通过第二装置确定去激活SCG或激活SCG;第二装置向第一装置发送第五通知消息,通知第一装置向第二接入网节点发送第十指示信息;第一装置接收第五通知消息;第一装置向第二接入网节点发送第十指示信息;第二接入网节点接收第十指示信息;第二接入网节点向终端发送去激活SCG命令或激活SCG命令;终端接收去激活SCG命令或激活SCG命令;终端根据去激活SCG命令或激活SCG命令,对SCG进行去激活操作或激活操作。本实施例通过对SCG进行去激活操作,能够保留SCG的相关配置,并通过激活操作,能够快速恢复SCG的链路通信,因此与现有技术相比,无需进行SN的增加以及释放,在减小网络侧和终端的电量消耗的同时,减小了空口信令的开销,降低了时延,提升了通信效率。而且通过MN或SN的CU包括CP和UP的架构下进行信令交互,实现SCG的去激活和激活操作,能够适应于不同的网络部署,使得SCG的去激活和激活操作处理的更加灵活。
示例性的,在第一接入网节点包括第一装置和第二装置的情况下,本申请实施例还提供一种通信方法,如图23所示,该方法包括步骤S2301-S2307。该第一装置用于执行第一接入网节点的控制面功能,第二装置用于执行第一接入网节点的用户面功能, 该第一接入网节点属于第一基站,第一基站为终端在双连接通信时的MN或者SN。
S2301、第一装置确定去激活SCG或激活SCG。
示例性的,该第一装置用于执行第一接入网节点的控制面功能,第一接入网节点为MN CU或SN CU,该第一装置为MN CU-CP或SN CU-CP。
可以理解的,步骤S2301中第一装置确定去激活SCG或激活SCG的具体实现方式,可以参考步骤S901中第一接入网节点确定去激活SCG或激活SCG的实现方式,在此不再赘述。
S2302、第一装置向第二基站发送第十一指示信息,第十一指示信息用于指示第二基站向终端发送去激活SCG命令或激活SCG命令。
该第二基站为终端在双连接通信时的MN或者SN,且当第二基站为MN时,第一基站为SN;或者,当第二基站为SN时,第一基站为MN。
示例性的,第一基站为MN且第二基站为SN时,在第二基站为CU-DU架构时,上述步骤S2302包括:MN CU-CP向SN CU发送第十一指示信息,SN CU通知SN DU向终端发送去激活SCG命令或激活SCG命令。
可选的,在第二基站的CU包括CU-CP和CU-UP的情况下,上述步骤S2302包括:MN CU-CP向SN CU-CP发送第十一指示信息,SN CU-CP通知SN DU向终端发送去激活SCG命令或激活SCG命令。
示例性的,第一基站为SN且第二基站为MN时,在第二基站为CU-DU架构时,上述步骤S2302包括:SN CU-CP向MN CU发送第十一指示信息,MN CU通知MN DU向终端发送去激活SCG命令或激活SCG命令。
可选的,在第二基站的CU包括CU-CP和CU-UP的情况下,上述步骤S2302包括:SN CU-CP向MN CU-CP发送第十一指示信息,MN CU-CP通知MN DU向终端发送去激活SCG命令或激活SCG命令。
S2303、第二基站接收第十一指示信息。
示例性的,第一基站为MN且第二基站为SN时,在第二基站为CU-DU架构时,上述步骤S2303包括:SN CU接收MN CU-CP发送的第十一指示信息,SN DU接收SN CU发送的通知消息。可选的,SN CU和/或SN DU还可以对SCG进行去激活或激活操作。
可选的,在第二基站的CU包括CU-CP和CU-UP的情况下,上述步骤S2303包括:SN CU-CP接收MN CU-CP发送的第十一指示信息,SN DU接收SN CU-CP发送的通知消息。可选的,SN CU-CP和/或SN DU还可以对SCG进行去激活或激活操作。
示例性的,第一基站为SN且第二基站为MN时,在第二基站为CU-DU架构时,上述步骤S2303包括:MN CU接收SN CU-CP发送的第十一指示信息,MN DU接收MN CU发送的通知消息。可选的,MN CU和/或MN DU还可以挂起/恢复建立在SN的承载对应的X2/Xn接口的数据传输隧道。
可选的,在第二基站的CU包括CU-CP和CU-UP的情况下,上述步骤S2303包括:MN CU-CP接收SN CU-CP发送的第十一指示信息,MN DU接收MN CU-CP发送的通知消息。可选的,MN CU-CP和/或MN DU还可以挂起/恢复建立在SN的承载对应的X2/Xn接口的数据传输隧道。
可选的,在本申请的一个实施方式中,所述方法还包括S2304、第二基站向第一装置发送ACK消息。
示例性的,第一基站为MN且第二基站为SN时,在第二基站为CU-DU架构时,上述步骤S2304包括:SN CU向MN CU-CP发送ACK消息,SN DU向SN CU发送ACK消息。
可选的,在第二基站的CU包括CU-CP和CU-UP的情况下,上述步骤S2304包括:SN CU-CP向MN CU-CP发送ACK消息,SN DU向SN CU-CP发送ACK消息。
示例性的,第一基站为SN且第二基站为MN时,在第二基站为CU-DU架构时,上述步骤S2304包括:MN CU向SN CU-CP发送ACK消息,MN DU向MN CU发送ACK消息。
可选的,在第二基站的CU包括CU-CP和CU-UP的情况下,上述步骤S2304包括:MN CU-CP向SN CU-CP发送ACK消息,MN DU向MN CU-CP发送ACK消息。
S2305、第二基站向终端发送去激活SCG命令或激活SCG命令。
S2306、终端接收去激活SCG命令或激活SCG命令。
S2307、终端根据去激活SCG命令或激活SCG命令,对SCG进行去激活操作或激活操作。
可以理解的,上述步骤S2305-S2307的具体实现方式可以参考步骤S905-S907,在此不再赘述。
本申请实施例提供的通信方法,通过第一装置确定去激活SCG或激活SCG;第一装置向第二基站发送第十一指示信息,第十一指示信息用于指示第二基站向终端发送去激活SCG命令或激活SCG命令;第二基站接收第十一指示信息;第二基站向终端发送去激活SCG命令或激活SCG命令;终端接收去激活SCG命令或激活SCG命令;终端根据去激活SCG命令或激活SCG命令,对SCG进行去激活操作或激活操作。本实施例通过对SCG进行去激活操作,能够保留SCG的相关配置,并通过激活操作,能够快速恢复SCG的链路通信,因此与现有技术相比,无需进行SN的增加以及释放,在减小网络侧和终端的电量消耗的同时,减小了空口信令的开销,降低了时延,提升了通信效率。而且通过MN或SN的CU包括CP和UP的架构下进行信令交互,实现SCG的去激活和激活操作,能够适应于不同的网络部署,使得SCG的去激活和激活操作处理的更加灵活。
可选的,在第一基站为MN,且第二基站为SN的情况下,上述步骤S2301-S2307的第一装置为MN CU-CP,第二装置为MN CU-UP,如图24所示,上述通信方法在步骤S2301-S2307的基础上,还可以包括步骤S2308-S2313。
S2308、第一装置向第二装置发送第六通知消息,通知第二装置,第一基站去激活SCG或激活SCG。
示例性的,MN CU-CP向MN CU-UP发送第六通知消息,以告知MN CU-UP第一基站去激活SCG或激活SCG。
S2309、第二装置接收第六通知消息。
示例性的,MN CU-UP接收MN CU-CP发送的第六通知消息,获知第一基站(SN)去激活SCG或激活SCG。可选的,MN CU-UP可以挂起/恢复建立在SN的承载对应 的X2/Xn接口的数据传输隧道。
可选的,在本申请的一个实施方式中,所述方法还包括S2310、第二装置向第一装置发送ACK消息。
该ACK消息用于指示MN CU-UP成功接收到了MN CU-CP发送的第六通知消息。
S2311、第一装置向第二接入网节点发送第七通知消息,通知第二接入网节点,第一基站去激活SCG或激活SCG。
