WO2021025527A1 - Mitochondria targeting polypeptide and use thereof - Google Patents

Mitochondria targeting polypeptide and use thereof Download PDF

Info

Publication number
WO2021025527A1
WO2021025527A1 PCT/KR2020/010489 KR2020010489W WO2021025527A1 WO 2021025527 A1 WO2021025527 A1 WO 2021025527A1 KR 2020010489 W KR2020010489 W KR 2020010489W WO 2021025527 A1 WO2021025527 A1 WO 2021025527A1
Authority
WO
WIPO (PCT)
Prior art keywords
polypeptide
slc1a5
mitochondria
syndrome
mitochondrial
Prior art date
Application number
PCT/KR2020/010489
Other languages
French (fr)
Korean (ko)
Inventor
한정민
유희찬
Original Assignee
연세대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 연세대학교 산학협력단 filed Critical 연세대학교 산학협력단
Publication of WO2021025527A1 publication Critical patent/WO2021025527A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/64Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/66Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid the modifying agent being a pre-targeting system involving a peptide or protein for targeting specific cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/08Linear peptides containing only normal peptide links having 12 to 20 amino acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6872Intracellular protein regulatory factors and their receptors, e.g. including ion channels

Definitions

  • the present invention relates to a polypeptide for targeting mitochondria and its use.
  • This study is related to the identification of the role of ASCT2 variants in cancer metabolism conducted by Yonsei University with funding from the Ministry of Education in 2018-2019 with the support of the National Research Foundation of Korea, and the development of antagonists for them as anticancer drugs (No. 1345279574).
  • this study is related to Yonsei University's Comprehensive Pharmacy Research Institute (No. 1345295623) conducted by Yonsei University with support from the National Research Foundation of Korea with the funding of the Ministry of Education in 2019-2020.
  • Mitochondria play a key role in many critical intracellular processes, including energetic metabolism and metabolism of certain substances (eg, fatty acids) within cells.
  • mitochondria are directly involved in the formation and use of free radicals (hereinafter referred to as'FR') and reactive oxygen species (hereinafter referred to as'ROS'). Because of this, it has been reported that mitochondria play a key role in the process of programmed cell death in relation to the reactive moieties that can affect many processes in living cells.
  • Non-Patent Document 1 mitochondrial abnormalities may be the cause of the development of type 2 diabetes, a metabolic syndrome.
  • These diseases which are caused by dysfunction of mitochondria, are caused by abnormalities in the energy supply system of cells, and most of them are accompanied by muscle diseases and brain diseases.
  • an effective concentration of the substance can be obtained by repeatedly accumulating the desired substance in the target target, increasing the application efficiency and reducing the overall dosage, thereby reducing the likelihood and intensity of side effects. There is a strong point.
  • Patent Document 1 US Patent No. 7,109,189
  • An object of the present invention is to provide a polypeptide targeting mitochondria.
  • Another object of the present invention is to provide a composition and a method for detecting mitochondria comprising the polypeptide.
  • Another object of the present invention is to provide a composition for imaging mitochondria.
  • Another object of the present invention is to provide a mitochondrial-specific drug delivery composition comprising the polypeptide.
  • Another object of the present invention is to provide a polynucleotide encoding the polypeptide, a recombinant vector comprising the same, and a cell transformed with the recombinant vector.
  • An aspect of the present invention for achieving the above object is a polypeptide comprising the 27th to 46th amino acid in the amino acid sequence represented by SEQ ID NO: 1; Or a variant having a sequence homology of 90% or more with the polypeptide; which includes, provides a polypeptide.
  • polypeptide may be for mitochondrial targeting, but is not limited thereto.
  • a specific transcriptional variant derived from the SLC1A5 (solute carrier family 1 member 5) gene targets mitochondria after protein translation (targeting ) was first identified.
  • the "transcript variant of SLC1A5" is a mitochondrial targeting sequence and glutamine transporter essential for the activity of the glutamine transporter in mitochondria It may mean a protein having activity.
  • the polypeptide may include one or more selected from the amino acid sequence represented by SEQ ID NO: 3, 5 or SEQ ID NO: 8, and more specifically, may include the amino acid sequence of SEQ ID NO: 8, but is not limited thereto. .
  • peptide is used interchangeably with “protein” or “polypeptide”, and, for example, refers to a polymer of amino acid residues as commonly found in proteins in nature.
  • the polypeptide of the present invention may be derived from nature, and may be synthesized using a known peptide synthesis method (genetic engineering method, chemical synthesis). Construction by a genetic engineering method, for example, according to a conventional method, a nucleic acid encoding the peptide or a functional equivalent thereof (eg, a polynucleotide of SEQ ID NO: 4, 6 or SEQ ID NO: 9 is constructed. Nucleic acids can be constructed by PCR amplification using appropriate primers. Alternatively, DNA sequences can be prepared by standard methods known in the art, for example, using an automatic DNA synthesizer (available from Biosearch or Applied Biosystems).
  • the constructed nucleic acid is operatively linked thereto to be inserted into a vector containing one or more expression control sequences (eg, promoters, enhancers, etc.) that control the expression of the nucleic acid.
  • expression control sequences eg, promoters, enhancers, etc.
  • the recovery can be carried out using a method known in the art (eg, chromatography)
  • "substally pure peptide” means that the peptide according to the present invention is derived from cells.
  • the genetic engineering method for synthesizing the peptides of the present invention may refer to the following documents: Maniatis et al., Molecular Cloning; A laboratory Manual, Cold Spring Harbor laboratory, 1982; Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Press, NY, Second (1998) and Third (2000) Editions; Gene Expression Technology, Method in Enzymolo gy, Genetics and Molecular Biology, Method in Enzymology, Guthrie & Fink (eds.), Academic Press, San Diego, Calif, 1991; And Hitzeman et al., J. Biol. Chem., 255:12073-12080, 1990.
  • polypeptides of the present invention can be easily prepared by chemical synthesis known in the art (Creighton, Proteins; Structures and Molecular Principles, W. H. Freeman and Co., NY, 1983). Representative methods include, but are not limited to, liquid or solid phase synthesis, fragment condensation, F-MOC or T-BOC chemistry (Chemical Approaches to the Synthesis of Peptides and Proteins, Williams et al., Eds., CRC Press). , Boca Raton Florida, 1997; A Practical Approach, Athert on & Sheppard, Eds., IRL Press, Oxford, England, 1989).
  • polypeptides of the present invention include the functional equivalents and salts thereof of the polypeptides of the present invention described above.
  • the "functional equivalent” refers to having sequence homology (ie, identity) of at least 80% or more, specifically 90%, and more specifically 95% or more with the aforementioned polypeptide of the present invention, for example, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96% , 97%, 98%, 99%, 100% sequence homology, and refers to a peptide exhibiting substantially the same physiological activity as the polypeptide of the present invention.
  • substantially homogeneous physiological activity refers to an activity targeting mitochondria (ie, activity to move, distribute and/or bind to mitochondria).
  • the functional equivalent may be one generated as a result of addition, substitution or deletion of some of the amino acid sequences of the polypeptide of the present invention described above.
  • the amino acid substitution in the above is preferably a conservative substitution.
  • conservative substitutions of amino acids present in nature are as follows; Aliphatic amino acids (Gly, Ala, Pro), hydrophobic amino acids (Ile, Leu, Val), aromatic amino acids (Phe, Tyr, Trp), acidic amino acids (Asp, Glu), basic amino acids (His, Lys, Arg, Gln, Asn ) And sulfur-containing amino acids (Cys, Met).
  • the functional equivalent includes a variant in which a part of an amino acid is deleted from the amino acid sequence of the polypeptide of the present invention.
  • the deletion or substitution of the amino acid is preferably located in a region that is not directly related to the physiological activity (mitochondrial targeting) of the polypeptide provided by the present invention.
  • variants in which several amino acids are added in the sequence or at both ends of the amino acid sequence of the polypeptide of the present invention are also included.
  • the scope of the "functional equivalent” of the present invention includes derivatives in which some of the chemical structures of the peptides are modified while maintaining targeting activity on the basic skeleton and mitochondria of the polypeptide of the present invention. This includes, for example, structural changes to alter the stability, storage, volatility or solubility of the peptide.
  • the peptide of the present invention may be modified by phosphorylation, sulfation, acrylation, glycosylation, methylation, farnesylation, or the like.
  • One letter (three letters) of amino acids used in the present invention means the following amino acids according to the standard abbreviation regulations in the field of biochemistry:
  • amino acid (one amino acid position) (one amino acid position)' as used in the specification of the present invention means that the amino acid previously indicated at the corresponding amino acid position of the natural (wild type) polypeptide is substituted with the amino acid indicated later.
  • R44A represents a point mutation in which arginine at the 44th amino acid sequence is substituted with alanine.
  • Another aspect of the present invention provides a composition for detecting mitochondria comprising the polypeptide.
  • the polypeptide of the present invention may be provided in a labeled state to facilitate the identification, detection, and quantification of the migration, distribution, or/and binding of the polypeptide into the mitochondria.
  • the detectable label is a chromogenic enzyme (eg peroxidase, alkaline phosphatase), a radioactive isotope (eg 18 F, 123 I, 124 I, 125 I, 32 P, 35 S, 67 Ga), and A chromophore, a luminescent material, or a fluorescent material (e.g., FITC, RITC, Fluorescent Protein (GFP); EGFP (Enhanced Green Fluorescent Protein), RFP (Red Fluorescent Protein)); DsRed (Discosoma sp.
  • a chromogenic enzyme eg peroxidase, alkaline phosphatase
  • a radioactive isotope eg 18 F, 123 I, 124 I, 125 I, 32 P, 35 S, 67 Ga
  • a chromophore e.g., FITC, RITC, Fluorescent Protein (GFP); EGFP (Enhanced Green Fluorescent Protein), RFP (Red
  • red fluorescent protein CFP (Cyan Fluorescent Protein), CGFP (Cyan Green Fluorescent Protein), YFP (Yellow Fluorescent Protein), Cy3, Cy5, and Cy7.5
  • magnetic resonance imaging material e.g. Gadolinium (Gd, gadolinium), paramagnetic It may be particles (super paramagnetic particles) or super paramagnetic particles (ultrasuper paramagnetic particles).
  • the detection method according to the label is widely known in the art, but may be performed, for example, by the following method. If a fluorescent substance is used as a detectable label, immunofluorescence staining can be used. For example, after reacting the peptide of the present invention labeled with a fluorescent substance with a sample and removing unbound or non-specific binding products, fluorescence by the peptide can be observed under a fluorescence microscope. In addition, when an enzyme is used as a detectable label, the absorbance is measured by a color reaction of a substrate through an enzymatic reaction, and in the case of a radioactive substance, the radiation emission amount can be measured. In addition, the detected result may be imaged according to a known imaging method according to the detection mark.
  • Another aspect of the present invention (a) mixing the polypeptide with a sample; (b) removing the unbound or non-specifically bound polypeptide; And (c) it provides a method for detecting mitochondria comprising the step of confirming the binding of the polypeptide and the position.
  • step (c) the movement, distribution, or/and binding of the polypeptide of the present invention into the mitochondria and the location of the polypeptide of the present invention are confirmed by a method known in the art with reference to the description in the composition for detecting mitochondria. It can be done by detecting the polypeptide.
  • sample may mean a biological sample, and for example, may be any one selected from the group consisting of a cell sample, a biopsy sample, a solid tissue sample such as tissue culture, blood, and the like, but is not limited thereto.
  • the sample can be pretreated prior to use for detection. For example, it may include extraction, concentration, inactivation of interfering components, addition of reagents, and the like.
  • composition for imaging mitochondria comprising the polypeptide.
  • intracellular mitochondria can be imaged in vitro or in vivo together with any labeling means (imaging means). Although not limited thereto, for example, it is possible to diagnose or monitor morphological abnormalities of mitochondria and related diseases according to the imaging.
  • the imaging and diagnosis of the mitochondrial-related disease is not limited thereto, but may include the purpose of the initial examination of the disease, the progress of the disease, the course of treatment for the treatment, and monitoring the response to the treatment.
  • the peptide of the present invention may be provided in a labeled state in order to facilitate identification, detection, quantification, etc. of migration, distribution or/and binding in the mitochondria.
  • Another aspect of the present invention provides a mitochondrial-specific drug delivery composition comprising the polypeptide.
  • the peptide may be in a state associated with a drug
  • the drug may be one or more selected from the group consisting of a pharmacologically active compound, a polypeptide, or a polynucleotide, but is not limited thereto.
  • the linkage of the drug (or drug preparation) and the polypeptide of the present invention may be performed through a method known in the art, such as covalent bonding, crosslinking, and the like.
  • the polypeptide of the present invention may be chemically modified within a range in which its activity is not lost.
  • the linkage is meant to include both direct bonds (eg, by covalent bonds) between the drug and the polypeptide of the present invention, as well as indirect bonds including a linker or the like.
  • the amount of the peptide of the present invention contained in the composition of the present invention may vary depending on the type and amount of the therapeutic agent to be bound.
  • the drug may be a drug used for the prevention or treatment of diseases related to mitochondrial dysfunction.
  • the disease associated with the mitochondrial dysfunction is a state in which the biological activity of mitochondria in normal cells is decreased or increased, but is not limited thereto, but is, for example, a disease caused by mutation, deletion, or rearrangement of mitochondrial DNA; Diseases caused by the nuclear-coding defective protein component of the mitochondrial respiratory chain; Age-related diseases; Diseases resulting from administration of cytotoxic cancer chemotherapeutic agents; Diseases caused by defects in activity of mitochondrial complexes I, II, III, IV or V; Congenital mitochondrial disease; Neurodegenerative diseases; Neuromuscular degenerative diseases; And cancer diseases.
  • the disease is a decrease in mitochondrial enzyme activity, decrease in electron transport chain activity, decrease in membrane potential, increase in production of reactive oxygen species, mitochondria fragmentaion, calcium dysregulation, And mitochondrial DNA (mtDNA) may be due to any one mitochondrial dysfunction selected from the group consisting of mutations, but is not limited thereto.
  • Such diseases include cancer, Alzheimer's disease, Parkinson's disease, Huntington's disease, muscular dystrophy, muscular dystrophy, chronic fatigue syndrome, Friedrich's ataxia, epilepsy, peripheral neuropathy, optic neuropathy, autonomic neuropathy, neuropathy.
  • Intestinal dysfunction sensorineural hearing loss, nerve-derived bladder dysfunction, migraine, ataxia, renal tubular acidosis, dilated cardiomyopathy, steatohepatitis, liver failure, lactic acidemia, mitochondrial encephalopathy with lactic acidemia and strokelike episodes; MELAS), Leber's hereditary optic neuropathy (LHON), MERRF syndrome (Myoclonic Epilepsy with Ragged-Red Fibers syndrome), MNGIE syndrome (Mitochondrial neurogastrointestinal encephalopathy syndrome), NARP syndrome ((neuropathy, ataxia) retinitis pigmantosa), Barth Syndrome, Leigh Syndrome, Kearns-Sayre syndrome, degenerative brain disease, Multiple Sclerosis-like Syndrome, Maternally hereditary cardiomyopathy Inherited CardioMyopathy), Progressive External Ophthalmoplegia, Pearson Marrow syndrome, Aminoglycoside-associated deafness, Diabetes with deafness, Lucas disease ), Alpers Disease, medium chain acyl-CoA
  • the drug provides a drug used for the prevention or treatment of diseases related to mitochondrial dysfunction together with the polypeptide of the present invention, so that the drug can act more efficiently. Therefore, the composition of the present invention can be usefully used in the prevention or treatment of diseases related to mitochondrial dysfunction.
  • the drug may be an antioxidant.
  • antioxidants are acetylcysteine (N-Acetylcysteine), glutathione (glutathione), SOD-like (SOD-mimicking) peptide, Zeto-Schiller-peptide (Szeto-Schiller-peptides), vitamin E (Vitamine E). It may be one or more selected from the group, but is not limited thereto.
  • the drug may be an anticancer agent.
  • the anticancer agent is gemcitabine, paclitaxel, doxorubicin, vincristine, daunorubicin, vinblastine, actinomycin-D (actinomycin- D), docetaxel, etoposide, teniposide, bisantrene, homoharringtonine, Gleevec (STI-571), cisplain, 5-flo 5-fluouracil, adriamycin, methotrexate, busulfan, chlorambucil, cyclophosphamide, melphalan, nitrogen mustard (nitrogen mustard), nitrosourea, streptokinase, urokinase,reteplase, angiotensin II inhibitor, aldosterone receptor inhibitor, eryopothrietin , NMDA (N-methyl-d-aspartate) receptor inhibitor, Lovastatin, Rapamycin, Celebrex, Ticlopin Marim
  • composition for drug delivery of the present invention may be formulated with a suitable carrier according to the route of administration.
  • compositions of the present invention can be formulated using methods known in the art to provide rapid, sustained or delayed release of the active ingredient after administration to a mammal.
  • the effective amount of the drug delivery composition may be administered through various routes.
  • "effective amount” refers to an amount of substance that enables diagnosis or tracking of therapeutic effects when administered to a patient.
  • the dosage of the composition according to the present invention may be appropriately selected according to the route of administration, the subject to be administered, the target disease and its severity, age, sex, weight, individual differences, and disease states.
  • composition containing the polypeptide of the present invention can vary the content of the active ingredient depending on the severity of the disease, but is usually administered several times a day in an effective dose of 1 mg to 1000 mg per administration based on an adult. It can be administered repeatedly.
  • the route of administration of the composition according to the present invention is not limited thereto, but may be administered orally or parenterally.
  • the parenteral route of administration may include, for example, transdermal, nasal, abdominal, intramuscular, subcutaneous or intravenous routes.
  • composition of the present invention may be formulated in various ways according to the route of administration by a method known in the art together with a pharmaceutically acceptable carrier.
  • 'Pharmacologically acceptable refers to a non-toxic composition that is physiologically acceptable and does not inhibit the action of the active ingredient when administered to humans, and does not usually cause allergic reactions such as gastrointestinal disorders and dizziness or similar reactions.
  • the carrier includes all kinds of solvents, dispersion media, oil-in-water or water-in-oil emulsions, aqueous compositions, liposomes, microbeads and microsomes.
  • the composition of the present invention may be formulated according to a method known in the art in the form of an injection, a transdermal administration and a nasal inhalation agent together with a suitable parenteral carrier.
  • the injection must be sterilized and protected from contamination by microorganisms such as bacteria and fungi.
  • suitable carriers for injections include, but are not limited to, water, ethanol, polyol (eg, glycerol, propylene glycol and liquid polyethylene glycol, etc.), a mixture thereof and/or a solvent or dispersion medium containing vegetable oil. I can.
  • the injection may further include an isotonic agent such as sugar or sodium chloride in most cases.
  • composition according to the present invention may include one or more buffers (e.g. saline or PBS), carbohythrate (e.g. glucose, mannose, sucrose or dextran), antioxidants, bacteriostatic agents, chelating agents (e.g. For example, EDTA or glutathione), adjuvants (eg, aluminum hydroxide), suspending agents, thickening agents and/or preservatives may further be included.
  • buffers e.g. saline or PBS
  • carbohythrate e.g. glucose, mannose, sucrose or dextran
  • antioxidants e.g. glucose, mannose, sucrose or dextran
  • bacteriostatic agents e.g.
  • chelating agents e.g. For example, EDTA or glutathione
  • adjuvants e.g, aluminum hydroxide
  • suspending agents e.g., aluminum hydroxide
  • thickening agents and/or preservatives may further be included.
  • Another aspect of the present invention provides a polynucleotide encoding the polypeptide for targeting mitochondria of the present invention.
  • the polynucleotide is not particularly limited in base combination of the polynucleotide as long as it can encode the polypeptide of the present invention.
  • the polynucleotide may be provided as a single-stranded or double-stranded nucleic acid molecule including all DNA, cDNA and RNA sequences.
  • polynucleotide encoding the polypeptide represented by SEQ ID NO: 3 may include the nucleotide sequence of SEQ ID NO: 4, and the polynucleotide encoding the polypeptide represented by SEQ ID NO: 5 represents the nucleotide sequence of SEQ ID NO: 6
  • the polynucleotide encoding the polypeptide represented by SEQ ID NO: 8 may include the nucleotide sequence of SEQ ID NO: 9, but is not limited thereto.
  • Another aspect of the present invention provides a recombinant vector comprising the polynucleotide.
  • the vector of the present invention may include, but is not limited to, a plasmid vector, a cozmid vector, a bacteriophage vector, and a viral vector.
  • the vector of the present invention may be a recombinant viral vector.
  • the recombinant viral vector of the present invention may be used without limitation as long as it is a viral vector commonly used to deliver genes in the field of gene therapy.
  • the recombinant viral vector may be selected from the group consisting of an adenovirus vector, an adeno-associated virus (AAV) vector, a retroviral vector, a herpes virus vector, a lentiviral vector, a vaccinia virus vector, and a poxvirus vector.
  • AAV adeno-associated virus
  • the recombinant viral vector in the present invention may preferably be an adenovirus vector.
  • Adenovirus is treated in the field of gene therapy due to its medium genome size, ease of genetic manipulation and manufacture, ease of production and separation due to high titer, and high infection efficiency with a wide range of target cells. It is widely used as a carrier for delivering the yong gene. For gene therapy, adenoviruses, which lack the ability to self-replicate and produce viruses, are widely used.
  • the vector of the present invention may be a conventional cloning vector or expression vector, and the expression vector is for membrane targeting or secretion in addition to expression control sequences such as promoter, operator, start codon, stop codon, polyadenylation signal and enhancer (promogene). It includes a signal sequence or a leader sequence and can be prepared in various ways according to the purpose.
  • the polynucleotide sequence according to the present invention may be operably linked to an expression control sequence, and the operably linked gene sequence and expression control sequence are one expression including a selection marker and a replication origin. It can be contained within a vector. “Operably linked” can be a gene and expression control sequence linked in a manner that allows gene expression when an appropriate molecule is bound to an expression control sequence.
  • “Expression control sequence” means a DNA sequence that controls the expression of a polynucleotide sequence operably linked in a particular host cell. Such regulatory sequences include promoters to effect transcription, any operator sequences to regulate transcription, sequences encoding suitable mRNA ribosome binding sites, and sequences that regulate termination of transcription and translation.
  • the vector includes a selection marker for selecting a host cell containing the vector, and in the case of a replicable vector, it includes a source of replication.
  • the vector provided in the present invention includes a promoter, the polynucleotide of the present invention, and a polynucleotide encoding the protein of interest, and the promoter, the polynucleotide of the present invention and the gene encoding the protein of interest are operably linked It can be a recombinant vector.
  • the "target protein” refers to a polypeptide molecule intended for movement, delivery, distribution, or/and binding into the mitochondria in practicing the present invention by those skilled in the art, but is not limited thereto, but an example protein; And it may be selected from the group consisting of disease treatment proteins.
  • the recombinant vector may further include a labeling means (a gene encoding the labeling protein), which is also operably linked.
  • the recombinant vector is a promoter, a polynucleotide encoding the amino acid sequence of the polypeptide of the present invention (representative example, SEQ ID NO: 3, 5 or SEQ ID NO: 8), a gene encoding the protein of interest, and a marker protein (e.g. For example, a fluorescent protein) gene can be operably linked.
  • a marker protein e.g. For example, a fluorescent protein
  • Another aspect of the present invention provides a method of moving or/and distributing a protein of interest to mitochondria comprising the step of introducing the recombinant vector into cells.
  • This method may be performed, including the following steps, for example:
  • a promoter a polynucleotide encoding the amino acid sequence of the polypeptide of the present invention (representative example, SEQ ID NO: 3 or SEQ ID NO: 5), a gene encoding a protein of interest, and a gene encoding a label protein (these work
  • the cell type is not particularly limited as long as it has mitochondria, and may preferably be a eukaryotic cell, particularly a human or mammalian cell.
  • the cells may be isolated from an individual.
  • introduction of a recombinant vector (especially hybrid plasmid) into a cell can be understood as transforming a cell using a recombinant vector, and the transformation method is well known to those skilled in the art. Method can be used. For example, microprojectile bombardment, electroporation, calcium phosphate (CaPO4) precipitation, calcium chloride (CaCl2) precipitation, PEG-mediated fusion, microinjection ) And a liposome-mediated method, but are not limited thereto.
  • CaPO4 calcium phosphate
  • CaCl2 calcium chloride
  • PEG-mediated fusion calcium chloride
  • microinjection microinjection
  • a liposome-mediated method but are not limited thereto.
  • the fluorescence of a specific wavelength emitted from the protein expressed in the transformed cell can be continuously imaged using a fluorescence microscope. By doing so, it is possible to visualize the expression process of the target protein in the cell and the migration process to the mitochondria in detail step by step.
  • Another aspect of the present invention provides a cell transformed with the vector.
  • transformation with the vector can be performed by a transformation technique known to those skilled in the art, which is referred to as the foregoing.
  • the term'cell' may be used interchangeably with'transformants', etc., and introduced into cells by any means (e.g., the aforementioned electric shock method, calcium phosphatase precipitation method, microinjection method, viral infection, etc.) It means a cell containing heterologous DNA (in the present invention, preferably a eukaryotic cell).
  • the transformant is all kinds of single-celled organisms commonly used in the field of cloning, such as prokaryotic microorganisms such as various bacteria (eg, Clostridia genus, E. coli, etc.), lower eukaryotic microorganisms such as yeast, and insect cells.
  • prokaryotic microorganisms such as various bacteria (eg, Clostridia genus, E. coli, etc.)
  • lower eukaryotic microorganisms such as yeast
  • insect cells Cells derived from higher eukaryotes including, plant cells, mammals, and the like may be used as cells, but are not limited thereto. Since the expression level and modification of the protein differ depending on the cell, one of ordinary skill in the art can select and use the most suitable cell for the purpose.
  • microorganisms used as transformants in the present invention are Escherichia coli , Bacillus subtilis , Streptomyces spp., Pseudomonas spp., Proteus mirabilis, and Proteus mirabilis. It may be Proteus mirabilis , a microorganism of the genus Staphylococcus spp., Agrobacterium tumefaciens , and the like, but is not limited thereto.
  • polypeptide of the present invention exhibits a feature that is targeted to mitochondria, it can be utilized as an application for delivering a target substance to mitochondria by using it.
  • Figure 1 shows the two novel SLC1A5 transcript variants, SLC1A5 and SLC1A5_var, identified in the present invention (A: the constitution of the exon and intron of the human SLC1A5 gene, and the two transcript variants SLC1A5 (NM_005628. 2) and SLC1A5_var (NM_001145145.1)
  • A the constitution of the exon and intron of the human SLC1A5 gene, and the two transcript variants SLC1A5 (NM_005628. 2) and SLC1A5_var (NM_001145145.1)
  • B As the exon structure of the mRNA transcripts of SLC1A5 (blue) and SLC1A5_var (red), the binding site of siRNA and the RT-PCR amplification product are indicated).
  • FIG. 2 shows the results of analyzing the expression pattern of SLC1A5_var in various cancer cells (A, B: pancreatic cancer cell line; C, D: colon cancer cell line; E, F: lung cancer cell line).
  • FIG. 3 shows the results of confirming the distribution of SLC1A5_var in the mitochondria in the cells by immunofluorescence (A: results of confirming HeLA cells transformed with HA-taggged SLC1A5_var or HA-taggged SLC1A5 by immunofluorescence.
  • A results of confirming HeLA cells transformed with HA-taggged SLC1A5_var or HA-taggged SLC1A5 by immunofluorescence.
  • B SLC1A5_var and cells Quantitative analysis of the presence of organelle markers using Zen colocalization analysis).
  • Figure 4 shows the results of confirming the distribution of SLC1A5_var in the mitochondria in the cell through the cell organelle fractionation experiment (A: immunoblot result of the cell organelle fractionation experiment of SLC1A5_var obtained from MiaPaCa2 cells. B: Mitochondria of MiaPaCa2 against SLC1A5_var Organelle fractionation test results).
  • Figure 5 shows the experimental results confirming that the SLC1A5 transcript variant is a mitochondrial glutamine transporter targeting mitochondria isolated from MiaPaCa2 cells expressing the control vector, SLC1A5, SLC1A5_var, or SLC1A5_var D186A mutation
  • A time course Degree of glutamine uptake (Gln uptake) according to B: degree of amino acid uptake
  • C control vector, SLC1A5, SLC1A5_var, or SLC1A5_var The degree of glutamine uptake in the case of treatment with siRNA for the D186A mutation
  • D siRNA The degree of amino acid uptake after treatment
  • E Experimental results showing that inhibitors of the SLC1A5 transcript variant inhibit the glutamine transporter activity of the SLC1A5 transcript variant
  • F ⁇ -KG levels and mitochondria in each cell, in the whole cell side ⁇ -KG level at).
  • FIG. 6 shows the results of testing whether or not mitochondrial targeting of polypeptide fragments isolated from SLC1A5_var protein was tested (A: Preliminary results of predicting the mitochondrial target region of SLC1A5_var total protein using the rediSi program. B: Mitochondrial targeting of the present invention.
  • Figure 7 shows each experimental group and control polypeptide conjugated to the N-terminus of GFP (representatively, NT-WT fragment, NT_3A fragment, NT_2A fragment, NT_(1-26) fragment, NT_(27-46) fragment, and CT. Fragment) is shown in the confocal microscopy (confocal microscopy) observation image of the transformed living HeLa cells.
  • the human SLC1A5 gene consists of eight exons, and there are two transcript variants with different transcription start sites (NM_005628.2 and NM_001145145.1; Fig. 1A).
  • Long-length transcript variants (SLC1A5/ASCT2, NM_005628.2) lack exon 2 and consist of 541 amino acids
  • short transcript variants (SLC1A5_var, NM_001145145.1) lack exon 1, 339 It consists of dog amino acids (Fig. 1B).
  • the SLC1A5 transcript variant was named SLC1A5_var.
  • the mRNA level of each transcript variant was analyzed using RT-PCR.
  • RNA for the RT-PCR was isolated using an RNA extraction kit (MiniBEST Universal RNA Extraction Kit, Takara) and synthesized into cDNA using a cDNA synthesis kit (PrimeScriptTM 1st strand cDNA Synthesis Kit, Takara).
  • the synthesized cDNA uses a primer set consisting of primers having nucleotide sequences of SEQ ID NOs: 10 to 13 shown in Table 1 below, and reverse transcription polymer chain reaction (RT) at 95° C., 45° C. and 72° C. After amplification through PCR), the reaction result was confirmed through 1% agarose gel electrophoresis method. The results were quantitatively analyzed using ImageJ software and GAPDH was used as a quantification criterion.
  • SLC1A5_var in all pancreatic cancer cell lines was increased compared to that of normal pancreatic ductal epithelial cells (HPDE), and more particularly, more overexpressed in Panc-1, MiaPaCa-2, AsPC1, and Panc10.05 cell lines. It was confirmed (A, B in Fig. 2). In addition, even in various colon cancer cell lines, the expression level of SLC1A5_var was measured higher than that of human colon epithelial cells (FHC) (FIG. 2C and D).
  • HPDE pancreatic ductal epithelial cells
  • FHC human colon epithelial cells
  • SLC1A5_var unlike SLC1A5_var, SLC1A5 did not increase its expression in pancreatic or colon cancer cell lines.
  • the intracellular distribution pattern of the SLC1A5_var transcript variant protein which was confirmed to have a high expression level in cancer cells, was confirmed.
  • HeLa cells were transformed by conjugating HA-tag to the cDNA of the SLC1A5_var transcript mutant, and the colocalization pattern with organelle markers was analyzed.
  • the cells used in the experiment were HeLa cells and were labeled with anti-Cox4 antibody, anti-Na+-K+ ATPase antibody, anti-ERp72 antibody, anti-GM130 antibody, and anti-LAMP2 antibody as primary antibodies, respectively, after fixation with methanol. Thereafter, labeling was performed using an antibody labeled with Alexa-488 or Alexa-594 fluorescence as a secondary antibody. Cell nuclei were stained with DAPI and then observed with a confocal microscope. To determine the degree of image overlap, 10 or more images per sample were analyzed using Zen imaging software.
  • the SLC1A5_var protein containing the HA-tag was observed to coexist with the mitochondrial marker (COX4), but the cell membrane (Na, K-ATPase), endoplasmic reticulum (ERp72), Golgi apparatus (GM130) or Ly It was confirmed that the SLC1A5_var protein was present in the mitochondria because the expression pattern was different from that of markers such as smallsome (LAMP2) (Fig. 3A, B).
  • the SLC1A5_var protein is present in the mitochondria, and an organelle fractionation experiment was performed in order to examine the distribution pattern in more detail (FIG. 4).
  • the mitochondrial inner membrane was separated under low osmotic pressure conditions.
  • the mitochondrial fraction was put in a swelling buffer (10M KH 2 PO 2 , digitonin 2 mg/ml, pH 7.4) and then stored on ice for 1 hour. And the same volume of iso-osmotic solution (32% sucrose, 30% glycerol, and 10mM MgCl 2 ) was added. Thereafter, centrifugation was performed at 10000 g and 10 min, and the resulting supernatant was used as the mitochondrial outer membrane fraction, and the pellet was used as the mitochondrial inner membrane and matrix fraction.
  • the pellet was resuspended again using a swelling buffer without digitonin, stored on ice for 1 hour, and the same volume of iso-osmotic solution was added again, followed by centrifugation at 17000 g for 1 hour. After separation, the supernatant was used as a matrix fraction and the pellet was used as a mitochondrial inner membrane fraction.
  • Immunoblotting was performed on the mitochondrial organelle fraction.
  • cells were crushed using lysis buffer (40mM HEPES at pH 7.4, 0.5% Triton X-100, 10mM ⁇ -glycerol phosphate, 10mM pyrophosphate, 2.5mM MgCl 2 ) and ultrasonic waves.
  • PNGase F was treated for observation of SLC1A5_var.
  • the sample was not boiled, and at least about 30 ug of protein per sample was separated by SDS-PAGE.
  • the primary antibody corresponding to each protein is treated at 4°C for 8 hours, and the secondary antibody with HRP that recognizes each primary antibody is attached to each existing membrane. Protein was identified.
  • the SLC1A5_var protein was isolated together with Tim23, a marker of the mitochondrial inner membrane, but was fractionated independently from Tom20, a marker of the outer mitochondrial membrane, and MnSOD2, a marker of the mitochondrial matrix (FIG. 4B). Therefore, it was clearly confirmed that the SLC1A5_var protein was distributed in the mitochondria and the SLC1A5 protein was distributed in the cell membrane.
  • SLC1A5_var or SLC1A5_var D186A were stably expressed in MiaPaCa2 cells, which are pancreatic cancer cell lines, respectively, and glutamine uptake activity in mitochondria was measured.
  • Example 3 After obtaining a mitochondrial fraction by the method of Example 3, resuspended in a buffer containing 10 mM NaCl, 100 mM glutamine, 100 mM serine, 100 mM alanine or 100 mM glutamic acid in KPBS buffer, and then stored at 37°C. Started amino acid absorption. Thereafter, 20 mM HgCl 2 was added to terminate the reaction, and after completion, each sample was centrifuged for 10000 g and 5 min. Thereafter, the supernatant was taken and the remaining amino acids consumed compared to the first were measured using an amino acid assay kit (Glutamine assay kit, Serine assay kit, Alanine assay kit, Glutamate assay kit, Biovision). The measured value was corrected by measuring the amount of mitochondrial protein in each sample and using it as a reference value for quantification.
  • an amino acid assay kit Glutamine assay kit, Serine assay kit, Alanine assay kit, Glutamate assay kit, Biovision
  • each of SLC1A5 and SLC1A5_var was knocked down using siRNA.
  • the control siRNA was composed of SEQ ID NO: 14
  • the siRNA against SLC1A5 was composed of SEQ ID NO: 15
  • the siRNA against SLC1A5_var was composed of the nucleotide sequence represented by SEQ ID NO: 16.
  • the uptake of glutamine was inhibited in mitochondria isolated from cells that inhibited the overexpression of SLC1A5_var, but this phenomenon was not observed in mitochondria isolated from cells that suppressed the overexpression of SLC1A5 (Fig. 5C).
  • the same results were observed for alanine and serine (FIG. 5D).
  • the inhibitors are known HgCl 2 also mitochondrial glutamine absorption as that was shown to inhibit mitochondrial glutamine absorption in which the basal levels (basal level) and SLC1A5_var parameter, terminating the transport induced by SLC1A5 in proteosome liposomes (proteoliposome) Suppressed (Fig. 5E).
  • SLC1A5_var is a mitochondrial glutamine transporter.
  • SLC1A5_var protein is present in the mitochondrial inner membrane, whether SLC1A5_var contains a mitochondrial targeting sequence (MTS), and if so, where is its location and separates it. It was confirmed whether it can be used alone.
  • MTS mitochondrial targeting sequence
  • the present inventors used the PrediSi program (http://www.predisi.de) to identify the main motifs for mitochondrial targets in the N-terminal amino acid region from the 39th to the 51st amino acid region of the entire SLC1A5_var protein. It was checked for existence.
  • NT_(27-46) in Fig. 6B consisting of positively charged amino acids (arginine, R; lysine, K) immediately following a non-hydrophobic ⁇ -helical structure is targeted to mitochondria. It was confirmed that it is a key sequence for.
  • FIG. 6B shows the location of the fragment corresponding to the N-terminal 1 to 46aa (NT-WT fragment) from the total protein SLC1A5_var and the C-terminal 235 to 339aa fragment (CT fragment) used as a control, and the basicity of the NT-WT fragment.
  • the R9A/R15A/K17A mutation (referred to as NT_3A) and the R44A/K45A mutation (referred to as NT_2A) introducing a point mutation in the amino acid are shown.
  • NT-WT fragment was divided in half, and a fragment of NT_(1 ⁇ 26) which is the first half of the N-terminal and NT_(27 ⁇ 46) which is the second half of the N-terminus were respectively shown.
  • the sequence of each fragment described above is specifically described in Table 2 below.
  • EGFP Enhanced green fluorescent protein, GenBank: AFA52654.1
  • GenBank: AFA52654.1 Enhanced green fluorescent protein
  • cells were used for confocal microscopy only. While culturing in a cell culture dish, each cell was transfected with a control vector or a plasmid capable of expressing NT_WT, NT_3A, NT_2A, NT_(1 ⁇ 26), NT_(27 ⁇ 46) and CT and EGFP, which are a part of SLC1A5_var. (transfection). After 48 hours, mitochondria were labeled with MitoTracker Red, a reagent capable of staining mitochondria, and observed with a confocal microscope.
  • MitoTracker Red a reagent capable of staining mitochondria
  • EGFP bound to the NT-WT fragment and NT_3A (R9A/R15A/K17A mutation) fragment was targeted to mitochondria
  • EGFP bound to the NT_2A (R44A/K45A mutation) fragment was not targeted to mitochondria. It was not and was dispersed in the cytoplasm.
  • NT_(1 ⁇ 26) consisting of the 1st to 26th amino acid sequence consisting of the hydrophilic amino acid sequence of the first half of NT-WT was not targeted to the mitochondria, but NT_(27 ⁇ 46) consisting of the hydrophobic amino acid sequence and the positively charged amino acid of the latter half was targeted to mitochondria, and it was confirmed that the fragment corresponds to the smallest unit fragment targeted to mitochondria.
  • Figure 8 shows the results of quantitatively evaluating the colocalization of the mitochondrial marker Mitotracker and each fragment on a confocal microscope, and as shown in Figure 8, the NT-WT fragment, NT_3A (R9A/R15A/K17A mutation) ) Fragment and NT_(27 ⁇ 46) confirmed that the mitochondrial targeting effect was remarkably excellent.
  • EGFP conjugated to NT_WT fragment, NT_3A fragment or NT_(27 ⁇ 46) fragment was detected with COX4 in the fraction from which mitochondria are separated, whereas NT_2A fragment EGFP conjugated to or control EGFP and NT_(1-26) were detected in a fraction from which the cytoplasm or endomembrane was separated.
  • NT_(27 ⁇ 46) fragment having the amino acid sequence of SEQ ID NO: 8 is a key sequence for mitochondrial targeting.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Cell Biology (AREA)
  • Immunology (AREA)
  • Public Health (AREA)
  • Biochemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Biomedical Technology (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Food Science & Technology (AREA)
  • Microbiology (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biotechnology (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • Zoology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

