WO2021024968A1 - Cleaning robot, and solar power generating facility - Google Patents

Cleaning robot, and solar power generating facility Download PDF

Info

Publication number
WO2021024968A1
WO2021024968A1 PCT/JP2020/029595 JP2020029595W WO2021024968A1 WO 2021024968 A1 WO2021024968 A1 WO 2021024968A1 JP 2020029595 W JP2020029595 W JP 2020029595W WO 2021024968 A1 WO2021024968 A1 WO 2021024968A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
traveling
cleaning robot
cell module
cell array
Prior art date
Application number
PCT/JP2020/029595
Other languages
French (fr)
Japanese (ja)
Inventor
基 吉村
三宅 徹
Original Assignee
株式会社未来機械
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社未来機械 filed Critical 株式会社未来機械
Priority to JP2021535243A priority Critical patent/JPWO2021024968A1/en
Publication of WO2021024968A1 publication Critical patent/WO2021024968A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/38Machines, specially adapted for cleaning walls, ceilings, roofs, or the like
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/28Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B1/00Cleaning by methods involving the use of tools
    • B08B1/30Cleaning by methods involving the use of tools by movement of cleaning members over a surface
    • B08B1/32Cleaning by methods involving the use of tools by movement of cleaning members over a surface using rotary cleaning members
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/10Cleaning arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a cleaning robot and a solar power generation facility. More specifically, the present invention relates to a cleaning robot for cleaning the surface of a solar cell array used for photovoltaic power generation and a photovoltaic power generation facility.
  • solar cell modules that do not have a panel frame (hereinafter sometimes referred to as frameless solar cell modules) have also been developed.
  • a frameless solar cell module can be lighter than one having a panel frame.
  • a frameless solar cell module is used for the solar cell array of a tracking type photovoltaic power generation system that tracks sunlight (hereinafter, may be referred to as a tracking type solar cell array), the driving force for driving the equipment, the gantry, etc. The strength can be reduced. Then, there is an advantage that the capital investment of the photovoltaic power generation equipment and the running cost can be reduced.
  • the cleaning robots described in Patent Documents 1 to 3 are configured on the premise that they have a panel frame around the solar cell modules constituting the solar cell array, and the traveling wheels are on the panel frame. It has adopted a configuration that runs on.
  • the weight of the cleaning robot itself is also heavy on the premise that the rigidity of the solar cell module is secured to some extent by the panel frame. Therefore, when the cleaning robots of Patent Documents 1 to 3 are used for cleaning the frameless solar cell module, the solar cell module may be damaged.
  • Patent Document 4 describes that the cleaning robot can be used for the frameless solar cell module (paragraph 0026 of Patent Document 4), a specific configuration for the cleaning robot to run on the frameless solar cell module. There is no description about.
  • Cited Document 5 discloses that it can also be used for a frameless type solar cell module, and in that case, it is necessary to move the position of the moving portion from the weak side portion toward the center. (Paragraph 0091).
  • the technique of Cited Document 5 is to arrange the moving portion at the edge of the solar cell module, that is, at the position where the frame existed, and the moving portion travels near both end edges of the solar cell module. Is a prerequisite. For this reason, it is assumed that the moving part is slightly closer to the center side of the solar cell module (see FIG. 9), and when used for a frameless type solar cell module, the solar cell module is damaged. There is a high possibility that it will end up.
  • Cited Document 5 when used for a frameless type solar cell module, how much the moving body is specifically moved toward the center, and at what position between both ends of the solar cell module, the moving portion. There is no disclosure as to whether or not to place. This is because the cleaning devices of Cited Document 5 are arranged side by side by connecting the cleaning units that run on the solar cell modules arranged side by side so that they can be bent relatively between the two. This is because the purpose is to cope with the deviation of the inclination between them, and it is not supposed to be used for a frameless type solar cell module. Due to such circumstances, the cited document 5 does not describe a specific configuration for the cleaning robot to run on the frameless solar cell module as in the cited document 4.
  • the cleaning robot manufactured on the premise that the solar cell module having the panel frame travels on the panel frame is not limited to the frameless solar cell module, and the sun having the panel frame. Even if it is a battery module, if the cleaning robot runs on the light receiving surface, the light receiving surface or the like may be damaged.
  • an object of the present invention is to provide a cleaning robot capable of cleaning while traveling on a solar cell module and a photovoltaic power generation facility equipped with such a cleaning robot.
  • the cleaning robot of the first invention is installed by arranging a plurality of solar cell modules side by side on a gantry so that the first end portion and the second end portion are arranged in a straight line, and a connecting portion connecting the solar cell module and the gantry. Is provided between the intermediate line between the first end and the second end of the solar cell module and the first end of the solar cell module, and between the intermediate line and the second end, respectively.
  • the solar cell module which is provided at both ends or one end in a direction intersecting the traveling direction of the cleaning robot and constitutes the solar cell array. It is provided with a support mechanism that supports the running of the chassis frame, and the traveling unit includes a plurality of traveling bodies, and the plurality of traveling bodies are used when the cleaning robot is arranged on the solar cell array. , At least two traveling bodies are arranged so as to sandwich the solar cell module intermediate line in a direction intersecting the traveling direction of the cleaning robot, and the traveling unit is arranged when the cleaning robot is arranged on the solar cell array. , The solar cell module is not provided with a traveling body that travels in the vicinity of the first end portion and the second end portion.
  • the cleaning robot according to the second invention is the two traveling bodies located on the outermost side in the direction intersecting the traveling direction of the cleaning robot among the plurality of traveling bodies of the traveling portion.
  • the solar cell module is provided so as to have a distance of 1/8 to 3/4 of the distance from the first end portion to the second end portion.
  • the plurality of traveling bodies include a plurality of traveling members, and at least two of the plurality of traveling bodies include a plurality of the two traveling bodies.
  • traveling members of the above at least two traveling members are provided so as to sandwich the connecting portion of the solar cell array in a direction intersecting the traveling direction of the cleaning robot.
  • each traveling body when the plurality of traveling bodies of the traveling unit are viewed from the traveling direction of the cleaning robot, each traveling body is the surface of the solar cell array. It is characterized in that the portions in contact with the robot are arranged so as not to overlap with each other.
  • at least one of the plurality of traveling bodies of the traveling unit includes a plurality of traveling members, and the plurality of traveling members are provided.
  • each traveling body of the traveling unit includes a plurality of traveling wheels, and the plurality of traveling wheels have at least two driving wheels.
  • the cleaning robot is arranged so that the center of gravity of the cleaning robot is located between the two most distant traveling wheels in the traveling direction of the cleaning robot among the plurality of traveling wheels.
  • the traveling unit includes an auxiliary traveling body located outside the two traveling wheels farthest in the traveling direction of the cleaning robot among the plurality of traveling wheels of the traveling body in the traveling direction of the cleaning robot.
  • the distance to the adjacent drive wheels in the traveling direction of the cleaning robot is equal to or greater than the distance between the two drive wheels closest to the traveling direction of the cleaning robot among the plurality of driving wheels in the traveling body. It is characterized in that it is arranged so as to be.
  • the cleaning robot of the seventh invention includes a plurality of the auxiliary traveling bodies, and the plurality of auxiliary traveling bodies assists at least two of the plurality of auxiliary traveling bodies in the traveling direction of the cleaning robot.
  • the traveling body is provided so as to sandwich the traveling body.
  • the cleaning robot of the eighth invention includes a cleaning member in which the cleaning portion rotates around an axis, and the traveling body and the cleaning member of the cleaning portion are driven by one. It is characterized by being driven by a source.
  • the cleaning robot of the ninth invention has the support mechanism having a plane parallel to both the traveling direction of the cleaning robot and the direction intersecting the traveling direction of the cleaning robot in a plan view. It is characterized by having a free roller having intersecting rotation axes.
  • the cleaning robot of the tenth invention includes a first support portion provided at one end of the chassis frame in a direction intersecting the traveling direction of the cleaning robot, and the chassis frame.
  • a second support portion provided at the other end located on the opposite side of one end is provided, and the first support portion and the second support portion include the traveling direction of the cleaning robot and the traveling direction of the cleaning robot.
  • a free roller having a rotation axis that intersects a surface parallel to both the traveling direction and the intersecting direction of the cleaning robot in a plan view is provided, and the first support portion is free in the direction intersecting the traveling direction of the cleaning robot. It is characterized in that the distance between the roller and the free roller of the second support portion is provided so as to be longer than the distance between both ends of the solar cell module.
  • the cleaning robot of the eleventh invention has, in the ninth or tenth invention, the support mechanism having two free rollers provided so as to be arranged at intervals along the traveling direction of the cleaning robot. It is a feature.
  • ⁇ Static elimination member> In any one of the first to eleventh inventions, the cleaning robot of the twelfth invention is provided with a static elimination member on the chassis frame, and the static elimination member is when the cleaning robot is arranged on the solar cell array.
  • the tip thereof is formed to have a length that allows contact with a grounded member in the solar cell array.
  • the cleaning robot of the thirteenth invention is a direction in which the static elimination member connects a first end portion and a second end portion of the solar cell module when the cleaning robot is arranged on the solar cell array.
  • the solar cell array is provided at a position where it can come into contact with a connecting portion connecting the solar cell module and the gantry.
  • the photovoltaic cell power generation facility of the fourteenth invention is installed by arranging a plurality of solar cell modules side by side on a gantry so that the first end portion and the second end portion thereof are arranged in a straight line, and connects the solar cell module and the gantry.
  • the solar cell array and the cleaning robot according to any one of the first to thirteenth inventions for cleaning the surface of the solar cell array are provided.
  • the solar cell array is provided by arranging the plurality of solar cell modules side by side along the axial direction of the swing axis provided on the gantry. It is characterized by that.
  • the photovoltaic power generation equipment of the 16th invention is characterized in that, in the 14th or 15th invention, the solar cell module constituting the solar cell array is a frameless solar cell module.
  • the deflection of the solar cell module due to the load of the cleaning robot can be reduced. Then, damage to the solar cell module can be prevented, and the surface of the solar cell module can be easily cleaned by the cleaning unit.
  • the deflection of the solar cell module due to the load of the cleaning robot can be further reduced.
  • the load of the cleaning robot is applied to both sides of the connecting portion, the bending of the solar cell module can be further reduced.
  • the fourth and fifth inventions it is possible to prevent damage to cells, wiring, glass, and the like at positions where the traveling body passes in the solar cell module.
  • the auxiliary traveling body and at least one driving wheel are driven.
  • the ring can be maintained in place on the solar cell module. Therefore, even if there is a gap between adjacent solar cell modules, the cleaning robot can smoothly move between the adjacent solar cell modules. Further, even if the width of the chassis frame is reduced, the gap between adjacent solar cell modules can be exceeded, so that the weight of the chassis frame can be reduced.
  • the control device can be simplified as compared with the case of controlling a plurality of drive sources.
  • the inclination of the chassis frame can be prevented.
  • ⁇ Static elimination member> According to the twelfth and thirteenth inventions, even if the cleaning robot is charged, the charged static electricity can be discharged to the ground member. Therefore, the charging of the cleaning robot can be suppressed, and the amount of charging can be reduced even if the cleaning robot is charged.
  • ⁇ Solar power generation equipment> According to the 14th and 15th inventions, the bending of the solar cell module due to the load of the cleaning robot can be reduced. Then, damage to the solar cell module can be prevented, and the surface of the solar cell module can be easily cleaned by the cleaning unit.
  • the cleaning robot since the cleaning robot has a structure in which the solar cell module is less likely to bend, the cleaning robot can clean the frameless solar cell module while the cleaning robot runs on the frameless solar cell module. it can.
  • (A) is a schematic explanatory view of the positional relationship between the traveling wheel 22 and the center of gravity G in the cleaning robot 1 of another embodiment
  • (B) is a solar cell of the cleaning robot 1 of the present embodiment having a plurality of traveling bodies 21. It is the schematic explanatory drawing of the state which put on the array LP.
  • (A) is a schematic explanatory view of a photovoltaic power generation facility SP having a solar cell array LP provided with an evacuation station S of the cleaning robot 1
  • (B) is a schematic explanatory view of a solar cell array LP having a fixed inclination of the solar cell module P. It is a schematic explanatory drawing.
  • the cleaning robot of the present invention is a robot that cleans the surfaces of the solar cell modules arranged side by side while traveling along the direction in which the solar cell modules are arranged, and the cleaning robot travels on the light receiving surface of the solar cell modules.
  • it is characterized in that the bending and deformation of the solar cell module can be reduced.
  • the cleaning robot of the present invention is suitable for cleaning a tracking type solar cell array in which frameless solar cell modules are arranged side by side.
  • the solar cell array and the solar cell module cleaned by the cleaning robot of the present invention are not particularly limited. It can also be used for a tracking type solar cell array in which solar cell modules having a panel frame are arranged side by side, or a fixed solar cell module (in other words, a non-tracking type solar cell module).
  • the object to be cleaned is a tracking type solar cell array in which frameless solar cell modules are arranged side by side will be described as a representative.
  • the photovoltaic power generation facility SP in which the cleaning robot 1 of the present embodiment performs work such as cleaning will be briefly described.
  • the photovoltaic power generation facility SP has a plurality of rows of solar cell array LPs including a plurality of solar cell modules P.
  • the solar cell array LP swings the gantry MT in a state where a plurality of solar cell modules P are aligned so that the edge of the first end P1 and the edge of the second end P2 are aligned in substantially the same straight line. It is connected by the axis SS.
  • the solar cell array LP is formed by arranging a plurality of solar cell modules P so that their surfaces are located on substantially the same plane and connecting them by a swing axis SS of a gantry MT.
  • the solar cell array LP can swing a plurality of solar cell modules P at the same time and at the same angle by rotating the swing shaft SS. Therefore, the solar cell array LP can make the plurality of solar cell modules P follow the movement of the sun and adjust the inclination of the surface of the plurality of solar cell modules P so as to optimize the power generation efficiency.
  • the plurality of solar cell modules P of this solar cell array LP are frameless solar cell modules having no panel frame. Therefore, in the solar cell array LP, there are almost no members protruding from the surfaces of the plurality of solar cell modules P. For example, as shown in FIG. 12, in the solar cell array LP, only the connecting portion CE that connects the plurality of solar cell modules P to the support member SE connected to the swing shaft SS protrudes from the surface of the solar cell module P. It is provided so that it will be in a state of being.
  • the intermediate line CL between the first end portion P1 and the second end portion P2 is the central axis S1 of the swing axis SS. It is connected to the swing shaft SS so as to be located substantially vertically above (including the case where a deviation of up to about 80 mm occurs) (see FIG. 12B). Then, the connecting portion CE is located between the intermediate line CL of each solar cell module P and the first and second end portions P1 and P2 (including the case where a deviation of about 20 to 80 mm occurs). It is connected to each solar cell module P.
  • the connecting portion CE is connected to each solar cell module P so that L2 is about 50 to 55% of L.
  • the middle of the connecting portion CE of the solar cell array LP means a position where the connecting portion CE is divided in half in the direction of connecting the first end portion P1 and the second end portion P2 of the solar cell module P. (See FIG. 12 (B)).
  • the edge of the first end P1 of the solar cell module P (first edge)
  • the edge of the second end P2 of the solar cell module P2 (second edge)
  • It means an intersection line where a surface (first end surface or second end surface) intersecting the surface of the solar cell module P at the first end portion P1 and the second end portion P2 intersects with the surface of the solar cell module P.
  • aligning the first end edges (second end edges) of the solar cell modules P so as to line up in substantially the same straight line means that the first end edges (or the second end edges) of the adjacent solar cell modules P are aligned with each other. This includes the case where the edges) are completely aligned and the case where there is a slight deviation between the first edge edges (or the second edge edges) of the adjacent solar cell modules P.
  • the first end edges of the adjacent solar cell modules P When there is a slight deviation between the first end edges (or the second end edges) of the adjacent solar cell modules P, the first end edges of the adjacent solar cell modules P (or the second end edges) Is almost parallel, but there is a slight deviation in the height or horizontal direction (for example, about 0 to 5 mm), or there is a deviation in the position along the surface of the solar cell module P (for example, about 0 to 20 mm). I'm out. Further, the case where the first end edges (or the second end edges) of the adjacent solar cell modules P are relatively inclined is included.
  • the surfaces of a plurality of solar cell modules P are located on substantially the same plane
  • the solar cell array LP of the photovoltaic power generation facility SP is not necessarily limited to the one in which the solar cell module P swings by the swing axis SS as described above, and the inclination of the plurality of solar cell modules P is fixed. It also includes the one installed on the gantry MT in the state of being (see FIG. 22 (B)). That is, the solar cell array LP in which a plurality of solar cell modules P are arranged side by side on the gantry MT so that their surfaces are located on substantially the same plane is also included in the solar cell array LP to be cleaned by the cleaning robot 1. In this case as well, the solar cell module P is connected to the gantry MT by a connecting portion (not shown in FIG.
  • the connecting portion is provided between the intermediate line between the first end portion P1 and the second end portion P2 of the solar cell module P and each end portion (first end portion P1 and second end portion P2), respectively. ..
  • the cleaning robot 1 of the present embodiment travels along a solar cell array LP provided with a plurality of solar cell modules P in the photovoltaic power generation equipment SP, and cleans the surfaces of the plurality of solar cell modules P. is there. Specifically, while traveling along the direction in which the plurality of solar cell modules P of the solar cell array LP are arranged, in other words, along the axial direction of the swing axis SS of the gantry MT, the plurality of solar cell modules P It cleans the surface of the.
  • the cleaning robot 1 includes a chassis frame 2 and a traveling unit 20 for running the chassis frame 2 on the solar cell module P of the solar cell array LP. Further, the cleaning robot 1 includes a cleaning unit 10 that cleans the surface of the solar cell module P when traveling on the solar cell module P by the traveling unit 20, a driving unit 30 that drives the cleaning unit 10 and the traveling unit 20. It includes a control mechanism 40 that controls the operation of the drive unit 30. Further, the cleaning robot 1 is provided with a support mechanism 50 that supports the running of the cleaning robot 1 along the axial direction of the central axis S1 of the swing axis SS.
  • the chassis frame 2 is a member whose axial direction (horizontal direction in FIGS. 2 and 3) is longer than its width (vertical direction in FIGS. 2 and 3).
  • the chassis frame 2 is provided with a cleaning unit 10, a traveling unit 20, and a driving unit 30. Further, first and second support portions 51 and 52 of the support mechanism 50 are attached to both shaft ends of the chassis frame 2, respectively.
  • the control mechanism 40 is also provided in the chassis frame 2.
  • a handle 2f used by an operator to lift the cleaning robot 1 is provided at the central portion of the chassis frame 2 in the axial direction. Further, the handles may be provided at both ends of the chassis frame 2 in the axial direction. That is, instead of the handle 2f at the center of the chassis frame 2 in the axial direction, or together with the handle 2f at the center of the chassis frame 2 in the axial direction, the operator cleans the robot at both ends in the axial direction of the chassis frame 2.
  • a handle used for lifting 1 may be provided.
  • the cleaning unit 10 includes a rotating brush 12 on the lower surface side of the chassis frame 2.
  • the length of the brush 12 in the axial direction is longer than the length between the first and second ends P1 and P2 of the solar cell module P (the length in the direction orthogonal to the swing axis SS).
  • the brush 12 includes a shaft portion and a brush portion having a brush or the like provided around the shaft portion, and is provided so that the rotation axis thereof is parallel to the axial direction of the chassis frame 2. Both shaft ends of the brush 12 are rotatably held by bearing portions 13 provided on the chassis frame 2. Then, one end of the shaft portion of the brush 12 (the left end portion in FIG. 2) is connected to the drive unit 30, and when the brush 12 is rotated by the drive unit 30, the surface of the solar cell module P is swept. It can be cleaned.
  • the rotation direction of the brush 12 is the direction in which the tip of the brush portion (tip of the brush or the like) of the brush 12 sweeps the surface of the solar cell module P (that is, the direction in which the tip of the brush portion moves on the surface of the solar cell module P). However, it should match the traveling direction of the cleaning robot 1. For example, as shown in FIG. 12A, when the cleaning robot 1 moves from left to right on the solar cell array LP, the direction in which the tip of the brush portion sweeps the surface of the solar cell module P is also from the left. Rotate the brush 12 so that it is to the right. Then, the dust and the like swept by the brush 12 can be swept forward in the traveling direction of the cleaning robot 1 (to the right in FIG. 12) and moved.
  • the structure of the bearing portion 13 is not limited as long as the end portion of the brush 12 can be rotatably held. In particular, it is desirable that the end portion of the brush 12 is held swingably. With such a configuration, even if vibration occurs when the brush 12 of the cleaning unit 10 rotates, the bearing unit 13 can absorb the vibration and deformation due to the rotation. Then, it is possible to prevent the bearing portion 13, the brush 12, the chassis frame 2, and the like from being damaged by the touching of the brush 12.
  • the bearing portion 13 has a structure in which the bearing is held by a general gimbal structure or the like, the end portion of the brush 12 can be held swingably by the bearing portion 13.
  • the bearing portion 13 if a spherical bearing is adopted as the bearing, the end portion of the brush 12 can be held swingably without the structure of the bearing portion 13 itself having a gimbal structure or the like as described above. That is, there is an advantage that the structure of the bearing portion 13 can be simplified.
  • the bearing portion 13 includes a bearing (ball bearing or the like) that holds the end portion of the brush 12, and a bearing case that holds the bearing and connects the bearing to the chassis frame 2, the bearing portion 13
  • An elastic material such as rubber or a spring may be arranged between the bearing case and the bearing case. Then, since the elastic material can absorb the vibration caused by the rotation of the brush 12, the damage to the brush 12 and the chassis frame 2 caused by the rotation of the brush 12 can be suppressed, and the rotation resistance can be reduced.
  • FIGS. 1 to 3 describe the case where the cleaning unit 10 has one brush 12, the cleaning unit 10 may have a plurality of brushes 12.
  • the cleaning unit 10 may have two brushes 12.
  • two brushes 12 may be provided on the lower surface side of the chassis frame 2 so as to sandwich the traveling portion 20 described later from the front and rear in the traveling direction.
  • the two brushes 12 may be rotated so that their rotation directions are the same, or they may be rotated so that their rotation directions are opposite to each other.
  • the tips of the brush portions (tips of brushes and the like) of the two brushes 12 sweep the surface of the solar cell module P.
  • the cleaning robot 1 It is desirable to rotate the cleaning robot 1 so as to coincide with the traveling direction.
  • the tip of the brush portion (the tip of the brush or the like) of the brush 12 located in front of the traveling direction of the two brushes 12 is the sun.
  • the tip of the brush portion (the tip of the brush or the like) is the solar cell module P. It is desirable to rotate the surface of the cleaning robot 1 so that the direction of sweeping is opposite to the traveling direction of the cleaning robot 1.
  • a traveling portion 20 is provided on the lower surface of the chassis frame 2.
  • the traveling unit 20 includes two traveling bodies 21.
  • the two traveling bodies 21 are provided so that when the cleaning robot 1 is placed on the surface of the solar cell module P in a state where the surface of the solar cell module P is horizontal, the two traveling bodies 21 can be arranged at positions sandwiching the swing shaft SS. (See FIGS. 10 and 12 (B)). That is, when the cleaning robot 1 is placed on the surface of the solar cell module P, the two traveling bodies 21 can apply the load from the cleaning robot 1 to the position where the swing shaft SS is sandwiched with respect to the solar cell module P. It is provided in.
  • the connecting portion CE of the solar cell array LP is arranged at a position where the distance L2 from the middle to the swing axis SS is about 50 to 55% of L.
  • the portion of each traveling body 21 in contact with the solar cell array LP is a swing axis from the intermediate line in the width direction of each traveling body 21.
  • the distance L1 to the SS is provided so as to be 1/4 to 3/4 of the distance L.
  • the distance L1 is provided so as to be 1/8 to 3/8 of the distance from the first end portion P1 to the second end portion P2 of the solar cell module.
  • the traveling body 21 does not come into contact with the vicinity of the first end portion P1 and the second end portion P2 of the solar cell module.
  • the traveling body 21 does not come into contact with the region of about 1/5 or less of the distance L from the first end portion P1 and the second end portion P2.
  • the distance between the two traveling bodies 21 is 1/1 of the distance from the first end P1 to the second end P2 of the solar cell module. It is desirable to provide it so that it is 4 to 3/4.
  • each traveling body 21 is a solar cell array thereof.
  • the outer edge of the portion in contact with the LP is about 30 to 50 mm inward from the inner edge of the connecting portion CE. It is desirable to be able to drive.
  • the two traveling bodies 21 may be arranged so as to be located outside the connecting portion CE.
  • each traveling body 21 has an inner edge of a portion in contact with the solar cell array LP (the inner edge of the traveling body 21 in the width direction, which corresponds to the inner edge of the traveling wheel 22 in FIG. 10) is a connecting portion. It is desirable that the vehicle travels about 30 to 50 mm outward from the outer edge of the CE. Then, one of the two traveling bodies 21 may be located inside the connecting portion CE and the other may be located outside the connecting portion CE.
  • each traveling body 21 travels at a position where the portion in contact with the solar cell array LP is not so far from the connecting portion CE of the solar cell array LP.
  • the traveling body 21 travels outside the connecting portion CE, it travels in the vicinity of the connecting portion CE and has a distance L of 1 from the first end portion P1 and the second end portion P2 of the solar cell module. It is desirable to travel at a position closer to the connecting portion CE than in a region of about / 5 or less.
  • the above range includes the case where the traveling body 21 is in a state of traveling on the connecting portion CE.
  • the traveling body 21 may travel on the connecting portion CE as long as the cleaning by the cleaning unit 10 can be continued.
  • the traveling body 21 has traveling wheels 22, the brush 12 of the cleaning unit 10 can sweep the surface of the solar cell module P even when the traveling wheels 22 are located on the connecting portion CE. Then, the traveling body 21 may travel on the connecting portion CE.
  • it is desirable that the traveling body 21 is arranged in the above range and in a range in which the traveling body 21 does not travel on the connecting portion CE.
  • the traveling body 21 travels on the connecting portion CE, the two traveling bodies 21 and 21 are used to prevent the brush 12 from tilting with respect to the surface of the solar cell module P (or to reduce the tilt). However, it is desirable that all of them run on the connecting portion CE.
  • the traveling unit 20 has the same configuration as the above.
  • the rigidity of the solar cell module P is relatively high. Even in that case, it is desirable that each traveling body 21 travels at a position not so far from the connecting portion CE of the solar cell array LP.
  • the two traveling bodies 21 are provided at positions symmetrical with respect to the intermediate line 2CL in the axial direction of the chassis frame 2 (see FIGS. 2 and 3). That is, when the cleaning robot 1 is placed on the surface of the solar cell module P in a state where the surface of the solar cell module P is horizontal, two traveling bodies 21 are provided so as to be symmetrical with respect to the swing axis SS. Is more desirable. More specifically, the cleaning robot 1 is placed on the surface of the solar cell module P in a state where the surface of the solar cell module P is horizontal. At this time, the cleaning robot 1 is placed on the surface of the solar cell module P so that the intermediate line 2CL of the chassis frame 2 (see FIGS.
  • the distance L3 (see FIG. 12B) from the intermediate line 2CL of the chassis frame 2 to the intermediate line in the width direction of each traveling body 21 is 1/4 to 3/4 of the distance L. It is provided so as to be. Then, if the cleaning robot 1 is placed on the surface of the solar cell module P so as to be in the basic state, the distance L1 from the intermediate line in the width direction of each traveling body 21 to the swing axis SS is 1/4 of the distance L. It becomes ⁇ 3/4.
  • the two traveling bodies 21 do not necessarily have to be arranged symmetrically with respect to the swing shaft SS as long as the load can be applied symmetrically to the solar cell module P with the swing shaft SS interposed therebetween. .. That is, when the cleaning robot 1 is mounted on the surface of the solar cell module P, the distances from the central axis S1 of the swing axis SS to the two traveling bodies 21 may be different. For example, it is assumed that the position of the entire center of gravity G of the cleaning robot 1 (see FIG. 9) is deviated from the middle line 2CL of the chassis frame 2 and the middle of the two traveling bodies 21.
  • the cleaning robot 1 may be placed on the surface of the solar cell module P so that the center of gravity of the cleaning robot 1 is at an appropriate position. Even in this case, it is desirable that the two traveling bodies 21 are arranged in the above-mentioned range.
  • Each traveling body 21 includes two traveling wheels 22 as traveling members for traveling on the surface of the solar cell module P.
  • Each traveling body 21 includes two traveling wheels 22 along the traveling direction of the cleaning robot 1, that is, the direction intersecting the rotation axis direction of the brush 12.
  • the two traveling wheels 22 are provided so that their rotation axes are parallel to each other and their traveling lines coincide with each other. In other words, the two traveling wheels 22 are provided so as to overlap each other when viewed from the traveling direction of the cleaning robot 1.
  • the two traveling wheels 22 may be provided so that their traveling lines deviate in a direction orthogonal to the traveling direction of the cleaning robot 1.
  • the portions of the two traveling wheels 22 that come into contact with the surfaces of the solar cell modules P when viewed from the traveling direction of the cleaning robot 1 may be arranged so as not to overlap each other.
  • the two traveling wheels 22 of the two traveling bodies 21, that is, the two traveling wheels of the two traveling bodies 21 so that the trapezoid is formed by the lines connecting the four traveling wheels 22. 22 may be arranged (see FIG. 21 (A)). With such a configuration, the load applied to a specific position on the solar cell module P can be dispersed.
  • the two traveling wheels 22 arranged in the traveling direction do not pass through the same position of the solar cell module P, the cells, wiring, glass, etc. at the position where the traveling wheels 22 pass in the solar cell module P can be less likely to be damaged. it can.
  • the term "the portions of the two traveling wheels 22 in contact with the surface of the solar cell module P do not overlap each other" includes both a case where they do not completely overlap and a case where they slightly overlap each other. The slight overlap means that there is a slight overlap in the portion where the load applied from the traveling wheel 22 to the solar cell module P is small.
  • the two traveling wheels 22 are arranged so as to sandwich the position of the center of gravity G of the cleaning robot 1 in the traveling direction of the cleaning robot 1 (in other words, the width direction of the chassis frame 2) (see FIG. 9). More specifically, in the traveling direction of the cleaning robot 1 (in other words, when viewed from the axial direction of the chassis frame 2), the center of gravity G of the cleaning robot 1 is approximately on the intermediate line DL of the rotation axes of the two traveling wheels 22 (in other words, when viewed from the axial direction of the chassis frame 2). Two traveling wheels 22 are provided so as to be located (including the case where a deviation of about 60 mm or less occurs) (see FIG. 9).
  • the rotating shafts of the two traveling wheels 22 of the two traveling bodies 21 are connected to the drive shafts 36 and 36 of the drive unit 30, respectively, and are rotated by the rotation of the drive shafts 36 and 36.
  • the two traveling wheels 22 may use the drive shafts 36, 36 of the drive unit 30 as rotation shafts.
  • the traveling wheels 22 of each traveling body 21 contact the lower end of the traveling wheels 22 with the surface of the solar cell module P before the chassis frame 2. It is provided.
  • the diameter and width of the traveling wheel 22 are not particularly limited.
  • the traveling wheel 22 is provided so that a part of the tip (a portion located below) of the brush portion of the brush 12 comes into contact with the surface of the solar cell module P in a state of being in contact with the surface of the solar cell module P. Just do it.
  • the traveling wheels 22 do not have to have the same diameter and width, but those having the same diameter and width can stabilize the traveling. In particular, if the traveling wheels 22 of all the traveling bodies 21 have the same diameter and width, the traveling can be made more stable.
  • the structure and material of the traveling wheel 22 are not particularly limited. Use a material formed of general rubber or a resin material such as urethane resin, or a material provided with a resin material such as rubber or urethane resin in contact with the surface of the solar cell module P. be able to. That is, even if the traveling wheel 22 travels on the surface of the solar cell module P, the portion in contact with the surface of the solar cell module P is made of a material or hardness that does not easily damage the surface of the solar cell module P (glass, surface coating, etc.). It is desirable that the module is made of a flexible material.
  • the chassis frame 2 is provided with a drive unit 30 for driving the traveling wheels 22 of the two traveling bodies 21 of the brush 12 of the cleaning unit 10 and the traveling unit 20.
  • the drive unit 30 includes a drive source 32 (see FIG. 14), a battery 33 that supplies electric power to the drive source 32 and the like, and a transmission mechanism 35 that transmits the driving force of the drive source 32 to the brush 12 and the traveling wheels 22. ,have.
  • the drive source 32 is a known drive source such as a motor, and the battery 33 is also a general secondary battery or the like.
  • the drive source 32 and the battery 33 are not particularly limited, but a lightweight and compact one is desirable.
  • the transmission mechanism 35 includes drive shafts 36, 36 connected to the rotation shafts of the traveling wheels 22 of the two traveling bodies 21, and a transmission unit 37 that transmits the driving force of the drive source 32 to the rotation shafts. ..
  • the transmission unit 37 also has a configuration in which the driving force is transmitted to the brush 12. That is, both the traveling wheel 22 and the brush 12 of the traveling body 21 can be driven by one drive source.
  • the drive shafts 36 and 36 are provided on the chassis frame 2 in parallel with each other and substantially parallel to the rotation shaft of the brush 12.
  • the drive shafts 36, 36 drive the two traveling wheels 22, 22 of the two traveling bodies 21 and 21 of the traveling unit 20. That is, the two drive shafts 36, 36 are provided so that all four traveling wheels 22 are driven.
  • the two traveling wheels 22 and 22 of the two traveling bodies 21 and 21 have substantially coaxial rotation axes of the corresponding traveling wheels 22 in the axial direction of the chassis frame 2. It is provided as follows.
  • the corresponding traveling wheels 22 of the traveling bodies 21 and 21 are connected by a drive shaft 36, respectively.
  • Each drive shaft 36 is composed of a first drive shaft 36a and a second drive shaft 36b.
  • One end of the first drive shaft 36a is rotatably held by the transmission portion 37, and the other end is connected to the rotation shaft of one traveling wheel 22 of the traveling body 21 on the side closer to the transmission portion 37.
  • one end of the second drive shaft 36b is connected to the rotating shaft of the traveling wheel 22 of the traveling body 21 on the side closer to the transmission portion 37, and the other end of the traveling body 21 on the side far from the transmission portion 37 travels. It is connected to the rotating shaft of the ring 22. Therefore, when the driving force from the drive source 32 is transmitted to the drive shaft 36 (that is, the first drive shaft 36a) by the transmission unit 37, the drive shaft 36 similarly causes the corresponding traveling wheels 22 of the traveling bodies 21 and 21 to move. It is provided to rotate.
  • the transmission unit 37 transmits the driving force of the drive source 32 to the drive shafts 36 and 36 and the brush 12. Specifically, the driving force is transmitted to the drive shafts 36 and 36 so that they both rotate in the same direction and at the same rotation speed, while the brush 12 rotates in the opposite direction to the drive shafts 36 and 36 (
  • the transmission unit 37 is configured to transmit the driving force (preferably in the opposite direction and at a rotation speed faster than the drive shaft 36).
  • the driving source for driving the traveling wheels 22 and the brush 12 of the two traveling bodies 21 can be unified, so that the cleaning robot 1 can be reduced in weight. Moreover, if the rotations of the traveling wheels 22 and the brush 12 of the two traveling bodies 21 are adjusted as described above, the cleaning effect can be enhanced. That is, when the brush 12 rotates while the cleaning robot 1 runs on the surface of the solar cell module P, dust and the like on the surface of the solar cell module P are effectively swept out from the position where the brush 12 comes into contact. be able to.
  • the configuration in which the transmission unit 37 transmits the driving force of the drive source 32 to the drive shafts 36, 36 and the brush 12 is not particularly limited.
  • it may be composed of a gear mechanism, a belt pulley mechanism, or a combination of both.
  • the entire structure is composed of a belt pulley mechanism.
  • the configuration of the transmission unit 37 for example, the configuration shown in FIG. 8 can be adopted.
  • pulleys pr1 to pr3 are provided on the main shaft 32s of the drive source 32, one end of the drive shafts 36 and 36, and one end of the brush 12, respectively. Further, a reversing shaft 37s having a gear g2 meshed with the gear g1 of the main shaft 32s of the drive source 32 is provided. A pulley pr4 is also provided on the reversing shaft 37s. A belt B1 is wound around the pulleys pr1 and pr3, and a belt B2 is wound around the pulleys pr2 and pr4. Therefore, if the spindle 32s of the drive source 32 is rotated, the brush 12 connected to the spindle 32s of the drive source 32 by the belt B1 can be rotated.
  • the reversing shaft 37s rotates when the main shaft 32s of the drive source 32 rotates
  • the reversing shaft 37s and the drive shafts 36, 36 connected by the belt B2 can also be rotated in the same direction and at the same rotation speed.
  • the pulley pr1 of the main shaft 32s of the drive source 32 has substantially the same size as the pulley pr3 of the brush 12, but the pulley pr4 of the reversing shaft 37s has a smaller diameter than the pulley pr2 of the drive shafts 36 and 36.
  • the gear g2 of the reversing shaft 37s has a larger diameter than the gear g1 of the main shaft 32s of the drive source 32. Therefore, when the main shaft 32s of the drive source 32 rotates, the brush 12 rotates at substantially the same rotation speed as the main shaft 32s of the drive source 32, but the drive shafts 36 and 36 rotate slower than the main shaft 32s of the drive source 32. Then, the brush 12 can be rotated faster than the drive shafts 36, 36, in other words, the traveling wheels 22 of the traveling unit 20.
  • the control mechanism 40 controls the operation of the drive unit 30 to control the running and cleaning state of the cleaning robot 1.
  • the control mechanism 40 acquires a control unit 41 that controls the running and cleaning state of the cleaning robot 1 and information for the control unit 41 to control the running and cleaning state of the cleaning robot 1. It is composed of a detection unit having each sensor and a detection unit. Therefore, when the information from each sensor of the detection unit is input to the control unit 41, the control unit 41 controls the operation of the drive source 32 of the drive unit 30 to change the traveling direction and traveling speed of the cleaning robot 1. .. Further, the control unit 41 also controls the traveling speed and traveling stop of the cleaning robot 1 so that the cleaning robot 1 does not fall from the solar cell module P.
  • the control unit 41 controls the operation of the drive source 32 of the drive unit 30 based on the signal detected by the edge detection unit 42, thereby causing the solar cell module P. It is possible to prevent the cleaning robot 1 from falling.
  • the control unit 41 stops the operation of the drive source 32 or works by an abnormality alarm (for example, a buzzer). It may have a function of notifying a person of an abnormality.
  • the drive source 32 of the drive unit 30, the battery 33, the transmission mechanism 35, and the control unit 41 of the control mechanism 40 are provided on the chassis frame 2 so that the center of gravity G of the cleaning robot 1 is arranged as follows. ..
  • the center of gravity G of the cleaning robot 1 is the sun of the solar cell array LP, and the two traveling wheels 22 and 22 of the two traveling bodies 21 and 21 of the traveling unit 20 are the sun. It is provided so as to be located within the range GA surrounded by the position X1 in contact with the battery module P.
  • the cleaning robot 1 can be stabilized without providing support members or the like (for example, traveling wheels) that support both ends of the chassis frame 2 of the cleaning robot 1. It becomes easy to run on the surface of the solar cell module P in the state. Moreover, deformation of the solar cell module P due to the weight of the cleaning robot 1 can be prevented. For example, when the cleaning robot 1 is placed on the surface of the solar cell module P, the bending of the solar cell module P due to the load of the cleaning robot 1 can be reduced. Then, since the load applied to the cells, wiring, glass, etc. of the solar cell module P can be reduced, damage to the cells, wiring, glass, etc. can be prevented.
  • support members or the like for example, traveling wheels
  • the rigidity of the chassis frame 2 can be lowered to some extent.
  • a lightweight material can be adopted although the strength is not so high, so that the weight of the chassis frame 2 can be reduced.
