JPWO2006016492A1 - Method for producing composition for biodiesel fuel and apparatus for producing biodiesel fuel - Google Patents

Method for producing composition for biodiesel fuel and apparatus for producing biodiesel fuel Download PDF

Info

Publication number
JPWO2006016492A1
JPWO2006016492A1 JP2006531452A JP2006531452A JPWO2006016492A1 JP WO2006016492 A1 JPWO2006016492 A1 JP WO2006016492A1 JP 2006531452 A JP2006531452 A JP 2006531452A JP 2006531452 A JP2006531452 A JP 2006531452A JP WO2006016492 A1 JPWO2006016492 A1 JP WO2006016492A1
Authority
JP
Japan
Prior art keywords
acid
oil
biodiesel fuel
unit
reduced pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006531452A
Other languages
Japanese (ja)
Inventor
茂人 早藤
茂人 早藤
豊 中薗
豊 中薗
Original Assignee
株式会社ドーン オブ ザ ワールド
株式会社ドーン オブ ザ ワールド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ドーン オブ ザ ワールド, 株式会社ドーン オブ ザ ワールド filed Critical 株式会社ドーン オブ ザ ワールド
Publication of JPWO2006016492A1 publication Critical patent/JPWO2006016492A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/02Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only
    • C10L1/026Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only for compression ignition
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11BPRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
    • C11B3/00Refining fats or fatty oils
    • C11B3/02Refining fats or fatty oils by chemical reaction
    • C11B3/04Refining fats or fatty oils by chemical reaction with acids
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
    • C11C3/003Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by esterification of fatty acids with alcohols
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
    • C11C3/04Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by esterification of fats or fatty oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/04Diesel oil
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Abstract

本発明は、低コストかつ簡易な工程で、効率よくエステル交換反応が行われるのに必要かつ十分な程度に、ガム質やリン脂質、遊離脂肪酸を除去することが可能な、バイオディーゼル燃料用組成物の製造方法を提供することを目的とする。本発明は、原料油に有機酸を加え、該原料油に含まれるガム質またはリン脂質を固体化する第1の工程と、固体化されたガム質またはリン脂質を原料油から除去する第2の工程と、固体化された物質が除去された原料油を用いてエステル交換反応を行う第3の工程と、を含むバイオディーゼル燃料用組成物の製造方法を提供するものである。  The present invention is a composition for biodiesel fuel capable of removing gums, phospholipids, and free fatty acids to the extent necessary and sufficient for an efficient transesterification reaction to be carried out at a low cost and in a simple process. An object is to provide a method for manufacturing a product. The present invention comprises a first step of adding an organic acid to a stock oil to solidify a gum or phospholipid contained in the stock oil, and a second step of removing the solidified gum or phospholipid from the stock oil. And a third step of performing a transesterification reaction using a feedstock oil from which a solidified substance has been removed, and a method for producing a biodiesel fuel composition.

Description

本発明は、原料油、特に未精製植物油を原料とするバイオディーゼル燃料の製造方法およびバイオディーゼル燃料製造装置に関する。   TECHNICAL FIELD The present invention relates to a method for producing biodiesel fuel and a biodiesel fuel production apparatus using raw oil, particularly unrefined vegetable oil as a raw material.

近年、植物の含有油脂を原料としたディーゼルエンジン用の燃料であるバイオディーゼル燃料が実用化されつつある。バイオディーゼル燃料は、例えば、植物油をメチルエステル化することによって得られ、その化学構造内に酸素を含む含酸素燃料であり、硫黄分をほとんど含まないことから黒煙等の有害排気ガスの排出が少ない。また、植物由来であることから京都議定書に示された規定上、二酸化炭素の排出がゼロカウントとされる。これらのことから、環境負荷の少ない軽油代替燃料として注目されており、欧米では既に規格、法制度も整備され、大豆や菜種油から年間250万トン以上生産され使用されている。日本でも、廃食油から製造されたバイオディーゼル燃料が一部の地方自治体等で使用されており、バイオエタノールやバイオディーゼル燃料の規格化が検討され始めた。   In recent years, biodiesel fuel, which is a fuel for diesel engines, made from plant-containing fats and oils has been put into practical use. Biodiesel fuel is, for example, obtained by methyl esterifying vegetable oil, is an oxygen-containing fuel that contains oxygen in its chemical structure, and emits no harmful exhaust gas such as black smoke because it contains almost no sulfur content. Few. In addition, because it is derived from plants, carbon dioxide emissions are counted as zero according to the regulations set forth in the Kyoto Protocol. For these reasons, it has attracted attention as an alternative fuel for light oil that has a low environmental load. In Europe and the United States, standards and legal systems have already been established, and more than 2.5 million tons of soybeans and rapeseed oil are produced and used annually. Even in Japan, biodiesel fuel produced from waste cooking oil is used in some local governments, etc., and standardization of bioethanol and biodiesel fuel has begun to be considered.

バイオディーゼル燃料の主成分である脂肪酸アルキルエステルは、油脂類の主成分であるモノグリセリド、ジグリセリド、トリグリセリドをアルキルアルコールとエステル交換反応させることによって得られることが知られている。また遊離脂肪酸とアルキルアルコールとのエステル交換反応によって脂肪酸アルキルエステルが得られることも広く知られており(例えば、非特許文献1を参照)、この反応を利用して油脂類からバイオディーゼル燃料油を製造する技術についても検討されている(例えば、特許文献1〜4を参照)。   It is known that the fatty acid alkyl ester, which is the main component of biodiesel fuel, can be obtained by transesterification of monoglyceride, diglyceride, and triglyceride, which are the main components of fats and oils, with alkyl alcohol. It is also widely known that a fatty acid alkyl ester can be obtained by a transesterification reaction between a free fatty acid and an alkyl alcohol (for example, see Non-Patent Document 1), and this reaction is used to convert biodiesel fuel oil from fats and oils. Techniques for manufacturing have also been studied (for example, see Patent Documents 1 to 4).