The present invention relates to a mitochondria targeting polypeptide and a use thereof.

Description

미토콘드리아 타겟팅용 폴리펩타이드 및 그 용도Mitochondrial targeting polypeptide and its use
본 발명은 미토콘드리아 타겟팅용 폴리펩타이드 및 그 용도에 관한 것이다. 본 연구는 2018-2019년도 교육부의 재원으로 한국연구재단의 지원을 받아 연세대학교 주관으로 수행된 암대사에서 ASCT2 variants 역할 규명 및 항암약물로서 그에 대한 길항제 개발(No. 1345279574)과 관련된다. 또한, 본 연구는 2019-2020년도 교육부의 재원으로 한국연구재단의 지원을 받아 연세대학교 주관으로 수행된 연세대학교 종합약학연구소(No. 1345295623)과 관련된다.The present invention relates to a polypeptide for targeting mitochondria and its use. This study is related to the identification of the role of ASCT2 variants in cancer metabolism conducted by Yonsei University with funding from the Ministry of Education in 2018-2019 with the support of the National Research Foundation of Korea, and the development of antagonists for them as anticancer drugs (No. 1345279574). In addition, this study is related to Yonsei University's Comprehensive Pharmacy Research Institute (No. 1345295623) conducted by Yonsei University with support from the National Research Foundation of Korea with the funding of the Ministry of Education in 2019-2020.
미토콘드리아는 세포 내에 물질대사(energetic metabolism), 특정 물질(예를 들면, 지방산 등)의 대사 등, 많은 결정적인 세포내 과정(intracellular processes)에서 핵심적인 역할을 한다. 특히, 미토콘드리아는 자유 라디칼(free radicals; 이하, 'FR'이라 한다) 및 활성 산소종(reactive oxygen species; 이하 'ROS'이라 한다)의 형성 및 이용에 직접적으로 관련되어 있다. 이러한 점 때문에 살아있는 세포 내에서 많은 과정에 영향을 미칠 수 있는 극단적인 반응 부분(reactive moieties)과 관련하여, 미토콘드리아가 세포 예정사멸(programmed cell death)의 과정에서 핵심 역할을 하는 것이 보고되고 있다. Mitochondria play a key role in many critical intracellular processes, including energetic metabolism and metabolism of certain substances (eg, fatty acids) within cells. In particular, mitochondria are directly involved in the formation and use of free radicals (hereinafter referred to as'FR') and reactive oxygen species (hereinafter referred to as'ROS'). Because of this, it has been reported that mitochondria play a key role in the process of programmed cell death in relation to the reactive moieties that can affect many processes in living cells.
이러한 미토콘드리아는 세포내 에너지 대사의 중추이므로 미토콘드리아의 기능 이상은 다양한 질병을 유발한다. 미토콘드리아의 기능 이상에 의해 발생하는 질병으로는 파킨슨병, 헌틴턴병과 같이 노화에 따라 흔하게 발생할 수 있는 발병률이 높은 질병이 있으며, 바쓰 증후군(Barth Syndrome), 리증후군(Leigh Syndrome), 멜라스 증후군(MELAS Syndrome)과 같은 발병률이 낮은 희귀 질병 등이 있다.Since these mitochondria are the backbone of energy metabolism in cells, dysfunction of mitochondria causes various diseases. Diseases caused by dysfunction of mitochondria include diseases with a high incidence that can commonly occur with aging, such as Parkinson's disease and Huntinton's disease, and Barth Syndrome, Leigh Syndrome, and Melas syndrome. MELAS Syndrome) and rare diseases with low incidence.
또한 최근의 연구결과에 따르면 미토콘드리아의 이상은 대사성증후군인 제2형 당뇨병 발병원인일 가능성이 있음이 확인되었다(비특허문헌 1). 미토콘드리아의 기능 이상에 의해 발생하는 이러한 질환들은 세포의 에너지공급 체계에 이상이 발생하는 것으로 대부분 근 질환과 뇌질환을 동반한다.In addition, according to recent research results, it was confirmed that mitochondrial abnormalities may be the cause of the development of type 2 diabetes, a metabolic syndrome (Non-Patent Document 1). These diseases, which are caused by dysfunction of mitochondria, are caused by abnormalities in the energy supply system of cells, and most of them are accompanied by muscle diseases and brain diseases.
따라서, 미토콘드리아의 기능회복을 목적으로 미토콘드리아를 타겟으로 하는 약물 전달체 및 약물에 대한 연구가 활발히 진행중이다. Therefore, studies on drug delivery systems and drugs targeting mitochondria for the purpose of restoring mitochondrial function are actively underway.
이와 같은 접근은, 목표 타겟에 정확하게 원하는 물질을 반복 축적함으로써 물질의 효과적인 농도를 얻을 수 있는 바, 그 적용 효율을 증가시키고, 전체적인 투약(overall dosage)을 줄일 수 있어 부작용의 가능성 및 강도를 줄일 수 있다는 강점이 있다. In this approach, an effective concentration of the substance can be obtained by repeatedly accumulating the desired substance in the target target, increasing the application efficiency and reducing the overall dosage, thereby reducing the likelihood and intensity of side effects. There is a strong point.
그러나, 현재 매우 한정된 수의 미토콘드리아-표적의 생물학적인 활성 물질만이 알려져 있어, 여전히 효과적인 미토콘드리아 타겟팅 수단의 개발이 요구된다.However, currently only a very limited number of mitochondrial-targeted biologically active substances are known, and development of effective mitochondrial targeting means is still required.
배경기술 (특허문헌 1) 미국등록특허 제7,109,189호Background Technology (Patent Document 1) US Patent No. 7,109,189
본 발명의 목적은 미토콘드리아를 타겟팅하는 폴리펩타이드를 제공하는 것이다.An object of the present invention is to provide a polypeptide targeting mitochondria.
본 발명의 다른 목적은 상기 폴리펩타이드를 포함하는 미토콘드리아 검출용 조성물 및 검출방법을 제공하는 것이다.Another object of the present invention is to provide a composition and a method for detecting mitochondria comprising the polypeptide.
본 발명의 또 다른 목적은 미토콘드리아 영상화용 조성물을 제공하는 것이다.Another object of the present invention is to provide a composition for imaging mitochondria.
본 발명의 또 다른 목적은 상기 폴리펩타이드를 포함하는 미토콘드리아 특이적 약물 전달용 조성물을 제공하는 것이다.Another object of the present invention is to provide a mitochondrial-specific drug delivery composition comprising the polypeptide.
본 발명의 또 다른 목적은 상기 폴리펩타이드를 암호화하는 폴리뉴클레오티드, 이를 포함하는 재조합 벡터 및 상기 재조합 벡터로 형질전환된 세포를 제공하는 것이다.Another object of the present invention is to provide a polynucleotide encoding the polypeptide, a recombinant vector comprising the same, and a cell transformed with the recombinant vector.
상기와 같은 목적을 달성하기 위한 본 발명의 일 측면은, 서열번호 1로 표시되는 아미노산 서열에서 27 내지 46번째 아미노산을 포함하는 폴리펩타이드; 또는 상기 폴리펩타이드와 서열 상동성이 90% 이상인 변이체;를 포함하는 것인, 폴리펩타이드를 제공한다. An aspect of the present invention for achieving the above object is a polypeptide comprising the 27th to 46th amino acid in the amino acid sequence represented by SEQ ID NO: 1; Or a variant having a sequence homology of 90% or more with the polypeptide; which includes, provides a polypeptide.
구체적으로, 상기 폴리펩타이드는 미토콘드리아 타겟팅용일 수 있으나, 이에 제한되지 않는다.Specifically, the polypeptide may be for mitochondrial targeting, but is not limited thereto.
본 발명자들은 SLC1A5(solute carrier family 1 member 5) 유전자로부터 유래된 특정 전사 변이체(NCBI genebank mRNA 서열 NM_001145145.1; 단백질 서열 NP_001138617.1/본 명세서에서 SLC1A5_var로 표기)가 단백질 번역 후 미토콘드리아로 타겟팅(표적화)됨을 최초로 규명하였다. In the present inventors, a specific transcriptional variant derived from the SLC1A5 (solute carrier family 1 member 5) gene (NCBI genebank mRNA sequence NM_001145145.1; protein sequence NP_001138617.1/represented as SLC1A5_var in this specification) targets mitochondria after protein translation (targeting ) Was first identified.
특히, SLC1A5의 전사물 변이체 단백질로부터 미토콘드리아 타겟팅 효과가 현저한 특정 폴리펩타이드를 규명하고 단리하는데 성공하였으며, 본 발명에서 “SLC1A5의 전사물 변이체”는 미토콘드리아 내 글루타민 운반체의 활성에 필수적인 미토콘드리아 타겟팅 서열 및 글루타민 운반체 활성을 갖는 단백질을 의미하는 것일 수 있다. In particular, it has been successful in identifying and isolating a specific polypeptide having a remarkable mitochondrial targeting effect from the transcript variant protein of SLC1A5. In the present invention, the "transcript variant of SLC1A5" is a mitochondrial targeting sequence and glutamine transporter essential for the activity of the glutamine transporter in mitochondria It may mean a protein having activity.
상기 폴리펩타이드는 서열번호 3, 5 또는 서열번호 8로 표시되는 아미노산 서열 중 하나 이상 선택된 것을 포함하는 것일 수 있으며, 더욱 구체적으로는 서열번호 8의 아미노산 서열을 포함하는 것일 수 있으나, 이에 제한되지 않는다.The polypeptide may include one or more selected from the amino acid sequence represented by SEQ ID NO: 3, 5 or SEQ ID NO: 8, and more specifically, may include the amino acid sequence of SEQ ID NO: 8, but is not limited thereto. .
본 발명에서 용어 "펩타이드(peptide)"는 "단백질" 또는 “폴리펩타이드(polypeptide)"와 호환성 있게 사용되며, 예컨대, 자연상태의 단백질에서 일반적으로 발견되는 바와 같이 아미노산 잔기의 중합체를 말한다.In the present invention, the term "peptide" is used interchangeably with "protein" or "polypeptide", and, for example, refers to a polymer of amino acid residues as commonly found in proteins in nature.
본 발명의 폴리펩타이드는 천연으로부터 유래될 수도 있으며, 공지의 펩타이드 합성 방법(유전공학적 방법, 화학적 합성)을 이용하여 합성될 수 있다. 유전공학적 방법에 의한 작제는, 예를들어, 통상적인 방법에 따라 상기 펩타이드 또는 이의 기능적 동등물을 암호화하는 핵산(예를 들어, 서열번호 4, 6 또는 서열번호 9의 폴리뉴클레오티드를 작제한다. 상기 핵산은 적절한 프라이머를 사용하여 PCR 증폭함으로써 작제 할 수 있다. 다른 방법으로 당업계에 공지된 표준 방법에 의해, 예컨대, 자동 DNA 합성기(Biosearch 또는 Applied Biosystems 사에서 판매하는 것)을 사용하여 DNA 서열을 합성할 수도 있다. 작제된 핵산은 이에 작동가능하게 연결되어 (operatively linked) 핵산의 발현을 조절하는 하나 이상의 발현 조절 서열(expression control sequence)(예: 프로모터, 인핸서 등)을 포함하는 벡터에 삽입시키고, 이로부터 형성된 재조합 발현 벡터로 세포를 형질전환시킨다. 생성된 형질전환체를 상기 핵산이 발현되기에 적절한 배지 및 조건 하에서 배양하여, 배양물로부터 상기 핵산에 의해 발현된, 실질적으로 순수한 펩타이드를 회수한다. 상기 회수는 당업계에 공지된 방법(예컨대, 크로마토그래피)을 이용하여 수행할 수 있다. 상기에서 "실질적으로 순수한 펩타이드(substally pure peptide)"라 함은 본 발명에 따른 펩타이드가 세포로부터 유래된 어떠한 다른 단백질도 실질적으로 포함하지 않는 것을 의미한다. 본 발명의 펩타이드 합성을 위한 유전공학적 방법은 다음의 문헌을 참고할 수 있다: Maniatis et al., Molecular Cloning; A laboratory Manual, Cold Spring Harbor laboratory, 1982; Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Press, N.Y., Second(1998) and Third(2000) Editions; Gene Expression Technology, Method in Enzymology, Genetics and Molecular Biology, Method in Enzymology, Guthrie & Fink(eds.), Academic Press, San Diego, Calif, 1991; 및 Hitzeman et al., J. Biol. Chem., 255:12073-12080, 1990.The polypeptide of the present invention may be derived from nature, and may be synthesized using a known peptide synthesis method (genetic engineering method, chemical synthesis). Construction by a genetic engineering method, for example, according to a conventional method, a nucleic acid encoding the peptide or a functional equivalent thereof (eg, a polynucleotide of SEQ ID NO: 4, 6 or SEQ ID NO: 9 is constructed. Nucleic acids can be constructed by PCR amplification using appropriate primers. Alternatively, DNA sequences can be prepared by standard methods known in the art, for example, using an automatic DNA synthesizer (available from Biosearch or Applied Biosystems). The constructed nucleic acid is operatively linked thereto to be inserted into a vector containing one or more expression control sequences (eg, promoters, enhancers, etc.) that control the expression of the nucleic acid. , Transforming the cells with a recombinant expression vector formed therefrom, and culturing the resulting transformant under a medium and conditions suitable for expressing the nucleic acid, and recovering the substantially pure peptide expressed by the nucleic acid from the culture. The recovery can be carried out using a method known in the art (eg, chromatography) In the above, "substally pure peptide" means that the peptide according to the present invention is derived from cells. The genetic engineering method for synthesizing the peptides of the present invention may refer to the following documents: Maniatis et al., Molecular Cloning; A laboratory Manual, Cold Spring Harbor laboratory, 1982; Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Press, NY, Second (1998) and Third (2000) Editions; Gene Expression Technology, Method in Enzymolo gy, Genetics and Molecular Biology, Method in Enzymology, Guthrie & Fink (eds.), Academic Press, San Diego, Calif, 1991; And Hitzeman et al., J. Biol. Chem., 255:12073-12080, 1990.
또한, 본 발명의 폴리펩타이드는 당업계에 공지된 화학적 합성(Creighton, Proteins; Structures and Molecular Principles, W. H. Freeman and Co., NY, 1983)에 의해 쉽게 제조될 수 있다. 대표적인 방법으로서 이들로 한정되는 것은 아니지만 액체 또는 고체상 합성, 단편 응축, F-MOC 또는 T-BOC 화학법이 포함된다(Chemical Approaches to the Synthesis of Peptides and Proteins, Williams et al., Eds., CRC Press, Boca Raton Florida, 1997; A Practical Approach, Athert on & Sheppard, Eds., IRL Press, Oxford, England, 1989).In addition, the polypeptides of the present invention can be easily prepared by chemical synthesis known in the art (Creighton, Proteins; Structures and Molecular Principles, W. H. Freeman and Co., NY, 1983). Representative methods include, but are not limited to, liquid or solid phase synthesis, fragment condensation, F-MOC or T-BOC chemistry (Chemical Approaches to the Synthesis of Peptides and Proteins, Williams et al., Eds., CRC Press). , Boca Raton Florida, 1997; A Practical Approach, Athert on & Sheppard, Eds., IRL Press, Oxford, England, 1989).
본 발명의 폴리펩타이드는 전술한 본 발명 폴리펩타이드의 기능적 동등물 및 그들의 염을 포함한다. 일 예로 상기 "기능적 동등물"이란 전술한 본 발명의 폴리펩타이드와 적어도 80% 이상의, 구체적으로는 90%, 더욱 구체적으로는 95%이상의 서열 상동성(즉, 동일성)을 갖는 것으로 예를 들면, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 100%의 서열 상동성을 갖는 것을 포함하며, 본 발명의 폴리펩타이드와 실질적으로 동질의 생리활성을 나타내는 펩타이드를 말한다. 상기에서 "실질적으로 동질의 생리활성"이란 미토콘드리아에 타겟팅하는 활성(즉 미토콘드리아로 이동, 분포 및/또는 결합하는 활성)을 말한다. The polypeptides of the present invention include the functional equivalents and salts thereof of the polypeptides of the present invention described above. For example, the "functional equivalent" refers to having sequence homology (ie, identity) of at least 80% or more, specifically 90%, and more specifically 95% or more with the aforementioned polypeptide of the present invention, for example, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96% , 97%, 98%, 99%, 100% sequence homology, and refers to a peptide exhibiting substantially the same physiological activity as the polypeptide of the present invention. In the above, "substantially homogeneous physiological activity" refers to an activity targeting mitochondria (ie, activity to move, distribute and/or bind to mitochondria).
본 발명에서 기능적 동등물은 전술한 본 발명 폴리펩타이드의 아미노산 서열 중 일부가 부가, 치환 또는 결실의 결과 생성된 것일 수 있다. 상기에서 아미노산의 치환은 바람직하게는 보존적 치환이다. 천연에 존재하는 아미노산의 보존적 치환의 예는 다음과 같다; 지방족 아미노산(Gly, Ala, Pro), 소수성 아미노산(Ile, Leu, Val), 방향족 아미노산(Phe, Tyr, Trp), 산성 아미노산(Asp, Glu), 염기성 아미노산(His, Lys, Arg, Gln, Asn) 및 황함유 아미노산(Cys, Met). 또한 상기 기능적 동등물에는, 본 발명 폴리펩타이드의 아미노산 서열상에서 아미노산의 일부가 결실된 변형체도 포함된다. 상기 아미노산의 결실 또는 치환은 바람직하게는 본 발명에서 제공하는 폴리펩타이드의 생리활성(미토콘드리아 표적화)에 직접적으로 관련되지 않은 영역에 위치해 있다. 아울러 상기 본 발명 폴리펩타이드의 아미노산 서열의 양 말단 또는 서열 내에 몇몇의 아미노산이 부가된 변형체도 포함된다.In the present invention, the functional equivalent may be one generated as a result of addition, substitution or deletion of some of the amino acid sequences of the polypeptide of the present invention described above. The amino acid substitution in the above is preferably a conservative substitution. Examples of conservative substitutions of amino acids present in nature are as follows; Aliphatic amino acids (Gly, Ala, Pro), hydrophobic amino acids (Ile, Leu, Val), aromatic amino acids (Phe, Tyr, Trp), acidic amino acids (Asp, Glu), basic amino acids (His, Lys, Arg, Gln, Asn ) And sulfur-containing amino acids (Cys, Met). In addition, the functional equivalent includes a variant in which a part of an amino acid is deleted from the amino acid sequence of the polypeptide of the present invention. The deletion or substitution of the amino acid is preferably located in a region that is not directly related to the physiological activity (mitochondrial targeting) of the polypeptide provided by the present invention. In addition, variants in which several amino acids are added in the sequence or at both ends of the amino acid sequence of the polypeptide of the present invention are also included.
본 발명의 ‘기능적 동등물’의 범위에는 본 발명 폴리펩타이드의 기본골격과 미토콘드리아에 타겟팅 활성을 유지하면서 펩타이드의 일부 화학 구조가 변형된 유도체가 포함된다. 예를 들어 펩타이드의 안정성, 저장성, 휘발성 또는 용해도 등을 변경시키기 위한 구조변경이 이에 포함된다.The scope of the "functional equivalent" of the present invention includes derivatives in which some of the chemical structures of the peptides are modified while maintaining targeting activity on the basic skeleton and mitochondria of the polypeptide of the present invention. This includes, for example, structural changes to alter the stability, storage, volatility or solubility of the peptide.
경우에 따라서, 본 발명의 펩타이드는 인산화(phosphorylation), 황화(sulfation), 아크릴화(acrylation), 당화(glycosylation), 메틸화(methylation), 파네실화(farnesylation) 등으로 수식(modification)될 수도 있다.In some cases, the peptide of the present invention may be modified by phosphorylation, sulfation, acrylation, glycosylation, methylation, farnesylation, or the like.
본 발명에서 사용된 아미노산의 일문자(삼문자)는 생화학 분야에서의 표준 약어 규정에 따라 다음의 아미노산을 의미한다:One letter (three letters) of amino acids used in the present invention means the following amino acids according to the standard abbreviation regulations in the field of biochemistry:
A(Ala): 알라닌; C(Cys): 시스테인; D(Asp):아스파르트산; E(Glu): 글루탐산; F(Phe): 페닐알라닌; G(Gly): 글라이신; H(His): 히스티딘; I(IIe): 이소류신; K(Lys): 라이신; L(Leu): 류신; M(Met): 메티오닌; N(Asn): 아스파라긴; O(Ply)피롤라이신; P(Pro): 프롤린; Q(Gln): 글루타민; R(Arg): 아르기닌; S(Ser): 세린; T(Thr): 트레오닌; U(Sec):셀레노시스테인, V(Val): 발린; W(Trp): 트립토판; Y(Tyr): 티로신.A(Ala): alanine; C(Cys): cysteine; D(Asp): aspartic acid; E(Glu): glutamic acid; F(Phe): phenylalanine; G(Gly): glycine; H(His): histidine; I(IIe): isoleucine; K(Lys): lysine; L(Leu): leucine; M(Met): methionine; N(Asn): asparagine; O(Ply)pyrrolysine; P(Pro): proline; Q(Gin): glutamine; R(Arg): arginine; S(Ser): serine; T(Thr): threonine; U(Sec): selenocysteine, V(Val): valine; W(Trp): tryptophan; Y(Tyr): Tyrosine.