  • the method of setting the center of gravity of the cleaning robot 1 to the above position is not particularly limited.
  • the drive source 32 of the drive unit 30 and the transmission unit 37 of the transmission mechanism 35 are arranged at the end of the chassis frame 2 (the left end in FIG. 2), and another end of the battery 33 and the control unit 41 of the control mechanism 40. It is arranged (at the right end in FIG. 2).
  • the center of gravity G is likely to be located within the range GA, although it depends on the weight of each part.
  • the center of gravity G of the entire cleaning robot 1 may be located within the range GA, but is approximately on the intermediate line 2CL in the width direction of the chassis frame 2 (including the case where the deviation is within about 30 mm). It is desirable that it is arranged.
  • the drive source 32 of the drive unit 30 and the battery 33 may be arranged at the center of the chassis frame 2.
  • the drive shafts 36, 36 that transmit the driving force from the drive source 32 to the traveling wheels 22 of the two traveling bodies 21 can be shortened.
  • the drive source 32 is arranged at the center of the chassis frame 2
  • a transmission unit 37B for supplying the driving force of the drive source 32 to the brush 12 is provided at the end of the chassis frame 2, the brush 12 can be provided.
  • a transmission unit 37B as shown in FIG. 20 is provided, and one pulley Pr5 (drive pulley Pr5) and the main shaft of the drive source 32 are connected by a connecting shaft 37r or the like.
  • the drive pulley Pr5 and the pulleys Pr6, 7 (driven pulleys Pr6, 7) connected to the shaft of each brush 12 can be connected by the timing belts B4 and B5 to form a chassis.
  • the drive source 32 arranged at the center of the frame 2 can rotate the two brushes 12 in the same direction so as to have a predetermined rotation speed. If there is only one brush 12, a driven pulley may be provided at the end of the brush 12.
  • the drive source 32 of the drive unit 30 may be provided with two drive sources 32a for driving the traveling wheels 22 of the traveling body 21 and a drive source 32b for driving the brush 12.
  • the drive source 32a may be arranged at the center of the chassis frame 2
  • the drive source 32b may be provided at the end of the chassis frame 2.
  • the drive source 32 and the battery 33 of the drive unit 30 may be arranged in the central portion of the chassis frame 2.
  • the center of gravity G can be easily positioned within the range GA.
  • the first support portion 51 includes two free rollers 51a and 51a having the same shape.
  • the two free rollers 51a and 51a are provided so as to be arranged at intervals along the traveling direction of the cleaning robot 1. Further, the two free rollers 51a and 51a have a rotation axis substantially orthogonal to the plane parallel to both the traveling direction of the cleaning robot 1 and the plane parallel to both the rotation axis direction of the brush 12 (referred to as a reference parallel plane).
  • a reference parallel plane referred to as a reference parallel plane.
  • the two free rollers 51a and 51a are provided so that when the cleaning robot 1 is placed on the surface of the solar cell module P, its rotation axis is substantially parallel to the normal direction of the surface of the solar cell module P. Has been done.
  • the distance from the lower surface of the chassis frame 2 (the surface facing the surface of the solar cell module P) to the lower end surfaces of the two free rollers 51a and 51a is from the lower surface of the chassis frame 2. It is provided so as to be slightly longer than the distance to the lower end of the traveling wheel 22 of the traveling portion. That is, when the cleaning robot 1 is placed on the surface of the solar cell module P, the two free rollers 51a and 51a are provided so that their peripheral surfaces face the first end surface of the solar cell module P. There is.
  • the second support portion 52 also includes two free rollers 52a and 52a having the same shape.
  • the two free rollers 52a and 52a are provided so as to be arranged at intervals along the traveling direction of the cleaning robot 1. Further, these two free rollers 52a and 52a also have a rotation axis substantially orthogonal to the reference parallel plane.
  • the two free rollers 52a and 52a are provided so that when the cleaning robot 1 is placed on the surface of the solar cell module P, its rotation axis is substantially parallel to the normal direction of the surface of the solar cell module P. Has been done.
  • the two free rollers 52a and 52a also have two free rollers from the lower surface of the chassis frame 2 (the surface facing the surface of the solar cell module P), similarly to the two free rollers 51a and 51a of the first support portion 51.
  • the distances to the lower end surfaces of the 52a and 52a are provided so as to be slightly longer than the distance from the lower surface of the chassis frame 2 to the lower ends of the traveling wheels 22 of the traveling portion. That is, when the cleaning robot 1 is placed on the surface of the solar cell module P, the two free rollers 52a and 52a are provided so that their peripheral surfaces face the second end surface of the solar cell module P. There is.
  • the first support unit 51 and the second support unit 52 have two free rollers 51a, 51a of the first support unit 51 and two free rollers 52a of the second support unit 52 in the axial direction of the chassis frame 2.
  • the distance between the 52a is set to be longer than the distance between both ends of the solar cell module P (for example, about 20 to 30 mm longer). That is, when the cleaning robot 1 is placed on the surface of the solar cell module P so that the first support unit 51 and the second support unit 52 are in the basic state, each end surface of the solar cell module P and the first support unit 51
  • the chassis frame 2 is provided with a gap between the free rollers 51a and 51a and the two free rollers 52a and 52a of the second support portion 52, respectively.
  • first support section 51 and the second support section 52 either the two free rollers 51a, 51a of the first support section 51 or the two free rollers 52a, 52a of the second support section 52 are solar cell modules.
  • the distance between the free rollers 51a and 52a is adjusted so that the two traveling bodies 21 can be arranged at positions sandwiching the swing shaft SS even when they are in contact with any of the end faces of P.
  • the cleaning robot 1 Since the edge of the solar cell module P is usually provided parallel to the axial direction of the swing shaft SS, the cleaning robot 1 is driven parallel to the axial direction of the swing shaft SS by the guidance of the support mechanism 50. Can be done. Further, even if the edge of the solar cell module P is tilted with respect to the axial direction of the swing shaft SS, the cleaning robot 1 cannot tilt more than the state in which the free roller is in contact with the end face of the solar cell module P. Even if the edge of the solar cell module P is tilted with respect to the axial direction of the swing shaft SS, it is at most about 0.5 degrees. Therefore, if the support mechanism 50 as described above is provided, the cleaning robot 1 can be moved in the direction along the axial direction of the swing axis SS while preventing the cleaning robot 1 from falling from the solar cell module P. Can be done.
  • the two free rollers 51a and 51a may be provided so that their rotation axes intersect with the reference parallel plane, and are not necessarily orthogonal to each other. That is, when the cleaning robot 1 travels obliquely with respect to the axial direction of the swing axis SS, the two free rollers 51a and 51a come into contact with the end faces of the solar cell module P and set the traveling direction of the cleaning robot 1 to the sun. It suffices if it is provided so that it can be corrected in the direction along the edge of the battery module P.
  • the two free rollers 51a and 51a extend from the position farthest from the lower surface of the chassis frame 2 to the lower surface of the chassis frame 2 in the two free rollers 51a and 51a.
  • the distance may be slightly longer than the distance from the lower surface of the chassis frame 2 to the lower end of the traveling wheel 22 of the traveling portion.
  • the two free rollers 52a and 52a may also be provided so that their rotation axes intersect the reference parallel plane, and are not necessarily orthogonal to each other. That is, when the cleaning robot 1 travels obliquely with respect to the axial direction of the swing axis SS, the two free rollers 52a and 52a come into contact with the end faces of the solar cell module P and set the traveling direction of the cleaning robot 1 to the sun. It suffices if it is provided so that it can be corrected in the direction along the edge of the battery module P.
  • the two free rollers 52a and 52a extend from the position farthest from the lower surface of the chassis frame 2 to the lower surface of the chassis frame 2 in the two free rollers 52a and 52a.
  • the distance may be slightly longer than the distance from the lower surface of the chassis frame 2 to the lower end of the traveling wheel 22 of the traveling portion.
  • the free rollers 51a and 52a may have a damper mechanism that moves the free rollers 51a and 52a along the direction of the force when a certain force or more is applied from the direction intersecting the rotation axis. That is, the free rollers 51a and 52a may be attached to the chassis frame 2 via a damper mechanism that holds the rotation axis of the free rollers 51a and 52a so as to be movable along the axial direction of the brush 12. If such a damper mechanism is provided, even if the step between the end faces of the adjacent solar cell modules P becomes larger than expected, the free rollers 51a and 52a can overcome the step between the end faces of the solar cell modules P. Become.
  • the number of free rollers provided in the first support section 51 and the second support section 52 of the support mechanism 50 is not particularly limited.
  • One free roller may be provided for each of the support portions 51 and 52, or three or more free rollers may be provided for each. Further, the number of free rollers provided in each of the support portions 51 and 52 may be different. For example, when the cleaning robot 1 travels on the solar cell module P in a state where the solar cell module P is tilted, two or more free rollers are provided on the support portion on the end side located above. , Only one free roller may be provided on the support portion on the end side located below.
  • the first support section 51 and the second support section 52 of the support mechanism 50 do not have to use the free rollers as described above as long as they can guide the movement along the end face of the solar cell module P.
  • a plate-shaped member having a small surface sliding resistance may be provided so that its surface faces each end surface of the solar cell module P to form the first support portion 51 and the second support portion 52.
  • the end portion of the plate-shaped member in the traveling direction of the cleaning robot 1 is formed so as to be separated from the end surface of the solar cell module P toward the tip end. That is, the plate-shaped member is formed so that the tip is curved like a ski plate. Then, even if it is a plate-shaped member, it becomes easy to get over a step between adjacent solar cell modules P.
  • the reference parallel plane is a plane parallel to both the traveling direction of the cleaning robot 1 and the rotation axis direction of the brush 12.
  • a surface parallel to both the traveling direction of the cleaning robot 1 and the axial direction of the chassis frame 2 corresponds to a reference parallel surface.
  • a plane parallel to both the traveling direction of the cleaning robot 1 and the direction intersecting the traveling direction of the cleaning robot 1 in a plan view corresponds to a reference parallel plane.
  • the reference parallel surface becomes a surface substantially parallel to the surface of the solar cell module P.
  • the reference parallel plane is a plane parallel to the surface of the solar cell module P in the case where the bending does not occur (target plane). Means. Further, the reference parallel plane also includes a case where there is a slight inclination (up to about 0.1 degree) with respect to the surface of the solar cell module P and the target plane when it does not bend.
  • the support mechanism 50 may have the first support portion 51 and the second support portion 52 at both ends of the chassis frame 2, but the support portion is one end portion of the chassis frame 2. It may be provided only in. That is, the support mechanism 50 may be provided with only one of the first support unit 51 and the second support unit 52.
  • the solar cell array LP A support portion may be provided only at the end portion of the chassis frame 2 located on the upper end portion (in FIG. 13B, the solar cell module P is located on the side of the first end portion P1).
  • the cleaning robot 1 is placed on the solar cell so that the support portion is arranged on the end side located above the solar cell array LP. It may be placed on the array LP.
  • the support unit may adopt the same structure as the first support unit 51 and the second support unit 52 as described above.
  • the cleaning robot 1 Since the cleaning robot 1 has the above-described configuration, the cleaning robot 1 can clean the surface of the solar cell module P of the solar cell array LP.
  • the cleaning robot 1 cleans the solar cell module P in a state where the surface is inclined (for example, about 5 ° with respect to the horizontal)
  • the cleaning robot 1 can clean the surface of the solar cell module P.
  • all the traveling wheels 22 are two of the solar cell array LP.
  • the case where it is arranged so as to be located between the connecting portions CE will be described.
  • the case where the two traveling bodies 21 and 21 are arranged so as to be located between the connecting portion CE and the swing shaft SS when viewed from the traveling direction of the cleaning robot 1 will be described. ..
  • the cleaning robot 1 is placed on the surface of the solar cell module P.
  • the free roller 51a of the first support portion 51 is arranged so as to be in contact with the end face located above the solar cell module P.
  • the traveling direction of the cleaning robot 1 and the axial direction of the swing shaft SS of the gantry MT can be substantially matched.
  • all of the traveling wheels 22 of the two traveling bodies 21 and 21 were placed on the surface of the solar cell module P so as to be located between the two connecting portions CE of the solar cell array LP and the swing shaft SS. It becomes a state. Therefore, deformation of the solar cell module P due to the weight of the cleaning robot 1 can be suppressed.
  • the cleaning robot 1 When the cleaning robot 1 is operated in the above state, the cleaning robot 1 moves along the axial direction of the swing axis SS while cleaning the surface of the solar cell module P with the brush 12. At this time, since the support mechanism 50 is provided, the cleaning robot 1 can be moved along the axial direction of the swing shaft SS.
  • the free roller of the support mechanism 50 may not come into contact with any end surface of the solar cell module P. .. Even in this case, if the traveling direction of the cleaning robot 1 is tilted from the axial direction of the swing shaft SS, any free roller of the support mechanism 50 comes into contact with any end face of the solar cell module P. Therefore, the traveling direction of the cleaning robot 1 can be returned to traveling in the axial direction of the swing shaft SS.
  • control mechanism 40 of the cleaning robot 1 detects that the cleaning robot 1 has reached the other end of the solar cell array LP, the control mechanism 40 travels the cleaning robot 1 before the traveling wheels 22 are removed. To stop. Then, the cleaning of the solar cell array LP is completed.
  • the brush 12 may be provided on the side biased to one side with respect to the width direction of the chassis frame 2 (the traveling direction of the cleaning robot 1). desirable.
  • the position where the brush portion of the brush 12 contacts the surface of the solar cell module P is the position X1 where the traveling wheel 22 of the traveling body 21 of the traveling portion 20 contacts the surface of the solar cell module P (FIG. 9A). It is desirable to provide the brush 12 so that it is located outside the (see). That is, it is desirable to provide the brush 12 so that the position where the surface of the solar cell module P is substantially cleaned by the brush 12 is located outside the position X1.
  • the cleaning robot 1 When the brush 12 is provided in this way, if the cleaning robot 1 is operated as follows, the cleaning robot 1 can clean almost the entire surface of the solar cell array LP, and the cleaning robot 1 can be easily moved. You get the advantage of becoming.
  • the cleaning robot 1 is placed on the solar cell module P located at one end of the solar cell array LP.
  • the brush 12 is arranged so as to be located on the other end side of the solar cell array LP with respect to the traveling body 21. That is, the brush 12 is arranged so as to be located in front of the cleaning robot 1 in the traveling direction. If the cleaning robot 1 is run in this state, the surfaces of the plurality of solar cell modules P can be sequentially cleaned by the brush 12.
  • the cleaning robot 1 reaches the other end of the solar cell array LP. Then, the control mechanism 40 of the cleaning robot 1 detects that the cleaning robot 1 has reached the other end of the solar cell array LP, and the cleaning robot 1 starts traveling in the direction opposite to the traveling direction so far.
  • the cleaning robot 1 stops moving in the traveling direction before the traveling wheel 22 of the traveling body 21 derails, but the brush 12 is arranged in front of the traveling direction and outside the traveling wheel 22. .. Therefore, the brush 12 can clean up to the other end of the solar cell module P located at the other end of the solar cell array LP.
  • the cleaning robot 1 traveling in the opposite direction eventually reaches one end of the solar cell array LP, that is, the end where cleaning has started. Then, the control mechanism 40 of the cleaning robot 1 detects that the cleaning robot 1 has reached one end of the solar cell array LP, and the cleaning robot 1 moves before the traveling wheels 22 of the traveling body 21 are derailed. Is stopped and cleaning is completed. That is, the cleaning of one solar cell array LP is completed by the cleaning robot 1 reciprocating once. It should be noted that one solar cell array LP may be reciprocated a plurality of times for one cleaning.
  • the cleaning robot 1 that has returned to one end of the solar cell array LP is replaced with the solar cell array LP to be cleaned next by the operator.
  • the swing axes SS of the plurality of solar cell array LPs are arranged so as to be arranged in parallel (see FIG. 13). Therefore, if the adjacent solar cell array LP is selected as the solar cell array LP to be cleaned next in the direction intersecting the swing axis SS, the end portion on the same side as the previously cleaned solar cell array LP can be selected.
  • the next solar cell array LP can be cleaned. That is, even if the operator does not move along the axial direction of the swing axis SS of the solar cell array LP, the operator can transfer the cleaning robot 1 between the adjacent solar cell array LPs.
  • the cleaning robot 1 When only one brush 12 of the cleaning unit 10 of the cleaning robot 1 is provided, one end of the solar cell module P located at one end of the solar cell array LP cannot be cleaned by the cleaning robot 1. .. However, the part that cannot be cleaned is at most about the width of the cleaning robot 1. Moreover, since the cleaning robot 1 is the end portion of the solar cell array LP on the returning side, the entire solar cell array LP can be cleaned if the operator cleans only that portion.
  • the two traveling bodies 21 of the traveling unit 20 sandwich the swing shaft SS. It is provided so that it can be placed in a position. That is, the two traveling bodies 21 are arranged at a certain distance in the axial direction of the chassis frame 2 of the cleaning robot 1.
  • the distance between the two traveling bodies 21 may be fixed, or the distance may be adjustable. That is, the position of the traveling body 21 in the axial direction of the chassis frame 2 may be adjusted (see FIG. 12B).
  • the position 2 is set to an appropriate position according to the solar cell module P. It becomes possible to arrange one traveling body 21. For example, when the distance from the swing shaft SS to the connecting portion CE is short, the distance between the two traveling bodies 21 is shortened, and when the distance from the swing shaft SS to the connecting portion CE is long, the two traveling bodies are shortened. Increase the interval between 21. Then, even if the distance from the swing shaft SS to the connecting portion CE is different, the relative positional relationship between the traveling body 21 and the connecting portion CE can be adjusted to be substantially the same.
  • the distance from one connecting portion CE to the traveling body 21 and the distance from the other connecting portion CE to the traveling body 21 are different. Even in this case, if the positions of the two traveling bodies 21 are appropriately adjusted, the cleaning robot 1 can be stably traveled along the surface of the solar cell module P.
  • the structure for adjusting the position of the traveling body 21 is not particularly limited.
  • the traveling wheels 22 of the traveling body 21 can be moved along the drive shaft 36 and fixed at a desired position. Then, the positions of the two traveling bodies 21 (that is, the positions of the traveling wheels 22) can be appropriately adjusted.
  • the traveling body 21 has a supporting member for holding the traveling wheel 22, and the supporting member is detachably fixed to the chassis frame 2 with bolts or the like, a plurality of females are attached to the chassis frame 2. Provide screw holes, etc. Then, if the female screw hole for screwing the bolt or the like is changed, the position where the support member of the traveling body 21 is fixed to the chassis frame 2, that is, the positions of the two traveling bodies 21 (that is, the positions of the traveling wheels 22) are adjusted. can do.
  • the body of the support member may be slidable with respect to the chassis frame 2.
  • a rail may be provided on the chassis frame 2 to allow the body of the support member to slide with respect to the rail, or a shaft-shaped portion or the like may be provided on the chassis frame 2 itself so that the body of the support member can slide along the portion. It may be. In this case, the positions of the two traveling bodies 21 can be easily adjusted.
  • the first drive shaft 36a and the second drive shaft 36b may each have a function of changing the length.
  • the first drive shaft 36a and the second drive shaft 36b have a telescopic structure and can be fixed at a desired length, the lengths of the first drive shaft 36a and the second drive shaft 36b Can be changed freely.
  • the length of the drive shaft 36 can be changed, or a plurality of drive shafts 36 having different lengths can be used. You just have to prepare it. Then, it becomes possible to arrange the two traveling bodies 21 at appropriate positions according to the solar cell module P. Further, the length of the drive shaft 36 may be constant, a position fixing member may be provided on the traveling wheel 22, and the traveling wheel 22 may be fixed at a desired position on the drive shaft 36 by the position fixing member. For example, if a position fixing member having a general mechanical lock structure is used, the traveling wheel 22 can be released from being fixed to the drive shaft 36 and the traveling wheel 22 can be moved along the drive shaft 36, which is desired.
  • the traveling wheel 22 can be fixed to the drive shaft 36 at the position of.
  • a structure including a hub into which the drive shaft 36 is inserted and an inner ring and an outer ring having a tapered cross section arranged between the hub and the drive shaft 36 can be mentioned. ..
  • the hub is used as a wheel of the traveling wheel 22, and the drive shaft 36 is inserted through the hub. Then, by adjusting the degree of overlap between the inner ring and the outer ring between the hub and the drive shaft 36, the hub (that is, the traveling wheel 22) can be fixed to the drive shaft 36, or the hub can move with respect to the drive shaft 36. Can be used.
  • the traveling unit 20 may have three or more traveling bodies 21.
  • the plurality of traveling bodies 21 can be provided at positions symmetrical with respect to the intermediate line 2CL in the axial direction of the chassis frame 2. If the traveling body 21 is an odd number, one of the traveling bodies 21 is arranged on the axial intermediate line 2CL of the chassis frame 2, and the other traveling body 21 is arranged on the axial intermediate line 2CL of the chassis frame 2. It may be provided so as to be symmetrical with respect to the other.
  • the traveling unit 20 has three or more traveling bodies 21, the range surrounded by the four traveling wheels 22 of the two traveling bodies 21 arranged at the farthest positions in the axial direction of the brush 12.
  • the center of gravity G of the cleaning robot 1 will be arranged.
  • the traveling unit 20 has three or more traveling bodies 21, the portion where the traveling wheels 22 of each traveling body 21 come into contact with the surface of the solar cell module P when viewed from the traveling direction of the cleaning robot 1. May be arranged so that they do not overlap each other (see FIG. 21 (B)). With such a configuration, the load applied to a specific position on the solar cell module P can be dispersed. That is, since the traveling wheels 22 of each traveling body 21 do not pass through the same position of the solar cell module P, it is possible to prevent the cells, wiring, glass, and the like at the positions where the traveling wheels 22 pass in the solar cell module P from being damaged. .. The same applies when each traveling body 21 employs a crawler or the like as described later as a traveling member.
  • the portion where the traveling wheels 22 of each traveling body 21 in contact with the surface of the solar cell module P do not overlap each other includes both a case where they do not completely overlap and a case where they slightly overlap each other. I'm out.
  • the slight overlap means that there is a slight overlap in the portion where the load applied from the traveling wheel 22 of each traveling body 21 to the solar cell module P is small.
  • the plurality of traveling bodies 21 are provided, if the number of traveling bodies 21 is an odd number, if the plurality of traveling bodies 21 are provided symmetrically with respect to the intermediate line 2CL in the axial direction of the chassis frame 2, at least one is provided.
  • the two traveling bodies 21 are arranged on the intermediate line 2CL in the axial direction of the chassis frame 2.
  • the plurality of traveling bodies 21 are symmetrical with respect to the swing axis SS, but at least one traveling body 21 is intermediate in the width direction thereof.
  • the distance from the line to the swing axis SS will not be located in the range of 1/4 to 3/4 of the distance L (see FIG. 21B).
  • the two traveling bodies 21 and 21 located on the outermost side in the direction intersecting the traveling direction of the cleaning robot 1 are moved from the intermediate line in the width direction to the swing axis SS. If the distance is provided so as to be located in the range of 1/4 to 3/4 of the distance L (see FIG. 21 (B)), the bending of the solar cell module P due to the load of the cleaning robot 1 is suppressed. (See FIG. 21 (B)).
  • the distance between the two outermost traveling bodies 21 and 21 is the first end portion of the solar cell module. It is desirable to provide the distance from P1 to the second end P2 so as to be 1/4 to 3/4 of the distance.
  • the traveling body 21 has two traveling wheels 22 and 22 arranged in the traveling direction of the cleaning robot 1 has been described, but even if the traveling body 21 has only one traveling wheel 22.
  • An appropriate number of traveling wheels 22 may be provided on each traveling body 21 according to the shape of the solar cell module P, the usage environment, and the like.
  • all three or more traveling wheels 22 may be driving wheels, or any two of them may be driving wheels. Further, as described above, when the traveling body 21 has a plurality of traveling bodies 21, even if the traveling body 21 has a plurality of traveling wheels 22, the number of driving wheels may be only one.
  • the center of gravity G is arranged on the two traveling wheels 22 located at the front and rear of the traveling direction of the cleaning robot 1 in each traveling body 21.
  • the traveling wheel 22 determines the range to be used.
  • the traveling body 21 has three or more traveling wheels 22, a portion of at least one traveling wheel 22 that comes into contact with the surface of the solar cell module P when viewed from the traveling direction of the cleaning robot 1 is formed. It may be arranged so as not to overlap with the portion of the other traveling wheel 22 that comes into contact with the surface of the solar cell module P. With such a configuration, the load applied to a specific position on the solar cell module P can be dispersed. That is, since all the traveling wheels 22 arranged in the traveling direction do not pass through the same position of the solar cell module P, the cells, wiring, glass, etc. at the position where the traveling wheels 22 pass in the solar cell module P can be less likely to be damaged. it can.
  • the portions of all traveling wheels 22 that come into contact with the surface of the solar cell module P may be arranged so as not to overlap each other.
  • the phrase "the portions where all the traveling wheels 22 are in contact with the surface of the solar cell module P do not overlap" includes both the case where they do not completely overlap and the case where they slightly overlap.
  • the slight overlap means that there is a slight overlap in the portion where the load applied from the traveling wheel 22 to the solar cell module P is small.
  • the traveling body 21 may have a plurality of traveling wheel sets 22s.
  • the traveling body 21 may have two traveling wheel sets 22s (see FIG. 10B). In this case, if the traveling directions of the traveling wheels 22 of the two traveling wheel sets 22s are arranged so as to be parallel to each other, the chassis frame 2 can be stably traveled.
  • two adjacent traveling wheel sets 22s in one traveling body 21 are separated from each other in a direction orthogonal to the traveling direction of the cleaning robot 1, and the distance between them is the length of the connecting portion CE (FIG. 10 (B)). It is desirable that the length is longer than the length in the left-right direction. Then, when the cleaning robot 1 is placed on the surface of the solar cell module P and traveled, the two traveling wheel sets 22s and 22s of the two traveling bodies 21 straddle any of the two connecting portions CE of the gantry MT. As described above, it is desirable that the vehicle is provided at a traveling position (see FIG. 10B). In this case, since the load of the cleaning robot 1 is applied to both sides of the connecting portion CE to the solar cell module P, there is a possibility that the bending of the solar cell module P due to the load of the cleaning robot 1 can be suppressed.
  • the traveling wheels 22 included in the traveling wheel set 22s located on the outermost side of each traveling body 21 determine the range in which the center of gravity G is arranged. It becomes the running wheel 22.
  • the traveling wheel set 22s has two traveling wheels 22
  • the number of traveling wheels 22 provided in each traveling wheel set 22s is not limited to two, and may be three or more. , May be one. Further, the number of traveling wheels 22 included in the two adjacent traveling wheel sets 22s may be the same or different. For example, in one traveling wheel set 22s, when there are two traveling wheels 22, the other traveling wheel 22 may be one or three or more.
  • the traveling member of the traveling body 21 is not limited to the traveling wheel 22 such as wheels, and may be any one that can travel on the surface of the solar cell module P.
  • a crawler or the like may be used as a traveling member.
  • the length of the portion where the crawler contacts the surface of the solar cell module P in the traveling direction of the cleaning robot 1 is between the adjacent solar cell modules P in the solar cell array LP. It is adjusted so that it is longer than the gap of.
  • the traveling member is a crawler, the distance from the position where the crawler is separated from the surface of the solar cell module P to the position where the auxiliary wheel 26, which will be described later, comes into contact with the surface of the solar cell module P (X2 in FIG. 9B) is also , Adjusted to be longer than the gap between adjacent solar cell modules P in the solar cell array LP.
  • the traveling unit 20 may have a pair of auxiliary traveling bodies 25, 25 located outside the chassis frame 2 in the width direction of the traveling body 21. If the pair of auxiliary traveling bodies 25, 25 arranged in this way are provided, the gap between the adjacent solar cell modules P can be stably overcome. That is, even if the gap between the adjacent solar cell modules P has a width that cannot be exceeded by the traveling wheel 22 of the traveling body 21 (for example, a width longer than the diameter of the traveling wheel 22), the cleaning robot 1 has a gap. You can get over it.
  • a pair of extension frames 2E and 2E extending in the width direction of the chassis frame 2 are provided, and the pair of extension frames 2E and 2E have a pair of traveling wheels 26.
  • Auxiliary traveling bodies 25 and 25 are provided, respectively.
  • the traveling wheels 26 are provided so that their rotating shafts are parallel to the rotating shafts of the two traveling wheels 22 and 22 of the traveling body 21.
  • the traveling wheels 26 of the pair of auxiliary traveling bodies 25, 25 are arranged so that the distance W2 with the adjacent traveling wheels 22 is equal to or more than the distance W1 between the two traveling wheels 22, 22 of the traveling body 21. (See FIG. 9B).
  • the distance W2 is arranged so as to be equal to or greater than the distance W1 between the positions X1 and X1 where the two traveling wheels 22 and 22 of the traveling body 21 come into contact with the surface of the solar cell module P (FIG. 9B). reference). Then, even if there is a gap between the adjacent solar cell modules P, at least one of the four wheels of the pair of auxiliary traveling bodies 25 and 25 and the two traveling wheels 22 and 22 of the traveling body 21 The three wheels can be maintained on the surface of the solar cell module P. Therefore, the cleaning robot 1 can stably overcome the gap between the adjacent solar cell modules P.
  • the number of the pair of auxiliary traveling bodies 25, 25 is not particularly limited, but it is desirable to provide the pair of auxiliary traveling bodies 25, 25 for each traveling body 21.
  • the traveling lines of the traveling wheels 26 of the pair of auxiliary traveling bodies 25 and 25 are provided so as to deviate from the traveling lines of the two traveling wheels 22 and 22 of the corresponding traveling bodies 21.
  • the traveling wheels 26 of the pair of auxiliary traveling bodies 25, 25 are provided so as not to overlap with the two traveling wheels 22, 22 of the corresponding traveling bodies 21. It is desirable to be there.
  • the traveling wheels 26 of the pair of auxiliary traveling bodies 25, 25 are provided so as to be located inward (see FIG. 2) with respect to the two traveling wheels 22, 22 of the corresponding traveling body 21, or the corresponding traveling. It is desirable that the body 21 is provided so as to be located outward with respect to the two traveling wheels 22, 22.
  • the traveling lines of the traveling wheels 26 of the pair of auxiliary traveling bodies 25 and 25 may be located on the traveling lines of the two traveling wheels 22 and 22 of the traveling body 21, but the traveling lines of the two traveling bodies are deviated from each other.
  • the cleaning robot 1 can stably overcome the gap between the adjacent solar cell modules P.
  • the traveling body 21 has three or more traveling wheels 22, if three or more traveling wheels 22 are driving wheels among the traveling wheels 22, the pair of auxiliary traveling bodies 25, 25 travels.
  • the distance between the wheels 26 and the traveling wheels 22 that are the closest driving wheels to the traveling wheels 26 is equal to or greater than the distance between the two traveling wheels 22 that are the closest of the driving wheels 22.
  • the distance between the traveling wheels 26 of the auxiliary traveling body 25 and the traveling wheels 22 which are adjacent driving wheels is equivalent to the distance between the two traveling wheels 22 (driving wheels) which are the closest in the traveling direction of the cleaning robot 1.
  • the traveling wheels 26 of the auxiliary traveling body 25 and the traveling wheels 22 which are adjacent driving wheels is equivalent to the distance between the two traveling wheels 22 (driving wheels) which are the closest in the traveling direction of the cleaning robot 1.
  • the traveling wheels 22 which are at least one driving wheel among the plurality of traveling wheels 22 of the traveling body 21 are arranged on the solar cell module P. Can be maintained. Then, the cleaning robot 1 can be moved by the driving force of the traveling wheels 22, which are the driving wheels arranged on the solar cell module P. Therefore, the cleaning robot 1 can stably overcome the gap between the adjacent solar cell modules P.
  • the traveling wheels 26 of the pair of auxiliary traveling bodies 25, 25 and the traveling wheels 22 that are adjacent driving wheels are used. The distance is arranged so as to be equal to or greater than the distance between the traveling wheels 22 serving as the two driving wheels.
  • the auxiliary traveling body 25 is provided on both sides of the cleaning robot 1 in the traveling direction, but the auxiliary traveling body 25 may be provided only on one side of the cleaning robot 1 in the traveling direction. .. Even in this case, when the cleaning robot 1 is moved in only one direction, the cleaning robot 1 can stably overcome the gap between the adjacent solar cell modules P. That is, the cleaning robot 1 runs on the solar cell module P so that the auxiliary traveling body 25 is located forward in the traveling direction. Then, even if the auxiliary traveling body 25 is provided only on one side in the traveling direction of the cleaning robot 1, the cleaning robot 1 can stably overcome the gap between the adjacent solar cell modules P.
  • the four traveling wheels 22 are provided so as to be located within a range in which the load applied to each traveling wheel 22 is substantially equal.
  • the fact that the loads applied to the four traveling wheels 22 are almost equal here means that, for example, when the traveling wheels 22 to which the maximum load is applied and the traveling wheels 22 to which the minimum load is applied are compared, the difference is within about 20%. Means the case.
  • the rotation axis of the brush 12 of the cleaning unit 10 does not necessarily have to be provided parallel to the axial direction of the chassis frame 2, and the brush 12 may be slightly tilted with respect to the axial direction of the chassis frame 2.
  • the rotation axis of the brush 12 may be tilted by about ⁇ 0.5 ° with respect to the axial direction of the chassis frame 2.
  • the cleaning unit 10 may have a plurality of brushes 12.
  • two brushes 12 may be provided.
  • the number of brushes 12 of the cleaning unit 10 is as small as possible.
  • the cleaning robot 1 of the present embodiment can be arranged along the solar cell array LP. The area that cannot be cleaned can be reduced when moving back and forth.
  • the brush 12 may be arranged behind the traveling wheel 22 in the traveling direction of the cleaning robot 1, or the two traveling wheels 22, 22 of the cleaning robot 1 may be provided. It may be provided so as to be located between.
  • the structure of the cleaning unit 10, that is, how the cleaning unit 10 cleans the solar cell module P of the solar cell array LP is not particularly limited.
  • the brush 12 not only a brush 12 having a brush on the rotating shaft, but also a cleaning member rotating around the shaft such as a member having a plate-shaped blade or a piece of cloth standing on the surface of the rotating shaft is used. You may.
  • brushes, blades, cloth pieces, etc. may be provided so as to line up on the surface of the rotation axis along the axial direction, or around the rotation axis along the surface of the rotation axis. They may be arranged in a spiral pattern.
  • the brush, the blade, and the cloth piece may be provided in only one row or in a plurality of rows on the surface of the rotating shaft.
  • brushes and the like may be provided in a double spiral shape.
  • a brush 12 having the entire surface or a part of the rotating shaft covered with a sponge-like member, or a brush 12 having a cloth attached to the entire surface or a part of the rotating shaft may be used.
  • a watering device spray nozzle or the like
  • a wiper blade spinr blade
  • a sheet of cloth or the like arranged so as to slide along the surface of the solar cell module P as the cleaning robot 1 moves.
  • a member may be provided to form the cleaning unit 10.
  • a vacuum cleaner suction type vacuum cleaner
  • an air nozzle for ejecting gas may be provided as the cleaning unit 10.
  • the control mechanism 40 includes a sensor for obtaining information that the control unit 41 controls the operation of the traveling unit 20. Examples of this sensor include the following sensors.
  • the control mechanism 40 may include an edge detection unit 42 that detects an end portion of the solar cell array LP (the end portion located in front of the cleaning robot 1 in the traveling direction). In this case, if the control unit 41 of the control mechanism 40 controls the operation of the traveling unit 20 based on the signal detected by the edge detection unit 42, it is possible to prevent the cleaning robot 1 from falling from the solar cell array LP. ..
  • the edge detection unit 42 includes a first detection unit 43 and a second detection unit 44.
  • both the first detection unit 43 and the second detection unit 44 are provided so as to be located on the central portion side of the axial end portion of the chassis frame 2 of the cleaning robot 1.
  • the positions where the first detection unit 43 and the second detection unit 44 are provided in the axial direction of the frame 2 are not particularly limited.
  • the first detection unit 43 is located at a position X1 in which the traveling wheel 22 located in front of the traveling body 21 of the traveling unit 20 in the traveling direction (specifically, the traveling wheel 22 located in front of the traveling direction is in contact with the surface of the solar cell module P). It is provided so as to be located in front of). Preferably, the first detection unit 43 is provided so as to be located at the frontmost position of the cleaning robot 1 in the traveling direction of the cleaning robot 1.
  • the second detection unit 44 is located behind the first detection unit 43 in the traveling direction of the cleaning robot 1 and in front of the traveling body 21 of the traveling unit 20 (specifically, in the front of the traveling direction).
  • the traveling wheel 22 is provided so as to be located in front of the position X1 in contact with the surface of the solar cell module P). That is, the second detection unit 44 is provided so as to be located between the first detection unit 43 and the position X1 in the traveling direction of the cleaning robot 1.
  • the first detection unit 43 and the second detection unit 44 are provided in any direction of the reciprocating movement. For example, when the cleaning robot 1 moves in any of the left-right directions in FIG. 11, as shown in FIG. 11, the first detection unit 43 and the second detection unit 43 are on both sides of the chassis frame 2 of the cleaning robot 1. 44 is provided.
  • control unit 41 of the control mechanism 40 controls the operation of the traveling unit 20 based on the signals detected by the first detection unit 43 and the second detection unit 44, and the cleaning robot 1 falls from the solar cell array LP.
  • a method for preventing this from occurring will be described with reference to FIG. Note that FIG. 11 describes a case where the cleaning robot 1 moves from the right side to the left side.
  • the cleaning robot 1 When the cleaning robot 1 further travels from the state shown in FIG. 11 (A), it eventually reaches the end of the solar cell array LP (FIG. 11 (B)).
  • the first detection unit 43 detects that the solar cell array LP does not exist below, and transmits the signal (hereinafter, may be referred to as an OFF signal) to the control unit 41 of the control mechanism 40. To do.
  • a signal indicating that the solar cell array LP exists below the second detection unit 44 (hereinafter referred to as an ON signal) In some cases) is sent. Then, the control unit 41 of the control mechanism 40 grasps that the end portion of the solar cell array LP exists between the detection units 43 and 44. However, since the second detection unit 44 is located in front of the traveling unit 20 in the traveling direction, the control unit 41 of the control mechanism 40 determines that there is no risk of falling, and travels and cleans the cleaning robot 1. Let it continue.
  • the control unit 41 of the control mechanism 40 which has grasped the above situation, may run the cleaning robot 1 at the same speed as before, or controls the operation of the running unit 20 so as to slightly reduce the speed. You may.
  • the second detection unit 44 also reaches the end of the solar cell array LP (FIG. 11 (C)). Then, not only the first detection unit 43 but also the second detection unit 44 detects that the solar cell module P does not exist below, and transmits the signal to the control unit 41 of the control mechanism 40. Then, the control unit 41 of the control mechanism 40 grasps that it has reached the end of the solar cell array LP, and that if it proceeds further, it may fall from the end of the solar cell array LP. Then, the control unit 41 of the control mechanism 40 stops the running of the cleaning robot 1.
  • the cleaning robot 1 will fall from the solar cell array LP. Can be prevented.
  • control unit 41 of the control mechanism 40 has a function of receiving signals from the first detection unit 43 and the second detection unit 44 and controlling the traveling unit 20 so that the cleaning robot 1 travels as follows. doing. That is, it has a deceleration control function for decelerating the cleaning robot 1 and a stop control function for stopping the cleaning robot 1.
  • control by each function will be described with reference to FIG.
  • the cleaning robot 1 is running while working on the solar cell array LP.
  • the first detection unit 43 and the second detection unit 44 detect that the solar cell array LP is present below the end. Then, based on the ON signals sent from the first detection unit 43 and the second detection unit 44, the control unit 41 of the control mechanism 40 is in a situation where the cleaning robot 1 can stably travel and perform cleaning. Grasp.
