JP2010013511A - Biodiesel fuel and method for producing the same - Google Patents

Biodiesel fuel and method for producing the same Download PDF

Info

Publication number
JP2010013511A
JP2010013511A JP2008172854A JP2008172854A JP2010013511A JP 2010013511 A JP2010013511 A JP 2010013511A JP 2008172854 A JP2008172854 A JP 2008172854A JP 2008172854 A JP2008172854 A JP 2008172854A JP 2010013511 A JP2010013511 A JP 2010013511A
Authority
JP
Japan
Prior art keywords
biodiesel fuel
methyl ester
fatty acid
bunkanka
esterification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008172854A
Other languages
Japanese (ja)
Inventor
Shinichiro Konishi
信一郎 小西
Yasushi Miyata
康史 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ESUPEKKU KK
Original Assignee
ESUPEKKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ESUPEKKU KK filed Critical ESUPEKKU KK
Priority to JP2008172854A priority Critical patent/JP2010013511A/en
Publication of JP2010013511A publication Critical patent/JP2010013511A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Abstract

<P>PROBLEM TO BE SOLVED: To provide a biodiesel fuel which neither uses vegetable oils conventionally distributed as food materials or industrial materials such as cereal grains such as corn, palm oil, and coconut oil, nor disturbs the distribution order of plant resources; and to provide a method for producing the same. <P>SOLUTION: The biodiesel fuel contains a methyl ester of fatty acids derived from Xanthoceras sorbifolia Bunge. The method for producing the biodiesel fuel includes a sampling step of sampling vegetable oils from the seed of Xanthoceras sorbifolia Bunge, an esterification step of carrying out transesterification by adding methanol to the vegetable oils in the presence of an acid or basic catalyst, and a dividing step of dividing a methyl ester of fatty acids from the reaction liquid of the esterification step. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、バイオディーゼル燃料及びその製造方法に関する。より詳細には、トウモロコシなどの穀類や、パーム油、ココナッツ油などの従来から食用原料や工業原料として流通している植物油を用いることなく、植物資源の流通秩序を乱すことのないバイオディーゼル燃料及びその製造方法に関する。   The present invention relates to a biodiesel fuel and a method for producing the same. More specifically, biodiesel fuel that does not disturb the distribution order of plant resources without using cereals such as corn, vegetable oils that have been distributed as edible raw materials and industrial raw materials such as palm oil and coconut oil, and It relates to the manufacturing method.

近年、大気中の温室効果ガスである二酸化炭素の増大に伴う地球温暖化の問題が顕在化し、京都議定書による温室効果ガスの削減、砂漠化の防止等の種々の対策が講じられつつある。こうした状況下、十数年で枯渇するとも言われている化石燃料を代替するバイオ燃料として、トウモロコシなどの穀物由来のバイオエタノール(特許文献1)や、パーム油、ココナッツ油などに由来するバイオディーゼル燃料(特許文献2、3)の開発・生産が進められている。   In recent years, the problem of global warming due to an increase in carbon dioxide, which is a greenhouse gas in the atmosphere, has become apparent, and various measures such as reduction of greenhouse gases and prevention of desertification are being taken by the Kyoto Protocol. Under these circumstances, biodiesel derived from cereal-derived bioethanol (Patent Document 1), palm oil, coconut oil, and the like as biofuels to replace fossil fuels that are said to be depleted in over a decade. Development and production of fuels (Patent Documents 2 and 3) are in progress.

特開2004−155875号公報JP 2004-155875 A 特開2004−359766号公報JP 2004-359766 A 特開2007−277288号公報JP 2007-277288 A

しかし、上記従来のバイオ燃料は、食用として広く流通している穀類や、食用・工業用として広く流通している動植物油等を材料としているため、バイオ燃料の生産の増加による穀物や植物油の価格の高騰化をもたらしている。さらには、作付面積を確保するための森林伐採による砂漠化などの問題を生じている。   However, the above-mentioned conventional biofuels are made from cereals that are widely distributed for edible use, and animal and vegetable oils that are widely distributed for edible and industrial use. Has brought about soaring. Furthermore, there are problems such as desertification due to deforestation to secure the acreage.