これらの脂肪酸アルキルのエステル化技術については、エステル化の効率を向上させ、不純物を可能な限り残存させないように、種々の工夫が試みられている。
例えば、エステル交換反応の際、ガム質、リン脂質、遊離脂肪酸が多く含まれると、これらが触媒に作用して反応収率を低下させるだけでなく、精製するときもエマルジョンを形成して扱いにくいので、原料油はエステル交換反応の前に白土処理や減圧水蒸気蒸留工程などによって精製されてから用いられる。
Various attempts have been made to improve the esterification efficiency of these fatty acid alkyls so as to improve the efficiency of esterification and prevent impurities from remaining as much as possible.
For example, when a large amount of gum, phospholipids, and free fatty acids are contained in the transesterification reaction, these not only act on the catalyst to reduce the reaction yield, but also form an emulsion during purification, which is difficult to handle. Therefore, the feedstock oil is used after being purified by a clay treatment or a reduced pressure steam distillation step before the transesterification reaction.

また、特に工業化プロセスでは、エステル交換反応に用いられる触媒について検討が重ねられている。エステル交換反応は、アルカリ性触媒を用いると効率よく進むが、遊離脂肪酸が多く含まれると、これがアルカリ金属と反応して金属石けんを生じるので触媒活性が阻害され、この界面活性剤の影響でメチルエステルと副生成物のグリセリンとの分離が困難となる。また、ガム質も界面活性能を有するため、これが多く含まれるとアルカリ性触媒の活性は阻害される。そのため、遊離脂肪酸やガム質を多く含む未精製油のエステル交換反応には、アルカリ性触媒より活性の低い硫酸やリン酸などの酸性触媒が用いられることが多い。また、固体酸触媒もよく使用され、スルホン酸系イオン交換樹脂や、ヘテロポリ酸をシリカゲルや活性炭に担持した固体酸触媒などが知られる。
特開2002−167356 特開2002−294277 特開2000−44984 特開2000−109883 「有機化学ハンドブック」技報堂出版(1988)、p.1407〜1409
Further, particularly in the industrialization process, studies are being conducted on the catalyst used in the transesterification reaction. The transesterification reaction proceeds efficiently when an alkaline catalyst is used, but when a large amount of free fatty acid is contained, it reacts with an alkali metal to produce metallic soap, which inhibits the catalytic activity. It becomes difficult to separate the by-product from glycerin. In addition, since gums also have surface-active ability, the activity of the alkaline catalyst is hindered if a large amount of gum is contained. Therefore, an acid catalyst such as sulfuric acid or phosphoric acid, which is less active than an alkaline catalyst, is often used in the transesterification reaction of an unrefined oil containing a large amount of free fatty acids and gums. In addition, solid acid catalysts are often used, and sulfonic acid-based ion exchange resins and solid acid catalysts in which heteropolyacid is supported on silica gel or activated carbon are known.
JP-A-2002-167356 JP 2002-294277 A JP 2000-44984 A JP 2000-109883 A "Organic Chemistry Handbook", Gihodo Publishing (1988), p. 1407-1409

しかしながら、原料油を白土処理や減圧水蒸気蒸留工程などによって精製する方法では、かなりのコストと手間が費やされる。これらの工程によれば、遊離脂肪酸量0.01%、水分量0.1%と高純度な精製パーム油が得られるが、バイオディーゼル燃料の原料としては、ここまでの純度は必要なく、むしろより低コストで簡易な工程の精製方法が求められている。   However, the method of refining the raw material oil by the clay treatment or the reduced pressure steam distillation step requires considerable cost and labor. According to these steps, refined palm oil having a free fatty acid content of 0.01% and a water content of 0.1% can be obtained, but as a raw material for biodiesel fuel, the purity up to this point is not necessary, but rather. There is a demand for a more cost-effective and simple process purification method.

また、酸性触媒を用いる方法は、反応溶液中に触媒が溶解した状態で存在する均一反応系であることから、反応後、生成した溶液から触媒を分離、回収するのが困難であるという問題がある。一方、固体酸触媒は活性が不十分である。固体酸触媒によってエステル化し、その後アルカリ触媒によってエステル交換反応を行う方法もあるが、全く性質の異なる2触媒系のため複雑となり、脂肪酸量によって固体酸触媒反応を常時コントロールする必要があるなど、操作性にも欠ける。さらに、この方法による場合、遊離脂肪酸量が30%以上であれば複雑なプロセスプラントへの投資と採算性がはかれるが、例えば10%〜30%以下である場合には、かえって過剰投資となってしまう。   Further, since the method using an acidic catalyst is a homogeneous reaction system in which the catalyst is present in a state of being dissolved in the reaction solution, it is difficult to separate and recover the catalyst from the produced solution after the reaction. is there. On the other hand, the solid acid catalyst has insufficient activity. There is also a method of esterifying with a solid acid catalyst and then performing an ester exchange reaction with an alkali catalyst, but it becomes complicated due to two catalyst systems with completely different properties, and it is necessary to constantly control the solid acid catalyst reaction by the amount of fatty acid. It lacks sex. Further, according to this method, if the amount of free fatty acid is 30% or more, investment in a complicated process plant and profitability can be achieved, but if it is 10% to 30% or less, it is rather excessive investment. I will end up.

そこで、本発明は、効率よくエステル交換反応が行われるために必要かつ十分な程度に、ガム質やリン脂質、遊離脂肪酸を除去することが可能な、低コストかつ簡易な工程からなるバイオディーゼル燃料用組成物の製造方法を提供することを目的とする。かかる方法によれば、エステル交換反応に活性の十分なアルカリ性触媒を用いることも可能となる。   Therefore, the present invention is a biodiesel fuel comprising a low cost and simple process capable of removing gums, phospholipids and free fatty acids to the extent necessary and sufficient for efficient transesterification. An object of the present invention is to provide a method for producing a composition for use. According to such a method, it is possible to use an alkaline catalyst having sufficient activity for the transesterification reaction.