该第二接入网节点为MN DU。
示例性的,MN CU-CP向MN DU发送第七通知消息,以告知MN DU第一基站去激活SCG或激活SCG。
S2312、第二接入网节点接收第七通知消息。
示例性的,MN DU接收MN CU-CP发送的第七通知消息,获知第一基站(SN)去激活SCG或激活SCG。可选的,MN DU可以挂起/恢复建立在SN的承载对应的X2/Xn接口的数据传输隧道。
可选的,在本申请的一个实施方式中,所述方法还包括S2313、第二接入网节点向第一装置发送ACK消息。
该ACK消息用于指示MN DU成功接收到了MN CU-CP发送的第七通知消息。
可以理解的,本实施例在MN CU-CP确定去激活SCG或激活SCG时,会通知MN CU-CP和/或MN DU,以使得MN CU-CP和/或MN DU挂起/恢复建立在SN的承载对应的X2/Xn接口的数据传输隧道,因此与现有技术相比,无需进行SN的增加以及释放,在减小网络侧和终端的电量消耗的同时,减小了空口信令的开销,降低了时延,提升了通信效率。
可选的,在第一基站为SN,且第二基站为MN的情况下,上述步骤S2301-S2307的第一装置为SN CU-CP,第二装置为SN CU-UP,如图25所示,上述通信方法在步骤S2301-S2307的基础上,还可以包括步骤S2314-S2319。
S2314、第一装置向第二装置发送第十二指示信息,指示第二装置去激活SCG或激活SCG。
示例性的,SN CU-CP向SN CU-UP发送第十二指示信息,指示SN CU-UP去激活SCG或激活SCG。
S2315、第二装置接收第十二指示信息。
示例性的,SN CU-UP接收SN CU-CP发送的第十二指示信息,SN CU-UP去激活SCG或激活SCG。
可选的,在本申请的一个实施方式中,所述方法还包括S2316、第二装置向第一装置发送ACK消息。
该ACK消息用于指示SN CU-UP成功接收到了SN CU-CP发送的第十二指示信息。
S2317、第一装置向第二接入网节点发送第十三指示信息,指示第二接入网节点去激活SCG或激活SCG。
该第二接入网节点为SN DU。
示例性的,SN CU-CP向SN DU发送第十三指示信息,指示SN DU去激活SCG 或激活SCG。
S2318、第二接入网节点接收第十三指示信息。
示例性的,SN DU接收SN CU-CP发送的第十三指示信息,SN DU去激活SCG或激活SCG。
可选的,在本申请的一个实施方式中,所述方法还包括S2319、第二接入网节点向第一装置发送ACK消息。
该ACK消息用于指示SN DU成功接收到了SN CU-CP发送的第十三指示信息。
可以理解的,本实施例在SN CU-CP确定去激活SCG或激活SCG时,会通知SN CU-UP和/或SN DU,并指示SN CU-UP和/或SN DU去激活SCG或激活SCG,从而SN能够保留SCG的相关配置,并通过激活操作,能够快速恢复SCG的链路通信,因此与现有技术相比,无需进行SN的增加以及释放,在减小网络侧和终端的电量消耗的同时,减小了空口信令的开销,降低了时延,提升了通信效率。
示例性的,在第一接入网节点包括第一装置和第二装置的情况下,本申请实施例还提供一种通信方法,如图26所示,该方法包括步骤S2601-S2610。该第一装置用于执行第一接入网节点的控制面功能,第二装置用于执行第一接入网节点的用户面功能,该第一接入网节点属于第一基站,第一基站为终端在双连接通信时的MN或者SN。
S2601、第二装置确定去激活SCG或激活SCG。
示例性的,该第二装置用于执行第一接入网节点的用户面功能,第一接入网节点为MN CU或SN CU,该第二装置为MN CU-UP或SN CU-UP。
可以理解的,步骤S2601中第二装置确定去激活SCG或激活SCG的具体实现方式,可以参考步骤S901中第一接入网节点确定去激活SCG或激活SCG的实现方式,在此不再赘述。
S2602、第二装置向第一装置发送第十三指示信息,第十三指示信息指示第一装置通知第二基站向终端发送去激活SCG命令或激活SCG命令。
示例性的,当第一基站为MN时,步骤S2602具体包括:MN CU-UP向MN CU-CP发送第十三指示信息。
示例性的,当第一基站为SN时,步骤S2602具体包括:SN CU-UP向SN CU-CP发送第十三指示信息。
S2603、第一装置接收第十三指示信息。
示例性的,第一基站为MN时,步骤S2603具体包括:MN CU-CP接收MN CU-UP发送的第十三指示信息。可选的,MN CU-CP还可以挂起/恢复建立在SN的承载对应的X2/Xn接口的数据传输隧道。
示例性的,第一基站为SN时,步骤S2603具体包括:SN CU-CP接收SN CU-UP发送的第十三指示信息。可选的,SN CU-CP还可以对SCG进行去激活或激活操作。
可选的,在本申请的一个实施方式中,所述方法还包括S2604、第一装置向第二装置发送ACK消息。
该ACK消息用于指示第一装置成功接收到了第二装置发送的第十三指示信息。
示例性的,当第一基站为MN时,步骤S2604具体包括:MN CU-CP向MN CU-UP发送ACK消息。
示例性的,当第一基站为SN时,步骤S2604具体包括:SN CU-CP向SN CU-UP发送ACK消息。
S2605、第一装置向第二基站发送第十四指示信息,第十四指示信息用于指示第二基站向终端发送去激活SCG命令或激活SCG命令。
该第二基站为终端在双连接通信时的MN或者SN,且当第二基站为MN时,第一基站为SN;或者,当第二基站为SN时,第一基站为MN。
S2606、第二基站接收第十四指示信息。
可选的,在本申请的一个实施方式中,所述方法还包括S2607、第二基站向第一装置发送ACK消息。
S2608、第二基站向终端发送去激活SCG命令或激活SCG命令。
S2609、终端接收去激活SCG命令或激活SCG命令。
S2610、终端根据去激活SCG命令或激活SCG命令,对SCG进行去激活操作或激活操作。
可以理解的,步骤S2605-S2610的具体实现方式,可以参考步骤S2302-S2307的相关描述,在此不再赘述。
本申请实施例提供的通信方法,通过第二装置确定去激活SCG或激活SCG;第二装置向第一装置发送第十三指示信息;第一装置接收第十三指示信息;第一装置向第二基站发送第十四指示信息,第十四指示信息用于指示第二基站向终端发送去激活SCG命令或激活SCG命令;第二基站接收第十四指示信息;第二基站向终端发送去激活SCG命令或激活SCG命令;终端接收去激活SCG命令或激活SCG命令;终端根据去激活SCG命令或激活SCG命令,对SCG进行去激活操作或激活操作。本实施例通过对SCG进行去激活操作,能够保留SCG的相关配置,并通过激活操作,能够快速恢复SCG的链路通信,因此与现有技术相比,无需进行SN的增加以及释放,在减小网络侧和终端的电量消耗的同时,减小了空口信令的开销,降低了时延,提升了通信效率。而且通过MN或SN的CU包括CP和UP的架构下进行信令交互,实现SCG的去激活和激活操作,能够适应于不同的网络部署,使得SCG的去激活和激活操作处理的更加灵活。
示例性的,在第一接入网节点包括第一装置和第二装置的情况下,本申请实施例还提供一种通信方法,如图27所示,该方法包括步骤S2701-S2710。该第一装置用于执行第一接入网节点的控制面功能,第二装置用于执行第一接入网节点的用户面功能,该第一接入网节点属于第一基站,第一基站为终端在双连接通信时的MN或者SN。
S2701、第二接入网节点确定去激活SCG或激活SCG。
示例性的,该第二接入网节点和第一接入网节点均属于第一基站,第一基站为终端在双连接通信时的MN或者SN,上述SCG为SN管理的一个或多个小区。该第二接入网节点为第一基站的分布式单元DU。例如,该第二接入网节点可以为MN DU或SN DU。