本発明は、上記従来の問題点を解決するためになされたもので、トウモロコシなどの穀類や、パーム油、ココナッツ油などの従来から食用原料や工業原料として流通している植物油を用いることなく、植物資源の流通秩序を乱すことのないバイオディーゼル燃料及びその製造方法を提供することを目的とする。   The present invention was made in order to solve the above-mentioned conventional problems, without using cereals such as corn, and vegetable oils that are conventionally distributed as edible raw materials and industrial raw materials such as palm oil and coconut oil, An object of the present invention is to provide a biodiesel fuel that does not disturb the distribution order of plant resources and a method for producing the same.

発明者らは、上記課題解決のため、新たなバイオディーゼル燃料の原料として、ムクロジ科(Sapindaceae)のブンカンカ(Xanthoceras sorbifolia Bunge)に注目した。ブンカンカの種子には、その重量の25%にもおよぶ油が含まれており、この含有量は他の植物には類を見ないため、バイオディーゼル燃料の原料として極めて優れている。また、ブンカンカは寒冷地や荒廃した土壌、乾燥した土壌にも強く、砂漠の緑化に貢献し得る。そして、さらに鋭意研究を行った結果、バイオディーゼル燃料として、ブンカンカに由来する脂肪酸のメチルエステルを含有すれば、上記課題を解決できることを見出し、本発明を完成するに至った。   In order to solve the above-mentioned problems, the inventors paid attention to Xanthoceras sorbifolia Bunge of Sapindaceae as a new raw material for biodiesel fuel. Bunkanka seeds contain oil as much as 25% of its weight, and this content is unmatched by other plants, so it is extremely excellent as a raw material for biodiesel fuel. Bunkanka is also resistant to cold, devastated and dry soils, and can contribute to desert greening. As a result of further earnest research, the present inventors have found that the above problems can be solved by containing methyl ester of a fatty acid derived from Bunkanka as biodiesel fuel, and the present invention has been completed.

すなわち、本発明のバイオディーゼル燃料は、ブンカンカに由来する脂肪酸のメチルエステルを含有することを特徴とする。   That is, the biodiesel fuel of the present invention is characterized by containing a methyl ester of a fatty acid derived from Bunkanka.

本発明のバイオディーゼル燃料では、トウモロコシなどの穀類や、パーム油、ココナッツ油などの従来から食用原料や工業原料として流通している植物油を用いることなく、ブンカンカを植物資源として用いる。ブンカンカの種子に含まれている脂肪酸トリグリセリドをエステル交換反応によりメチルエステル化したものは低温流動性に優れており、ディーゼル燃料として用いることが可能となる。   In the biodiesel fuel of the present invention, bunkanka is used as a plant resource without using cereals such as corn, and vegetable oils that have been circulated as edible raw materials and industrial raw materials such as palm oil and coconut oil. A fatty acid triglyceride contained in bunkanka seeds that has been methyl esterified by transesterification is excellent in low-temperature fluidity and can be used as a diesel fuel.

本発明のバイオディーゼル燃料では、さらに粘度調整剤が添加されていることが好ましい。寒冷地における低温流動性が更に向上するからである。   In the biodiesel fuel of the present invention, it is preferable that a viscosity modifier is further added. This is because the low temperature fluidity in a cold region is further improved.

本発明のバイオディーゼル燃料は、ブンカンカの種子から採取した植物油をエステル交換してメチルエステルとすることにより得ることができる。すなわち、本発明のバイオディーゼル燃料の製造方法は、ブンカンカの種子から植物油を採取する採取工程と、該植物油にメタノールを加えて酸触媒又は塩基性触媒の存在下でエステル交換を行うエステル化工程と、該エステル化工程の反応液から脂肪酸のメチルエステルを分取する分取工程とを有することを特徴とする。   The biodiesel fuel of the present invention can be obtained by transesterifying a vegetable oil collected from the seeds of Bunkanka into a methyl ester. That is, the method for producing biodiesel fuel of the present invention includes a collecting step of collecting vegetable oil from a seed of bunkanka, an esterification step of adding methanol to the vegetable oil and performing transesterification in the presence of an acid catalyst or a basic catalyst, And a fractionation step of fractionating a fatty acid methyl ester from the reaction solution of the esterification step.

エステル化工程における触媒に塩基性触媒を用いる場合には、メタノールを先に加えて遊離脂肪酸をメチルエステル化が終了してから、塩基性化合物を加えることが好ましい。こうであれば、植物油に含まれる遊離脂肪酸と塩基性化合物との中和反応から生ずる石鹸の生成を回避することができ、エステル交換反応の円滑化を図ることができるからである。   When a basic catalyst is used as the catalyst in the esterification step, it is preferable to add the basic compound after adding methanol first to complete methyl esterification of the free fatty acid. If it is like this, it is because the production | generation of the soap which arises from the neutralization reaction of the free fatty acid contained in vegetable oil and a basic compound can be avoided, and smoothening of transesterification can be aimed at.