  • the cleaning robot 1 When the cleaning robot 1 further travels from the state shown in FIG. 11 (A), it eventually reaches the end of the solar cell array LP (FIG. 11 (B)). In this case, the first detection unit 43 detects that the solar cell array LP does not exist below, and transmits an OFF signal to the control unit 41 of the control mechanism 40. On the other hand, since the solar cell module P exists below the second detection unit 44, the ON signal is transmitted from the second detection unit 44. Then, the control unit 41 of the control mechanism 40 controls the operation of the traveling unit 20 so as to reduce the traveling speed of the cleaning robot 1 (deceleration control).
  • the control unit 41 of the control mechanism 40 cleans from the solar cell array LP when the progress is further advanced. Understand that the robot 1 may fall. Then, the control unit 41 of the control mechanism 40 controls the operation of the traveling unit 20 so as to stop the cleaning robot 1 (stop control). Then, since the cleaning robot 1 stops before the traveling portion 20 reaches the end portion of the solar cell array LP, it is possible to prevent the cleaning robot 1 from falling from the end portion of the solar cell array LP.
  • the edge detection unit 42 is provided with the first detection unit 43 and the second detection unit 44, when the cleaning robot 1 approaches the end of the solar cell array LP, the speed is temporarily reduced and then stopped. be able to. Then, the braking distance at the time of stopping can be shortened as compared with the case where the vehicle suddenly stops from the normal traveling speed. In other words, if the cleaning robot 1 is stopped by the above control, even if the cleaning robot 1 travels faster than before, the distance from the start of braking to the stop can be made about the same as the conventional one. Can be done. Therefore, the cleaning robot 1 can be run at high speed, and even in that case, it is possible to prevent the cleaning robot 1 from falling from the end of the solar cell array LP.
  • the traveling unit 20 reaches the end of the solar cell array LP even if the distance from the edge detecting unit 42 to the traveling unit 20 (traveling wheel 22) is short. Before, the cleaning robot 1 can be stopped. That is, even if the length of the cleaning robot 1 in the traveling direction is shortened, it is possible to prevent the cleaning robot 1 from falling from the end of the solar cell array LP, so that the cleaning robot 1 has a compact configuration. Can be done.
  • the traveling speed may be reduced to a constant speed slower than the normal traveling speed to maintain the state, or the vehicle may be gradually decelerated from the normal traveling speed.
  • the control may be a combination of both. That is, the speed may be significantly reduced at the start of deceleration, and then gradually reduced.
  • the edge detection unit 42 has the first detection unit 43 and the second detection unit 44, the cleaning robot 1 will fall from the solar cell array LP while preventing a decrease in cleaning efficiency. Can be effectively prevented.
  • only the second detection unit 44 may be provided in the edge detection unit 42. In this case, when the second detection unit 44 detects that the solar cell module P does not exist below, the control unit 41 of the control mechanism 40 may stop the cleaning robot 1 from traveling. ..
  • ⁇ Danger detection unit 46 If the edge detection unit 42 is provided and the operation of the traveling unit 20 is controlled by the control unit 41 of the control mechanism 40 as described above, the edge detection unit 42 and the control unit 41 of the control mechanism 40 are operating normally. For example, it is possible to appropriately prevent the cleaning robot 1 from falling from the end portion of the solar cell array LP.
  • the cleaning robot 1 Can fall from the end of the solar array LP.
  • a danger detection unit 46 that detects the end portion of the solar cell array LP may be provided.
  • a danger detecting unit 46 is provided between the second detecting unit 44 of the edge detecting unit 42 and the traveling unit 20, and the danger detecting unit 46 is a solar cell array LP.
  • the control unit 41 of the control mechanism 40 stops the cleaning robot 1 from traveling.
  • the danger detection unit 46 reaches the end of the solar cell array LP before the traveling unit 20 reaches the end of the solar cell array LP.
  • the part can be detected. Therefore, even if the edge detection unit 42 does not detect the end portion of the solar cell array LP, it is possible to prevent the cleaning robot 1 from falling from the end portion of the solar cell array LP.
  • between the second detection unit 44 of the edge detection unit 42 and the traveling unit 20 means the position where the sensor of the second detection unit 44 of the edge detection unit 42 is provided and each of the traveling units 20. It means between the position of the traveling wheel 22 of the traveling body 21 and the position of the traveling wheel 22. More specifically, the position where the sensor of the second detection unit 44 with the edge detection unit 42 is provided and the position where the traveling wheel 22 of each traveling body 21 in the traveling unit 20 is in contact with the solar cell module P. It means between X1.
  • the reference traveling wheel 22 is not particularly limited, but a traveling wheel that comes into contact with the solar cell module P at the frontmost position in the traveling direction of the cleaning robot 1 is desirable.
  • the control unit 41 of the control mechanism 40 may be provided with a function of notifying an operator or the like that the running of the cleaning robot 1 has been stopped by a signal from the danger detection unit 46. Then, by notifying the operator or the manager that the cleaning robot 1 is out of order, the cleaning robot 1 can be quickly repaired or the like. For example, an alarm or an indicator may be used to notify the operator of the failure, or a signal may be transmitted to the operator's mobile terminal, management center, or the like to transmit information on the failure.
  • the cleaning robot 1 does not stop running even if the edge detection unit 42 detects the end of the solar cell array LP, and the cleaning robot 1 uses the solar cell. It may fall from the module P.
  • a danger control unit 45 that controls the traveling unit 20 by a signal of the danger detection unit 46 is provided separately from the control unit 41 of the control mechanism 40, even if the control unit 41 of the control mechanism 40 is out of order, etc. , The cleaning robot 1 can be prevented from falling from the end of the solar cell array LP.
  • the danger control unit 45 may be provided with a function of notifying the operator or the like that the cleaning robot 1 has stopped running. Then, by notifying the operator or the manager that the cleaning robot 1 is out of order, the cleaning robot 1 can be quickly repaired or the like. For example, an alarm or an indicator may be used to notify the operator of the failure, or a signal may be transmitted to the worker's mobile terminal, management center, or the like to transmit information on the failure. Further, if the signal from the edge detection unit 42 is also input to the danger control unit 45, it is possible to grasp which of the edge detection unit 42 and the control unit 41 of the control mechanism 40 is damaged. Then, when the cleaning robot 1 is repaired or the like, the worker can easily grasp the problem, so that the time until recovery can be shortened.
  • the structure of the danger detection unit 46 is not particularly limited. However, if the danger detection unit 46 has the outer sensor and the inner sensor so as to line up in the traveling direction of the cleaning robot 1, the groove between the solar cell modules P is mistakenly used as the end of the solar cell array LP. The possibility of detection can be reduced.
  • the danger detection unit 46 has only one sensor, if a plurality of danger detection units 46 are provided and the positions of the plurality of danger detection units 46 are shifted in the traveling direction of the cleaning robot 1, a groove or the like can be obtained. Can be erroneously detected as the end of the solar cell array LP.
  • the sensor used in the edge detection unit 42 and the danger detection unit 46 is not particularly limited, and a known sensor capable of detecting the edge of the solar cell array LP can be used.
  • a non-contact edge detection sensor such as a laser sensor, an infrared sensor, or an ultrasonic sensor, or a contact type sensor such as a limit switch can be used as the sensor.
  • the image taken by using a CCD camera or the like as a sensor may be analyzed by the control unit 41 of the control mechanism 40 to detect the edge.
  • a temperature sensor or a capacitance sensor as a sensor. When these sensors are used, the edge of the solar cell array LP is grasped from the temperature difference and the difference in capacitance between the solar cell array LP and the part (space, etc.) outside the edge of the solar cell array LP. be able to.
  • the sensor when the sensor is a laser sensor, it is possible to detect whether or not the solar cell array LP exists as follows. First, it is assumed that the solar cell array LP exists directly under the sensor. In this case, if the sensor irradiates the laser light, the sensor receives the reflected light reflected by the solar cell array LP. That is, it can be determined that the position of the sensor is located inward of the edge. On the other hand, when the sensor cannot receive the reflected light, it can be determined that there is no solar cell array LP directly under the sensor, that is, the position of the sensor is located outside the edge.
  • ⁇ Stopper member SM> When the edge detection unit 42 and the danger detection unit 46 as described above are provided, there is a high possibility that the cleaning robot 1 can be prevented from falling from the solar cell module P. However, if the edge of the solar cell module P cannot be properly detected due to a failure of the edge detection unit 42 or the danger detection unit 46, the cleaning robot 1 may fall from the solar cell module P.
  • the cleaning robot 1 has the following configuration, it is possible to prevent the cleaning robot 1 from falling even if the above-mentioned situation occurs.
  • the stopper member SM is provided so as to have a positional relationship as shown in FIG. Specifically, in a state where the stopper member SM having a friction member M having a large frictional resistance such as rubber on the lower surface is mounted on the surface of the solar cell module P, the lower surface of the friction member M is the solar cell module. It is arranged so as to be located above the surface of P. Moreover, when viewed from the rotation axis direction of the brush 12, the stopper member SM is arranged so as to be inside the position where the traveling wheel 22 comes into contact with the surface of the solar cell module P (the position of X1 in FIG. 15). To do.
  • the stopper member SM can prevent the cleaning robot 1 from falling. That is, when the traveling wheel 22 of the traveling body 21 is derailed, a force is applied to the cleaning robot 1 in the direction of dropping the cleaning robot 1, and the cleaning robot 1 moves so as to fall. Along with this, the stopper member SM also moves downward, but eventually the friction member M of the stopper member SM comes into contact with the surface of the solar cell module P (see FIGS. 16A and 16B). Then, the friction between the friction member M and the surface of the solar cell module P causes resistance in the direction opposite to the direction in which the cleaning robot 1 falls, so that the movement of the cleaning robot 1 is stopped and the cleaning robot 1 can be prevented from falling. ..
  • the stopper member SM can be brought into contact with the surface of the solar cell module P when the cleaning robot 1 is derailed.
  • the radius r of the traveling wheel 22 is 65 mm
  • the horizontal distance LW is 56 mm
  • the distance H from the lower end of the traveling wheel 22 (in other words, from the surface of the solar cell module P) to the tip (lower surface in FIG. 16) of the friction member M of the stopper member SM is 14 mm
  • the length LM of the member M is 50 mm. Then, the friction member M of the stopper member SM can be brought into contact with the surface of the solar cell module P before the traveling wheel 22 is completely removed.
  • the stopper member SM is not limited to the above structure, and may be a structure that can come into contact with the surface of the solar cell module P and stop the movement of the cleaning robot 1 when the traveling wheel 22 of the traveling body 21 is derailed. ..
  • the lower surface of the friction member M of the stopper member SM may be provided so as to be substantially parallel to the surface of the solar cell module P in a state where derailment has not occurred, or with respect to the surface of the solar cell module P. It may be provided so as to be inclined.
  • the lower surface of the friction member M may be tilted inward from the end located in front of the cleaning robot 1 in the traveling direction. If the lower surface of the friction member M is an inclined surface in this way, when the cleaning robot 1 is inclined forward due to derailing, the lower surface of the friction member M and the surface of the solar cell module P can be easily brought into surface contact with each other. Become. Then, since the resistance when the friction member M and the surface of the solar cell module P come into contact with each other can be increased, the effect of suppressing the cleaning robot 1 from falling can be enhanced.
  • a sensor for detecting derailment may be provided in the chassis frame 2.
  • a sensor such as a cable switch may be provided on the lower surface of the chassis frame 2.
  • the control unit 41 of the control mechanism 40 controls the operation and cleaning work of the cleaning unit 10 and the traveling unit 20. Therefore, if the operation of the cleaning robot 1 is controlled so as to perform traveling or work according to the procedure stored in the control unit 41 of the control mechanism 40, the surface of the plurality of solar cell modules P of the solar cell array LP Cleaning can be performed almost automatically.
  • the cleaning robot 1 may be operated by an operator from the outside to control operations such as running and cleaning.
  • the cleaning robot 1 may be remotely controlled by using wireless communication using wireless, infrared rays, or the like. That is, the operator may operate the wireless communication controller to remotely control the cleaning robot 1. Further, the operator may operate the cleaning robot 1 by using a controller connected to the cleaning robot 1 by a signal line or the like. If the operator operates the cleaning robot 1 using a controller for wireless communication or a controller connected by a signal line, the operator can perform the work while checking the work status such as cleaning. Then, the cleaning robot 1 can be made to perform appropriate work according to changes in the surrounding conditions and the like.
  • the edge detection function, the danger detection function, the stopper member, and the like as described above. If it has such a function, even if there is an operation error of the operator, the cleaning robot 1 can be appropriately run to perform the work. Further, even if the operator makes an operation error, it is possible to prevent the cleaning robot 1 from falling from the solar cell module P.
  • the cleaning robot 1 may be a combination of both operation by an operator and automatic running (work). That is, normally, work and running are performed automatically (that is, control of only the control unit 41 of the control mechanism 40), but when an operation by an operator is input from a controller or the like, work is performed from the state of automatic running (work). It may be switched to the operation by the operation of the person. In this case, if the input from the controller or the like does not exceed a certain level, the state is switched to the automatic driving (working) state. Then, even if the operator makes an operation error or forgets to switch to the automatic driving (work) state, the work can be continued, which is preferable.
  • a static eliminator DB that removes the charged static electricity from the chassis frame 2.
  • the position where the static elimination member DB is provided is not particularly limited. It is desirable that the robot 1 is provided so that static electricity can be removed when a person touches the cleaning robot 1. That is, it is desirable that the static elimination member DB is provided at a position where it comes into contact with the grounded member when a person touches the cleaning robot 1.
  • the static elimination member DB can be provided so as to come into contact with the connecting portion CE.
  • the static elimination member DB is provided with a connecting portion CE in the axial direction of the chassis frame 2 in a state where the cleaning robot 1 is mounted on the end of the solar cell module P located at the end of the solar cell array LP. It is provided so as to be located outside the edge of the solar cell module P. Then, the static elimination member DB is set to a length at which the tip thereof contacts the connecting portion CE.
  • the static elimination member DB is formed to have a length of about 15 mm in contact with the connecting portion CE in the longitudinal direction thereof (that is, the vertical direction in FIG. 12B). Then, when the cleaning of one solar cell array LP is completed and the cleaning robot 1 is stopped, the tip end portion (lower end portion) of the static elimination member DB comes into contact with the connecting portion CE, and the chassis frame 2 can be statically eliminated.
  • the static elimination member DB is arranged so that its tip (lower end) does not come into contact with the surface of the solar cell array LP when it is not located at the end of the solar cell module P. It is desirable to be there.
  • the cleaning robot 1 when the cleaning robot 1 is arranged on the surface of the solar cell module P, it is desirable that the cleaning robot 1 is provided so as to have a gap of about 5 mm between the tip (lower end) of the static elimination member DB and the surface of the solar cell module P. ..
  • the static elimination member DB may be provided at a position where the cleaning robot 1 comes into contact with the connecting portion CE of the solar cell array LP when traveling on the solar cell module P (see FIG. 12). In this case, while the cleaning robot 1 is running, the static elimination member DB can come into contact with the connecting portion CE and discharge each time it moves to the adjacent solar cell module P. Then, when the cleaning robot 1 is stopped urgently (for example, when the cleaning robot 1 is stopped by the danger control unit 46 or when the stopper member SM prevents the cleaning robot 1 from falling), the static eliminator member DB is released. Even when the grounded member cannot be contacted, the amount of static electricity charged can be reduced.
  • the static elimination member DB that contacts the connecting portion CE of the solar cell array LP during traveling and the static elimination member DB that contacts the support member SE when the cleaning robot 1 is stopped may be provided, respectively. That is, the static elimination member DB at the time of traveling and the static elimination member DB at the time of stopping may be provided separately.
  • the static elimination member DB is provided so as to be located behind the brush 12 of the cleaning unit 10 in the traveling direction. In this case, a certain amount of static electricity accumulated in the chassis frame 2 can be released from the static eliminator member DB to the surface of the solar cell array LP.
  • the grounded member means a conductive member that is directly or indirectly electrically connected to the ground.
  • the support member SE and the connecting portion CE connected to the swing shaft SS of the gantry MT installed on the ground correspond to the grounded members.
  • the panel frame is also connected to the gantry MT, so that it corresponds to a grounded member.
  • the static elimination member DB is brought into contact with a building or equipment in the vicinity of the solar cell array LP, the building or equipment also corresponds to a grounded member.
  • the static eliminator member DB may be any as long as it can allow static electricity of the chassis frame 2 to flow to the outside, and its shape, structure, and material are not particularly limited.
  • a metal body having a brush-like member formed of a conductive material at the tip thereof can be used.
  • a flexible band-shaped or string-shaped member or conductive fiber formed of a conductive material can also be adopted as the static elimination member DB.
  • the brush 12 of the cleaning unit 10 may be provided with a flexible band-shaped or string-shaped member or conductive fiber formed of a conductive material as a static elimination member DB.
  • a conductive material may be used as a material for forming a part or all of the brush 12.
  • the brush 12 itself may have the same function as the static elimination member DB.
  • the shaft portion of the brush 12 may be formed of a conductive material (metal or the like), or the brush portion may be formed of a flexible band-shaped or string-shaped member or conductive fiber formed of a conductive material. May be good.
  • the static elimination member DB connected to the chassis frame 2 does not necessarily have to be provided. ..
  • the position where the standby station S is provided, or when the standby station S is provided, the functions and devices provided in the standby station S and the cleaning robot 1 are not particularly limited, but for example, the standby station S may be provided at the following positions. It is desirable that the standby station S and the cleaning robot 1 are provided with the following functions and devices.
  • a standby station S is provided at one end of the solar cell array LP (the left end in FIG. 22 (A)).
  • the surface of the standby station S is fixed to the swing shaft SS so that its surface is substantially flush with the surface of the solar cell module P.
  • the upper solar cell array LP has the cleaning robot 1 arranged on the solar cell module P
  • the lower solar cell array LP has the cleaning robot 1 on the standby station S. It is in the placed state.
  • the cleaning robot 1 can be stored on the standby station S while the cleaning robot 1 does not clean the surface of the solar cell module P. Moreover, when the cleaning work is performed, the cleaning robot 1 is moved onto the surface of the solar cell module P, and when the cleaning work is completed, the cleaning robot 1 is returned to the standby station S so that the operator can clean. It is not necessary to remove the robot 1 from the solar cell array LP.
  • the cleaning robot 1 automatically starts the cleaning work and automatically ends the cleaning work, the operator does not need to operate the cleaning robot 1. That is, the cleaning robot 1 automatically moves from the standby station S to the solar cell module P to start the cleaning work, and when the cleaning work is completed, the cleaning robot 1 automatically moves from the solar cell module P to the standby station S. Then, since the worker does not need to operate the cleaning robot 1, the burden on the worker can be reduced, and the cleaning is automatically performed, so that the work efficiency can be improved.
  • the method by which the cleaning robot 1 automatically starts and stops the cleaning work is not particularly limited. For example, it is possible to start the cleaning work at a predetermined time by a timer, or to start the cleaning work when a signal from the outside is received.
  • the operation of the cleaning robot 1 can be controlled based on a signal such as an inclination angle of the solar cell module P (that is, a rotation angle of the swing shaft SS).
  • the cleaning robot 1 is used to perform cleaning when the surface angle of the solar cell module P is within the range of ⁇ 30 degrees from the horizontal.
  • the operation can be controlled.
  • the angle of the surface of the solar cell module P that the cleaning robot 1 cleans is not particularly limited.
  • the cleaning robot 1 is provided with a device for receiving power supply from the standby station S.
  • the equipment for receiving the power supply is not particularly limited.
  • a terminal for charging may be provided, and this terminal may be connected (contacted) with the terminal provided in the standby station S to receive power supply.
  • a device that receives power by a non-contact method such as electromagnetic induction may be provided so that the power is supplied non-contact.
  • the standby station S is provided with a power supply unit for supplying electric power to the cleaning robot 1.
  • a power supply unit for supplying electric power to the cleaning robot 1.
  • a terminal that connects (contacts) with the terminal of the cleaning robot 1 is provided in the power supply unit, and power is supplied to the cleaning robot 1 by a connection (contact) method. You may do so.
  • a device for supplying electric power by a non-contact method such as electromagnetic induction may be provided in the power supply unit to supply electric power to the cleaning robot 1 in a non-contact manner.
  • the method of supplying power to the power supply unit is not particularly limited.
  • power may be directly supplied to the terminals of the power supply unit or the device for electromagnetic induction from the outside of the standby station S by a power cable or the like, or a battery may be provided in the power supply unit to supply the power supplied from the outside to the battery.
  • the charged electric power may be supplied to the terminal of the power supply unit or the device for electromagnetic induction.
  • a solar cell module may be provided in the standby station S to supply the electric power generated by the solar cell module to the power supply unit.
  • the power may be directly supplied to the terminal of the power supply unit or the device for electromagnetic induction, or a battery may be provided in the power supply unit and supplied from the solar cell module.
  • the electric power generated may be charged to the battery, and the electric power charged to the battery may be supplied to the terminal of the power supply unit or the device for electromagnetic induction.
  • the size and shape of the standby station S are not particularly limited. For example, it may be formed in substantially the same shape and size as the solar cell module P.
  • the standby station S is formed in the following size and shape. That is, the length of the standby station S in the longitudinal direction (the length in the vertical direction of FIG. 22A) is the length in the longitudinal direction of the solar cell module P (that is, the first end portion P1 and the second end). It is desirable that it is formed so as to be the same as the length between the portions P2).
  • the one end surface (upper end surface in FIG.
  • the standby station S is substantially the same as the end surface (first end surface) of the first end portion P1 of the plurality of solar cell modules P of the solar cell array LP. It is desirable that it is provided so as to be a surface.
  • the other end face (lower end face in FIG. 22A) of the standby station S is substantially the same as the end face (second end face) of the second end P2 of the plurality of solar cell modules P of the solar cell array LP. It is desirable that it is provided so as to be a surface.
  • the standby station S When the standby station S is provided, it is desirable to prevent the cleaning robot 1 waiting at the standby station S from being exposed to sunlight or rain.
  • the standby station S may be provided with a roof, a box for accommodating the cleaning robot 1, and the like.
  • the standby station S is provided at one end of the swing shaft SS of the solar cell array LP (the left end in FIG. 22A)
  • the position where the standby station S is provided is particularly limited. Not done. It may be provided at the other end of the swing shaft SS of the solar cell module P (the right end in FIG. 22A). In some cases, it may be provided in the middle of the swing shaft SS of the solar cell array LP in the left-right direction. Further, although only one cleaning robot 1 is provided in one solar cell array LP, a plurality of standby stations S may be provided in one solar cell array LP.
  • standby stations S may be provided at both ends of the swing shaft SS of the solar cell array LP, or swing between one end of the swing shaft SS of the solar cell array LP and the swing shaft SS of the solar cell array LP.
  • a standby station S may be provided in the middle of the axis SS in the left-right direction.
  • three or more standby stations S may be provided at a certain interval.
  • standby stations S may be provided at three locations between both ends of the swing shaft SS of the solar cell module P and the middle in the left-right direction. In this case, since the moving distance when the cleaning robot 1 is urgently evacuated to the standby station S can be shortened as in a strong wind, the cleaning robot 1 can be quickly evacuated to a safe place.
  • two or more standby stations S may be provided at intervals between both ends of the swing shaft SS of the solar cell array LP in the left-right direction.
  • the gaps and steps formed between the standby station S and the solar cell module P are adjacent to each other in the solar cell array LP. It is desirable that the size of the gap and the step between the solar cell modules P be the same as or smaller than that. If such a gap and a step are provided, the cleaning robot 1 can move between the standby station S and the solar cell module P in the same manner as when moving between adjacent solar cell modules P in the solar cell array LP. it can.
  • the standby station S is provided on the swing shaft SS, even if the solar cell module P swings, the inclinations of the surface of the standby station S and the surface of the solar cell module P can always be matched. ..
  • a stand for the standby station S may be provided separately. In this case, if the function of swinging the standby station S is provided, the angles of the cleaning robot 1 can be made to match only when the cleaning robot 1 is moved between the standby station S and the solar cell module P. .. Then, while the cleaning robot 1 is arranged on the standby station S (while waiting for cleaning), if the surface of the standby station S is kept horizontal, the cleaning robot 1 is stably placed on the standby station S. Can be placed.
  • the inclination of the surface of the standby station S and the inclination of the solar cell module P may always be matched. In this case, when the cleaning robot 1 is urgently retracted from the solar cell module P to the standby station S, quick and reliable evacuation is possible.
  • the standby station S may have a constant surface inclination, that is, a fixed state.
  • the surface of the standby station S may be fixed in a horizontal state or at a predetermined angle with respect to the horizontal (about ⁇ 30 degrees with respect to the horizontal).
  • the cleaning robot 1 controls the operation of the standby station S and the solar cell module. It suffices to move between P and.
  • the inclination of the surface of the solar cell module P when the cleaning robot 1 moves between the standby station S and the solar cell module P, the inclination of the surface of the solar cell module P of the standby station S is adjusted. It may be substantially flush with the surface.
  • One cleaning robot 1 may be provided in each of the solar cell array LPs, or one cleaning robot may be shared by a plurality of solar cell array LPs.
  • a connecting path through which the cleaning robot 1 can move is provided between the adjacent solar cell array LPs, that is, the standby stations S of the solar cell array LPs arranged in the axial direction of the swing axis SS.
  • the height of the upper surface of the connecting path is set to the surface of the solar cell array LP in a state where the surface of the solar cell array LP is substantially horizontal (or a state where the surface of the solar cell array LP is at an appropriate angle), that is, , Install so that it is almost the same as the standby station S. Then, if the cleaning robot 1 is moved to the standby station S, the cleaning robot 1 can be moved from one solar cell array LP to another solar cell array LP by traveling on the connecting road.
  • the cleaning robot of the present invention is suitable for cleaning the surface of a frameless solar cell module used for a tracking type.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Cleaning In General (AREA)
  • Photovoltaic Devices (AREA)

Abstract

[Problem] To provide a cleaning robot capable of performing cleaning while traveling over a solar cell module that does not have a panel frame, and a solar power generating facility provided with said cleaning robot. [Solution] This cleaning robot cleans the surface of a solar cell array in which a plurality of solar cell modules are installed side-by-side, and is provided with a cleaning unit (10), a chassis frame, a travel unit (20) provided on the chassis frame, and a support mechanism (50) which supports travel of the chassis frame along either a first end portion or a second end portion of the solar cell modules, wherein the travel unit (20): is provided with at least two traveling bodies (21) which are disposed in such a way as to sandwich the midline of the solar cell modules in a direction intersecting the direction of travel of the cleaning robot when the cleaning robot is disposed on the solar cell array; and is not provided with traveling bodies (21) that travel in the vicinity of the first end portion and the second end portion of the solar cell modules.

Description

掃除ロボットおよび太陽光発電設備Cleaning robot and solar power generation equipment
 本発明は、掃除ロボットおよび太陽光発電設備に関する。さらに詳しくは、太陽光発電に使用する太陽電池アレイなどの表面を掃除する掃除ロボットおよび太陽光発電設備に関する。 The present invention relates to a cleaning robot and a solar power generation facility. More specifically, the present invention relates to a cleaning robot for cleaning the surface of a solar cell array used for photovoltaic power generation and a photovoltaic power generation facility.
 近年、再生可能エネルギを利用した発電の要求が高まっており、とくに太陽光を利用した太陽光発電には大きな注目が集まっている。かかる太陽光発電では、太陽からの光を受けて発電するため、太陽電池アレイ(つまり太陽電池モジュール)の受光面が汚れると、太陽電池セルが受光する日射量が減少することによって、発電量が減少する。このため、太陽電池アレイ等の受光面の汚れを除去するために、太陽電池アレイ等を適宜掃除することが重要になる。 In recent years, the demand for power generation using renewable energy has been increasing, and in particular, solar power generation using sunlight has attracted a great deal of attention. In such photovoltaic power generation, light from the sun is received to generate power. Therefore, when the light receiving surface of the solar cell array (that is, the solar cell module) becomes dirty, the amount of solar radiation received by the solar cell decreases, so that the amount of power generated increases. Decrease. Therefore, in order to remove dirt on the light receiving surface of the solar cell array or the like, it is important to appropriately clean the solar cell array or the like.
 大規模な太陽光発電設備における太陽電池アレイの表面(受光面)を掃除するために、種々の構造を有する掃除ロボットが開発されている。近年では、太陽電池アレイのエッジを基準として、このエッジに沿って移動する掃除ロボットの開発が進んでいる(例えば、特許文献1~5参照)。 Cleaning robots with various structures have been developed to clean the surface (light receiving surface) of the solar cell array in large-scale photovoltaic power generation equipment. In recent years, with reference to the edge of the solar cell array, development of a cleaning robot that moves along this edge has been progressing (see, for example, Patent Documents 1 to 5).
特開2014-223564号公報Japanese Unexamined Patent Publication No. 2014-223564 特開2015-178088号公報JP-A-2015-178808 特開2017-144413号公報JP-A-2017-144413 特開2018-528071号公報Japanese Unexamined Patent Publication No. 2018-528071 特開2016-26861号公報Japanese Unexamined Patent Publication No. 2016-26861
 ところで、太陽電池モジュールとしてパネルフレームを有しないもの(以下、フレームレス太陽電池モジュールという場合がある)も開発されている。かかるフレームレス太陽電池モジュールはパネルフレームを有するものよりも軽量化できる。太陽光を追尾する追尾型太陽光発電システムの太陽電池アレイ(以下、トラッキングタイプの太陽電池アレイという場合がある)にフレームレス太陽電池モジュールを採用すれば、設備を駆動する駆動力や架台等の強度を低減できる。すると、太陽光発電設備の設備投資やランニングコストを低減できるというメリットが得られる。 By the way, solar cell modules that do not have a panel frame (hereinafter sometimes referred to as frameless solar cell modules) have also been developed. Such a frameless solar cell module can be lighter than one having a panel frame. If a frameless solar cell module is used for the solar cell array of a tracking type photovoltaic power generation system that tracks sunlight (hereinafter, may be referred to as a tracking type solar cell array), the driving force for driving the equipment, the gantry, etc. The strength can be reduced. Then, there is an advantage that the capital investment of the photovoltaic power generation equipment and the running cost can be reduced.
 しかし、特許文献1~3に記載されている掃除ロボットは、太陽電池アレイを構成する太陽電池モジュールの周囲にパネルフレームを有していることを前提に構成されており、走行車輪はパネルフレーム上を走行する構成を採用している。そして、パネルフレームによって太陽電池モジュールの剛性がある程度確保されていることを前提に掃除ロボット自体の重量も重くなっている。このため、特許文献1~3の掃除ロボットをフレームレス太陽電池モジュールの清掃に使用した場合、太陽電池モジュールを破損してしまう可能性が有る。 However, the cleaning robots described in Patent Documents 1 to 3 are configured on the premise that they have a panel frame around the solar cell modules constituting the solar cell array, and the traveling wheels are on the panel frame. It has adopted a configuration that runs on. The weight of the cleaning robot itself is also heavy on the premise that the rigidity of the solar cell module is secured to some extent by the panel frame. Therefore, when the cleaning robots of Patent Documents 1 to 3 are used for cleaning the frameless solar cell module, the solar cell module may be damaged.
 特許文献4には、掃除ロボットをフレームレス太陽電池モジュールに使用できる旨の記載はあるものの(特許文献4の段落0026)、フレームレス太陽電池モジュール上を掃除ロボットが走行するための具体的な構成については記載がない。 Although Patent Document 4 describes that the cleaning robot can be used for the frameless solar cell module (paragraph 0026 of Patent Document 4), a specific configuration for the cleaning robot to run on the frameless solar cell module. There is no description about.
 引用文献5には、フレームレスタイプの太陽電池モジュールにも使用でき、その場合には、移動部の位置を強度の弱い辺部から中央寄りに移動することが必要であることは開示されている(段落0091)。
 しかし、引用文献5の技術は、あくまでも太陽電池モジュールの端縁、つまり、フレームが存在していた位置に移動部を配置するものであり、移動部は太陽電池モジュールの両端縁近傍を走行することが前提になっている。このため、移動部を若干太陽電池モジュールの中央側に寄せる程度のことしか想定しておらず(図9参照)、フレームレスタイプの太陽電池モジュールに使用した場合には、太陽電池モジュールを破損してしまう可能性が高い。そして、引用文献5には、フレームレスタイプの太陽電池モジュールに使用する場合に、移動体を具体的にどの程度中央寄りに移動するか、また、太陽電池モジュールの両端間のどの位置に移動部を配置するかといったことは全く開示されていない。これは、引用文献5の洗浄装置が、2枚並んで配置された太陽電池モジュール上をそれぞれ走行する洗浄ユニットを連結して両者間で相対的に屈曲可能にすることによって、並んだ太陽電池モジュール間の傾きのズレに対応することを目的とするものであり、フレームレスタイプの太陽電池モジュールに使用することを想定していないからである。かかる事情もあり、引用文献5には、引用文献4と同様に、フレームレス太陽電池モジュール上を掃除ロボットが走行するための具体的な構成については記載がない。
Cited Document 5 discloses that it can also be used for a frameless type solar cell module, and in that case, it is necessary to move the position of the moving portion from the weak side portion toward the center. (Paragraph 0091).
However, the technique of Cited Document 5 is to arrange the moving portion at the edge of the solar cell module, that is, at the position where the frame existed, and the moving portion travels near both end edges of the solar cell module. Is a prerequisite. For this reason, it is assumed that the moving part is slightly closer to the center side of the solar cell module (see FIG. 9), and when used for a frameless type solar cell module, the solar cell module is damaged. There is a high possibility that it will end up. Further, in Cited Document 5, when used for a frameless type solar cell module, how much the moving body is specifically moved toward the center, and at what position between both ends of the solar cell module, the moving portion. There is no disclosure as to whether or not to place. This is because the cleaning devices of Cited Document 5 are arranged side by side by connecting the cleaning units that run on the solar cell modules arranged side by side so that they can be bent relatively between the two. This is because the purpose is to cope with the deviation of the inclination between them, and it is not supposed to be used for a frameless type solar cell module. Due to such circumstances, the cited document 5 does not describe a specific configuration for the cleaning robot to run on the frameless solar cell module as in the cited document 4.
 そして、引用文献5の技術のように、パネルフレームを有する太陽電池モジュールにおいてパネルフレーム上を走行することを前提に製造された掃除ロボットでは、フレームレス太陽電池モジュールに限らず、パネルフレームを有する太陽電池モジュールであっても受光面上を掃除ロボットが走行した場合には、受光面等を損傷してしまう可能性がある。 Then, as in the technique of Cited Document 5, the cleaning robot manufactured on the premise that the solar cell module having the panel frame travels on the panel frame is not limited to the frameless solar cell module, and the sun having the panel frame. Even if it is a battery module, if the cleaning robot runs on the light receiving surface, the light receiving surface or the like may be damaged.
 本発明は上記事情に鑑み、太陽電池モジュール上を走行しながら掃除することができる掃除ロボットおよびかかる掃除ロボットを備えた太陽光発電設備を提供することを目的とする。 In view of the above circumstances, an object of the present invention is to provide a cleaning robot capable of cleaning while traveling on a solar cell module and a photovoltaic power generation facility equipped with such a cleaning robot.
 第1発明の掃除ロボットは、複数枚の太陽電池モジュールをその第一端部および第二端部が直線状に並ぶように架台に並べて設置され、前記太陽電池モジュールと架台とを連結する連結部が、前記太陽電池モジュールの第一端部と第二端部の中間線と該太陽電池モジュールの第一端部との間および前記中間線と第二端部との間にそれぞれ設けられた太陽電池アレイの表面を掃除する掃除ロボットであって、前記太陽電池アレイの表面を掃除する掃除部と、シャシフレームと、該シャシフレームに設けられた、掃除ロボットを走行させる走行部と、前記シャシフレームにおける掃除ロボットの走行方向と交差する方向の両端部または一方の端部に設けられ、前記太陽電池アレイを構成する前記太陽電池モジュールの第一端部または第二端部のいずれかに沿った前記シャシフレームの走行をサポートするサポート機構と、を備えており、前記走行部が、複数の走行体を備えており、該複数の走行体は、掃除ロボットを前記太陽電池アレイ上に配置したときに、少なくとも2つの走行体が、掃除ロボットの走行方向と交差する方向において前記太陽電池モジュール中間線を挟むよう配置されており、前記走行部は、掃除ロボットを前記太陽電池アレイ上に配置したときに、前記太陽電池モジュールにおける第一端部および第二端部の近傍を走行する走行体を備えていないことを特徴とする。
 第2発明の掃除ロボットは、第1発明において、前記走行部の複数の走行体のうち、掃除ロボットの走行方向と交差する方向においてもっとも外方に位置する2つの走行体は、掃除ロボットが前記太陽電池モジュール上に配置された状態において、該太陽電池モジュールの第一端部と第二端部とを繋ぐ方向における前記太陽電池モジュールの中間線から各走行体の幅方向の中間線までの距離が、前記太陽電池モジュールの第一端部から第二端部までの距離の1/8~3/8となるように設けられていることを特徴とする。
 第3発明の掃除ロボットは、第2発明において、前記複数の走行体は、複数の走行部材を備えており、前記複数の走行体のうち少なくとも2つの走行体では、該2つの走行体の複数の走行部材のうち、少なくとも2つの走行部材が、掃除ロボットの走行方向と交差する方向において、前記太陽電池アレイの連結部を挟むように設けられていることを特徴とする。
 第4発明の掃除ロボットは、第1から第3発明のいずれかにおいて、前記走行部の複数の走行体は、掃除ロボットの走行方向から見たときに、各走行体が前記太陽電池アレイの表面と接触する部分が重ならないように配設されていることを特徴とする。
 第5発明の掃除ロボットは、第1から第4発明のいずれかにおいて、前記走行部の複数の走行体のうち少なくとも1つの走行体が複数の走行部材を備えており、該複数の走行部材を掃除ロボットの走行方向から見たときに、各走行体の複数の走行部材のうち、少なくとも一つの走行部材が前記太陽電池アレイの表面と接触する部分が、他の走行部材が前記太陽電池アレイの表面と接触する部分と重ならないように配設されていることを特徴とする。
 第6発明の掃除ロボットは、第1から第5発明のいずれかにおいて、前記走行部の各走行体は複数の走行輪を備えており、該複数の走行輪は、少なくとも2つの駆動輪を有しており、掃除ロボットの走行方向において、該複数の走行輪のうち掃除ロボットの走行方向において最も離れた2つの走行輪の間に該掃除ロボットの重心が位置するように配設されており、前記走行部は、掃除ロボットの走行方向において、前記走行体の複数の走行輪のうち掃除ロボットの走行方向において最も離れた2つの走行輪よりも外方に位置する補助走行体を備えており、該補助走行体は、掃除ロボットの走行方向において、隣接する駆動輪との距離が前記走行体における複数の駆動輪のうち掃除ロボットの走行方向において最も近い2つの駆動輪間の距離と同等以上となるように配設されていることを特徴とする。
 第7発明の掃除ロボットは、第6発明において、前記補助走行体を複数備えており、該複数の補助走行体は、掃除ロボットの走行方向において、該複数の補助走行体のうち少なくとも2つの補助走行体が前記走行体を挟むように設けられていることを特徴とする。
 第8発明の掃除ロボットは、第1から第7発明のいずれかにおいて、前記掃除部が軸周りに回転する掃除部材を備えており、前記走行体と前記掃除部の掃除部材とが一つの駆動源によって駆動されていることを特徴とする。
 第9発明の掃除ロボットは、第1から第8発明のいずれかにおいて、前記サポート機構は、掃除ロボットの走行方向および、平面視で掃除ロボットの走行方向と交差する方向の両方と平行な面と交差する回転軸を有するフリーローラを備えていることを特徴とする。
 第10発明の掃除ロボットは、第9発明において、前記サポート機構は、前記シャシフレームにおける掃除ロボットの走行方向と交差する方向の一方の端部に設けられた第一サポート部と、前記シャシフレームの一方の端部と反対側に位置する他方の端部に設けられた第二サポート部と、を備えており、前記第一サポート部および前記第二サポート部には、掃除ロボットの走行方向および、平面視で掃除ロボットの走行方向と交差する方向の両方と平行な面と交差する回転軸を有するフリーローラが設けられており、掃除ロボットの走行方向と交差する方向における前記第一サポート部のフリーローラと前記第二サポート部のフリーローラとの間の距離が、前記太陽電池モジュールの両端間の距離よりも長くなるように設けられていることを特徴とする。
 第11発明の掃除ロボットは、第9または第10発明において、前記サポート機構は、掃除ロボットの走行方向に沿って間隔を空けて並ぶように設けられた2つのフリーローラを有していることを特徴とする。
<除電部材>
 第12発明の掃除ロボットは、第1から第11発明のいずれかにおいて、前記シャシフレームには除電部材が設けられており、該除電部材は、掃除ロボットを前記太陽電池アレイの上に配置したときに、その先端が該太陽電池アレイにおけるアースされた部材に接触し得る長さに形成されていることを特徴とする。
 第13発明の掃除ロボットは、第12発明において、前記除電部材は、掃除ロボットを前記太陽電池アレイ上に配置したときに、前記太陽電池モジュールの第一端部と第二端部とを繋ぐ方向において、前記太陽電池アレイにおける前記太陽電池モジュールと前記架台とを連結する連結部と接触し得る位置に設けられていることを特徴とする。
<太陽光発電設備>
 第14発明の太陽光発電設備は、複数枚の太陽電池モジュールをその第一端部および第二端部が直線状に並ぶように架台に並べて設置され、前記太陽電池モジュールと架台とを連結する連結部が、前記太陽電池モジュールの第一端部と第二端部の中間線と該太陽電池モジュールの第一端部との間および前記中間線と第二端部との間にそれぞれ設けられた太陽電池アレイと、該太陽電池アレイの表面を掃除する第1から第13発明のいずれかに記載の掃除ロボットと、を備えていることを特徴とする。
 第15発明の太陽光発電設備は、第14発明において、前記太陽電池アレイは、前記架台に設けられた揺動軸の軸方向に沿って前記複数の太陽電池モジュールを並べて設けられたものであることを特徴とする。
 第16発明の太陽光発電設備は、第14または第15発明において、前記太陽電池アレイを構成する太陽電池モジュールが、フレームレスの太陽電池モジュールであることを特徴とする。
The cleaning robot of the first invention is installed by arranging a plurality of solar cell modules side by side on a gantry so that the first end portion and the second end portion are arranged in a straight line, and a connecting portion connecting the solar cell module and the gantry. Is provided between the intermediate line between the first end and the second end of the solar cell module and the first end of the solar cell module, and between the intermediate line and the second end, respectively. A cleaning robot that cleans the surface of the battery array, the cleaning unit that cleans the surface of the solar cell array, the chassis frame, the traveling unit that runs the cleaning robot provided on the chassis frame, and the chassis frame. Along either one end or the second end of the solar cell module, which is provided at both ends or one end in a direction intersecting the traveling direction of the cleaning robot and constitutes the solar cell array. It is provided with a support mechanism that supports the running of the chassis frame, and the traveling unit includes a plurality of traveling bodies, and the plurality of traveling bodies are used when the cleaning robot is arranged on the solar cell array. , At least two traveling bodies are arranged so as to sandwich the solar cell module intermediate line in a direction intersecting the traveling direction of the cleaning robot, and the traveling unit is arranged when the cleaning robot is arranged on the solar cell array. , The solar cell module is not provided with a traveling body that travels in the vicinity of the first end portion and the second end portion.