또한, 본 발명의 명세서에 표기되는 ‘(아미노산일문자)(아미노산위치)(아미노산일문자)’는 천연형(야생형) 폴리펩타이드의 해당 아미노산 위치에서 선행 표기된 아미노산이 후행 표기된 아미노산으로 치환된다는 것을 의미한다. 예를 들어, R44A는 아미노산 서열 44번째에 위치한 아르기닌이 알라닌으로 치환된 점돌연변이를 나타낸다. In addition,'(one amino acid) (one amino acid position) (one amino acid position)' as used in the specification of the present invention means that the amino acid previously indicated at the corresponding amino acid position of the natural (wild type) polypeptide is substituted with the amino acid indicated later. do. For example, R44A represents a point mutation in which arginine at the 44th amino acid sequence is substituted with alanine.
본 발명의 다른 측면은, 상기 폴리펩타이드를 포함하는 미토콘드리아 검출용 조성물을 제공한다.Another aspect of the present invention provides a composition for detecting mitochondria comprising the polypeptide.
상기 폴리펩타이드의 미토콘드리아 내부로 이동, 분포 또는/및 결합 여부 확인, 검출 및 정량을 용이하게 하기 위하여, 본 발명의 폴리펩타이드는 표지된 상태로 제공될 수 있다.The polypeptide of the present invention may be provided in a labeled state to facilitate the identification, detection, and quantification of the migration, distribution, or/and binding of the polypeptide into the mitochondria.
구체적으로, 상기 검출가능한 표지는 발색효소(예: 퍼옥시다제, 알칼라인 포스파타제), 방사성 동위원소(예:18F, 123I, 124I, 125I, 32P, 35S, 67Ga), 크로모포어(chromophore), 발광물질 또는 형광물질(예: FITC, RITC, 형광 단백질(GFP(Green Fluorescent Protein); EGFP(Enhanced Green Fluorescent Protein), RFP(Red Fluorescent Protein); DsRed(Discosoma sp. red fluorescent protein); CFP(Cyan Fluorescent Protein), CGFP(Cyan Green Fluorescent Protein), YFP(Yellow Fluorescent Protein), Cy3, Cy5 및 Cy7.5), 자기공명 영상물질(예: Gadolinium(Gd, 가도리늄), 상자성입자(super paramagnetic particles) 또는 초상자성입자(ultrasuper paramagnetic particles))일 수 있다.Specifically, the detectable label is a chromogenic enzyme (eg peroxidase, alkaline phosphatase), a radioactive isotope (eg 18 F, 123 I, 124 I, 125 I, 32 P, 35 S, 67 Ga), and A chromophore, a luminescent material, or a fluorescent material (e.g., FITC, RITC, Fluorescent Protein (GFP); EGFP (Enhanced Green Fluorescent Protein), RFP (Red Fluorescent Protein)); DsRed (Discosoma sp. red fluorescent) protein); CFP (Cyan Fluorescent Protein), CGFP (Cyan Green Fluorescent Protein), YFP (Yellow Fluorescent Protein), Cy3, Cy5, and Cy7.5), magnetic resonance imaging material (e.g. Gadolinium (Gd, gadolinium), paramagnetic It may be particles (super paramagnetic particles) or super paramagnetic particles (ultrasuper paramagnetic particles).
표지에 따른 검출 방법은 당업계에 널리 알려져 있으나, 예를 들어 다음과 같은 방법에 의해 수행될 수 있다. 만약 검출가능한 표지로 형광물질을 이용하는 경우에는 면역형광염색법을 이용할 수 있다. 예컨대, 형광물질로 표지된 본 발명의 펩타이드를 시료와 반응시키고 미결합 또는 비특이적인 결합 산물을 제거한 다음 형광현미경 하에서 펩타이드에 의한 형광을 관찰할 수 있다. 또한 검출가능한 표지로 효소를 이용하는 경우에는 효소반응을 통한 기질의 발색반응에 의해 흡광도를 측정하고, 방사선 물질인 경우에는 방사선 방출량을 측정함으로써 수행할 수 있다. 아울러, 검출된 결과는 검출표지에 따른 공지된 영상화 방법에 따라 영상화 될 수도 있다.The detection method according to the label is widely known in the art, but may be performed, for example, by the following method. If a fluorescent substance is used as a detectable label, immunofluorescence staining can be used. For example, after reacting the peptide of the present invention labeled with a fluorescent substance with a sample and removing unbound or non-specific binding products, fluorescence by the peptide can be observed under a fluorescence microscope. In addition, when an enzyme is used as a detectable label, the absorbance is measured by a color reaction of a substrate through an enzymatic reaction, and in the case of a radioactive substance, the radiation emission amount can be measured. In addition, the detected result may be imaged according to a known imaging method according to the detection mark.
본 발명의 또 다른 측면은, (a) 상기 폴리펩타이드를 시료와 혼합하는 단계; (b) 미결합되거나 비특이적으로 결합된 상기 폴리펩타이드를 제거하는 단계; 및 (c) 상기 폴리펩타이드의 결합 여부 및 위치를 확인하는 단계를 포함하는 미토콘드리아의 검출 방법을 제공한다.Another aspect of the present invention, (a) mixing the polypeptide with a sample; (b) removing the unbound or non-specifically bound polypeptide; And (c) it provides a method for detecting mitochondria comprising the step of confirming the binding of the polypeptide and the position.
상기 (c) 단계에서 본 발명의 폴리펩타이드의 미토콘드리아 내부로 이동, 분포 또는/및 결합 여부 및 위치를 확인하는 것은, 전술한 미토콘드리아 검출용 조성물에서 설명한 바를 참조로 하여 당업계에 공지된 방법에 따라서 폴리펩타이드를 검출하는 것에 의해 수행될 수 있다. In the step (c), the movement, distribution, or/and binding of the polypeptide of the present invention into the mitochondria and the location of the polypeptide of the present invention are confirmed by a method known in the art with reference to the description in the composition for detecting mitochondria. It can be done by detecting the polypeptide.
상기 “시료”는 생물학적 시료를 의미할 수 있으며, 일 예로 세포 시료, 생검 표본, 조직 배양과 같은 고형 조직 시료, 혈액 등으로 이루어진 군에서 선택된 어느 하나일 수 있으나, 이에 제한되지 않는다. 상기 시료는 검출에 사용하기 전에 전처리할 수 있다. 예를 들어, 추출, 농축, 방해 성분의 불활성화, 시약의 첨가 등을 포함할 수 있다.The “sample” may mean a biological sample, and for example, may be any one selected from the group consisting of a cell sample, a biopsy sample, a solid tissue sample such as tissue culture, blood, and the like, but is not limited thereto. The sample can be pretreated prior to use for detection. For example, it may include extraction, concentration, inactivation of interfering components, addition of reagents, and the like.
본 발명의 또 다른 측면은, 상기 폴리펩타이드를 포함하는 미토콘드리아 영상화용 조성물을 제공한다.Another aspect of the present invention provides a composition for imaging mitochondria comprising the polypeptide.
본 발명의 폴리펩타이드는 미토콘드리아로 이동 및 분포하므로, 임의의 표지수단(영상화용 수단)과 함께 세포 내 미토콘드리아를 in vitro 또는 in vivo 상에서 영상화 할 수 있다. 이에 제한되지 않으나, 일 예로 상기 영상화에 따라 미토콘드리아의 형태학적 이상 및 이와 관련된 질환에 대한 진단 또는 모니터링이 가능하다Since the polypeptide of the present invention migrates and distributes to the mitochondria, intracellular mitochondria can be imaged in vitro or in vivo together with any labeling means (imaging means). Although not limited thereto, for example, it is possible to diagnose or monitor morphological abnormalities of mitochondria and related diseases according to the imaging.
상기 미토콘드리아 관련 질환의 영상화 및 진단은, 이에 한정되지는 않으나, 질환의 초진 목적, 진행 경과, 치료에 대한 치료 경과, 치료제에 대한 반응 모니터링 등을 포괄하여 사용할 수 있다. 상기 본 발명의 펩타이드는 미토콘드리아 내 이동, 분포 또는/및 결합 여부의 확인, 검출, 정량 등을 용이하게 하기 위하여, 표지된 상태로 제공될 수 있다.The imaging and diagnosis of the mitochondrial-related disease is not limited thereto, but may include the purpose of the initial examination of the disease, the progress of the disease, the course of treatment for the treatment, and monitoring the response to the treatment. The peptide of the present invention may be provided in a labeled state in order to facilitate identification, detection, quantification, etc. of migration, distribution or/and binding in the mitochondria.
본 발명의 또 다른 측면은 상기 폴리펩타이드를 포함하는 미토콘드리아 특이적 약물 전달용 조성물을 제공한다.Another aspect of the present invention provides a mitochondrial-specific drug delivery composition comprising the polypeptide.
구체적으로, 상기 펩타이드는 약물과 결합된 상태일 수 있으며, 상기 약물은 약리학적으로 활성을 나타내는 화합물, 폴리펩타이드 또는 폴리뉴클레오티드로 이루어진 군에서 하나 이상 선택된 것일 수 있으나, 이에 제한되지 않는다.Specifically, the peptide may be in a state associated with a drug, and the drug may be one or more selected from the group consisting of a pharmacologically active compound, a polypeptide, or a polynucleotide, but is not limited thereto.
상기 약물(또는 약물 제제)과 본 발명의 폴리펩타이드의 연결은 당업계에 공지된 방법, 예컨대, 공유 결합, 가교 등을 통해 수행될 수 있다. 이를 위해 본 발명의 폴리펩타이드는 필요하다면 그 활성이 소실되지 않는 범위에서 화학적으로 수식(modification)될 수 있다. 상기 연결은 약물과 본발명 폴리펩타이드의 직접 결합(예를들어, 공유 결합 등에 의해) 뿐만 아니라, 링커등을 사이에 포함하는 간접적 결합도 모두 포함하는 의미이다. 본 발명의 조성물에 포함되는 본 발명의 펩타이드의 양은 결합되는 상기 치료제의 종류 및 양에 따라 달라질 수 있다.The linkage of the drug (or drug preparation) and the polypeptide of the present invention may be performed through a method known in the art, such as covalent bonding, crosslinking, and the like. To this end, if necessary, the polypeptide of the present invention may be chemically modified within a range in which its activity is not lost. The linkage is meant to include both direct bonds (eg, by covalent bonds) between the drug and the polypeptide of the present invention, as well as indirect bonds including a linker or the like. The amount of the peptide of the present invention contained in the composition of the present invention may vary depending on the type and amount of the therapeutic agent to be bound.
구체적으로, 상기 약물은 미토콘드리아 기능 이상과 관련된 질환의 예방 또는 치료에 사용되는 약물일 수 있다. 상기 미토콘드리아 기능 이상과 관련된 질환은 정상적인 세포에서 나타나는 미토콘드리아의 생물학적 활성이 감소 또는 증가된 상태로서 이에 제한되지 않으나 예를 들어, 미토콘드리아의 DNA의 돌연변이, 결손, 또는 재배열에 유래되는 질환; 미토콘드리아의 호흡 사슬의 핵-암호화 결함 단백질 성분에 의해 유래되는 질환; 노화 관련 질환; 세포독성 암 화학요법제의 투여에 의해 유래되는 질환; 미토콘드리아 복합체 Ι, Ⅱ, Ⅲ, Ⅳ 또는 Ⅴ의 활성 결함에 의해 유래되는 질환; 선천성 미토콘드리아 질환; 신경퇴행성 질환; 신경근육 퇴행성 질환; 및 암 질환 등일 수 있다.Specifically, the drug may be a drug used for the prevention or treatment of diseases related to mitochondrial dysfunction. The disease associated with the mitochondrial dysfunction is a state in which the biological activity of mitochondria in normal cells is decreased or increased, but is not limited thereto, but is, for example, a disease caused by mutation, deletion, or rearrangement of mitochondrial DNA; Diseases caused by the nuclear-coding defective protein component of the mitochondrial respiratory chain; Age-related diseases; Diseases resulting from administration of cytotoxic cancer chemotherapeutic agents; Diseases caused by defects in activity of mitochondrial complexes I, II, III, IV or V; Congenital mitochondrial disease; Neurodegenerative diseases; Neuromuscular degenerative diseases; And cancer diseases.
추가의 예로서, 상기 질환은 미토콘드리아 효소 활성의 감소, 전자전달계 (electron transport chain)활성 감소, 막전위 감소, 활성산소종(reactive oxygen species) 생산의 증가, 미토콘드리아 단편화(mitochondria fragmentaion), 칼슘 조절장애, 및 미토콘드리아 DNA (mtDNA)의 돌연변이로 이루어진 군에서 선택된 어느 하나의 미토콘드리아 기능 장애에 기인하는 것일 수 있으나, 이에 제한되지 않는다.As a further example, the disease is a decrease in mitochondrial enzyme activity, decrease in electron transport chain activity, decrease in membrane potential, increase in production of reactive oxygen species, mitochondria fragmentaion, calcium dysregulation, And mitochondrial DNA (mtDNA) may be due to any one mitochondrial dysfunction selected from the group consisting of mutations, but is not limited thereto.
상기와 같은 질환의 구체적인 예를 들면, 암, 알쯔하이머병, 파킨슨병, 헌팅톤병, 근육 이영양증, 근긴장성 이영양증, 만성 피로 증후군, 프리드리히 운동실소증, 간질, 말초신경병, 시신경병, 자율 신경병, 신경유래의 장 기능부전, 감각신경의 난청, 신경유래의 방광 기능부전, 편두통, 운동실소증, 신세뇨관성 산증, 확장성 심근증, 지방간염, 간부전, 유산성혈증, 미토콘드리아 뇌근증(mitochondrial encephalopathy with lactic acidemia and strokelike episodes; MELAS), 레버 시신경위축증(Leber's hereditary optic neuropathy: LHON), MERRF 증후군(Myoclonic Epilepsy with Ragged-Red Fibers syndrome), MNGIE 증후군(Mitochondrial neurogastrointestinal encephalopathy syndrome), NARP 증후군((neuropathy, ataxia, and retinitis pigmantosa), 바쓰 증후군(Barth Syndrome), 리증후군 (Leigh Syndrome), 칸스-사이레스 증후군(Kearns-Sayre syndrome), 퇴행성 뇌질환, 다발성 경화증 증후군(Multiple Sclerosis-like Syndrome), 모성 유전 심근증( Maternally Inherited CardioMyopathy), 진행성 외안근 마비(Progressive External Ophthalmoplegia), 피어슨 골수 증후군(Pearson Marrow syndrome), 아미노글루코시드 연관 난청(Aminoglycoside-associated deafness), 난청을 동반하는 당뇨(Diabetes with deafness), Luft 병(Luft disease), 알퍼스병(Alpers Disease), 중쇄 아실코에이 탈수효소 결핍증 (medium chain acyl-CoA dehydrogenase [MCAD] deficiency), 경쇄아실 코에이 탈수효소 결핍증(Segmental colitis associated with diverticular [SCAD] disease), 단쇄 수산화 코에이 탈수효소 결핍증(Short chain 3- hydroxyacyl CoA dehydrogenase[SCHAD] deficiency), 초장쇄 아실코에이 탈수효소 결손증(Very long chain acyl-CoA dehydrogenase [VLCAD] deficiency ), 장쇄 수산화 아실코에이 탈수효소 결핍증(long chain 3-hydroxy acyl-CoA dehydrogenase [LCHAD] deficiency), 글루타르산뇨증 II형(Glutaric aciduria II) 및 치사성 유아 심근증(Lethal infantile cardiomyopathy)으로 이루어진 군으로부터 선택되는 어느 하나의 것일 수 있으나, 이에 제한되지 않는다. 약물은 미토콘드리아 기능 이상과 관련된 질환의 예방 또는 치료에 사용되는 약물을 본 발명의 폴리펩타이드와 함께 제공하므로서, 상기 약물이 더욱 효율적으로 작용가능하다. 따라서 본 발명의 상기 조성물은 미토콘드리아의 기능 이상과 관련된 질환의 예방 또는 치료에 유용하게 사용될 수 있다.Specific examples of such diseases include cancer, Alzheimer's disease, Parkinson's disease, Huntington's disease, muscular dystrophy, muscular dystrophy, chronic fatigue syndrome, Friedrich's ataxia, epilepsy, peripheral neuropathy, optic neuropathy, autonomic neuropathy, neuropathy. Intestinal dysfunction, sensorineural hearing loss, nerve-derived bladder dysfunction, migraine, ataxia, renal tubular acidosis, dilated cardiomyopathy, steatohepatitis, liver failure, lactic acidemia, mitochondrial encephalopathy with lactic acidemia and strokelike episodes; MELAS), Leber's hereditary optic neuropathy (LHON), MERRF syndrome (Myoclonic Epilepsy with Ragged-Red Fibers syndrome), MNGIE syndrome (Mitochondrial neurogastrointestinal encephalopathy syndrome), NARP syndrome ((neuropathy, ataxia) retinitis pigmantosa), Barth Syndrome, Leigh Syndrome, Kearns-Sayre syndrome, degenerative brain disease, Multiple Sclerosis-like Syndrome, Maternally hereditary cardiomyopathy Inherited CardioMyopathy), Progressive External Ophthalmoplegia, Pearson Marrow syndrome, Aminoglycoside-associated deafness, Diabetes with deafness, Luft disease ), Alpers Disease, medium chain acyl-CoA dehydrog enase [MCAD] deficiency), segmental colitis associated with diverticular [SCAD] disease, short chain 3-hydroxyacyl CoA dehydrogenase [SCHAD] deficiency), and ultra-long chain acyl Very long chain acyl-CoA dehydrogenase [VLCAD] deficiency ), long chain 3-hydroxy acyl-CoA dehydrogenase [LCHAD] deficiency, glutaric aciduria type II ( Glutaric aciduria II) and lethal infantile cardiomyopathy may be any one selected from the group consisting of, but is not limited thereto. The drug provides a drug used for the prevention or treatment of diseases related to mitochondrial dysfunction together with the polypeptide of the present invention, so that the drug can act more efficiently. Therefore, the composition of the present invention can be usefully used in the prevention or treatment of diseases related to mitochondrial dysfunction.
구체적으로, 상기 약물은 항산화제일 수 있다. 일 예로, 항산화제는 아세틸시스테인(N-Acetylcysteine), 글루타치온(glutathione), SOD-유사(SOD-mimicking) 펩타이드, 제토-실러-펩타이드(Szeto-Schiller-peptides), 비타민 E(Vitamine E)로 이루어진 군에서 하나 이상 선택된 것일 수 있으나, 이에 제한되지 않는다. Specifically, the drug may be an antioxidant. For example, antioxidants are acetylcysteine (N-Acetylcysteine), glutathione (glutathione), SOD-like (SOD-mimicking) peptide, Zeto-Schiller-peptide (Szeto-Schiller-peptides), vitamin E (Vitamine E). It may be one or more selected from the group, but is not limited thereto.
구체적으로, 상기 약물은 항암제일 수 있다. 일 예로, 상기 항암제는 젬시타빈(gemcitabine), 파클리탁셀(paclitaxel), 독소루비신(doxorubicin), 빈크리스틴(vincristine), 다우노루비신(daunorubicin), 빈블라스틴(vinblastine), 액티노마이신-D(actinomycin-D), 도세탁셀(docetaxel), 에토포사이드(etoposide), 테니포사이드(teniposide), 비산트렌(bisantrene), 호모해링토닌(homoharringtonine), 글리벡(Gleevec; STI-571), 시스플라틴(cisplain), 5-플로오우라실(5-fluouracil), 아드리아마이신(adriamycin), 메토트렉세이트(methotrexate), 부설판(busulfan), 클로람부실(chlorambucil), 시클로포스파미드(cyclophosphamide), 멜팔란(melphalan), 니트로겐 무스타드(nitrogen mustard), 니트로소우레아(nitrosourea), 스트렙토키나제(streptokinase), 유로키나제(urokinase), 알테플라제(alteplase), 안지오텐신(angiotensin) II 억제제, 알도스테론(aldosterone) 수용체 억제제, 에리트로포이에틴(erythropoietin), NMDA (N-methyl-d-aspartate) 수용체 억제제, 로바스타틴(Lovastatin), 라파마이신(Rapamycin), 셀레브렉스(Celebrex), 티클로핀(Ticlopin) 마리마스타트(Marimastat) 및 트로케이드(Trocade), 이메손 (Imexon), 메나디온 (menadione), 모텍사핀 가돌리니움 (motexafin gadolinium), 라파콘 (β-lapachone), 망가포디피르 (mangafodipir), 파테놀라이드 (parthenolide), 광활성화 물질 (photodynamic substances)로 이루어진 군에서 하나 이상 선택된 것일 수 있으나, 이에 제한되지 않는다. Specifically, the drug may be an anticancer agent. For example, the anticancer agent is gemcitabine, paclitaxel, doxorubicin, vincristine, daunorubicin, vinblastine, actinomycin-D (actinomycin- D), docetaxel, etoposide, teniposide, bisantrene, homoharringtonine, Gleevec (STI-571), cisplain, 5-flo 5-fluouracil, adriamycin, methotrexate, busulfan, chlorambucil, cyclophosphamide, melphalan, nitrogen mustard (nitrogen mustard), nitrosourea, streptokinase, urokinase, alteplase, angiotensin II inhibitor, aldosterone receptor inhibitor, eryopothrietin , NMDA (N-methyl-d-aspartate) receptor inhibitor, Lovastatin, Rapamycin, Celebrex, Ticlopin Marimastat and Trocade, this Mexon, menadione, motexafin gadolinium, rapacon (β-lapachone), mangafodipir, parthenolide, photodynamic substances It may be one or more selected from the group consisting of, but is not limited thereto.
본 발명의 약물 전달용 조성물은 투여 경로에 따라 적합한 담체와 함께 제형화될 수 있다. 또한, 본 발명의 조성물은 포유동물에 투여된 후 활성 성분의 신속, 지속 또는 지연된 방출을 제공할 수 있도록 당업계에 공지된 방법을 사용하여 제형화될 수 있다. The composition for drug delivery of the present invention may be formulated with a suitable carrier according to the route of administration. In addition, the compositions of the present invention can be formulated using methods known in the art to provide rapid, sustained or delayed release of the active ingredient after administration to a mammal.
