WO2021025134A1 - Latent heat storage material composition, and method for controlling latent heat storage characteristics - Google Patents

Latent heat storage material composition, and method for controlling latent heat storage characteristics Download PDF

Info

Publication number
WO2021025134A1
WO2021025134A1 PCT/JP2020/030257 JP2020030257W WO2021025134A1 WO 2021025134 A1 WO2021025134 A1 WO 2021025134A1 JP 2020030257 W JP2020030257 W JP 2020030257W WO 2021025134 A1 WO2021025134 A1 WO 2021025134A1
Authority
WO
WIPO (PCT)
Prior art keywords
fatty acid
latent heat
heat storage
storage material
alcohol
Prior art date
Application number
PCT/JP2020/030257
Other languages
French (fr)
Japanese (ja)
Inventor
浩祐 廣森
尚美 北川
武浩 重原
Original Assignee
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東北大学 filed Critical 国立大学法人東北大学
Priority to JP2021537392A priority Critical patent/JP7504475B2/en
Publication of WO2021025134A1 publication Critical patent/WO2021025134A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa

Definitions

  • the present invention relates to a latent heat storage material composition and a method for controlling the latent heat storage characteristics, and the coagulation / melting temperature or transition enthalpy depends on the reaction rate of the esterification reaction or the ester exchange reaction with the latent heat storage material composition formed mainly using a fatty acid ester.
  • the present invention relates to a method for controlling latent heat storage characteristics such as.
  • the latent heat storage material As one of the energy-saving technologies, materials and products in which the latent heat storage material is microencapsulated and dispersed are being developed.
  • a latent heat storage material paraffin derived from petroleum was mainly used, but in recent years, it has been proposed to use a fatty acid ester.
  • Fatty acid esters are expected as new latent heat storage materials because they have a wide melting point and high latent heat according to the carbon chain length and the number of double bonds of fatty acids and alcohols.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 63-205385 has been proposed as a latent heat storage material using such a fatty acid ester.
  • latent heat that can take out stable latent heat at a substantially constant temperature in a temperature range of 10 to 20 ° C. without causing a supercooling phenomenon, and can stably store and dissipate heat for a long period of time.
  • a heat storage material composition a latent heat storage material composition containing 50 to 100% by weight of n-butyl ester of palmitic acid in a latent heat storage material composition containing fatty acid esters as a main component has been proposed.
  • Patent Document 2 proposes a method for producing a saturated fatty acid ester suitable for use as a phase change material. That is, this document includes a step of hydrogenating a fatty acid ester obtained by processing a triglyceride-containing starting material, and in a preferred embodiment thereof, the fatty acid ester to be hydrogenated is a triglyceride-containing starting material and alcohol. It is obtained by transesterification.
  • Non-Patent Document 1 Boary mixtures of fatty acid acid mice as phase change materials for low temperature applications
  • a two-component mixture of fatty acid methyl ester as a phase change material for low-temperature use is used as a two-component mixture of fatty acid methyl ester. doing. That is, with respect to incorporating phase change materials into concrete pavement as a means of improving anti-freezing measures, the binary mixture of fatty acid methyl esters provides desirable thermal properties for use as low temperature phase change materials to improve anti-freeze measures.
  • the binary mixture of methyl laurate and methyl myristate, and methyl laurate and methyl palmitate has eutectic melting temperatures and latent heat of melting of 0.21 ° C and 2.4 ° C, 174.3J, respectively.
  • -It is disclosed that it is g-1 and 166.5 J.g-1.
  • PCM phase change material
  • the present invention is a latent heat storage material composition capable of controlling the latent heat storage characteristics of PCM by the reaction rate to the fatty acid ester produced by the esterification reaction of fatty acid and alcohol or the transesterification reaction of raw material fat and alcohol. , And to provide a method for controlling latent heat storage characteristics.
  • Fatty acid esters can be produced from naturally-derived fats and oils, fatty acids and alcohols, and have a wide melting point and high latent heat according to their carbon chain lengths and the number of double bonds, and are therefore expected as biomass-derived PCMs.
  • one of the problems of the present invention is to provide a PCM mainly composed of a fatty acid ester produced by using naturally derived fats and oils, fatty acids and alcohol.
  • fatty acid esters used are also expensive because they are industrially manufactured by batch reaction using a phase-matching catalyst using edible refined oil as a raw material, and only methyl esters of several fatty acid groups are sold. The reality is that it has not. As a result, there is also a problem of production efficiency of fatty acid ester used as PCM.
  • a fatty acid ester having a desired melting point / freezing point can be easily produced by a heterogeneous resin catalytic method capable of continuously producing a fatty acid ester by a combination of various fatty acids and alcohols or a combination of various raw material fats and oils and alcohols. Synthesis is also one of the issues.
  • the present invention produces a PCM having desired latent heat storage characteristics according to the reaction rate in the esterification reaction of fatty acid and alcohol or the transesterification reaction of raw material fat and alcohol.
  • a latent heat storage material composition containing fatty acid esters as a main component, the fatty acid, and the fatty acid ester produced from the fatty acid and alcohol.
  • a latent heat storage material composition comprising 1 wt% or more of each of a fatty acid and a fatty acid ester in the composition.
  • fatty acid esters are produced with one alcohol and two or more fatty acids, two or more alcohols and one fatty acid, or two or more alcohols and two or more fatty acids.
  • a latent heat storage material composition which has been used.
  • a latent heat storage material composition containing fatty acid esters as a main component, which is a raw material fat and oil, and a fatty acid produced from the raw material fat and oil and alcohol.
  • a latent heat storage material composition comprising an ester and having a fatty acid ester content of 1 wt% or more and 99 wt% or less in the composition.
  • the raw material fat and oil may be one kind and two or more kinds may be combined, and the alcohol used for producing the fatty acid ester is also one kind and two or more kinds may be combined. It can also be used.
  • the fatty acid used for producing the above fatty acid ester may be a commercially available product, but natural oil can be used as a raw material.
  • ester synthesis using waste oil as a raw material in vegetable oil or the like can be performed, thereby producing a fatty acid ester.
  • the latent heat storage material in addition to the latent heat storage material using the latent heat storage material composition according to the present invention, it is a method for controlling the latent heat storage characteristics of other latent heat storage materials, and the latent heat storage material is mainly fatty acid esters. It is composed as a component, and the fatty acid esters are produced by an esterification reaction of fatty acid and alcohol or an ester exchange reaction of fat and oil and alcohol, and the abundance ratio of the fatty acid ester produced in any of the reactions (in other words, For example, a method for controlling the latent heat storage characteristic, which controls the latent heat storage characteristic by the reaction rate of fatty acid or fat or oil), is provided.
  • the present invention is a method for producing various latent heat storage material compositions containing fatty acid esters as main components in addition to the latent heat storage material composition, wherein a raw material fat or oil or a mixed solution of fatty acid and alcohol is brought into contact with an ion exchanger.
  • a method for producing a latent heat storage material composition which comprises continuously producing a fatty acid ester using the ion exchanger as a catalyst.
  • an anion exchange resin catalyst can be used in the transesterification reaction using raw material fats and oils
  • a cation exchange resin catalyst can be used in the transesterification reaction using fatty acids.
  • the latent heat storage material composition of the present invention is composed of a fatty acid and a fatty acid ester produced from the fatty acid and an alcohol, and the content of the fatty acid and the fatty acid ester is formed to be 1 wt% or more in each of the compositions. Then, a latent heat storage material composition capable of controlling the latent heat storage characteristics by arbitrarily adjusting the fatty acid ester content or the fatty acid content in the composition (that is, adjusting the esterification reaction rate) can be obtained.
  • the latent heat storage material composition having arbitrary latent heat storage characteristics can be produced by adjusting the reaction rate with the fatty acid ester to be produced.
  • a latent heat storage material composition having arbitrary latent heat storage characteristics can be produced by adjusting the progress of the esterification reaction.
  • a latent heat storage material composition comprising a raw material oil and fat and a fatty acid ester produced from the raw material oil and fat and an alcohol, and the content of the fatty acid ester is 1 wt% or more and 99 wt% or less in the composition.
  • naturally-derived oils such as vegetable waste oils can be used as raw material fats and oils.
  • a PCM mainly composed of a fatty acid ester produced by using naturally derived fats and oils, a fatty acid and an alcohol, and it is possible to provide a biomass-derived PCM having high sustainability and safety.
  • the latent heat storage characteristics of the latent heat storage material are controlled by the reaction rate at the time of production of the fatty acid ester used in the latent heat storage material composition, whereby the fatty acid ester is produced at the time of production.
  • a PCM having desired characteristics can be easily produced only by controlling the reaction rate.
  • the fatty acid ester used in the latent heat storage material composition of the PCM is brought into contact with a raw material fat or oil or a mixed solution of fatty acid and alcohol in contact with an ion exchanger (that is, an anion exchange resin catalyst and / or a cation exchange resin catalyst).
  • an ion exchanger that is, an anion exchange resin catalyst and / or a cation exchange resin catalyst.
  • the latent heat storage material composition and the latent heat storage characteristic control method according to the present embodiment will be specifically described.
  • the present embodiment specifically describes a technique for producing a latent heat storage material composition having desired latent heat storage characteristics based on the reaction rate in the fatty acid ester production process.
  • the latent heat storage material composition according to the present embodiment can be composed of a raw material fat or fatty acid and a fatty acid ester produced by reacting the raw material fat or fatty acid with an alcohol.
  • the raw material oils and fats include vegetable oils such as soybean oil, rapeseed oil, sunflower oil, cotton oil, peanut oil, sesame oil, palm oil, olive oil and rice bran oil, and animal oils such as beef fat, pork fat, butter, fish oil and whale oil.
  • Waste oil such as deodorized distillate (scum oil) discharged in the deodorizing process during the production of cooking oil can be used.
  • unsaturated fatty acids can be used as the fatty acids, and not only linear fatty acids but also branched fatty acids, cyclic fatty acids or aromatic fatty acids, short-chain fatty acids and medium-chain fatty acids can be used. It may be a fatty acid or a long-chain fatty acid.
  • saturated fatty acid for example, acetic acid (C2), capric acid (C8), palmitic acid (C16), stearic acid (C18), and behenic acid (C22) can be used, and unsaturated fatty acids can be used.
  • palmitoleic acid C16: degree of unsaturation 1
  • oleic acid C18: degree of unsaturation 1
  • linoleic acid C18: degree of unsaturation 2
  • linolenic acid C18: degree of unsaturation 3
  • Such fatty acids are particularly desirable to be saturated fatty acids, but can be appropriately selected depending on the desired latent heat storage characteristics.
  • the alcohols used in the production of fatty acid esters are linear lower alcohols such as methanol and ethanol, branched alcohols such as 2-ethylhexanol, polyhydric alcohols such as propylene glycol, ethylene glycol and glycerin, and aromatics such as phenethyl alcohol. Alcohol can be used. Further, the alcohol can be used in the range of 2 to 30 carbon atoms.
  • the transesterification reaction between the fatty acid and the alcohol can be carried out by a known method such as esterification under an alkali catalyst or an acid catalyst, and the transesterification reaction between the raw material fat and oil and the alcohol is sulfuric acid. It can be carried out by a known method such as transesterification using an acid such as hydrochloric acid or a base such as sodium hydroxide as a catalyst.
  • the fatty acid ester is produced by a heterogeneous resin catalyst method in which a mixed solution of fat and alcohol is brought into contact with an ion exchanger (anion exchanger and / or a cation exchanger) and continuously produced. Is desirable. This is because a fatty acid ester having a desired melting point can be easily synthesized by using this method.
  • FIG. 1 shows the process flow of the conventional method and the method according to the present embodiment.
  • the conventional phase-equal catalyst method requires as many complicated operations as the number of fatty acid esters to be mixed, such as a dehydration operation to prevent a decrease in catalytic activity and removal of catalysts and impurities.
  • a dehydration operation to prevent a decrease in catalytic activity and removal of catalysts and impurities.
  • the non-uniform phase catalyst method of this method since a solid resin catalyst is used, it is easy to separate from the product, and impurities and water are adsorbed on the resin, so that the alcohol used in the reaction is distilled.
  • the desired latent heat storage material can be obtained simply by removing it. Therefore, it can be said that this method is more effective than the conventional method.
  • free fatty acids contained in fats and oils can be esterified using a cation exchanger as a catalyst.
  • a cation exchanger for example, a cation resin known to those skilled in the art such as Diaion PK-208 (manufactured by Mitsubishi Chemical Corporation) can be used.
  • the triglyceride contained in the fat and oil can be transesterified by using an anion exchanger as a catalyst.
  • Diaion PA-306 manufactured by Mitsubishi Chemical Corporation
  • Diaion PA-306S (same)
  • Diaion PA-308 (same)
  • Diaion HPA-25 (same)
  • Diaion SA20A (same) Copper
  • Diaion SA21A (same)
  • porous type II strong base anion exchange resin Diaion PA408 (same), Diaion PA412 (same) and Diaion PA418 (same), Dawex 1
  • An anionic resin known to those skilled in the art such as -X2 (manufactured by Dow Chemical Co., Ltd.), Amberlite IRA-45 (manufactured by Organo), Amberlite IRA-94 (same as above) can be used. It is desirable that these ion exchange resins have a small degree of cross-linking, and particularly preferably that the degree of cross-linking is 4% or less (in terms of molars).
  • the alcohol or fatty acid used is melted at a temperature equal to or lower than the heat resistant temperature of the ion exchange resin, taking into consideration the heat resistant temperature of the ion exchange resin. It is desirable that it is a thing.
  • the latent heat storage material composition according to the present embodiment contains fatty acid esters as main components, and contains 1 wt% or more of each of the fatty acid and the fatty acid ester produced from the fatty acid and alcohol in the composition. Will be done. That is, it can be formed as a mixture of fatty acid and fatty acid ester.
  • the latent heat storage material composition may further contain an alcohol, preferably an alcohol having a medium chain or higher having a phase change temperature close to each other.
  • the fatty acid content in the latent heat storage material composition is 75 wt% or more, particularly 80 wt% or more when the temperature of the phase change is concentrated at one point (that is, when the peak of the DSC curve is unified). Is desirable. However, when the temperature of the phase change is dispersed into two or more (that is, when the peak of the DSC curve is two or more), it may be less than 75 wt%.
  • the latent heat storage material composition used in the present embodiment can be formed as a mixture of fatty acid and fatty acid ester as described above, and at least one of the fatty acid and alcohol for producing the fatty acid ester is two or more kinds. Combinations can be used. This makes it possible to obtain a mixed composition in which the fatty acid esters constituting the latent heat storage material composition are composed of a plurality of combinations.
  • the fatty acid ester used in the latent heat storage material composition can be produced not only by the esterification reaction of fatty acid and alcohol, but also by the transesterification reaction of raw material fat and oil and alcohol.
  • a fatty acid ester is produced from a raw material fat and oil
  • the free fatty acid in the raw material fat and oil can be esterified with alcohol
  • the triglyceride in the raw material fat and oil can be ester-exchanged with alcohol to produce a fatty acid ester.
  • the content of the fatty acid ester in the latent heat storage material composition may be 1 wt% or more and 99 wt% or less.
  • the content of the fatty acid ester produced by the transesterification is 75 wt% or more, particularly 80 wt% or more. Is desirable.
  • the temperature of the phase change is dispersed in two or more (that is, when the peak of the DSC curve is two or more)
  • the content of the fatty acid ester may be less than 75 wt%.
  • the desired latent heat storage characteristics are obtained by terminating the above esterification reaction or transesterification reaction when the fatty acid ester content (mixed mole fraction) in the composition reaches an arbitrary value. is there. Therefore, the esterification or transesterification reaction is terminated at the stage where the desired latent heat storage property is obtained, and a composition in which fats and oils and fatty acids as raw materials are mixed in addition to the fatty acid ester is produced. Normally, the latent heat is reduced because the peaks of the DSC curve are observed separately depending on the type of fatty acid or fatty acid ester mixed in the composition.
  • the specific fatty acid ester can be in a eutectic state in which the DSC peak becomes one even if the fatty acid and the fatty acid ester produced from the fatty acid are mixed, whereby the latent heat can be obtained. Can be increased.
  • a plurality of mixtures in which the reaction rate (mole fraction) to a predetermined fatty acid ester is changed are prepared, and a melting curve or a solidification curve is obtained by measurement with a differential scanning calorimeter (DSC).
  • DSC differential scanning calorimeter
  • the phase change temperature and transfer enthalpy at each reaction rate can be specified. Then, based on this measurement result, it is possible to specify the reaction rate (or mole fraction) having a phase change temperature in a target temperature region and having a desired latent heat.
  • the latent heat (transfer enthalpy) obtained from the peak area is large. Further, it is desirable that the interval between the start point (temperature) and the end point (temperature) in the phase change is narrow, and therefore, in the melting curve, the interval between the melting start point (melting start temperature) and the melting end point (melting end temperature), In the solidification curve, it is desirable that the interval between the solidification start point (melting start temperature) and the solidification end point (melting end temperature) is narrow. Then, it is desirable that the peak appearing on the DSC curve (melting curve or solidification curve) has a sharp reaction rate.
  • “the peak is sharp” is a comparison on the DSC curve obtained under the same analysis conditions, and the reaction rate at which the peak becomes sharper when compared under the same analysis conditions is defined. Is desirable.
  • the basic fatty acid skeleton is saturated palmitic acid (PA) having a carbon chain length of 16 and saturated stearic acid (SA) having a carbon chain length of 18, and their methyl esters (PM, SM) and ethyl esters (PE, SE). ).
  • the mixed system was PM + SM, PM + PE, PM + SE as a system having a similar melting point.
  • Thermal properties, the molar fraction of methyl palmitate (PM) to (X PM) and the mixture was varied to 0.00 to 1.00 were prepared and measured with a differential scanning calorimeter (DSC). The temperature range was ⁇ 20 ° C. to 60 ° C., and the heating rate was 10 ° C./min.
  • FIG. 2 shows a melting curve in a PM + SM and PM + PE mixed system.
  • the downward peak represents endothermic during the phase change.
  • the PM + PE system (b) one large peak either X PM were observed. From this, it is considered that this mixed system is in a eutectic state.
  • FIG. 3 shows the melting point (T peak ) obtained from the peak top at each XPM in FIG. 2 and the latent heat ( ⁇ H) obtained from the peak area. It can be seen that in both systems, the melting point and the amount of latent heat decrease due to mixing. However, the degree of decrease varies from system to system.
  • ester synthesis using waste oil as a raw material which is possible by using a method using an ion exchange resin as a catalyst, was performed, and the fatty acid composition and thermochemical properties of the obtained ester were examined.
  • waste oil four kinds of oils were used, which were stored as samples in an edible oil manufacturing plant for a predetermined period of time and then discarded.
  • ester synthesis a reaction solution in which oil and alcohol are mixed in a stoichiometric ratio using the product name Diaion PA306S (porous, particle size 0.150 to 0.425 mm) manufactured by Mitsubishi Chemical Co., Ltd., which is a strong basic resin, as a catalyst.
  • a 33 wt% strongly basic resin was added, and the mixture was sufficiently shaken at a reaction temperature of 50 ° C. Then, when the residual rate of the oil became 1% or less (that is, the conversion rate of the fatty acid group was 99% or more), the reaction was terminated, the strong basic resin was filtered off, and then the residual alcohol was distilled off.
  • Table 2 (composition of methyl esters from various waste oils) shows the measurement results of the fatty acid composition of fatty acid esters synthesized from four types of waste oils. For reference, the melting point of each ester is also shown.
  • FIG. 5 shows the measurement results of the melting points of the cocoa butter-derived esters in comparison with the melting points of the pure fatty acid esters. It is considered that the large peak around 25 ° C corresponds to the melting point of the mixture of stearic acid and palmitic acid esters, and the two peaks around -40 ° C correspond to the melting points derived from the esters of oleic acid and linoleic acid. Be done.
  • the composition of the reaction solution (charged amount) used in the esterification experiment was palmitic acid (PA): 54.9 g, methanol: 21.1 g, and a strong acid resin catalyst (product name "Diaion” manufactured by Mitsubishi Chemical Corporation).
  • PK208LH a strong acid resin catalyst (product name "Diaion” manufactured by Mitsubishi Chemical Corporation).
  • PK208LH 37.8 g, which was reacted under the experimental conditions for esterification. Esterification was performed. Then, sampling was performed every hour from the start of the reaction to 12 hours, and further sampling was performed 28 hours after the start of the reaction to determine the palmitic acid concentration and the reaction rate. The result is shown in FIG. Table 3 below shows the reaction time and reaction rate. The reaction rate was calculated by the following formula. [Calculation of reaction rate]
  • the solidification start point of the solidification curve, Tonset, f ( ⁇ in the drawing), and the melting end point of the melting curve, Toffset, m ( ⁇ in the drawing), are shown.
  • the peak on the highest temperature side of the DSC differential values is set as the maximum inclination point of the DSC curve, and is the value of the intersection between the tangent line and the baseline (the tangent line of the point where the DSC value is less than 1.0 mW / mg).
  • the Toffset, f ( ⁇ in the drawing), which is the solidification end point of the solidification curve, and the Tonset, m ( ⁇ in the drawing), which is the melting start point of the melting curve, are located on the lowest temperature side of the DSC differential values.
  • a certain peak is set as the maximum inclination point of the DSC curve, and is the value of the intersection with the baseline (the tangent line of the point where the DSC value is less than 1.0 mW / mg).
  • the composition of the reaction solution (charged amount) used in the esterification experiment was palmitic acid (PA): 66.9 g, methanol: 19.9 g (alcohol molar ratio: 0.797), ethanol: 7.3 g (alcohol molar). Ratio: 0.203), strong acid resin catalyst (product name "Diaion PK208LH” manufactured by Mitsubishi Chemical Co., Ltd.): 47.1 g was used.
  • the composition of the reaction solution (charged amount) used in the esterification experiment was palmitic acid (PA): 54.1 g (fatty acid molar ratio: 0.800), stearic acid (SA): 15.0 g (fatty acid molar ratio:). 0.200), methanol: 25.3 g, strong acid resin catalyst (product name "Diaion PK208LH” manufactured by Mitsubishi Chemical Co., Ltd.): 47.1 g was used.
  • the composition of the reaction solution (charged amount) used in the esterification experiment was palmitic acid (PA): 54.1 g (fatty acid molar ratio: 0.800), stearic acid (SA): 15.0 g (fatty acid molar ratio:). 0.200), ethanol: 25.3 g, strong acid resin catalyst (product name "Diaion PK208LH” manufactured by Mitsubishi Chemical Co., Ltd.): 47.1 g was used.
  • an esterification reaction is carried out, sampling is performed every hour from the start of the reaction to 12 hours, and further sampling is performed 28 hours after the start of the reaction.
  • Fatty acid esters methyl palmitate, methyl stearate, And the total ester concentration and reaction rate were determined.
  • the latent heat storage material composition of the present invention and the method for controlling the latent heat storage characteristics are used in various fields such as building materials such as heat storage sheets for building materials, textile products, and thermal stability in an arbitrary temperature range. Can be used in. Further, the latent heat storage material composition and the latent heat storage characteristic control method of the present invention obtain latent heat storage characteristics in a living temperature range of 15 ° C. to 25 ° C., as well as a freezing temperature range (low temperature range) or a heating temperature range (low temperature range). It can be used to obtain thermal stability in a wide temperature range such as (high temperature range).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Fats And Perfumes (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