可以理解的,步骤S2701中第二接入网节点确定去激活SCG或激活SCG的具体实现方式,可以参考步骤S901中第一接入网节点确定去激活SCG或激活SCG的实现方式,在此不再赘述。
S2702、第二接入网节点向第一装置发送第十五指示信息,第十五指示信息用于指示第一装置通知第二基站向终端发送去激活SCG命令或激活SCG命令。
示例性的,第一基站为MN时,步骤S2702包括:MN DU向MN CU-CP发送第十五指示信息。
示例性的,第一基站为SN时,步骤S2702包括:SN DU向SN CU-CP发送第十五指示信息。
S2703、第一装置接收第十五指示信息。
示例性的,第一基站为MN时,步骤S2703包括:MN CU-CP接收MN DU发送的第十五指示信息。可选的,MN CU-CP还可以挂起/恢复建立在SN的承载对应的X2/Xn接口的数据传输隧道。
示例性的,第一基站为SN时,步骤S2703包括:SN CU-CP接收SN DU发送的第十五指示信息。可选的,SN CU-CP还可以对SCG进行去激活或激活操作。
可选的,在本申请的一个实施方式中,所述方法还包括S2704、第一装置向第二接入网节点发送ACK消息。
该ACK消息用于指示第一装置成功接收到了第二接入网节点发送的第十五指示信息。
示例性的,第一基站为MN时,步骤S2704包括:MN CU-CP向MN DU发送ACK消息。
示例性的,第一基站为SN时,步骤S2704包括:SN CU-CP向SN DU发送ACK消息。
S2705、第一装置向第二基站发送第十六指示信息,第十六指示信息用于指示第二基站向终端发送去激活SCG命令或激活SCG命令。
该第二基站为终端在双连接通信时的MN或者SN,且当第二基站为MN时,第一基站为SN;或者,当第二基站为SN时,第一基站为MN。
S2706、第二基站接收第十六指示信息。
可选的,在本申请的一个实施方式中,所述方法还包括S2707、第二基站向第一装置发送ACK消息。
S2708、第二基站向终端发送去激活SCG命令或激活SCG命令。
S2709、终端接收去激活SCG命令或激活SCG命令。
S2710、终端根据去激活SCG命令或激活SCG命令,对SCG进行去激活操作或激活操作。
可以理解的,步骤S2705-S2710的实现方式可以参考步骤S2302-S2307的实现方式,在此不再赘述。
本申请实施例提供的通信方法,通过第二接入网节点确定去激活SCG或激活SCG;第二接入网节点向第一装置发送第十五指示信息;第一装置接收第十五指示信息;第一装置向第二基站发送第十六指示信息,第十六指示信息用于指示第二基站向终端发送去激活SCG命令或激活SCG命令;第二基站接收第十六指示信息;第二基站向终端发送去激活SCG命令或激活SCG命令;终端接收去激活SCG命令或激活SCG命令;终端根据去激活SCG命令或激活SCG命令,对SCG进行去激活操作或激活操 作。本实施例通过对SCG进行去激活操作,能够保留SCG的相关配置,并通过激活操作,能够快速恢复SCG的链路通信,因此与现有技术相比,无需进行SN的增加以及释放,在减小网络侧和终端的电量消耗的同时,减小了空口信令的开销,降低了时延,提升了通信效率。而且通过MN或SN的CU包括CP和UP的架构下进行信令交互,实现SCG的去激活和激活操作,能够适应于不同的网络部署,使得SCG的去激活和激活操作处理的更加灵活。
上述主要从方法步骤的角度对本申请实施例提供的方案进行了介绍。可以理解的是,计算机为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的模块及算法步骤,本申请能够以硬件和计算机软件的结合形式来实现。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对CU和DU进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用集成的单元的情况下,图28示出了一种通信装置的可能的结构示意图,该通信装置可以为上述实施例中的第一接入网节点,该第一接入网节点可以为CU。该通信装置2800包括:处理单元2801、收发单元2802。
其中,处理单元2801用于确定去激活SCG或激活SCG。收发单元2802用于向第二接入网节点发送第一指示信息,该第一指示信息用于指示第二接入网节点向终端发送去激活SCG命令或激活SCG命令。该第二接入网节点与第一接入网节点同属于第一基站,该第一基站可以为MN或SN,该第二接入网节点可以为MN DU或SN DU。
可选的,在本申请的一个实施方式中,收发单元2802还用于接收第二接入网节点发送的ACK消息,该ACK消息用于指示第二接入网节点成功接收到了收发单元2802发送的第一指示信息。
可选的,在本申请的一个实施方式中,收发单元2802还用于向第二基站发送第二指示信息,该第二指示信息用于指示第二基站去激活SCG或激活SCG。可选的,收发单元2802还用于接收第二基站发送的ACK消息,该ACK消息用于指示第二基站成功接收到了第一接入网节点发送的第二指示信息。
可选的,在本申请的一个实施方式中,收发单元2802还用于向第二基站发送第一通知消息,第一通知消息用于通知第二基站,第一基站去激活SCG或激活SCG。可选的,收发单元2802还用于接收第二基站发送的ACK消息,该ACK消息用于指示第二基站成功接收到了第一接入网节点发送的第一通知消息。
示例性的,上述处理单元2801还可以用于执行图12中的步骤S1201,和/或用于本文所描述的技术的其它过程。收发单元2802还可以用于执行例如图12中的步骤S1202,或,图13中的S1208,或,图15中的S1406和S1407,或,图16中的S1408,或,图17中的S1411,或,图18中的S1803、S1804和S1805,和/或用于本文所描述 的技术的其它过程。其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在采用集成的单元的情况下,图29示出了一种通信装置的可能的结构示意图,该通信装置可以执行上述实施例中的第二接入网节点的操作,该第二接入网节点可以为DU。该通信装置2900包括:处理单元2901、收发单元2902。
其中,收发单元2902用于接收第一接入网节点发送的第一指示信息,该第一指示信息用于指示第二接入网节点向终端发送去激活SCG命令或激活SCG命令。可选的,处理单元2901用于去激活SCG或激活SCG。该第一接入网节点与第二接入网节点同属于第一基站,第一基站可以为MN或SN,该第一接入网节点可以为MN CU或SN CU。
上述收发单元2902,还用于向终端发送去激活SCG命令或激活SCG命令。
可选的,在本申请的一个实施方式中,收发单元2902还用于向第一接入网节点发送ACK消息,该ACK消息用于指示通信装置2900成功接收到了第一接入网节点发送的第一指示信息。
示例性的,上述处理单元2901还可以用于执行图14中的步骤S1401,或,图18中的S1801,和/或用于本文所描述的技术的其它过程。收发单元2902还可以用于执行例如图13中的步骤S1209和S1210,或,图14中的S1402,或,图15中的S1405,或,图18中的S1802,或,图19中的S1903、S1904和S1905,或,图22中的S2206、S2207和S2208,或,图24中的S2312和S2313,或,图25中的S2318和S2319,和/或用于本文所描述的技术的其它过程。其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在采用集成的单元的情况下,图30示出了一种通信装置的可能的结构示意图,该通信装置可以为上述实施例中的终端,或者用于终端的装置,例如芯片。该通信装置3000包括:处理单元3001、收发单元3002。