상기 약물 전달용 조성물의 유효량은 다양한 경로를 통해 투여될 수 있다. 상기에서 '유효량' 이란 환자에게 투여하였을 때, 진단 또는 치료 효과의 추적을 가능하게 하는 물질량(amount of substance)을 말한다. 본 발명에 따른 조성물의 투여량은 투여 경로, 투여 대상, 대상 질환 및 이의 중증정도, 연령, 성별 체중, 개인차 및 질병 상태에 따라 적절히 선택할 수 있다. The effective amount of the drug delivery composition may be administered through various routes. In the above, "effective amount" refers to an amount of substance that enables diagnosis or tracking of therapeutic effects when administered to a patient. The dosage of the composition according to the present invention may be appropriately selected according to the route of administration, the subject to be administered, the target disease and its severity, age, sex, weight, individual differences, and disease states.
본 발명의 폴리펩타이드를 포함하는 조성물은 질환의 정도에 따라 유효성분의 함량을 달리할 수 있으나, 통상적으로 성인을 기준으로 할 때 1회 투여시 1 mg 내지 1000 mg의 유효용량으로 하루에 수 차례 반복 투여될 수 있다.The composition containing the polypeptide of the present invention can vary the content of the active ingredient depending on the severity of the disease, but is usually administered several times a day in an effective dose of 1 mg to 1000 mg per administration based on an adult. It can be administered repeatedly.
상기 본 발명에 따른 조성물의 투여 경로로는 이에 한정되지는 않으나 경구적 또는 비경구적으로 투여될 수 있다. 비경구적 투여 경로로는 예를 들면, 경피, 비강, 복강, 근육, 피하 또는 정맥 등의 여러 경로가 포함될 수 있다.The route of administration of the composition according to the present invention is not limited thereto, but may be administered orally or parenterally. The parenteral route of administration may include, for example, transdermal, nasal, abdominal, intramuscular, subcutaneous or intravenous routes.
본 발명의 조성물은 약학적으로 허용되는 담체와 함께 당업계에 공지된 방법으로 투여경로에 따라 다양하게 제형화될 수 있다. '약학적으로 허용되는'이란 생리학적으로 허용되고 인간에게 투여될 때, 활성성분의 작용을 저해하지 않으며 통상적으로 위장 장애, 현기증과 같은 알레르기 반응 또는 이와 유사한 반응을 일으키지 않는 비독성의 조성물을 말한다. 상기 담체로는 모든 종류의 용매, 분산매질, 수중유 또는 유중수 에멀젼, 수성 조성물, 리포좀, 마이크로비드 및 마이크로좀이 포함된다.The composition of the present invention may be formulated in various ways according to the route of administration by a method known in the art together with a pharmaceutically acceptable carrier. 'Pharmacologically acceptable' refers to a non-toxic composition that is physiologically acceptable and does not inhibit the action of the active ingredient when administered to humans, and does not usually cause allergic reactions such as gastrointestinal disorders and dizziness or similar reactions. . The carrier includes all kinds of solvents, dispersion media, oil-in-water or water-in-oil emulsions, aqueous compositions, liposomes, microbeads and microsomes.
본 발명의 조성물을 비경구적으로 투여하는 경우 본 발명의 조성물은 적합한 비경구용 담체와 함께 주사제, 경피 투여제 및 비강 흡입제의 형태로 당해 기술분야에 공지된 방법에 따라 제형화될 수 있다. 상기 주사제의 경우에는 반드시 멸균되어야하며 박테리아, 진균과 같은 미생물의 오염으로부터 보호되어야 한다. 주사제의 경우 적합한 담체의 예로는 이에 한정되지는 않으나, 물, 에탄올, 폴리올(예를 들어, 글리세롤, 프로필렌 글리콜 및 액체 폴리에틸렌 글리콜 등), 이들의 혼합물 및/또는 식물유를 포함하는 용매 또는 분산매질일 수 있다. 상기 주사제를 미생물 오염으로부터 보호하기 위해서는 파라벤, 클로로부탄올, 페놀, 소르빈산, 티메로살 등과 같은 다양한 항균제 및 항진균제를 추가로 포함할 수 있다. 또한, 상기 주사제는 대부분의 경우 당 또는 나트륨 클로라이드와 같은 등장화제를 추가로 포함할 수 있다.When the composition of the present invention is administered parenterally, the composition of the present invention may be formulated according to a method known in the art in the form of an injection, a transdermal administration and a nasal inhalation agent together with a suitable parenteral carrier. The injection must be sterilized and protected from contamination by microorganisms such as bacteria and fungi. Examples of suitable carriers for injections include, but are not limited to, water, ethanol, polyol (eg, glycerol, propylene glycol and liquid polyethylene glycol, etc.), a mixture thereof and/or a solvent or dispersion medium containing vegetable oil. I can. In order to protect the injection from microbial contamination, various antibacterial and antifungal agents such as paraben, chlorobutanol, phenol, sorbic acid, thimerosal, and the like may be additionally included. In addition, the injection may further include an isotonic agent such as sugar or sodium chloride in most cases.
또한 본 발명에 따른 조성물은 하나 이상의 완충제(예를 들어, 식염수 또는 PBS), 카보하이트레이트(예를 들어, 글루코스, 만노즈, 슈크로즈 또는 덱스트란), 항산화제, 정균제, 킬레이트화제(예를 들어, EDTA 또는 글루타치온), 아쥬반트(예를 들어, 알루미늄 하이드록사이드), 현탁제, 농후제 및/또는 보존제를 추가로 포함할 수 있다.In addition, the composition according to the present invention may include one or more buffers (e.g. saline or PBS), carbohythrate (e.g. glucose, mannose, sucrose or dextran), antioxidants, bacteriostatic agents, chelating agents (e.g. For example, EDTA or glutathione), adjuvants (eg, aluminum hydroxide), suspending agents, thickening agents and/or preservatives may further be included.
본 발명의 또 다른 측면은, 본원 발명의 미토콘드리아 표적용 폴리펩타이드를 암호화하는 폴리뉴클레오티드를 제공한다.Another aspect of the present invention provides a polynucleotide encoding the polypeptide for targeting mitochondria of the present invention.
상기 폴리뉴클레오티드는 본 발명의 폴리펩타이드를 암호화할 수 있는 한 폴리뉴클레오티드의 염기 조합이 특별히 제한되지 않는다. 상기 폴리뉴클레오티드는 DNA, cDNA 및 RNA 서열을 모두 포함하여 단쇄 또는 이중쇄의 형태의 핵산분자로서 제공될 수 있다.The polynucleotide is not particularly limited in base combination of the polynucleotide as long as it can encode the polypeptide of the present invention. The polynucleotide may be provided as a single-stranded or double-stranded nucleic acid molecule including all DNA, cDNA and RNA sequences.
구체적으로, 서열번호 3으로 표시되는 폴리펩타이드를 암호화하는 폴리뉴클레오티드는 서열번호 4의 염기서열을 포함할 수 있고, 서열번호 5로 표시되는 폴리펩타이드를 암호화하는 폴리뉴클레오티드는 서열번호 6의 염기서열을 포함할 수 있으며, 서열번호 8로 표시되는 폴리펩타이드를 암호화하는 폴리뉴클레오티드는 서열번호 9의 염기서열을 포함할 수 있으나, 이에 제한되지 않는다.Specifically, the polynucleotide encoding the polypeptide represented by SEQ ID NO: 3 may include the nucleotide sequence of SEQ ID NO: 4, and the polynucleotide encoding the polypeptide represented by SEQ ID NO: 5 represents the nucleotide sequence of SEQ ID NO: 6 The polynucleotide encoding the polypeptide represented by SEQ ID NO: 8 may include the nucleotide sequence of SEQ ID NO: 9, but is not limited thereto.
본 발명의 또 다른 측면은 상기 폴리뉴클레오티드를 포함하는 재조합 벡터를 제공한다. Another aspect of the present invention provides a recombinant vector comprising the polynucleotide.
본 발명의 벡터는 플라스미드 벡터, 코즈미드 벡터, 박테리오파아지 벡터 및 바이러스 벡터 등을 포함할 수 있으나, 이에 제한되지 않는다. The vector of the present invention may include, but is not limited to, a plasmid vector, a cozmid vector, a bacteriophage vector, and a viral vector.
구체적으로, 본 발명의 벡터는 재조합 바이러스 벡터 일 수 있다. 본 발명의 재조합 바이러스 벡터는 유전자 치료제 분야에서 유전자를 전달하기 위하여 통상적으로 사용되는 바이러스 벡터라면 제한 없이 사용될 수 있다. 상기 재조합 바이러스 벡터는 아데노바이러스 벡터, 아데노연관바이러스(AAV) 벡터, 레트로바이러스 벡터, 허피스바이러스 벡터, 렌티바이러스 벡터, 벡시니아바이러스 벡터 및 폭스바이러스 벡터로 이루어진 군에서 선택되는 것일 수 있다.Specifically, the vector of the present invention may be a recombinant viral vector. The recombinant viral vector of the present invention may be used without limitation as long as it is a viral vector commonly used to deliver genes in the field of gene therapy. The recombinant viral vector may be selected from the group consisting of an adenovirus vector, an adeno-associated virus (AAV) vector, a retroviral vector, a herpes virus vector, a lentiviral vector, a vaccinia virus vector, and a poxvirus vector.
본 발명에서의 재조합 바이러스 벡터는 바람직하게는 아데노바이러스 벡터일 수 있다. 아데노바이러스는 바이러스 중에서 중간 정도의 유전체(genome)의 크기, 유전자 조작과 제조의 편의성, 높은 타이터로 인한 생산과 분리의 용이성, 광범위한 표적 세포(target)와 높은 감염 효율 등으로 유전자 치료 분야에서 치료용 유전자를 전달하기 위한 운반체로 널리 이용되고 있다. 유전자 치료용으로는 바이러스의 자가 복제와 생산 능력이 결여된 아데노바이러스가 많이 이용되고 있다.The recombinant viral vector in the present invention may preferably be an adenovirus vector. Adenovirus is treated in the field of gene therapy due to its medium genome size, ease of genetic manipulation and manufacture, ease of production and separation due to high titer, and high infection efficiency with a wide range of target cells. It is widely used as a carrier for delivering the yong gene. For gene therapy, adenoviruses, which lack the ability to self-replicate and produce viruses, are widely used.
본 발명의 벡터는 통상의 클로닝 벡터 또는 발현벡터일 수 있으며, 발현벡터는 프로모터, 오퍼레이터, 개시코돈, 종결코돈, 폴리아데닐화 시그널 및 인핸서(촉진유전자) 같은 발현 조절 서열 외에도 막 표적화 또는 분비를 위한 시그널 서열 또는 리더 서열을 포함하며 목적에 따라 다양하게 제조될 수 있다. 본 발명에 따른 상기 폴리뉴클레오티드 서열은 발현 조절 서열에 작동 가능하게 연결될 수 있으며, 상기 작동 가능하게 연결된 유전자 서열과 발현 조절 서열은 선택 마커 및 복제 개시점(replication origin)을 같이 포함하고 있는 하나의 발현 벡터 내에 포함될 수 있다. "작동 가능하게 연결(operably linked)"된다는 것은 적절한 분자가 발현 조절 서열에 결합될 때 유전자 발현을 가능하게 하는 방식으로 연결된 유전자 및 발현 조절 서열일 수 있다. "발현 조절 서열(expression control sequence)"이란 특정한 숙주 세포에서 작동 가능하게 연결된 폴리뉴클레오티드 서열의 발현을 조절하는 DNA 서열을 의미한다. 그러한 조절 서열은 전사를 실시하기 위한 프로모터, 전사를 조절하기 위한 임의의 오퍼레이터 서열, 적합한 mRNA 리보좀 결합 부위를 코딩하는 서열 및 전사 및 해독의 종결을 조절하는 서열을 포함한다. 또한 상기 벡터는 벡터를 함유하는 숙주 세포를 선택하기 위한 선택 마커를 포함하고, 복제 가능한 벡터인 경우 복제기원을 포함한다.The vector of the present invention may be a conventional cloning vector or expression vector, and the expression vector is for membrane targeting or secretion in addition to expression control sequences such as promoter, operator, start codon, stop codon, polyadenylation signal and enhancer (promogene). It includes a signal sequence or a leader sequence and can be prepared in various ways according to the purpose. The polynucleotide sequence according to the present invention may be operably linked to an expression control sequence, and the operably linked gene sequence and expression control sequence are one expression including a selection marker and a replication origin. It can be contained within a vector. “Operably linked” can be a gene and expression control sequence linked in a manner that allows gene expression when an appropriate molecule is bound to an expression control sequence. "Expression control sequence" means a DNA sequence that controls the expression of a polynucleotide sequence operably linked in a particular host cell. Such regulatory sequences include promoters to effect transcription, any operator sequences to regulate transcription, sequences encoding suitable mRNA ribosome binding sites, and sequences that regulate termination of transcription and translation. In addition, the vector includes a selection marker for selecting a host cell containing the vector, and in the case of a replicable vector, it includes a source of replication.
상기 본 발명에서 제공하는 벡터는 프로모터, 전술한 본 발명의 폴리뉴클레오티드 및 목적 단백질을 코딩하는 폴리뉴클레오티드를 포함하며, 프로모터, 전술한 본 발명의 폴리뉴클레오티드 및 목적 단백질을 코딩하는 유전자가 작동 가능하게 연결된 재조합 벡터일 수 있다.The vector provided in the present invention includes a promoter, the polynucleotide of the present invention, and a polynucleotide encoding the protein of interest, and the promoter, the polynucleotide of the present invention and the gene encoding the protein of interest are operably linked It can be a recombinant vector.
구체적으로, 본 발명에서 상기 ”목적 단백질“이란 당업자가 본 발명을 실행함에 있어서 미토콘드리아 내로 이동, 전달, 분포 또는/ 및 결합을 목적으로 하는 폴리펩타이드 분자를 의미하는 것으로, 이에 제한되지 않으나 일 예로 표지 단백질; 및 질환 치료 단백질로 이루어진 군에서 선택되는 것일 수 있다. Specifically, in the present invention, the "target protein" refers to a polypeptide molecule intended for movement, delivery, distribution, or/and binding into the mitochondria in practicing the present invention by those skilled in the art, but is not limited thereto, but an example protein; And it may be selected from the group consisting of disease treatment proteins.
일 실시예로서, 상기 목적 단백질이 질환 치료 단백질인 경우, 상기 재조합 백터는 추가적으로 표지 수단(표지 단백질을 코딩하는 유전자)를 더욱 포함하여 제공될 수 있으며, 이 또한 작동 가능하게 연결된다. 이러한 경우에 있어서, 상기 재조합 벡터는 프로모터, 본 발명 폴리펩타이드(대표적 일 예로, 서열번호 3, 5 또는 서열번호 8)의 아미노산 서열을 코딩하는 폴리뉴클레오티드, 목적 단백질을 코딩하는 유전자 및 표지 단백질(예를들어, 형광 단백질) 유전자가 작동 가능하게 연결될 수 있다. 이러한 경우, 표지 단백질의 발현으로 인해 목적 단백질(특히, 치료단백질)의 미토콘드리아로의 이동/분포 여부를 확인할 수 있다.As an example, when the target protein is a disease therapeutic protein, the recombinant vector may further include a labeling means (a gene encoding the labeling protein), which is also operably linked. In this case, the recombinant vector is a promoter, a polynucleotide encoding the amino acid sequence of the polypeptide of the present invention (representative example, SEQ ID NO: 3, 5 or SEQ ID NO: 8), a gene encoding the protein of interest, and a marker protein (e.g. For example, a fluorescent protein) gene can be operably linked. In this case, it is possible to determine whether the target protein (especially, the therapeutic protein) migrates/distributes to the mitochondria due to the expression of the label protein.
본 발명의 다른 일 측면은 상기 재조합 벡터를 세포 내에 도입하는 단계를 포함하는 목적 단백질을 미토콘드리아로 이동 또는/및 분포시키는 방법을 제공한다. 이러한 방법은, 일 예로 하기 단계를 포함하여 수행되는 것일 수 있다:Another aspect of the present invention provides a method of moving or/and distributing a protein of interest to mitochondria comprising the step of introducing the recombinant vector into cells. This method may be performed, including the following steps, for example:
(i) 프로모터, 본 발명 폴리펩타이드(대표적 일 예로, 서열번호 3 또는 서열번호 5)의 아미노산 서열을 코딩하는 폴리뉴클레오티드, 목적 단백질을 코딩하는 유전자 및 표지 단백질을 코딩하는 유전자를 포함하는(이들이 작동가능하게 연결된) 재조합 벡터(특히, hybrid plasmid)를 준비(작제)하는 단계;(i) a promoter, a polynucleotide encoding the amino acid sequence of the polypeptide of the present invention (representative example, SEQ ID NO: 3 or SEQ ID NO: 5), a gene encoding a protein of interest, and a gene encoding a label protein (these work Preparing (constructing) a recombinant vector (in particular, a hybrid plasmid) possibly linked;
(ii) 상기 재조합 벡터를 세포 내에 도입하여 형질전환한 후 유전자가 발현되도록 하는 단계; 및(ii) introducing the recombinant vector into cells so that the gene is expressed after transformation; And
(iii) 상기 형질전환된 세포 내에서 발현되는 목적 단백질의 이동 및 분포를 표지 단백질 검출(또는 영상화)을 통해 확인하는 단계를 포함하는, 세포 내에서 목적 단백질의 미토콘드리아로의 이동과 공간적 분포를 확인하는 방법을 제공한다.(iii) Confirming the migration and spatial distribution of the target protein to the mitochondria within the cell, comprising the step of confirming the movement and distribution of the target protein expressed in the transformed cell through detection (or imaging) of the labeled protein. Provides a way to do it.
상기 방법에서 세포는, 미토콘드리아를 보유하는 세포라면 그 종류가 특별히 제한되지 않는 것으로, 바람직하게 진핵세포, 특히 인간 또는 포유동물 세포일 수 있다. 바람직하게 상기 세포는 개체로부터 단리된 것일 수 있다. In the above method, the cell type is not particularly limited as long as it has mitochondria, and may preferably be a eukaryotic cell, particularly a human or mammalian cell. Preferably, the cells may be isolated from an individual.
상기 방법 중 재조합 벡터(특히 hybrid plasmid)의 세포 내 도입은, 재조합 벡터를 이용하여 세포를 형질전환시키는 것으로서 이해될 수 있으며, 상기 형질전환 방법은 당 분야의 통상의 지식을 가진 기술자들에게 잘 알려진 방법을 이용할 수 있다. 예를 들면, 미세사출법(microprojectile bombardment), 전기충격유전자전달법(electroporation), 인산 칼슘(CaPO4) 침전, 염화칼슘(CaCl2) 침전, PEG-매개 융합법(PEG-mediated fusion), 미세주입법(microinjection) 및 리포좀 매개법(liposome-mediated method) 등을 사용할 수 있으나, 이에 제한되지 않는다. 형질전환된 세포에서 신호단백질(후기골지망 타겟팅 펩타이드)과 표지 단백질이 연결된 목적 단백질이 효율적으로 발현되도록 조건을 최적화할 필요가 있는데, 이는 당 분야에서 통상의 지식을 가진 자에 의하여 각 신호단백질 및 형광단백질의 종류에 따라 적절히 조절하여 선택할 수 있을 것이다.Among the above methods, introduction of a recombinant vector (especially hybrid plasmid) into a cell can be understood as transforming a cell using a recombinant vector, and the transformation method is well known to those skilled in the art. Method can be used. For example, microprojectile bombardment, electroporation, calcium phosphate (CaPO4) precipitation, calcium chloride (CaCl2) precipitation, PEG-mediated fusion, microinjection ) And a liposome-mediated method, but are not limited thereto. In the transformed cells, it is necessary to optimize the conditions so that the target protein in which the signal protein (late Golgi network targeting peptide) and the labeling protein are linked can be efficiently expressed. This is accomplished by those skilled in the art. Depending on the type of fluorescent protein, it may be appropriately adjusted and selected.
상기 방법에 관한 일 예로 표지 단백질로 형광 단백질을 사용하는 경우, 상기 형질전환된 세포에서 발현되는 단백질로부터 방출되는 특정 파장의 형광을 형광현미경을 사용하여 상기 세포가 살아있는 상태에서 계속하여 영상화할 수 있게 함으로써, 세포 내에서의 목적 단백질의 발현과정 및 미토콘드리아로의 이동과정을 단계별로 세밀하게 가시화할 수 있다.As an example of the method, when a fluorescent protein is used as a labeling protein, the fluorescence of a specific wavelength emitted from the protein expressed in the transformed cell can be continuously imaged using a fluorescence microscope. By doing so, it is possible to visualize the expression process of the target protein in the cell and the migration process to the mitochondria in detail step by step.
본 발명의 또 다른 측면은, 상기 벡터로 형질전환된 세포를 제공한다.Another aspect of the present invention provides a cell transformed with the vector.