本発明者らは、上記課題に鑑みて鋭意研究を重ねた結果、未精製油にシュウ酸やクエン酸等の有機酸を添加し、ガム質やリン脂質等を固形化して分離除去することにより、バイオディーゼル燃料製造のために十分な程度に、これらの不純物を除くことができ、効率よくエステル交換反応を行うことができることを見出した。   The present inventors have conducted extensive studies in view of the above problems, by adding organic acids such as oxalic acid and citric acid to unrefined oil, by solidifying and removing gums and phospholipids It has been found that these impurities can be removed to a sufficient extent for biodiesel fuel production, and the transesterification reaction can be efficiently performed.

そこで、本発明に係るバイオディーゼル燃料用組成物の製造方法は、原料油に有機酸を加え、該原料油に含まれるガム質またはリン脂質を固体化する第1の工程と、固体化されたガム質またはリン脂質を原料油から除去する第2の工程と、固体化された物質が除去された原料油を用いてエステル交換反応を行う第3の工程と、を含む。   Therefore, the method for producing a composition for biodiesel fuel according to the present invention includes a first step of adding an organic acid to a raw material oil to solidify gum or phospholipid contained in the raw material oil, and solidifying It includes a second step of removing gum or phospholipid from the feedstock oil, and a third step of performing a transesterification reaction using the feedstock oil from which the solidified substance has been removed.

本発明において「ガム質」とは、リン脂質およびタンパク質等を含む未精製油の成分をいう。ガム質またはリン脂質を固体化することによって、これらを溶液相から、容易かつ低コストに分離除去することができるようになる。白土処理および減圧水蒸気蒸留処理などに比較すると、除去できる割合は低いが、バイオディーゼル燃料の原料としては十分な純度が得られ、効率よくエステル交換反応を行うことができる。   In the present invention, the “gumminess” refers to the components of unrefined oil containing phospholipids, proteins and the like. By solidifying gums or phospholipids, they can be separated and removed from the solution phase easily and at low cost. Compared with the clay treatment and the reduced pressure steam distillation treatment, the removal rate is low, but sufficient purity can be obtained as a raw material of biodiesel fuel, and the transesterification reaction can be efficiently performed.

有機酸によって固体化されたガム質やリン脂質は、遠心分離操作により除去することが好ましい。遠心分離操作によれば、比重差を利用して、効率よく固体物を液相から分離除去することができると共に、原料油から過剰な水分も除去される。第2の工程の後に行うエステル交換反応は平衡反応であることから、副反応物として生成する水を除去しておくことによって、平衡を生成系に移動させて収率を上げることができる。なお、水分を除くことによって、そこに含まれる塩類も同時に除くことができる。   Gum and phospholipids solidified with an organic acid are preferably removed by centrifugation. According to the centrifugal separation operation, the solid matter can be efficiently separated and removed from the liquid phase by utilizing the difference in specific gravities, and the excess water is also removed from the feed oil. Since the transesterification reaction performed after the second step is an equilibrium reaction, it is possible to move the equilibrium to the production system and increase the yield by removing water produced as a by-product. By removing water, salts contained therein can also be removed at the same time.

本発明に係る製造方法では、第2の工程の後、第3の工程に先立って、原料油を減圧下で加熱する工程をさらに含むことも好ましい。例えば、圧力を10mmHg未満、好ましくは5mmHg未満、さらに好ましくは1mmHg未満とし、温度を80℃以上170℃以下、好ましくは120℃以上160℃以下、さらに好ましくは140℃以上150℃以下とする。減圧下で加熱することにより、原料油中から、有機脂肪酸類、水分、臭気物質等を留去することができる。   The production method according to the present invention preferably further includes a step of heating the feedstock oil under reduced pressure after the second step and prior to the third step. For example, the pressure is less than 10 mmHg, preferably less than 5 mmHg, more preferably less than 1 mmHg, and the temperature is 80° C. or higher and 170° C. or lower, preferably 120° C. or higher and 160° C. or lower, and more preferably 140° C. or higher and 150° C. or lower. By heating under reduced pressure, organic fatty acids, water, odorous substances, etc. can be distilled off from the raw material oil.

本発明に係る製造方法では、上述のように遊離脂肪酸類、ガム質、リン脂質を必要十分に除去できるので、エステル交換工程には触媒能の高いアルカリ性触媒を用いることが好ましい。アルカリ性触媒としては、例えば水酸化ナトリウム、水酸化カリウム、ナトリウムメチラート、カリウムメチラート、水酸化カルシウムなどを用いることができるが、これらに限定されない。   In the production method according to the present invention, free fatty acids, gums, and phospholipids can be removed sufficiently as described above, so it is preferable to use an alkaline catalyst having a high catalytic ability in the transesterification step. As the alkaline catalyst, for example, sodium hydroxide, potassium hydroxide, sodium methylate, potassium methylate, calcium hydroxide and the like can be used, but the alkaline catalyst is not limited thereto.

また、本発明に係る製造方法は、第3の工程の後、重液を分離除去する工程をさらに含むことが好ましい。重液は主にグリセリンを含む、エステル交換工程の副生成物である。重液は静置分離によっても分離できるが、遠心分離によれば、より効率よく分離させることができる。   Further, the production method according to the present invention preferably further includes a step of separating and removing the heavy liquid after the third step. Heavy liquid is a by-product of the transesterification process, which contains mainly glycerin. The heavy liquid can be separated by stationary separation, but can be separated more efficiently by centrifugation.