さらに、粘度調整剤を添加すれば、寒冷地における低温流動性が更に向上するため、より好適なバイオディーゼル燃料を製造することができる。   Furthermore, if a viscosity modifier is added, since the low temperature fluidity | liquidity in a cold region improves further, a more suitable biodiesel fuel can be manufactured.

また、エステル化工程において、マイクロ波加熱を用いることもできる。マイクロ波加熱とは、マイクロ波によって発生する分子内での電気双極子の回転、振動による内部発熱のことである。マイクロ波加熱により、分子に直接エネルギーを与えることができ、エステル化の反応をより迅速に行うことができる。   In the esterification step, microwave heating can also be used. Microwave heating refers to internal heat generated by rotation and vibration of an electric dipole within a molecule generated by microwaves. By microwave heating, energy can be directly given to the molecule, and the esterification reaction can be performed more rapidly.

また、エステル化工程を100℃以上かつ1気圧以上の条件で行なうことも好ましい。こうであれば、さらにエステル化を迅速に行うことができる。   It is also preferable to perform the esterification step under conditions of 100 ° C. or higher and 1 atmosphere or higher. If it is like this, esterification can be performed further rapidly.

(実施形態)
以下、本発明を具体化した実施形態を図1を参照しつつ説明する。
(Embodiment)
Hereinafter, an embodiment of the present invention will be described with reference to FIG.

(採取工程S1)
まず、採取工程S1として、ブンカンカの種子から搾圧や抽出、あるいはそれら双方を行なってブンカンカ原油を採取する。さらに、ブンカンカ原油からろ過等により脱ガムして油成分を分取し、脱酸、活性白土、活性炭などを用いた脱色・脱臭により、精製度の比較的高いブンカンカ精製油が得られる。さらに、ブンカンカ原油やブンカンカ精製油を冷却することによって固体成分を除き、さらに精製度を高めたブンカンカ高精製油を得ることができる。バイオディーゼル燃料製造のための原料となる植物油としては、ブンカンカ原油、ブンカンカ精製油及びブンカンカ高精製油を単独または混合して用いることができる。
(Collecting process S1)
First, as a collecting step S1, bunkanka crude oil is collected by squeezing and / or extracting from bunkanka seeds. Furthermore, bunkanka refined oil having a relatively high degree of purification can be obtained by degumming the Bunkanka crude oil by filtration or the like, separating oil components, and decolorizing and deodorizing using deoxidation, activated clay, activated carbon and the like. Further, by cooling the bunkanka crude oil or the bunkanka refined oil, the solid component can be removed, and a bunkanka highly refined oil having a further improved degree of purification can be obtained. As a vegetable oil used as a raw material for biodiesel fuel production, Bunkanka crude oil, Bunkanka refined oil, and Bunkanka highly refined oil can be used alone or in combination.

(エステル化工程S2)
次に、エステル化工程S2として、ブンカンカ由来の植物油とメチルアルコールとを、酸性触媒若しくは塩基性触媒の存在下で、エステル交換反応を行う。これにより、植物油に含まれる脂肪酸トリグリセライドや遊離脂肪酸が脂肪酸メチルエステルに変換される。
(Esterification step S2)
Next, as the esterification step S2, a transesterification reaction is performed between vegetable oil derived from bunkanka and methyl alcohol in the presence of an acidic catalyst or a basic catalyst. Thereby, the fatty acid triglyceride and free fatty acid contained in vegetable oil are converted into fatty acid methyl ester.