구체적으로, 상기 벡터로 형질전환하는 것은 당업자에게 공지된 형질전환기술에 의해 수행될 수 있으며, 이는 전술한 바를 참조로 한다. 상기 용어‘세포’는 ‘형질전환체’등과 호환성 있게 사용될 수 있으며, 임의의 수단(예를들어, 전술한 전기충격법, 칼슘포스파타제 침전법, 미세주입법, 바이러스 감염 등)에 의해 세포 내로 도입된 이종성 DNA를 포함하는 세포(본 발명에서, 바람직하게 진핵세포)를 의미한다.Specifically, transformation with the vector can be performed by a transformation technique known to those skilled in the art, which is referred to as the foregoing. The term'cell' may be used interchangeably with'transformants', etc., and introduced into cells by any means (e.g., the aforementioned electric shock method, calcium phosphatase precipitation method, microinjection method, viral infection, etc.) It means a cell containing heterologous DNA (in the present invention, preferably a eukaryotic cell).
본 발명에서 상기 형질전환체는 클로닝 분야에서 통상적으로 사용되는 모든 종류의 단세포 유기체, 예컨대 각종 박테리아 (예컨대, Clostridia속, 대장균, 등) 등의 원핵세포 미생물, 효모 등의 하등 진핵세포 미생물과 곤충 세포, 식물 세포, 포유동물 등을 포함하는 고등 진핵생물 유래의 세포를 세포로 사용할 수 있으며, 이에 제한되지 않는다. 세포에 따라서 단백질의 발현량과 수식 등이 다르게 나타나므로, 당업자가 목적하는 바에 가장 적합한 세포를 선택하여 사용할 수 있다. 일 예로 본 발명에서 형질전환체로 이용되는 미생물은 대장균(Escherichia coli), 바실러스 서브틸리스(Bacillus subtilis), 스트렙토마이세스 속 미생물(Streptomyces spp.), 슈도모나스 속 미생물(Pseudomonas spp.), 프로테우스 미라빌리스(Proteus mirabilis), 스타필로코쿠스 속 미생물(Staphylococcus spp.), 아그로박테리움 투메파시엔스(Agrobacterium tumefaciens) 등 일 수 있으나, 이에 제한되지 않는다.In the present invention, the transformant is all kinds of single-celled organisms commonly used in the field of cloning, such as prokaryotic microorganisms such as various bacteria (eg, Clostridia genus, E. coli, etc.), lower eukaryotic microorganisms such as yeast, and insect cells. Cells derived from higher eukaryotes including, plant cells, mammals, and the like may be used as cells, but are not limited thereto. Since the expression level and modification of the protein differ depending on the cell, one of ordinary skill in the art can select and use the most suitable cell for the purpose. For example, microorganisms used as transformants in the present invention are Escherichia coli , Bacillus subtilis , Streptomyces spp., Pseudomonas spp., Proteus mirabilis, and Proteus mirabilis. It may be Proteus mirabilis , a microorganism of the genus Staphylococcus spp., Agrobacterium tumefaciens , and the like, but is not limited thereto.
본 발명의 폴리펩타이드는 미토콘드리아로 타겟팅되는 특징을 나타내므로, 이를 이용하여 미토콘드리아로 목적 물질을 전달하는 용도로서 활용할 수 있다.Since the polypeptide of the present invention exhibits a feature that is targeted to mitochondria, it can be utilized as an application for delivering a target substance to mitochondria by using it.
본 발명의 효과는 상기한 효과로 한정되는 것은 아니며, 본 발명의 상세한 설명 또는 청구범위에 기재된 발명의 구성으로부터 추론 가능한 모든 효과를 포함하는 것으로 이해되어야 한다.The effects of the present invention are not limited to the above effects, and should be understood to include all effects that can be deduced from the configuration of the invention described in the detailed description or claims of the present invention.
도 1은 본 발명에서 확인한 두 개의 새로운 SLC1A5의 전사물 변이체인 SLC1A5 및 SLC1A5_var를 나타낸 것이다(A: 인간 SLC1A5 유전자의 엑손(exon)과 인트론(intron)의 구성 및 두 개의 전사물 변이체 SLC1A5(NM_005628.2) 및 SLC1A5_var(NM_001145145.1)을 나타냄. B: SLC1A5(청색) 및 SLC1A5_var(적색)의 mRNA 전사물의 엑손 구조로서, siRNA의 결합 부위 및 RT-PCR 증폭산물이 표시되어 있음).Figure 1 shows the two novel SLC1A5 transcript variants, SLC1A5 and SLC1A5_var, identified in the present invention (A: the constitution of the exon and intron of the human SLC1A5 gene, and the two transcript variants SLC1A5 (NM_005628. 2) and SLC1A5_var (NM_001145145.1) B: As the exon structure of the mRNA transcripts of SLC1A5 (blue) and SLC1A5_var (red), the binding site of siRNA and the RT-PCR amplification product are indicated).
도 2는 여러 암세포에서의 SLC1A5_var 발현 양상을 분석한 결과를 나타내었다(A, B: 췌장암 세포주; C, D: 대장암 세포주; E, F: 폐암 세포주).2 shows the results of analyzing the expression pattern of SLC1A5_var in various cancer cells (A, B: pancreatic cancer cell line; C, D: colon cancer cell line; E, F: lung cancer cell line).
도 3은 SLC1A5_var가 세포 내 미토콘드리아에 분포하는 것을 면역형광법으로확인한 결과를 나타내었다(A: HA-taggged SLC1A5_var 또는 HA-taggged SLC1A5로 형질전환된 HeLA 세포를 면역형광법으로 확인한 결과. B: SLC1A5_var와 세포소기관 마커의 공존 여부를 Zen colocalization analysis를 이용하여 정량분석한 결과). 3 shows the results of confirming the distribution of SLC1A5_var in the mitochondria in the cells by immunofluorescence (A: results of confirming HeLA cells transformed with HA-taggged SLC1A5_var or HA-taggged SLC1A5 by immunofluorescence. B: SLC1A5_var and cells Quantitative analysis of the presence of organelle markers using Zen colocalization analysis).
도 4는 SLC1A5_var가 세포 내 미토콘드리아에 분포하는 것을 세포소기관 분획실험을 통해 확인한 결과를 나타내었다(A: MiaPaCa2 세포에서 수득한 SLC1A5_var의 세포소기관 분획실험의 면역블롯 결과. B: SLC1A5_var에 대한 MiaPaCa2의 미토콘드리아 소기관 분획실험 결과).Figure 4 shows the results of confirming the distribution of SLC1A5_var in the mitochondria in the cell through the cell organelle fractionation experiment (A: immunoblot result of the cell organelle fractionation experiment of SLC1A5_var obtained from MiaPaCa2 cells. B: Mitochondria of MiaPaCa2 against SLC1A5_var Organelle fractionation test results).
도 5는 control 벡터, SLC1A5, SLC1A5_var, 또는 SLC1A5_var D186A 돌연변이를 발현하는 MiaPaCa2 세포에서 분리된 미토콘드리아를 대상으로 SLC1A5 전사물 변이체가 미토콘드리아 글루타민 운반체(glutamine transporter)임을 확인한 실험 결과를 나타내었다(A: 시간 경과에 따른 글루타민 흡수(Gln uptake) 정도. B: 아미노산 흡수(amino acid uptake) 정도. C: control 벡터, SLC1A5, SLC1A5_var, 또는 SLC1A5_var D186A 돌연변이에 대한 siRNA를 처리한 경우의 글루타민 흡수 정도. D: siRNA를 처리한 경우의 아미노산 흡수 정도. E: SLC1A5 전사물 변이체의 억제제가 SLC1A5 전사물 변이체의 글루타민 운반체 활성을 억제하는 것을 보여주는 실험 결과. F: 각 세포 별로, 세포 전체 측면에서의 α-KG 수준 및 미토콘드리아에서의 α-KG 수준).Figure 5 shows the experimental results confirming that the SLC1A5 transcript variant is a mitochondrial glutamine transporter targeting mitochondria isolated from MiaPaCa2 cells expressing the control vector, SLC1A5, SLC1A5_var, or SLC1A5_var D186A mutation (A: time course Degree of glutamine uptake (Gln uptake) according to B: degree of amino acid uptake C: control vector, SLC1A5, SLC1A5_var, or SLC1A5_var The degree of glutamine uptake in the case of treatment with siRNA for the D186A mutation D: siRNA The degree of amino acid uptake after treatment E: Experimental results showing that inhibitors of the SLC1A5 transcript variant inhibit the glutamine transporter activity of the SLC1A5 transcript variant F: α-KG levels and mitochondria in each cell, in the whole cell side Α-KG level at).
도 6은 SLC1A5_var 단백질로부터 단리된 폴리펩타이드 단편들의 미토콘드리아 타겟팅 여부를 시험한 결과를 나타내었다(A: rediSi 프로그램을 이용하여 SLC1A5_var 전체단백질 중 미토콘드리아 타겟 영역을 예측한 예비 결과. B: 본 발명의 미토콘드리아 타겟팅 폴리펩타이드(NT-WT 단편, NT_(27~46) 및 NT_3A 단편) 및 대표적인 몇 개의 대조군 폴리펩타이드(NT_2A 단편, NT_(1~26) 및 CT 단편)의 위치 및 서열을 간략히 나타내는 도식). 6 shows the results of testing whether or not mitochondrial targeting of polypeptide fragments isolated from SLC1A5_var protein was tested (A: Preliminary results of predicting the mitochondrial target region of SLC1A5_var total protein using the rediSi program. B: Mitochondrial targeting of the present invention. A schematic showing the location and sequence of the polypeptide (NT-WT fragment, NT_(27-46) and NT_3A fragment) and several representative control polypeptides (NT_2A fragment, NT_(1-26) and CT fragment).
도 7은 GFP의 N-말단에 접합된 각각의 실험군 및 대조군 폴리펩타이드(대표적으로 NT-WT 단편, NT_3A 단편, NT_2A 단편, NT_(1~26) 단편, NT_(27~46) 단편, 및 CT 단편)를 발현하도록 형질전환된 살아있는 HeLa 세포에 대한 공초점 현미경(confocal microscopy) 관찰 이미지를 나타내었다.Figure 7 shows each experimental group and control polypeptide conjugated to the N-terminus of GFP (representatively, NT-WT fragment, NT_3A fragment, NT_2A fragment, NT_(1-26) fragment, NT_(27-46) fragment, and CT. Fragment) is shown in the confocal microscopy (confocal microscopy) observation image of the transformed living HeLa cells.
도 8은 각각의 실험군 및 대조군 폴리펩타이드와 MitoTracker와 colocalization 정도를 Zen colocalization analysis (mean ±SD; n = 15, *** P<0.005)를 통해 정량적으로 나타내어 미토콘드리아 타겟팅 효과를 비교한 결과를 나타내었다.Figure 8 shows the results of comparing mitochondrial targeting effects by quantitatively showing the degree of colocalization with each experimental group and control polypeptide and MitoTracker through Zen colocalization analysis (mean ± SD; n = 15, *** P < 0.005). .
이하, 본 발명을 실시예에 의해 상세히 설명한다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명이 하기 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail by examples. However, the following examples are only illustrative of the present invention, and the present invention is not limited by the following examples.
실시예 1. 암세포에서의 SLC1A5 전사물 변이체(SLC1A5_var)의 발현 양상 확인Example 1. Confirmation of the expression pattern of SLC1A5 transcript variant (SLC1A5_var) in cancer cells
현재까지 확인된 바 없는 미토콘드리아 내 글루타민 운반체(mitochondrial glutamine transporter)를 찾아내기 위하여, 글루타민 운반체의 전사물 변이체들을 조사하였다. In order to find a mitochondrial glutamine transporter that has not been identified so far, transcript variants of the glutamine transporter were investigated.
인간 SLC1A5 유전자는 8개의 엑손으로 구성되어 있으며, 전사 시작점(transcription start site)이 다른 두 개의 전사물 변이체가 존재한다(NM_005628.2 및 NM_001145145.1; 도 1A). 길이가 긴 전사물 변이체(SLC1A5/ASCT2, NM_005628.2)는 엑손 2가 결여되어 있으며, 541개 아미노산으로 이루어져 있고, 짧은 전사물 변이체(SLC1A5_var, NM_001145145.1)는 엑손 1이 결여되어 있으며, 339개 아미노산으로 이루어져 있다(도 1B). SLC1A5 전사물 변이체는 SLC1A5_var로 명명하였다.The human SLC1A5 gene consists of eight exons, and there are two transcript variants with different transcription start sites (NM_005628.2 and NM_001145145.1; Fig. 1A). Long-length transcript variants (SLC1A5/ASCT2, NM_005628.2) lack exon 2 and consist of 541 amino acids, and short transcript variants (SLC1A5_var, NM_001145145.1) lack exon 1, 339 It consists of dog amino acids (Fig. 1B). The SLC1A5 transcript variant was named SLC1A5_var.
다양한 암 세포주에서의 SLC1A5 전사물 변이체의 발현 양상을 확인하기 위하여, RT-PCR을 이용하여 각 전사물 변이체의 mRNA 수준을 분석하였다. In order to confirm the expression pattern of the SLC1A5 transcript variant in various cancer cell lines, the mRNA level of each transcript variant was analyzed using RT-PCR.
구체적으로, 상기 RT-PCR을 위한 RNA는 RNA 추출 키트(MiniBEST Universal RNA Extraction Kit, Takara)를 사용하여 분리되었으며 cDNA 합성 키트(PrimeScript™ 1st strand cDNA Synthesis Kit, Takara)를 사용하여 cDNA 로 합성하였다. 합성된 cDNA는 하기 표 1에 나타낸 서열번호 10 내지 13의 염기서열을 갖는 프라이머로 이루어진 프라이머 세트를 이용하여, 95℃, 45℃ 및 72℃에서 각 30초씩 26 사이클 조건에서 역전사중합체연쇄반응(RT-PCR)을 통해 증폭 후, 1% 아가로즈 겔 전기영동(agarose gel electrophoresis) 방법을 통해 반응 결과를 확인하였다. 결과는 ImageJ 소프트웨어를 사용하여 정량 분석되었으며 GAPDH를 정량 기준으로 사용하였다.Specifically, RNA for the RT-PCR was isolated using an RNA extraction kit (MiniBEST Universal RNA Extraction Kit, Takara) and synthesized into cDNA using a cDNA synthesis kit (PrimeScript™ 1st strand cDNA Synthesis Kit, Takara). The synthesized cDNA uses a primer set consisting of primers having nucleotide sequences of SEQ ID NOs: 10 to 13 shown in Table 1 below, and reverse transcription polymer chain reaction (RT) at 95° C., 45° C. and 72° C. After amplification through PCR), the reaction result was confirmed through 1% agarose gel electrophoresis method. The results were quantitatively analyzed using ImageJ software and GAPDH was used as a quantification criterion.
Figure PCTKR2020010489-appb-T000001
Figure PCTKR2020010489-appb-T000001
그 결과, 모든 췌장암 세포주의 SLC1A5_var의 발현이 정상 췌장관 상피세포(human pancreatic ductal epithelial cell, HPDE)보다 증가하였으며, 특히 Panc-1, MiaPaCa-2, AsPC1, 및 Panc10.05 세포주에서 더욱 과발현된 것을 확인하였다(도 2의 A, B). 또한, 다양한 대장암 세포주에서도 인간의 정상 대장 상피세포(human colon epithelial cell, FHC)보다 SLC1A5_var의 발현 수준이 높게 측정되었다(도 2의 C, D). As a result, the expression of SLC1A5_var in all pancreatic cancer cell lines was increased compared to that of normal pancreatic ductal epithelial cells (HPDE), and more particularly, more overexpressed in Panc-1, MiaPaCa-2, AsPC1, and Panc10.05 cell lines. It was confirmed (A, B in Fig. 2). In addition, even in various colon cancer cell lines, the expression level of SLC1A5_var was measured higher than that of human colon epithelial cells (FHC) (FIG. 2C and D).
반면, SLC1A5_var과 달리 SLC1A5는 췌장암이나 대장암 세포주에서의 발현이 증가하지 않았다. On the other hand, unlike SLC1A5_var, SLC1A5 did not increase its expression in pancreatic or colon cancer cell lines.
NCI-H358을 제외한 폐암 세포주에서는 인간의 정상 섬유아세포(human fibroblast, BJ) 또는 정상 기관지 상피세포(human bronchial epithelial cell; 16HBE)와 비교하여 SLC1A5와 SLC1A5_var 모두 발현이 증가한 것을 확인하였다(도 2의 E, F). In lung cancer cell lines excluding NCI-H358, it was confirmed that expression of both SLC1A5 and SLC1A5_var was increased compared to human fibroblast (BJ) or normal bronchial epithelial cells (16HBE) (E in FIG. 2 ). , F).
이와 유사하게, 암세포에서의 SLC1A5 및 SLC1A5_var의 mRNA 발현 양상은 면역 블롯을 이용하여 확인한 단백질 발현 수준과도 일치하는 것을 확인하였다.Similarly, it was confirmed that the mRNA expression patterns of SLC1A5 and SLC1A5_var in cancer cells were also consistent with the protein expression levels confirmed using immunoblot.
실시예 2. 면역형광법을 이용한 SLC1A5 전사물 변이체(SLC1A5_var)의 세포 내 분포 양상 확인Example 2. Confirmation of intracellular distribution pattern of SLC1A5 transcript variant (SLC1A5_var) using immunofluorescence
암세포에서 발현수준이 높은 것이 확인된 SLC1A5_var 전사물 변이체 단백질의 세포내 분포 패턴을 확인하였다. SLC1A5_var 전사물 변이체의 cDNA에 HA-tag을 접합하여 HeLa 세포에 형질전환 시키고, 세포소기관 마커와 공존(colocalization) 양상을 분석하였다.The intracellular distribution pattern of the SLC1A5_var transcript variant protein, which was confirmed to have a high expression level in cancer cells, was confirmed. HeLa cells were transformed by conjugating HA-tag to the cDNA of the SLC1A5_var transcript mutant, and the colocalization pattern with organelle markers was analyzed.
구체적으로, 실험에 사용된 세포는 HeLa 세포이며 메탄올로 고정 후 각각 1차 항체로서 항Cox4 항체, 항 Na+-K+ ATPase 항체, 항 ERp72 항체, 항 GM130 항체, 항 LAMP2 항체로 라벨링하였다. 그 후 2차 항체로서 Alexa-488 또는 Alexa-594 형광이 표지되어 있는 항체를 사용하여 라벨링하였다. 세포핵은 DAPI로 염색하였으며 이후 공초점 현미경으로 관찰하였다. 이미지 겹침 정도는 각 샘플당 10개 이상의 이미지를 Zen imaging 소프트웨어를 사용하여 분석하였다.Specifically, the cells used in the experiment were HeLa cells and were labeled with anti-Cox4 antibody, anti-Na+-K+ ATPase antibody, anti-ERp72 antibody, anti-GM130 antibody, and anti-LAMP2 antibody as primary antibodies, respectively, after fixation with methanol. Thereafter, labeling was performed using an antibody labeled with Alexa-488 or Alexa-594 fluorescence as a secondary antibody. Cell nuclei were stained with DAPI and then observed with a confocal microscope. To determine the degree of image overlap, 10 or more images per sample were analyzed using Zen imaging software.
그 결과 도 3에 나타난 바와 같이, HA-tag을 포함하는 SLC1A5_var 단백질은 미토콘드리아 마커(COX4)와 공존하는 것으로 관찰되었으나, 세포막(Na,K-ATPase), 소포체(ERp72), 골지체(GM130) 또는 라이소좀(LAMP2) 등의 마커와는 발현 양상이 상이하여 SLC1A5_var 단백질은 미토콘드리아에 존재하는 것을 확인하였다(도 3의 A , B). As a result, as shown in Figure 3, the SLC1A5_var protein containing the HA-tag was observed to coexist with the mitochondrial marker (COX4), but the cell membrane (Na, K-ATPase), endoplasmic reticulum (ERp72), Golgi apparatus (GM130) or Ly It was confirmed that the SLC1A5_var protein was present in the mitochondria because the expression pattern was different from that of markers such as smallsome (LAMP2) (Fig. 3A, B).
이와 대조적으로 SLC1A5 단백질은 Na,K-ATPase과 공존하여, 세포막에 존재하는 것을 확인하였다(도 3의 A 내지 C). In contrast, it was confirmed that the SLC1A5 protein coexisted with Na,K-ATPase and existed in the cell membrane (Fig. 3A to C).
실시예 3. 세포소기관 분획실험을 통한 SLC1A5 전사물 변이체(SLC1A5_var)단백질의 미토콘드리아 내 분포 양상 확인Example 3. Confirmation of distribution pattern in mitochondria of SLC1A5 transcript variant (SLC1A5_var) protein through organelle fractionation experiment
SLC1A5_var 단백질이 미토콘드리아 내에 존재하며, 그 분포 양상을 더욱 자세히 알아보기 위하여 세포소기관 분획실험을 실시하였다(도 4). The SLC1A5_var protein is present in the mitochondria, and an organelle fractionation experiment was performed in order to examine the distribution pattern in more detail (FIG. 4).
구체적으로, 상기 세포소기관 분획실험의 모든 절차는 4℃ 이하의 차가운 온도에서 진행하였으며, 미토콘드리아는 KPBS 버퍼(136 mM KCl, 10 mM KH2PO4, pH7.2)를 사용하여 분리하였다. 세포를 먼저 KPBS 버퍼를 사용하여 채취하고, 세포 부유액을 900g, 3min 동안 원심분리하였다. 상층액은 버리고 펠렛만 단백질 분해 효소 억제제인 아프로티닌(aprotinin) 5mg/ml, 류펩틴(leupeptin) 10mg/ml 및 PMSF 250mM가 포함된 KPBS로 재부유 시켰다. 이후 Dounce homogenizer를 사용하여 세포를 깨고, 깨진 세포를 600g, 5분 동안 원심분리하였다. 다시 상층액은 버리고 펠렛만을 7000g에서 2번, 10000g에서 한번씩 각각 10분 동안 원심분리하는 과정을 거쳐 생성된 펠렛을 미토콘드리아 분획으로 사용하였다.Specifically, all procedures of the organelle fractionation experiment were performed at a cold temperature of 4° C. or less, and mitochondria were isolated using KPBS buffer (136 mM KCl, 10 mM KH 2 PO 4 , pH 7.2). Cells were first harvested using KPBS buffer, and the cell suspension was centrifuged at 900 g for 3 min. The supernatant was discarded and only the pellet was resuspended with KPBS containing 5mg/ml of aprotinin, 10mg/ml of leupeptin, and 250mM of PMSF. Thereafter, the cells were broken using a Dounce homogenizer, and the broken cells were centrifuged at 600 g for 5 minutes. Again, the supernatant was discarded and the pellet was centrifuged at 7000 g twice and once at 10000 g for 10 minutes, and the resulting pellet was used as a mitochondrial fraction.