In order to provide a latent heat storage material composition and a latent heat storage characteristic control method capable of controlling latent heat storage characteristics of a phase-change material (PCM) via a rate of reaction to a fatty acid ester produced by an esterification reaction of a fatty acid and an alcohol, or by a transesterification reaction between a feedstock oil-and-fat and an alcohol, the present invention provides a latent heat storage material composition that has a fatty acid ester as a main component, the latent heat storage material composition comprising a fatty acid and a fatty acid ester produced from the fatty acid and an alcohol, and the content of the fatty acid and the content of the fatty acid ester in the composition each being 1 wt% or more.

Description

潜熱蓄熱材組成物、及び潜熱蓄熱特性制御方法Latent heat storage material composition and latent heat storage characteristic control method
 本発明は潜熱蓄熱材組成物、及び潜熱蓄熱特性制御方法に関し、主として脂肪酸エステルを用いて形成した潜熱蓄熱材組成物と、エステル化反応又はエステル交換反応の反応率によって凝固/融解温度又は転移エンタルピー等の潜熱蓄熱特性を制御する方法に関する。 The present invention relates to a latent heat storage material composition and a method for controlling the latent heat storage characteristics, and the coagulation / melting temperature or transition enthalpy depends on the reaction rate of the esterification reaction or the ester exchange reaction with the latent heat storage material composition formed mainly using a fatty acid ester. The present invention relates to a method for controlling latent heat storage characteristics such as.
 省エネ技術の1つとして、潜熱蓄熱材をマイクロカプセル化して分散させた材料や製品が開発されている。かかる潜熱蓄熱材としては、石油由来のパラフィンなどが主であったが、近年、脂肪酸エステルを利用することも提案されている。脂肪酸エステルは、脂肪酸とアルコールの炭素鎖長や二重結合数に応じた幅広い融点と高い潜熱を持つため新たな潜熱蓄熱材として期待されている。 As one of the energy-saving technologies, materials and products in which the latent heat storage material is microencapsulated and dispersed are being developed. As such a latent heat storage material, paraffin derived from petroleum was mainly used, but in recent years, it has been proposed to use a fatty acid ester. Fatty acid esters are expected as new latent heat storage materials because they have a wide melting point and high latent heat according to the carbon chain length and the number of double bonds of fatty acids and alcohols.
 このような脂肪酸エステルを用いた潜熱蓄熱材として、特許文献1(特開昭63-205385号公報)が提案されている。この文献では、10~20℃の温度領域で、過冷却現象を起こすことなく、略一定温度で安定な潜熱を取り出すことができ、且つ長期間安定に蓄熱、放熱の繰り返しを行うことのできる潜熱蓄熱材組成物として、脂肪酸エステル類を主成分とする潜熱蓄熱材組成物において、パルミチン酸のn-ブチルエステルを50~100重量%含有する潜熱蓄熱材組成物を提案している。 Patent Document 1 (Japanese Unexamined Patent Publication No. 63-205385) has been proposed as a latent heat storage material using such a fatty acid ester. In this document, latent heat that can take out stable latent heat at a substantially constant temperature in a temperature range of 10 to 20 ° C. without causing a supercooling phenomenon, and can stably store and dissipate heat for a long period of time. As a heat storage material composition, a latent heat storage material composition containing 50 to 100% by weight of n-butyl ester of palmitic acid in a latent heat storage material composition containing fatty acid esters as a main component has been proposed.
 また特許文献2(WO2011/099871号公報)では、相変化材料としての使用に適した飽和脂肪酸エステルの製造方法を提案している。即ち、この文献では、トリグリセリド含有出発材料の加工によって得られた脂肪酸エステルを水素化する工程を含んでおり、その好ましい実施形態では、水素化される脂肪酸エステルは、トリグリセリド含有出発材料とアルコールとのエステル交換によって得られたものとなっている。 Further, Patent Document 2 (WO2011 / 099871) proposes a method for producing a saturated fatty acid ester suitable for use as a phase change material. That is, this document includes a step of hydrogenating a fatty acid ester obtained by processing a triglyceride-containing starting material, and in a preferred embodiment thereof, the fatty acid ester to be hydrogenated is a triglyceride-containing starting material and alcohol. It is obtained by transesterification.
 更に非特許文献1(Binary mixtures of fatty acid methyl esters as phase change materials for low temperature applications)では、低温用途の相変化材料としての脂肪酸メチルエステルの二成分混合物として、脂肪酸メチルエステルの二元混合物を提案している。即ち、氷結防止対策の改善手段として相変化材料をコンクリート舗装に取り入れることに関し、脂肪酸メチルエステルの二元混合物は氷結防止対策を改善するための低温相変化材料としての使用に望ましい熱的性質を提供すること、特に、ラウリン酸メチルとミリスチン酸メチル、およびラウリン酸メチルとパルミチン酸メチルの二元混合物は、共晶融解温度と融解潜熱が、それぞれ0.21℃および2.4℃、174.3J・g-1および166.5 J・g-1であることを開示している。 Further, in Non-Patent Document 1 (Binary mixtures of fatty acid acid mice as phase change materials for low temperature applications), a two-component mixture of fatty acid methyl ester as a phase change material for low-temperature use is used as a two-component mixture of fatty acid methyl ester. doing. That is, with respect to incorporating phase change materials into concrete pavement as a means of improving anti-freezing measures, the binary mixture of fatty acid methyl esters provides desirable thermal properties for use as low temperature phase change materials to improve anti-freeze measures. In particular, the binary mixture of methyl laurate and methyl myristate, and methyl laurate and methyl palmitate has eutectic melting temperatures and latent heat of melting of 0.21 ° C and 2.4 ° C, 174.3J, respectively. -It is disclosed that it is g-1 and 166.5 J.g-1.
特開昭63-205385号公報JP-A-63-205385 WO2011/099871号公報WO2011 / 099871
 前述の如く、従前においても潜熱蓄熱材又は相変化材料(以下「PCM」とする)として脂肪酸エステルを使用する技術は幾つか提案されている。しかしながら、従来提供されている脂肪酸エステルからなるPCMは、脂肪酸エステルの選択に着目するものであり、脂肪酸エステル製造に際しての反応率に着目するものではなかった。 As mentioned above, some techniques for using fatty acid ester as a latent heat storage material or a phase change material (hereinafter referred to as "PCM") have been proposed. However, the conventionally provided PCM composed of fatty acid esters focuses on the selection of fatty acid esters, not the reaction rate in the production of fatty acid esters.
 そこで本発明は、脂肪酸とアルコールのエステル化反応、又は原料油脂とアルコールのエステル交換反応で製造される脂肪酸エステルへの反応率により、PCMの潜熱蓄熱特性を制御する事のできる潜熱蓄熱材組成物、及び潜熱蓄熱特性制御方法を提供することを課題の1つとする。 Therefore, the present invention is a latent heat storage material composition capable of controlling the latent heat storage characteristics of PCM by the reaction rate to the fatty acid ester produced by the esterification reaction of fatty acid and alcohol or the transesterification reaction of raw material fat and alcohol. , And to provide a method for controlling latent heat storage characteristics.
 また、当該PCMについては、近年、持続性や安全性の高いバイオマス由来品への切替が望まれている。脂肪酸エステルは、天然由来の油脂や脂肪酸とアルコールで製造することができ、それらの炭素鎖長や二重結合数に応じた幅広い融点と高い潜熱を持つため、バイオマス由来PCMとして期待されている。 In recent years, it has been desired to switch the PCM to a biomass-derived product with high sustainability and safety. Fatty acid esters can be produced from naturally-derived fats and oils, fatty acids and alcohols, and have a wide melting point and high latent heat according to their carbon chain lengths and the number of double bonds, and are therefore expected as biomass-derived PCMs.
 そこで本発明は、天然由来の油脂や脂肪酸とアルコールを用いて製造した脂肪酸エステルを主とするPCMを提供することも課題の1つとする。 Therefore, one of the problems of the present invention is to provide a PCM mainly composed of a fatty acid ester produced by using naturally derived fats and oils, fatty acids and alcohol.
 更に、使用する脂肪酸エステルについても、工業的には食用の精製油を原料とした均相触媒による回分反応で製造されている為コスト高であり、また数種の脂肪酸基のメチルエステルしか販売されていないのが実情である。その結果、PCMとして使用する脂肪酸エステルの製造効率の問題も生じる。 Furthermore, the fatty acid esters used are also expensive because they are industrially manufactured by batch reaction using a phase-matching catalyst using edible refined oil as a raw material, and only methyl esters of several fatty acid groups are sold. The reality is that it has not. As a result, there is also a problem of production efficiency of fatty acid ester used as PCM.
 そこで本発明では、様々な脂肪酸とアルコールの組み合わせ、又は様々な原料油脂とアルコールの組み合わせで、脂肪酸エステルを連続製造できる不均相樹脂触媒法により、目的の融点/凝固点を持つ脂肪酸エステルを容易に合成することも課題の1つとする。 Therefore, in the present invention, a fatty acid ester having a desired melting point / freezing point can be easily produced by a heterogeneous resin catalytic method capable of continuously producing a fatty acid ester by a combination of various fatty acids and alcohols or a combination of various raw material fats and oils and alcohols. Synthesis is also one of the issues.
 本発明は、上記課題の少なくとも何れかを解決する為に、脂肪酸とアルコールによるエステル化反応、又は原料油脂とアルコールのエステル交換反応における反応率に応じて、所望の潜熱蓄熱特性を有するPCMを製造できることに成功し、本発明を完成するに至ったものである。 In order to solve at least one of the above-mentioned problems, the present invention produces a PCM having desired latent heat storage characteristics according to the reaction rate in the esterification reaction of fatty acid and alcohol or the transesterification reaction of raw material fat and alcohol. We have succeeded in what we can do and have completed the present invention.
 即ち、本発明では前記課題の少なくとも何れかの課題を解決する為に、脂肪酸エステル類を主成分とする潜熱蓄熱材組成物であって、脂肪酸と、当該脂肪酸とアルコールから製造された脂肪酸エステルとからなり、脂肪酸及び脂肪酸エステルの含有量が、組成物中、それぞれ1wt%以上である、潜熱蓄熱材組成物を提供する。 That is, in the present invention, in order to solve at least one of the above-mentioned problems, a latent heat storage material composition containing fatty acid esters as a main component, the fatty acid, and the fatty acid ester produced from the fatty acid and alcohol. Provided is a latent heat storage material composition comprising 1 wt% or more of each of a fatty acid and a fatty acid ester in the composition.
 また本発明では、前記潜熱蓄熱材組成物に関連し、脂肪酸エステル類は、アルコール1種と脂肪酸2種以上、アルコール2種以上と脂肪酸1種、又はアルコール2種以上と脂肪酸2種以上で製造されている潜熱蓄熱材組成物を提供する。 Further, in the present invention, in relation to the latent heat storage material composition, fatty acid esters are produced with one alcohol and two or more fatty acids, two or more alcohols and one fatty acid, or two or more alcohols and two or more fatty acids. Provided is a latent heat storage material composition which has been used.
 また本発明では、前記課題の少なくとも何れかの課題を解決する為に、脂肪酸エステル類を主成分とする潜熱蓄熱材組成物であって、原料油脂と、当該原料油脂とアルコールから製造された脂肪酸エステルとからなり、脂肪酸エステルの含有量が、組成物中、1wt%以上、99wt%以下である、潜熱蓄熱材組成物を提供する。 Further, in the present invention, in order to solve at least one of the above-mentioned problems, a latent heat storage material composition containing fatty acid esters as a main component, which is a raw material fat and oil, and a fatty acid produced from the raw material fat and oil and alcohol. Provided is a latent heat storage material composition comprising an ester and having a fatty acid ester content of 1 wt% or more and 99 wt% or less in the composition.
 かかる潜熱蓄熱材組成物においては、原料油脂は1種である他、2種以上を組み合わせても良く、また脂肪酸エステルの製造に使用するアルコールも、1種である他、2種以上を組み合わせて使用することもできる。 In such a latent heat storage material composition, the raw material fat and oil may be one kind and two or more kinds may be combined, and the alcohol used for producing the fatty acid ester is also one kind and two or more kinds may be combined. It can also be used.
 上記脂肪酸エステルの製造に使用する脂肪酸は、市販のものであっても良いが、天然油を原料として使用する事ができる。例えば、植物油などにおける廃棄物油を原料とするエステル合成を行い、これにより脂肪酸エステルを製造することができる。 The fatty acid used for producing the above fatty acid ester may be a commercially available product, but natural oil can be used as a raw material. For example, ester synthesis using waste oil as a raw material in vegetable oil or the like can be performed, thereby producing a fatty acid ester.
 また本発明では、前記本発明に係る潜熱蓄熱材組成物を用いた潜熱蓄熱材の他、他の潜熱蓄熱材における潜熱蓄熱特性の制御方法であって、当該潜熱蓄熱材は脂肪酸エステル類を主成分として構成されており、当該脂肪酸エステル類は、脂肪酸とアルコールのエステル化反応、又は油脂とアルコールのエステル交換反応によって製造されており、何れかの反応において製造した脂肪酸エステルの存在割合(換言すれば、脂肪酸又は油脂の反応率)によって潜熱蓄熱特性を制御する潜熱蓄熱特性の制御方法を提供する。 Further, in the present invention, in addition to the latent heat storage material using the latent heat storage material composition according to the present invention, it is a method for controlling the latent heat storage characteristics of other latent heat storage materials, and the latent heat storage material is mainly fatty acid esters. It is composed as a component, and the fatty acid esters are produced by an esterification reaction of fatty acid and alcohol or an ester exchange reaction of fat and oil and alcohol, and the abundance ratio of the fatty acid ester produced in any of the reactions (in other words, For example, a method for controlling the latent heat storage characteristic, which controls the latent heat storage characteristic by the reaction rate of fatty acid or fat or oil), is provided.