重液を除去された原料油、即ち軽液は、その後種々の方法により精製されることが好ましい。かかる精製方法としては、例えば、白土処理(脱ケン化物)、遠心分離(脱グリセリン・脱固形物)、減圧下の加熱処理(脱水、脱メタノール)などの方法が挙げられる。これらの工程によって、軽液をより純度の高い脂肪酸アルキルエステルとし、品質の良いバイオディーゼル燃料用組成物を得ることができる。   The stock oil from which the heavy liquid has been removed, that is, the light liquid, is preferably refined by various methods thereafter. Examples of such a purification method include a method of treating with clay (desaponification product), centrifugation (deglycerin/desolidified product), heat treatment under reduced pressure (dehydration, demethanol), and the like. By these steps, the light liquid can be made into a fatty acid alkyl ester having a higher purity and a high-quality biodiesel fuel composition can be obtained.

上述の製造方法の出発物質としては、例えば、菜種油、大豆油、ひまわり油、パーム油等の未精製植物油を用いることが好ましく、中でも、最も生産コストが安価である粗パーム油(未精製パーム油)が好ましい。粗パーム油とは、ガム質、リン脂質および遊離脂肪酸類が除去されていないパーム油をいう。   As the starting material of the above-mentioned production method, for example, it is preferable to use unrefined vegetable oils such as rapeseed oil, soybean oil, sunflower oil, and palm oil, and among them, crude palm oil (unrefined palm oil) that has the lowest production cost. ) Is preferred. Crude palm oil refers to palm oil from which gums, phospholipids and free fatty acids have not been removed.

本発明は、さらに、酸処理部と、遠心分離部と、エステル交換反応部とを備え、酸処理部と遠心分離部とが連続して接続されているバイオディーゼル製造装置をも提供する。酸処理部は、原料に有機酸を加える手段、および撹拌手段が備えられ、さらに加熱手段を備えることが好ましい。酸処理部と遠心分離部とが連続して接続されていることにより、酸処理により生成された固形分を遠心分離部で分離することができる。遠心分離部は、分離後に固形分、塩類等を含む水分を除去する手段を備えることが好ましく、従来バイオディーゼル製造装置として用いられているものを使用してもよい。エステル交換反応部は、エステル交換反応が行われる限り特に限定されず、従来のバイオディーゼル燃料の製造に、エステル交換反応装置として用いられているものを使用してもよい。   The present invention further provides a biodiesel production apparatus that includes an acid treatment unit, a centrifugal separation unit, and a transesterification reaction unit, and the acid treatment unit and the centrifugal separation unit are continuously connected. The acid treatment section is provided with a means for adding an organic acid to the raw material, a stirring means, and preferably a heating means. Since the acid treatment section and the centrifugal separation section are continuously connected, the solid content generated by the acid treatment can be separated by the centrifugal separation section. The centrifuge unit preferably comprises means for removing water containing solids, salts and the like after separation, and a unit conventionally used as a biodiesel production apparatus may be used. The transesterification reaction part is not particularly limited as long as the transesterification reaction is carried out, and a transesterification reaction device which has been used as a transesterification reaction device in conventional biodiesel fuel production may be used.

上記バイオディーゼル燃料製造装置には、さらに減圧加熱部が備えられ、酸処理部、遠心分離部、減圧加熱部およびエステル交換部が順に連続して接続されていることも好ましい。このような構成により、酸処理および遠心分離によってガム質およびリン脂質が除去された原料油から、減圧加熱処理によって、遊離脂肪酸、水分、臭気物質をさらに除去することができるので、続くエステル交換反応に、より不純物の少ない原料油を用いることができる。   It is also preferable that the biodiesel fuel production apparatus is further provided with a reduced pressure heating unit, and the acid treatment unit, the centrifugal separation unit, the reduced pressure heating unit, and the transesterification unit are successively connected in this order. With such a configuration, it is possible to further remove free fatty acids, water, and odorous substances from the raw oil from which the gum substance and phospholipid have been removed by acid treatment and centrifugation by reduced pressure heat treatment, so that the subsequent transesterification reaction In addition, it is possible to use a feedstock oil having less impurities.

本発明に係るバイオディーゼル燃料の製造装置は、これらのほかに、静置分離部、白土処理部、減圧加熱処理部を備えていてもよい。   In addition to these, the biodiesel fuel production apparatus according to the present invention may include a stationary separation unit, a clay treatment unit, and a reduced pressure heat treatment unit.

本発明に係るバイオディーゼル燃料用組成物の製造方法によれば、エステル交換反応に先立って、有機酸を加えることでガム質やリン脂質を固体化して分離・除去することにより、効率よくエステル交換反応が行われるのに必要かつ十分な程度に原料油を精製することができる。本方法によれば、必要以上に純度を向上させて過剰投資となることなく、低コストかつ簡易な工程で十分に高品質なバイオディーゼル燃料用組成物を製造することが可能となる。   According to the method for producing a biodiesel fuel composition according to the present invention, prior to the transesterification reaction, the organic substance is added to solidify and separate the gum and phospholipid to separate and remove them, thereby efficiently transesterifying. The feedstock can be refined to the extent necessary and sufficient for the reaction to occur. According to this method, it is possible to produce a sufficiently high-quality composition for biodiesel fuel with a low cost and a simple process without increasing the purity more than necessary and without excessive investment.

また、本発明に係るバイオディーゼル燃料の製造装置によれば、本発明に係る製造方法の実施に必要な工程を連続して行うことができ、生産性を向上させることが可能である。   Further, according to the biodiesel fuel production apparatus of the present invention, the steps required for carrying out the production method of the present invention can be continuously performed, and the productivity can be improved.

なお、本発明に係るバイオディーゼル燃料の製造装置には、エステル交換反応後、軽液から分離除去された重液を精製する、粗グリセリン精製部を備えることもでき、これによって、副生成物としてのグリセリンも高純度に得ることが可能となる。   Incidentally, the biodiesel fuel production apparatus according to the present invention can also be provided with a crude glycerin refining unit for purifying the heavy liquid separated and removed from the light liquid after the transesterification reaction, whereby as a by-product. It is also possible to obtain glycerin of high purity.