미토콘드리아의 내막 분리는 저삼투압 조건에서 실시하였다. 상기 미토콘드리아 분획을 스웰링(swelling) 버퍼(10M KH2PO2, 디지토닌 2 mg/ml, pH 7.4)에 넣어준 후 1시간 동안 얼음 위에서 보관하였다. 그리고 같은 부피의 iso-osmotic 용액(32% sucrose, 30% glycerol, and 10mM MgCl2)을 넣어주었다. 그 후 10000g, 10min로 원심분리하여 이 때 발생하는 상층액을 미토콘드리아 외막 분획으로, 그리고 펠렛은 미토콘드리아 내막과 매트릭스 분획으로 사용하였다. 상기 펠렛을 다시 디지토닌이 없는 스웰링 버퍼를 사용하여 재부유시켜 1시간 동안 얼음 위에 보관하고, 다시 같은 부피의 iso-osmotic 용액을 넣은 후 17000g, 1시간 동안 원심분리 하였다. 분리 후 상층액을 매트릭스 분획으로, 펠렛을 미토콘드리아 내막 분획으로 사용하였다.The mitochondrial inner membrane was separated under low osmotic pressure conditions. The mitochondrial fraction was put in a swelling buffer (10M KH 2 PO 2 , digitonin 2 mg/ml, pH 7.4) and then stored on ice for 1 hour. And the same volume of iso-osmotic solution (32% sucrose, 30% glycerol, and 10mM MgCl 2 ) was added. Thereafter, centrifugation was performed at 10000 g and 10 min, and the resulting supernatant was used as the mitochondrial outer membrane fraction, and the pellet was used as the mitochondrial inner membrane and matrix fraction. The pellet was resuspended again using a swelling buffer without digitonin, stored on ice for 1 hour, and the same volume of iso-osmotic solution was added again, followed by centrifugation at 17000 g for 1 hour. After separation, the supernatant was used as a matrix fraction and the pellet was used as a mitochondrial inner membrane fraction.
상기 미토콘드리아의 소기관 분획을 대상으로 면역 블롯을 실시하였다. 면역블롯을 위해서 용해 버퍼(pH 7.4의 40mM HEPES, 0.5% 트리톤 X-100, 10mM β-글리세롤 포스페이트, 10mM 파이로포스페이트, 2.5mM MgCl2)와 초음파를 이용해 세포를 분쇄하였다. SLC1A5_var의 관찰을 위해서 PNGase F를 처리하였다. 통상적인 면역 블롯(immunoblotting)과는 다르게 샘플을 끓이는 과정은 하지 않았고, 샘플당 최소 약 30ug 정도의 단백질을 SDS-PAGE로 분리하였다. 이후 PVDF 막으로 전이하는 과정을 거친 후, 각 단백질에 해당하는 1차 항체를 4℃에서 8시간 동안 처리하고, 각 1차 항체를 인식하는 HRP가 붙어있는 2차 항체를 붙여 막에 존재하는 각 단백질을 확인하였다.Immunoblotting was performed on the mitochondrial organelle fraction. For immunoblot, cells were crushed using lysis buffer (40mM HEPES at pH 7.4, 0.5% Triton X-100, 10mM β-glycerol phosphate, 10mM pyrophosphate, 2.5mM MgCl 2 ) and ultrasonic waves. PNGase F was treated for observation of SLC1A5_var. Unlike conventional immunoblotting, the sample was not boiled, and at least about 30 ug of protein per sample was separated by SDS-PAGE. After the process of transferring to the PVDF membrane, the primary antibody corresponding to each protein is treated at 4°C for 8 hours, and the secondary antibody with HRP that recognizes each primary antibody is attached to each existing membrane. Protein was identified.
그 결과, 실시예 2의 면역형광실험 결과와 유사하게 SLC1A5 단백질은 Na,K-ATPase가 집중적으로 분포하는 세포막 분획에서 관찰되었으나, SLC1A5_var 단백질의 대부분은 COX4가 집중된 미토콘드리아 분획에서 확인되었다(도 4A).As a result, similar to the results of the immunofluorescence experiment of Example 2, SLC1A5 protein was observed in the cell membrane fraction in which Na,K-ATPase was intensively distributed, but most of the SLC1A5_var protein was confirmed in the mitochondrial fraction in which COX4 was concentrated (Fig. 4A). .
나아가 SLC1A5_var 단백질은 미토콘드리아 내막의 마커인 Tim23과 함께 분리되었으나, 미토콘드리아 외막의 마커인 Tom20이나 미토콘드리아 기질의 마커인 MnSOD2와는 독립적으로 분획되었다(도 4B). 따라서 SLC1A5_var 단백질은 미토콘드리아에, SLC1A5 단백질은 세포막에 분포하는 것을 분명하게 확인하였다. Further, the SLC1A5_var protein was isolated together with Tim23, a marker of the mitochondrial inner membrane, but was fractionated independently from Tom20, a marker of the outer mitochondrial membrane, and MnSOD2, a marker of the mitochondrial matrix (FIG. 4B). Therefore, it was clearly confirmed that the SLC1A5_var protein was distributed in the mitochondria and the SLC1A5 protein was distributed in the cell membrane.
실시예 4. SLC1A5_var가 미토콘드리아의 글루타민 운반체인지 여부 확인 Example 4. Check whether SLC1A5_var is a mitochondrial glutamine transporter
SLC1A5_var가 미토콘드리아에서 글루타민 흡수에 관여하는지 알아보기 위하여, SLC1A5_var의 NMDG 모티프의 보존 부위 내 나트륨 이온이 결합하는 부위의 아스파트산을 알라닌으로 변경한 돌연변이(D186A)를 제작하였다. To find out whether SLC1A5_var is involved in glutamine uptake in mitochondria, a mutation (D186A) in which aspartic acid at the site where sodium ions bind in the conserved site of the NMDG motif of SLC1A5_var was changed to alanine was constructed.
췌장암 세포주인 MiaPaCa2 세포에 SLC1A5_var 또는 SLC1A5_var D186A를 각각 안정적으로 발현시키고, 미토콘드리아 내 글루타민 흡수 활성을 측정하였다. SLC1A5_var or SLC1A5_var D186A were stably expressed in MiaPaCa2 cells, which are pancreatic cancer cell lines, respectively, and glutamine uptake activity in mitochondria was measured.
구체적으로, 상기 실시예 3의 방법으로 미토콘드리아 분획을 얻은 후, KPBS 버퍼에 10mM NaCl과 100mM 글루타민, 100 mM 세린, 100 mM 알라닌 또는 100 mM 글루탐산이 포함된 버퍼로 재부유 시킨 후 37℃에 보관하는 것으로 아미노산 흡수를 시작하였다. 이후 20mM HgCl2를 넣어 반응을 종료하였고, 종료 후 각 샘플은 10000g, 5min 동안 원심분리 하였다. 이후 상층액을 취하여 남아있는 처음 대비 소모된 아미노산을 아미노산 측정 키트(Glutamine assay kit, Serine assay kit, Alanine assay kit, Glutamate assay kit, Biovision)를 사용하여 측정하였다. 측정한 값은 각 샘플의 미토콘드리아의 단백질 양을 측정하여 정량시 기준값으로 사용하여 보정하였다.Specifically, after obtaining a mitochondrial fraction by the method of Example 3, resuspended in a buffer containing 10 mM NaCl, 100 mM glutamine, 100 mM serine, 100 mM alanine or 100 mM glutamic acid in KPBS buffer, and then stored at 37°C. Started amino acid absorption. Thereafter, 20 mM HgCl 2 was added to terminate the reaction, and after completion, each sample was centrifuged for 10000 g and 5 min. Thereafter, the supernatant was taken and the remaining amino acids consumed compared to the first were measured using an amino acid assay kit (Glutamine assay kit, Serine assay kit, Alanine assay kit, Glutamate assay kit, Biovision). The measured value was corrected by measuring the amount of mitochondrial protein in each sample and using it as a reference value for quantification.
그 결과 도 5에 나타난 바와 같이, SLC1A5_var를 과발현하는 세포에서 분리된 미토콘드리아에서만 시간의 흐름에 따라 대조군 벡터 이상으로 글루타민 수준이 증가하는 것을 확인하였다. 반면 SLC1A5 또는 SLC1A5_var D186A를 과발현하는 세포에서 분리된 미토콘드리아에서는 글루타민이 흡수되지 않는 것을 확인하였다(도 5 A). As a result, as shown in FIG. 5, it was confirmed that only the mitochondria isolated from the cells overexpressing SLC1A5_var increased glutamine levels above the control vector over time. On the other hand, it was confirmed that glutamine was not absorbed in mitochondria isolated from cells overexpressing SLC1A5 or SLC1A5_var D186A (FIG. 5A).
또한 SLC1A5_var를 과발현하는 세포에서 분리된 미토콘드리아에서는 글루타민 뿐 아니라, SLC1A5의 다른 알려진 기질인 알라닌과 세린도 흡수되는 것으로 나타났다(도 5B). In addition, it was found that in mitochondria isolated from cells overexpressing SLC1A5_var, not only glutamine, but also alanine and serine, which are other known substrates of SLC1A5, are absorbed (FIG. 5B).
한편, siRNA를 이용하여 SLC1A5 및 SLC1A5_var를 각각 넉다운 시켰다. control siRNA는 서열번호 14로, SLC1A5에 대한 siRNA는 서열번호 15으로, SLC1A5_var에 대한 siRNA는 서열번호 16로 표시된 염기서열로 구성하였다. 상기 siRNA를 이용한 넉다운 실험 결과, SLC1A5_var의 과발현을 억제한 세포에서 분리된 미토콘드리아에서는 글루타민의 흡수가 억제되었으나, SLC1A5의 과발현을 억제한 세포에서 분리된 미토콘드리아에서는 이러한 현상이 관찰되지 않았다(도 5C). 알라닌과 세린에 대해서도 같은 결과가 관찰되었다(도 5D). Meanwhile, each of SLC1A5 and SLC1A5_var was knocked down using siRNA. The control siRNA was composed of SEQ ID NO: 14, the siRNA against SLC1A5 was composed of SEQ ID NO: 15, and the siRNA against SLC1A5_var was composed of the nucleotide sequence represented by SEQ ID NO: 16. As a result of the knockdown experiment using the siRNA, the uptake of glutamine was inhibited in mitochondria isolated from cells that inhibited the overexpression of SLC1A5_var, but this phenomenon was not observed in mitochondria isolated from cells that suppressed the overexpression of SLC1A5 (Fig. 5C). The same results were observed for alanine and serine (FIG. 5D).
나아가, 기존에 알려진 SLC1A5의 억제제들인 GPNA(l-γ-글루타밀-p-니트로아닐라이드)와 벤질세린(benzylserine)을 각각 100uM씩 처리함으로써 SLC1A5_var에 의한 미토콘드리아 글루타민 수송을 억제할 수 있는지 확인한 결과, 상기 억제제들은 기저 수준(basal level) 및 SLC1A5_var가 매개하는 미토콘드리아의 글루타민 흡수를 억제하는 것으로 나타났으며, 프로테오리포좀(proteoliposome)에서 SLC1A5에 의한 수송 반응을 종결시키는 것으로 알려진 HgCl2 역시 미토콘드리아 글루타민 흡수를 억제하였다(도 5E). Furthermore, as a result of confirming whether the mitochondrial glutamine transport by SLC1A5_var can be inhibited by treatment with 100uM each of GPNA (l-γ-glutamyl-p-nitroanilide) and benzylserine, known inhibitors of SLC1A5, the inhibitors are known HgCl 2 also mitochondrial glutamine absorption as that was shown to inhibit mitochondrial glutamine absorption in which the basal levels (basal level) and SLC1A5_var parameter, terminating the transport induced by SLC1A5 in proteosome liposomes (proteoliposome) Suppressed (Fig. 5E).
미토콘드리아 글루타민은 알파-케토글루타레이트(α-KG)로 대사되기 때문에, 분리된 미토콘드리아 및 전체 세포 측면에서 SLC1A5_var의 과발현에 따른 α-KG 수준에 조절 효과를 모니터링했다. 알파-케토글루타레이트(α-KG) 수준은 alpha-Ketoglutarate Assay kit(Abcam)를 사용하여, 제조사의 프로토콜에 따라 측정하였다 Since mitochondrial glutamine is metabolized to alpha-ketoglutarate (α-KG), the modulatory effect on α-KG levels following overexpression of SLC1A5_var was monitored in terms of isolated mitochondria and whole cells. Alpha-ketoglutarate (α-KG) level was measured according to the manufacturer's protocol using the alpha-Ketoglutarate Assay kit (Abcam).
SLC1A5_var의 과발현에 따라 미토콘드리아에서 글루타민-유래 α-KG 수준이 현저하게 증가된 것을 확인하였다(도 5F). 상기한 결과를 종합적으로 고려할 때, SLC1A5_var가 미토콘드리아의 글루타민 운반체임을 명확히 확인하였다.It was confirmed that the glutamine-derived α-KG level in the mitochondria significantly increased according to the overexpression of SLC1A5_var (FIG. 5F). When considering the above results comprehensively, it was clearly confirmed that SLC1A5_var is a mitochondrial glutamine transporter.
실시예 5. SLC1A5_var의 미토콘드리아 타겟팅 단편 제작 및 효과 확인 Example 5. Preparation of mitochondrial targeting fragment of SLC1A5_var and confirmation of effect
상기 실시예에서 확인된 바와 같이, SLC1A5_var 단백질은 미토콘드리아 내막에 존재하고 있으므로, SLC1A5_var이 미토콘드리아에 특이적인 타겟팅 신호(mitochondrial targeting sequence, MTS)를 포함하고 있는지, 포함하고 있다면 그 위치는 어디인지 및 이를 분리하여 단독으로 사용 가능한지를 확인하였다. As confirmed in the above example, since SLC1A5_var protein is present in the mitochondrial inner membrane, whether SLC1A5_var contains a mitochondrial targeting sequence (MTS), and if so, where is its location and separates it. It was confirmed whether it can be used alone.
구체적으로, SLC1A5_var 단백질로부터 단리된 상태로도 기능이 유지되는 미토콘드리아 타겟 폴리펩타이드를 제작하기 위해, 상기 단백질로부터 폴리펩타이드 단편들을 제작하여 이의 미토콘드리아 타겟팅 여부를 시험하였으며, 그 결과를 도 6에 나타내었다.Specifically, in order to prepare a mitochondrial target polypeptide that maintains function even when isolated from the SLC1A5_var protein, polypeptide fragments were prepared from the protein and tested for mitochondrial targeting thereof, and the results are shown in FIG.
도 6A에 나타난 바와 같이, 본 발명자들은 PrediSi 프로그램(http://www.predisi.de)을 사용하여 SLC1A5_var 전체 단백질 중 N-말단의 39번째 아미노산 내지 51번째 아미노산 영역에 미토콘드리아 타겟을 위한 주요 모티프의 존재 여부를 확인하였다. As shown in FIG. 6A, the present inventors used the PrediSi program (http://www.predisi.de) to identify the main motifs for mitochondrial targets in the N-terminal amino acid region from the 39th to the 51st amino acid region of the entire SLC1A5_var protein. It was checked for existence.
특히 비 친수성 나선구조(hydrophobic α-helical structure)에 곧바로 이어지는 양전하를 띈 아미노산(아르기닌, R; 라이신, K)으로 이루어진 27 내지 46번째 아미노산 서열(도 6B의 NT_(27~46))이 미토콘드리아 타겟팅을 위한 핵심 서열임을 확인하였다.In particular, the 27-46 amino acid sequence (NT_(27-46) in Fig. 6B) consisting of positively charged amino acids (arginine, R; lysine, K) immediately following a non-hydrophobic α-helical structure is targeted to mitochondria. It was confirmed that it is a key sequence for.
도 6B에는 SLC1A5_var 전체단백질로부터의 N-말단 1~46aa에 해당하는 단편(NT-WT 단편)과 대조군으로 사용된 C-말단 235~339aa 단편(CT 단편)의 위치, 상기 NT-WT 단편의 염기성 아미노산에 점 돌연변이를 도입한 R9A/R15A/K17A 돌연변이(NT_3A로 지칭) 및 R44A/K45A 돌연변이(NT_2A로 지칭)를 나타내었다. 또한, NT-WT 단편을 반으로 나누어, N-말단 전반부인 NT_(1~26)과 후반부인 NT_(27~46) 단편을 각각 나타내었다. 상기한 각 단편의 서열은 하기 표 2에 구체적으로 기재하였다. 6B shows the location of the fragment corresponding to the N-terminal 1 to 46aa (NT-WT fragment) from the total protein SLC1A5_var and the C-terminal 235 to 339aa fragment (CT fragment) used as a control, and the basicity of the NT-WT fragment. The R9A/R15A/K17A mutation (referred to as NT_3A) and the R44A/K45A mutation (referred to as NT_2A) introducing a point mutation in the amino acid are shown. In addition, the NT-WT fragment was divided in half, and a fragment of NT_(1~26) which is the first half of the N-terminal and NT_(27~46) which is the second half of the N-terminus were respectively shown. The sequence of each fragment described above is specifically described in Table 2 below.
Figure PCTKR2020010489-appb-T000002
Figure PCTKR2020010489-appb-T000002
상기 단편들 각각에 EGFP(Enhanced green fluorescent protein, GenBank: AFA52654.1)를 통상적인 방법으로 융합하여, 각각의 EGFP-단편 융합단백질이 미토콘드리아 내로 타겟팅 되는지 확인하였다.구체적으로, 세포를 공초점 현미경 전용 세포 배양 접시에 배양하면서, 각 세포에 대해 컨트롤 벡터 또는 SLC1A5_var의 일부분인 NT_WT, NT_3A, NT_2A, NT_(1~26), NT_(27~46) 및 CT와 EGFP를 발현할 수 있는 플라스미드를 형질주입(transfection) 하였다. 48시간 지난 후 미토콘드리아를 염색할 수 있는 시약인 MitoTracker Red를 사용하여 미토콘드리아를 표지한 후 공초점 현미경으로 관찰하였다.EGFP (Enhanced green fluorescent protein, GenBank: AFA52654.1) was fused to each of the fragments by a conventional method, and it was confirmed whether each EGFP-fragment fusion protein was targeted into the mitochondria. Specifically, cells were used for confocal microscopy only. While culturing in a cell culture dish, each cell was transfected with a control vector or a plasmid capable of expressing NT_WT, NT_3A, NT_2A, NT_(1~26), NT_(27~46) and CT and EGFP, which are a part of SLC1A5_var. (transfection). After 48 hours, mitochondria were labeled with MitoTracker Red, a reagent capable of staining mitochondria, and observed with a confocal microscope.
그 결과 도 7에 나타난 바와 같이, 각각 NT-WT 단편 및 NT_3A(R9A/R15A/K17A 돌연변이) 단편과 결합한 EGFP는 미토콘드리아로 타겟팅 되었으나, NT_2A(R44A/K45A 돌연변이) 단편과 결합한 EGFP는 미토콘드리아로 타겟팅 되지 못하고 세포질 내에 분산되어 있었다. 특히, NT-WT 중에서 전반부인 친수성 아미노산 서열로 이뤄진 1 내지 26 번째 아미노산 서열로 구성된 NT_(1~26)은 미토콘드리아로 타겟팅 되지 못하였으나, 후반부 소수성 아미노산 서열 및 양전하 아미노산으로 구성된 NT_(27~46)은 미토콘드리아로 타겟팅 되어 해당 단편이 미토콘드리아로 타겟팅 되는 최소 단위 단편에 해당함을 확인하였다. As a result, as shown in FIG. 7, EGFP bound to the NT-WT fragment and NT_3A (R9A/R15A/K17A mutation) fragment was targeted to mitochondria, whereas EGFP bound to the NT_2A (R44A/K45A mutation) fragment was not targeted to mitochondria. It was not and was dispersed in the cytoplasm. In particular, NT_(1~26) consisting of the 1st to 26th amino acid sequence consisting of the hydrophilic amino acid sequence of the first half of NT-WT was not targeted to the mitochondria, but NT_(27~46) consisting of the hydrophobic amino acid sequence and the positively charged amino acid of the latter half Was targeted to mitochondria, and it was confirmed that the fragment corresponds to the smallest unit fragment targeted to mitochondria.
공초점 현미경 상에서 미토콘드리아 마커인 Mitotracker와 각 단편이 함께 나타나는 것(colocalization)을 정량적으로 평가한 결과를 도 8에 나타내었으며, 도 8에서 보는 바와 같이 NT-WT 단편, NT_3A(R9A/R15A/K17A 돌연변이) 단편 및 NT_(27~46)은 미토콘드리아 타겟팅 효과가 현저히 우수한 것을 확인하였다. Figure 8 shows the results of quantitatively evaluating the colocalization of the mitochondrial marker Mitotracker and each fragment on a confocal microscope, and as shown in Figure 8, the NT-WT fragment, NT_3A (R9A/R15A/K17A mutation) ) Fragment and NT_(27~46) confirmed that the mitochondrial targeting effect was remarkably excellent.
이와 유사하게, 차등 원심분리(differential centrifugation)을 이용한 세포분획 실험에서도 NT_WT 단편, NT_3A 단편 또는 NT_(27~46) 단편에 접합된 EGFP는 미토콘드리아가 분리되는 분획에서 COX4와 함께 검출된 반면, NT_2A 단편에 접합된 EGFP나 대조군 EGFP 및 NT_(1~26)는 세포질 또는 세포내막(endomembrane)이 분리되는 분획에서 검출되었다. Similarly, in the cell fractionation experiment using differential centrifugation, EGFP conjugated to NT_WT fragment, NT_3A fragment or NT_(27~46) fragment was detected with COX4 in the fraction from which mitochondria are separated, whereas NT_2A fragment EGFP conjugated to or control EGFP and NT_(1-26) were detected in a fraction from which the cytoplasm or endomembrane was separated.
상기한 결과는 서열번호 8의 아미노산 서열을 갖는 NT_(27~46) 단편이 미토콘드리아 타겟팅을 위한 핵심 서열임을 시사하는 것이다.The above results suggest that the NT_(27~46) fragment having the amino acid sequence of SEQ ID NO: 8 is a key sequence for mitochondrial targeting.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.The above description of the present invention is for illustrative purposes only, and those of ordinary skill in the art to which the present invention pertains will be able to understand that it can be easily modified into other specific forms without changing the technical spirit or essential features of the present invention. will be. Therefore, it should be understood that the embodiments described above are illustrative in all respects and not limiting. For example, each component described as a single type may be implemented in a distributed manner, and similarly, components described as being distributed may also be implemented in a combined form.
본 발명의 범위는 후술하는 청구범위에 의하여 나타내어지며, 청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.The scope of the present invention is indicated by the claims to be described later, and all changes or modified forms derived from the meaning and scope of the claims and the concept of equivalents thereof should be construed as being included in the scope of the present invention.