收发单元3002,用于接收第二接入网节点发送的去激活SCG命令或激活SCG命令。处理单元3001,用于根据去激活SCG命令或激活SCG命令,对SCG进行去激活操作或激活操作。
示例性的,上述处理单元3001还可以用于执行例如图12中的步骤S1207,或,图14中的S1404,或,图18中的S1810,或,图19中的S1907,或,图22中的S2210,或,图23中的S2307,或,图26中的S2610,和/或用于本文所描述的技术的其它过程。收发单元3002还可以用于执行例如图12中的步骤S1206,或,图14中的S1403,或,图18中的S1809,或,图19中的S1906,或,图22中的S2209,或,图23中的S2306,或,图26中的S2609,和/或用于本文所描述的技术的其它过程。其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在采用集成的单元的情况下,图31示出了一种通信装置的可能的结构示意图,该通信装置可以为基站或用于基站的芯片,可以执行如上述实施例中第二基站的操作。该通信装置3100包括:处理单元3101、收发单元3102。
当该通信装置是基站时,该基站可以采用CU-DU分离的结构,不做赘述。
收发单元3102,用于接收第一接入网节点发送的第一指示信息,该第一指示信息用于指示第二接入网节点向终端发送去激活SCG命令或激活SCG命令。处理单元3101,用于根据第二指示信息,对SCG进行去激活操作或激活操作。可选的,在本申请的一个实施方式中,收发单元3102还用于向第一接入网节点发送ACK消息,该ACK消息用于指示收发单元3102成功接收到了第一接入网节点发送的第二指示信息。
收发单元3102,还用于接收第一接入网节点发送的第一通知消息,第一通知消息用于通知第二基站,第一基站去激活SCG或激活SCG。处理单元3101,用于根据第一通知消息,挂起或恢复SCG承载对应的X2/Xn接口的数据传输隧道。可选的,在本申请的一个实施方式中,收发单元3102还用于向第一接入网节点发送ACK消息,该ACK消息用于指示收发单元3102成功接收到了第一接入网节点发送的第一通知消息。
示例性的,上述处理单元3101还可以用于执行例如图20中的步骤S1910,和/或用于本文所描述的技术的其它过程。收发单元3102还可以用于执行例如图12中的步骤S1203、S1204和S1205,或,图16中的S1409和S1410,或,图17中的S1412和S1413,或,图18中的S1806和S1807,或,图20中的S1909,或,图21中的S1912,或,图23中的S2303、S2304和S2305,或,图26中的S2606、S2607和S2608,和/或用于本文所描述的技术的其它过程。其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在采用集成的单元的情况下,图32示出了一种通信装置的可能的结构示意图,该通信装置可以执行上述实施例中的第一装置的操作,该第一装置可以用于执行第一接入网节点的控制面功能,该第一接入网节点属于第一基站,该第一基站为MN或SN,第一接入网节点可以为MN CU或SN CU,该第一装置可以为MN CU-CP或SN CU-CP。该通信装置3200包括:处理单元3201、收发单元3202。
处理单元3201用于对通信装置3200的动作进行控制管理。例如,上述处理单元3201可以用于执行例如图19中的步骤S1901,或,图23中的S2301,和/或用于本文所描述的技术的其它过程。收发单元3202用于收发信息,或者用于与其他网元通信。例如,收发单元3202可以用于执行例如图19中的步骤S1902,或,图20中的S1908,或,图21中的S1911,或,图22中的S2203、S2204和S2205,或,图23中的S2302,或,图24中的S2308和S2311,或,图25中的S2314和S2317,或,图26中的S2603、S2604和S2605,和/或用于本文所描述的技术的其它过程。其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在采用集成的单元的情况下,图33示出了一种通信装置的可能的结构示意图,该通信装置可以执行上述实施例中的第二装置的操作,该第二装置可以用于执行第一接入网节点的用户面功能,该第一接入网节点属于第一基站,该第一基站为MN或SN,该第一接入网节点可以为MN CU或SN CU,该第一装置可以为MN CU-CP或SN CU-CP。该通信装置3300包括:处理单元3301、收发单元3302。
处理单元3301用于对通信装置3300的动作进行控制管理。例如,上述处理单元3301可以用于执行例如图22中的步骤S2201,或,图26中的S2601,和/或用于本文所描述的技术的其它过程。收发单元3302用于收发信息,或者用于与其他网元通信。 例如,收发单元3302可以用于执行例如图22中的步骤S2202,或,图24中的S2309和S2310,或,图25中的S2315和S2316,或,图26中的S2602,和/或用于本文所描述的技术的其它过程。其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
本申请实施例还提供一种通信装置,该通信装置包括处理器,还可以包括收发器以及存储器,收发器,用于收发信息,或者用于与其他网元通信;存储器,用于存储计算机执行指令;处理器,用于执行所计算机执行指令,以支持终端设备或者接入网设备例如基站实现图9至图27中任一实施例中的通信方法。
本申请实施例还提供一种计算机存储介质,该计算机存储介质中存储有计算机程序代码,当上述处理器执行该计算机程序代码时,电子设备执行图9至图27中任一实施例中的通信方法。
本申请实施例还提供了一种计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行图9至图27中任一实施例中的通信方法。
本申请实施例还提供了一种通信装置,该装置可以以芯片的产品形态存在,该装置的结构中包括处理器和接口电路,该处理器用于通过接收电路与其它装置通信,使得该装置执行上述图9至图27中任一实施例中的通信方法。
本申请实施例还提供了一种通信系统,包括终端和接入网设备,该终端和接入网设备可以执行上述图9至图27中任一实施例中的通信方法。
结合本申请公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(Random Access Memory,RAM)、闪存、可擦除可编程只读存储器(Erasable Programmable ROM,EPROM)、电可擦可编程只读存储器(Electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、只读光盘(CD-ROM)或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于核心网接口设备中。当然,处理器和存储介质也可以作为分立组件存在于核心网接口设备中。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上所述的具体实施方式,对本申请的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本申请的具体实施方式而已,并不用于限定本申请的保护范围,凡在本申请的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本申请的保护范围之内。