酸性触媒として使用できる化合物としては、例えば、濃硫酸、硫酸、濃塩酸、塩酸、スルホン酸、固体酸触媒(金属酸化物、ゼオライト、イオン交換樹脂など)などが挙げられる。これらのうち、濃硫酸、濃塩酸、スルホン酸及び固体酸触媒が好ましい。酸性触媒の添加量は、脂肪酸を所望のメチルエステルに変換できる量であれば特に制限されず、温度等の反応条件に応じて適宜調整すればよいが、植物油とメチルアルコールの混合物の全量に対して、0.5〜1質量%が好ましい。エステル交換反応の温度は、脂肪酸を所望のメチルエステルに変換できる温度であれば特に制限されないが、110〜160℃が好ましい。反応時間その他の反応条件については、脂肪酸を所望のメチルエステルに変換できる条件となるように、適宜設定すればよい。   Examples of the compound that can be used as the acidic catalyst include concentrated sulfuric acid, sulfuric acid, concentrated hydrochloric acid, hydrochloric acid, sulfonic acid, solid acid catalyst (metal oxide, zeolite, ion exchange resin, etc.) and the like. Of these, concentrated sulfuric acid, concentrated hydrochloric acid, sulfonic acid and solid acid catalyst are preferred. The addition amount of the acidic catalyst is not particularly limited as long as it is an amount capable of converting a fatty acid into a desired methyl ester, and may be appropriately adjusted according to reaction conditions such as temperature, but with respect to the total amount of the mixture of vegetable oil and methyl alcohol. 0.5 to 1% by mass is preferable. The temperature of the transesterification reaction is not particularly limited as long as it is a temperature at which a fatty acid can be converted into a desired methyl ester, but is preferably 110 to 160 ° C. What is necessary is just to set suitably about reaction time and other reaction conditions so that it may become the conditions which can convert a fatty acid into desired methyl ester.

また、塩基性触媒を用いてエステル交換反応を行なう場合には、予め植物油に含まれる遊離脂肪酸を、例えば硫酸などの酸性触媒存在下、メチルアルコールを用いてメチルエステルに変換した後、エステル交換反応をおこなうことが望ましい。遊離脂肪酸が残った状態で塩基性触媒を加えると、脂肪酸の塩(すなわち石鹸)ができて、その後の円滑なエステル化反応が困難となるからである。塩基性触媒は、例えば、水酸化ナトリウム、水酸化カリウムなどの水酸化物、ナトリウムメトキサイド、カリウムメトキサイドなどアルコキサイド、固体塩基触媒などの公知の塩基性触媒が挙げられ、これらのうち、水酸化ナトリウムが好ましい。塩基性触媒の添加量は、脂肪酸を所望のメチルエステルに変換できる量となるよう適宜決定すればよいが、植物油(予め遊離脂肪酸をメチルエステル化したもの)とメチルアルコールの混合物の全量に対して、0.3〜1質量%が好ましい。エステル交換反応温度は、脂肪酸を所望のメチルエステルに変換できる温度であれば特に制限されず、公知の条件を使用することができるが、通常50℃〜60℃が好ましい。反応時間その他の反応条件については、脂肪酸を所望のメチルエステルに変換できる条件であれば特に制限されず、適宜決定すればよい。   In addition, when the transesterification reaction is performed using a basic catalyst, the free fatty acid contained in the vegetable oil in advance is converted to the methyl ester using methyl alcohol in the presence of an acidic catalyst such as sulfuric acid, and then the transesterification reaction is performed. It is desirable to do. This is because when a basic catalyst is added with the free fatty acid remaining, a salt of fatty acid (ie, soap) is formed, and subsequent smooth esterification reaction becomes difficult. Examples of the basic catalyst include hydroxides such as sodium hydroxide and potassium hydroxide, alkoxides such as sodium methoxide and potassium methoxide, and known basic catalysts such as a solid base catalyst. Sodium is preferred. The addition amount of the basic catalyst may be determined as appropriate so that the fatty acid can be converted into the desired methyl ester, but is based on the total amount of the mixture of vegetable oil (pre-free fatty acid methyl esterified) and methyl alcohol. 0.3 to 1% by mass is preferable. The transesterification reaction temperature is not particularly limited as long as it is a temperature at which a fatty acid can be converted into a desired methyl ester, and known conditions can be used, but 50 ° C to 60 ° C is usually preferable. The reaction time and other reaction conditions are not particularly limited as long as the fatty acid can be converted into a desired methyl ester, and may be appropriately determined.