 そして本発明では、前記潜熱蓄熱材組成物の他、脂肪酸エステル類を主成分とする各種潜熱蓄熱材組成物の製造方法であって、原料油脂又は脂肪酸とアルコールの混合溶液をイオン交換体に接触させることにより、該イオン交換体を触媒として、連続的に脂肪酸エステルを製造することを含む潜熱蓄熱材組成物の製造方法を提供する。特に原料油脂を用いたエステル交換反応では、陰イオン交換樹脂触媒を使用する事ができ、脂肪酸を用いたエステル化反応では、陽イオン交換樹脂触媒を使用する事ができる。 The present invention is a method for producing various latent heat storage material compositions containing fatty acid esters as main components in addition to the latent heat storage material composition, wherein a raw material fat or oil or a mixed solution of fatty acid and alcohol is brought into contact with an ion exchanger. Provided is a method for producing a latent heat storage material composition, which comprises continuously producing a fatty acid ester using the ion exchanger as a catalyst. In particular, an anion exchange resin catalyst can be used in the transesterification reaction using raw material fats and oils, and a cation exchange resin catalyst can be used in the transesterification reaction using fatty acids.
 本発明の潜熱蓄熱材組成物は、脂肪酸と、当該脂肪酸とアルコールから製造された脂肪酸エステルとからなり、脂肪酸及び脂肪酸エステルの含有量が、組成物中、それぞれ1wt%以上として形成されている。そして当該組成物中の脂肪酸エステルの含有量又は脂肪酸の含有量を任意に調整する(即ちエステル化の反応率を調整する)ことにより、潜熱蓄熱特性を制御する事のできる潜熱蓄熱材組成物を提供することができる。即ち、脂肪酸とアルコールとのエステル化反応において、製造される脂肪酸エステルへの反応率を調整することにより、任意の潜熱蓄熱特性を有する潜熱蓄熱材組成物を製造することができる。その結果、本発明においては、エステル化反応の進行具合を調整することにより、任意の潜熱蓄熱特性を有する潜熱蓄熱材組成物を製造することができる。 The latent heat storage material composition of the present invention is composed of a fatty acid and a fatty acid ester produced from the fatty acid and an alcohol, and the content of the fatty acid and the fatty acid ester is formed to be 1 wt% or more in each of the compositions. Then, a latent heat storage material composition capable of controlling the latent heat storage characteristics by arbitrarily adjusting the fatty acid ester content or the fatty acid content in the composition (that is, adjusting the esterification reaction rate) can be obtained. Can be provided. That is, in the esterification reaction of fatty acid and alcohol, the latent heat storage material composition having arbitrary latent heat storage characteristics can be produced by adjusting the reaction rate with the fatty acid ester to be produced. As a result, in the present invention, a latent heat storage material composition having arbitrary latent heat storage characteristics can be produced by adjusting the progress of the esterification reaction.
 また本発明においては原料油脂と、当該原料油脂とアルコールから製造された脂肪酸エステルとからなり、脂肪酸エステルの含有量が、組成物中、1wt%以上、99wt%以下である潜熱蓄熱材組成物とすることにより、原料油脂として天然由来の油、例えば植物性の廃棄油などを使用する事もできる。その結果、天然由来の油脂や脂肪酸とアルコールを用いて製造した脂肪酸エステルを主とするPCMを提供することができ、持続性や安全性の高いバイオマス由来のPCMを提供することができる。 Further, in the present invention, a latent heat storage material composition comprising a raw material oil and fat and a fatty acid ester produced from the raw material oil and fat and an alcohol, and the content of the fatty acid ester is 1 wt% or more and 99 wt% or less in the composition. By doing so, naturally-derived oils such as vegetable waste oils can be used as raw material fats and oils. As a result, it is possible to provide a PCM mainly composed of a fatty acid ester produced by using naturally derived fats and oils, a fatty acid and an alcohol, and it is possible to provide a biomass-derived PCM having high sustainability and safety.
 そして、脂肪酸エステル類を主成分とするPCMにおいて、潜熱蓄熱材組成物に使用する脂肪酸エステルの製造に際しての反応率によって、潜熱蓄熱材における潜熱蓄熱特性を制御することにより、脂肪酸エステルの製造時における反応率を制御するだけで、所望の特性を有するPCMを簡易に製造することができる。 Then, in the PCM containing fatty acid esters as the main component, the latent heat storage characteristics of the latent heat storage material are controlled by the reaction rate at the time of production of the fatty acid ester used in the latent heat storage material composition, whereby the fatty acid ester is produced at the time of production. A PCM having desired characteristics can be easily produced only by controlling the reaction rate.
 そして当該PCMの潜熱蓄熱材組成物に使用する脂肪酸エステルを、原料油脂又は脂肪酸とアルコールの混合溶液をイオン交換体(即ち、陰イオン交換樹脂触媒及び/又は陽イオン交換樹脂触媒)に接触させることにより、該イオン交換体を触媒として、連続的に製造することにより、所望の反応率となるように製造工程を制御すれば、目的とする潜熱蓄熱特性を有する潜熱蓄熱材組成物を簡易に製造することができる。そして当該製造方法によれば、様々な脂肪酸とアルコールの組み合わせで脂肪酸エステルを連続製造できる不均相樹脂触媒法により、目的の融点及び/又は凝固点を持つ脂肪酸エステルを容易に合成することができる。 Then, the fatty acid ester used in the latent heat storage material composition of the PCM is brought into contact with a raw material fat or oil or a mixed solution of fatty acid and alcohol in contact with an ion exchanger (that is, an anion exchange resin catalyst and / or a cation exchange resin catalyst). By continuously producing the ion exchanger as a catalyst and controlling the production process so as to obtain a desired reaction rate, a latent heat storage material composition having the desired latent heat storage characteristics can be easily produced. can do. According to the production method, a fatty acid ester having a desired melting point and / or freezing point can be easily synthesized by an heterogeneous resin catalyst method capable of continuously producing a fatty acid ester by combining various fatty acids and alcohols.
従来法と本実施の形態に係る手法のプロセスフローProcess flow of the conventional method and the method according to the present embodiment 実験例1における各二元混合物のDSC融解曲線DSC melting curve of each binary mixture in Experimental Example 1 実験例1における各二元混合物の熱物性Thermophysical properties of each binary mixture in Experimental Example 1 実施例2における4種の廃棄物油由来の脂肪酸エステルについてのDSC融解曲線DSC melting curve for fatty acid esters derived from four waste oils in Example 2 実験例2におけるカカオバターのメチルエステル化のDSC融解曲線DSC melting curve of methyl esterification of cacao butter in Experimental Example 2 実験例3におけるパルミチン酸濃度と反応率の経時変化Changes in palmitic acid concentration and reaction rate over time in Experimental Example 3 実験例3におけるパルミチン酸メチルエステル化のDSC曲線DSC curve of palmitic acid methyl esterification in Experimental Example 3 実験例3における組成がTonset、Toffset、TpeakとΔHに及ぼす影響を示すグラフComposition T onset in Experiment 3, T offset, graph showing the effect on T peak and ΔH 実験例4におけるエステル濃度、反応率の経時変化Changes in ester concentration and reaction rate in Experimental Example 4 over time 実験例4におけるパルミチン酸と混合アルコールによるエステル化のDSC曲線DSC curve of esterification with palmitic acid and mixed alcohol in Experimental Example 4 実験例4における組成がTonset、Toffset、TpeakとΔHに及ぼす影響を示すグラフComposition T onset in Experimental Example 4, T offset, graph showing the effect on T peak and ΔH 実験例5におけるエステル濃度、反応率の経時変化Changes in ester concentration and reaction rate in Experimental Example 5 over time 実験例5における混合脂肪酸とメタノールによるエステル化のDSC曲線DSC curve of esterification with mixed fatty acid and methanol in Experimental Example 5 実験例5における組成がTonset、Toffset、TpeakとΔHに及ぼす影響を示すグラフComposition T onset in Experimental Example 5, T offset, graph showing the effect on T peak and ΔH 実験例6における混合脂肪酸とエタノールによるエステル化のDSC曲線DSC curve of esterification with mixed fatty acid and ethanol in Experimental Example 6 実験例6における組成がTonset、Toffset、TpeakとΔHに及ぼす影響を示すグラフComposition T onset in Experiment 6, T offset, graph showing the effect on T peak and ΔH
 以下、本実施の形態にかかる潜熱蓄熱材組成物、及び潜熱蓄熱特性制御方法を具体的に説明する。特に本実施の形態は、脂肪酸エステルの製造過程における反応率によって、所望の潜熱蓄熱特性の潜熱蓄熱材組成物を製造する技術を具体的に説明する。 Hereinafter, the latent heat storage material composition and the latent heat storage characteristic control method according to the present embodiment will be specifically described. In particular, the present embodiment specifically describes a technique for producing a latent heat storage material composition having desired latent heat storage characteristics based on the reaction rate in the fatty acid ester production process.
 本実施の形態に係る潜熱蓄熱材組成物は、原料油脂または脂肪酸と、これら原料油脂または脂肪酸とアルコールとの反応によって製造した脂肪酸エステルとで構成することができる。 The latent heat storage material composition according to the present embodiment can be composed of a raw material fat or fatty acid and a fatty acid ester produced by reacting the raw material fat or fatty acid with an alcohol.
 前記原料油脂は、大豆油、菜種油、ひまわり油、綿油、ピーナッツ油、ゴマ油、パーム油、オリーブ油、米ぬか油などの植物油や、及び牛脂、豚脂、バター、魚油、鯨油等の動物油の他、食用油製造時の脱臭工程で排出する脱臭留出物(スカム油)等の廃棄物油を使用する事ができる。 The raw material oils and fats include vegetable oils such as soybean oil, rapeseed oil, sunflower oil, cotton oil, peanut oil, sesame oil, palm oil, olive oil and rice bran oil, and animal oils such as beef fat, pork fat, butter, fish oil and whale oil. Waste oil such as deodorized distillate (scum oil) discharged in the deodorizing process during the production of cooking oil can be used.
 また脂肪酸は、飽和脂肪酸の他、不飽和脂肪酸を使用する事ができ、また直鎖脂肪酸に限らず、分岐脂肪酸、環式脂肪酸又は芳香族脂肪酸であっても良く、更に短鎖脂肪酸、中鎖脂肪酸、長鎖脂肪酸であって良い。これら脂肪酸のうち、飽和脂肪酸としては、例えば、酢酸(C2)、カプリル酸(C8)、パルミチン酸(C16)、ステアリン酸(C18)、ベヘニン酸(C22)を使用する事ができ、不飽和脂肪酸としては、パルミトレイン酸(C16:不飽和度1)、オレイン酸(C18:不飽和度1)、リノール酸(C18:不飽和度2)、リノレン酸(C18:不飽和度3)を使用する事ができる。かかる脂肪酸は、特に飽和脂肪酸であることが望ましいが、目的とする潜熱蓄熱特性に応じて適宜選択することができる。 In addition to saturated fatty acids, unsaturated fatty acids can be used as the fatty acids, and not only linear fatty acids but also branched fatty acids, cyclic fatty acids or aromatic fatty acids, short-chain fatty acids and medium-chain fatty acids can be used. It may be a fatty acid or a long-chain fatty acid. Among these fatty acids, as the saturated fatty acid, for example, acetic acid (C2), capric acid (C8), palmitic acid (C16), stearic acid (C18), and behenic acid (C22) can be used, and unsaturated fatty acids can be used. As, palmitoleic acid (C16: degree of unsaturation 1), oleic acid (C18: degree of unsaturation 1), linoleic acid (C18: degree of unsaturation 2), linolenic acid (C18: degree of unsaturation 3) should be used. Can be done. Such fatty acids are particularly desirable to be saturated fatty acids, but can be appropriately selected depending on the desired latent heat storage characteristics.
 また脂肪酸エステルの製造に使用するアルコールは、メタノール、エタノール等の直鎖の低級アルコール、2-エチルヘキサノール等の分岐アルコール、プロピレングリコール、エチレングリコール、グリセリン等の多価アルコール、フェネチルアルコール等の芳香族アルコールを使用する事ができる。また当該アルコールは炭素数2から30の範囲のものを使用する事ができる。 The alcohols used in the production of fatty acid esters are linear lower alcohols such as methanol and ethanol, branched alcohols such as 2-ethylhexanol, polyhydric alcohols such as propylene glycol, ethylene glycol and glycerin, and aromatics such as phenethyl alcohol. Alcohol can be used. Further, the alcohol can be used in the range of 2 to 30 carbon atoms.
 また、上記脂肪酸とアルコールとのエステル化反応は、例えばアルカリ触媒下又は酸触媒下にてエステル化する等の公知の方法で行うことができ、また原料油脂とアルコールとのエステル交換反応は、硫酸や塩酸などの酸、あるいは水酸化ナトリウムなどの塩基を触媒としてエステル交換する等の公知の方法で行うことができる。但し、当該脂肪酸エステルの製造は、油脂とアルコールの混合溶液をイオン交換体(陰イオン交換体及び/又は陽イオン交換体)に接触させて連続的に製造する不均相樹脂触媒法によって行うことが望ましい。この方法を用いれば、目的の融点を持つ脂肪酸エステルを容易に合成できる為である。 Further, the transesterification reaction between the fatty acid and the alcohol can be carried out by a known method such as esterification under an alkali catalyst or an acid catalyst, and the transesterification reaction between the raw material fat and oil and the alcohol is sulfuric acid. It can be carried out by a known method such as transesterification using an acid such as hydrochloric acid or a base such as sodium hydroxide as a catalyst. However, the fatty acid ester is produced by a heterogeneous resin catalyst method in which a mixed solution of fat and alcohol is brought into contact with an ion exchanger (anion exchanger and / or a cation exchanger) and continuously produced. Is desirable. This is because a fatty acid ester having a desired melting point can be easily synthesized by using this method.
 図1に、従来法と本実施の形態に係る手法のプロセスフローを示す。従来法である均相触媒法では触媒活性低下防止のための脱水操作、触媒や不純物の除去など煩雑な操作が、混合する脂肪酸エステルの数だけ必要となる。一方、本手法である不均相触媒法では、固体樹脂触媒を用いているため生成物との分離が容易であり、さらに不純物や水分が樹脂に吸着されるため、反応に用いたアルコールを蒸留除去するだけで目的の潜熱蓄熱材を得ることができる。従って、本手法は従来法と比較して有効であるといえる。 FIG. 1 shows the process flow of the conventional method and the method according to the present embodiment. The conventional phase-equal catalyst method requires as many complicated operations as the number of fatty acid esters to be mixed, such as a dehydration operation to prevent a decrease in catalytic activity and removal of catalysts and impurities. On the other hand, in the non-uniform phase catalyst method of this method, since a solid resin catalyst is used, it is easy to separate from the product, and impurities and water are adsorbed on the resin, so that the alcohol used in the reaction is distilled. The desired latent heat storage material can be obtained simply by removing it. Therefore, it can be said that this method is more effective than the conventional method.