In the first invention, the cleaning robot according to the second invention is the two traveling bodies located on the outermost side in the direction intersecting the traveling direction of the cleaning robot among the plurality of traveling bodies of the traveling portion. The distance from the intermediate line of the solar cell module in the direction connecting the first end portion and the second end portion of the solar cell module to the intermediate line in the width direction of each traveling body in the state of being arranged on the solar cell module. However, the solar cell module is provided so as to have a distance of 1/8 to 3/4 of the distance from the first end portion to the second end portion.
In the cleaning robot of the third invention, in the second invention, the plurality of traveling bodies include a plurality of traveling members, and at least two of the plurality of traveling bodies include a plurality of the two traveling bodies. Of the traveling members of the above, at least two traveling members are provided so as to sandwich the connecting portion of the solar cell array in a direction intersecting the traveling direction of the cleaning robot.
In any one of the first to third aspects of the cleaning robot of the fourth invention, when the plurality of traveling bodies of the traveling unit are viewed from the traveling direction of the cleaning robot, each traveling body is the surface of the solar cell array. It is characterized in that the portions in contact with the robot are arranged so as not to overlap with each other.
In any one of the first to fourth aspects of the fifth invention, at least one of the plurality of traveling bodies of the traveling unit includes a plurality of traveling members, and the plurality of traveling members are provided. When viewed from the traveling direction of the cleaning robot, the portion where at least one traveling member of the plurality of traveling members of each traveling body contacts the surface of the solar cell array is the portion where the other traveling member is the solar cell array. It is characterized in that it is arranged so as not to overlap the portion in contact with the surface.
In any of the first to fifth aspects of the cleaning robot of the sixth invention, each traveling body of the traveling unit includes a plurality of traveling wheels, and the plurality of traveling wheels have at least two driving wheels. The cleaning robot is arranged so that the center of gravity of the cleaning robot is located between the two most distant traveling wheels in the traveling direction of the cleaning robot among the plurality of traveling wheels. The traveling unit includes an auxiliary traveling body located outside the two traveling wheels farthest in the traveling direction of the cleaning robot among the plurality of traveling wheels of the traveling body in the traveling direction of the cleaning robot. In the auxiliary traveling body, the distance to the adjacent drive wheels in the traveling direction of the cleaning robot is equal to or greater than the distance between the two drive wheels closest to the traveling direction of the cleaning robot among the plurality of driving wheels in the traveling body. It is characterized in that it is arranged so as to be.
In the sixth aspect of the invention, the cleaning robot of the seventh invention includes a plurality of the auxiliary traveling bodies, and the plurality of auxiliary traveling bodies assists at least two of the plurality of auxiliary traveling bodies in the traveling direction of the cleaning robot. It is characterized in that the traveling body is provided so as to sandwich the traveling body.
In any one of the first to seventh inventions, the cleaning robot of the eighth invention includes a cleaning member in which the cleaning portion rotates around an axis, and the traveling body and the cleaning member of the cleaning portion are driven by one. It is characterized by being driven by a source.
In any one of the first to eighth inventions, the cleaning robot of the ninth invention has the support mechanism having a plane parallel to both the traveling direction of the cleaning robot and the direction intersecting the traveling direction of the cleaning robot in a plan view. It is characterized by having a free roller having intersecting rotation axes.
In the ninth invention, the cleaning robot of the tenth invention includes a first support portion provided at one end of the chassis frame in a direction intersecting the traveling direction of the cleaning robot, and the chassis frame. A second support portion provided at the other end located on the opposite side of one end is provided, and the first support portion and the second support portion include the traveling direction of the cleaning robot and the traveling direction of the cleaning robot. A free roller having a rotation axis that intersects a surface parallel to both the traveling direction and the intersecting direction of the cleaning robot in a plan view is provided, and the first support portion is free in the direction intersecting the traveling direction of the cleaning robot. It is characterized in that the distance between the roller and the free roller of the second support portion is provided so as to be longer than the distance between both ends of the solar cell module.
The cleaning robot of the eleventh invention has, in the ninth or tenth invention, the support mechanism having two free rollers provided so as to be arranged at intervals along the traveling direction of the cleaning robot. It is a feature.
<Static elimination member>
In any one of the first to eleventh inventions, the cleaning robot of the twelfth invention is provided with a static elimination member on the chassis frame, and the static elimination member is when the cleaning robot is arranged on the solar cell array. In addition, the tip thereof is formed to have a length that allows contact with a grounded member in the solar cell array.
In the twelfth invention, the cleaning robot of the thirteenth invention is a direction in which the static elimination member connects a first end portion and a second end portion of the solar cell module when the cleaning robot is arranged on the solar cell array. The solar cell array is provided at a position where it can come into contact with a connecting portion connecting the solar cell module and the gantry.
<Solar power generation equipment>
The photovoltaic cell power generation facility of the fourteenth invention is installed by arranging a plurality of solar cell modules side by side on a gantry so that the first end portion and the second end portion thereof are arranged in a straight line, and connects the solar cell module and the gantry. Connecting portions are provided between the intermediate line between the first end portion and the second end portion of the solar cell module and the first end portion of the solar cell module, and between the intermediate line and the second end portion, respectively. The solar cell array and the cleaning robot according to any one of the first to thirteenth inventions for cleaning the surface of the solar cell array are provided.
In the solar power generation equipment of the fifteenth invention, in the fourteenth invention, the solar cell array is provided by arranging the plurality of solar cell modules side by side along the axial direction of the swing axis provided on the gantry. It is characterized by that.
The photovoltaic power generation equipment of the 16th invention is characterized in that, in the 14th or 15th invention, the solar cell module constituting the solar cell array is a frameless solar cell module.
 第1発明によれば、掃除ロボットの荷重に起因する太陽電池モジュールの撓みを小さくすることができる。すると、太陽電池モジュールの損傷を防ぐことができ、掃除部による太陽電池モジュール表面の清掃を行いやすくなる。
 第2発明によれば、掃除ロボットの荷重に起因する太陽電池モジュールの撓みをより小さくすることができる。
 第3発明によれば、連結部の両側に掃除ロボットの荷重を加えるので、太陽電池モジュールの撓みをより小さくすることができる。
 第4、第5発明によれば、太陽電池モジュールにおいて走行体が通過する位置のセルや配線、ガラスなどが損傷しにくくすることができる。
 第6、第7発明によれば、一つの走行体における複数の駆動輪のうち、いくつかの駆動輪が隣接する太陽電池モジュール間の隙間に位置しても、補助走行体と少なくとも一つの駆動輪が太陽電池モジュール上に配置された状態に維持できる。したがって、隣接する太陽電池モジュール間に隙間があっても、隣接する太陽電池モジュール間を掃除ロボットがスムースに移動することができる。また、シャシフレームの幅を小さくしても隣接する太陽電池モジュール間の隙間をこえることができるので、シャシフレームを軽量化できる。
 第8発明によれば、駆動源を共通化できるので、掃除ロボットを軽量化でき、製造コストも低減できる。また、複数の駆動源を制御する場合に比べて、制御装置をシンプルにすることが可能になる。
 第9~第11発明によれば、シャシフレームの傾きを防止できる。
<除電部材>
 第12、第13発明によれば、掃除ロボットが帯電しても、帯電した静電気をアース部材に放出することができる。したがって、掃除ロボットの帯電を抑制できるし、帯電しても帯電量を少なくできる。
<太陽光発電設備>
 第14、第15発明によれば、掃除ロボットの荷重に起因する太陽電池モジュールの撓みを小さくすることができる。すると、太陽電池モジュールの損傷を防ぐことができ、掃除部による太陽電池モジュール表面の清掃を行いやすくなる。
 第16発明によれば、掃除ロボットが太陽電池モジュールの撓みが生じにくい構造となっているので、掃除ロボットにフレームレス太陽電池モジュール上を走行させながら、掃除ロボットによってフレームレス太陽電池モジュールの掃除ができる。
According to the first invention, the deflection of the solar cell module due to the load of the cleaning robot can be reduced. Then, damage to the solar cell module can be prevented, and the surface of the solar cell module can be easily cleaned by the cleaning unit.
According to the second invention, the deflection of the solar cell module due to the load of the cleaning robot can be further reduced.
According to the third invention, since the load of the cleaning robot is applied to both sides of the connecting portion, the bending of the solar cell module can be further reduced.
According to the fourth and fifth inventions, it is possible to prevent damage to cells, wiring, glass, and the like at positions where the traveling body passes in the solar cell module.
According to the sixth and seventh inventions, even if some of the driving wheels in one traveling body are located in the gap between the adjacent solar cell modules, the auxiliary traveling body and at least one driving wheel are driven. The ring can be maintained in place on the solar cell module. Therefore, even if there is a gap between adjacent solar cell modules, the cleaning robot can smoothly move between the adjacent solar cell modules. Further, even if the width of the chassis frame is reduced, the gap between adjacent solar cell modules can be exceeded, so that the weight of the chassis frame can be reduced.
According to the eighth invention, since the drive source can be shared, the weight of the cleaning robot can be reduced and the manufacturing cost can be reduced. In addition, the control device can be simplified as compared with the case of controlling a plurality of drive sources.
According to the ninth to eleventh inventions, the inclination of the chassis frame can be prevented.
<Static elimination member>
According to the twelfth and thirteenth inventions, even if the cleaning robot is charged, the charged static electricity can be discharged to the ground member. Therefore, the charging of the cleaning robot can be suppressed, and the amount of charging can be reduced even if the cleaning robot is charged.
<Solar power generation equipment>
According to the 14th and 15th inventions, the bending of the solar cell module due to the load of the cleaning robot can be reduced. Then, damage to the solar cell module can be prevented, and the surface of the solar cell module can be easily cleaned by the cleaning unit.
According to the sixteenth invention, since the cleaning robot has a structure in which the solar cell module is less likely to bend, the cleaning robot can clean the frameless solar cell module while the cleaning robot runs on the frameless solar cell module. it can.
本実施形態の掃除ロボット1の概略斜視図である。It is a schematic perspective view of the cleaning robot 1 of this embodiment. 本実施形態の掃除ロボット1の概略平面図である。It is a schematic plan view of the cleaning robot 1 of this embodiment. 本実施形態の掃除ロボット1の概略底面図である。It is a schematic bottom view of the cleaning robot 1 of this embodiment. 本実施形態の掃除ロボット1の概略左側面図である。It is a schematic left side view of the cleaning robot 1 of this embodiment. 本実施形態の掃除ロボット1の概略右側面図である。It is a schematic right side view of the cleaning robot 1 of this embodiment. 本実施形態の掃除ロボット1の概略正面図である。It is a schematic front view of the cleaning robot 1 of this embodiment. 本実施形態の掃除ロボット1の概略背面図である。It is a schematic rear view of the cleaning robot 1 of this embodiment. 本実施形態の掃除ロボット1の伝達部37の概略説明図である。It is the schematic explanatory drawing of the transmission part 37 of the cleaning robot 1 of this embodiment. 走行輪22と重心Gの位置関係の概略説明図である。It is the schematic explanatory drawing of the positional relationship between the traveling wheel 22 and the center of gravity G. 走行輪22と連結部CEの位置関係の概略説明図であって、(A)は走行輪組が一つの場合であり、(B)は走行輪組を2組有する場合である。It is a schematic explanatory view of the positional relationship between the traveling wheel 22 and the connecting portion CE, (A) is a case where there is one traveling wheel set, and (B) is a case where there are two sets of traveling wheels. 本実施形態の掃除ロボット1における走行制御の概略説明図である。It is the schematic explanatory drawing of the traveling control in the cleaning robot 1 of this embodiment. (A)本実施形態の掃除ロボット1が掃除等の作業を実施する太陽電池アレイLPの概略説明図であり、(B)は太陽電池アレイLPに本実施形態の掃除ロボット1が載せられた状態の概略説明図である。(A) is a schematic explanatory view of the solar cell array LP in which the cleaning robot 1 of the present embodiment performs work such as cleaning, and (B) is a state in which the cleaning robot 1 of the present embodiment is mounted on the solar cell array LP. It is a schematic explanatory view of. 太陽電池アレイLPを複数有する太陽光発電設備SPの概略説明図である。It is the schematic explanatory drawing of the photovoltaic power generation facility SP which has a plurality of solar cell array LPs. 本実施形態の掃除ロボット1の概略ブロック図である。It is a schematic block diagram of the cleaning robot 1 of this embodiment. ストッパー部材SMを設けた本実施形態の掃除ロボット1の概略説明図である。It is a schematic explanatory drawing of the cleaning robot 1 of this embodiment provided with a stopper member SM. ストッパー部材SMの構成の概略説明図である。It is the schematic explanatory drawing of the structure of the stopper member SM. 他の実施形態の掃除ロボット1の概略平面図である。It is a schematic plan view of the cleaning robot 1 of another embodiment. 他の実施形態の掃除ロボット1の概略底面図である。It is a schematic bottom view of the cleaning robot 1 of another embodiment. 他の実施形態の掃除ロボット1の概略左側面図である。It is a schematic left side view of the cleaning robot 1 of another embodiment. 他の実施形態の掃除ロボット1の伝達部37Bの概略説明図である。It is the schematic explanatory drawing of the transmission part 37B of the cleaning robot 1 of another embodiment. (A)は他の実施形態の掃除ロボット1における走行輪22と重心Gの位置関係の概略説明図であり、(B)は複数の走行体21を有する本実施形態の掃除ロボット1を太陽電池アレイLPに載せた状態の概略説明図である。(A) is a schematic explanatory view of the positional relationship between the traveling wheel 22 and the center of gravity G in the cleaning robot 1 of another embodiment, and (B) is a solar cell of the cleaning robot 1 of the present embodiment having a plurality of traveling bodies 21. It is the schematic explanatory drawing of the state which put on the array LP. (A)は掃除ロボット1の退避ステーションSを設けた太陽電池アレイLPを有する太陽光発電設備SPの概略説明図であり、(B)は太陽電池モジュールPの傾斜を固定した太陽電池アレイLPの概略説明図である。(A) is a schematic explanatory view of a photovoltaic power generation facility SP having a solar cell array LP provided with an evacuation station S of the cleaning robot 1, and (B) is a schematic explanatory view of a solar cell array LP having a fixed inclination of the solar cell module P. It is a schematic explanatory drawing.
 本発明の掃除ロボットは、並べて配置された太陽電池モジュールの表面を、太陽電池モジュールの並んでいる方向に沿って走行しながら掃除するロボットであり、太陽電池モジュールの受光面を掃除ロボットが走行しても、太陽電池モジュールの撓みや変形を少なくすることができるようにしたことに特徴を有している。 The cleaning robot of the present invention is a robot that cleans the surfaces of the solar cell modules arranged side by side while traveling along the direction in which the solar cell modules are arranged, and the cleaning robot travels on the light receiving surface of the solar cell modules. However, it is characterized in that the bending and deformation of the solar cell module can be reduced.
 なお、本発明の掃除ロボットは、フレームレス太陽電池モジュールを並べて配置されたトラッキングタイプの太陽電池アレイの掃除に適している。しかし、本発明の掃除ロボットによって掃除される太陽電池アレイや太陽電池モジュールはとくに限定されない。パネルフレームを有する太陽電池モジュールを並べて配置されたトラッキングタイプの太陽電池アレイや、固定された太陽電池モジュール(言い換えればトラッキングタイプでない太陽電池モジュール)にも使用できる。 The cleaning robot of the present invention is suitable for cleaning a tracking type solar cell array in which frameless solar cell modules are arranged side by side. However, the solar cell array and the solar cell module cleaned by the cleaning robot of the present invention are not particularly limited. It can also be used for a tracking type solar cell array in which solar cell modules having a panel frame are arranged side by side, or a fixed solar cell module (in other words, a non-tracking type solar cell module).
 以下では、掃除する対象が、フレームレス太陽電池モジュールを並べて配置されたトラッキングタイプの太陽電池アレイの場合を代表として説明する。 In the following, the case where the object to be cleaned is a tracking type solar cell array in which frameless solar cell modules are arranged side by side will be described as a representative.
<太陽光発電設備SP>
 まず、掃除ロボット1を説明する前に、本実施形態の掃除ロボット1が掃除等の作業を実施する太陽光発電設備SPについて簡単に説明する。図13に示すように、太陽光発電設備SPは、複数枚の太陽電池モジュールPを備えた太陽電池アレイLPを複数列有している。太陽電池アレイLPは、複数枚の太陽電池モジュールPをその第一端部P1の端縁および第二端部P2の端縁がほぼ同じ直線状に並ぶように揃えた状態で架台MTの揺動軸SSで連結したものである。より具体的には、太陽電池アレイLPは、複数枚の太陽電池モジュールPをその表面がほぼ同一平面上に位置するように並べて架台MTの揺動軸SSで連結したものである。そして、太陽電池アレイLPは、揺動軸SSを回転させることによって、複数枚の太陽電池モジュールPを同時かつ同じ角度に揺動させることができるようになっている。したがって、太陽電池アレイLPは、複数枚の太陽電池モジュールPを太陽の移動に追従させて、発電効率が最適となるように複数枚の太陽電池モジュールPの表面の傾きを調整することができる。
<Solar power generation equipment SP>
First, before explaining the cleaning robot 1, the photovoltaic power generation facility SP in which the cleaning robot 1 of the present embodiment performs work such as cleaning will be briefly described. As shown in FIG. 13, the photovoltaic power generation facility SP has a plurality of rows of solar cell array LPs including a plurality of solar cell modules P. The solar cell array LP swings the gantry MT in a state where a plurality of solar cell modules P are aligned so that the edge of the first end P1 and the edge of the second end P2 are aligned in substantially the same straight line. It is connected by the axis SS. More specifically, the solar cell array LP is formed by arranging a plurality of solar cell modules P so that their surfaces are located on substantially the same plane and connecting them by a swing axis SS of a gantry MT. The solar cell array LP can swing a plurality of solar cell modules P at the same time and at the same angle by rotating the swing shaft SS. Therefore, the solar cell array LP can make the plurality of solar cell modules P follow the movement of the sun and adjust the inclination of the surface of the plurality of solar cell modules P so as to optimize the power generation efficiency.
 この太陽電池アレイLPの複数枚の太陽電池モジュールPは、パネルフレームを有しないフレームレス太陽電池モジュールである。このため、太陽電池アレイLPでは、複数枚の太陽電池モジュールPの表面よりも突出した部材がほとんどない状態になっている。例えば、図12に示すように、太陽電池アレイLPでは、複数枚の太陽電池モジュールPを揺動軸SSに接続された支持部材SEに連結する連結部CEのみが太陽電池モジュールPの表面から突出した状態となるように設けられている。 The plurality of solar cell modules P of this solar cell array LP are frameless solar cell modules having no panel frame. Therefore, in the solar cell array LP, there are almost no members protruding from the surfaces of the plurality of solar cell modules P. For example, as shown in FIG. 12, in the solar cell array LP, only the connecting portion CE that connects the plurality of solar cell modules P to the support member SE connected to the swing shaft SS protrudes from the surface of the solar cell module P. It is provided so that it will be in a state of being.
 通常、太陽電池アレイLPの各太陽電池モジュールPは、その表面が水平になった状態で、その第一端部P1と第二端部P2間の中間線CLが揺動軸SSの中心軸S1のほぼ鉛直上方(80mm程度までのズレが生じている場合も含む)に位置するように揺動軸SSに連結されている(図12(B)参照)。そして、連結部CEは、各太陽電池モジュールPの中間線CLと第一、第二端部P1,P2との中間(20~80mm程度のズレが生じている場合も含む)に位置するように各太陽電池モジュールPと連結される。 Normally, in a state where the surface of each solar cell module P of the solar cell array LP is horizontal, the intermediate line CL between the first end portion P1 and the second end portion P2 is the central axis S1 of the swing axis SS. It is connected to the swing shaft SS so as to be located substantially vertically above (including the case where a deviation of up to about 80 mm occurs) (see FIG. 12B). Then, the connecting portion CE is located between the intermediate line CL of each solar cell module P and the first and second end portions P1 and P2 (including the case where a deviation of about 20 to 80 mm occurs). It is connected to each solar cell module P.
 例えば、図12(B)に示すように、太陽電池モジュールPの第一端部P1から第二端部P2までの長さの半分をL(言い換えれば、揺動軸SSから第一端部P1、第二端部P2までの距離)、揺動軸SSから太陽電池アレイLPの連結部CEの中間までの距離をL2(太陽電池モジュールPの第一端部P1と第二端部P2とを繋ぐ方向における距離)とする。すると、L2がLの50~55%程度となるように連結部CEは各太陽電池モジュールPに連結されている。なお、太陽電池アレイLPの連結部CEの中間とは、太陽電池モジュールPの第一端部P1と第二端部P2とを繋ぐ方向において連結部CEを半分に分割する位置を意味している(図12(B)参照)。 For example, as shown in FIG. 12B, half of the length from the first end portion P1 to the second end portion P2 of the solar cell module P is L (in other words, from the swing shaft SS to the first end portion P1). , The distance to the second end P2), the distance from the swing axis SS to the middle of the connecting part CE of the solar cell array LP is L2 (the first end P1 and the second end P2 of the solar cell module P). Distance in the connecting direction). Then, the connecting portion CE is connected to each solar cell module P so that L2 is about 50 to 55% of L. The middle of the connecting portion CE of the solar cell array LP means a position where the connecting portion CE is divided in half in the direction of connecting the first end portion P1 and the second end portion P2 of the solar cell module P. (See FIG. 12 (B)).
 本明細書において、「太陽電池モジュールPの第一端部P1の端縁(第一端縁)」および「太陽電池モジュールPの第二端部P2の端縁(第二端縁)」とは、第一端部P1および第二端部P2において太陽電池モジュールPの表面と交差する面(第一端面または第二端面)と太陽電池モジュールPの表面との交わる交線を意味している。 In the present specification, "the edge of the first end P1 of the solar cell module P (first edge)" and "the edge of the second end P2 of the solar cell module P2 (second edge)" are used. It means an intersection line where a surface (first end surface or second end surface) intersecting the surface of the solar cell module P at the first end portion P1 and the second end portion P2 intersects with the surface of the solar cell module P.
 さらに、「太陽電池モジュールPの第一端縁(第二端縁)をほぼ同じ直線状に並ぶように揃えた」とは、隣接する太陽電池モジュールPの第一端縁同士(または第二端縁同士)が完全に直線状に並んでいる場合と、隣接する太陽電池モジュールPの第一端縁同士(または第二端縁同士)の間に若干のズレが有る場合を含んでいる。隣接する太陽電池モジュールPの第一端縁同士(または第二端縁同士)に若干のズレが有る場合とは、隣接する太陽電池モジュールPの第一端縁同士(または第二端縁同士)がほぼ平行であるが若干高さや水平方向においてズレがある場合(例えば0~5mm程度)や太陽電池モジュールPの表面に沿った方向における位置にズレがある場合(例えば0~20mm程度)を含んでいる。また、隣接する太陽電池モジュールPの第一端縁同士(または第二端縁同士)が相対的に傾いている場合を含んでいる。例えば、太陽電池モジュールPの表面と平行な面内において0~1度程度傾いている場合や、太陽電池モジュールPの第一端面または第二端面と平行な面内において0~2度程度傾いている場合を含んでいる。 Further, "aligning the first end edges (second end edges) of the solar cell modules P so as to line up in substantially the same straight line" means that the first end edges (or the second end edges) of the adjacent solar cell modules P are aligned with each other. This includes the case where the edges) are completely aligned and the case where there is a slight deviation between the first edge edges (or the second edge edges) of the adjacent solar cell modules P. When there is a slight deviation between the first end edges (or the second end edges) of the adjacent solar cell modules P, the first end edges of the adjacent solar cell modules P (or the second end edges) Is almost parallel, but there is a slight deviation in the height or horizontal direction (for example, about 0 to 5 mm), or there is a deviation in the position along the surface of the solar cell module P (for example, about 0 to 20 mm). I'm out. Further, the case where the first end edges (or the second end edges) of the adjacent solar cell modules P are relatively inclined is included. For example, when it is tilted by about 0 to 1 degree in a plane parallel to the surface of the solar cell module P, or when it is tilted by about 0 to 2 degrees in a plane parallel to the first end surface or the second end surface of the solar cell module P. Includes cases where
 また、「複数枚の太陽電池モジュールPの表面がほぼ同一平面上に位置する」とは、隣接する太陽電池モジュールPの表面のなす角度に0~1度程度のズレがある場合を含む概念である。また、隣接する太陽電池モジュールPの表面で若干高さの差がある場合(例えば0~5mm程度)も含んでいる。 Further, "the surfaces of a plurality of solar cell modules P are located on substantially the same plane" is a concept including a case where the angles formed by the surfaces of adjacent solar cell modules P are displaced by about 0 to 1 degree. is there. It also includes the case where there is a slight difference in height between the surfaces of the adjacent solar cell modules P (for example, about 0 to 5 mm).
 また、太陽光発電設備SPの太陽電池アレイLPは、必ずしも上述したような揺動軸SSによって太陽電池モジュールPが揺動するものに限られず、複数枚の太陽電池モジュールPがその傾きが固定された状態で架台MTに設置されたものも含んでいる(図22(B)参照)。つまり、複数枚の太陽電池モジュールPをその表面がほぼ同一平面上に位置するように架台MTに並べて設置された太陽電池アレイLPも、掃除ロボット1が掃除する太陽電池アレイLPに含まれる。この場合も、太陽電池モジュールPは連結部(図22(B)では図示せず)によって架台MTに連結されるが、連結部を設置する位置や連結部の構造は、上述した揺動軸SSによって太陽電池モジュールPが揺動する太陽電池アレイLPの場合と実質的に同じ位置、構造になる。例えば、連結部は、太陽電池モジュールPの第一端部P1と第二端部P2の中間線と、各端部(第一端部P1および第二端部P2)との間にそれぞれ設けられる。 Further, the solar cell array LP of the photovoltaic power generation facility SP is not necessarily limited to the one in which the solar cell module P swings by the swing axis SS as described above, and the inclination of the plurality of solar cell modules P is fixed. It also includes the one installed on the gantry MT in the state of being (see FIG. 22 (B)). That is, the solar cell array LP in which a plurality of solar cell modules P are arranged side by side on the gantry MT so that their surfaces are located on substantially the same plane is also included in the solar cell array LP to be cleaned by the cleaning robot 1. In this case as well, the solar cell module P is connected to the gantry MT by a connecting portion (not shown in FIG. 22B), but the position where the connecting portion is installed and the structure of the connecting portion are determined by the above-mentioned swing shaft SS. The position and structure of the solar cell module P are substantially the same as those of the solar cell array LP in which the solar cell module P swings. For example, the connecting portion is provided between the intermediate line between the first end portion P1 and the second end portion P2 of the solar cell module P and each end portion (first end portion P1 and second end portion P2), respectively. ..
 以下の説明では、揺動軸SSによって太陽電池モジュールPが揺動する太陽電池アレイLPを掃除ロボット1が掃除する場合を代表として説明する。 In the following description, a case where the cleaning robot 1 cleans the solar cell array LP in which the solar cell module P swings by the swing shaft SS will be described as a representative.
 なお、上述した太陽光発電設備SPと、後述する掃除ロボット1とを有する設備が、特許請求の範囲にいう太陽光発電設備に相当する。 It should be noted that the equipment having the above-mentioned photovoltaic power generation equipment SP and the cleaning robot 1 described later corresponds to the photovoltaic power generation equipment in the claims.
<掃除ロボット1>
 以下、図面に基づいて、本実施形態の掃除ロボット1を説明する。
 なお、図面では、構造を分かりやすくするために、適宜記載を省いている部分がある。
<Cleaning robot 1>
Hereinafter, the cleaning robot 1 of the present embodiment will be described with reference to the drawings.
In the drawings, some parts are omitted as appropriate in order to make the structure easier to understand.
 本実施形態の掃除ロボット1は、太陽光発電設備SPにおける複数枚の太陽電池モジュールPを備えた太陽電池アレイLPに沿って走行して、複数枚の太陽電池モジュールPの表面を掃除するものである。具体的には、太陽電池アレイLPの複数枚の太陽電池モジュールPが並んでいる方向、言い換えれば、架台MTの揺動軸SSの軸方向に沿って走行しながら、複数枚の太陽電池モジュールPの表面を掃除するものである。 The cleaning robot 1 of the present embodiment travels along a solar cell array LP provided with a plurality of solar cell modules P in the photovoltaic power generation equipment SP, and cleans the surfaces of the plurality of solar cell modules P. is there. Specifically, while traveling along the direction in which the plurality of solar cell modules P of the solar cell array LP are arranged, in other words, along the axial direction of the swing axis SS of the gantry MT, the plurality of solar cell modules P It cleans the surface of the.
 掃除ロボット1は、シャシフレーム2と、シャシフレーム2を太陽電池アレイLPの太陽電池モジュールP上で走行させる走行部20と、を備えている。また、掃除ロボット1は、走行部20によって太陽電池モジュールP上を走行した際に太陽電池モジュールPの表面を掃除する掃除部10と、掃除部10および走行部20を駆動する駆動部30と、駆動部30の作動を制御する制御機構40と、を備えている。さらに、掃除ロボット1は、揺動軸SSの中心軸S1の軸方向に沿った掃除ロボット1の走行をサポートするサポート機構50を備えている。 The cleaning robot 1 includes a chassis frame 2 and a traveling unit 20 for running the chassis frame 2 on the solar cell module P of the solar cell array LP. Further, the cleaning robot 1 includes a cleaning unit 10 that cleans the surface of the solar cell module P when traveling on the solar cell module P by the traveling unit 20, a driving unit 30 that drives the cleaning unit 10 and the traveling unit 20. It includes a control mechanism 40 that controls the operation of the drive unit 30. Further, the cleaning robot 1 is provided with a support mechanism 50 that supports the running of the cleaning robot 1 along the axial direction of the central axis S1 of the swing axis SS.
<シャシフレーム2>
 図1~図3に示すように、シャシフレーム2は、その幅(図2および図3の上下方向)に比べて、その軸方向(図2および図3の左右方向)が長い部材である。このシャシフレーム2に、掃除部10、走行部20、駆動部30が設けられている。また、シャシフレーム2の両軸端部には、サポート機構50の第一、第二サポート部51,52がそれぞれ取り付けられている。なお、図1~図3には明示されていないが、制御機構40もシャシフレーム2に設けられている。
<Chassis frame 2>
As shown in FIGS. 1 to 3, the chassis frame 2 is a member whose axial direction (horizontal direction in FIGS. 2 and 3) is longer than its width (vertical direction in FIGS. 2 and 3). The chassis frame 2 is provided with a cleaning unit 10, a traveling unit 20, and a driving unit 30. Further, first and second support portions 51 and 52 of the support mechanism 50 are attached to both shaft ends of the chassis frame 2, respectively. Although not explicitly shown in FIGS. 1 to 3, the control mechanism 40 is also provided in the chassis frame 2.
 なお、シャシフレーム2の軸方向の中央部には、作業者が掃除ロボット1を持ち上げる際に使用する取っ手2fが設けられている。
 また、取っ手は、シャシフレーム2の軸方向の両端部に設けてもよい。つまり、シャシフレーム2の軸方向の中央部の取っ手2fに替えて、または、シャシフレーム2の軸方向の中央部の取っ手2fとともに、シャシフレーム2の軸方向の両端部に、作業者が掃除ロボット1を持ち上げたりする際に使用する取っ手を設けてもよい。
A handle 2f used by an operator to lift the cleaning robot 1 is provided at the central portion of the chassis frame 2 in the axial direction.
Further, the handles may be provided at both ends of the chassis frame 2 in the axial direction. That is, instead of the handle 2f at the center of the chassis frame 2 in the axial direction, or together with the handle 2f at the center of the chassis frame 2 in the axial direction, the operator cleans the robot at both ends in the axial direction of the chassis frame 2. A handle used for lifting 1 may be provided.
<掃除部10>
 図1~図3に示すように、掃除部10は、シャシフレーム2の下面側に、回転する一本のブラシ12を備えている。このブラシ12は、その軸方向の長さが太陽電池モジュールPの第一、第二端部P1,P2間の長さ(揺動軸SSと直交する方向の長さ)よりも長いものである。このブラシ12は、軸部とその周囲に設けられた刷毛などを有するブラシ部とを備えており、その回転軸がシャシフレーム2の軸方向と平行になるように設けられている。このブラシ12の両軸端部が、シャシフレーム2に設けられた軸受部13によってそれぞれ回転可能に保持されている。そして、ブラシ12の軸部の一端部(図2では左側の端部)が駆動部30に連結されており、この駆動部30によってブラシ12が回転すれば、太陽電池モジュールPの表面を掃いて掃除することができるようになっている。
<Cleaning section 10>
As shown in FIGS. 1 to 3, the cleaning unit 10 includes a rotating brush 12 on the lower surface side of the chassis frame 2. The length of the brush 12 in the axial direction is longer than the length between the first and second ends P1 and P2 of the solar cell module P (the length in the direction orthogonal to the swing axis SS). The brush 12 includes a shaft portion and a brush portion having a brush or the like provided around the shaft portion, and is provided so that the rotation axis thereof is parallel to the axial direction of the chassis frame 2. Both shaft ends of the brush 12 are rotatably held by bearing portions 13 provided on the chassis frame 2. Then, one end of the shaft portion of the brush 12 (the left end portion in FIG. 2) is connected to the drive unit 30, and when the brush 12 is rotated by the drive unit 30, the surface of the solar cell module P is swept. It can be cleaned.
 なお、ブラシ12の回転方向は、ブラシ12のブラシ部の先端(刷毛などの先端)が太陽電池モジュールPの表面を掃く方向(つまりブラシ部の先端が太陽電池モジュールPの表面を移動する方向)が、掃除ロボット1の走行方向と一致するようにする。例えば、図12(A)に示すように、太陽電池アレイLP上を左から右に掃除ロボット1が移動する場合であれば、ブラシ部の先端が太陽電池モジュールPの表面を掃く方向も左から右になるようにブラシ12を回転させる。すると、ブラシ12によって掃かれた埃等を掃除ロボット1の走行方向前方(図12では右方向)に掃いて移動させることができる。このようにしておけば、掃除ロボット1が太陽電池アレイLPの端部(図12では右端部)まで移動すると、太陽電池アレイLPの端部において埃等を太陽電池モジュールPの表面から落として太陽電池モジュールPから埃等を除去することができる。 The rotation direction of the brush 12 is the direction in which the tip of the brush portion (tip of the brush or the like) of the brush 12 sweeps the surface of the solar cell module P (that is, the direction in which the tip of the brush portion moves on the surface of the solar cell module P). However, it should match the traveling direction of the cleaning robot 1. For example, as shown in FIG. 12A, when the cleaning robot 1 moves from left to right on the solar cell array LP, the direction in which the tip of the brush portion sweeps the surface of the solar cell module P is also from the left. Rotate the brush 12 so that it is to the right. Then, the dust and the like swept by the brush 12 can be swept forward in the traveling direction of the cleaning robot 1 (to the right in FIG. 12) and moved. In this way, when the cleaning robot 1 moves to the end of the solar cell array LP (the right end in FIG. 12), dust and the like are dropped from the surface of the solar cell module P at the end of the solar cell array LP to the sun. Dust and the like can be removed from the battery module P.
<軸受部13>
 軸受部13は、ブラシ12の端部を回転可能に保持することができればよく、その構造は限定されない。とくに、ブラシ12の端部を揺動可能に保持するものであることが望ましい。かかる構成とすれば、掃除部10のブラシ12が回転した際に振れ回りが生じても、その振れ回りによる振動や変形を軸受部13によって吸収できる。すると、軸受部13やブラシ12、シャシフレーム2などが、ブラシ12の触れ回りによって損傷することを抑制できる。
<Bearing part 13>
The structure of the bearing portion 13 is not limited as long as the end portion of the brush 12 can be rotatably held. In particular, it is desirable that the end portion of the brush 12 is held swingably. With such a configuration, even if vibration occurs when the brush 12 of the cleaning unit 10 rotates, the bearing unit 13 can absorb the vibration and deformation due to the rotation. Then, it is possible to prevent the bearing portion 13, the brush 12, the chassis frame 2, and the like from being damaged by the touching of the brush 12.