(分取工程S3)
最後に、分取工程S3として、エステル化工程S2で生成した脂肪酸メチルエステルを分取する。分取方法としては、所望の脂肪酸メチルエステルを分取できる方法であれば特に制限されず公知の分取方法を使用することができる。例えば、エステル交換反応の反応混合物から、生成したグリセリンをその比重差を利用して自然分離または遠心分離により層分離・除去し、次に水または中和剤を用いて洗浄し、脂肪酸メチルエステル層を得る。この脂肪酸メチルエステル層に加熱処理等その他の公知の方法を施すことによりその水分を除去し、そのままバイオディーゼル燃料として用いることができ、且つ好ましい低温流動性を有する脂肪酸メチルエステルを得ることができる。また、脂肪酸メチルエステル層(その水分を除去したものを含む。)に分留操作、結晶化操作などの公知の精製操作を施すことにより、バイオディーゼル燃料として用いることができ且つより好ましい低温流動性を有する脂肪酸メチルエステルを得ることができる。ここで、低温流動性とは、JISK2269.3に規定する試験方法により測定した脂肪酸メチルエステルの流動点が、15℃以下であることをいい、好ましい低温流動性とは、該流動点が5℃以下であることをいい、より好ましい低温流動性とは、該流動点がマイナス5℃以下であることをいう。
(Preparation process S3)
Finally, as the fractionation step S3, the fatty acid methyl ester produced in the esterification step S2 is fractionated. The sorting method is not particularly limited as long as a desired fatty acid methyl ester can be sorted, and a known sorting method can be used. For example, from the reaction mixture of the transesterification reaction, the produced glycerin is separated and removed by natural separation or centrifugal separation using the specific gravity difference, and then washed with water or a neutralizing agent, and the fatty acid methyl ester layer Get. By subjecting this fatty acid methyl ester layer to other known methods such as heat treatment, the moisture can be removed and used as it is as a biodiesel fuel, and a fatty acid methyl ester having preferable low-temperature fluidity can be obtained. Further, by subjecting the fatty acid methyl ester layer (including those from which the water has been removed) to known purification operations such as fractional distillation and crystallization, it can be used as biodiesel fuel and more preferably has low-temperature fluidity. The fatty acid methyl ester having can be obtained. Here, the low temperature fluidity means that the pour point of the fatty acid methyl ester measured by the test method specified in JIS K2269.3 is 15 ° C. or less, and the preferred low temperature fluidity means that the pour point is 5 ° C. The more preferable low-temperature fluidity means that the pour point is −5 ° C. or lower.

なお、分取工程S3で得たバイオディーゼル燃料に対して、必要に応じて粘度調整剤を混合することも好ましい(粘度調整工程S4)。粘度調整剤を前記バイオディーゼル燃料に混合することにより、その低温流動性を更に改善することができる。粘度調整剤は、脂肪酸メチルエステルの流動点を所望の流動点に改善することができるものであれば特に制限されず公知の粘度調整剤を使用することができ、例えば、ポリアルキルメタクリレート(PMA)、ポリアクリレート(PA)、アルキル化芳香族化合物、フマレート−酢酸ビニル共重合体、エチレン−酢酸ビニル共重合体(EVA)、アルコール類などの公知の化合物を挙げられ、これらのうち、PMA、EVA、炭素数が3〜5の脂肪族アルコールが好ましい。粘度調整剤の添加量は、脂肪酸メチルエステルの流動点を所望の流動点に改善することができる添加量であれば特に制限されず公知の添加量を使用することができ、脂肪酸メチルエステル100重量部に対して、PMAについては0.1〜0.3重量部、EVAについては、0.5〜1.5重量部、炭素数が3〜5の脂肪族アルコールについては、10〜25重量部を添加するのが好ましい。   In addition, it is also preferable to mix a viscosity modifier as needed with respect to the biodiesel fuel obtained by fractionation process S3 (viscosity adjustment process S4). By mixing a viscosity modifier with the biodiesel fuel, its low-temperature fluidity can be further improved. The viscosity modifier is not particularly limited as long as it can improve the pour point of fatty acid methyl ester to a desired pour point, and a known viscosity modifier can be used. For example, polyalkyl methacrylate (PMA) , Polyacrylate (PA), alkylated aromatic compound, fumarate-vinyl acetate copolymer, ethylene-vinyl acetate copolymer (EVA), and known compounds such as alcohols. Among these, PMA, EVA An aliphatic alcohol having 3 to 5 carbon atoms is preferred. The addition amount of the viscosity modifier is not particularly limited as long as it can improve the pour point of the fatty acid methyl ester to a desired pour point, and a known addition amount can be used. To 0.1 parts by weight for PMA, 0.5 to 1.5 parts by weight for EVA, and 10 to 25 parts by weight for aliphatic alcohols having 3 to 5 carbon atoms Is preferably added.