以下に、本発明の実施の形態について図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1に、本発明に係るバイオディーゼル燃料製造装置を用いた、本発明に係るバイオディーゼル燃料用組成物の製造工程の概略図を示す。本実施形態では、原料油として、粗パーム油を用いるものとする。粗パーム油には、ガム質およびリン脂質などの不純物が約0.2%含まれ、遊離脂肪酸が約5%含まれている。   FIG. 1 shows a schematic diagram of a process for producing a composition for biodiesel fuel according to the present invention, which uses the biodiesel fuel production apparatus according to the present invention. In this embodiment, crude palm oil is used as the raw material oil. Crude palm oil contains about 0.2% impurities such as gums and phospholipids and about 5% free fatty acids.

まず、酸処理部において、酸処理工程10を行う。酸処理工程10は、原料油に有機酸を添加し、ガム質およびリン脂質を凝縮し固形化する。有機酸は、ガム質やリン脂質を固体化する限り、特に限定されず、例えば、ギ酸、酢酸、プロピオン酸、リン酸、酪酸、乳酸、リンゴ酸、酒石酸、クエン酸、ソルビン酸、フマル酸、安息香酸、オキサロ酢酸、ギ酸、吉草酸、グルタミン酸、サリチル酸、シュウ酸、ステアリン酸、トリフルオロ酢酸、ピクリン酸、パントテン酸、アクリル酸などを用いることができるが、コストや扱いやすさの点から、リン酸、シュウ酸またはクエン酸が特に好ましい。シュウ酸を用いる場合、例えば、室温で約0.5重量%となるように添加し、1時間ほど撹拌することにより、褐色の固形物が析出して浮遊または沈殿する。固形物が析出した後、続く遠心分離処理のために、例えば90〜100℃に加熱することが好ましい。   First, an acid treatment step 10 is performed in the acid treatment section. In the acid treatment step 10, an organic acid is added to the raw material oil to condense gum and phospholipid to solidify. The organic acid is not particularly limited as long as it solidifies gum and phospholipids, for example, formic acid, acetic acid, propionic acid, phosphoric acid, butyric acid, lactic acid, malic acid, tartaric acid, citric acid, sorbic acid, fumaric acid, Benzoic acid, oxaloacetic acid, formic acid, valeric acid, glutamic acid, salicylic acid, oxalic acid, stearic acid, trifluoroacetic acid, picric acid, pantothenic acid, acrylic acid, etc. can be used, but in terms of cost and ease of handling, Phosphoric acid, oxalic acid or citric acid are particularly preferred. When oxalic acid is used, for example, it is added so as to be about 0.5% by weight at room temperature and stirred for about 1 hour, whereby a brown solid substance precipitates and floats or precipitates. After depositing the solid matter, it is preferable to heat to, for example, 90 to 100° C. for the subsequent centrifugal separation treatment.

次に、遠心分離部において遠心分離工程12を行う。遠心分離工程12では、有機酸を添加されたパーム油の固形物を遠心分離により除去する。遠心分離の条件は当業者が容易に選択して決定することができ、この工程により、飽和水分以上の水分を除去することが可能である。ここで水分を除去することにより、副反応物として水が生成されるエステル交換反応の平衡を生成系に移動させやすくなる。本工程では、水分と同時に、水分に溶解している塩類も除去することができる。   Next, the centrifugation step 12 is performed in the centrifugation section. In the centrifugation step 12, the solid substance of palm oil added with the organic acid is removed by centrifugation. The conditions for centrifugation can be easily selected and determined by those skilled in the art, and by this step, it is possible to remove water above the saturated water content. By removing the water here, the equilibrium of the transesterification reaction in which water is produced as a side reaction product is easily transferred to the production system. In this step, salts dissolved in the water can be removed together with the water.

続いて、減圧加熱工程14を行う。減圧加熱処理は、減圧加熱部で行われる。減圧加熱部では、原料油は、多管式熱交換器を通過させられ、減圧処理で要求される温度まで加熱され、真空脱酸塔へ導入される。導入の際、原料油は、霧状に分散導入されるか、スパイラル状に導入されるなど、気液界面が大きくなる方法をとることが好ましい。減圧加熱部は、圧力を10mmHg未満、好ましくは5mmHg未満、さらに好ましくは1mmHg未満、温度を80℃以上170℃以下、好ましくは120℃以上160℃以下、さらに好ましくは140℃以上150℃以下と設定することができることが好ましい。原料油が真空脱酸塔を通過する間に、さらなる脱水、脱臭、および脱酸が行われる。   Then, the reduced pressure heating process 14 is performed. The reduced pressure heat treatment is performed in the reduced pressure heating unit. In the depressurization heating section, the feedstock oil is passed through a shell-and-tube heat exchanger, heated to the temperature required for depressurization treatment, and introduced into a vacuum deoxidizer. At the time of introduction, it is preferable to employ a method in which the feedstock oil is dispersed and introduced in a mist state, or is introduced in a spiral state so that the gas-liquid interface becomes large. The reduced pressure heating unit sets the pressure to less than 10 mmHg, preferably less than 5 mmHg, more preferably less than 1 mmHg, and the temperature to 80°C or higher and 170°C or lower, preferably 120°C or higher and 160°C or lower, and more preferably 140°C or higher and 150°C or lower. Is preferably possible. Further dehydration, deodorization, and deoxidation occur while the feedstock passes through the vacuum deoxidation tower.

また、パーム油は、その房内に持つリパーゼ酵素の影響で加水分解劣化が起こる。植物油脂類が加水分解されて生じる遊離脂肪酸類は、ほとんどが炭素数6〜22であり、1mmHg未満の減圧下では、150℃以下で完全に気化するか、適度な蒸気圧を有しているので、本工程により好適に除去することができる。   In addition, palm oil undergoes hydrolytic degradation under the influence of the lipase enzyme contained in the tuft. Free fatty acids produced by hydrolysis of vegetable oils and fats have mostly 6 to 22 carbon atoms, and under reduced pressure of less than 1 mmHg, they are completely vaporized at 150°C or lower, or have an appropriate vapor pressure. Therefore, it can be suitably removed by this step.