 例えば、軸受部13として、一般的なジンバル構造等によって軸受を保持する構造とすれば、軸受部13によってブラシ12の端部を揺動可能に保持できる。とくに、軸受として球面軸受を採用すれば、軸受部13自体の構造は上述したようなジンバル構造等としなくても、ブラシ12の端部を揺動可能に保持できる。つまり、軸受部13の構造を簡素化できるという利点がある。
 また、軸受部13として、ブラシ12の端部を保持する軸受(ボールベアリング等)と、この軸受を保持しシャシフレーム2に軸受を連結する軸受ケースとを有している場合には、軸受と軸受ケースとの間にゴムやバネ等の弾性材を配置してもよい。すると、弾性材がブラシ12の回転等に起因する振動を吸収できるので、ブラシ12の回転等に起因するブラシ12やシャシフレーム2等の損傷を抑制したり、回転抵抗を低減したりできる。
For example, if the bearing portion 13 has a structure in which the bearing is held by a general gimbal structure or the like, the end portion of the brush 12 can be held swingably by the bearing portion 13. In particular, if a spherical bearing is adopted as the bearing, the end portion of the brush 12 can be held swingably without the structure of the bearing portion 13 itself having a gimbal structure or the like as described above. That is, there is an advantage that the structure of the bearing portion 13 can be simplified.
Further, when the bearing portion 13 includes a bearing (ball bearing or the like) that holds the end portion of the brush 12, and a bearing case that holds the bearing and connects the bearing to the chassis frame 2, the bearing portion 13 An elastic material such as rubber or a spring may be arranged between the bearing case and the bearing case. Then, since the elastic material can absorb the vibration caused by the rotation of the brush 12, the damage to the brush 12 and the chassis frame 2 caused by the rotation of the brush 12 can be suppressed, and the rotation resistance can be reduced.
 なお、図1~図3では、掃除部10がブラシ12を一本有している場合を記載しているが、掃除部10はブラシ12を複数本有していてもよい。例えば、図17~図20に示すように、掃除部10がブラシ12を2本有していてもよい。具体的には、シャシフレーム2の下面側に、後述する走行部20を走行方向の前後から挟むように2本のブラシ12を設けてもよい。この場合、2本のブラシ12は、その回転方向が同じ方向になるように回転させてもよいし、その回転方向は逆方向になるように回転させてもよい。例えば、2本のブラシ12の回転方向が同じ方向になる場合には、2本のブラシ12は、いずれもそのブラシ部の先端(刷毛などの先端)が太陽電池モジュールPの表面を掃く方向が、掃除ロボット1の走行方向と一致するように回転させることが望ましい。また、2本のブラシ12の回転方向が逆方向になる場合には、2本のブラシ12のうち、走行方向の前方に位置するブラシ12では、ブラシ部の先端(刷毛などの先端)が太陽電池モジュールPの表面を掃く方向が、掃除ロボット1の走行方向と一致するように回転させ、走行方向の後方に位置するブラシ12では、ブラシ部の先端(刷毛などの先端)が太陽電池モジュールPの表面を掃く方向が、掃除ロボット1の走行方向と逆方向になるように回転させることが望ましい。 Note that, although FIGS. 1 to 3 describe the case where the cleaning unit 10 has one brush 12, the cleaning unit 10 may have a plurality of brushes 12. For example, as shown in FIGS. 17 to 20, the cleaning unit 10 may have two brushes 12. Specifically, two brushes 12 may be provided on the lower surface side of the chassis frame 2 so as to sandwich the traveling portion 20 described later from the front and rear in the traveling direction. In this case, the two brushes 12 may be rotated so that their rotation directions are the same, or they may be rotated so that their rotation directions are opposite to each other. For example, when the rotation directions of the two brushes 12 are the same, the tips of the brush portions (tips of brushes and the like) of the two brushes 12 sweep the surface of the solar cell module P. , It is desirable to rotate the cleaning robot 1 so as to coincide with the traveling direction. When the rotation directions of the two brushes 12 are opposite to each other, the tip of the brush portion (the tip of the brush or the like) of the brush 12 located in front of the traveling direction of the two brushes 12 is the sun. In the brush 12 located behind the traveling direction in which the direction of sweeping the surface of the battery module P is rotated so as to coincide with the traveling direction of the cleaning robot 1, the tip of the brush portion (the tip of the brush or the like) is the solar cell module P. It is desirable to rotate the surface of the cleaning robot 1 so that the direction of sweeping is opposite to the traveling direction of the cleaning robot 1.
<走行部20>
 シャシフレーム2の下面には走行部20が設けられている。この走行部20は、2つの走行体21を備えている。
<Running unit 20>
A traveling portion 20 is provided on the lower surface of the chassis frame 2. The traveling unit 20 includes two traveling bodies 21.
 この2つの走行体21は、太陽電池モジュールPの表面が水平になった状態で、掃除ロボット1を太陽電池モジュールPの表面に載せると、揺動軸SSを挟む位置に配置できるように設けられている(図10、図12(B)参照)。つまり、2つの走行体21は、太陽電池モジュールPの表面に掃除ロボット1を載せると、太陽電池モジュールPに対して揺動軸SSを挟む位置に掃除ロボット1からの荷重を加えることができるように設けられている。 The two traveling bodies 21 are provided so that when the cleaning robot 1 is placed on the surface of the solar cell module P in a state where the surface of the solar cell module P is horizontal, the two traveling bodies 21 can be arranged at positions sandwiching the swing shaft SS. (See FIGS. 10 and 12 (B)). That is, when the cleaning robot 1 is placed on the surface of the solar cell module P, the two traveling bodies 21 can apply the load from the cleaning robot 1 to the position where the swing shaft SS is sandwiched with respect to the solar cell module P. It is provided in.
 例えば、太陽電池モジュールPの第一端部P1から第二端部P2までの長さの半分をLとする(図12(B)参照)。すると、太陽電池アレイLPの連結部CEは、その中間から揺動軸SSまでの距離L2がLの50~55%程度となる位置に配置される。そのような太陽電池アレイLPの太陽電池モジュールP上に掃除ロボット1を配置すると、各走行体21の太陽電池アレイLPと接触する部分は、各走行体21の幅方向の中間線から揺動軸SSまでの距離L1が、距離Lの1/4~3/4となるように設けられている。言い換えれば、距離L1は、太陽電池モジュールの第一端部P1から第二端部P2までの長さまでの距離の1/8~3/8となるように設けられている。このように各走行体21を設ければ、太陽電池モジュールの第一端部P1および第二端部P2の近傍には走行体21が接触しない状態となる。例えば、太陽電池モジュールにおいて、第一端部P1および第二端部P2から距離Lの1/5以下程度の領域には、走行体21が接触しない状態とすることが望ましい。
 なお、2つの走行体21を上述した状態にする上では、2つの走行体21間の距離が、太陽電池モジュールの第一端部P1から第二端部P2までの長さまでの距離の1/4~3/4となるように設けることが望ましい。
For example, let L be half the length from the first end P1 to the second end P2 of the solar cell module P (see FIG. 12B). Then, the connecting portion CE of the solar cell array LP is arranged at a position where the distance L2 from the middle to the swing axis SS is about 50 to 55% of L. When the cleaning robot 1 is arranged on the solar cell module P of such a solar cell array LP, the portion of each traveling body 21 in contact with the solar cell array LP is a swing axis from the intermediate line in the width direction of each traveling body 21. The distance L1 to the SS is provided so as to be 1/4 to 3/4 of the distance L. In other words, the distance L1 is provided so as to be 1/8 to 3/8 of the distance from the first end portion P1 to the second end portion P2 of the solar cell module. When each traveling body 21 is provided in this way, the traveling body 21 does not come into contact with the vicinity of the first end portion P1 and the second end portion P2 of the solar cell module. For example, in the solar cell module, it is desirable that the traveling body 21 does not come into contact with the region of about 1/5 or less of the distance L from the first end portion P1 and the second end portion P2.
In order to bring the two traveling bodies 21 into the above-mentioned state, the distance between the two traveling bodies 21 is 1/1 of the distance from the first end P1 to the second end P2 of the solar cell module. It is desirable to provide it so that it is 4 to 3/4.
 例えば、2つの走行体21が、いずれも連結部CEよりも内方に位置するように配置されている場合であれば(図10(A)参照)、各走行体21は、その太陽電池アレイLPと接触する部分の外縁(走行体21の幅方向の外方端縁、図10では走行輪22の外縁が該当する)が、連結部CEの内方の端縁から30~50mm程度内方を走行するようになっていることが望ましい。
 一方、2つの走行体21が、いずれも連結部CEよりも外方に位置するように配置されていてもよい。この場合は、各走行体21は、その太陽電池アレイLPと接触する部分の内縁(走行体21の幅方向の内方端縁、図10では走行輪22の内縁が該当する)が、連結部CEの外方の端縁から30~50mm程度外方を走行するようになっていることが望ましい。
 そして、2つの走行体21は、一方が連結部CEよりも内方で、他方が連結部CEよりも外方に位置してもよい。
For example, if the two traveling bodies 21 are arranged so as to be located inward of the connecting portion CE (see FIG. 10A), each traveling body 21 is a solar cell array thereof. The outer edge of the portion in contact with the LP (the outer edge of the traveling body 21 in the width direction, which corresponds to the outer edge of the traveling wheel 22 in FIG. 10) is about 30 to 50 mm inward from the inner edge of the connecting portion CE. It is desirable to be able to drive.
On the other hand, the two traveling bodies 21 may be arranged so as to be located outside the connecting portion CE. In this case, each traveling body 21 has an inner edge of a portion in contact with the solar cell array LP (the inner edge of the traveling body 21 in the width direction, which corresponds to the inner edge of the traveling wheel 22 in FIG. 10) is a connecting portion. It is desirable that the vehicle travels about 30 to 50 mm outward from the outer edge of the CE.
Then, one of the two traveling bodies 21 may be located inside the connecting portion CE and the other may be located outside the connecting portion CE.
 なお、各走行体21は、太陽電池アレイLPと接触する部分が太陽電池アレイLPの連結部CEからあまり離れない位置を走行するようになっていることが望ましい。とくに、走行体21が連結部CEよりも外方を走行する場合には、連結部CE近傍を走行し、かつ、太陽電池モジュールの第一端部P1および第二端部P2から距離Lの1/5以下程度の領域よりも連結部CEに近い位置を走行するようにすることが望ましい。 It is desirable that each traveling body 21 travels at a position where the portion in contact with the solar cell array LP is not so far from the connecting portion CE of the solar cell array LP. In particular, when the traveling body 21 travels outside the connecting portion CE, it travels in the vicinity of the connecting portion CE and has a distance L of 1 from the first end portion P1 and the second end portion P2 of the solar cell module. It is desirable to travel at a position closer to the connecting portion CE than in a region of about / 5 or less.
 また、上記範囲(距離L1が距離Lの1/4~3/4となる範囲)には、走行体21が連結部CE上を走行する状態となる場合が含まれる。掃除部10による掃除が継続できるのであれば、走行体21は連結部CE上を走行してもよい。例えば、走行体21が走行輪22を有する場合に、走行輪22が連結部CE上に位置した状態でも掃除部10のブラシ12が太陽電池モジュールPの表面を掃くことができるように構成されていれば、走行体21は連結部CE上を走行してもよい。しかし、走行体21は、上記範囲でかつ連結部CE上を走行しない範囲に配置されていることが望ましい。なお、走行体21が連結部CE上を走行する場合には、ブラシ12の太陽電池モジュールPの表面に対する傾きが生じること防ぐため(または傾きを小さくするため)に、2つの走行体21,21がいずれも連結部CE上を走行するようになっていることが望ましい。 Further, the above range (the range in which the distance L1 is 1/4 to 3/4 of the distance L) includes the case where the traveling body 21 is in a state of traveling on the connecting portion CE. The traveling body 21 may travel on the connecting portion CE as long as the cleaning by the cleaning unit 10 can be continued. For example, when the traveling body 21 has traveling wheels 22, the brush 12 of the cleaning unit 10 can sweep the surface of the solar cell module P even when the traveling wheels 22 are located on the connecting portion CE. Then, the traveling body 21 may travel on the connecting portion CE. However, it is desirable that the traveling body 21 is arranged in the above range and in a range in which the traveling body 21 does not travel on the connecting portion CE. When the traveling body 21 travels on the connecting portion CE, the two traveling bodies 21 and 21 are used to prevent the brush 12 from tilting with respect to the surface of the solar cell module P (or to reduce the tilt). However, it is desirable that all of them run on the connecting portion CE.
 パネルフレームを有する太陽電池モジュールPを掃除ロボット1が掃除する場合でも、走行部20は上記と同等の構成であることが望ましい。パネルフレームを有する太陽電池モジュールPの場合には、太陽電池モジュールPの剛性が比較的高い。その場合でも、各走行体21は、太陽電池アレイLPの連結部CEからあまり離れない位置を走行するようになっていることが望ましい。 Even when the cleaning robot 1 cleans the solar cell module P having the panel frame, it is desirable that the traveling unit 20 has the same configuration as the above. In the case of the solar cell module P having a panel frame, the rigidity of the solar cell module P is relatively high. Even in that case, it is desirable that each traveling body 21 travels at a position not so far from the connecting portion CE of the solar cell array LP.
 2つの走行体21は、シャシフレーム2の軸方向の中間線2CLに対して、対称となる位置に設けられていることがより望ましい(図2、図3参照)。つまり、太陽電池モジュールPの表面が水平になった状態で、掃除ロボット1を太陽電池モジュールPの表面に載せると、揺動軸SSに対して対称となるように2つの走行体21が設けられていることがより望ましい。より具体的には、太陽電池モジュールPの表面が水平になった状態で、太陽電池モジュールPの表面に掃除ロボット1を載せる。このとき、シャシフレーム2の中間線2CL(図2、図3参照)が揺動軸SSの中心軸S1のほぼ鉛直上方に位置するように、掃除ロボット1を太陽電池モジュールPの表面に載せる(この状態を「基本状態となるように掃除ロボット1を太陽電池モジュールPの表面に載せる」という場合がある)。すると、2つの走行体21は、揺動軸SSに対して対称となるように配置されるので、太陽電池モジュールPに対して揺動軸SSを挟んで対称に荷重を加えることができる。 It is more desirable that the two traveling bodies 21 are provided at positions symmetrical with respect to the intermediate line 2CL in the axial direction of the chassis frame 2 (see FIGS. 2 and 3). That is, when the cleaning robot 1 is placed on the surface of the solar cell module P in a state where the surface of the solar cell module P is horizontal, two traveling bodies 21 are provided so as to be symmetrical with respect to the swing axis SS. Is more desirable. More specifically, the cleaning robot 1 is placed on the surface of the solar cell module P in a state where the surface of the solar cell module P is horizontal. At this time, the cleaning robot 1 is placed on the surface of the solar cell module P so that the intermediate line 2CL of the chassis frame 2 (see FIGS. 2 and 3) is located substantially vertically above the central axis S1 of the swing axis SS (see FIGS. 2 and 3). This state may be referred to as "the cleaning robot 1 is placed on the surface of the solar cell module P so as to be in the basic state"). Then, since the two traveling bodies 21 are arranged so as to be symmetrical with respect to the swing shaft SS, a load can be applied symmetrically to the solar cell module P with the swing shaft SS interposed therebetween.
 なお、各走行体21を、シャシフレーム2の中間線2CLから各走行体21の幅方向の中間線までの距離L3(図12(B)参照)が距離Lの1/4~3/4となるように設ける。すると、基本状態となるように掃除ロボット1を太陽電池モジュールPの表面に載せれば、各走行体21の幅方向の中間線から揺動軸SSまでの距離L1は、距離Lの1/4~3/4となる。 The distance L3 (see FIG. 12B) from the intermediate line 2CL of the chassis frame 2 to the intermediate line in the width direction of each traveling body 21 is 1/4 to 3/4 of the distance L. It is provided so as to be. Then, if the cleaning robot 1 is placed on the surface of the solar cell module P so as to be in the basic state, the distance L1 from the intermediate line in the width direction of each traveling body 21 to the swing axis SS is 1/4 of the distance L. It becomes ~ 3/4.
 太陽電池モジュールPに対して揺動軸SSを挟んで対称に荷重を加えることができるのであれば、必ずしも2つの走行体21は、揺動軸SSに対して対称に配置されていなくてもよい。つまり、太陽電池モジュールPの表面に掃除ロボット1を載せた状態において、揺動軸SSの中心軸S1から2つの走行体21までの距離が異なっていてもよい。例えば、掃除ロボット1の全体の重心Gの位置(図9参照)がシャシフレーム2の中間線2CLや2つの走行体21の中間からずれているとする。このような場合であれば、掃除ロボット1の重心が適切な位置になるように、太陽電池モジュールPの表面に掃除ロボット1を載せればよい。この場合でも、2つの走行体21は、上述した範囲に配置されていることが望ましい。 The two traveling bodies 21 do not necessarily have to be arranged symmetrically with respect to the swing shaft SS as long as the load can be applied symmetrically to the solar cell module P with the swing shaft SS interposed therebetween. .. That is, when the cleaning robot 1 is mounted on the surface of the solar cell module P, the distances from the central axis S1 of the swing axis SS to the two traveling bodies 21 may be different. For example, it is assumed that the position of the entire center of gravity G of the cleaning robot 1 (see FIG. 9) is deviated from the middle line 2CL of the chassis frame 2 and the middle of the two traveling bodies 21. In such a case, the cleaning robot 1 may be placed on the surface of the solar cell module P so that the center of gravity of the cleaning robot 1 is at an appropriate position. Even in this case, it is desirable that the two traveling bodies 21 are arranged in the above-mentioned range.
<走行体21>
 各走行体21は、太陽電池モジュールPの表面を走行するための走行部材として、2つの走行輪22を備えている。各走行体21は、掃除ロボット1の走行方向、つまり、ブラシ12の回転軸方向と交差する方向に沿って2つの走行輪22を備えている。具体的には、この2つの走行輪22は、その回転軸が互いに平行であって、その走行ラインが一致するように設けられている。言い換えれば、掃除ロボット1の走行方向から見たときに、2つの走行輪22は互いに重なるように設けられている。
<Running body 21>
Each traveling body 21 includes two traveling wheels 22 as traveling members for traveling on the surface of the solar cell module P. Each traveling body 21 includes two traveling wheels 22 along the traveling direction of the cleaning robot 1, that is, the direction intersecting the rotation axis direction of the brush 12. Specifically, the two traveling wheels 22 are provided so that their rotation axes are parallel to each other and their traveling lines coincide with each other. In other words, the two traveling wheels 22 are provided so as to overlap each other when viewed from the traveling direction of the cleaning robot 1.
 なお、2つの走行輪22は、掃除ロボット1の走行方向と直交する方向において、その走行ラインがズレるように設けられていてもよい。言い換えれば、掃除ロボット1の走行方向から見たときに、2つの走行輪22の太陽電池モジュールPの表面と接触する部分が、互いに重ならないように配設されていてもよい。例えば、掃除ロボット1の平面視で、2つの走行体21の2つの走行輪22、つまり、4つの走行輪22を結ぶ線によって台形が形成されるように2つの走行体21の2つの走行輪22が配設されていてもよい(図21(A)参照)。かかる構成とすれば、太陽電池モジュールP上の特定の位置にかかる荷重を分散させることができる。つまり、走行方向に並ぶ2つの走行輪22は太陽電池モジュールPの同じ位置を通過しないので、太陽電池モジュールPにおいて走行輪22が通過する位置のセルや配線、ガラスなどが損傷しにくくすることができる。
 ここでいう、「2つの走行輪22の太陽電池モジュールPの表面と接触する部分が互いに重ならない」とは、完全に重ならない場合と、わずかに重なりがある場合との両方を含んでいる。わずかに重なりがあるとは、走行輪22から太陽電池モジュールPに加わる荷重が小さい部分では重なりがある場合を意味している。
The two traveling wheels 22 may be provided so that their traveling lines deviate in a direction orthogonal to the traveling direction of the cleaning robot 1. In other words, the portions of the two traveling wheels 22 that come into contact with the surfaces of the solar cell modules P when viewed from the traveling direction of the cleaning robot 1 may be arranged so as not to overlap each other. For example, in the plan view of the cleaning robot 1, the two traveling wheels 22 of the two traveling bodies 21, that is, the two traveling wheels of the two traveling bodies 21 so that the trapezoid is formed by the lines connecting the four traveling wheels 22. 22 may be arranged (see FIG. 21 (A)). With such a configuration, the load applied to a specific position on the solar cell module P can be dispersed. That is, since the two traveling wheels 22 arranged in the traveling direction do not pass through the same position of the solar cell module P, the cells, wiring, glass, etc. at the position where the traveling wheels 22 pass in the solar cell module P can be less likely to be damaged. it can.
The term "the portions of the two traveling wheels 22 in contact with the surface of the solar cell module P do not overlap each other" includes both a case where they do not completely overlap and a case where they slightly overlap each other. The slight overlap means that there is a slight overlap in the portion where the load applied from the traveling wheel 22 to the solar cell module P is small.
 しかも、2つの走行輪22は、掃除ロボット1の走行方向(言い換えればシャシフレーム2の幅方向)において、掃除ロボット1の重心Gの位置を挟むように配設されている(図9参照)。より詳しくは、掃除ロボット1の走行方向において(言い換えれば、シャシフレーム2の軸方向から見たときに)、掃除ロボット1の重心Gが2つの走行輪22の回転軸のほぼ中間線DL上(60mm程度以下のズレが生じている場合も含む)に位置するように2つの走行輪22が設けられている(図9参照)。 Moreover, the two traveling wheels 22 are arranged so as to sandwich the position of the center of gravity G of the cleaning robot 1 in the traveling direction of the cleaning robot 1 (in other words, the width direction of the chassis frame 2) (see FIG. 9). More specifically, in the traveling direction of the cleaning robot 1 (in other words, when viewed from the axial direction of the chassis frame 2), the center of gravity G of the cleaning robot 1 is approximately on the intermediate line DL of the rotation axes of the two traveling wheels 22 (in other words, when viewed from the axial direction of the chassis frame 2). Two traveling wheels 22 are provided so as to be located (including the case where a deviation of about 60 mm or less occurs) (see FIG. 9).
 2つの走行体21の2つの走行輪22は、その回転軸が駆動部30の駆動軸36,36にそれぞれ連結されており、駆動軸36,36の回転によって回転するようになっている。なお、2つの走行輪22は、駆動部30の駆動軸36,36を回転軸としてもよい。 The rotating shafts of the two traveling wheels 22 of the two traveling bodies 21 are connected to the drive shafts 36 and 36 of the drive unit 30, respectively, and are rotated by the rotation of the drive shafts 36 and 36. The two traveling wheels 22 may use the drive shafts 36, 36 of the drive unit 30 as rotation shafts.
 なお、各走行体21の走行輪22は、シャシフレーム2を太陽電池モジュールPに載せたときに、走行輪22の下端がシャシフレーム2よりも先に太陽電池モジュールPの表面に接触するように設けられている。 When the chassis frame 2 is mounted on the solar cell module P, the traveling wheels 22 of each traveling body 21 contact the lower end of the traveling wheels 22 with the surface of the solar cell module P before the chassis frame 2. It is provided.
 また、走行輪22の直径や幅等はとくに限定されない。走行輪22は、太陽電池モジュールPの表面に接触した状態で、ブラシ12のブラシ部の先端の一部(下方に位置する部分)が太陽電池モジュールPの表面に接触するように設けられていればよい。また、各走行体21において、走行輪22は同じ直径や幅でなくてもよいが、同じ直径や幅である方が走行を安定させることができる。とくに、全ての走行体21の走行輪22が同じ直径や幅であれば、より走行を安定させることができる。 Further, the diameter and width of the traveling wheel 22 are not particularly limited. The traveling wheel 22 is provided so that a part of the tip (a portion located below) of the brush portion of the brush 12 comes into contact with the surface of the solar cell module P in a state of being in contact with the surface of the solar cell module P. Just do it. Further, in each traveling body 21, the traveling wheels 22 do not have to have the same diameter and width, but those having the same diameter and width can stabilize the traveling. In particular, if the traveling wheels 22 of all the traveling bodies 21 have the same diameter and width, the traveling can be made more stable.
 また、走行輪22の構造や素材などもとくに限定されない。一般的なゴムや、ウレタン樹脂等の樹脂材料などで形成されたものや、ゴムや、ウレタン樹脂等の樹脂材料などを太陽電池モジュールPの表面と接触する部分に設けたもの、などを使用することができる。つまり、走行輪22は、太陽電池モジュールPの表面を走行しても、太陽電池モジュールPの表面と接触する部分が、太陽電池モジュールPの表面(ガラスや表面コーティング等)を傷つけにくい素材や硬さ(柔軟性)を有するもので形成されているものが望ましい。 Further, the structure and material of the traveling wheel 22 are not particularly limited. Use a material formed of general rubber or a resin material such as urethane resin, or a material provided with a resin material such as rubber or urethane resin in contact with the surface of the solar cell module P. be able to. That is, even if the traveling wheel 22 travels on the surface of the solar cell module P, the portion in contact with the surface of the solar cell module P is made of a material or hardness that does not easily damage the surface of the solar cell module P (glass, surface coating, etc.). It is desirable that the module is made of a flexible material.
<駆動部30>
 図1、図3に示すように、シャシフレーム2には、掃除部10のブラシ12および走行部20の2つの走行体21の走行輪22を駆動する駆動部30が設けられている。
<Drive unit 30>
As shown in FIGS. 1 and 3, the chassis frame 2 is provided with a drive unit 30 for driving the traveling wheels 22 of the two traveling bodies 21 of the brush 12 of the cleaning unit 10 and the traveling unit 20.
 この駆動部30は、駆動源32(図14参照)と、駆動源32等に電力を供給するバッテリ33と、この駆動源32の駆動力をブラシ12および走行輪22に伝達する伝達機構35と、を有している。 The drive unit 30 includes a drive source 32 (see FIG. 14), a battery 33 that supplies electric power to the drive source 32 and the like, and a transmission mechanism 35 that transmits the driving force of the drive source 32 to the brush 12 and the traveling wheels 22. ,have.
<駆動源32およびバッテリ33>
 駆動源32はモータ等の公知の駆動源であり、バッテリ33も一般的な二次電池等である。駆動源32やバッテリ33はとくに限定されないが、軽量小型のものが望ましい。
<Drive source 32 and battery 33>
The drive source 32 is a known drive source such as a motor, and the battery 33 is also a general secondary battery or the like. The drive source 32 and the battery 33 are not particularly limited, but a lightweight and compact one is desirable.
<伝達機構35>
 伝達機構35は、2つの走行体21の走行輪22の回転軸に連結された駆動軸36,36と、この回転軸に駆動源32の駆動力を伝達する伝達部37と、を備えている。なお、伝達部37は、ブラシ12にも駆動力を伝達する構成を有している。つまり、一つの駆動源によって、走行体21の走行輪22とブラシ12の両方を駆動できるようになっている。
<Transmission mechanism 35>
The transmission mechanism 35 includes drive shafts 36, 36 connected to the rotation shafts of the traveling wheels 22 of the two traveling bodies 21, and a transmission unit 37 that transmits the driving force of the drive source 32 to the rotation shafts. .. The transmission unit 37 also has a configuration in which the driving force is transmitted to the brush 12. That is, both the traveling wheel 22 and the brush 12 of the traveling body 21 can be driven by one drive source.
 駆動軸36,36は、互いに平行かつブラシ12の回転軸とほぼ平行にシャシフレーム2に設けられている。この駆動軸36,36は、走行部20の2つの走行体21,21の2つの走行輪22,22を駆動するものである。つまり、2本の駆動軸36,36によって、4つの走行輪22が全て駆動されるように設けられている。 The drive shafts 36 and 36 are provided on the chassis frame 2 in parallel with each other and substantially parallel to the rotation shaft of the brush 12. The drive shafts 36, 36 drive the two traveling wheels 22, 22 of the two traveling bodies 21 and 21 of the traveling unit 20. That is, the two drive shafts 36, 36 are provided so that all four traveling wheels 22 are driven.
 具体的には、図3に示すように、2つの走行体21,21の2つの走行輪22,22は、シャシフレーム2の軸方向において、対応する走行輪22の回転軸がほぼ同軸になるように設けられている。そして、走行体21,21の対応する走行輪22は、駆動軸36によってそれぞれ連結されている。各駆動軸36は、第一駆動軸36aと第二駆動軸36bとによって構成されている。第一駆動軸36aは、その一端が伝達部37に回転可能に保持されており、その他端が伝達部37に近い側の走行体21の一方の走行輪22の回転軸に連結されている。一方、第二駆動軸36bは、その一端が伝達部37に近い側の走行体21の走行輪22の回転軸に連結されており、その他端が伝達部37から遠い側の走行体21の走行輪22の回転軸に連結されている。したがって、伝達部37によって駆動源32からの駆動力が駆動軸36(つまり第一駆動軸36a)に伝達されると、駆動軸36によって走行体21,21の対応する走行輪22が同じように回転するように設けられている。 Specifically, as shown in FIG. 3, the two traveling wheels 22 and 22 of the two traveling bodies 21 and 21 have substantially coaxial rotation axes of the corresponding traveling wheels 22 in the axial direction of the chassis frame 2. It is provided as follows. The corresponding traveling wheels 22 of the traveling bodies 21 and 21 are connected by a drive shaft 36, respectively. Each drive shaft 36 is composed of a first drive shaft 36a and a second drive shaft 36b. One end of the first drive shaft 36a is rotatably held by the transmission portion 37, and the other end is connected to the rotation shaft of one traveling wheel 22 of the traveling body 21 on the side closer to the transmission portion 37. On the other hand, one end of the second drive shaft 36b is connected to the rotating shaft of the traveling wheel 22 of the traveling body 21 on the side closer to the transmission portion 37, and the other end of the traveling body 21 on the side far from the transmission portion 37 travels. It is connected to the rotating shaft of the ring 22. Therefore, when the driving force from the drive source 32 is transmitted to the drive shaft 36 (that is, the first drive shaft 36a) by the transmission unit 37, the drive shaft 36 similarly causes the corresponding traveling wheels 22 of the traveling bodies 21 and 21 to move. It is provided to rotate.
 伝達部37は、駆動源32の駆動力を駆動軸36,36およびブラシ12に伝達する。具体的には、駆動軸36,36には両者が同じ方向に同じ回転速度で回転するように駆動力を伝達する一方、ブラシ12には駆動軸36,36と逆方向に回転するように(好ましくは逆方向かつ駆動軸36よりも速い回転速度で回転するように)駆動力を伝達するように伝達部37が構成されている。 The transmission unit 37 transmits the driving force of the drive source 32 to the drive shafts 36 and 36 and the brush 12. Specifically, the driving force is transmitted to the drive shafts 36 and 36 so that they both rotate in the same direction and at the same rotation speed, while the brush 12 rotates in the opposite direction to the drive shafts 36 and 36 ( The transmission unit 37 is configured to transmit the driving force (preferably in the opposite direction and at a rotation speed faster than the drive shaft 36).
 かかる構成とすれば、2つの走行体21の走行輪22とブラシ12を駆動する駆動源を一つにできるので、掃除ロボット1を軽量化できる。しかも、上記のように2つの走行体21の走行輪22とブラシ12の回転を調整すれば、掃除効果を高くできる。つまり、掃除ロボット1が太陽電池モジュールPの表面上を走行しながらブラシ12が回転した際に、太陽電池モジュールPの表面上の埃等をブラシ12が接触した位置から効果的に外方に掃き出すことができる。 With such a configuration, the driving source for driving the traveling wheels 22 and the brush 12 of the two traveling bodies 21 can be unified, so that the cleaning robot 1 can be reduced in weight. Moreover, if the rotations of the traveling wheels 22 and the brush 12 of the two traveling bodies 21 are adjusted as described above, the cleaning effect can be enhanced. That is, when the brush 12 rotates while the cleaning robot 1 runs on the surface of the solar cell module P, dust and the like on the surface of the solar cell module P are effectively swept out from the position where the brush 12 comes into contact. be able to.
 なお、伝達部37が駆動源32の駆動力を駆動軸36,36およびブラシ12に伝達する構成はとくに限定されない。例えば、歯車機構やベルトプーリ機構、または両者の組み合わせで構成されていればよい。しかし、掃除ロボット1の重量を低減する上では、ベルトプーリ機構で全体を構成されている方が望ましい。 The configuration in which the transmission unit 37 transmits the driving force of the drive source 32 to the drive shafts 36, 36 and the brush 12 is not particularly limited. For example, it may be composed of a gear mechanism, a belt pulley mechanism, or a combination of both. However, in order to reduce the weight of the cleaning robot 1, it is desirable that the entire structure is composed of a belt pulley mechanism.
 伝達部37の構成としては、例えば図8に示すような構成を採用することができる。 As the configuration of the transmission unit 37, for example, the configuration shown in FIG. 8 can be adopted.
 図8では、駆動源32の主軸32s、駆動軸36,36の一端部、およびブラシ12の一端部に、それぞれプーリpr1~pr3が設けられている。また、駆動源32の主軸32sの歯車g1と噛み合った歯車g2を有する反転軸37sが設けられている。この反転軸37sにもプーリpr4が設けられている。そして、プーリpr1,pr3にはベルトB1が巻き掛けられており、プーリpr2、pr4にはベルトB2が巻き掛けられている。したがって、駆動源32の主軸32sを回転させれば、駆動源32の主軸32sとベルトB1で連結されたブラシ12を回転させることができる。また、駆動源32の主軸32sが回転すれば反転軸37sが回転するので、反転軸37sとベルトB2で連結された駆動軸36,36も互いに同じ方向かつ同じ回転数で回転させることができる。 In FIG. 8, pulleys pr1 to pr3 are provided on the main shaft 32s of the drive source 32, one end of the drive shafts 36 and 36, and one end of the brush 12, respectively. Further, a reversing shaft 37s having a gear g2 meshed with the gear g1 of the main shaft 32s of the drive source 32 is provided. A pulley pr4 is also provided on the reversing shaft 37s. A belt B1 is wound around the pulleys pr1 and pr3, and a belt B2 is wound around the pulleys pr2 and pr4. Therefore, if the spindle 32s of the drive source 32 is rotated, the brush 12 connected to the spindle 32s of the drive source 32 by the belt B1 can be rotated. Further, since the reversing shaft 37s rotates when the main shaft 32s of the drive source 32 rotates, the reversing shaft 37s and the drive shafts 36, 36 connected by the belt B2 can also be rotated in the same direction and at the same rotation speed.
 また、駆動源32の主軸32sのプーリpr1は、ブラシ12のプーリpr3とほぼ同じ大きさであるが、反転軸37sのプーリpr4は、駆動軸36,36のプーリpr2よりも直径が小さくなっている。しかも、反転軸37sの歯車g2は、駆動源32の主軸32sの歯車g1よりも直径が大きくなっている。したがって、駆動源32の主軸32sが回転すると、ブラシ12は駆動源32の主軸32sとほぼ同じ回転速度で回転するが、駆動軸36,36は駆動源32の主軸32sよりも遅く回転する。すると、ブラシ12を、駆動軸36,36、言い換えれば走行部20の走行輪22よりも速く回転させることができる。 Further, the pulley pr1 of the main shaft 32s of the drive source 32 has substantially the same size as the pulley pr3 of the brush 12, but the pulley pr4 of the reversing shaft 37s has a smaller diameter than the pulley pr2 of the drive shafts 36 and 36. There is. Moreover, the gear g2 of the reversing shaft 37s has a larger diameter than the gear g1 of the main shaft 32s of the drive source 32. Therefore, when the main shaft 32s of the drive source 32 rotates, the brush 12 rotates at substantially the same rotation speed as the main shaft 32s of the drive source 32, but the drive shafts 36 and 36 rotate slower than the main shaft 32s of the drive source 32. Then, the brush 12 can be rotated faster than the drive shafts 36, 36, in other words, the traveling wheels 22 of the traveling unit 20.
<制御機構40>
 制御機構40は、駆動部30の作動を制御して、掃除ロボット1の走行や掃除状態を制御するものである。図14に示すように、この制御機構40は、掃除ロボット1の走行や掃除状態を制御する制御部41と、この制御部41が掃除ロボット1の走行や掃除状態を制御するための情報を取得する各センサを有する検出部と、から構成されている。したがって、検出部の各センサからの情報が制御部41に入力されれば、制御部41は駆動部30の駆動源32の作動を制御して、掃除ロボット1の走行方向や走行速度を変化させる。また、掃除ロボット1が太陽電池モジュールPから落下しないように、制御部41は掃除ロボット1の走行速度や走行停止も制御している。例えば、後述するようなエッジ検出部42を設けていれば、エッジ検出部42が検出した信号に基づいて制御部41が駆動部30の駆動源32の作動を制御することによって、太陽電池モジュールPから掃除ロボット1が落下することを防止することができる。
<Control mechanism 40>
The control mechanism 40 controls the operation of the drive unit 30 to control the running and cleaning state of the cleaning robot 1. As shown in FIG. 14, the control mechanism 40 acquires a control unit 41 that controls the running and cleaning state of the cleaning robot 1 and information for the control unit 41 to control the running and cleaning state of the cleaning robot 1. It is composed of a detection unit having each sensor and a detection unit. Therefore, when the information from each sensor of the detection unit is input to the control unit 41, the control unit 41 controls the operation of the drive source 32 of the drive unit 30 to change the traveling direction and traveling speed of the cleaning robot 1. .. Further, the control unit 41 also controls the traveling speed and traveling stop of the cleaning robot 1 so that the cleaning robot 1 does not fall from the solar cell module P. For example, if the edge detection unit 42 as described later is provided, the control unit 41 controls the operation of the drive source 32 of the drive unit 30 based on the signal detected by the edge detection unit 42, thereby causing the solar cell module P. It is possible to prevent the cleaning robot 1 from falling.
 また、制御部41は、掃除ロボット1が傾いて停止した場合や駆動源32の負荷が大きくなりすぎた場合などに、駆動源32の作動を停止したり、異常警報(例えばブザー等)によって作業者に異常を通知したりする機能を有していてもよい。 Further, when the cleaning robot 1 is tilted and stopped, or when the load on the drive source 32 becomes too large, the control unit 41 stops the operation of the drive source 32 or works by an abnormality alarm (for example, a buzzer). It may have a function of notifying a person of an abnormality.
<駆動部30および制御機構40の配置>
 上述した駆動部30の駆動源32、バッテリ33、伝達機構35と、制御機構40の制御部41は、掃除ロボット1の重心Gが以下の配置になるように、シャシフレーム2に設けられている。
<Arrangement of drive unit 30 and control mechanism 40>
The drive source 32 of the drive unit 30, the battery 33, the transmission mechanism 35, and the control unit 41 of the control mechanism 40 are provided on the chassis frame 2 so that the center of gravity G of the cleaning robot 1 is arranged as follows. ..
 図9(A)に示すように、掃除ロボット1は、平面視で、その重心Gが、走行部20の2つの走行体21,21の2つの走行輪22,22が太陽電池アレイLPの太陽電池モジュールPと接触する位置X1によって囲まれた範囲GA内に位置するように設けられている。 As shown in FIG. 9A, in a plan view, the center of gravity G of the cleaning robot 1 is the sun of the solar cell array LP, and the two traveling wheels 22 and 22 of the two traveling bodies 21 and 21 of the traveling unit 20 are the sun. It is provided so as to be located within the range GA surrounded by the position X1 in contact with the battery module P.
 掃除ロボット1の重心Gを上述したような配置とすれば、掃除ロボット1のシャシフレーム2の両端部を支持する支持部材等(例えば走行車輪など)を設けなくても、掃除ロボット1を安定した状態で太陽電池モジュールPの表面を走行させやすくなる。しかも、掃除ロボット1の重量に起因する太陽電池モジュールPの変形などを防止することができる。例えば、太陽電池モジュールPの表面に掃除ロボット1を載せた際に、掃除ロボット1の荷重に起因する太陽電池モジュールPの撓みを小さくすることができる。すると、太陽電池モジュールPのセルや配線、ガラスなどに加わる負荷を低減できるので、セルや配線、ガラスなどの損傷を防止できる。 If the center of gravity G of the cleaning robot 1 is arranged as described above, the cleaning robot 1 can be stabilized without providing support members or the like (for example, traveling wheels) that support both ends of the chassis frame 2 of the cleaning robot 1. It becomes easy to run on the surface of the solar cell module P in the state. Moreover, deformation of the solar cell module P due to the weight of the cleaning robot 1 can be prevented. For example, when the cleaning robot 1 is placed on the surface of the solar cell module P, the bending of the solar cell module P due to the load of the cleaning robot 1 can be reduced. Then, since the load applied to the cells, wiring, glass, etc. of the solar cell module P can be reduced, damage to the cells, wiring, glass, etc. can be prevented.