以下、本発明を実施例により具体的に説明する。
(採取工程)
ブンカンカの種子100kgから圧搾機により、25kgのブンカンカ原油を得た。このブンカンカ原油をろ過し、脱酸、活性炭を用いる脱臭により、ブンカンカ油20Lを得た。
Hereinafter, the present invention will be specifically described by way of examples.
(Collection process)
25 kg of bunkanka crude oil was obtained from 100 kg of bunkanka seeds using a press. This bunkanka crude oil was filtered, and deoxidation and deodorization using activated carbon were performed to obtain 20 L of bunkanka oil.

(エステル化工程)
−酸性エステル交換工程−
10Lのブンカンカ油と2Lのメチルアルコールに対して、0.5質量%の濃硫酸を加え、マントルヒータで160℃に加熱し、4.5時間エステル化した。反応混合物を、水層が中性になるまで水洗、乾燥し、脂肪酸メチルエステル12Lを得た。該エステルは、JIS K2269-3に規定する試験方法で40℃の流動点を示した。
(Esterification process)
-Acid transesterification process-
To 10 L of bunkanka oil and 2 L of methyl alcohol, 0.5% by mass of concentrated sulfuric acid was added, heated to 160 ° C. with a mantle heater, and esterified for 4.5 hours. The reaction mixture was washed with water and dried until the aqueous layer became neutral to obtain 12 L of fatty acid methyl ester. The ester exhibited a pour point of 40 ° C. according to the test method specified in JIS K2269-3.

−塩基性エステル交換工程−
ブンカンカ油10Lとメチルアルコール0.8Lに対して濃硫酸10mLを加え、35℃で1時間加熱攪拌し、加熱を止め更に1時間攪拌し、その後8時間静置し、遊離脂肪酸をメチルエステルとした。
-Basic transesterification step-
Add 10 mL of concentrated sulfuric acid to 10 L of bunkanka oil and 0.8 L of methyl alcohol, heat and stir at 35 ° C. for 1 hour, stop heating, stir for 1 hour, and then stand for 8 hours to convert the free fatty acid to methyl ester .

前記反応混合物に対して、室温攪拌下、予め水酸化ナトリウム35gを1.2Lのメタノールに溶かした溶液を加え、下層に生成するグリセリンを除去しつつ、55℃で2時間攪拌した。その後1時間静置し、下層に生成したグリセリンを除去し、上層(脂肪酸メチルエステル)を4Lの水で洗浄、乾燥した。該エステルは、JISK2269.3に規定する試験方法で40℃の流動点を示した。 A solution prepared by dissolving 35 g of sodium hydroxide in 1.2 L of methanol in advance was added to the reaction mixture while stirring at room temperature, and the mixture was stirred at 55 ° C. for 2 hours while removing glycerol formed in the lower layer. Thereafter, the mixture was allowed to stand for 1 hour, glycerin produced in the lower layer was removed, and the upper layer (fatty acid methyl ester) was washed with 4 L of water and dried. The ester exhibited a pour point of 40 ° C. according to the test method specified in JIS K2269.3.

上記実施例では、エステル化を常圧下で加熱して行なったが、マイクロウエーブ加熱法を適用しても良い。すなわち、マイクロ波発振器、エステル化用の反応容器、導波管、アンテナなどの加熱部からなるマイクロウエーブ反応装置内で、上記実施例のエステル化を連続送液方式で行うこともできる。これにより、所望の反応温度への到達時間の大幅減少による反応時間の短縮、エネルギー効率の向上による環境負荷の減少、均一的且つ連続的加熱による反応ムラの防止等を図ることができる。   In the above embodiment, the esterification is performed by heating under normal pressure, but a microwave heating method may be applied. That is, the esterification of the above embodiments can also be performed by a continuous liquid feeding system in a microwave reactor including a heating unit such as a microwave oscillator, a reaction vessel for esterification, a waveguide, and an antenna. As a result, it is possible to shorten the reaction time by significantly reducing the time to reach the desired reaction temperature, reduce the environmental load by improving energy efficiency, and prevent reaction unevenness by uniform and continuous heating.

エステル化工程をオートクレーブ中において、加圧し、100℃以上の温度で行なうことも好ましい。こうであれば、さらにエステル化を迅速に行うことができる。   It is also preferable to carry out the esterification step in an autoclave at a temperature of 100 ° C. or higher. If it is like this, esterification can be performed further rapidly.

この発明は、上記発明の実施形態の説明に何ら限定されるものではない。特許請求の範囲の記載を逸脱せず、当業者が容易に想到できる範囲で種々の変形態様もこの発明に含まれる。   The present invention is not limited to the description of the embodiment of the invention. Various modifications may be included in the present invention as long as those skilled in the art can easily conceive without departing from the description of the scope of claims.