ここまでの工程で、通常、パーム油には、遊離脂肪酸が約0.5%、水分が約0.3%、臭気物質含有量が0.01%以下程度までに精製される。白土処理、減圧水蒸気蒸留などの処理を用いていた従来法では、遊離脂肪酸約0.01%、水分約0.1%と高純度にすることができるが、エステル交換反応を効率よく行う目的ではここまでの純度は必要とされず、本発明に係る方法で得られる程度で十分である。   In the steps so far, palm oil is usually refined to a free fatty acid content of about 0.5%, a water content of about 0.3%, and an odor substance content of about 0.01% or less. Conventional methods that used treatments such as clay treatment and vacuum steam distillation can achieve high purity with free fatty acids of about 0.01% and water of about 0.1%, but for the purpose of efficient transesterification reaction. The purity up to this point is not required, and the degree obtained by the method according to the present invention is sufficient.

続いて、精製されたパーム油を用いて、エステル交換反応部でエステル交換反応工程16を行う。本発明に係る製造方法によれば、減圧加熱部において遊離脂肪酸が適切値まで除去されているので、アルカリ性触媒の活性を阻害されることなく、好適に反応を行うことができる。具体的には、予めアルカリ性触媒とエステル交換反応に用いられるアルコールとを混合しておき、これとパーム油とを混合する。アルカリ触媒による反応は、例えば特開平10−245586に開示された方法、またはそれに準ずる方法により行うことができる。反応終了後の反応液は、静置・遠心分離部に送られる。   Subsequently, the transesterification reaction step 16 is performed in the transesterification reaction section using the purified palm oil. According to the production method of the present invention, since the free fatty acid is removed to an appropriate value in the reduced pressure heating section, the reaction can be suitably performed without inhibiting the activity of the alkaline catalyst. Specifically, the alkaline catalyst and the alcohol used for the transesterification reaction are mixed in advance, and this is mixed with palm oil. The reaction with an alkali catalyst can be carried out, for example, by the method disclosed in JP-A-10-245586 or a method analogous thereto. The reaction liquid after completion of the reaction is sent to a stationary/centrifugal separation unit.

静置・遠心分離部で行われる静置・遠心分離工程18は、エステル交換反応によって生じた脂肪酸メチルエステルを主として含む軽液と、グリセリンを主として含む重液に分離される。静置のみによって分離してもよく、遠心分離を用いて分離してもよい。   The stationary/centrifugal separation step 18 performed in the stationary/centrifugal separation section is separated into a light liquid mainly containing fatty acid methyl ester produced by the transesterification reaction and a heavy liquid mainly containing glycerin. It may be separated only by standing, or may be separated by using centrifugation.

次に、白土処理工程20として、軽液を吸着剤の充填されたカラムを通過させ、石けん物質などのアルカリ性不純物等を除去する。充填剤としては、一般に油脂類の処理に良く用いられる活性白土が好適である。白土処理工程20は本発明に係るバイオディーゼル燃料製造装置の白土処理部で行われる。   Next, in the clay treatment step 20, the light liquid is passed through a column filled with an adsorbent to remove alkaline impurities such as soap substances. As the filler, activated clay which is generally used for treating fats and oils is suitable. The clay treatment step 20 is performed in the clay treatment section of the biodiesel fuel production apparatus according to the present invention.

続く遠心分離工程22では、充填剤の微粉末を除去するために遠心分離機処理を行う。この際微量に残存するグリセリンも除去することができる。遠心分離工程22は、遠心分離部で行われる。   In the subsequent centrifuge step 22, a centrifuge treatment is performed to remove the fine powder of the filler. At this time, a small amount of glycerin remaining can be removed. The centrifugation step 22 is performed in the centrifugation section.

減圧加熱部で行われる減圧加熱処理工程24において、最終的な精製として水分やメタノール等の低沸点物質を除去してパームバイオディーゼル油を得る。   In the reduced pressure heat treatment step 24 performed in the reduced pressure heating section, low boiling point substances such as water and methanol are removed as final purification to obtain palm biodiesel oil.

なお、静置・遠心分離工程18で得られたグリセリンを主成分とする重液は、中和処理工程32の後、蒸留工程34を行って、純度99%以上のグリセリンを得ることができる。   The heavy liquid containing glycerin as a main component obtained in the stationary/centrifuging step 18 can be subjected to a neutralization treatment step 32 and a distillation step 34 to obtain glycerin having a purity of 99% or more.

以上説明したように、本発明に係るバイオディーゼル燃料製造装置は、各工程を連続して行うために好適であり、高い生産性を得ることが可能である。   As described above, the biodiesel fuel production apparatus according to the present invention is suitable for continuously performing each process, and high productivity can be obtained.

本発明に係る製造方法に従って、原料油に表1に示す性状の粗パーム油を用いて、バイオディーゼル燃料を製造した。   According to the production method of the present invention, a crude diesel oil having the properties shown in Table 1 was used as a raw material oil to produce a biodiesel fuel.

Figure 2006016492
まず、この原料油に、酸処理として、シュウ酸(0.5重量%)を室温で加え、1時間攪拌したところ褐色の固形物が現れた。
Figure 2006016492
First, oxalic acid (0.5% by weight) was added to this raw material oil as an acid treatment at room temperature and stirred for 1 hour, whereupon a brown solid substance appeared.

続いて遠心分離処理として、熱交換器によって原料油を95℃まで加熱し、これを遠心分離器(遠心力1000G:流量15リットル毎分)にかけて、固形物を除去した。   Subsequently, as a centrifugal separation treatment, the raw material oil was heated to 95° C. by a heat exchanger, and this was applied to a centrifugal separator (centrifugal force 1000 G: flow rate 15 liters per minute) to remove solids.