Claims (59)

  1. 一种通信方法,其特征在于,所述方法包括:
    第一接入网节点确定去激活辅小区组SCG或激活SCG;
    所述第一接入网节点向第二接入网节点发送第一指示信息,所述第一指示信息用于指示所述第二接入网节点向终端发送去激活SCG命令或激活SCG命令;其中,所述第一接入网节点与所述第二接入网节点属于第一基站,所述第一基站为所述终端在双连接通信时的主节点或者辅节点;所述SCG为所述辅节点管理的一个或多个小区。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述第一接入网节点向第二基站发送第二指示信息,所述第二指示信息用于指示所述第二基站去激活所述SCG或激活所述SCG;其中,所述第一基站为主节点且所述第二基站为辅节点。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    所述第一接入网节点向第二基站发送第一通知消息,所述第一通知消息用于通知所述第二基站,所述第一基站去激活所述SCG或激活所述SCG;其中,所述第一基站为辅节点且所述第二基站为主节点。
  4. 根据权利要求1-3中任一项所述方法,其特征在于,所述第一接入网节点包括第一装置和第二装置;所述第一装置用于执行所述第一接入网节点的控制面功能,所述第二装置用于执行所述第一接入网节点的用户面功能。
  5. 根据权利要求4所述的方法,其特征在于,所述第一接入网节点确定去激活辅小区组SCG或激活SCG,包括:所述第一装置确定去激活所述SCG或激活所述SCG;
    所述第一接入网节点向第二接入网节点发送第一指示信息,包括:所述第一装置向所述第二接入网节点发送所述第一指示信息。
  6. 根据权利要求5所述的方法,其特征在于,所述方法还包括:
    所述第一装置向所述第二装置发送第三指示信息,所述第三指示信息用于指示所述第二装置去激活所述SCG或激活所述SCG。
  7. 根据权利要求4所述的方法,其特征在于,所述第一接入网节点确定去激活辅小区组SCG或激活SCG,包括:所述第二装置确定去激活所述SCG或激活所述SCG;
    所述第一接入网节点向第二接入网节点发送第一指示信息,包括:所述第二装置向所述第一装置发送通知消息,通知所述第一装置向所述第二接入网节点发送所述第一指示信息。
  8. 根据权利要求1-7中任一项所述的方法,其特征在于,所述第一接入网节点确定去激活辅小区组SCG或激活SCG,包括:
    所述第一接入网节点根据第二基站发送的辅助信息、所述终端发送的辅助信息、所述第一基站承载的数据传输情况中的任意一种或多种,确定去激活所述SCG或者激活所述SCG;其中,当所述第一基站为主节点时,所述第二基站为辅节点;或者,当所述第一基站为辅节点时,所述第二基站为主节点。
  9. 一种通信方法,其特征在于,所述方法包括:
    第二接入网节点接收第一接入网节点发送的第一指示信息,所述第一指示信息用于指示所述第二接入网节点向终端发送去激活辅小区组SCG命令或激活SCG命令; 其中,所述第一接入网节点与所述第二接入网节点属于第一基站,所述第一基站为所述终端在双连接通信时的主节点或者辅节点;所述SCG为所述辅节点管理的一个或多个小区;
    所述第二接入网节点向所述终端发送所述去激活SCG命令或激活SCG命令。
  10. 根据权利要求9所述的方法,其特征在于,所述第一接入网节点包括第一装置和第二装置;所述第一装置用于执行所述第一接入网节点的控制面功能,所述第二装置用于执行所述第一接入网节点的用户面功能;所述第二接入网节点接收第一接入网节点发送的第一指示信息,包括:
    所述第二接入网节点接收所述第一装置发送的所述第一指示信息。
  11. 一种通信方法,其特征在于,所述方法包括:
    第一接入网节点确定去激活辅小区组SCG或激活SCG;
    所述第一接入网节点向第二基站发送第一指示信息,所述第一指示信息用于指示所述第二基站向终端发送去激活SCG命令或激活SCG命令;其中,所述第一接入网节点属于第一基站,所述第一基站为所述终端在双连接通信时的主节点或辅节点,且当所述第一基站为主节点时,所述第二基站为辅节点;或者,当所述第一基站为辅节点时,所述第二基站为主节点;所述SCG为所述辅节点管理的一个或多个小区。
  12. 根据权利要求11所述的方法,其特征在于,所述方法还包括:
    所述第一接入网节点向第二接入网节点发送第二指示信息,所述第二指示信息用于指示所述第二接入网节点去激活所述SCG或激活所述SCG;所述第二接入网节点属于所述第一基站。
  13. 根据权利要求11或12所述的方法,其特征在于,所述第一接入网节点包括第一装置和第二装置;所述第一装置用于执行所述第一接入网节点的控制面功能,所述第二装置用于执行所述第一接入网节点的用户面功能。
  14. 根据权利要求13所述的方法,其特征在于,所述第一接入网节点确定去激活辅小区组SCG或激活SCG,包括:所述第一装置确定去激活所述SCG或激活所述SCG;
    所述第一接入网节点向第二基站发送第一指示信息,包括:所述第一装置向所述第二基站发送所述第一指示信息。
  15. 根据权利要求14所述的方法,其特征在于,所述方法还包括:
    所述第一装置向所述第二装置发送第三指示信息,所述第三指示信息用于指示所述第二装置去激活所述SCG或激活所述SCG。
  16. 根据权利要求13所述的方法,其特征在于,所述第一接入网节点确定去激活辅小区组SCG或激活SCG,包括:所述第二装置确定去激活所述SCG或激活所述SCG;
    所述第一接入网节点向第二基站发送第一指示信息,包括:所述第二装置向所述第一装置发送通知消息,通知所述第一装置向所述第二基站发送所述第一指示信息。
  17. 根据权利要求11-16中任一项所述的方法,其特征在于,所述第一接入网节点确定去激活辅小区组SCG或激活SCG,包括:
    所述第一接入网节点根据第二基站发送的辅助信息、所述终端发送的辅助信息、所述第一基站承载的数据传输情况中的任意一种或多种,确定去激活所述SCG或者激活所述SCG。
  18. 一种通信方法,其特征在于,所述方法包括:
    第二基站接收第一接入网节点发送的第一指示信息,所述第一指示信息用于指示所述第二基站向终端发送去激活辅小区组SCG命令或激活SCG命令;其中,所述第一接入网节点属于第一基站,所述第二基站为所述终端在双连接通信时的主节点或辅节点,且当所述第二基站为主节点时,所述第一基站为辅节点;或者,当所述第二基站为辅节点时,所述第一基站为主节点;所述SCG为所述辅节点管理的一个或多个小区;
    所述第二基站向所述终端发送所述去激活SCG命令或所述激活SCG命令。
  19. 根据权利要求18所述的方法,其特征在于,所述第一接入网节点包括第一装置和第二装置;所述第一装置用于执行所述第一接入网节点的控制面功能,所述第二装置用于执行所述第一接入网节点的用户面功能;所述第二基站接收第一接入网节点发送的第一指示信息,包括:
    所述第二基站接收所述第一装置发送的所述第一指示信息。
  20. 根据权利要求18或19所述的方法,其特征在于,所述第二基站包括用于执行高层协议栈功能的接入网节点以及用于执行低层协议栈功能的接入网节点。
  21. 根据权利要求1-20中任一项所述的方法,其特征在于,所述第一接入网节点用于执行无线资源控制RRC协议栈、业务数据适配协议SDAP协议栈,以及分组数据汇聚协议PDCP层的功能;所述第二接入网节点用于执行无线链路控制RLC协议栈、介质访问控制MAC协议栈,以及物理层PHY协议栈的功能。
  22. 一种通信方法,其特征在于,所述方法包括:
    第一接入网节点确定去激活辅小区组SCG或激活SCG;
    所述第一接入网节点向终端发送去激活SCG命令或激活SCG命令;所述第一接入网节点属于第一基站,所述第一基站为所述终端在双连接通信时的主节点或者辅节点;所述SCG为所述辅节点管理的一个或多个小区。
  23. 根据权利要求22所述的方法,其特征在于,所述方法还包括:
    所述第一接入网节点向第二接入网节点发送第二指示信息,所述第二指示信息用于指示所述第二接入网节点去激活所述SCG或激活所述SCG,所述第二接入网节点属于所述第一基站。
  24. 根据权利要求23所述方法,其特征在于,所述第二接入网节点包括第一装置和第二装置,所述第一装置用于执行所述第一接入网节点的控制面功能,所述第二装置用于执行所述第一接入网节点的用户面功能,所述第一接入网节点向第二接入网节点发送第二指示信息,包括:
    所述第一接入网节点向所述第一装置发送所述第二指示信息。
  25. 根据权利要求22-24中任一项所述的方法,其特征在于,所述第一接入网节点确定去激活辅小区组SCG或激活SCG,包括:
    所述第一接入网节点根据第二基站发送的辅助信息、所述终端发送的辅助信息、所述第一基站承载的数据传输情况中的任意一种或多种,确定去激活所述SCG或者激活所述SCG;其中,当所述第一基站为主节点时,所述第二基站为辅节点;或者,当所述第一基站为辅节点时,所述第二基站为主节点。
  26. 一种通信方法,其特征在于,所述方法包括:
    第二接入网节点接收第一接入网节点发送的第一指示信息,所述第一指示信息用于指示所述第二接入网节点去激活辅小区组SCG或激活SCG,所述第二接入网节点属于第一基站,所述第一基站为终端在双连接通信时的主节点或者辅节点;所述SCG为所述辅节点管理的一个或多个小区;
    所述第二接入网节点根据所述第一指示信息去激活所述SCG或激活所述SCG。
  27. 根据权利要求26所述的方法,其特征在于,所述方法还包括:
    所述第二接入网节点向第二基站发送第一通知消息,所述第一通知消息用于通知所述第二基站,所述第一基站去激活所述SCG或激活所述SCG;其中,所述第一基站为辅节点且所述第二基站为主节点。
  28. 根据权利要求26所述的方法,其特征在于,所述方法还包括:
    所述第二接入网节点向第二基站发送第二指示信息,所述第二指示信息用于指示所述第二基站去激活所述SCG或激活所述SCG;其中,所述第一基站为主节点且所述第二基站为辅节点。
  29. 根据权利要求26-28中任一项所述的方法,其特征在于,所述第二接入网节点包括第一装置和第二装置,所述第一装置用于执行所述第一接入网节点的控制面功能,所述第二装置用于执行所述第一接入网节点的用户面功能,所述第二接入网节点接收第一接入网节点发送的第一指示信息,包括:
    所述第一装置接收所述第一接入网节点发送的所述第一指示信息。
  30. 根据权利要求29所述的方法,其特征在于,所述方法还包括:
    所述第一装置向所述第二装置发送第三指示信息,所述第三指示信息用于指示所述第二装置去激活所述SCG或激活所述SCG。
  31. 一种通信方法,其特征在于,所述方法包括:
    第一接入网节点确定去激活辅小区组SCG或激活SCG;
    所述第一接入网节点向第二接入网节点发送通知消息,通知所述第二接入网节点向第二基站发送第一指示信息,所述第一指示信息用于指示第二基站向终端发送去激活SCG命令或激活SCG命令;其中,所述第一接入网节点与所述第二接入网节点属于第一基站,所述第一基站为所述终端在双连接通信时的主节点或辅节点,且当所述第一基站为主节点时,所述第二基站为辅节点;或者,当所述第一基站为辅节点时,所述第二基站为主节点;所述SCG为所述辅节点管理的一个或多个小区。
  32. 根据权利要求31所述的方法,其特征在于,所述第二接入网节点包括第一装置和第二装置,所述第一装置用于执行所述第一接入网节点的控制面功能,所述第二装置用于执行所述第一接入网节点的用户面功能,所述第一接入网节点向第二接入网节点发送通知消息,包括:
    所述第一接入网节点向所述第一装置发送所述通知消息。
  33. 根据权利要求31或32所述的方法,其特征在于,所述第一接入网节点确定去激活辅小区组SCG或激活SCG,包括:
    所述第一接入网节点根据第二基站发送的辅助信息、所述终端发送的辅助信息、所述第一基站承载的数据传输情况中的任意一种或多种,确定去激活所述SCG或者激 活所述SCG。
  34. 一种通信方法,其特征在于,所述方法包括:
    第二接入网节点接收第一接入网节点发送的通知消息,所述通知消息用于通知所述第二接入网节点向第二基站发送第一指示信息,所述第一指示信息用于指示第二基站向终端发送去激活辅小区组SCG命令或激活SCG命令;其中,所述第一接入网节点与所述第二接入网节点属于第一基站,所述第一基站为所述终端在双连接通信时的主节点或辅节点,且当所述第一基站为主节点时,所述第二基站为辅节点;或者,当所述第一基站为辅节点时,所述第二基站为主节点;所述SCG为所述辅节点管理的一个或多个小区;
    所述第二接入网节点向所述第二基站发送所述第一指示信息。
  35. 根据权利要求34所述的方法,其特征在于,所述第二接入网节点包括第一装置和第二装置,所述第一装置用于执行所述第一接入网节点的控制面功能,所述第二装置用于执行所述第一接入网节点的用户面功能,所述第二接入网节点接收第一接入网节点发送的通知消息,包括:所述第一装置接收所述第一接入网节点发送的所述通知消息;
    所述第二接入网节点向所述第二基站发送所述第一指示信息,包括:所述第一装置向所述第二基站发送所述第一指示信息。
  36. 根据权利要求35所述的方法,其特征在于,所述方法还包括:
    所述第一装置向所述第二装置发送第二指示信息,所述第二指示信息用于指示所述第二装置去激活所述SCG或激活所述SCG。
  37. 根据权利要求22-36中任一项所述的方法,其特征在于,所述第一接入网节点用于执行无线链路控制RLC协议栈、介质访问控制MAC协议栈,以及物理层PHY协议栈的功能;第二接入网节点用于执行无线资源控制RRC协议栈、业务数据适配协议SDAP协议栈,以及分组数据汇聚协议PDCP层的功能。