実施形態におけるバイオディーゼル燃料の製造方法を示す工程図である。It is process drawing which shows the manufacturing method of the biodiesel fuel in embodiment.

符号の説明Explanation of symbols

S1…採取工程
S2…エステル化工程
S3…分取工程
S4…粘度調整工程
S1 ... Collection step S2 ... Esterification step S3 ... Preparative step S4 ... Viscosity adjustment step

Claims (6)

ブンカンカ(Xanthoceras sorbifolia Bunge:キサントケラス ソルビフォリア)に由来する脂肪酸のメチルエステルを含有することを特徴とするバイオディーゼル燃料。   A biodiesel fuel characterized by containing a methyl ester of a fatty acid derived from Xanthoceras sorbifolia Bunge (Xanthoceras sorbifolia Bunge). 粘度調整剤が添加されていることを特徴とする請求項1記載のバイオディーゼル燃料。   The biodiesel fuel according to claim 1, wherein a viscosity modifier is added. ブンカンカの種子から植物油を採取する採取工程と、該植物油にメタノールを加えて酸触媒又は塩基性触媒の存在下でエステル交換を行うエステル化工程と、該エステル化工程の反応液から脂肪酸のメチルエステルを分取する分取工程とを有することを特徴とするバイオディーゼル燃料の製造方法。   A sampling step for collecting vegetable oil from the seeds of Bunkanka, an esterification step in which methanol is added to the vegetable oil and transesterification is performed in the presence of an acid catalyst or a basic catalyst, and a methyl ester of a fatty acid from the reaction solution of the esterification step A method for producing biodiesel fuel, comprising a fractionation step of fractionating the fuel. 分取工程で得た脂肪酸のメチルエステルに粘度調整剤を添加する粘度調整工程を有することを特徴とする請求項3又は4記載のバイオディーゼル燃料の製造方法。   5. The method for producing biodiesel fuel according to claim 3, further comprising a viscosity adjusting step of adding a viscosity adjusting agent to the fatty acid methyl ester obtained in the preparative step. エステル化工程においてマイクロ波加熱を用いることを特徴とする請求項3又は4記載のバイオディーゼル燃料の製造方法。   The method for producing biodiesel fuel according to claim 3 or 4, wherein microwave heating is used in the esterification step. エステル化工程は100℃以上かつ加圧下で行なうことを特徴とする請求項3又は4記載のバイオディーゼル燃料の製造方法。   The method for producing biodiesel fuel according to claim 3 or 4, wherein the esterification step is performed at 100 ° C or higher and under pressure.
JP2008172854A 2008-07-02 2008-07-02 Biodiesel fuel and method for producing the same Pending JP2010013511A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008172854A JP2010013511A (en) 2008-07-02 2008-07-02 Biodiesel fuel and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008172854A JP2010013511A (en) 2008-07-02 2008-07-02 Biodiesel fuel and method for producing the same

Publications (1)

Publication Number Publication Date
JP2010013511A true JP2010013511A (en) 2010-01-21

Family

ID=41699918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008172854A Pending JP2010013511A (en) 2008-07-02 2008-07-02 Biodiesel fuel and method for producing the same

Country Status (1)

Country Link
JP (1) JP2010013511A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012005374A (en) * 2010-06-22 2012-01-12 Chugoku Electric Power Co Inc:The Roasting device and power generating system
WO2012066860A1 (en) * 2010-11-15 2012-05-24 日清オイリオグループ株式会社 Method for producing regenerated clay, regenerated clay, and method for producing purified fats and oils
JP6976016B1 (en) * 2021-05-11 2021-12-01 ガルファ株式会社 Fossil resource increase device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004217864A (en) * 2003-01-17 2004-08-05 Rebo International:Kk Fatty acid alkyl ester diesel fuel
JP2005350629A (en) * 2004-06-14 2005-12-22 Electric Power Dev Co Ltd Additive for biodiesel fuel
JP2007190450A (en) * 2006-01-17 2007-08-02 Japan Energy Corp Method for producing ester by transesterification
WO2008023728A1 (en) * 2006-08-25 2008-02-28 Biomass Japan Inc. Method for production of fatty acid ester from plant oil, and diesel fuel comprising the fatty acid ester