Claims (19)

  1. 서열번호 1로 표시되는 아미노산 서열에서 27 내지 46번째 아미노산을 포함하는 폴리펩타이드; 또는 A polypeptide containing amino acids 27 to 46 in the amino acid sequence represented by SEQ ID NO: 1; or
    상기 폴리펩타이드와 서열 상동성이 90% 이상인 변이체;를 포함하는 것인, 폴리펩타이드.A polypeptide comprising; a variant having 90% or more sequence homology with the polypeptide.
  2. 제1항의 폴리펩타이드는 미토콘드리아를 타겟팅하기 위한 것인, 폴리펩타이드.The polypeptide of claim 1 is for targeting mitochondria.
  3. 제1항에 있어서, The method of claim 1,
    상기 폴리펩타이드는 서열번호 8로 표시되는 아미노산 서열을 포함하는 것인, 폴리펩타이드.The polypeptide is a polypeptide comprising the amino acid sequence represented by SEQ ID NO: 8.
  4. 제1항에 있어서, The method of claim 1,
    상기 변이체는 서열번호 5로 표시되는 아미노산 서열을 포함하는 것인, 폴리펩타이드.The variant is a polypeptide comprising the amino acid sequence represented by SEQ ID NO: 5.
  5. 제1항의 폴리펩타이드를 포함하는 미토콘드리아 검출용 조성물.A composition for detecting mitochondria comprising the polypeptide of claim 1.
  6. 제5항에 있어서, The method of claim 5,
    상기 폴리펩타이드는 발색효소, 방사성동원소, 크로모포어(chromophore), 발광물질, 형광물질(fluorescer), 상자성 입자(superparamagnetic particles) 및 초상자성입자(ultrasuper paramagnetic particles)로 이루어진 군에서 선택되는 하나로 표지된 것을 특징으로 하는 조성물.The polypeptide is labeled with one selected from the group consisting of chromogenic enzymes, radioactive isotopes, chromophores, luminescent materials, fluorescent materials, superparamagnetic particles, and ultrasuper paramagnetic particles. Composition, characterized in that the.
  7. (a) 제1항의 폴리펩타이드를 시료와 혼합하는 단계;(a) mixing the polypeptide of claim 1 with a sample;
    (b) 미결합되거나 비특이적으로 결합된 상기 폴리펩타이드를 제거하는 단계; 및(b) removing the unbound or non-specifically bound polypeptide; And
    (c) 상기 폴리펩타이드의 결합 여부 및 위치를 확인하는 단계를 포함하는 미토콘드리아의 검출 방법.(c) A method for detecting mitochondria comprising the step of determining whether the polypeptide is bound or not.
  8. 제1항의 폴리펩타이드를 포함하는 미토콘드리아 영상화용 조성물.A composition for imaging mitochondria comprising the polypeptide of claim 1.
  9. 제1항의 폴리펩타이드를 포함하는 미토콘드리아 특이적 약물 전달용 조성물.A composition for delivery of a mitochondrial-specific drug comprising the polypeptide of claim 1.
  10. 제9항에 있어서, The method of claim 9,
    상기 폴리펩타이드는 약물과 결합된 상태인 것인, 조성물.The polypeptide is in the state of being bound to the drug, the composition.
  11. 제9항에 있어서, The method of claim 9,
    상기 약물은 약리학적으로 활성을 나타내는 화합물, 폴리펩타이드 또는 폴리뉴클레오티드로 이루어진 군에서 하나 이상 선택된 것인, 조성물.The drug is one or more selected from the group consisting of pharmacologically active compounds, polypeptides, or polynucleotides.
  12. 제9항에 있어서,The method of claim 9,
    상기 약물은 미토콘드리아 기능이상과 관련된 질환의 예방 또는 치료에 사용되는 것인, 조성물.The drug is to be used for the prevention or treatment of diseases associated with mitochondrial dysfunction, composition.
  13. 제12항에 있어서,The method of claim 12,
    상기 미토콘드리아 기능이상과 관련된 질환은 암, 알츠하이머병, 파킨슨병, 헌팅톤병, 근육 이영양증, 근긴장성 이영양증, 만성 피로 증후군, 프리드리히 운동실소증, 간질, 말초신경병, 시신경병, 자율 신경병, 신경유래의 장 기능부전, 감각신경의 난청, 신경유래의 방광 기능부전, 편두통, 운동실소증, 신세뇨관성 산증, 확장성 심근증, 지방간염, 간부전, 유산성혈증, 미토콘드리아 뇌근증(mitochondrial encephalopathy with lactic acidemia and strokelike episodes; MELAS), 레버 시신경위축증(Leber's hereditary optic neuropathy: LHON), MERRF 증후군(Myoclonic Epilepsy with Ragged-Red Fibers syndrome), MNGIE 증후군(Mitochondrial neurogastrointestinal encephalopathy syndrome), NARP 증후군((neuropathy, ataxia, and retinitis pigmantosa), 바쓰 증후군(Barth Syndrome), 리증후군 (Leigh Syndrome), 칸스-사이레스 증후군(Kearns-Sayre syndrome), 퇴행성 뇌질환, 다발성 경화증 증후군(Multiple Sclerosis-like Syndrome), 모성 유전 심근증( Maternally Inherited CardioMyopathy), 진행성 외안근 마비(Progressive External Ophthalmoplegia), 피어슨 골수 증후군(Pearson Marrow syndrome), 아미노글루코시드 연관 난청(Aminoglycoside-associated deafness), 난청을 동반하는 당뇨(Diabetes with deafness), Luft 병(Luft disease), 알퍼스병(Alpers Disease), 중쇄 아실코에이 탈수효소 결핍증 (medium chain acyl-CoA dehydrogenase [MCAD] deficiency), 경쇄아실 코에이 탈수효소 결핍증(Segmental colitis associated with diverticular [SCAD] disease), 단쇄 수산화 코에이 탈수효소 결핍증(Short chain 3- hydroxyacyl CoA dehydrogenase[SCHAD] deficiency), 초장쇄 아실코에이 탈수효소 결손증(Very long chain acyl-CoA dehydrogenase [VLCAD] deficiency ), 장쇄 수산화 아실코에이 탈수효소 결핍증(long chain 3-hydroxy acyl-CoA dehydrogenase [LCHAD] deficiency), 글루타르산뇨증 II형(Glutaric aciduria II) 및 치사성 유아 심근증(Lethal infantile cardiomyopathy)으로 이루어진 군에서 하나 이상 선택된 것인, 조성물.Diseases related to the mitochondrial dysfunction include cancer, Alzheimer's disease, Parkinson's disease, Huntington's disease, muscular dystrophy, muscular dystrophy, chronic fatigue syndrome, Friedrich's ataxia, epilepsy, peripheral neuropathy, optic neuropathy, autonomic neuropathy, neuropathy. Dysfunction, sensorineural hearing loss, nerve-derived bladder dysfunction, migraine, ataxia, renal tubular acidosis, dilated cardiomyopathy, steatohepatitis, liver failure, lactic acidemia, mitochondrial encephalopathy with lactic acidemia and strokelike episodes; MELAS), Leber's hereditary optic neuropathy (LHON), MERRF syndrome (Myoclonic Epilepsy with Ragged-Red Fibers syndrome), MNGIE syndrome (Mitochondrial neurogastrointestinal encephalopathy syndrome), NARP syndrome (neuropathy, ataxia, and retinitis pigs) ), Barth Syndrome, Leigh Syndrome, Kearns-Sayre syndrome, degenerative brain disease, Multiple Sclerosis-like Syndrome, Maternally Inherited CardioMyopathy ), Progressive External Ophthalmoplegia, Pearson Marrow syndrome, Aminoglycoside-associated deafness, Diabetes with deafness, Luft disease, Alpers Disease, medium chain acyl-CoA dehydrogenase genase [MCAD] deficiency), segmental colitis associated with diverticular [SCAD] disease, short chain 3-hydroxyacyl CoA dehydrogenase [SCHAD] deficiency), ultra-long acyl Very long chain acyl-CoA dehydrogenase [VLCAD] deficiency ), long chain 3-hydroxy acyl-CoA dehydrogenase [LCHAD] deficiency, glutaric aciduria type II ( Glutaric aciduria II) and lethal infantile cardiomyopathy (Lethal infantile cardiomyopathy) that one or more selected from the group consisting of, the composition.
  14. 제9항에 있어서, The method of claim 9,
    상기 약물은 항산화제인 아세틸시스테인 (N-Acetylcysteine), 글루타치온 (glutathione), SOD-유사(SOD-mimicking) 펩타이드, 제토-실러-펩타이드(Szeto-Schiller-peptides) 및 비타민 E (Vitamine E)로 이루어진 군에서 하나 이상 선택된 것인, 조성물. The drug is a group consisting of antioxidants acetylcysteine (N-Acetylcysteine), glutathione (glutathione), SOD-mimicking peptides, Zeto-Schiller-peptides and vitamin E (Vitamine E). One or more selected from, the composition.
  15. 제9항에 있어서, The method of claim 9,
    상기 약물은 항암제인 것을 특징으로 하는 조성물.The composition, characterized in that the drug is an anticancer agent.
  16. 제15항에 있어서, The method of claim 15,
    상기 항암제는 젬시타빈(gemcitabine), 파클리탁셀(paclitaxel), 독소루비신(doxorubicin), 빈크리스틴(vincristine), 다우노루비신(daunorubicin), 빈블라스틴(vinblastine), 액티노마이신-D(actinomycin-D), 도세탁셀(docetaxel), 에토포사이드(etoposide), 테니포사이드(teniposide), 비산트렌(bisantrene), 호모해링토닌(homoharringtonine), 글리벡(Gleevec; STI-571), 시스플라틴(cisplain), 5-플로오우라실(5-fluouracil), 아드리아마이신(adriamycin), 메토트렉세이트(methotrexate), 부설판(busulfan), 클로람부실(chlorambucil), 시클로포스파미드(cyclophosphamide), 멜팔란(melphalan), 니트로겐 무스타드(nitrogen mustard), 니트로소우레아(nitrosourea), 스트렙토키나제(streptokinase), 유로키나제(urokinase), 알테플라제(alteplase), 안지오텐신(angiotensin) II 억제제, 알도스테론(aldosterone) 수용체 억제제, 에리트로포이에틴(erythropoietin), NMDA (N-methyl-d-aspa rtate) 수용체 억제제, 로바스타틴(Lovastatin), 라파마이신(Rapamycin), 셀레브렉스(Celebrex), 티클로핀(Ticlopin) 마리마스타트(Marimastat) 및 트로케이드(Trocade) 이메손 (Imexon), 메나디온 (menadione), 모텍사핀 가돌리니움 (motexafin gadolinium), 라파콘 (β-lapachone), 망가포디피르 (mangafodipir), 파테놀라이드 (parthenolide), 광활성화 물질 (photodynamic substances)로 이루어진 군에서 하나 이상 선택된 것인, 조성물.The anticancer agents are gemcitabine, paclitaxel, doxorubicin, vincristine, daunorubicin, vinblastine, actinomycin-D (actinomycin-D), Docetaxel, etoposide, teniposide, bisantrene, homoharringtonine, Gleevec (STI-571), cisplain, 5-fluorouracil ( 5-fluouracil), adriamycin, methotrexate, busulfan, chlorambucil, cyclophosphamide, melphalan, nitrogen mustard ), nitrosourea, streptokinase, urokinase, alteplase, angiotensin II inhibitor, aldosterone receptor inhibitor, erythropoietin, NMDA ( N-methyl-d-aspa rtate) receptor inhibitors, Lovastatin, Rapamycin, Celebrex, Ticlopin Marimastat and Trocade Imesone ), menadione, motexafin gadolinium, rapacon (β-lapachone), mangafodipir, parthenolide, photodynamic substances One or more selected from, the composition.
  17. 제1항의 폴리펩타이드를 암호화하는 폴리뉴클레오티드.A polynucleotide encoding the polypeptide of claim 1.
  18. 제17항의 폴리뉴클레오티드를 포함하는 재조합 벡터.A recombinant vector comprising the polynucleotide of claim 17.
  19. 제18항의 재조합 벡터로 형질전환된 세포.Cells transformed with the recombinant vector of claim 18.
PCT/KR2020/010489 2019-08-07 2020-08-07 Mitochondria targeting polypeptide and use thereof WO2021025527A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190096031A KR102267495B1 (en) 2019-08-07 2019-08-07 Polypeptide for targeting mitochondria and uses thereof
KR10-2019-0096031 2019-08-07