固形物除去後の原料油を、多管式熱交換器を通過させ145℃まで加熱し、続いて原料油を真空脱酸塔に投入した。真空塔の絶対圧力は0.8mmHg、滞留時間は15分であった。この原料油を熱交換器によって65℃にまで冷却し、エステル交換反応に用いた。   The raw material oil after solid matter removal was passed through a multi-tube heat exchanger to be heated to 145° C., and then the raw material oil was put into a vacuum deoxidizing tower. The absolute pressure of the vacuum tower was 0.8 mmHg, and the residence time was 15 minutes. This raw material oil was cooled to 65° C. by a heat exchanger and used in a transesterification reaction.

触媒として水酸化カリウムを用い、前もって水酸化カリウムをメチルアルコール(純度99.5%)100重量部に対し11重量部の割合で溶解させた後に、得られた溶液を原料油と混合し、15分間反応させた。   Using potassium hydroxide as a catalyst, potassium hydroxide was previously dissolved at a ratio of 11 parts by weight to 100 parts by weight of methyl alcohol (purity: 99.5%), and the obtained solution was mixed with a feed oil. Let react for minutes.

反応後得られた生成物を遠心分離器(遠心力1000G:流量15リットル毎分)に通し脂肪酸メチルエステル層(軽液)とグリセリン層(重液)とに分離した。   The product obtained after the reaction was passed through a centrifugal separator (centrifugal force 1000 G: flow rate 15 liters per minute) to separate into a fatty acid methyl ester layer (light liquid) and a glycerin layer (heavy liquid).

脂肪酸メチルエステル層を、活性白土(脂肪酸メチルエステル100重量部に対し1重量部の割合)を充填したカラムに、15リットル/分の流速で通過させた。通過後の脂肪酸メチルエステル層を再び遠心分離器(遠心力1000G:15リットル/分)にかけ固形物分離を行った。これを65〜75℃に加熱し、絶対圧力100mmHg、滞留時間20分間として減圧加熱処理を行った。得られた物質をサンプリングし性状分析を行った。   The fatty acid methyl ester layer was passed through a column packed with activated clay (1 part by weight to 100 parts by weight of fatty acid methyl ester) at a flow rate of 15 liters/minute. The fatty acid methyl ester layer after passing was again subjected to a centrifuge (centrifugal force 1000 G: 15 liter/min) to separate solids. This was heated to 65 to 75° C. and subjected to reduced pressure heat treatment with an absolute pressure of 100 mmHg and a residence time of 20 minutes. The obtained substance was sampled and the property was analyzed.

脂肪酸メチルエステルの性状分析は、ガスクロマトグラフによる成分分析の他はJIS規格に定められた方法または通常の方法によって行った。表1中転化率は、原料油中の脂肪酸グリセリドに対する脂肪酸メチルエステルの収量を示しており実際には、
(転化率)=(脂肪酸メチルエステル量)/(反応に使用した原料油量)
で定義される。また臭気物質濃度はガスクロマトグラフにおいてアルコール以外の脂肪酸メチルエステル類保持時間未満のピーク面積から求めた。
The property analysis of the fatty acid methyl ester was carried out by a method defined in JIS standard or a usual method other than the component analysis by gas chromatography. The conversion rate in Table 1 shows the yield of fatty acid methyl ester with respect to the fatty acid glyceride in the feed oil, and in fact,
(Conversion rate)=(amount of fatty acid methyl ester)/(amount of raw material oil used in the reaction)
Is defined by The odorous substance concentration was determined from the peak area below the retention time of fatty acid methyl esters other than alcohol in a gas chromatograph.

比較例Comparative example

上記した実施例1と同様の製造装置を使用し製造した。ただしシュウ酸を添加する処理を行わなかった。性状分析結果を表2に示す。   It was manufactured using the same manufacturing apparatus as in Example 1 described above. However, the treatment of adding oxalic acid was not performed. The results of property analysis are shown in Table 2.

Figure 2006016492
Figure 2006016492

本発明に係るバイオディーゼル燃料用組成物の製造工程の概略を示す説明図である。It is explanatory drawing which shows the outline of the manufacturing process of the composition for biodiesel fuels which concerns on this invention.

Claims (10)