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004217864A (en) * 2003-01-17 2004-08-05 Rebo International:Kk Fatty acid alkyl ester diesel fuel
JP2005350629A (en) * 2004-06-14 2005-12-22 Electric Power Dev Co Ltd Additive for biodiesel fuel
JP2007190450A (en) * 2006-01-17 2007-08-02 Japan Energy Corp Method for producing ester by transesterification
WO2008023728A1 (en) * 2006-08-25 2008-02-28 Biomass Japan Inc. Method for production of fatty acid ester from plant oil, and diesel fuel comprising the fatty acid ester

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6013021767; FU Yu-Jie et al.: 'Ultrasonic Extraction of Oil from Xanthoceras sorbifolia Kernels and Its Composition Analysis by GC-' 植物研究 BULLETIN OF BOTANICAL RESEARCH Vol.27 No.5, 200709, Page.622-625 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012005374A (en) * 2010-06-22 2012-01-12 Chugoku Electric Power Co Inc:The Roasting device and power generating system
WO2012066860A1 (en) * 2010-11-15 2012-05-24 日清オイリオグループ株式会社 Method for producing regenerated clay, regenerated clay, and method for producing purified fats and oils
US9023749B2 (en) 2010-11-15 2015-05-05 The Nisshin Oillio Group, Ltd. Method for producing regenerated clay, regenerated clay, and method for producing purified fats and oils
JP6976016B1 (en) * 2021-05-11 2021-12-01 ガルファ株式会社 Fossil resource increase device
WO2022239258A1 (en) * 2021-05-11 2022-11-17 ガルファ株式会社 Fossil resource increasing device

Similar Documents

Publication Publication Date Title
Roschat et al. Rubber seed oil as potential non-edible feedstock for biodiesel production using heterogeneous catalyst in Thailand
Pukale et al. Ultrasound assisted transesterification of waste cooking oil using heterogeneous solid catalyst
Ma et al. In situ heterogeneous transesterification of microalgae using combined ultrasound and microwave irradiation
Yadav et al. Ultrasonic-assisted optimization of biodiesel production from Karabi oil using heterogeneous catalyst
Felix et al. Non-catalytic in-situ (trans) esterification of lipids in wet microalgae Chlorella vulgaris under subcritical conditions for the synthesis of fatty acid methyl esters
Lani et al. Parametric study on the transesterification reaction by using CaO/silica catalyst
Patil et al. Parametric studies of methyl esters synthesis from Thumba seed oil using heterogeneous catalyst under conventional stirring and ultrasonic cavitation
Nitièma-Yefanova et al. Ethyl biodiesel production from non-edible oils of Balanites aegyptiaca, Azadirachta indica, and Jatropha curcas seeds–laboratory scale development
Sadhukhan et al. Production of biodiesel from Crotalaria juncea (Sunn-Hemp) oil using catalytic trans-esterification: Process optimisation using a factorial and Box–Behnken design
JP2005350632A (en) Method for producing biodiesel fuel
Binnal et al. Microwave-assisted esterification and transesterification of dairy scum oil for biodiesel production: kinetics and optimisation studies
Felix et al. Investigation of direct biodiesel production from wet microalgae using definitive screening design
Sánchez et al. Jojoba oil biorefinery using a green catalyst. Part I: Simulation of the process
Asif et al. Chemical conversion in biodiesel refinery
Panchal et al. Process optimization using novel acidic ionic liquids and the kinetics modeling of methyl esters using Jatropha curcas oil with dimethyl carbonate
JP2010013511A (en) Biodiesel fuel and method for producing the same
KR100790298B1 (en) Manufacturing method of high purity fatty acid alkylester and fatty acid alkylester manufactured therefrom
CN102060881B (en) Method for preparing high-grade sucrose fatty acid ester from woody oil
JP2009040980A (en) Method for liquefying and recovering fatty acid and oil-and-fat from waste oil-and-fat containing water and fatty acid
Sarma et al. Recent inventions in biodiesel production and processing-A review
KR101395795B1 (en) Direct non-catalytic biodiesel production without oil extraction
Krishnakumar Kinetic study of preparation of biodiesel from crude rubber seed oil over a modified heterogeneous catalyst
Sathish Kumar et al. Environment friendly butyl ester biodiesel production from mahua oil: optimization and characterization
JP2009161776A (en) Method for producing biodiesel fuel and device for producing the same
Redzwan et al. Extrication of biodiesel feedstock from early stage of food waste liquefaction

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130514

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130708

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130730