 かかる不均相樹脂触媒法においては、油脂に含まれる遊離脂肪酸は陽イオン交換体を触媒としてエステル化を行なうことができる。陽イオン交換体としては、例えば、ダイヤイオンPK-208(三菱化学社製)のような当業者に公知の陽イオン樹脂を使用することが出来る。また油脂に含まれるトリグリセリドは陰イオン交換体を触媒としてエステル交換を行なうことができる。陰イオン交換体としては、ダイヤイオンPA-306(三菱化学社製)、ダイヤイオンPA-306S(同)、ダイヤイオンPA-308(同)、ダイヤイオンHPA-25(同)、ダイヤイオンSA20A(銅)、ダイヤイオンSA21A(同)、並びに、多孔質型のII型強塩基陰イオン交換樹脂であるダイヤイオンPA408(同)、ダイヤイオンPA412(同)及びダイヤイオンPA418(同)、ダウエックス1-X2(ダウケミカル社製)、アンバーライトIRA-45(オルガノ社製)、アンバーライトIRA-94(同)等の当業者に公知の陰イオン樹脂を使用することが出来る。これらイオン交換樹脂は架橋度が小さい方が望ましく、特に架橋度が4%以下(モル換算)であることが望ましい。 In such an heterogeneous phase resin catalyst method, free fatty acids contained in fats and oils can be esterified using a cation exchanger as a catalyst. As the cation exchanger, for example, a cation resin known to those skilled in the art such as Diaion PK-208 (manufactured by Mitsubishi Chemical Corporation) can be used. Further, the triglyceride contained in the fat and oil can be transesterified by using an anion exchanger as a catalyst. As the anion exchanger, Diaion PA-306 (manufactured by Mitsubishi Chemical Corporation), Diaion PA-306S (same), Diaion PA-308 (same), Diaion HPA-25 (same), Diaion SA20A (same) Copper), Diaion SA21A (same), and porous type II strong base anion exchange resin, Diaion PA408 (same), Diaion PA412 (same) and Diaion PA418 (same), Dawex 1 An anionic resin known to those skilled in the art such as -X2 (manufactured by Dow Chemical Co., Ltd.), Amberlite IRA-45 (manufactured by Organo), Amberlite IRA-94 (same as above) can be used. It is desirable that these ion exchange resins have a small degree of cross-linking, and particularly preferably that the degree of cross-linking is 4% or less (in terms of molars).
 但し、上記イオン交換樹脂を用いて脂肪酸エステルを製造する場合には、当該イオン交換樹脂の耐熱温度を考慮した上で、使用するアルコールや脂肪酸は、イオン交換樹脂の耐熱温度以下の温度で融解するものであることが望ましい。 However, when a fatty acid ester is produced using the above ion exchange resin, the alcohol or fatty acid used is melted at a temperature equal to or lower than the heat resistant temperature of the ion exchange resin, taking into consideration the heat resistant temperature of the ion exchange resin. It is desirable that it is a thing.
 そして本実施の形態に係る潜熱蓄熱材組成物は、脂肪酸エステル類を主成分とし、脂肪酸と、当該脂肪酸とアルコールから製造された脂肪酸エステルとを、組成物中、それぞれ1wt%以上含有して構成される。即ち、脂肪酸と脂肪酸エステルの混合物として形成することができる。かかる潜熱蓄熱材組成物には、更にアルコール、望ましくは相変化温度が近い中鎖以上アルコールを含有することもできる。 The latent heat storage material composition according to the present embodiment contains fatty acid esters as main components, and contains 1 wt% or more of each of the fatty acid and the fatty acid ester produced from the fatty acid and alcohol in the composition. Will be done. That is, it can be formed as a mixture of fatty acid and fatty acid ester. The latent heat storage material composition may further contain an alcohol, preferably an alcohol having a medium chain or higher having a phase change temperature close to each other.
 上記潜熱蓄熱材組成物中にける脂肪酸の含有量は、相変化の温度を一点に集中させる場合(即ち、DSC曲線のピークを1つにする場合)には、75wt%以上、特に80wt%以上であることが望ましい。但し、相変化の温度を2つ以上に分散させる場合(即ち、DSC曲線のピークを2つ以上にする場合)には、75wt%未満であっても良い。 The fatty acid content in the latent heat storage material composition is 75 wt% or more, particularly 80 wt% or more when the temperature of the phase change is concentrated at one point (that is, when the peak of the DSC curve is unified). Is desirable. However, when the temperature of the phase change is dispersed into two or more (that is, when the peak of the DSC curve is two or more), it may be less than 75 wt%.
 また本実施の形態に使用する潜熱蓄熱材組成物は、前記の通り脂肪酸と脂肪酸エステルの混合物として形成することができ、当該脂肪酸エステルを製造する脂肪酸及びアルコールの少なくとも何れかは、2種以上の組み合わせを使用する事ができる。これにより潜熱蓄熱材組成物を構成する脂肪酸エステルが複数の組み合わせからなる混合組成とすることができる。 Further, the latent heat storage material composition used in the present embodiment can be formed as a mixture of fatty acid and fatty acid ester as described above, and at least one of the fatty acid and alcohol for producing the fatty acid ester is two or more kinds. Combinations can be used. This makes it possible to obtain a mixed composition in which the fatty acid esters constituting the latent heat storage material composition are composed of a plurality of combinations.
 前記潜熱蓄熱材組成物に使用する脂肪酸エステルは、脂肪酸とアルコールのエステル化反応で製造する他、原料油脂とアルコールによるエステル交換反応によって製造することもできる。特に原料油脂とアルコールから脂肪酸エステルを製造する際には、原料油脂中の遊離脂肪酸をアルコールによってエステル化し、また原料油脂中のトリグリセリドをアルコールでエステル交換して脂肪酸エステルを製造することができる。特に原料油脂とアルコールとの反応により脂肪酸エステルを製造する場合には、潜熱蓄熱材組成物中における脂肪酸エステルの含有量が、1wt%以上、99wt%以下であって良い。特に、相変化の温度を一点に集中させる場合(即ち、DSC曲線のピークを1つにする場合)には、当該エステル交換で製造した脂肪酸エステルの含有量は、75wt%以上、特に80wt%以上であることが望ましい。但し、相変化の温度を2つ以上に分散させる場合(即ち、DSC曲線のピークを2つ以上にする場合)には、当該脂肪酸エステルの含有量は、75wt%未満であっても良い。 The fatty acid ester used in the latent heat storage material composition can be produced not only by the esterification reaction of fatty acid and alcohol, but also by the transesterification reaction of raw material fat and oil and alcohol. In particular, when a fatty acid ester is produced from a raw material fat and oil, the free fatty acid in the raw material fat and oil can be esterified with alcohol, and the triglyceride in the raw material fat and oil can be ester-exchanged with alcohol to produce a fatty acid ester. In particular, when the fatty acid ester is produced by the reaction of the raw material fat and oil with alcohol, the content of the fatty acid ester in the latent heat storage material composition may be 1 wt% or more and 99 wt% or less. In particular, when the temperature of the phase change is concentrated at one point (that is, when the peak of the DSC curve is made one), the content of the fatty acid ester produced by the transesterification is 75 wt% or more, particularly 80 wt% or more. Is desirable. However, when the temperature of the phase change is dispersed in two or more (that is, when the peak of the DSC curve is two or more), the content of the fatty acid ester may be less than 75 wt%.
 上記エステル化反応又はエステル交換反応を、組成物中における脂肪酸エステルの含有量(混合モル分率)が任意の値となった時に反応を終了させることで、所期の潜熱蓄熱特性を得るものである。よって、目的とする潜熱蓄熱特性となる段階で、エステル化又はエステル交換反応を終了させ、脂肪酸エステルの他、原料となる油脂や脂肪酸が混在する組成物を製造する。通常であれば、組成物中に混在している脂肪酸や脂肪酸エステルの種類によって、DSC曲線のピークが別々に観察されることから潜熱が小さくなる。しかし本実施の形態においては、特定の脂肪酸エステルについては、脂肪酸や、これから製造された脂肪酸エステルが混在していても、DSCピークが1つになる共融状況とすることができ、これにより潜熱を大きくすることができる。 The desired latent heat storage characteristics are obtained by terminating the above esterification reaction or transesterification reaction when the fatty acid ester content (mixed mole fraction) in the composition reaches an arbitrary value. is there. Therefore, the esterification or transesterification reaction is terminated at the stage where the desired latent heat storage property is obtained, and a composition in which fats and oils and fatty acids as raw materials are mixed in addition to the fatty acid ester is produced. Normally, the latent heat is reduced because the peaks of the DSC curve are observed separately depending on the type of fatty acid or fatty acid ester mixed in the composition. However, in the present embodiment, the specific fatty acid ester can be in a eutectic state in which the DSC peak becomes one even if the fatty acid and the fatty acid ester produced from the fatty acid are mixed, whereby the latent heat can be obtained. Can be increased.
 かかる潜熱蓄熱特性は、例えば所定の脂肪酸エステルへの反応率(モル分率)を変化させた複数の混合物を調製し、示差走査熱量計(DSC)の測定により融解曲線や凝固曲線を得て、各反応率における相変化温度と、移転エンタルピーを特定することができる。そしてこの測定結果に基づいて、目的とする温度領域に相変化温度を有し、所望の潜熱を有する反応率(又はモル分率)を特定することができる。 For such latent heat storage characteristics, for example, a plurality of mixtures in which the reaction rate (mole fraction) to a predetermined fatty acid ester is changed are prepared, and a melting curve or a solidification curve is obtained by measurement with a differential scanning calorimeter (DSC). The phase change temperature and transfer enthalpy at each reaction rate can be specified. Then, based on this measurement result, it is possible to specify the reaction rate (or mole fraction) having a phase change temperature in a target temperature region and having a desired latent heat.
 潜熱蓄熱材として使用する場合には、融解曲線や凝固曲線において、ピークが1つであり、そのピーク面積から求めた潜熱(移転エンタルピー)が大きいことが望ましい。また、相変化における開始点(温度)と終了点(温度)の間隔が狭い方が望ましく、よって融解曲線においては融解開始点(融解開始温度)と融解終了点(融解終了温度)との間隔、凝固曲線においては凝固開始点(融解開始温度)と凝固終了点(融解終了温度)との間隔は、何れも狭い方が望ましい。そしてDSC曲線(融解曲線や凝固曲線)において、現れるピークがシャープな反応率であることが望ましい。ここで、「ピークがシャープ」であるとは、同じ分析条件において得られるDSC曲線での比較であり、同じ分析条件下で比較した場合において、より一層、ピークがシャープとなる反応率とすることが望ましい。 When used as a latent heat storage material, it is desirable that there is one peak in the melting curve and solidification curve, and the latent heat (transfer enthalpy) obtained from the peak area is large. Further, it is desirable that the interval between the start point (temperature) and the end point (temperature) in the phase change is narrow, and therefore, in the melting curve, the interval between the melting start point (melting start temperature) and the melting end point (melting end temperature), In the solidification curve, it is desirable that the interval between the solidification start point (melting start temperature) and the solidification end point (melting end temperature) is narrow. Then, it is desirable that the peak appearing on the DSC curve (melting curve or solidification curve) has a sharp reaction rate. Here, "the peak is sharp" is a comparison on the DSC curve obtained under the same analysis conditions, and the reaction rate at which the peak becomes sharper when compared under the same analysis conditions is defined. Is desirable.
実験例1Experimental Example 1
〔実験方法〕
 この実験では、植物油に広く含まれる2種の(飽和)脂肪酸とそのメチルおよびエチルエステルを取り上げ、、それらを組み合わせた二成分混合系で熱特性の測定を行い、融点や潜熱に及ぼす影響を検討した。取り上げた4種の脂肪酸エステルの融点と潜熱を以下の表1示す。
〔experimental method〕
In this experiment, two types of (saturated) fatty acids widely contained in vegetable oils and their methyl and ethyl esters were taken up, and the thermal characteristics were measured in a two-component mixed system combining them to examine their effects on melting point and latent heat. did. The melting points and latent heats of the four fatty acid esters taken up are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 基本となる脂肪酸骨格は、炭素鎖長16の飽和パルミチン酸(PA)と、炭素鎖長18の飽和ステアリン酸(SA)とし、それらのメチルエステル(PM,SM)と、エチルエステル(PE,SE)とした。混合系は、近い融点を持つ系としてPM+SM,PM+PE,PM+SEとした。熱特性は、パルミチン酸メチル(PM)のモル分率(XPM)を0.00~1.00まで変化させた混合物を調製し、示差走査熱量計(DSC)で測定した。温度範囲は-20℃~60℃、昇温速度は10℃/minとした。 The basic fatty acid skeleton is saturated palmitic acid (PA) having a carbon chain length of 16 and saturated stearic acid (SA) having a carbon chain length of 18, and their methyl esters (PM, SM) and ethyl esters (PE, SE). ). The mixed system was PM + SM, PM + PE, PM + SE as a system having a similar melting point. Thermal properties, the molar fraction of methyl palmitate (PM) to (X PM) and the mixture was varied to 0.00 to 1.00 were prepared and measured with a differential scanning calorimeter (DSC). The temperature range was −20 ° C. to 60 ° C., and the heating rate was 10 ° C./min.
〔結果と考察〕
 図2にPM+SM,PM+PE混合系での融解曲線を示す。下向きのピークは相変化の際の吸熱を表している。(a)のPM+SM系では、XPM=0.22の混合物になるとピークが小さくブロードになり、XPM=0.61では成分毎の2つのピークが観察された。このピークが小さくブロードになる傾向はPM+SE系でも観察された。一方、(b)のPM+PE系では、いずれのXPMでも大きな1つのピークが観察された。これより、この混合系が共融状態にあると考えられる。
〔Results and discussion〕
FIG. 2 shows a melting curve in a PM + SM and PM + PE mixed system. The downward peak represents endothermic during the phase change. In the PM + SM system of (a), when the mixture of X PM = 0.22, the peak became small and broad, and when X PM = 0.61, two peaks for each component were observed. The tendency for this peak to be small and broad was also observed in the PM + SE system. On the other hand, in the PM + PE system (b), one large peak either X PM were observed. From this, it is considered that this mixed system is in a eutectic state.