  38. 一种通信方法,其特征在于,所述方法包括:
    第二基站接收第二接入网节点发送的第一指示信息,所述第一指示信息用于指示第二基站向终端发送去激活辅小区组SCG命令或激活SCG命令;其中,所述第二接入网节点属于第一基站,所述第二基站为所述终端在双连接通信时的主节点或辅节点,且当所述第二基站为主节点时,所述第一基站为辅节点;或者,当所述第二基站为辅节点时,所述第一基站为主节点;所述SCG为所述辅节点管理的一个或多个小区;
    所述第二基站向所述终端发送所述去激活SCG命令或激活SCG命令。
  39. 根据权利要求38所述的方法,其特征在于,所述第二接入网节点包括第一装置和第二装置,所述第一装置用于执行第一接入网节点的控制面功能,所述第二装置用于执行所述第一接入网节点的用户面功能,所述第二基站接收第二接入网节点发送的第一指示信息,包括:
    所述第二基站接收所述第一装置发送的所述第一指示信息。
  40. 根据权利要求38或39所述的方法,其特征在于,所述第二接入网节点用于执行无线资源控制RRC协议栈、业务数据适配协议SDAP协议栈,以及分组数据汇聚协议PDCP层的功能。
  41. 根据权利要求1-40中任一项所述的方法,其特征在于,所述去激活SCG包括以下操作中的至少一种:
    中止辅小区组无线链路控制承载SCG RLC Bearer上的数据传输;
    中止分组数据汇聚协议PDCP终结在辅节点上的承载SN terminated Bearer上的数据传输;
    中止SCG RLC实体上的数据传输;
    中止SN PDCP实体上的数据传输。
  42. 根据权利要求1-41中任一项所述的方法,其特征在于,所述去激活SCG命令或激活SCG命令携带在媒体接入控制层控制元素MAC CE信令、物理层信令或者无线资源控制RRC信令中。
  43. 一种通信装置,其特征在于,所述通信装置包括收发单元和处理单元,所述收发单元,用于收发信息,或者用于与其他网元通信;所述处理单元,用于执行计算机程序指令,以实现如权利要求1-42中任一项所述的通信方法。
  44. 一种计算机存储介质,所述计算机存储介质中具有计算机程序代码,其特征在于,当所述计算机程序代码在处理器上运行时,使得所述处理器执行如权利要求1-42中任一项所述的通信方法。
  45. 一种通信装置,其特征在于,所述通信装置包括:
    处理器,用于执行指令,以实现如权利要求1-42中任一项所述的通信方法。
  46. 一种通信装置,包括用于执行如权利要求1-8、21、41、42中任一项所述的通信方法的单元或手段。
  47. 一种通信装置,包括用于执行如权利要求9-10、21、41、42或中任一项所述的通信方法的单元或手段。
  48. 一种通信装置,包括用于执行如权利要求11-17、21、41、42中任一项所述的通信方法的单元或手段。
  49. 一种通信装置,包括用于执行如权利要求18-21、41、42中任一项所述的通信方法的单元或手段。
  50. 一种通信装置,包括用于执行如权利要求22-25、37、41、42中任一项所述的通信方法的单元或手段。
  51. 一种通信装置,包括用于执行如权利要求26-30、37、41、42中任一项所述的通信方法的单元或手段。
  52. 一种通信装置,包括用于执行如权利要求31-33、37、41、42中任一项所述的通信方法的单元或手段。
  53. 一种通信装置,包括用于执行如权利要求34-37、41、42中任一项所述的通信方法的单元或手段。
  54. 一种通信装置,包括用于执行如权利要求38-42中任一项所述的通信方法的单元或手段。
  55. 一种通信装置,用于执行如权利要求1-42中任一项所述的通信方法。
  56. 一种通信系统,其特征在于,包括第一基站和第二基站,第一基站包含第一接入网节点和第二接入网节点,所述第一接入网节点用于执行如权利要求1-8、21、41、 42中任一项所述的通信方法,第二接入网节点用于执行如权利要求9-10、21、41、42中任一项所述的通信方法。
  57. 一种通信系统,其特征在于,包括第一基站和第二基站,第一基站包含第一接入网节点和第二接入网节点,所述第一接入网节点用于执行如权利要求11-17、21、41、42中任一项所述的通信方法,所述第二基站用于执行如权利要求18-21、41、42中任一项所述的通信方法。
  58. 一种通信系统,其特征在于,包括第一基站和第二基站,第一基站包含第一接入网节点和第二接入网节点,所述第一接入网节点用于执行如权利要求22-25、37、41、42中任一项所述的通信方法,所述第二接入网节点用于执行如权利要求26-30、37、41、42中任一项所述的通信方法。
  59. 一种通信系统,其特征在于,包括第一基站和第二基站,第一基站包含第一接入网节点和第二接入网节点,所述第一接入网节点用于执行如权利要求31-33、37、41、42中任一项所述的通信方法,所述第二接入网节点用于执行如权利要求34-37、41、42中任一项所述的通信方法,所述第二基站用于执行如权利要求38-42中任一项所述的通信方法。
PCT/CN2019/100885 2019-08-15 2019-08-15 一种通信方法和装置 WO2021026930A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2019/100885 WO2021026930A1 (zh) 2019-08-15 2019-08-15 一种通信方法和装置
CN201980098970.0A CN114208389B (zh) 2019-08-15 2019-08-15 一种通信方法和装置
EP19941746.0A EP4017203B1 (en) 2019-08-15 2019-08-15 Secondary cell group activation or deactivation
US17/670,135 US20220167449A1 (en) 2019-08-15 2022-02-11 Communication Method and Apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/100885 WO2021026930A1 (zh) 2019-08-15 2019-08-15 一种通信方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/670,135 Continuation US20220167449A1 (en) 2019-08-15 2022-02-11 Communication Method and Apparatus