 また、掃除ロボット1の荷重のバランスが取れているので、シャシフレーム2の剛性をある程度低くすることもできる。すると、シャシフレーム2の素材として、強度はそれほど高くないが軽量な素材を採用できるので、シャシフレーム2を軽量化することも可能になる。 Further, since the load of the cleaning robot 1 is balanced, the rigidity of the chassis frame 2 can be lowered to some extent. Then, as the material of the chassis frame 2, a lightweight material can be adopted although the strength is not so high, so that the weight of the chassis frame 2 can be reduced.
 掃除ロボット1の重心を上記位置にする方法はとくに限定されない。例えば、駆動部30の駆動源32と伝達機構35の伝達部37をシャシフレーム2の端部(図2では左端部)に配置し、バッテリ33と制御機構40の制御部41の別の端部(図2では右端部)に配置する。この場合には、各部の重量にもよるが、範囲GA内に重心Gが位置しやすくなる。 The method of setting the center of gravity of the cleaning robot 1 to the above position is not particularly limited. For example, the drive source 32 of the drive unit 30 and the transmission unit 37 of the transmission mechanism 35 are arranged at the end of the chassis frame 2 (the left end in FIG. 2), and another end of the battery 33 and the control unit 41 of the control mechanism 40. It is arranged (at the right end in FIG. 2). In this case, the center of gravity G is likely to be located within the range GA, although it depends on the weight of each part.
 なお、掃除ロボット1全体の重心Gは、範囲GA内に位置していればよいが、シャシフレーム2の幅方向のほぼ中間線2CL上(30mm程度以内のズレが生じている場合も含む)に配置されていることが望ましい。 The center of gravity G of the entire cleaning robot 1 may be located within the range GA, but is approximately on the intermediate line 2CL in the width direction of the chassis frame 2 (including the case where the deviation is within about 30 mm). It is desirable that it is arranged.
 また、駆動部30の駆動源32、バッテリ33をシャシフレーム2の中央部に配置してもよい。この場合、駆動源32から2つの走行体21の走行輪22に駆動力を伝達する駆動軸36,36を短くできる。駆動源32をシャシフレーム2の中央部に配置した場合には、駆動源32の駆動力をブラシ12に対して供給する伝達部37Bをシャシフレーム2の端部に設ければ、ブラシ12に対して駆動力を供給できる。例えば、図20に示すような伝達部37Bを設けて、その一つのプーリPr5(駆動プーリPr5)と駆動源32の主軸を連結軸37r等によって連結する。そして、ブラシ12が2本の場合には、駆動プーリPr5と各ブラシ12の軸部に連結されたプーリPr6,7(従動プーリPr6,7)とをタイミングベルトB4,B5によって連結すれば、シャシフレーム2の中央部に配置された駆動源32によって所定の回転数となるように2本のブラシ12を同じ方向に回転させることができる。ブラシ12が一本の場合であれば、そのブラシ12端部に従動プーリを設けておけばよい。 Further, the drive source 32 of the drive unit 30 and the battery 33 may be arranged at the center of the chassis frame 2. In this case, the drive shafts 36, 36 that transmit the driving force from the drive source 32 to the traveling wheels 22 of the two traveling bodies 21 can be shortened. When the drive source 32 is arranged at the center of the chassis frame 2, if a transmission unit 37B for supplying the driving force of the drive source 32 to the brush 12 is provided at the end of the chassis frame 2, the brush 12 can be provided. Can supply driving force. For example, a transmission unit 37B as shown in FIG. 20 is provided, and one pulley Pr5 (drive pulley Pr5) and the main shaft of the drive source 32 are connected by a connecting shaft 37r or the like. When there are two brushes 12, the drive pulley Pr5 and the pulleys Pr6, 7 (driven pulleys Pr6, 7) connected to the shaft of each brush 12 can be connected by the timing belts B4 and B5 to form a chassis. The drive source 32 arranged at the center of the frame 2 can rotate the two brushes 12 in the same direction so as to have a predetermined rotation speed. If there is only one brush 12, a driven pulley may be provided at the end of the brush 12.
 駆動部30の駆動源32は、走行体21の走行輪22を駆動する駆動源32aと、ブラシ12を駆動する駆動源32bの2つを設けてもよい。この場合、走行体21の走行輪22の回転数と、ブラシ12の回転数を独立して制御できるので、掃除ロボット1の移動と掃除状況の調整が容易になる。この場合、駆動源32aはシャシフレーム2の中央部に配置して、駆動源32bはシャシフレーム2の端部に設けてもよい。しかし、駆動源32aと駆動源32bの両方をシャシフレーム2の中央部に配置したほうが重量バランスを取りやすくなる。 The drive source 32 of the drive unit 30 may be provided with two drive sources 32a for driving the traveling wheels 22 of the traveling body 21 and a drive source 32b for driving the brush 12. In this case, since the rotation speed of the traveling wheel 22 of the traveling body 21 and the rotation speed of the brush 12 can be controlled independently, it becomes easy to move the cleaning robot 1 and adjust the cleaning status. In this case, the drive source 32a may be arranged at the center of the chassis frame 2, and the drive source 32b may be provided at the end of the chassis frame 2. However, it is easier to balance the weight if both the drive source 32a and the drive source 32b are arranged in the central portion of the chassis frame 2.
 また、駆動部30の駆動源32、バッテリ33だけでなく、伝達部37や制御機構40の制御部41もシャシフレーム2の中央部に配置してもよい。このように配置すれば、範囲GA内に重心Gが位置しやすくなる。 Further, not only the drive source 32 and the battery 33 of the drive unit 30 but also the transmission unit 37 and the control unit 41 of the control mechanism 40 may be arranged in the central portion of the chassis frame 2. By arranging in this way, the center of gravity G can be easily positioned within the range GA.
<サポート機構50>
 図1~図3に示すように、シャシフレーム2の両端部には、サポート機構50の第一サポート部51および第二サポート部52がそれぞれ設けられている。
<Support mechanism 50>
As shown in FIGS. 1 to 3, the first support portion 51 and the second support portion 52 of the support mechanism 50 are provided at both ends of the chassis frame 2, respectively.
 図3および図4に示すように、第一サポート部51は、同じ形状の2つのフリーローラ51a,51aを備えている。この2つのフリーローラ51a,51aは、掃除ロボット1の走行方向に沿って間隔を空けて並ぶように設けられている。また、2つのフリーローラ51a,51aは、掃除ロボット1の走行方向および、ブラシ12の回転軸方向の両方と平行な面(基準平行面という)の両方と平行な面と略直交する回転軸を有している。言い換えれば、2つのフリーローラ51a,51aは、掃除ロボット1を太陽電池モジュールPの表面に載せたときに、その回転軸が太陽電池モジュールPの表面の法線方向と略平行となるように設けられている。しかも、2つのフリーローラ51a,51aは、シャシフレーム2の下面(太陽電池モジュールPの表面と対向する面)から2つのフリーローラ51a,51aの下端面までの距離が、シャシフレーム2の下面から走行部の走行輪22の下端までの距離よりも若干長くなるように設けられている。つまり、掃除ロボット1を太陽電池モジュールPの表面に載せたときに、2つのフリーローラ51a,51aは、その周面が太陽電池モジュールPの第一端面と向かい合った状態となるように設けられている。 As shown in FIGS. 3 and 4, the first support portion 51 includes two free rollers 51a and 51a having the same shape. The two free rollers 51a and 51a are provided so as to be arranged at intervals along the traveling direction of the cleaning robot 1. Further, the two free rollers 51a and 51a have a rotation axis substantially orthogonal to the plane parallel to both the traveling direction of the cleaning robot 1 and the plane parallel to both the rotation axis direction of the brush 12 (referred to as a reference parallel plane). Have. In other words, the two free rollers 51a and 51a are provided so that when the cleaning robot 1 is placed on the surface of the solar cell module P, its rotation axis is substantially parallel to the normal direction of the surface of the solar cell module P. Has been done. Moreover, in the two free rollers 51a and 51a, the distance from the lower surface of the chassis frame 2 (the surface facing the surface of the solar cell module P) to the lower end surfaces of the two free rollers 51a and 51a is from the lower surface of the chassis frame 2. It is provided so as to be slightly longer than the distance to the lower end of the traveling wheel 22 of the traveling portion. That is, when the cleaning robot 1 is placed on the surface of the solar cell module P, the two free rollers 51a and 51a are provided so that their peripheral surfaces face the first end surface of the solar cell module P. There is.
 一方、図3および図5に示すように、第二サポート部52も、同じ形状の2つのフリーローラ52a,52aを備えている。この2つのフリーローラ52a,52aは、掃除ロボット1の走行方向に沿って間隔を空けて並ぶように設けられている。また、この2つのフリーローラ52a,52aも、基準平行面と略直交する回転軸を有している。言い換えれば、2つのフリーローラ52a,52aは、掃除ロボット1を太陽電池モジュールPの表面に載せたときに、その回転軸が太陽電池モジュールPの表面の法線方向と略平行となるように設けられている。しかも、2つのフリーローラ52a,52aも、第一サポート部51の2つのフリーローラ51a,51aと同様に、シャシフレーム2の下面(太陽電池モジュールPの表面と対向する面)から2つのフリーローラ52a,52aの下端面までの距離が、シャシフレーム2の下面から走行部の走行輪22の下端までの距離よりも若干長くなるように設けられている。つまり、掃除ロボット1を太陽電池モジュールPの表面に載せたときに、2つのフリーローラ52a,52aは、その周面が太陽電池モジュールPの第二端面と向かい合った状態となるように設けられている。 On the other hand, as shown in FIGS. 3 and 5, the second support portion 52 also includes two free rollers 52a and 52a having the same shape. The two free rollers 52a and 52a are provided so as to be arranged at intervals along the traveling direction of the cleaning robot 1. Further, these two free rollers 52a and 52a also have a rotation axis substantially orthogonal to the reference parallel plane. In other words, the two free rollers 52a and 52a are provided so that when the cleaning robot 1 is placed on the surface of the solar cell module P, its rotation axis is substantially parallel to the normal direction of the surface of the solar cell module P. Has been done. Moreover, the two free rollers 52a and 52a also have two free rollers from the lower surface of the chassis frame 2 (the surface facing the surface of the solar cell module P), similarly to the two free rollers 51a and 51a of the first support portion 51. The distances to the lower end surfaces of the 52a and 52a are provided so as to be slightly longer than the distance from the lower surface of the chassis frame 2 to the lower ends of the traveling wheels 22 of the traveling portion. That is, when the cleaning robot 1 is placed on the surface of the solar cell module P, the two free rollers 52a and 52a are provided so that their peripheral surfaces face the second end surface of the solar cell module P. There is.
 そして、第一サポート部51およびと第二サポート部52は、シャシフレーム2の軸方向において、第一サポート部51の2つのフリーローラ51a,51aと第二サポート部52の2つのフリーローラ52a,52a間の距離が太陽電池モジュールPの両端間の距離よりも長く(例えば、20~30mm程度長く)なるように設けられている。つまり、第一サポート部51およびと第二サポート部52は、基本状態となるように掃除ロボット1を太陽電池モジュールPの表面に載せると、太陽電池モジュールPの各端面と、第一サポート部51のフリーローラ51a,51aおよび第二サポート部52の2つのフリーローラ52a,52aとの間にそれぞれ隙間ができるようにシャシフレーム2に設けられている。しかも、第一サポート部51およびと第二サポート部52は、第一サポート部51の2つのフリーローラ51a,51aと第二サポート部52の2つのフリーローラ52a,52aのいずれかが太陽電池モジュールPのいずれかの端面に接触した状態であっても、2つの走行体21が揺動軸SSを挟む位置に配置できるようにフリーローラ51a,52a間の距離が調整されている。 Then, the first support unit 51 and the second support unit 52 have two free rollers 51a, 51a of the first support unit 51 and two free rollers 52a of the second support unit 52 in the axial direction of the chassis frame 2. The distance between the 52a is set to be longer than the distance between both ends of the solar cell module P (for example, about 20 to 30 mm longer). That is, when the cleaning robot 1 is placed on the surface of the solar cell module P so that the first support unit 51 and the second support unit 52 are in the basic state, each end surface of the solar cell module P and the first support unit 51 The chassis frame 2 is provided with a gap between the free rollers 51a and 51a and the two free rollers 52a and 52a of the second support portion 52, respectively. Moreover, in the first support section 51 and the second support section 52, either the two free rollers 51a, 51a of the first support section 51 or the two free rollers 52a, 52a of the second support section 52 are solar cell modules. The distance between the free rollers 51a and 52a is adjusted so that the two traveling bodies 21 can be arranged at positions sandwiching the swing shaft SS even when they are in contact with any of the end faces of P.
 このようなサポート機構50を設けておけば、掃除ロボット1が揺動軸SSの軸方向に対して斜めに走行した場合でも、掃除ロボット1が太陽電池モジュールPから落下することを防止できる。つまり、掃除ロボット1が揺動軸SSの軸方向から斜めに走行した場合、第一サポート部51のフリーローラ51a,51aまたは第二サポート部52の2つのフリーローラ52a,52aのいずれか(または両方)が太陽電池モジュールPの端面に接触するので、掃除ロボット1の走行方向を太陽電池モジュールPの端縁に沿った方向に修正できる。太陽電池モジュールPの端縁は、通常、揺動軸SSの軸方向と平行に設けられているので、サポート機構50の案内によって掃除ロボット1を揺動軸SSの軸方向と平行に走行させることができる。また、太陽電池モジュールPの端縁が揺動軸SSの軸方向に対して傾いていても、掃除ロボット1はフリーローラが太陽電池モジュールPの端面に接触した状態以上に傾くことができない。そして、太陽電池モジュールPの端縁が揺動軸SSの軸方向に対して傾いていてもせいぜい0.5度程度までである。したがって、上述したようなサポート機構50を設ければ、掃除ロボット1が太陽電池モジュールPから落下することを防止しつつ、掃除ロボット1を揺動軸SSの軸方向に沿った方向に走行させることができる。 If such a support mechanism 50 is provided, it is possible to prevent the cleaning robot 1 from falling from the solar cell module P even when the cleaning robot 1 travels diagonally with respect to the axial direction of the swing shaft SS. That is, when the cleaning robot 1 travels diagonally from the axial direction of the swing axis SS, either the free rollers 51a, 51a of the first support section 51 or the two free rollers 52a, 52a of the second support section 52 (or Since both) come into contact with the end face of the solar cell module P, the traveling direction of the cleaning robot 1 can be corrected to the direction along the edge of the solar cell module P. Since the edge of the solar cell module P is usually provided parallel to the axial direction of the swing shaft SS, the cleaning robot 1 is driven parallel to the axial direction of the swing shaft SS by the guidance of the support mechanism 50. Can be done. Further, even if the edge of the solar cell module P is tilted with respect to the axial direction of the swing shaft SS, the cleaning robot 1 cannot tilt more than the state in which the free roller is in contact with the end face of the solar cell module P. Even if the edge of the solar cell module P is tilted with respect to the axial direction of the swing shaft SS, it is at most about 0.5 degrees. Therefore, if the support mechanism 50 as described above is provided, the cleaning robot 1 can be moved in the direction along the axial direction of the swing axis SS while preventing the cleaning robot 1 from falling from the solar cell module P. Can be done.
 なお、2つのフリーローラ51a,51aは、その回転軸が基準平行面と交差するように設けられていればよく、必ずしも直交していなくてもよい。つまり、2つのフリーローラ51a,51aは、掃除ロボット1が揺動軸SSの軸方向に対して斜めに走行した場合に、太陽電池モジュールPの端面に接触して掃除ロボット1の走行方向を太陽電池モジュールPの端縁に沿った方向に修正できるように設けられていればよい。そして、2つのフリーローラ51a,51aは、その回転軸が基準平行面と直交しない場合には、2つのフリーローラ51a,51aにおいてシャシフレーム2の下面から最も離れた位置からシャシフレーム2の下面までの距離が、シャシフレーム2の下面から走行部の走行輪22の下端までの距離よりも若干長くなるように設けられていればよい。 The two free rollers 51a and 51a may be provided so that their rotation axes intersect with the reference parallel plane, and are not necessarily orthogonal to each other. That is, when the cleaning robot 1 travels obliquely with respect to the axial direction of the swing axis SS, the two free rollers 51a and 51a come into contact with the end faces of the solar cell module P and set the traveling direction of the cleaning robot 1 to the sun. It suffices if it is provided so that it can be corrected in the direction along the edge of the battery module P. When the rotation axes of the two free rollers 51a and 51a are not orthogonal to the reference parallel plane, the two free rollers 51a and 51a extend from the position farthest from the lower surface of the chassis frame 2 to the lower surface of the chassis frame 2 in the two free rollers 51a and 51a. The distance may be slightly longer than the distance from the lower surface of the chassis frame 2 to the lower end of the traveling wheel 22 of the traveling portion.
 また、2つのフリーローラ52a,52aも、その回転軸が基準平行面と交差するように設けられていればよく、必ずしも直交していなくてもよい。つまり、2つのフリーローラ52a,52aは、掃除ロボット1が揺動軸SSの軸方向に対して斜めに走行した場合に、太陽電池モジュールPの端面に接触して掃除ロボット1の走行方向を太陽電池モジュールPの端縁に沿った方向に修正できるように設けられていればよい。そして、2つのフリーローラ52a,52aは、その回転軸が基準平行面と直交しない場合には、2つのフリーローラ52a,52aにおいてシャシフレーム2の下面から最も離れた位置からシャシフレーム2の下面までの距離が、シャシフレーム2の下面から走行部の走行輪22の下端までの距離よりも若干長くなるように設けられていればよい。 Further, the two free rollers 52a and 52a may also be provided so that their rotation axes intersect the reference parallel plane, and are not necessarily orthogonal to each other. That is, when the cleaning robot 1 travels obliquely with respect to the axial direction of the swing axis SS, the two free rollers 52a and 52a come into contact with the end faces of the solar cell module P and set the traveling direction of the cleaning robot 1 to the sun. It suffices if it is provided so that it can be corrected in the direction along the edge of the battery module P. When the rotation axes of the two free rollers 52a and 52a are not orthogonal to the reference parallel plane, the two free rollers 52a and 52a extend from the position farthest from the lower surface of the chassis frame 2 to the lower surface of the chassis frame 2 in the two free rollers 52a and 52a. The distance may be slightly longer than the distance from the lower surface of the chassis frame 2 to the lower end of the traveling wheel 22 of the traveling portion.
 また、フリーローラ51a,52aは、その回転軸と交差する方向から一定以上の力が加わると、フリーローラ51a,52aをその力の方向に沿って移動させるダンパ機構を有していてもよい。つまり、フリーローラ51a,52aは、その回転軸をブラシ12の軸方向に沿って移動可能に保持するダンパ機構を介してシャシフレーム2に取り付けられていてもよい。かかるダンパ機構を設けておけば、隣接する太陽電池モジュールPの端面間の段差が想定よりも大きくなっても、太陽電池モジュールPの端面間の段差をフリーローラ51a,52aが乗り越えることが可能になる。 Further, the free rollers 51a and 52a may have a damper mechanism that moves the free rollers 51a and 52a along the direction of the force when a certain force or more is applied from the direction intersecting the rotation axis. That is, the free rollers 51a and 52a may be attached to the chassis frame 2 via a damper mechanism that holds the rotation axis of the free rollers 51a and 52a so as to be movable along the axial direction of the brush 12. If such a damper mechanism is provided, even if the step between the end faces of the adjacent solar cell modules P becomes larger than expected, the free rollers 51a and 52a can overcome the step between the end faces of the solar cell modules P. Become.
 サポート機構50の第一サポート部51および第二サポート部52に設けられるフリーローラの数はとくに限定されない。各サポート部51,52に、それぞれ一つずつフリーローラを設けてもよいし、それぞれ3つ以上設けてもよい。また、各サポート部51,52で、フリーローラを設ける数が異なっていてもよい。例えば、太陽電池モジュールPが傾斜した状態で掃除ロボット1が太陽電池モジュールP上を走行する場合であれば、上方に位置する端部側のサポート部には、2つ以上のフリーローラを設ける一方、下方に位置する端部側のサポート部にはフリーローラを1つしか設けなくてもよい。これは、隣接する太陽電池モジュールP間で上方に位置する端部で段差(第一端部P1と第二端部P2を繋ぐ方向の段差)がある場合に、上方に位置する端部と接触するサポート部では、2つ以上のフリーローラを有している方が段差を乗り越えやすくなるからである。 The number of free rollers provided in the first support section 51 and the second support section 52 of the support mechanism 50 is not particularly limited. One free roller may be provided for each of the support portions 51 and 52, or three or more free rollers may be provided for each. Further, the number of free rollers provided in each of the support portions 51 and 52 may be different. For example, when the cleaning robot 1 travels on the solar cell module P in a state where the solar cell module P is tilted, two or more free rollers are provided on the support portion on the end side located above. , Only one free roller may be provided on the support portion on the end side located below. This is in contact with the upper end when there is a step (a step in the direction connecting the first end P1 and the second end P2) at the upper end between the adjacent solar cell modules P. This is because it is easier to get over the step if the support unit has two or more free rollers.
 サポート機構50の第一サポート部51および第二サポート部52は、太陽電池モジュールPの端面に沿った移動を案内できるのであれば、上述したようなフリーローラを使用しなくてもよい。例えば、表面の摺動抵抗が小さい板状の部材を、その表面が太陽電池モジュールPの各端面と対向するように設けて、第一サポート部51および第二サポート部52としてもよい。この場合には、板状の部材における掃除ロボット1の走行方向の端部を、先端に向かって太陽電池モジュールPの端面から離間するように形成しておく。つまり、板状の部材を、スキーの板のように先端が反ったように形成しておく。すると、板状の部材であっても、隣接する太陽電池モジュールP間の段差を乗り越えやすくなる。 The first support section 51 and the second support section 52 of the support mechanism 50 do not have to use the free rollers as described above as long as they can guide the movement along the end face of the solar cell module P. For example, a plate-shaped member having a small surface sliding resistance may be provided so that its surface faces each end surface of the solar cell module P to form the first support portion 51 and the second support portion 52. In this case, the end portion of the plate-shaped member in the traveling direction of the cleaning robot 1 is formed so as to be separated from the end surface of the solar cell module P toward the tip end. That is, the plate-shaped member is formed so that the tip is curved like a ski plate. Then, even if it is a plate-shaped member, it becomes easy to get over a step between adjacent solar cell modules P.
 上述したように、基準平行面は、掃除ロボット1の走行方向およびブラシ12の回転軸方向の両方と平行な面である。一方、掃除部10がブラシ12を有しない場合には、掃除ロボット1の走行方向およびシャシフレーム2の軸方向の両方と平行な面が基準平行面に相当する。他の表現をすれば、掃除ロボット1の走行方向と、平面視で掃除ロボット1の走行方向と交差する方向(図2では左右方向)の両方に平行な面が基準平行面に相当する。 As described above, the reference parallel plane is a plane parallel to both the traveling direction of the cleaning robot 1 and the rotation axis direction of the brush 12. On the other hand, when the cleaning unit 10 does not have the brush 12, a surface parallel to both the traveling direction of the cleaning robot 1 and the axial direction of the chassis frame 2 corresponds to a reference parallel surface. In other words, a plane parallel to both the traveling direction of the cleaning robot 1 and the direction intersecting the traveling direction of the cleaning robot 1 in a plan view (horizontal direction in FIG. 2) corresponds to a reference parallel plane.
 また、基準平行面は、太陽電池モジュールPの表面に掃除ロボット1を載せたときに太陽電池モジュールPが撓まない場合には、太陽電池モジュールPの表面と略平行となる面になる。一方、掃除ロボット1を載せたときに太陽電池モジュールPの表面が撓む場合には、基準平行面は、撓みが生じなかったとした場合における太陽電池モジュールPの表面と平行な面(対象平面)を意味している。また、基準平行面は、撓まない場合における太陽電池モジュールPの表面や対象平面に対して若干の傾き(最大0.1度程度)がある場合も含んでいる。 Further, if the solar cell module P does not bend when the cleaning robot 1 is placed on the surface of the solar cell module P, the reference parallel surface becomes a surface substantially parallel to the surface of the solar cell module P. On the other hand, when the surface of the solar cell module P bends when the cleaning robot 1 is mounted, the reference parallel plane is a plane parallel to the surface of the solar cell module P in the case where the bending does not occur (target plane). Means. Further, the reference parallel plane also includes a case where there is a slight inclination (up to about 0.1 degree) with respect to the surface of the solar cell module P and the target plane when it does not bend.
 また、サポート機構50は、上述したように、シャシフレーム2の両端部に第一サポート部51および第二サポート部52を有していてもよいが、サポート部はシャシフレーム2の一方の端部にのみ設けてもよい。つまり、サポート機構50は、第一サポート部51または第二サポート部52のいずれか一方だけを設けてもよい。例えば、図13(B)のように太陽電池アレイLPの表面が水平に対して傾斜した状態において、この太陽電池アレイLPの表面に掃除ロボット1を走行させる場合であれば、太陽電池アレイLPの上方に位置する端部(図13(B)では太陽電池モジュールPをその第一端部P1)側に位置するシャシフレーム2の端部だけにサポート部を設けてもよい。言い換えれば、シャシフレーム2の一方の端部にのみサポート部を設けた場合には、太陽電池アレイLPの上方に位置する端部側にサポート部が配置されるように、掃除ロボット1を太陽電池アレイLP上に載せればよい。この場合でも、サポート部には、上述したような第一サポート部51や第二サポート部52と同様の構造を採用すればよい。 Further, as described above, the support mechanism 50 may have the first support portion 51 and the second support portion 52 at both ends of the chassis frame 2, but the support portion is one end portion of the chassis frame 2. It may be provided only in. That is, the support mechanism 50 may be provided with only one of the first support unit 51 and the second support unit 52. For example, when the cleaning robot 1 is run on the surface of the solar cell array LP in a state where the surface of the solar cell array LP is inclined with respect to the horizontal as shown in FIG. 13B, the solar cell array LP A support portion may be provided only at the end portion of the chassis frame 2 located on the upper end portion (in FIG. 13B, the solar cell module P is located on the side of the first end portion P1). In other words, when the support portion is provided only on one end of the chassis frame 2, the cleaning robot 1 is placed on the solar cell so that the support portion is arranged on the end side located above the solar cell array LP. It may be placed on the array LP. Even in this case, the support unit may adopt the same structure as the first support unit 51 and the second support unit 52 as described above.
<掃除ロボット1の作動>
 掃除ロボット1は、上述したような構成を有しているので、掃除ロボット1によって太陽電池アレイLPの太陽電池モジュールPの表面を掃除することができる。
<Operation of cleaning robot 1>
Since the cleaning robot 1 has the above-described configuration, the cleaning robot 1 can clean the surface of the solar cell module P of the solar cell array LP.
 なお、以下では、太陽電池モジュールPの表面が傾斜した状態(例えば、水平に対して5°程度)で掃除ロボット1が掃除する場合を説明する。もちろん、太陽電池モジュールPの表面が水平になった状態でも、掃除ロボット1によって太陽電池モジュールPの表面を掃除させることはできる。
 また、2つの走行体21,21が2つの走行輪22を有し、かつ、掃除ロボット1を太陽電池モジュールPの表面に載せたときに、全ての走行輪22が太陽電池アレイLPの2つの連結部CEの間に位置するように配設されている場合を説明する。言い換えれば、掃除ロボット1の走行方向から見たときに、2つの走行体21,21が、それぞれ連結部CEと揺動軸SSとの間に位置するように配設されている場合を説明する。
In the following, a case where the cleaning robot 1 cleans the solar cell module P in a state where the surface is inclined (for example, about 5 ° with respect to the horizontal) will be described. Of course, even when the surface of the solar cell module P is horizontal, the cleaning robot 1 can clean the surface of the solar cell module P.
Further, when the two traveling bodies 21 and 21 have two traveling wheels 22 and the cleaning robot 1 is mounted on the surface of the solar cell module P, all the traveling wheels 22 are two of the solar cell array LP. The case where it is arranged so as to be located between the connecting portions CE will be described. In other words, the case where the two traveling bodies 21 and 21 are arranged so as to be located between the connecting portion CE and the swing shaft SS when viewed from the traveling direction of the cleaning robot 1 will be described. ..
 まず、掃除ロボット1を、太陽電池モジュールPの表面に載せる。このとき、第一サポート部51のフリーローラ51aが、太陽電池モジュールPにおいて上方に位置する端面と接触した状態となるように配置する。すると、掃除ロボット1の走行方向と架台MTの揺動軸SSの軸方向とをほぼ一致させることができる。このとき、2つの走行体21,21の走行輪22の全てが太陽電池アレイLPの2つの連結部CEと揺動軸SSとの間に位置するように太陽電池モジュールPの表面に載せられた状態となる。このため、掃除ロボット1の重量に起因する太陽電池モジュールPの変形を抑制することができる。 First, the cleaning robot 1 is placed on the surface of the solar cell module P. At this time, the free roller 51a of the first support portion 51 is arranged so as to be in contact with the end face located above the solar cell module P. Then, the traveling direction of the cleaning robot 1 and the axial direction of the swing shaft SS of the gantry MT can be substantially matched. At this time, all of the traveling wheels 22 of the two traveling bodies 21 and 21 were placed on the surface of the solar cell module P so as to be located between the two connecting portions CE of the solar cell array LP and the swing shaft SS. It becomes a state. Therefore, deformation of the solar cell module P due to the weight of the cleaning robot 1 can be suppressed.
 上記状態で掃除ロボット1を作動させると、掃除ロボット1はブラシ12によって太陽電池モジュールPの表面を掃除しながら、揺動軸SSの軸方向に沿って移動する。このとき、サポート機構50が設けられているので、掃除ロボット1を揺動軸SSの軸方向に沿って走行させることができる。 When the cleaning robot 1 is operated in the above state, the cleaning robot 1 moves along the axial direction of the swing axis SS while cleaning the surface of the solar cell module P with the brush 12. At this time, since the support mechanism 50 is provided, the cleaning robot 1 can be moved along the axial direction of the swing shaft SS.
 なお、基本状態となるように掃除ロボット1を太陽電池モジュールPの表面に載せた場合には、サポート機構50のフリーローラが太陽電池モジュールPのいずれの端面にも接触しない状態となる場合がある。この場合でも、掃除ロボット1の走行方向が揺動軸SSの軸方向から傾けば、サポート機構50のいずれかのフリーローラが、太陽電池モジュールPのいずれかの端面に接触する。したがって、掃除ロボット1の走行方向を揺動軸SSの軸方向の走行に復帰させることができる。 When the cleaning robot 1 is placed on the surface of the solar cell module P so as to be in the basic state, the free roller of the support mechanism 50 may not come into contact with any end surface of the solar cell module P. .. Even in this case, if the traveling direction of the cleaning robot 1 is tilted from the axial direction of the swing shaft SS, any free roller of the support mechanism 50 comes into contact with any end face of the solar cell module P. Therefore, the traveling direction of the cleaning robot 1 can be returned to traveling in the axial direction of the swing shaft SS.
 やがて、掃除ロボット1が太陽電池アレイLPの他方の端部まで到達したことを掃除ロボット1の制御機構40が検出すると、制御機構40は、走行輪22が脱輪する前に掃除ロボット1の走行を停止させる。すると、太陽電池アレイLPの掃除が終了する。 When the control mechanism 40 of the cleaning robot 1 detects that the cleaning robot 1 has reached the other end of the solar cell array LP, the control mechanism 40 travels the cleaning robot 1 before the traveling wheels 22 are removed. To stop. Then, the cleaning of the solar cell array LP is completed.
<掃除ロボット1の他の作動例>
 上述した例のように掃除部10にブラシ12を1本だけ設ける場合には、シャシフレーム2の幅方向(掃除ロボット1の走行方向)に対して一方に偏った側にブラシ12を設けることが望ましい。具体的には、ブラシ12のブラシ部が太陽電池モジュールPの表面と接触する位置が走行部20の走行体21の走行輪22が太陽電池モジュールPの表面と接する位置X1(図9(A)参照)よりも外方に位置するように、ブラシ12を設けることが望ましい。つまり、ブラシ12による太陽電池モジュールPの表面の掃除が実質的に行われる位置が、位置X1よりも外方に位置するように、ブラシ12を設けることが望ましい。
<Other operation examples of cleaning robot 1>
When only one brush 12 is provided in the cleaning unit 10 as in the above example, the brush 12 may be provided on the side biased to one side with respect to the width direction of the chassis frame 2 (the traveling direction of the cleaning robot 1). desirable. Specifically, the position where the brush portion of the brush 12 contacts the surface of the solar cell module P is the position X1 where the traveling wheel 22 of the traveling body 21 of the traveling portion 20 contacts the surface of the solar cell module P (FIG. 9A). It is desirable to provide the brush 12 so that it is located outside the (see). That is, it is desirable to provide the brush 12 so that the position where the surface of the solar cell module P is substantially cleaned by the brush 12 is located outside the position X1.
 このようにブラシ12を設けた場合、以下のように掃除ロボット1を作動させれば、掃除ロボット1により太陽電池アレイLPのほぼ全面を掃除することができるし、掃除ロボット1の移動が容易になるという利点が得られる。 When the brush 12 is provided in this way, if the cleaning robot 1 is operated as follows, the cleaning robot 1 can clean almost the entire surface of the solar cell array LP, and the cleaning robot 1 can be easily moved. You get the advantage of becoming.
 まず、上述した場合と同様に、太陽電池アレイLPの一方の端部に位置する太陽電池モジュールPの上に掃除ロボット1を載せる。このとき、ブラシ12が、走行体21よりも太陽電池アレイLPの他方の端部側に位置するように配置する。つまり、ブラシ12が掃除ロボット1の進行方向前方に位置するように配置する。この状態で、掃除ロボット1を走行させれば、複数の太陽電池モジュールPの表面を順次ブラシ12によって掃除することができる。 First, as in the case described above, the cleaning robot 1 is placed on the solar cell module P located at one end of the solar cell array LP. At this time, the brush 12 is arranged so as to be located on the other end side of the solar cell array LP with respect to the traveling body 21. That is, the brush 12 is arranged so as to be located in front of the cleaning robot 1 in the traveling direction. If the cleaning robot 1 is run in this state, the surfaces of the plurality of solar cell modules P can be sequentially cleaned by the brush 12.
 やがて、掃除ロボット1が太陽電池アレイLPの他方の端部に到達する。すると、掃除ロボット1が太陽電池アレイLPの他方の端部まで到達したことを掃除ロボット1の制御機構40が検出し、掃除ロボット1はこれまでの進行方向と逆方向に走行を開始する。ここで、掃除ロボット1は、走行体21の走行輪22が脱輪する前に進行方向への移動を停止するが、ブラシ12は進行方向前方かつ走行輪22よりも外方に配置されている。したがって、太陽電池アレイLPの他方の端部に位置する太陽電池モジュールPの他方の端部まで、ブラシ12によって掃除することができる。 Eventually, the cleaning robot 1 reaches the other end of the solar cell array LP. Then, the control mechanism 40 of the cleaning robot 1 detects that the cleaning robot 1 has reached the other end of the solar cell array LP, and the cleaning robot 1 starts traveling in the direction opposite to the traveling direction so far. Here, the cleaning robot 1 stops moving in the traveling direction before the traveling wheel 22 of the traveling body 21 derails, but the brush 12 is arranged in front of the traveling direction and outside the traveling wheel 22. .. Therefore, the brush 12 can clean up to the other end of the solar cell module P located at the other end of the solar cell array LP.
 逆方向に走行した掃除ロボット1は、やがて太陽電池アレイLPの一方の端部、つまり、掃除を開始した端部に到達する。すると、掃除ロボット1が太陽電池アレイLPの一方の端部まで到達したことを掃除ロボット1の制御機構40が検出し、掃除ロボット1は、走行体21の走行輪22が脱輪する前に移動を停止して掃除が終了する。つまり、掃除ロボット1が一往復することによって、一つの太陽電池アレイLPの掃除が完了する。なお、一つの太陽電池アレイLPについて、複数回往復させて一回の掃除としてもよい。 The cleaning robot 1 traveling in the opposite direction eventually reaches one end of the solar cell array LP, that is, the end where cleaning has started. Then, the control mechanism 40 of the cleaning robot 1 detects that the cleaning robot 1 has reached one end of the solar cell array LP, and the cleaning robot 1 moves before the traveling wheels 22 of the traveling body 21 are derailed. Is stopped and cleaning is completed. That is, the cleaning of one solar cell array LP is completed by the cleaning robot 1 reciprocating once. It should be noted that one solar cell array LP may be reciprocated a plurality of times for one cleaning.
 太陽電池アレイLPの一方の端部に戻ってきた掃除ロボット1は、作業者によって次に掃除する太陽電池アレイLPに載せ換えられる。太陽光発電設備SPでは、複数の太陽電池アレイLPの揺動軸SSが平行に並ぶように配設されている(図13参照)。このため、次に掃除する太陽電池アレイLPとして、揺動軸SSと交差する方向において隣接する太陽電池アレイLPを選択しておけば、先に掃除した太陽電池アレイLPと同じ側の端部に掃除ロボット1を載せることで、次の太陽電池アレイLPの掃除を行うことができる。つまり、太陽電池アレイLPの揺動軸SSの軸方向に沿って作業者が移動しなくても、作業者は、隣接する太陽電池アレイLP間で掃除ロボット1を載せ換えることができる。 The cleaning robot 1 that has returned to one end of the solar cell array LP is replaced with the solar cell array LP to be cleaned next by the operator. In the photovoltaic power generation facility SP, the swing axes SS of the plurality of solar cell array LPs are arranged so as to be arranged in parallel (see FIG. 13). Therefore, if the adjacent solar cell array LP is selected as the solar cell array LP to be cleaned next in the direction intersecting the swing axis SS, the end portion on the same side as the previously cleaned solar cell array LP can be selected. By mounting the cleaning robot 1, the next solar cell array LP can be cleaned. That is, even if the operator does not move along the axial direction of the swing axis SS of the solar cell array LP, the operator can transfer the cleaning robot 1 between the adjacent solar cell array LPs.
 以上のように、掃除ロボット1の掃除部10のブラシ12を1本だけ設けても、上記のようにブラシ12を配置し、上記のように掃除ロボット1を作動させれば、太陽電池アレイLPのほぼ全面を掃除できる。しかも、作業者が掃除ロボット1を載せ換える作業が楽になる。 As described above, even if only one brush 12 of the cleaning unit 10 of the cleaning robot 1 is provided, if the brush 12 is arranged as described above and the cleaning robot 1 is operated as described above, the solar cell array LP Can clean almost the entire surface of. Moreover, the work of replacing the cleaning robot 1 by the operator becomes easy.
 なお、掃除ロボット1の掃除部10のブラシ12を1本だけ設けた場合には、太陽電池アレイLPの一方の端部に位置する太陽電池モジュールPの一方の端部は掃除ロボット1では掃除できない。しかし、掃除できない部分は、せいぜい掃除ロボット1の幅程度である。しかも、太陽電池アレイLPにおいて、掃除ロボット1が戻ってくる側の端部であるので、その部分だけを作業者が掃除するようにすれば、太陽電池アレイLPの全体を掃除することができる。 When only one brush 12 of the cleaning unit 10 of the cleaning robot 1 is provided, one end of the solar cell module P located at one end of the solar cell array LP cannot be cleaned by the cleaning robot 1. .. However, the part that cannot be cleaned is at most about the width of the cleaning robot 1. Moreover, since the cleaning robot 1 is the end portion of the solar cell array LP on the returning side, the entire solar cell array LP can be cleaned if the operator cleans only that portion.