 図3に、図2の各XPM でのピークトップから求めた融点(Tpeak)とそのピーク面積から求めた潜熱(ΔH)を示す。いずれの系でも、混合により融点および潜熱量が低下することが分かる。しかし、その低下の程度は系によって異なっている。図中に点線で示しているのは、人の生活温度域である。今回取り上げた混合系では、この温度域に融点を持ち、かつ、潜熱が高い条件は、PM+PE系でXPM=0.20の混合物となった。 FIG. 3 shows the melting point (T peak ) obtained from the peak top at each XPM in FIG. 2 and the latent heat (ΔH) obtained from the peak area. It can be seen that in both systems, the melting point and the amount of latent heat decrease due to mixing. However, the degree of decrease varies from system to system. The dotted line in the figure is the living temperature range of a person. In the mixed system taken up this time, the condition that the melting point is in this temperature range and the latent heat is high is a mixture of X PM = 0.20 in the PM + PE system.
実験例2Experimental Example 2
〔実験方法〕
 この実験では、イオン交換樹脂を触媒とする手法の利用で可能となる、廃棄物油を原料とするエステル合成を行い、得られたエステルの脂肪酸組成と熱化学特性を検討した。廃棄物油には、食用油製造工場でサンプルとして所定期間保存された後に廃棄される4種の油を用いた。エステル合成では、強塩基性樹脂である三菱化学社製の製品名DiaionPA306S(多孔性、粒径0.150~0.425mm)を触媒とし、油とアルコールを化学量論比で混合した反応液に33wt%の強塩基性樹脂を投入し、反応温度50℃で十分に振盪した。そして、油の残存率が1%以下(即ち、脂肪酸基の転化率99%以上)となった時点で反応を終了し、強塩基性樹脂を濾過除去した後、残留アルコールを蒸留除去した。
〔experimental method〕
In this experiment, ester synthesis using waste oil as a raw material, which is possible by using a method using an ion exchange resin as a catalyst, was performed, and the fatty acid composition and thermochemical properties of the obtained ester were examined. As the waste oil, four kinds of oils were used, which were stored as samples in an edible oil manufacturing plant for a predetermined period of time and then discarded. In ester synthesis, a reaction solution in which oil and alcohol are mixed in a stoichiometric ratio using the product name Diaion PA306S (porous, particle size 0.150 to 0.425 mm) manufactured by Mitsubishi Chemical Co., Ltd., which is a strong basic resin, as a catalyst. A 33 wt% strongly basic resin was added, and the mixture was sufficiently shaken at a reaction temperature of 50 ° C. Then, when the residual rate of the oil became 1% or less (that is, the conversion rate of the fatty acid group was 99% or more), the reaction was terminated, the strong basic resin was filtered off, and then the residual alcohol was distilled off.
 以下の表2(各種廃油からのメチルエステルの組成)に、4種の廃棄物油から合成された脂肪酸エステルの脂肪酸組成の測定結果を示す。参考のため、各エステルの融点も示した。 Table 2 below (composition of methyl esters from various waste oils) shows the measurement results of the fatty acid composition of fatty acid esters synthesized from four types of waste oils. For reference, the melting point of each ester is also shown.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
〔結果と考察〕
 上記4種の廃棄物油由来の脂肪酸エステルについての示差走査熱量計によるDSC融解曲線を図4に示す。合成した各植物油のエステルには、含有量の多い脂肪酸由来のピークが複数観察され、融点が30℃以上の二重結合のない飽和脂肪酸のものと、―20℃以下の二重結合を有する不飽和脂肪酸のものが含まれていた。しかし、成分数とピーク数は一致しておらず、ココアバターの20℃付近のピークのように、パルミチン酸 (PA)とステアリン酸(SA)のメチル体で1つのピークを形成しているものも観察された。建材用蓄熱材では、融点が10~30℃程度にあり、潜熱の大きな1つのピークを持つことが望ましい。そこで図5に、ココアバター由来のエステルの融点の測定結果を、純成分の各脂肪酸エステルの融点と比較して示す。25℃付近の大きなピークは、ステアリン酸とパルミチン酸の各エステルの混合物依存の融点、―40℃付近の2つのピークは、オレイン酸とリノール酸の各エステル由来の融点に対応していると考えられる。
〔Results and discussion〕
The DSC melting curve by the differential scanning calorimeter for the fatty acid esters derived from the above four kinds of waste oils is shown in FIG. In the ester of each synthesized vegetable oil, multiple peaks derived from fatty acids with high content were observed, and those with saturated fatty acids having a melting point of 30 ° C or higher without double bonds and those with double bonds of -20 ° C or lower were not found. It contained saturated fatty acids. However, the number of components and the number of peaks do not match, and one peak is formed by the methyl form of palmitic acid (PA) and stearic acid (SA), such as the peak near 20 ° C of cocoa butter. Was also observed. It is desirable that the heat storage material for building materials has a melting point of about 10 to 30 ° C. and has one large peak of latent heat. Therefore, FIG. 5 shows the measurement results of the melting points of the cocoa butter-derived esters in comparison with the melting points of the pure fatty acid esters. It is considered that the large peak around 25 ° C corresponds to the melting point of the mixture of stearic acid and palmitic acid esters, and the two peaks around -40 ° C correspond to the melting points derived from the esters of oleic acid and linoleic acid. Be done.
実験例3Experimental Example 3
 この実験では、パルミチン酸(PA)のエステル化実験と生成物の熱分析を行った。なお、この実験例における分析には以下の装置を使用した。
「分析装置」
・FAME濃度:分析装置 GC-FID(GL Sciences)
        カラム  InertCap WAX-HT
        内部標準 ペンタデカン酸メチル(256.4 g/mol)
・酸価測定  :分析装置 自動滴定システム AT-710(京都電子工業株式会社)
             滴定溶液 エタノール性0.1mol/L KOH溶液
・熱分析   :分析装置 DSC 7000X(日立ハイテクサイエンス)
In this experiment, an esterification experiment of palmitic acid (PA) and a thermal analysis of the product were performed. The following equipment was used for the analysis in this experimental example.
"Analysis equipment"
-FAME concentration: Analyzer GC-FID (GL Sciences)
Column InertCap WAX-HT
Internal standard Methyl pentadecate (256.4 g / mol)
・ Acid value measurement: Analyzer automatic titration system AT-710 (Kyoto Denshi Kogyo Co., Ltd.)
Titration solution Ethanol 0.1 mol / L KOH solution / thermal analysis: Analyzer DSC 7000X (Hitachi High-Tech Science)
〔エステル化実験〕
 パルミチン酸は、東京化成工業社製の製品名3ZINJ(純度97.9%、256.4 g/mol)を使用し、エステル化実験では、強酸性樹脂である三菱化学社製の製品名Diaion PK208LHを触媒とし、以下の条件でエステル化を行った。
「エステル化の実験条件」
  メタノール量:量論比の3倍
  樹脂量   :反応液総量の33wt%
  反応温度  :50℃
  振盪速度  :充分に混合(150spm)
[Esterification experiment]
For palmitic acid, the product name 3ZINJ (purity 97.9%, 256.4 g / mol) manufactured by Tokyo Chemical Industry Co., Ltd. is used, and in the esterification experiment, the product name Diaion PK208LH manufactured by Mitsubishi Chemical Corporation, which is a strongly acidic resin, is used. Was used as a catalyst, and esterification was carried out under the following conditions.
"Experimental conditions for esterification"
Amount of methanol: 3 times the stoichiometric ratio Resin amount: 33 wt% of the total amount of reaction solution
Reaction temperature: 50 ° C
Shaking speed: Mix well (150 spm)
 具体的には、エステル化実験で使用した反応液組成(仕込み量)は、パルミチン酸(PA):54.9g、メタノール:21.1g、強酸性樹脂触媒(三菱化学社製の製品名「Diaion PK208LH」):37.8gであり、これを前記エステル化の実験条件で反応させた。エステル化を行った。そして反応開始から12時間までは1時間毎にサンプリングし、更に反応開始後28時間後にサンプリングを行い、パルミチン酸濃度と反応率を求めた。その結果を図6に示す。また、以下の表3には反応時間と反応率を示す。
 なお、反応率は以下の式で算出した。
 [反応率の算出]
Specifically, the composition of the reaction solution (charged amount) used in the esterification experiment was palmitic acid (PA): 54.9 g, methanol: 21.1 g, and a strong acid resin catalyst (product name "Diaion" manufactured by Mitsubishi Chemical Corporation). PK208LH "): 37.8 g, which was reacted under the experimental conditions for esterification. Esterification was performed. Then, sampling was performed every hour from the start of the reaction to 12 hours, and further sampling was performed 28 hours after the start of the reaction to determine the palmitic acid concentration and the reaction rate. The result is shown in FIG. Table 3 below shows the reaction time and reaction rate.
The reaction rate was calculated by the following formula.
[Calculation of reaction rate]
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
〔熱分析実験〕
 上記エステル化実験における各サンプルを示差走査熱量計(DSC)で測定し、各反応率(パルミチン酸の反応率:YPM)における凝固曲線と融解曲線を得た。その結果を図7に示す。また、この図7に示した凝固曲線と融解曲線から、凝固、融解ピークのピークトップの温度(それぞれ、Tpeak,f、Tpeak,m)を求め、また凝固、融解潜熱(それぞれΔH、ΔH)を求め、その結果を以下の表4及び図8に示した。
[Thermal analysis experiment]
Each sample in the above esterification experiment was measured with a differential scanning calorimeter (DSC) to obtain a solidification curve and a melting curve at each reaction rate (palmitic acid reaction rate: YPM ). The result is shown in FIG. Further, from the solidification curve and the melting curve shown in FIG. 7, the peak top temperatures of the solidification and melting peaks (T peak, f , T peak, m , respectively) are obtained, and the latent heat of solidification and melting (ΔH f , respectively ) . ΔH m ) was determined, and the results are shown in Table 4 and FIG. 8 below.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 なお、図8中、DSC曲線において、凝固曲線の凝固開始点であるTonset,f(図面中の〇)、融解曲線の融解終了点であるToffset,m(図面中の□)については、DSC微分値のうち最も高温側にあるピークをDSC曲線の最大傾斜点とし、その接線とベースライン(DSC値が1.0 mW/mgを下回った点の接線)との交点の値である。また凝固曲線の凝固終了点であるToffset,f(図面中の□)、融解曲線の融解開始点であるTonset,m(図面中の〇)については、DSC微分値のうち最も低温側にあるピークをDSC曲線の最大傾斜点とし、ベースライン(DSC値が1.0 mW/mgを下回った点の接線)との交点の値である。 In FIG. 8, in the DSC curve, the solidification start point of the solidification curve, Tonset, f (◯ in the drawing), and the melting end point of the melting curve, Toffset, m (□ in the drawing), are shown. The peak on the highest temperature side of the DSC differential values is set as the maximum inclination point of the DSC curve, and is the value of the intersection between the tangent line and the baseline (the tangent line of the point where the DSC value is less than 1.0 mW / mg). The Toffset, f (□ in the drawing), which is the solidification end point of the solidification curve, and the Tonset, m (○ in the drawing), which is the melting start point of the melting curve, are located on the lowest temperature side of the DSC differential values. A certain peak is set as the maximum inclination point of the DSC curve, and is the value of the intersection with the baseline (the tangent line of the point where the DSC value is less than 1.0 mW / mg).
〔考察〕
 脂肪酸としてパルミチン酸を用いてエステル化を行った場合には、反応率0.821(反応時間7時間)以上で、15℃以上、25℃以下の温度領域に、パルミチン酸メチル由来の1つのピーク、かつ180 J/g程度の大きな潜熱をもつことを確認した。また反応率が低くなるにつれて蓄熱温度領域が上昇し且つ潜熱も小さくなり、また反応率が1.0に近づくにつれて、蓄熱温度領域が上昇し且つ潜熱も大きくなることを確認した。
[Discussion]
When esterification was performed using palmitic acid as a fatty acid, one peak derived from methyl palmitate was produced in a temperature range of a reaction rate of 0.821 (reaction time 7 hours) or higher and a temperature range of 15 ° C. or higher and 25 ° C. or lower. It was confirmed that it had a large latent heat of about 180 J / g. It was also confirmed that as the reaction rate decreased, the heat storage temperature region increased and the latent heat decreased, and as the reaction rate approached 1.0, the heat storage temperature region increased and the latent heat also increased.
実験例4Experimental Example 4
 この実験では、2種類のアルコールを使用して、前記実験例3と同様の処理により、エステル化実験を行い、生成物の熱分析を行った。即ち、パルミチン酸(PA)と混合アルコール(メタノールとエタノール)によるエステル化実験と生成物の熱分析を行った。なお、この実験例における分析装置は前記実験例3と同じである。 In this experiment, an esterification experiment was carried out by the same treatment as in Experimental Example 3 using two kinds of alcohols, and a thermal analysis of the product was carried out. That is, an esterification experiment with palmitic acid (PA) and a mixed alcohol (methanol and ethanol) and a thermal analysis of the product were performed. The analyzer in this experimental example is the same as that in experimental example 3.
〔エステル化実験〕
 パルミチン酸は、東京化成工業社製の製品名3ZINJ(純度97.9%、256g/mol)を使用し、メタノールは、Wako Pure Chemical Industries, Ltd.,社製のもの(≧99.5vol%、32.04 g/mol1)、エタノールはJapan Alcohol Corp., Ltd.,社製のもの( ≧99vol%、46.1g/mol1)を使用した。その他、強酸性樹脂やエステル化の実験条件は前記実験例3と同じである。
[Esterification experiment]
For palmitic acid, product name 3ZINJ (purity 97.9%, 256 g / mol) manufactured by Tokyo Chemical Industry Co., Ltd. was used, and for methanol, Wako Pure Chemical Industries, Ltd. , Manufactured by the company (≧ 99.5 vol%, 32.04 g / mol1), ethanol is Japan Alcohol Corp. , Ltd. , Company-made (≧ 99 vol%, 46.1 g / mol1) was used. In addition, the experimental conditions for the strongly acidic resin and esterification are the same as those in Experimental Example 3.
 特に、エステル化実験で使用した反応液組成(仕込み量)は、パルミチン酸(PA):66.9g、メタノール:19.9g(アルコールモル比:0.797)、エタノール:7.3g(アルコールモル比:0.203)、強酸性樹脂触媒(三菱化学社製の製品名「Diaion PK208LH」):47.1gを使用した。 In particular, the composition of the reaction solution (charged amount) used in the esterification experiment was palmitic acid (PA): 66.9 g, methanol: 19.9 g (alcohol molar ratio: 0.797), ethanol: 7.3 g (alcohol molar). Ratio: 0.203), strong acid resin catalyst (product name "Diaion PK208LH" manufactured by Mitsubishi Chemical Co., Ltd.): 47.1 g was used.