原料油に有機酸を加え、該原料油に含まれるガム質またはリン脂質を固体化する第1の工程と、
前記固体化されたガム質またはリン脂質を前記原料油から除去する第2の工程と、
前記固体化された物質が除去された原料油を用いてエステル交換反応を行う第3の工程と、を含むバイオディーゼル燃料用組成物の製造方法。
A first step of adding an organic acid to a raw material oil to solidify a gum or phospholipid contained in the raw material oil;
A second step of removing the solidified gum or phospholipid from the feedstock;
A third step of performing a transesterification reaction using the feedstock oil from which the solidified substance has been removed, the method for producing a biodiesel fuel composition.
前記有機酸が、リン酸、シュウ酸およびクエン酸からなる群から選択される、請求項1に記載の製造方法。   The method according to claim 1, wherein the organic acid is selected from the group consisting of phosphoric acid, oxalic acid and citric acid. 前記第2の工程において、固体化されたガム質またはリン脂質を遠心分離操作により除去する、請求項1または2に記載の製造方法。   The production method according to claim 1 or 2, wherein in the second step, the solidified gum or phospholipid is removed by centrifugation. 前記第2の工程の後、第3の工程の前に、原料油を減圧下で加熱する工程をさらに含む、請求項1から3のいずれか1項に記載の製造方法。   The manufacturing method according to claim 1, further comprising a step of heating the feedstock oil under reduced pressure after the second step and before the third step. 前記第3の工程が、アルカリ性触媒の存在下で行われる、請求項1から4のいずれか1項に記載の製造方法。   The manufacturing method according to any one of claims 1 to 4, wherein the third step is performed in the presence of an alkaline catalyst. 前記第3の工程の後、重液を除去する工程をさらに含む請求項1から5のいずれか1項に記載の製造方法。   The manufacturing method according to any one of claims 1 to 5, further comprising a step of removing heavy liquid after the third step. 前記重液を除去する工程の後、白土処理工程、遠心分離処理工程、および減圧下で加熱する工程の少なくとも一つをさらに含む、請求項6に記載の製造方法。   The manufacturing method according to claim 6, further comprising at least one of a clay treatment step, a centrifugation treatment step, and a heating step under reduced pressure after the step of removing the heavy liquid. 前記原料油が粗パーム油である、請求項1から7のいずれか1項に記載の製造方法。   The manufacturing method according to claim 1, wherein the raw material oil is crude palm oil. 少なくとも、酸処理部と、遠心分離部と、エステル交換部とを備え、酸処理部と遠心分離部とが連続して接続されているバイオディーゼル燃料製造装置。   A biodiesel fuel production apparatus comprising at least an acid treatment unit, a centrifugal separation unit, and a transesterification unit, wherein the acid treatment unit and the centrifugal separation unit are continuously connected. 前記遠心分離部とエステル交換部との間に減圧加熱部が備えられ、酸処理部、遠心分離部、減圧加熱部およびエステル交換部が順に連続して接続されている、請求項9に記載のバイオディーゼル燃料製造装置。   The reduced pressure heating unit is provided between the centrifugal separation unit and the transesterification unit, and the acid treatment unit, the centrifugal separation unit, the reduced pressure heating unit, and the transesterification unit are sequentially and continuously connected to each other. Biodiesel fuel production equipment.
JP2006531452A 2004-08-10 2005-08-01 Method for producing composition for biodiesel fuel and apparatus for producing biodiesel fuel Pending JPWO2006016492A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004233285 2004-08-10
JP2004233285 2004-08-10
PCT/JP2005/014015 WO2006016492A1 (en) 2004-08-10 2005-08-01 Process for production of biodiesel fuel compositions and equipment therefor

Publications (1)

Publication Number Publication Date
JPWO2006016492A1 true JPWO2006016492A1 (en) 2008-07-31

Family

ID=35839265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006531452A Pending JPWO2006016492A1 (en) 2004-08-10 2005-08-01 Method for producing composition for biodiesel fuel and apparatus for producing biodiesel fuel

Country Status (2)

Country Link
JP (1) JPWO2006016492A1 (en)
WO (1) WO2006016492A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2646348A1 (en) * 2006-02-28 2007-09-07 Grace Gmbh & Co. Kg Physical refining process using adsorbent particles for the production of biodiesel fuel
JP5072444B2 (en) * 2007-06-11 2012-11-14 Jx日鉱日石エネルギー株式会社 Method for producing light oil composition
CN102203229A (en) * 2008-06-02 2011-09-28 尤德斯·德克雷西 A method of producing fatty acids for biofuel, biodiesel, and other valuable chemicals
JP5387154B2 (en) * 2009-06-12 2014-01-15 株式会社Ihi Glycerin reforming apparatus and reforming method
WO2011019465A2 (en) * 2009-08-13 2011-02-17 Catalytic Distillation Technologies Integrated biodiesel production process
CN102586005B (en) * 2012-02-21 2014-06-25 大连理工大学 Method for preparing biodiesel by extraction-ester exchange-separation coupling technique

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3941876B2 (en) * 2003-08-29 2007-07-04 株式会社日本触媒 Process for producing fatty acid alkyl ester and / or glycerin

Also Published As

Publication number Publication date
WO2006016492A1 (en) 2006-02-16

Similar Documents

Publication Publication Date Title
JP4990455B2 (en) Single-phase process to produce fatty acid methyl esters from mixtures of triglycerides and fatty acids
EP1889899B1 (en) Production of biodiesel and glycerin from high free fatty acid feedstocks
EP1894913A1 (en) Production of esters of fatty acids and lower alcohols
EP2215195B1 (en) An improved process for the preparation of biodiesel from vegetable oils containing high ffa
JP2008231345A (en) Method for producing biodiesel fuel
JP2011527319A (en) Extraction method of squalene, sterol and vitamin E contained in physically refined condensate and / or deodorized distillate of vegetable oil
JP2005350632A (en) Method for producing biodiesel fuel
JP2009502812A (en) Process for producing carboxylic acid alkyl ester
JP2007176973A (en) Method for producing fatty acid lower alkyl ester for gas oil substitute fuel
WO2006081644A2 (en) Catalytic process for the esterification of fatty acids
US20120245371A1 (en) Process for the purification of crude alkaline glycerol
JPWO2006016492A1 (en) Method for producing composition for biodiesel fuel and apparatus for producing biodiesel fuel
KR20150011306A (en) Method for preparing fatty acid alkyl ester using fat
JP4078383B1 (en) Method for producing biodiesel fuel
EP1892232A1 (en) Production of esters of fatty acids and lower alcohols
JP5181106B2 (en) Methanol extraction type biodiesel fuel high-speed production method using liquefied dimethyl ether
JP2007145759A (en) Method for producing alkyl ester of fatty acid
JP4530992B2 (en) Method for producing fatty acid ester composition
JP3934630B2 (en) Process for producing biodiesel fuel from acidic oils and fats
JP2005350630A (en) Technique for producing low-exhaust type biodiesel fuel
Banga et al. Optimization of parameters for purification of jatropha curcas based biodiesel using organic adsorbents
JP2009161776A (en) Method for producing biodiesel fuel and device for producing the same
JP2009120847A (en) Process for producing biodiesel fuel
JP5066325B2 (en) Method for producing fatty acid alkyl ester
JP3842273B2 (en) Process for producing fatty acid alkyl ester composition