<走行部20について>
 走行部20の2つの走行体21は、上述したように、太陽電池モジュールPの表面が水平になった状態で、掃除ロボット1を太陽電池モジュールPの表面に載せると、揺動軸SSを挟む位置に配置できるように設けられている。つまり、2つの走行体21は、掃除ロボット1のシャシフレーム2の軸方向において、ある程度の間隔を空けた状態で配設されている。この2つの走行体21間の間隔は固定されていてもよいし、間隔を調整できるようになっていてもよい。つまり、シャシフレーム2の軸方向における走行体21の位置を調整できるようになっていてもよい(図12(B)参照)。シャシフレーム2の軸方向における走行体21の位置を調整できるようになっていれば、連結部CEの位置が異なる太陽電池モジュールPであっても、太陽電池モジュールPに合わせて適切な位置に2つの走行体21を配置することが可能になる。例えば、揺動軸SSから連結部CEまでの距離が短い場合には2つの走行体21間の間隔を短くし、揺動軸SSから連結部CEまでの距離が長い場合には2つの走行体21間の間隔を長くする。すると、揺動軸SSから連結部CEまでの距離が異なっても、走行体21と連結部CEとの相対的な位置関係をほぼ同じ状態に調整できる。また、太陽電池モジュールPによっては、一方の連結部CEから走行体21までの距離と、他方の連結部CEから走行体21までの距離と、が異なっている方が望ましい場合がある。この場合でも、2つの走行体21の位置を適切に調整すれば、掃除ロボット1を太陽電池モジュールPの表面に沿って安定して走行させることができる。
<About the traveling unit 20>
As described above, when the cleaning robot 1 is placed on the surface of the solar cell module P in a state where the surface of the solar cell module P is horizontal, the two traveling bodies 21 of the traveling unit 20 sandwich the swing shaft SS. It is provided so that it can be placed in a position. That is, the two traveling bodies 21 are arranged at a certain distance in the axial direction of the chassis frame 2 of the cleaning robot 1. The distance between the two traveling bodies 21 may be fixed, or the distance may be adjustable. That is, the position of the traveling body 21 in the axial direction of the chassis frame 2 may be adjusted (see FIG. 12B). If the position of the traveling body 21 in the axial direction of the chassis frame 2 can be adjusted, even if the solar cell module P has a different position of the connecting portion CE, the position 2 is set to an appropriate position according to the solar cell module P. It becomes possible to arrange one traveling body 21. For example, when the distance from the swing shaft SS to the connecting portion CE is short, the distance between the two traveling bodies 21 is shortened, and when the distance from the swing shaft SS to the connecting portion CE is long, the two traveling bodies are shortened. Increase the interval between 21. Then, even if the distance from the swing shaft SS to the connecting portion CE is different, the relative positional relationship between the traveling body 21 and the connecting portion CE can be adjusted to be substantially the same. Further, depending on the solar cell module P, it may be desirable that the distance from one connecting portion CE to the traveling body 21 and the distance from the other connecting portion CE to the traveling body 21 are different. Even in this case, if the positions of the two traveling bodies 21 are appropriately adjusted, the cleaning robot 1 can be stably traveled along the surface of the solar cell module P.
 走行体21の位置を調整する構造はとくに限定されない。例えば、駆動軸36が一本の軸で形成されているような場合には、走行体21の走行輪22を駆動軸36に沿って移動できかつ所望の位置で固定できるようにする。すると、2つの走行体21の位置(つまり走行輪22の位置)を適切に調整することができる。 The structure for adjusting the position of the traveling body 21 is not particularly limited. For example, when the drive shaft 36 is formed of a single shaft, the traveling wheels 22 of the traveling body 21 can be moved along the drive shaft 36 and fixed at a desired position. Then, the positions of the two traveling bodies 21 (that is, the positions of the traveling wheels 22) can be appropriately adjusted.
 また、走行体21が走行輪22を保持する支持部材を有しており、その支持部材をシャシフレーム2にボルト等で着脱可能に固定している場合であれば、シャシフレーム2に複数の雌ネジ穴等を設ける。すると、ボルト等を螺合する雌ネジ穴を変更すれば、走行体21の支持部材をシャシフレーム2に固定する位置、つまり、2つの走行体21の位置(つまり走行輪22の位置)を調整することができる。 Further, if the traveling body 21 has a supporting member for holding the traveling wheel 22, and the supporting member is detachably fixed to the chassis frame 2 with bolts or the like, a plurality of females are attached to the chassis frame 2. Provide screw holes, etc. Then, if the female screw hole for screwing the bolt or the like is changed, the position where the support member of the traveling body 21 is fixed to the chassis frame 2, that is, the positions of the two traveling bodies 21 (that is, the positions of the traveling wheels 22) are adjusted. can do.
 なお、走行体21が走行輪22を保持するボディを有している場合には、支持部材のボディをシャシフレーム2に対してスライド可能にしてもよい。例えば、シャシフレーム2にレールを設けて支持部材のボディをレールに対してスライド可能としたり、シャシフレーム2自体に軸状の部分等を設けて、その部分に沿って支持部材のボディをスライド可能としたりしてもよい。この場合には、2つの走行体21の位置の調整が容易になる。 When the traveling body 21 has a body for holding the traveling wheels 22, the body of the support member may be slidable with respect to the chassis frame 2. For example, a rail may be provided on the chassis frame 2 to allow the body of the support member to slide with respect to the rail, or a shaft-shaped portion or the like may be provided on the chassis frame 2 itself so that the body of the support member can slide along the portion. It may be. In this case, the positions of the two traveling bodies 21 can be easily adjusted.
 なお、上述したように、駆動軸36が第一駆動軸36aと第二駆動軸36bとを有する場合には、異なる長さの第一駆動軸36aと第二駆動軸36bを備えておけば、上述したような走行体21の位置調整に対応できる。もちろん、第一駆動軸36aおよび第二駆動軸36bが、それぞれ長さを変更できる機能を有していてもよい。例えば、第一駆動軸36aや第二駆動軸36bがテレスコピック構造を有しており、所望の長さで固定できるようになっていれば、第一駆動軸36aおよび第二駆動軸36bの長さを自由に変更できる。 As described above, when the drive shaft 36 has the first drive shaft 36a and the second drive shaft 36b, if the first drive shaft 36a and the second drive shaft 36b having different lengths are provided, It is possible to adjust the position of the traveling body 21 as described above. Of course, the first drive shaft 36a and the second drive shaft 36b may each have a function of changing the length. For example, if the first drive shaft 36a and the second drive shaft 36b have a telescopic structure and can be fixed at a desired length, the lengths of the first drive shaft 36a and the second drive shaft 36b Can be changed freely.
 なお、図17~図18に示すように、駆動源32をシャシフレーム2の中央部に配置した場合でも、駆動軸36の長さを変更できるようにしたり、長さの異なる駆動軸36を複数用意したりしておけばよい。すると、太陽電池モジュールPに合わせて適切な位置に2つの走行体21を配置することが可能になる。
 また、駆動軸36の長さは一定にして、走行輪22に位置固定部材を設けて、この位置固定部材によって駆動軸36の所望の位置に走行輪22を固定するようにしてもよい。例えば、位置固定部材として一般的なメカロック構造を有するものを使用すれば、駆動軸36に対する走行輪22の固定を解除して駆動軸36に沿って走行輪22を移動させることができるし、所望の位置で走行輪22を駆動軸36に固定することができる。メカロック構造の例としては、駆動軸36が挿入されるハブと、このハブと駆動軸36との間に配置される断面がテーパ形状になった内輪と外輪とを備えた構造を挙げることができる。かかるメカロック構造の場合、ハブを走行輪22のホイールとして使用して、ハブに駆動軸36を挿通する。そして、ハブと駆動軸36との間における内輪と外輪との重なり具合を調整すれば、駆動軸36にハブ(つまり走行輪22)を固定したり、駆動軸36に対してハブが移動できるようにしたりすることができる。
As shown in FIGS. 17 to 18, even when the drive source 32 is arranged at the center of the chassis frame 2, the length of the drive shaft 36 can be changed, or a plurality of drive shafts 36 having different lengths can be used. You just have to prepare it. Then, it becomes possible to arrange the two traveling bodies 21 at appropriate positions according to the solar cell module P.
Further, the length of the drive shaft 36 may be constant, a position fixing member may be provided on the traveling wheel 22, and the traveling wheel 22 may be fixed at a desired position on the drive shaft 36 by the position fixing member. For example, if a position fixing member having a general mechanical lock structure is used, the traveling wheel 22 can be released from being fixed to the drive shaft 36 and the traveling wheel 22 can be moved along the drive shaft 36, which is desired. The traveling wheel 22 can be fixed to the drive shaft 36 at the position of. As an example of the mechanical lock structure, a structure including a hub into which the drive shaft 36 is inserted and an inner ring and an outer ring having a tapered cross section arranged between the hub and the drive shaft 36 can be mentioned. .. In the case of such a mechanical lock structure, the hub is used as a wheel of the traveling wheel 22, and the drive shaft 36 is inserted through the hub. Then, by adjusting the degree of overlap between the inner ring and the outer ring between the hub and the drive shaft 36, the hub (that is, the traveling wheel 22) can be fixed to the drive shaft 36, or the hub can move with respect to the drive shaft 36. Can be used.
 上記例では、走行部20が2つの走行体21を有する場合を説明したが、走行部20は、3つ以上の走行体21を有していてもよい。この場合、複数の走行体21は、対称となる位置に設けることが望ましい。 In the above example, the case where the traveling unit 20 has two traveling bodies 21 has been described, but the traveling unit 20 may have three or more traveling bodies 21. In this case, it is desirable that the plurality of traveling bodies 21 are provided at symmetrical positions.
 例えば、複数の走行体21は、シャシフレーム2の軸方向の中間線2CLに対して、対称となる位置に設けることができる。走行体21が奇数の場合であれば、走行体21の1つはシャシフレーム2の軸方向の中間線2CL上に配置し、他の走行体21がシャシフレーム2の軸方向の中間線2CLに対して対称となるように設けてもよい。 For example, the plurality of traveling bodies 21 can be provided at positions symmetrical with respect to the intermediate line 2CL in the axial direction of the chassis frame 2. If the traveling body 21 is an odd number, one of the traveling bodies 21 is arranged on the axial intermediate line 2CL of the chassis frame 2, and the other traveling body 21 is arranged on the axial intermediate line 2CL of the chassis frame 2. It may be provided so as to be symmetrical with respect to the other.
 なお、走行部20は、3つ以上の走行体21を有する場合には、ブラシ12の軸方向において最も離れた位置に配置される2つの走行体21の4つの走行輪22によって囲まれた範囲に掃除ロボット1の重心Gは配置されることになる。 When the traveling unit 20 has three or more traveling bodies 21, the range surrounded by the four traveling wheels 22 of the two traveling bodies 21 arranged at the farthest positions in the axial direction of the brush 12. The center of gravity G of the cleaning robot 1 will be arranged.
 また、走行部20が3つ以上の走行体21を有する場合には、掃除ロボット1の走行方向から見たときに、各走行体21の走行輪22が太陽電池モジュールPの表面と接触する部分が互いに重ならないように配設されていてもよい(図21(B)参照)。かかる構成とすれば、太陽電池モジュールP上の特定の位置にかかる荷重を分散させることができる。つまり、各走行体21の走行輪22は太陽電池モジュールPの同じ位置を通過しないので、太陽電池モジュールPにおいて走行輪22が通過する位置のセルや配線、ガラスなどが損傷しにくくすることができる。なお、各走行体21が走行部材として後述するようなクローラ等を採用した場合も同様である。
 ここでいう、「各走行体21の走行輪22が太陽電池モジュールPの表面と接触する部分が互いに重ならない」とは、完全に重ならない場合と、わずかに重なりがある場合との両方を含んでいる。わずかに重なりがあるとは、各走行体21の走行輪22から太陽電池モジュールPに加わる荷重が小さい部分では重なりがある場合を意味している。
Further, when the traveling unit 20 has three or more traveling bodies 21, the portion where the traveling wheels 22 of each traveling body 21 come into contact with the surface of the solar cell module P when viewed from the traveling direction of the cleaning robot 1. May be arranged so that they do not overlap each other (see FIG. 21 (B)). With such a configuration, the load applied to a specific position on the solar cell module P can be dispersed. That is, since the traveling wheels 22 of each traveling body 21 do not pass through the same position of the solar cell module P, it is possible to prevent the cells, wiring, glass, and the like at the positions where the traveling wheels 22 pass in the solar cell module P from being damaged. .. The same applies when each traveling body 21 employs a crawler or the like as described later as a traveling member.
Here, "the portion where the traveling wheels 22 of each traveling body 21 in contact with the surface of the solar cell module P do not overlap each other" includes both a case where they do not completely overlap and a case where they slightly overlap each other. I'm out. The slight overlap means that there is a slight overlap in the portion where the load applied from the traveling wheel 22 of each traveling body 21 to the solar cell module P is small.
 また、複数の走行体21を設けた場合には、走行体21が奇数個であれば、複数の走行体21をシャシフレーム2の軸方向の中間線2CLに対して対称に設けると、少なくとも一つの走行体21はシャシフレーム2の軸方向の中間線2CL上に配置される。この場合、掃除ロボット1を太陽電池モジュールPの表面に載せた際に、複数の走行体21は揺動軸SSに対して対称となるが、少なくとも一つの走行体21は、その幅方向の中間線から揺動軸SSまでの距離が、距離L(図21(B)参照)の1/4~3/4の範囲に位置しないようになる。この場合でも、複数の走行体21のうち、掃除ロボット1の走行方向と交差する方向においてもっとも外方に位置する2つの走行体21,21を、その幅方向の中間線から揺動軸SSまでの距離が、距離L(図21(B)参照)の1/4~3/4の範囲に位置するように設けておけば、掃除ロボット1の荷重に起因する太陽電池モジュールPの撓みを抑えることができる(図21(B)参照)。なお、もっとも外方に位置する2つの走行体21,21を上述した状態にする上では、もっとも外方に位置する2つの走行体21,21間の距離が、太陽電池モジュールの第一端部P1から第二端部P2までの長さまでの距離の1/4~3/4となるように設けることが望ましい。 Further, when a plurality of traveling bodies 21 are provided, if the number of traveling bodies 21 is an odd number, if the plurality of traveling bodies 21 are provided symmetrically with respect to the intermediate line 2CL in the axial direction of the chassis frame 2, at least one is provided. The two traveling bodies 21 are arranged on the intermediate line 2CL in the axial direction of the chassis frame 2. In this case, when the cleaning robot 1 is mounted on the surface of the solar cell module P, the plurality of traveling bodies 21 are symmetrical with respect to the swing axis SS, but at least one traveling body 21 is intermediate in the width direction thereof. The distance from the line to the swing axis SS will not be located in the range of 1/4 to 3/4 of the distance L (see FIG. 21B). Even in this case, of the plurality of traveling bodies 21, the two traveling bodies 21 and 21 located on the outermost side in the direction intersecting the traveling direction of the cleaning robot 1 are moved from the intermediate line in the width direction to the swing axis SS. If the distance is provided so as to be located in the range of 1/4 to 3/4 of the distance L (see FIG. 21 (B)), the bending of the solar cell module P due to the load of the cleaning robot 1 is suppressed. (See FIG. 21 (B)). In order to bring the two outermost traveling bodies 21 and 21 into the above-mentioned state, the distance between the two outermost traveling bodies 21 and 21 is the first end portion of the solar cell module. It is desirable to provide the distance from P1 to the second end P2 so as to be 1/4 to 3/4 of the distance.
<走行体21について>
 上記例では、走行体21が掃除ロボット1の走行方向に並んだ2つの走行輪22,22を有する場合を説明したが、走行体21は、一つの走行輪22しか有しないものがあってもよいし、3つ以上の走行輪22を有するものがあってもよい。つまり、走行体21に設ける走行輪22は、全ての走行体21で同じでもよいし、一部または全部の走行体21で走行輪22の数が異なっていてもよい。太陽電池モジュールPの形状や使用環境などに応じて各走行体21に適切な数の走行輪22を設ければよい。
<About the running body 21>
In the above example, the case where the traveling body 21 has two traveling wheels 22 and 22 arranged in the traveling direction of the cleaning robot 1 has been described, but even if the traveling body 21 has only one traveling wheel 22. Alternatively, there may be one having three or more traveling wheels 22. That is, the traveling wheels 22 provided on the traveling body 21 may be the same for all the traveling bodies 21, or the number of traveling wheels 22 may be different for some or all of the traveling bodies 21. An appropriate number of traveling wheels 22 may be provided on each traveling body 21 according to the shape of the solar cell module P, the usage environment, and the like.
 なお、走行体21が走行輪22を3つ以上有する場合には、3つ以上の走行輪22が全て駆動輪となってもよいし、いずれか2つが駆動輪となってもよい。また、上述したように、複数の走行体21を有する場合には、走行体21が走行輪22を複数有する場合でも、駆動輪を1つだけとしてもよい。 When the traveling body 21 has three or more traveling wheels 22, all three or more traveling wheels 22 may be driving wheels, or any two of them may be driving wheels. Further, as described above, when the traveling body 21 has a plurality of traveling bodies 21, even if the traveling body 21 has a plurality of traveling wheels 22, the number of driving wheels may be only one.
 また、走行体21が3つ以上の走行輪22を有する場合には、各走行体21において、掃除ロボット1の走行方向の最も前方および後方に位置する2つの走行輪22が、重心Gが配置される範囲を定める走行輪22になる。 When the traveling body 21 has three or more traveling wheels 22, the center of gravity G is arranged on the two traveling wheels 22 located at the front and rear of the traveling direction of the cleaning robot 1 in each traveling body 21. The traveling wheel 22 determines the range to be used.
 また、走行体21が3つ以上の走行輪22を有する場合には、掃除ロボット1の走行方向から見たときに、少なくとも一つの走行輪22の太陽電池モジュールPの表面と接触する部分が、他の走行輪22の太陽電池モジュールPの表面と接触する部分と互いに重ならないように配設されていてもよい。かかる構成とすれば、太陽電池モジュールP上の特定の位置にかかる荷重を分散させることができる。つまり、走行方向に並ぶ全ての走行輪22が太陽電池モジュールPの同じ位置を通過しないので、太陽電池モジュールPにおいて走行輪22が通過する位置のセルや配線、ガラスなどが損傷しにくくすることができる。もちろん、掃除ロボット1の走行方向から見たときに、全ての走行輪22の太陽電池モジュールPの表面と接触する部分が互いに重ならないように配設されていてもよい。
 ここでいう、「全ての走行輪22が太陽電池モジュールPの表面と接触する部分が重ならない」とは、完全に重ならない場合と、わずかに重なりがある場合との両方を含んでいる。わずかに重なりがあるとは、走行輪22から太陽電池モジュールPに加わる荷重が小さい部分では重なりがある場合を意味している。
Further, when the traveling body 21 has three or more traveling wheels 22, a portion of at least one traveling wheel 22 that comes into contact with the surface of the solar cell module P when viewed from the traveling direction of the cleaning robot 1 is formed. It may be arranged so as not to overlap with the portion of the other traveling wheel 22 that comes into contact with the surface of the solar cell module P. With such a configuration, the load applied to a specific position on the solar cell module P can be dispersed. That is, since all the traveling wheels 22 arranged in the traveling direction do not pass through the same position of the solar cell module P, the cells, wiring, glass, etc. at the position where the traveling wheels 22 pass in the solar cell module P can be less likely to be damaged. it can. Of course, when viewed from the traveling direction of the cleaning robot 1, the portions of all traveling wheels 22 that come into contact with the surface of the solar cell module P may be arranged so as not to overlap each other.
The phrase "the portions where all the traveling wheels 22 are in contact with the surface of the solar cell module P do not overlap" includes both the case where they do not completely overlap and the case where they slightly overlap. The slight overlap means that there is a slight overlap in the portion where the load applied from the traveling wheel 22 to the solar cell module P is small.
 また、走行体21は、掃除ロボット1の走行方向に並んだ2つの走行輪22を走行輪組22sとすると、この走行輪組22sを複数有していてもよい。例えば、走行体21が走行輪組22sを2組有していてもよい(図10(B)参照)。この場合、2つの走行輪組22sの走行輪22の走行方向が互いに平行に並ぶように配設すれば、シャシフレーム2を安定して走行させることができる。 Further, if the traveling body 21 has two traveling wheels 22 arranged in the traveling direction of the cleaning robot 1 as traveling wheel sets 22s, the traveling body 21 may have a plurality of traveling wheel sets 22s. For example, the traveling body 21 may have two traveling wheel sets 22s (see FIG. 10B). In this case, if the traveling directions of the traveling wheels 22 of the two traveling wheel sets 22s are arranged so as to be parallel to each other, the chassis frame 2 can be stably traveled.
 とくに、一つの走行体21における隣接する2つの走行輪組22sが、掃除ロボット1の走行方向と直交する方向において互いに離間しており、その間隔が連結部CEの長さ(図10(B)における左右方向の長さ)よりも長くなるように設けられていることが望ましい。そして、掃除ロボット1を太陽電池モジュールPの表面に載せて走行させたときに、2つの走行体21の2つの走行輪組22s,22sが架台MTの2つの連結部CEをいずれかをそれぞれ跨ぐように、走行する位置に設けられていることが望ましい(図10(B)参照)。この場合、太陽電池モジュールPには、連結部CEの両側に掃除ロボット1の荷重が加わるので、掃除ロボット1の荷重による太陽電池モジュールPの撓み等を抑制することができる可能性がある。 In particular, two adjacent traveling wheel sets 22s in one traveling body 21 are separated from each other in a direction orthogonal to the traveling direction of the cleaning robot 1, and the distance between them is the length of the connecting portion CE (FIG. 10 (B)). It is desirable that the length is longer than the length in the left-right direction. Then, when the cleaning robot 1 is placed on the surface of the solar cell module P and traveled, the two traveling wheel sets 22s and 22s of the two traveling bodies 21 straddle any of the two connecting portions CE of the gantry MT. As described above, it is desirable that the vehicle is provided at a traveling position (see FIG. 10B). In this case, since the load of the cleaning robot 1 is applied to both sides of the connecting portion CE to the solar cell module P, there is a possibility that the bending of the solar cell module P due to the load of the cleaning robot 1 can be suppressed.
 なお、走行体21が走行輪組22sを複数有する場合には、各走行体21において、最も外方に位置する走行輪組22sに含まれる走行輪22が、重心Gが配置される範囲を定める走行輪22になる。 When the traveling body 21 has a plurality of traveling wheel sets 22s, the traveling wheels 22 included in the traveling wheel set 22s located on the outermost side of each traveling body 21 determine the range in which the center of gravity G is arranged. It becomes the running wheel 22.
 また、上記例では、走行輪組22sが2つの走行輪22を有する場合を説明したが、各走行輪組22sに設けられる走行輪22の数は2つに限られず、3つ以上でもよいし、一つでもよい。また、隣接する2つの走行輪組22sが有する走行輪22の数は、同じでもよいし、異なっていてもよい。例えば、一方の走行輪組22sでは走行輪22が2つの場合において、他方の走行輪22は1つでもよいし3つ以上でもよい。 Further, in the above example, the case where the traveling wheel set 22s has two traveling wheels 22 has been described, but the number of traveling wheels 22 provided in each traveling wheel set 22s is not limited to two, and may be three or more. , May be one. Further, the number of traveling wheels 22 included in the two adjacent traveling wheel sets 22s may be the same or different. For example, in one traveling wheel set 22s, when there are two traveling wheels 22, the other traveling wheel 22 may be one or three or more.
 また、走行体21における走行部材は車輪等の走行輪22に限られず、太陽電池モジュールPの表面を走行できるものであればよい。例えば、クローラ等を走行部材として使用してもよい。なお、クローラを走行部材として使用した場合には、掃除ロボット1の走行方向において、クローラが太陽電池モジュールPの表面と接触する部分の長さは、太陽電池アレイLPにおける隣接する太陽電池モジュールP間の隙間よりも長くなるように調整される。そして、走行部材がクローラの場合、クローラが太陽電池モジュールPの表面から離れる位置から後述する補助輪26が太陽電池モジュールPの表面と接触する位置(図9(B)のX2)までの距離も、太陽電池アレイLPにおける隣接する太陽電池モジュールP間の隙間よりも長くなるように調整される。 Further, the traveling member of the traveling body 21 is not limited to the traveling wheel 22 such as wheels, and may be any one that can travel on the surface of the solar cell module P. For example, a crawler or the like may be used as a traveling member. When the crawler is used as a traveling member, the length of the portion where the crawler contacts the surface of the solar cell module P in the traveling direction of the cleaning robot 1 is between the adjacent solar cell modules P in the solar cell array LP. It is adjusted so that it is longer than the gap of. When the traveling member is a crawler, the distance from the position where the crawler is separated from the surface of the solar cell module P to the position where the auxiliary wheel 26, which will be described later, comes into contact with the surface of the solar cell module P (X2 in FIG. 9B) is also , Adjusted to be longer than the gap between adjacent solar cell modules P in the solar cell array LP.
<補助走行体25>
 走行部20は、上述した2つの走行体21に加えて、走行体21よりもシャシフレーム2の幅方向において外方に位置する一対の補助走行体25,25を有していてもよい。このように配置された一対の補助走行体25,25を設ければ、隣接する太陽電池モジュールP間の隙間を安定して乗り越えることができる。つまり、隣接する太陽電池モジュールP間の隙間が走行体21の走行輪22では越えられない幅(例えば、走行輪22の直径よりも長い幅)を有していても、掃除ロボット1に隙間を乗り越えさせることができる。
<Auxiliary vehicle 25>
In addition to the two traveling bodies 21 described above, the traveling unit 20 may have a pair of auxiliary traveling bodies 25, 25 located outside the chassis frame 2 in the width direction of the traveling body 21. If the pair of auxiliary traveling bodies 25, 25 arranged in this way are provided, the gap between the adjacent solar cell modules P can be stably overcome. That is, even if the gap between the adjacent solar cell modules P has a width that cannot be exceeded by the traveling wheel 22 of the traveling body 21 (for example, a width longer than the diameter of the traveling wheel 22), the cleaning robot 1 has a gap. You can get over it.
 例えば、図1~図3に示すように、シャシフレーム2の幅方向に延びた一対の延設フレーム2E,2Eを設けて、一対の延設フレーム2E,2Eに、走行輪26を有する一対の補助走行体25,25をそれぞれ設ける。なお、走行輪26は、その回転軸が走行体21の2つの走行輪22,22の回転軸と互いに平行となるように設ける。そして、一対の補助走行体25,25の走行輪26を、隣接する走行輪22との距離W2が走行体21の2つの走行輪22,22間の距離W1と同等以上となるように配設する(図9(B)参照)。より詳しくいえば、一対の補助走行体25,25の走行輪26が太陽電池モジュールPの表面と接触する位置X2と隣接する走行輪22が太陽電池モジュールPの表面と接触する位置X1との間の距離W2が、走行体21の2つの走行輪22,22が太陽電池モジュールPの表面と接触する位置X1, X1間の距離W1と同等以上となるように配設する(図9(B)参照)。すると、隣接する太陽電池モジュールP間に隙間があっても、一対の補助走行体25,25の走行輪26,26と走行体21の2つの走行輪22,22の4つの車輪のうち、少なくとも3つの車輪が太陽電池モジュールPの表面に載った状態を維持できる。したがって、隣接する太陽電池モジュールP間の隙間を、掃除ロボット1に安定して乗り越えさせることができる。 For example, as shown in FIGS. 1 to 3, a pair of extension frames 2E and 2E extending in the width direction of the chassis frame 2 are provided, and the pair of extension frames 2E and 2E have a pair of traveling wheels 26. Auxiliary traveling bodies 25 and 25 are provided, respectively. The traveling wheels 26 are provided so that their rotating shafts are parallel to the rotating shafts of the two traveling wheels 22 and 22 of the traveling body 21. Then, the traveling wheels 26 of the pair of auxiliary traveling bodies 25, 25 are arranged so that the distance W2 with the adjacent traveling wheels 22 is equal to or more than the distance W1 between the two traveling wheels 22, 22 of the traveling body 21. (See FIG. 9B). More specifically, between the position X2 where the traveling wheels 26 of the pair of auxiliary traveling bodies 25 and 25 come into contact with the surface of the solar cell module P and the position X1 where the adjacent traveling wheels 22 come into contact with the surface of the solar cell module P. The distance W2 is arranged so as to be equal to or greater than the distance W1 between the positions X1 and X1 where the two traveling wheels 22 and 22 of the traveling body 21 come into contact with the surface of the solar cell module P (FIG. 9B). reference). Then, even if there is a gap between the adjacent solar cell modules P, at least one of the four wheels of the pair of auxiliary traveling bodies 25 and 25 and the two traveling wheels 22 and 22 of the traveling body 21 The three wheels can be maintained on the surface of the solar cell module P. Therefore, the cleaning robot 1 can stably overcome the gap between the adjacent solar cell modules P.
 なお、一対の補助走行体25,25を設ける数はとくに限定されないが、走行体21毎に一対の補助走行体25,25を設けることが望ましい。例えば、走行体21が2つの場合には、一対の補助走行体25,25を2組設けることが望ましい。そして、一対の補助走行体25,25の走行輪26の走行ラインが、対応する走行体21の2つの走行輪22,22の走行ライン上からズレるように設けていることが望ましい。言い換えれば、掃除ロボット1の走行方向から見たときに、一対の補助走行体25,25の走行輪26が、対応する走行体21の2つの走行輪22,22と重ならないように設けられていることが望ましい。例えば、一対の補助走行体25,25の走行輪26が、対応する走行体21の2つの走行輪22,22に対して内方(図2参照)に位置するように設けたり、対応する走行体21の2つの走行輪22,22に対して外方に位置するように設けたりしていることが望ましい。一対の補助走行体25,25の走行輪26の走行ラインが、走行体21の2つの走行輪22,22の走行ライン上に位置していてもよいが、両者の走行ラインがズレている方が、隣接する太陽電池モジュールP間の隙間を掃除ロボット1に安定して乗り越えさせることができる。なお、一対の補助走行体25,25を一組だけ設ける場合であれば、シャシフレーム2の軸方向において、2つの走行体21,21の中間に配置することが望ましい。 The number of the pair of auxiliary traveling bodies 25, 25 is not particularly limited, but it is desirable to provide the pair of auxiliary traveling bodies 25, 25 for each traveling body 21. For example, when there are two traveling bodies 21, it is desirable to provide two pairs of auxiliary traveling bodies 25, 25. Then, it is desirable that the traveling lines of the traveling wheels 26 of the pair of auxiliary traveling bodies 25 and 25 are provided so as to deviate from the traveling lines of the two traveling wheels 22 and 22 of the corresponding traveling bodies 21. In other words, when viewed from the traveling direction of the cleaning robot 1, the traveling wheels 26 of the pair of auxiliary traveling bodies 25, 25 are provided so as not to overlap with the two traveling wheels 22, 22 of the corresponding traveling bodies 21. It is desirable to be there. For example, the traveling wheels 26 of the pair of auxiliary traveling bodies 25, 25 are provided so as to be located inward (see FIG. 2) with respect to the two traveling wheels 22, 22 of the corresponding traveling body 21, or the corresponding traveling. It is desirable that the body 21 is provided so as to be located outward with respect to the two traveling wheels 22, 22. The traveling lines of the traveling wheels 26 of the pair of auxiliary traveling bodies 25 and 25 may be located on the traveling lines of the two traveling wheels 22 and 22 of the traveling body 21, but the traveling lines of the two traveling bodies are deviated from each other. However, the cleaning robot 1 can stably overcome the gap between the adjacent solar cell modules P. When only one pair of auxiliary traveling bodies 25, 25 is provided, it is desirable to arrange them in the middle of the two traveling bodies 21 and 21 in the axial direction of the chassis frame 2.
 また、走行体21が3つ以上の走行輪22を有する場合において、走行輪22のうち、3つ以上の走行輪22が駆動輪となる場合には、一対の補助走行体25,25の走行輪26と、この走行輪26と最も隣接する駆動輪となる走行輪22との距離を、駆動輪である走行輪22のうち最も距離が近い2つの走行輪22間の距離と同等以上となるように配設する。つまり、補助走行体25の走行輪26と隣接する駆動輪となる走行輪22との距離が、掃除ロボット1の走行方向における最も距離が近い2つの走行輪22(駆動輪)間の距離と同等以上となるように配設する。すると、隣接する太陽電池モジュールP間に隙間があっても、走行体21の複数の走行輪22のうち、少なくとも一つの駆動輪である走行輪22が太陽電池モジュールP上に配置された状態を維持できる。すると、太陽電池モジュールP上に配置された駆動輪である走行輪22の駆動力によって掃除ロボット1を移動させることができる。したがって、隣接する太陽電池モジュールP間の隙間を、掃除ロボット1に安定して乗り越えさせることができる。
 なお、3つ以上の走行輪22のうち、2つの走行輪22が駆動輪となる場合には、一対の補助走行体25,25の走行輪26と隣接する駆動輪となる走行輪22との距離を、2つの駆動輪となる走行輪22間の距離と同等以上となるように配設する。
Further, when the traveling body 21 has three or more traveling wheels 22, if three or more traveling wheels 22 are driving wheels among the traveling wheels 22, the pair of auxiliary traveling bodies 25, 25 travels. The distance between the wheels 26 and the traveling wheels 22 that are the closest driving wheels to the traveling wheels 26 is equal to or greater than the distance between the two traveling wheels 22 that are the closest of the driving wheels 22. Arrange as such. That is, the distance between the traveling wheels 26 of the auxiliary traveling body 25 and the traveling wheels 22 which are adjacent driving wheels is equivalent to the distance between the two traveling wheels 22 (driving wheels) which are the closest in the traveling direction of the cleaning robot 1. Arrange so as to be as described above. Then, even if there is a gap between the adjacent solar cell modules P, the traveling wheels 22 which are at least one driving wheel among the plurality of traveling wheels 22 of the traveling body 21 are arranged on the solar cell module P. Can be maintained. Then, the cleaning robot 1 can be moved by the driving force of the traveling wheels 22, which are the driving wheels arranged on the solar cell module P. Therefore, the cleaning robot 1 can stably overcome the gap between the adjacent solar cell modules P.
When two of the three or more traveling wheels 22 are driving wheels, the traveling wheels 26 of the pair of auxiliary traveling bodies 25, 25 and the traveling wheels 22 that are adjacent driving wheels are used. The distance is arranged so as to be equal to or greater than the distance between the traveling wheels 22 serving as the two driving wheels.
 また、上記例では、補助走行体25を掃除ロボット1の走行方向の両側に設けた例を示したが、補助走行体25は、掃除ロボット1の走行方向の一方の側だけに設けてもよい。この場合でも、掃除ロボット1を一方向にのみ移動させる場合には、隣接する太陽電池モジュールP間の隙間を、掃除ロボット1に安定して乗り越えさせることができる。つまり、補助走行体25が走行方向前方に位置するように、太陽電池モジュールP上を掃除ロボット1に走行させる。すると、補助走行体25を掃除ロボット1の走行方向の一方の側だけに設けても隣接する太陽電池モジュールP間の隙間を、掃除ロボット1に安定して乗り越えさせることができる。 Further, in the above example, the auxiliary traveling body 25 is provided on both sides of the cleaning robot 1 in the traveling direction, but the auxiliary traveling body 25 may be provided only on one side of the cleaning robot 1 in the traveling direction. .. Even in this case, when the cleaning robot 1 is moved in only one direction, the cleaning robot 1 can stably overcome the gap between the adjacent solar cell modules P. That is, the cleaning robot 1 runs on the solar cell module P so that the auxiliary traveling body 25 is located forward in the traveling direction. Then, even if the auxiliary traveling body 25 is provided only on one side in the traveling direction of the cleaning robot 1, the cleaning robot 1 can stably overcome the gap between the adjacent solar cell modules P.
 なお、4つの走行輪22は、各走行輪22に加わる荷重がほぼ均等になる範囲に位置するように設けることが望ましい。ここでいう、4つの走行輪22に加わる荷重がほぼ均等になるとは、例えば、最大荷重が加わる走行輪22と最小荷重が加わる走行輪22とを比較すると、その差が20%程度以内になる場合を意味している。 It is desirable that the four traveling wheels 22 are provided so as to be located within a range in which the load applied to each traveling wheel 22 is substantially equal. The fact that the loads applied to the four traveling wheels 22 are almost equal here means that, for example, when the traveling wheels 22 to which the maximum load is applied and the traveling wheels 22 to which the minimum load is applied are compared, the difference is within about 20%. Means the case.
<掃除部10について>
 掃除部10のブラシ12は、その回転軸が必ずしもシャシフレーム2の軸方向と平行に設けられていなくてもよく、シャシフレーム2の軸方向に対して若干傾いていてもよい。例えば、ブラシ12の回転軸はシャシフレーム2の軸方向に対して±0.5°程度傾いていてもよい。
<About cleaning section 10>
The rotation axis of the brush 12 of the cleaning unit 10 does not necessarily have to be provided parallel to the axial direction of the chassis frame 2, and the brush 12 may be slightly tilted with respect to the axial direction of the chassis frame 2. For example, the rotation axis of the brush 12 may be tilted by about ± 0.5 ° with respect to the axial direction of the chassis frame 2.
 また、上記例では、掃除部10が1本のブラシ12を有する場合を説明したが、掃除部10はブラシ12を複数有していてもよい。例えば、図17~図20に示すように、ブラシ12を2本設けてもよい。しかし、掃除ロボット1を軽量化する上では、掃除部10のブラシ12はできるだけ少ない方が望ましい。掃除部10のブラシ12を1本だけ設ける場合には、ブラシ12を掃除ロボット1の走行方向において走行輪22の前方に配置すれば、本実施形態の掃除ロボット1を太陽電池アレイLPに沿って往復移動させる場合に掃除できない領域を少なくできる。もちろん、掃除部10のブラシ12を1本だけ設ける場合でも、ブラシ12を掃除ロボット1の走行方向において走行輪22の後方に配置してもよいし、掃除ロボット1の2つの走行輪22,22の間に位置するように設けてもよい。 Further, in the above example, the case where the cleaning unit 10 has one brush 12 has been described, but the cleaning unit 10 may have a plurality of brushes 12. For example, as shown in FIGS. 17 to 20, two brushes 12 may be provided. However, in order to reduce the weight of the cleaning robot 1, it is desirable that the number of brushes 12 of the cleaning unit 10 is as small as possible. When only one brush 12 of the cleaning unit 10 is provided, if the brush 12 is arranged in front of the traveling wheel 22 in the traveling direction of the cleaning robot 1, the cleaning robot 1 of the present embodiment can be arranged along the solar cell array LP. The area that cannot be cleaned can be reduced when moving back and forth. Of course, even when only one brush 12 of the cleaning unit 10 is provided, the brush 12 may be arranged behind the traveling wheel 22 in the traveling direction of the cleaning robot 1, or the two traveling wheels 22, 22 of the cleaning robot 1 may be provided. It may be provided so as to be located between.