 そしてエステル化反応を行い、反応開始から12時間までは1時間毎にサンプリングし、更に反応開始後28時間後にサンプリングを行い、実験例3と同様にして脂肪酸エステル(パルミチン酸メチル、パルミチン酸エチル、及び全エステル)の濃度と反応率を求めた。その結果を図9に示す。また、以下の表5には反応時間と反応率を示す。 Then, an esterification reaction is carried out, sampling is performed every hour from the start of the reaction to 12 hours, and further sampling is performed 28 hours after the start of the reaction. Fatty acid esters (methyl palmitate, ethyl palmitate, And the concentration of total ester) and the reaction rate were determined. The result is shown in FIG. Table 5 below shows the reaction time and reaction rate.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
〔熱分析実験〕
 実験例3と同様に、上記エステル化実験における各サンプルを示差走査熱量計(DSC)で測定し、各反応率(パルミチン酸の反応率:YPM)における凝固曲線と融解曲線を得た。その結果を図10に示す。また、この図10に示した凝固曲線と融解曲線から、凝固、融解ピークのピークトップの温度(それぞれ、Tpeak,f、Tpeak,m)を求め、また凝固、融解潜熱(それぞれΔH、ΔH)を求め、その結果を以下の表6及び図11に示した。
[Thermal analysis experiment]
In the same manner as in Experimental Example 3, each sample in the above esterification experiment was measured with a differential scanning calorimeter (DSC) to obtain a solidification curve and a melting curve at each reaction rate (palmitic acid reaction rate: Y PM ). The result is shown in FIG. Further, from the solidification curve and the melting curve shown in FIG. 10, the peak top temperatures of the solidification and melting peaks (T peak, f , T peak, m , respectively) are obtained, and the latent heat of solidification and melting (ΔH f , respectively ) . ΔH m ) was determined, and the results are shown in Table 6 and FIG. 11 below.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
〔考察〕
 脂肪酸基を同じにして、アルコール基を変えたものを混合した方が、DSC曲線におけるピークの立ち上がりから収束までが狭くなる傾向を持つことが分かった。そして目的とする温度帯にシャープなピーク(ピークの立ち上がりから収束までが狭くなる傾向)であると潜熱量が大きくなる傾向があることから、蓄熱材としての性能(潜熱蓄熱特性)が高くなる事を確認した。
[Discussion]
It was found that when the fatty acid groups were the same and the alcohol groups were changed, the mixture had a tendency for the peak rise to convergence on the DSC curve to be narrower. And if the peak is sharp in the target temperature range (the peak rise to convergence tends to be narrow), the latent heat amount tends to increase, so the performance as a heat storage material (latent heat storage characteristic) becomes high. It was confirmed.
実験例5Experimental Example 5
 この実験では、2種類の脂肪酸を使用して、前記実験例3と同様の処理により、エステル化実験を行い、生成物の熱分析を行った。即ち、パルミチン酸(PA)、ステアリン酸(SA)の混合脂肪酸とメタノールを用いてエステル化実験を行い、その生成物の熱分析を行った。なお、この実験例における分析装置は前記実験例3と同じである。 In this experiment, using two kinds of fatty acids, an esterification experiment was carried out by the same treatment as in Experimental Example 3, and the product was thermally analyzed. That is, an esterification experiment was carried out using a mixed fatty acid of palmitic acid (PA) and stearic acid (SA) and methanol, and the product was thermally analyzed. The analyzer in this experimental example is the same as that in experimental example 3.
〔エステル化実験〕
 パルミチン酸は、東京化成工業社製の製品名3ZINJ(純度97.9%、256g/mol)を使用し、ステアリン酸は、東京化成工業社製の製品名FL3YJ(純度97.0%、 284.5g/mol1)を使用し、メタノールは、Wako Pure Chemical Industries, Ltd.,社製のもの(≧99.5vol%、32.0g/mol1)を使用した。その他、強酸性樹脂やエステル化の実験条件は前記実験例3と同じである。混合脂肪酸は、質量基準でPA:SA=80mol%:20mol%とした。
[Esterification experiment]
For palmitic acid, product name 3ZINJ (purity 97.9%, 256 g / mol) manufactured by Tokyo Chemical Industry Co., Ltd. is used, and for stearic acid, product name FL3YJ (purity 97.0%, 284.) manufactured by Tokyo Chemical Industry Co., Ltd. is used. 5 g / mol1) was used, and methanol was used in Wako Pure Chemical Industries, Ltd. , (≧ 99.5 vol%, 32.0 g / mol1) manufactured by the company was used. In addition, the experimental conditions for the strongly acidic resin and esterification are the same as those in Experimental Example 3. The mixed fatty acid was PA: SA = 80 mol%: 20 mol% on a mass basis.
 特に、エステル化実験で使用した反応液組成(仕込み量)は、パルミチン酸(PA):54.1g(脂肪酸モル比:0.800)、ステアリン酸(SA):15.0g(脂肪酸モル比:0.200)、メタノール:25.3g、強酸性樹脂触媒(三菱化学社製の製品名「Diaion PK208LH」):47.1gを使用した。 In particular, the composition of the reaction solution (charged amount) used in the esterification experiment was palmitic acid (PA): 54.1 g (fatty acid molar ratio: 0.800), stearic acid (SA): 15.0 g (fatty acid molar ratio:). 0.200), methanol: 25.3 g, strong acid resin catalyst (product name "Diaion PK208LH" manufactured by Mitsubishi Chemical Co., Ltd.): 47.1 g was used.
 そしてエステル化反応を行い、反応開始から12時間までは1時間毎にサンプリングし、更に反応開始後28時間後にサンプリングを行い、実験例3と同様にして脂肪酸エステル(パルミチン酸メチル、ステアリン酸メチル、及び全エステル)の濃度と反応率を求めた。その結果を図12に示す。また、以下の表7には反応時間と反応率を示す。 Then, an esterification reaction is carried out, sampling is performed every hour from the start of the reaction to 12 hours, and further sampling is performed 28 hours after the start of the reaction. Fatty acid esters (methyl palmitate, methyl stearate, And the total ester) concentration and reaction rate were determined. The result is shown in FIG. Table 7 below shows the reaction time and reaction rate.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
〔熱分析実験〕
 実験例3と同様に、上記エステル化実験における各サンプルを示差走査熱量計(DSC)で測定し、各反応率(脂肪酸の反応率:YFA)における凝固曲線と融解曲線を得た。その結果を図13に示す。また、この図13に示した凝固曲線と融解曲線から、凝固、融解ピークのピークトップの温度(それぞれ、Tpeak,f、Tpeak,m)を求め、また凝固、融解潜熱(それぞれΔH、ΔH)を求め、その結果を以下の表8及び図14に示した。
[Thermal analysis experiment]
In the same manner as in Experimental Example 3, each sample in the above esterification experiment was measured with a differential scanning calorimeter (DSC) to obtain a solidification curve and a melting curve at each reaction rate (fatty acid reaction rate: YFA ). The result is shown in FIG. Further, from the solidification curve and the melting curve shown in FIG. 13, the peak top temperatures of the solidification and melting peaks (T peak, f , T peak, m , respectively) are obtained, and the latent heat of solidification and melting (ΔH f , respectively ) . ΔH m ) was determined, and the results are shown in Table 8 and FIG. 14 below.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
〔考察〕
 脂肪酸の反応率(YFA)が0.80以上であれば、DSC曲線においてピークが単一になりやすく、また相変化開始点(Tonset)と相変化終了点(Toffset)の温度間隔が狭いことから、当該ピークが大きくなりやすいので、目的の温度帯での蓄熱蓄熱性能が高いものとなる。
 また前記実験例4を考慮すれば、脂肪酸エステルの組み合わせとして、パルミチン酸メチルとステアリン酸メチルの組み合わせより、パルミチン酸メチルとパルミチン酸エチルの組み合わせの方が、DSC曲線において、より上記の良いピークになる傾向が高いことを確認した。
[Discussion]
When the reaction rate (Y FA ) of fatty acid is 0.80 or more, the peak tends to be single in the DSC curve, and the temperature interval between the phase change start point ( Tonset ) and the phase change end point ( Toffset ) is Since the peak is narrow, the peak tends to be large, so that the heat storage and heat storage performance in the target temperature range is high.
Further, in consideration of the above-mentioned Experimental Example 4, as a combination of fatty acid esters, the combination of methyl palmitate and ethyl palmitate has a better peak as described above in the DSC curve than the combination of methyl palmitate and methyl stearate. It was confirmed that there is a high tendency to become.
実験例6Experimental Example 6
 この実験では、2種類の脂肪酸を使用して、前記実験例3と同様の処理により、エステル化実験を行い、生成物の熱分析を行った。即ち、パルミチン酸(PA)、ステアリン酸(SA)の混合脂肪酸とエタノールを用いてエステル化実験を行い、その生成物の熱分析を行った。なお、この実験例における分析装置は前記実験例3と同じである。 In this experiment, using two kinds of fatty acids, an esterification experiment was carried out by the same treatment as in Experimental Example 3, and the product was thermally analyzed. That is, an esterification experiment was carried out using a mixed fatty acid of palmitic acid (PA) and stearic acid (SA) and ethanol, and the product was thermally analyzed. The analyzer in this experimental example is the same as that in experimental example 3.
〔エステル化実験〕
 パルミチン酸は、東京化成工業社製の製品名3ZINJ(純度97.9%、256.4 g/mol)を使用し、ステアリン酸は、東京化成工業社製の製品名FL3YJ(純度97.0%、 284.48g/mol1)を使用し、エタノールはJapan Alcohol Corp., Ltd.,社製のもの( ≧99vol%、46.07g/mol1)を使用した。その他、強酸性樹脂やエステル化の実験条件は前記実験例3と同じである。混合脂肪酸は、質量基準でPA:SA=80mol%:20mol%とした。
[Esterification experiment]
For palmitic acid, the product name 3ZINJ (purity 97.9%, 256.4 g / mol) manufactured by Tokyo Chemical Industry Co., Ltd. is used, and for stearic acid, the product name FL3YJ (purity 97.0%) manufactured by Tokyo Chemical Industry Co., Ltd. is used. , 284.48 g / mol1), and ethanol was used in Japan Alcohol Corp. , Ltd. , Company manufactured (≧ 99 vol%, 46.07 g / mol1) was used. In addition, the experimental conditions for the strongly acidic resin and esterification are the same as those in Experimental Example 3. The mixed fatty acid was PA: SA = 80 mol%: 20 mol% on a mass basis.
 特に、エステル化実験で使用した反応液組成(仕込み量)は、パルミチン酸(PA):54.1g(脂肪酸モル比:0.800)、ステアリン酸(SA):15.0g(脂肪酸モル比:0.200)、エタノール:25.3g、強酸性樹脂触媒(三菱化学社製の製品名「Diaion PK208LH」):47.1gを使用した。 In particular, the composition of the reaction solution (charged amount) used in the esterification experiment was palmitic acid (PA): 54.1 g (fatty acid molar ratio: 0.800), stearic acid (SA): 15.0 g (fatty acid molar ratio:). 0.200), ethanol: 25.3 g, strong acid resin catalyst (product name "Diaion PK208LH" manufactured by Mitsubishi Chemical Co., Ltd.): 47.1 g was used.
 そしてエステル化反応を行い、反応開始から12時間までは1時間毎にサンプリングし、更に反応開始後28時間後にサンプリングを行い、実験例3と同様にして脂肪酸エステル(パルミチン酸メチル、ステアリン酸メチル、及び全エステル)の濃度と反応率を求めた。 Then, an esterification reaction is carried out, sampling is performed every hour from the start of the reaction to 12 hours, and further sampling is performed 28 hours after the start of the reaction. Fatty acid esters (methyl palmitate, methyl stearate, And the total ester) concentration and reaction rate were determined.
〔熱分析実験〕
 実験例3と同様に、上記エステル化実験における各サンプルを示差走査熱量計(DSC)で測定し、各反応率(脂肪酸の反応率:YFA)における凝固曲線と融解曲線を得た。その結果を図15に示す。また、この図15に示した凝固曲線と融解曲線から、凝固、融解ピークのピークトップの温度(それぞれ、Tpeak,f、Tpeak,m)を求め、また凝固、融解潜熱(それぞれΔH、ΔH)を求め、その結果を以下の表9及び図16に示した。
[Thermal analysis experiment]
In the same manner as in Experimental Example 3, each sample in the above esterification experiment was measured with a differential scanning calorimeter (DSC) to obtain a solidification curve and a melting curve at each reaction rate (fatty acid reaction rate: YFA ). The result is shown in FIG. Further, from the solidification curve and the melting curve shown in FIG. 15, the peak top temperatures of the solidification and melting peaks (T peak, f and T peak, respectively) are obtained, and the latent heat of solidification and melting (ΔH f , respectively ) . ΔH m ) was determined, and the results are shown in Table 9 and FIG. 16 below.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
〔考察〕
 脂肪酸の反応率(YFA)が0.80以上であれば、DSC曲線においてピークが単一になりやすく、また相変化開始点(Tonset)と相変化終了点(Toffset)の温度間隔が狭いことから、当該ピークが大きくなりやすいので、目的の温度帯での蓄熱蓄熱性能が高いものとなる。
[Discussion]
When the reaction rate (Y FA ) of fatty acid is 0.80 or more, the peak tends to be single in the DSC curve, and the temperature interval between the phase change start point ( Tonset ) and the phase change end point ( Toffset ) is Since the peak is narrow, the peak tends to be large, so that the heat storage and heat storage performance in the target temperature range is high.
 本発明の潜熱蓄熱材組成物、及び潜熱蓄熱特性制御方法は、建材用蓄熱シートなどの建築材料の他、繊維製品などの他、任意の温度域における熱的安定を必要とするなどの各種分野で使用する事ができる。また、本発明の潜熱蓄熱材組成物、及び潜熱蓄熱特性制御方法は、15℃~25℃の生活温度域における潜熱蓄熱特性を得る他、凍結温度域(低温温度域)、或いは加熱温度域(高温温度域)などの、広範な温度域において熱的安定性を得る為に使用する事ができる。  The latent heat storage material composition of the present invention and the method for controlling the latent heat storage characteristics are used in various fields such as building materials such as heat storage sheets for building materials, textile products, and thermal stability in an arbitrary temperature range. Can be used in. Further, the latent heat storage material composition and the latent heat storage characteristic control method of the present invention obtain latent heat storage characteristics in a living temperature range of 15 ° C. to 25 ° C., as well as a freezing temperature range (low temperature range) or a heating temperature range (low temperature range). It can be used to obtain thermal stability in a wide temperature range such as (high temperature range).