Publications (1)

Publication Number Publication Date
WO2021026930A1 true WO2021026930A1 (zh) 2021-02-18

Family

ID=74570419

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/100885 WO2021026930A1 (zh) 2019-08-15 2019-08-15 一种通信方法和装置

Country Status (4)

Country Link
US (1) US20220167449A1 (zh)
EP (1) EP4017203B1 (zh)
CN (1) CN114208389B (zh)
WO (1) WO2021026930A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022193128A1 (en) * 2021-03-16 2022-09-22 Lenovo (Beijing) Limited Methods and apparatuses for a rlf processing procedure and a phr procedure in a deactivated sn case
WO2022206920A1 (zh) * 2021-04-02 2022-10-06 大唐移动通信设备有限公司 实现辅小区组去激活的方法、装置、节点及存储介质
WO2023011457A1 (zh) * 2021-08-03 2023-02-09 维沃移动通信有限公司 辅小区组状态控制方法、装置、网元及终端
US20230079972A1 (en) * 2021-09-15 2023-03-16 Qualcomm Incorporated Packet data convergence protocol handling for secondary cell group deactivation
WO2023174011A1 (zh) * 2022-03-18 2023-09-21 中兴通讯股份有限公司 通信站点开通方法及装置、电子设备、存储介质

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11877163B2 (en) * 2022-03-25 2024-01-16 Dish Wireless L.L.C. Systems and methods for operating radio access networks with high service availability
US11836480B2 (en) 2022-03-25 2023-12-05 Dish Wireless L.L.C. Systems and methods for reducing service downtime during software upgrades

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105451364A (zh) * 2014-08-07 2016-03-30 上海贝尔股份有限公司 用于双连接系统的特殊辅小区开启/关闭的方法和基站
CN106538034A (zh) * 2014-08-07 2017-03-22 Lg 电子株式会社 用于在scg改变过程期间去激活s小区的方法及其设备
US20170223763A1 (en) * 2014-09-29 2017-08-03 Telefonaktiebolaget Lm Ericsson (Publ) Indication to the master e-node b of successful primary secondary cell activation in dual connectivity

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105101385B (zh) * 2011-08-30 2018-10-19 华为技术有限公司 一种功率控制方法、激活管理方法、用户终端及基站

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105451364A (zh) * 2014-08-07 2016-03-30 上海贝尔股份有限公司 用于双连接系统的特殊辅小区开启/关闭的方法和基站
CN106538034A (zh) * 2014-08-07 2017-03-22 Lg 电子株式会社 用于在scg改变过程期间去激活s小区的方法及其设备
US20170223763A1 (en) * 2014-09-29 2017-08-03 Telefonaktiebolaget Lm Ericsson (Publ) Indication to the master e-node b of successful primary secondary cell activation in dual connectivity

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ITL INC.: "Discussions on Activation/Deactivation for Dual connectivity", 3GPP TSG RAN WG2 MEETING #85 R2-140217, 14 February 2014 (2014-02-14), XP050753905 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022193128A1 (en) * 2021-03-16 2022-09-22 Lenovo (Beijing) Limited Methods and apparatuses for a rlf processing procedure and a phr procedure in a deactivated sn case
WO2022206920A1 (zh) * 2021-04-02 2022-10-06 大唐移动通信设备有限公司 实现辅小区组去激活的方法、装置、节点及存储介质
WO2023011457A1 (zh) * 2021-08-03 2023-02-09 维沃移动通信有限公司 辅小区组状态控制方法、装置、网元及终端
US20230079972A1 (en) * 2021-09-15 2023-03-16 Qualcomm Incorporated Packet data convergence protocol handling for secondary cell group deactivation
WO2023174011A1 (zh) * 2022-03-18 2023-09-21 中兴通讯股份有限公司 通信站点开通方法及装置、电子设备、存储介质

Also Published As

Publication number Publication date
EP4017203A1 (en) 2022-06-22
EP4017203B1 (en) 2024-02-28
US20220167449A1 (en) 2022-05-26
CN114208389B (zh) 2023-11-10
CN114208389A (zh) 2022-03-18
EP4017203A4 (en) 2022-08-31

Similar Documents

Publication Publication Date Title
WO2021026930A1 (zh) 一种通信方法和装置
EP3641188B1 (en) Configuration for duplication transmission and duplication transmission method and device
WO2021057389A1 (zh) 一种双连接管理方法和通信装置
CN110475294B (zh) 一种通信方法、装置及系统
WO2018171479A1 (zh) 数据传输方法、终端、网络侧设备和计算机可读存储介质
US11172491B2 (en) Data transmission method, apparatus and system, network element, storage medium and processor
CN106165476A (zh) 移动通信系统中双连接ue的功率余量报告方法
WO2017193766A1 (zh) 一种下行数据传输的方法及设备
KR20180030647A (ko) 데이터 송신 방법, 액세스 포인트, 및 스테이션
WO2021031035A1 (zh) 一种通信方法及装置
WO2021088006A1 (zh) 通信方法和通信装置
CN112312588B (zh) 用于传输数据的方法、终端设备和网络设备
KR20220097893A (ko) 정보 전송 방법 및 관련 제품
WO2020134135A1 (zh) 资源分配模式的确定方法、终端及网络设备
CN116437484A (zh) 一种通信方法及装置
CN110300428A (zh) 用于pdcp复制的bsr触发方法及装置、存储介质、用户设备
CN101365167B (zh) 传递连续分组连接的不连续发送和不连续接收参数的方法
US20210195431A1 (en) Data processing method adapted to access network architecture, access network architecture system and storage medium
KR20230092916A (ko) 노드들, 사용자 장비들 및 그 방법들
WO2020097850A1 (zh) 数据的传输方法及装置
WO2024001833A1 (zh) 一种通信方法及装置
CN111436032B (zh) 缓存状态报告的上报、接收方法、资源分配方法及设备
CN111083699A (zh) 一种密钥生成方法、装置、第一网络实体及基站设备
CN111757520B (zh) 一种数据传输方法及装置
WO2023160706A1 (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19941746

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019941746

Country of ref document: EP

Effective date: 20220314