Publications (1)

Publication Number Publication Date
WO2021025527A1 true WO2021025527A1 (en) 2021-02-11

Family

ID=74502754

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/010489 WO2021025527A1 (en) 2019-08-07 2020-08-07 Mitochondria targeting polypeptide and use thereof

Country Status (2)

Country Link
KR (1) KR102267495B1 (en)
WO (1) WO2021025527A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007071962A1 (en) * 2005-12-23 2007-06-28 Medical Research Council Polypeptide targeting to mitochondria
WO2012174452A1 (en) * 2011-06-17 2012-12-20 Shire Human Genetic Therapies, Inc. Mitochondrial targeting and therapeutic use thereof
KR20130109966A (en) * 2010-05-14 2013-10-08 애브비 인코포레이티드 Il-1 binding proteins
KR20150131360A (en) * 2013-03-15 2015-11-24 애브비 인코포레이티드 DUAL SPECIFIC BINDING PROTEINS DIRECTED AGAINST TNFα

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6984636B2 (en) 2002-08-12 2006-01-10 Medical Research Council Mitochondrially targeted antioxidants
JP5812869B2 (en) * 2010-01-15 2015-11-17 協和発酵キリン株式会社 Anti-system ASC amino acid transporter 2 (ASCT2) antibody

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007071962A1 (en) * 2005-12-23 2007-06-28 Medical Research Council Polypeptide targeting to mitochondria
KR20130109966A (en) * 2010-05-14 2013-10-08 애브비 인코포레이티드 Il-1 binding proteins
WO2012174452A1 (en) * 2011-06-17 2012-12-20 Shire Human Genetic Therapies, Inc. Mitochondrial targeting and therapeutic use thereof
KR20150131360A (en) * 2013-03-15 2015-11-24 애브비 인코포레이티드 DUAL SPECIFIC BINDING PROTEINS DIRECTED AGAINST TNFα

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE Protein 19 January 2018 (2018-01-19), ANONYMOUS: "SLC1A5 isoform 3 [Pan troglodytes]", XP055777885, retrieved from NCBI Database accession no. PNI28894.1 *

Also Published As

Publication number Publication date
KR20210017183A (en) 2021-02-17
KR102267495B1 (en) 2021-06-22

Similar Documents

Publication Publication Date Title
US11702671B2 (en) Importation of mitochondrial protein by an enhanced allotopic approach
WO2014046478A1 (en) Cell penetrating peptide, conjugate comprising same, and composition comprising conjugate
WO2014046490A1 (en) Cell penetrating peptide, conjugate comprising same, and composition comprising conjugate
AU2014228777B2 (en) BH4 stabilized peptides and uses thereof
US9439975B2 (en) Small efficient cell penetrating peptides derived from the scorpion toxin maurocalcine
EP2056868B1 (en) Inhibition of angiogenesis, tumorigenesis and cathepsin activity using insulin-like growth factor binding protein
EP2754451A1 (en) The use of ache as nuclease
WO2021025527A1 (en) Mitochondria targeting polypeptide and use thereof
US11248024B2 (en) Noxa-derived, cell death-inducing peptide eMTD
US9284541B2 (en) Methods and compositions for protein labeling using lipoic acid ligases
EP2687537B1 (en) Polypeptide drug against hepatitis b virus x protein
EP2283150B1 (en) Assay for monitoring activity of jmjd6
US20150087604A1 (en) Anti-fatty acid synthase polypeptide and use thereof
KR20090122769A (en) Method for delivering proteins into cells and peptide therefor
WO2022065725A1 (en) Polynucleotide for cancer treatment, encoding 5&#39;-nucleotidase modified protein
WO2013124425A1 (en) A cell-permeable and selective activator of protein phosphatase-1
WO2023153711A1 (en) Peptide binding to mesothelin, and use thereof
WO2022065726A1 (en) Liposome complex for cancer treatment, comprising novel cd47 binder and polynucleotide
US11834517B2 (en) Branched peptides for enzymatic assembly and mitochondria drug delivery
US20240158441A1 (en) Branched peptides for enzymatic assembly and mitochondria drug delivery
WO2023126751A1 (en) Therapeutical peptidomimetic
JP2003334083A (en) New apelin receptor and its dna
IL194466A (en) N-terminal vdac variants and uses thereof
JP2003292456A (en) Use of apelin

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20850617

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20850617

Country of ref document: EP

Kind code of ref document: A1