Claims (5)

  1.  脂肪酸エステル類を主成分とする潜熱蓄熱材組成物であって、
     脂肪酸と、当該脂肪酸とアルコールから製造された脂肪酸エステルとからなり、
     脂肪酸及び脂肪酸エステルの含有量が、組成物中、それぞれ1wt%以上である、潜熱蓄熱材組成物。
    A latent heat storage material composition containing fatty acid esters as a main component.
    It consists of a fatty acid and a fatty acid ester produced from the fatty acid and alcohol.
    A latent heat storage material composition in which the content of fatty acid and fatty acid ester is 1 wt% or more in the composition, respectively.
  2.  脂肪酸エステル類を主成分とする潜熱蓄熱材組成物であって、
     当該脂肪酸エステル類は、アルコール1種と脂肪酸2種以上、アルコール2種以上と脂肪酸1種、又はアルコール2種以上と脂肪酸2種以上で製造されている、潜熱蓄熱材組成物。
    A latent heat storage material composition containing fatty acid esters as a main component.
    The fatty acid esters are latent heat storage material compositions produced by one alcohol and two or more fatty acids, two or more alcohols and one fatty acid, or two or more alcohols and two or more fatty acids.
  3.  脂肪酸エステル類を主成分とする潜熱蓄熱材組成物であって、
     原料油脂と、当該原料油脂とアルコールから製造された脂肪酸エステルとからなり、
     脂肪酸エステルの含有量が、組成物中、1wt%以上、99wt%以下である、潜熱蓄熱材組成物。
    A latent heat storage material composition containing fatty acid esters as a main component.
    It consists of raw material fats and oils, and fatty acid esters produced from the raw material fats and oils and alcohol.
    A latent heat storage material composition having a fatty acid ester content of 1 wt% or more and 99 wt% or less in the composition.
  4.  潜熱蓄熱材における潜熱蓄熱特性の制御方法であって、
     当該潜熱蓄熱材は脂肪酸エステル類を主成分として構成されており、
     当該脂肪酸エステル類はエステル化反応又はエステル交換反応によって製造されており、何れかの反応における脂肪酸エステルへの反応率によって潜熱蓄熱特性を制御する潜熱蓄熱特性の制御方法。
    It is a method of controlling the latent heat storage characteristics of the latent heat storage material.
    The latent heat storage material is composed mainly of fatty acid esters.
    The fatty acid esters are produced by an esterification reaction or a transesterification reaction, and a method for controlling the latent heat storage characteristics, in which the latent heat storage characteristics are controlled by the reaction rate to the fatty acid ester in any of the reactions.
  5.  脂肪酸エステル類を主成分とする潜熱蓄熱材組成物の製造方法であって、
     原料油脂又は脂肪酸とアルコールの混合溶液をイオン交換体に接触させることにより、該イオン交換体を触媒として、連続的に脂肪酸エステルを製造することを含む潜熱蓄熱材組成物の製造方法。
    A method for producing a latent heat storage material composition containing fatty acid esters as a main component.
    A method for producing a latent heat storage material composition, which comprises continuously producing a fatty acid ester using the ion exchanger as a catalyst by contacting a raw material fat or oil or a mixed solution of a fatty acid and an alcohol with the ion exchanger.
PCT/JP2020/030257 2019-08-07 2020-08-06 Latent heat storage material composition, and method for controlling latent heat storage characteristics WO2021025134A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021537392A JP7504475B2 (en) 2019-08-07 2020-08-06 Latent heat storage material composition and method for controlling latent heat storage characteristics

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-145175 2019-08-07
JP2019145175 2019-08-07

Publications (1)

Publication Number Publication Date
WO2021025134A1 true WO2021025134A1 (en) 2021-02-11

Family

ID=74503861

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/030257 WO2021025134A1 (en) 2019-08-07 2020-08-06 Latent heat storage material composition, and method for controlling latent heat storage characteristics

Country Status (2)

Country Link
JP (1) JP7504475B2 (en)
WO (1) WO2021025134A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63205385A (en) * 1987-02-20 1988-08-24 Asahi Denka Kogyo Kk Latent-heat storage material
JP2003183636A (en) * 2001-12-25 2003-07-03 Iiburain:Kk Heat accumulation agent (thermal storage medium)
WO2011099871A1 (en) * 2010-02-15 2011-08-18 Auckland Uniservices Limited Saturated fatty acid ester phase change materials and processes for preparing the same
JP2015137807A (en) * 2014-01-22 2015-07-30 株式会社デンソー cold storage heat exchanger
JP2018504417A (en) * 2015-01-26 2018-02-15 トレント ユニバーシティ Latent heat storage material using renewable phase change material
US20180244971A1 (en) * 2015-09-08 2018-08-30 Croda International Plc Phase Change Materials and Methods of Regulating Temperature

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63205385A (en) * 1987-02-20 1988-08-24 Asahi Denka Kogyo Kk Latent-heat storage material
JP2003183636A (en) * 2001-12-25 2003-07-03 Iiburain:Kk Heat accumulation agent (thermal storage medium)
WO2011099871A1 (en) * 2010-02-15 2011-08-18 Auckland Uniservices Limited Saturated fatty acid ester phase change materials and processes for preparing the same
JP2015137807A (en) * 2014-01-22 2015-07-30 株式会社デンソー cold storage heat exchanger
JP2018504417A (en) * 2015-01-26 2018-02-15 トレント ユニバーシティ Latent heat storage material using renewable phase change material
US20180244971A1 (en) * 2015-09-08 2018-08-30 Croda International Plc Phase Change Materials and Methods of Regulating Temperature

Also Published As

Publication number Publication date
JP7504475B2 (en) 2024-06-24
JPWO2021025134A1 (en) 2021-02-11

Similar Documents

Publication Publication Date Title
Asikin-Mijan et al. Biodiesel production via simultaneous esterification and transesterification of chicken fat oil by mesoporous sulfated Ce supported activated carbon
US9856189B2 (en) Methods of making high-weight esters, acids, and derivatives thereof
BRPI0901633A2 (en) method for esterification of free fatty acids in triglycerides with methanol
US20060069274A1 (en) Continuous production process for ethyl esters (biodiesel)
JP2004510044A (en) Method for forming fatty acid alkyl ester
JPH0748980B2 (en) Margarine fat mixture and method for producing the same
Patil et al. Parametric studies of methyl esters synthesis from Thumba seed oil using heterogeneous catalyst under conventional stirring and ultrasonic cavitation
CN1622933A (en) Process for producing high purity alkylester of fatty acid in a single-phase continuous process
DK2820112T3 (en) PROCEDURE FOR PREPARING POLYOLS AND APPLICATIONS THEREOF
Nitièma-Yefanova et al. Ethyl biodiesel production from non-edible oils of Balanites aegyptiaca, Azadirachta indica, and Jatropha curcas seeds–laboratory scale development
WO2020167745A1 (en) Triglyceride oil compositions
JP2021510751A (en) Flexible wax and its manufacturing method
WO2011099871A1 (en) Saturated fatty acid ester phase change materials and processes for preparing the same
Kocsisová et al. High‐temperature esterification of fatty acids with methanol at ambient pressure
MX2015004394A (en) Methods of making high-weight esters, acids, and derivatives thereof.
WO2021025134A1 (en) Latent heat storage material composition, and method for controlling latent heat storage characteristics
Farag et al. Transesterification of esterified mixed oil for biodiesel production
JPWO2006016492A1 (en) Method for producing composition for biodiesel fuel and apparatus for producing biodiesel fuel
JPH0581213B2 (en)
JP4091099B1 (en) Dry fractionation method, highly liquid palm oil and oil composition using the same
JP5454835B2 (en) Method for producing fatty acid monoester by solid acid catalyst
JP2010013511A (en) Biodiesel fuel and method for producing the same
Rachmaniah et al. A study on acid-catalyzed transesterification of crude rice bran oil for biodiesel production
Fonseca et al. Advanced techniques in soybean biodiesel
CN109312257B (en) Method for selectively hydrogenating vegetable oils using egg-shell catalysts

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20849303

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021537392

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20849303

Country of ref document: EP

Kind code of ref document: A1