 また、掃除部10の構造、つまり、掃除部10がどのように太陽電池アレイLPの太陽電池モジュールP上を掃除するかは、とくに限定されない。例えば、ブラシ12として、回転軸に刷毛が設けられたものだけでなく、回転軸の表面に板状のブレードや布片が立設された部材等のように軸周りに回転する掃除部材を使用してもよい。また、軸周りに回転する掃除部材では、刷毛やブレード、布片等は回転軸の表面にその軸方向に沿って並ぶように設けてもよいし、回転軸の表面に沿って回転軸周りに螺旋状に並ぶように配置されていてもよい。刷毛やブレード、布片は回転軸の表面に一列だけ設けてもよいし複数列設けてもよい。例えば、刷毛等を二重螺旋状に設けてもよい。 Further, the structure of the cleaning unit 10, that is, how the cleaning unit 10 cleans the solar cell module P of the solar cell array LP is not particularly limited. For example, as the brush 12, not only a brush 12 having a brush on the rotating shaft, but also a cleaning member rotating around the shaft such as a member having a plate-shaped blade or a piece of cloth standing on the surface of the rotating shaft is used. You may. Further, in the cleaning member that rotates around the axis, brushes, blades, cloth pieces, etc. may be provided so as to line up on the surface of the rotation axis along the axial direction, or around the rotation axis along the surface of the rotation axis. They may be arranged in a spiral pattern. The brush, the blade, and the cloth piece may be provided in only one row or in a plurality of rows on the surface of the rotating shaft. For example, brushes and the like may be provided in a double spiral shape.
 また、ブラシ12として、回転軸の表面全面または一部がスポンジ状の部材によって覆われたものや回転軸の表面全面または一部に布を取り付けたもの等を使用してもよい。さらに、ブラシ12に代えて散水装置(スプレーノズル等)とワイパーブレード(スクイジー)、掃除ロボット1の移動に伴って太陽電池モジュールPの表面に沿って滑るように配置された布等のシート状の部材を設けて掃除部10としてもよい。さらに、ブラシ12に代えてまたはブラシ12に加えてバキュームクリーナー(吸引式掃除機)を設けて掃除部10としてもよい。さらに、気体を噴き出すエアノズルを設けて掃除部10としてもよい。 Further, as the brush 12, a brush 12 having the entire surface or a part of the rotating shaft covered with a sponge-like member, or a brush 12 having a cloth attached to the entire surface or a part of the rotating shaft may be used. Further, instead of the brush 12, a watering device (spray nozzle or the like), a wiper blade (squishy), and a sheet of cloth or the like arranged so as to slide along the surface of the solar cell module P as the cleaning robot 1 moves. A member may be provided to form the cleaning unit 10. Further, a vacuum cleaner (suction type vacuum cleaner) may be provided in place of the brush 12 or in addition to the brush 12 to form the cleaning unit 10. Further, an air nozzle for ejecting gas may be provided as the cleaning unit 10.
<制御機構40について>
 制御機構40は、制御部41が走行部20の作動を制御する情報を得るためのセンサを備えている。このセンサとして、例えば、以下に示すセンサを挙げることができる。
<About control mechanism 40>
The control mechanism 40 includes a sensor for obtaining information that the control unit 41 controls the operation of the traveling unit 20. Examples of this sensor include the following sensors.
<エッジ検出>
 図11に示すように、制御機構40は、太陽電池アレイLPの端部(掃除ロボット1が走行する方向の前方に位置する端部)を検出するエッジ検出部42を備えていてもよい。この場合、エッジ検出部42が検出した信号に基づいて制御機構40の制御部41が走行部20の作動を制御すれば、太陽電池アレイLPから掃除ロボット1が落下することを防止することができる。
<Edge detection>
As shown in FIG. 11, the control mechanism 40 may include an edge detection unit 42 that detects an end portion of the solar cell array LP (the end portion located in front of the cleaning robot 1 in the traveling direction). In this case, if the control unit 41 of the control mechanism 40 controls the operation of the traveling unit 20 based on the signal detected by the edge detection unit 42, it is possible to prevent the cleaning robot 1 from falling from the solar cell array LP. ..
 例えば、エッジ検出部42は、第一検出部43と、第二検出部44と、を備えている。
 なお、図11では、第一検出部43および第二検出部44がいずれも掃除ロボット1のシャシフレーム2の軸方向の端部よりも中央部側に位置するように設けられているが、シャシフレーム2の軸方向において第一検出部43および第二検出部44を設ける位置はとくに限定されない。
For example, the edge detection unit 42 includes a first detection unit 43 and a second detection unit 44.
In FIG. 11, both the first detection unit 43 and the second detection unit 44 are provided so as to be located on the central portion side of the axial end portion of the chassis frame 2 of the cleaning robot 1. The positions where the first detection unit 43 and the second detection unit 44 are provided in the axial direction of the frame 2 are not particularly limited.
 第一検出部43は、掃除ロボット1の走行方向において、走行部20の走行体21よりも走行方向前方(詳しくは走行方向前方に位置する走行輪22が太陽電池モジュールPの表面と接する位置X1よりも前方)に位置するように設けられている。好ましくは、第一検出部43は、掃除ロボット1の走行方向において、掃除ロボット1の最も前方に位置するように設けられている。
 一方、第二検出部44は、掃除ロボット1の走行方向において、第一検出部43に対して走行方向後方かつ走行部20の走行体21よりも走行方向前方(詳しくは走行方向前方に位置する走行輪22が太陽電池モジュールPの表面と接する位置X1よりも前方)に位置するように設けられている。つまり、第二検出部44は、掃除ロボット1の走行方向において、第一検出部43と位置X1との間に位置するように設けられている。
 なお、掃除ロボット1が往復移動するような場合には、往復移動する際のいずれの方向にも第一検出部43および第二検出部44設けられる。例えば、図11において左右方向のいずれの方向にも掃除ロボット1が移動する場合には、図11に示すように、掃除ロボット1のシャシフレーム2の両側に第一検出部43および第二検出部44が設けられる。
In the traveling direction of the cleaning robot 1, the first detection unit 43 is located at a position X1 in which the traveling wheel 22 located in front of the traveling body 21 of the traveling unit 20 in the traveling direction (specifically, the traveling wheel 22 located in front of the traveling direction is in contact with the surface of the solar cell module P). It is provided so as to be located in front of). Preferably, the first detection unit 43 is provided so as to be located at the frontmost position of the cleaning robot 1 in the traveling direction of the cleaning robot 1.
On the other hand, the second detection unit 44 is located behind the first detection unit 43 in the traveling direction of the cleaning robot 1 and in front of the traveling body 21 of the traveling unit 20 (specifically, in the front of the traveling direction). The traveling wheel 22 is provided so as to be located in front of the position X1 in contact with the surface of the solar cell module P). That is, the second detection unit 44 is provided so as to be located between the first detection unit 43 and the position X1 in the traveling direction of the cleaning robot 1.
When the cleaning robot 1 reciprocates, the first detection unit 43 and the second detection unit 44 are provided in any direction of the reciprocating movement. For example, when the cleaning robot 1 moves in any of the left-right directions in FIG. 11, as shown in FIG. 11, the first detection unit 43 and the second detection unit 43 are on both sides of the chassis frame 2 of the cleaning robot 1. 44 is provided.
<走行制御方法>
 以下では、第一検出部43および第二検出部44が検出した信号に基づいて、制御機構40の制御部41が走行部20の作動を制御して、太陽電池アレイLPから掃除ロボット1が落下することを防止する方法を図11に基づいて説明する。なお、図11では、掃除ロボット1が右側から左側に移動する場合を説明する。
<Driving control method>
In the following, the control unit 41 of the control mechanism 40 controls the operation of the traveling unit 20 based on the signals detected by the first detection unit 43 and the second detection unit 44, and the cleaning robot 1 falls from the solar cell array LP. A method for preventing this from occurring will be described with reference to FIG. Note that FIG. 11 describes a case where the cleaning robot 1 moves from the right side to the left side.
 まず、図11に示すように、掃除ロボット1が太陽電池アレイLP上を掃除しながら走行しているとする。この場合、掃除ロボット1が太陽電池アレイLPの端部まで到達していない場合には(図11(A))、エッジ検出部42の第一検出部43および第二検出部44の両方がその下方に太陽電池モジュールPが存在していることを検出する。すると、第一検出部43および第二検出部44から送られた信号(ON信号、OFF信号)に基づいて、制御機構40の制御部41は、掃除ロボット1が安定して走行および作業を実施できる状況であることを把握する。 First, as shown in FIG. 11, it is assumed that the cleaning robot 1 is running while cleaning the solar cell array LP. In this case, if the cleaning robot 1 has not reached the end of the solar cell array LP (FIG. 11 (A)), both the first detection unit 43 and the second detection unit 44 of the edge detection unit 42 are used. It is detected that the solar cell module P is present below. Then, based on the signals (ON signal, OFF signal) sent from the first detection unit 43 and the second detection unit 44, the control unit 41 of the control mechanism 40 stably travels and works with the cleaning robot 1. Understand that you can do it.
 図11(A)の状態から、さらに掃除ロボット1が走行すると、やがて太陽電池アレイLPの端部に到達する(図11(B))。この場合、第一検出部43は、下方に太陽電池アレイLPが存在していない状態であることを検出し、その信号(以下OFF信号という場合がある)を制御機構40の制御部41に送信する。 When the cleaning robot 1 further travels from the state shown in FIG. 11 (A), it eventually reaches the end of the solar cell array LP (FIG. 11 (B)). In this case, the first detection unit 43 detects that the solar cell array LP does not exist below, and transmits the signal (hereinafter, may be referred to as an OFF signal) to the control unit 41 of the control mechanism 40. To do.
 一方、第二検出部44の下方には太陽電池アレイLPが存在しているので、第二検出部44からは、その下方に太陽電池アレイLPが存在していることを示す信号(以下ON信号という場合がある)が送信される。すると、制御機構40の制御部41は、両検出部43,44間に太陽電池アレイLPの端部が存在していることを把握する。しかし、第二検出部44は走行部20よりも走行方向前方に位置しているので、制御機構40の制御部41は、落下の恐れがないと判断して、掃除ロボット1の走行および掃除を継続させる。 On the other hand, since the solar cell array LP exists below the second detection unit 44, a signal indicating that the solar cell array LP exists below the second detection unit 44 (hereinafter referred to as an ON signal) In some cases) is sent. Then, the control unit 41 of the control mechanism 40 grasps that the end portion of the solar cell array LP exists between the detection units 43 and 44. However, since the second detection unit 44 is located in front of the traveling unit 20 in the traveling direction, the control unit 41 of the control mechanism 40 determines that there is no risk of falling, and travels and cleans the cleaning robot 1. Let it continue.
 なお、上記状況であることを把握した制御機構40の制御部41は、それまでと同じ速度で掃除ロボット1を走行させてもよいし、若干速度を落とすように走行部20の作動を制御してもよい。 The control unit 41 of the control mechanism 40, which has grasped the above situation, may run the cleaning robot 1 at the same speed as before, or controls the operation of the running unit 20 so as to slightly reduce the speed. You may.
 さらに、掃除ロボット1が走行すると、第二検出部44も太陽電池アレイLPの端部まで到達する(図11(C))。すると、第一検出部43だけでなく、第二検出部44も下方に太陽電池モジュールPが存在していない状態であることを検出し、その信号を制御機構40の制御部41に送信する。すると、制御機構40の制御部41は、太陽電池アレイLPの端部に到達したこと、および、これ以上進行すると太陽電池アレイLPの端部から落下する可能性が生じること、を把握する。すると、制御機構40の制御部41は、掃除ロボット1の走行を停止させる。 Further, when the cleaning robot 1 travels, the second detection unit 44 also reaches the end of the solar cell array LP (FIG. 11 (C)). Then, not only the first detection unit 43 but also the second detection unit 44 detects that the solar cell module P does not exist below, and transmits the signal to the control unit 41 of the control mechanism 40. Then, the control unit 41 of the control mechanism 40 grasps that it has reached the end of the solar cell array LP, and that if it proceeds further, it may fall from the end of the solar cell array LP. Then, the control unit 41 of the control mechanism 40 stops the running of the cleaning robot 1.
 以上のように、エッジ検出部42の第一検出部43と第二検出部44からの信号に基づいて走行部20の作動を制御すれば、太陽電池アレイLPから掃除ロボット1が落下することを防止できる。 As described above, if the operation of the traveling unit 20 is controlled based on the signals from the first detection unit 43 and the second detection unit 44 of the edge detection unit 42, the cleaning robot 1 will fall from the solar cell array LP. Can be prevented.
<走行制御の他の例>
 また、制御機構40の制御部41は、第一検出部43および第二検出部44からの信号を受けて、以下のように掃除ロボット1が走行するように走行部20を制御する機能を有している。つまり、掃除ロボット1を減速する減速制御機能と、掃除ロボット1を停止する停止制御機能と、を有している。
 以下、図11に基づいて各機能による制御を説明する。
<Other examples of driving control>
Further, the control unit 41 of the control mechanism 40 has a function of receiving signals from the first detection unit 43 and the second detection unit 44 and controlling the traveling unit 20 so that the cleaning robot 1 travels as follows. doing. That is, it has a deceleration control function for decelerating the cleaning robot 1 and a stop control function for stopping the cleaning robot 1.
Hereinafter, control by each function will be described with reference to FIG.
 まず、図11(A)に示すように、掃除ロボット1が太陽電池アレイLP上を作業しながら走行しているとする。この場合、太陽電池アレイLPの端部まで到達していない場合には、第一検出部43および第二検出部44は、その下方に太陽電池アレイLPが存在していることを検出する。すると、第一検出部43および第二検出部44から送られたON信号に基づいて、制御機構40の制御部41は、掃除ロボット1が安定して走行および掃除を実施できる状況であることを把握する。 First, as shown in FIG. 11A, it is assumed that the cleaning robot 1 is running while working on the solar cell array LP. In this case, if the end of the solar cell array LP has not been reached, the first detection unit 43 and the second detection unit 44 detect that the solar cell array LP is present below the end. Then, based on the ON signals sent from the first detection unit 43 and the second detection unit 44, the control unit 41 of the control mechanism 40 is in a situation where the cleaning robot 1 can stably travel and perform cleaning. Grasp.
 図11(A)の状態から、さらに掃除ロボット1が走行すると、やがて太陽電池アレイLPの端部に到達する(図11(B))。この場合、第一検出部43は、下方に太陽電池アレイLPが存在していない状態であることを検出し、OFF信号を制御機構40の制御部41に送信する。一方、第二検出部44の下方には太陽電池モジュールPが存在しているので、第二検出部44からはON信号が送信される。すると、制御機構40の制御部41は、掃除ロボット1の走行速度を減速するように走行部20の作動を制御する(減速制御)。 When the cleaning robot 1 further travels from the state shown in FIG. 11 (A), it eventually reaches the end of the solar cell array LP (FIG. 11 (B)). In this case, the first detection unit 43 detects that the solar cell array LP does not exist below, and transmits an OFF signal to the control unit 41 of the control mechanism 40. On the other hand, since the solar cell module P exists below the second detection unit 44, the ON signal is transmitted from the second detection unit 44. Then, the control unit 41 of the control mechanism 40 controls the operation of the traveling unit 20 so as to reduce the traveling speed of the cleaning robot 1 (deceleration control).
 さらに、掃除ロボット1が走行すると、第二検出部44の下方にも太陽電池アレイLPが存在していない状態となる(図11(C))。その状態となったことを検出した第二検出部44からOFF信号が制御機構40の制御部41に送信されると、制御機構40の制御部41は、これ以上進行すると太陽電池アレイLPから掃除ロボット1が落下する可能性が生じることを把握する。すると、制御機構40の制御部41は、掃除ロボット1を停止するように走行部20の作動を制御する(停止制御)。すると、掃除ロボット1は、走行部20が太陽電池アレイLPの端部に到達する前に停止するので、太陽電池アレイLPの端部から掃除ロボット1が落下することを防止することができる。 Further, when the cleaning robot 1 runs, the solar cell array LP does not exist below the second detection unit 44 (FIG. 11 (C)). When an OFF signal is transmitted from the second detection unit 44 that detects that state to the control unit 41 of the control mechanism 40, the control unit 41 of the control mechanism 40 cleans from the solar cell array LP when the progress is further advanced. Understand that the robot 1 may fall. Then, the control unit 41 of the control mechanism 40 controls the operation of the traveling unit 20 so as to stop the cleaning robot 1 (stop control). Then, since the cleaning robot 1 stops before the traveling portion 20 reaches the end portion of the solar cell array LP, it is possible to prevent the cleaning robot 1 from falling from the end portion of the solar cell array LP.
 以上のように、エッジ検出部42に第一検出部43と第二検出部44を設ければ、掃除ロボット1が太陽電池アレイLPの端部に近づいた際に、一旦減速してから停止させることができる。すると、通常の走行速度から急に停止する場合に比べて、停止する際の制動距離を短くすることができる。言い換えれば、上記制御によって掃除ロボット1を停止させれば、掃除ロボット1が走行する速度を従来よりも速くしても、制動を開始してから停止するまでの距離を従来と同等程度にすることができる。したがって、掃除ロボット1を高速で走行させることができ、その場合でも、太陽電池アレイLPの端部から掃除ロボット1が落下することを防止することができる。 As described above, if the edge detection unit 42 is provided with the first detection unit 43 and the second detection unit 44, when the cleaning robot 1 approaches the end of the solar cell array LP, the speed is temporarily reduced and then stopped. be able to. Then, the braking distance at the time of stopping can be shortened as compared with the case where the vehicle suddenly stops from the normal traveling speed. In other words, if the cleaning robot 1 is stopped by the above control, even if the cleaning robot 1 travels faster than before, the distance from the start of braking to the stop can be made about the same as the conventional one. Can be done. Therefore, the cleaning robot 1 can be run at high speed, and even in that case, it is possible to prevent the cleaning robot 1 from falling from the end of the solar cell array LP.
 しかも、停止する際の制動距離を短くすることができれば、エッジ検出部42から走行部20(走行輪22)までの距離が短くても、走行部20が太陽電池アレイLPの端部に到達する前に、掃除ロボット1を停止させることができる。つまり、掃除ロボット1の走行方向の長さを短くしても、太陽電池アレイLPの端部から掃除ロボット1が落下することを防止することができるので、掃除ロボット1をコンパクトな構成とすることができる。 Moreover, if the braking distance at the time of stopping can be shortened, the traveling unit 20 reaches the end of the solar cell array LP even if the distance from the edge detecting unit 42 to the traveling unit 20 (traveling wheel 22) is short. Before, the cleaning robot 1 can be stopped. That is, even if the length of the cleaning robot 1 in the traveling direction is shortened, it is possible to prevent the cleaning robot 1 from falling from the end of the solar cell array LP, so that the cleaning robot 1 has a compact configuration. Can be done.
 なお、減速制御では、通常の走行速度よりも遅い一定の速度に走行速度を落としてその状態を維持するようにしてもよいし、通常の走行速度から徐々に減速するようにしてもよい。また、両方を組み合わせた制御でもよい。つまり、減速開始時には大きく速度を減速して、その後、徐々に速度を低下させるようにしてもよい。 In the deceleration control, the traveling speed may be reduced to a constant speed slower than the normal traveling speed to maintain the state, or the vehicle may be gradually decelerated from the normal traveling speed. Further, the control may be a combination of both. That is, the speed may be significantly reduced at the start of deceleration, and then gradually reduced.
 なお、上述したように、エッジ検出部42が第一検出部43と第二検出部44とを有していれば、掃除効率の低下を防ぎつつ太陽電池アレイLPから掃除ロボット1が落下することを効果的に防止できる。一方、エッジ検出部42に第二検出部44だけを設けてもよい。この場合、第二検出部44が下方に太陽電池モジュールPが存在していない状態であることを検出すると、制御機構40の制御部41は、掃除ロボット1の走行を停止させるようにすればよい。 As described above, if the edge detection unit 42 has the first detection unit 43 and the second detection unit 44, the cleaning robot 1 will fall from the solar cell array LP while preventing a decrease in cleaning efficiency. Can be effectively prevented. On the other hand, only the second detection unit 44 may be provided in the edge detection unit 42. In this case, when the second detection unit 44 detects that the solar cell module P does not exist below, the control unit 41 of the control mechanism 40 may stop the cleaning robot 1 from traveling. ..
<危険検出部46>
 エッジ検出部42を設けておき、上記のように走行部20の作動を制御機構40の制御部41によって制御すれば、エッジ検出部42および制御機構40の制御部41が正常に作動していれば、掃除ロボット1が太陽電池アレイLPの端部から落下することを適切に防止できる。
<Danger detection unit 46>
If the edge detection unit 42 is provided and the operation of the traveling unit 20 is controlled by the control unit 41 of the control mechanism 40 as described above, the edge detection unit 42 and the control unit 41 of the control mechanism 40 are operating normally. For example, it is possible to appropriately prevent the cleaning robot 1 from falling from the end portion of the solar cell array LP.
 しかし、エッジ検出部42の故障等によって適切に太陽電池アレイLPの端部、つまり、太陽電池アレイLPの端部に位置する太陽電池モジュールPの側端縁を検出できない場合には、掃除ロボット1が太陽電池アレイLPの端部から落下する可能性がある。 However, if the end of the solar cell array LP, that is, the side edge of the solar cell module P located at the end of the solar cell array LP cannot be properly detected due to a failure of the edge detection unit 42 or the like, the cleaning robot 1 Can fall from the end of the solar array LP.
 そこで、エッジ検出部42とは別に、太陽電池アレイLPの端部を検出する危険検出部46を設けてもよい。具体的には、掃除ロボット1の走行方向において、エッジ検出部42の第二検出部44と走行部20との間に危険検出部46を設けておき、危険検出部46が太陽電池アレイLPの端部を検出すると、制御機構40の制御部41が掃除ロボット1の走行を停止するようにしておく。すると、エッジ検出部42が太陽電池アレイLPの端部を検出しなかった場合でも、走行部20が太陽電池アレイLPの端部に到達する前に、危険検出部46が太陽電池アレイLPの端部を検出できる。したがって、エッジ検出部42が太陽電池アレイLPの端部を検出しなかった場合でも、掃除ロボット1が太陽電池アレイLPの端部から落下することを防止できる。 Therefore, in addition to the edge detection unit 42, a danger detection unit 46 that detects the end portion of the solar cell array LP may be provided. Specifically, in the traveling direction of the cleaning robot 1, a danger detecting unit 46 is provided between the second detecting unit 44 of the edge detecting unit 42 and the traveling unit 20, and the danger detecting unit 46 is a solar cell array LP. When the end portion is detected, the control unit 41 of the control mechanism 40 stops the cleaning robot 1 from traveling. Then, even if the edge detection unit 42 does not detect the end of the solar cell array LP, the danger detection unit 46 reaches the end of the solar cell array LP before the traveling unit 20 reaches the end of the solar cell array LP. The part can be detected. Therefore, even if the edge detection unit 42 does not detect the end portion of the solar cell array LP, it is possible to prevent the cleaning robot 1 from falling from the end portion of the solar cell array LP.
 ここでいう、「エッジ検出部42の第二検出部44と走行部20との間」とは、エッジ検出部42の第二検出部44のセンサが設けられている位置と走行部20における各走行体21の走行輪22の位置との間、を意味している。より詳細にいえば、エッジ検出部42との第二検出部44のセンサが設けられている位置と、走行部20における各走行体21の走行輪22が太陽電池モジュールPと接触している位置X1との間を意味している。この場合、基準となる走行輪22はとくに限定されないが、掃除ロボット1の走行方向における最も前方の位置で太陽電池モジュールPと接触する走行輪が望ましい。 Here, "between the second detection unit 44 of the edge detection unit 42 and the traveling unit 20" means the position where the sensor of the second detection unit 44 of the edge detection unit 42 is provided and each of the traveling units 20. It means between the position of the traveling wheel 22 of the traveling body 21 and the position of the traveling wheel 22. More specifically, the position where the sensor of the second detection unit 44 with the edge detection unit 42 is provided and the position where the traveling wheel 22 of each traveling body 21 in the traveling unit 20 is in contact with the solar cell module P. It means between X1. In this case, the reference traveling wheel 22 is not particularly limited, but a traveling wheel that comes into contact with the solar cell module P at the frontmost position in the traveling direction of the cleaning robot 1 is desirable.
 なお、危険検出部46を設けた場合、危険検出部46からの信号によって掃除ロボット1の走行を停止させたことを作業者などに知らせる機能を制御機構40の制御部41に設けてもよい。すると、掃除ロボット1が故障していることを作業者や管理者に知らせることによって、迅速に掃除ロボット1を修理等することができる。例えば、警報機やインジケータによって作業者などに故障を通知するようにしてもよいし、信号を作業者の携帯端末や管理センタ等に送信して故障に関する情報を送信するようにしてもよい。 When the danger detection unit 46 is provided, the control unit 41 of the control mechanism 40 may be provided with a function of notifying an operator or the like that the running of the cleaning robot 1 has been stopped by a signal from the danger detection unit 46. Then, by notifying the operator or the manager that the cleaning robot 1 is out of order, the cleaning robot 1 can be quickly repaired or the like. For example, an alarm or an indicator may be used to notify the operator of the failure, or a signal may be transmitted to the operator's mobile terminal, management center, or the like to transmit information on the failure.
 また、制御機構40の制御部41が故障等していれば、エッジ検出部42が太陽電池アレイLPの端部を検出しても掃除ロボット1の走行が停止せず、掃除ロボット1が太陽電池モジュールPから落下してしまう可能性がある。しかし、制御機構40の制御部41とは別に、危険検出部46の信号によって走行部20を制御する危険制御部45を設けておけば、制御機構40の制御部41が故障等していても、掃除ロボット1が太陽電池アレイLPの端部から落下することを防止できる。 Further, if the control unit 41 of the control mechanism 40 is out of order, the cleaning robot 1 does not stop running even if the edge detection unit 42 detects the end of the solar cell array LP, and the cleaning robot 1 uses the solar cell. It may fall from the module P. However, if a danger control unit 45 that controls the traveling unit 20 by a signal of the danger detection unit 46 is provided separately from the control unit 41 of the control mechanism 40, even if the control unit 41 of the control mechanism 40 is out of order, etc. , The cleaning robot 1 can be prevented from falling from the end of the solar cell array LP.
 この場合には、掃除ロボット1の走行を停止したことを作業者などに知らせる機能を危険制御部45に設けてもよい。すると、掃除ロボット1が故障していることを作業者や管理者に知らせることによって、迅速に掃除ロボット1を修理等することができる。例えば、警報機やインジケータによって作業者などに故障を通知するようにしてもよいし、作業者の携帯端末や管理センタ等に信号を送信して故障に関する情報を送信するようにしてもよい。また、危険制御部45にエッジ検出部42からの信号も入力されるようにしておけば、エッジ検出部42と制御機構40の制御部41のいずれが損傷したのかも把握できる。すると、掃除ロボット1を修理などする際に、問題点を作業者が簡単に把握できるので、復旧までの時間も短縮することができる。 In this case, the danger control unit 45 may be provided with a function of notifying the operator or the like that the cleaning robot 1 has stopped running. Then, by notifying the operator or the manager that the cleaning robot 1 is out of order, the cleaning robot 1 can be quickly repaired or the like. For example, an alarm or an indicator may be used to notify the operator of the failure, or a signal may be transmitted to the worker's mobile terminal, management center, or the like to transmit information on the failure. Further, if the signal from the edge detection unit 42 is also input to the danger control unit 45, it is possible to grasp which of the edge detection unit 42 and the control unit 41 of the control mechanism 40 is damaged. Then, when the cleaning robot 1 is repaired or the like, the worker can easily grasp the problem, so that the time until recovery can be shortened.
 危険検出部46の構造もとくに限定されない。しかし、危険検出部46が掃除ロボット1の走行方向に並ぶように外方センサと内方センサとを有していれば、太陽電池モジュールP間の溝などを太陽電池アレイLPの端部として誤検出する可能性を低くできる。 The structure of the danger detection unit 46 is not particularly limited. However, if the danger detection unit 46 has the outer sensor and the inner sensor so as to line up in the traveling direction of the cleaning robot 1, the groove between the solar cell modules P is mistakenly used as the end of the solar cell array LP. The possibility of detection can be reduced.
 また、危険検出部46がセンサを一つしか有しない場合でも、危険検出部46を複数設けて、掃除ロボット1の走行方向において複数の危険検出部46の位置をズラしておけば、溝などを太陽電池アレイLPの端部として誤検出する可能性を低くできる。 Further, even if the danger detection unit 46 has only one sensor, if a plurality of danger detection units 46 are provided and the positions of the plurality of danger detection units 46 are shifted in the traveling direction of the cleaning robot 1, a groove or the like can be obtained. Can be erroneously detected as the end of the solar cell array LP.
<センサの例>
 なお、エッジ検出部42や危険検出部46に使用されるセンサはとくに限定されず、太陽電池アレイLPのエッジを検出できる公知のセンサを使用することができる。例えば、レーザーセンサや赤外線センサ、超音波センサなどの非接触でエッジを検出するセンサや、リミットスイッチなどの接触式のセンサなどをセンサに使用できる。また、CCDカメラ等をセンサとして使用して撮影された画像を制御機構40の制御部41で解析して、エッジを検出するようにしてもよい。さらに、温度センサや静電容量センサをセンサとして使用することも可能である。これらのセンサを使用した場合、太陽電池アレイLPと太陽電池アレイLPのエッジよりも外方の部分(空間等)との温度差や静電容量の差から、太陽電池アレイLPのエッジを把握することができる。
<Example of sensor>
The sensor used in the edge detection unit 42 and the danger detection unit 46 is not particularly limited, and a known sensor capable of detecting the edge of the solar cell array LP can be used. For example, a non-contact edge detection sensor such as a laser sensor, an infrared sensor, or an ultrasonic sensor, or a contact type sensor such as a limit switch can be used as the sensor. Further, the image taken by using a CCD camera or the like as a sensor may be analyzed by the control unit 41 of the control mechanism 40 to detect the edge. Furthermore, it is also possible to use a temperature sensor or a capacitance sensor as a sensor. When these sensors are used, the edge of the solar cell array LP is grasped from the temperature difference and the difference in capacitance between the solar cell array LP and the part (space, etc.) outside the edge of the solar cell array LP. be able to.
 例えば、センサがレーザーセンサの場合、以下のようにして、太陽電池アレイLPが存在しているか否かを検出することができる。まず、センサの直下に太陽電池アレイLPが存在しているとする。この場合、センサからレーザー光を照射すれば、センサは、太陽電池アレイLPで反射した反射光を受光する。つまり、センサの位置がエッジよりも内方に位置していると判断できる。一方、センサが反射光を受光できない場合には、センサの直下に太陽電池アレイLPがない、つまり、センサの位置がエッジ外に位置していると判断できる。 For example, when the sensor is a laser sensor, it is possible to detect whether or not the solar cell array LP exists as follows. First, it is assumed that the solar cell array LP exists directly under the sensor. In this case, if the sensor irradiates the laser light, the sensor receives the reflected light reflected by the solar cell array LP. That is, it can be determined that the position of the sensor is located inward of the edge. On the other hand, when the sensor cannot receive the reflected light, it can be determined that there is no solar cell array LP directly under the sensor, that is, the position of the sensor is located outside the edge.
<ストッパー部材SM>
 上述したようなエッジ検出部42や危険検出部46を有している場合には、掃除ロボット1が太陽電池モジュールPから落下することを防止できる可能性が高い。しかし、エッジ検出部42や危険検出部46の故障などによって太陽電池モジュールPのエッジを適切に検出できなかった場合には、掃除ロボット1が太陽電池モジュールPから落下してしまう可能性がある。
<Stopper member SM>
When the edge detection unit 42 and the danger detection unit 46 as described above are provided, there is a high possibility that the cleaning robot 1 can be prevented from falling from the solar cell module P. However, if the edge of the solar cell module P cannot be properly detected due to a failure of the edge detection unit 42 or the danger detection unit 46, the cleaning robot 1 may fall from the solar cell module P.
 掃除ロボット1が以下のごとき構成を有していれば、上述したような状況が生じても、掃除ロボット1の落下を防ぐことができる。 If the cleaning robot 1 has the following configuration, it is possible to prevent the cleaning robot 1 from falling even if the above-mentioned situation occurs.
 例えば、図15に示すような位置関係になるように、ストッパー部材SMを設ける。具体的には、下面にゴムなどの摩擦抵抗の大きい摩擦部材Mを有するストッパー部材SMを、走行輪22が太陽電池モジュールPの表面に載っている状態において、摩擦部材Mの下面が太陽電池モジュールPの表面よりも上方に位置するように配置する。しかも、ブラシ12の回転軸方向から見たときに、走行輪22が太陽電池モジュールPの表面と接触する位置(図15のX1の位置)よりも内方にストッパー部材SMが存在するように配置する。 For example, the stopper member SM is provided so as to have a positional relationship as shown in FIG. Specifically, in a state where the stopper member SM having a friction member M having a large frictional resistance such as rubber on the lower surface is mounted on the surface of the solar cell module P, the lower surface of the friction member M is the solar cell module. It is arranged so as to be located above the surface of P. Moreover, when viewed from the rotation axis direction of the brush 12, the stopper member SM is arranged so as to be inside the position where the traveling wheel 22 comes into contact with the surface of the solar cell module P (the position of X1 in FIG. 15). To do.
 かかる構成とすれば、走行体21の走行方向前方に位置する走行輪22が脱輪したとしても、ストッパー部材SMによって掃除ロボット1が落下することを防止できる。つまり、走行体21の走行輪22が脱輪すると、掃除ロボット1には掃除ロボット1を落下させる方向に力が加わり、掃除ロボット1が落下するように移動する。それにともなってストッパー部材SMも下方に移動するが、やがて、ストッパー部材SMの摩擦部材Mが太陽電池モジュールPの表面に接触する(図16(A)、(B)参照)。すると、摩擦部材Mと太陽電池モジュールPの表面との摩擦によって掃除ロボット1が落下する方向と逆方向に抵抗が発生するので、掃除ロボット1の移動が停止され、掃除ロボット1の落下を防止できる。 With such a configuration, even if the traveling wheel 22 located in front of the traveling body 21 in the traveling direction derails, the stopper member SM can prevent the cleaning robot 1 from falling. That is, when the traveling wheel 22 of the traveling body 21 is derailed, a force is applied to the cleaning robot 1 in the direction of dropping the cleaning robot 1, and the cleaning robot 1 moves so as to fall. Along with this, the stopper member SM also moves downward, but eventually the friction member M of the stopper member SM comes into contact with the surface of the solar cell module P (see FIGS. 16A and 16B). Then, the friction between the friction member M and the surface of the solar cell module P causes resistance in the direction opposite to the direction in which the cleaning robot 1 falls, so that the movement of the cleaning robot 1 is stopped and the cleaning robot 1 can be prevented from falling. ..
 例えば、ストッパー部材SMは以下のような構成とすれば、掃除ロボット1が脱輪した際に、ストッパー部材SMを太陽電池モジュールPの表面と接触させることができる。図16(A)に示すように、走行輪22の半径rが65mmとすると、ストッパー部材SMの摩擦部材Mの掃除ロボット1の走行方向前方に位置する端部から走行輪22の回転軸までの水平方向の距離LWを56mm、走行輪22の下端から(言い換えれば、太陽電池モジュールPの表面から)ストッパー部材SMの摩擦部材Mの先端(図16では下面)までの距離Hを14mmとし、摩擦部材Mの長さLMを50mmとする。すると、走行輪22が完全に脱輪する前に、ストッパー部材SMの摩擦部材Mを太陽電池モジュールPの表面と接触させることができる。 For example, if the stopper member SM has the following configuration, the stopper member SM can be brought into contact with the surface of the solar cell module P when the cleaning robot 1 is derailed. As shown in FIG. 16A, assuming that the radius r of the traveling wheel 22 is 65 mm, the distance from the end located in front of the cleaning robot 1 of the friction member M of the stopper member SM in the traveling direction to the rotation axis of the traveling wheel 22. The horizontal distance LW is 56 mm, the distance H from the lower end of the traveling wheel 22 (in other words, from the surface of the solar cell module P) to the tip (lower surface in FIG. 16) of the friction member M of the stopper member SM is 14 mm, and friction. The length LM of the member M is 50 mm. Then, the friction member M of the stopper member SM can be brought into contact with the surface of the solar cell module P before the traveling wheel 22 is completely removed.
 ストッパー部材SMは上記構造に限定されず、走行体21の走行輪22が脱輪した際に、太陽電池モジュールPの表面と接触し、掃除ロボット1の移動が停止できるような構造であればよい。 The stopper member SM is not limited to the above structure, and may be a structure that can come into contact with the surface of the solar cell module P and stop the movement of the cleaning robot 1 when the traveling wheel 22 of the traveling body 21 is derailed. ..
 また、ストッパー部材SMの摩擦部材Mの下面は、脱輪が生じていない状態において、太陽電池モジュールPの表面とほぼ平行になるように設けてもよいし、太陽電池モジュールPの表面に対して傾斜するように設けてもよい。例えば、図16(C)に示すように、摩擦部材Mの下面が掃除ロボット1の走行方向前方に位置する端部から内方に向かって下傾するようになっていてもよい。このように摩擦部材Mの下面が傾斜した面となっていれば、脱輪によって掃除ロボット1が前方に傾いた際に、摩擦部材Mの下面と太陽電池モジュールPの表面とを面接触させやすくなる。すると、摩擦部材Mと太陽電池モジュールPの表面とが接触した際の抵抗を大きくできるので、掃除ロボット1が落下することを抑制する効果を高めることができる。 Further, the lower surface of the friction member M of the stopper member SM may be provided so as to be substantially parallel to the surface of the solar cell module P in a state where derailment has not occurred, or with respect to the surface of the solar cell module P. It may be provided so as to be inclined. For example, as shown in FIG. 16C, the lower surface of the friction member M may be tilted inward from the end located in front of the cleaning robot 1 in the traveling direction. If the lower surface of the friction member M is an inclined surface in this way, when the cleaning robot 1 is inclined forward due to derailing, the lower surface of the friction member M and the surface of the solar cell module P can be easily brought into surface contact with each other. Become. Then, since the resistance when the friction member M and the surface of the solar cell module P come into contact with each other can be increased, the effect of suppressing the cleaning robot 1 from falling can be enhanced.
 また、ストッパー部材SMを設ける代わりに、脱輪を検出するセンサをシャシフレーム2に設けてもよい。例えば、シャシフレーム2の下面にケーブルスイッチ等のセンサを設けてもよい。例えば、脱輪が生じる直前にセンサと太陽電池モジュールPの表面とが接触するようにセンサを設けておき、センサからの信号が制御機構40の制御部41に入力されれば、走行輪22の駆動を停止するようにしておく。すると、脱輪が発生する前に掃除ロボット1の走行を停止できるので、掃除ロボット1が落下することを防止しやすくなる。 Further, instead of providing the stopper member SM, a sensor for detecting derailment may be provided in the chassis frame 2. For example, a sensor such as a cable switch may be provided on the lower surface of the chassis frame 2. For example, if a sensor is provided so that the sensor and the surface of the solar cell module P come into contact with each other immediately before the wheel is removed, and a signal from the sensor is input to the control unit 41 of the control mechanism 40, the traveling wheel 22 Make sure to stop the drive. Then, since the running of the cleaning robot 1 can be stopped before the derailment occurs, it becomes easy to prevent the cleaning robot 1 from falling.
<掃除ロボット1の走行制御について>
 制御機構40の制御部41によって、掃除部10や走行部20の作動や掃除作業を制御している。このため、制御機構40の制御部41に記憶された手順で走行や作業を実施するように掃除ロボット1の作動が制御されていれば、太陽電池アレイLPの複数の太陽電池モジュールPの表面の掃除をほぼ自動で実施させることができる。
<About running control of cleaning robot 1>
The control unit 41 of the control mechanism 40 controls the operation and cleaning work of the cleaning unit 10 and the traveling unit 20. Therefore, if the operation of the cleaning robot 1 is controlled so as to perform traveling or work according to the procedure stored in the control unit 41 of the control mechanism 40, the surface of the plurality of solar cell modules P of the solar cell array LP Cleaning can be performed almost automatically.
 一方、掃除ロボット1は、外部から作業者が操作してその走行や掃除等の作業を制御するようにしてもよい。例えば、無線や赤外線等を利用した無線通信を利用して、掃除ロボット1を遠隔操作するようにしてもよい。つまり、無線通信用コントローラを作業者が操作して掃除ロボット1を遠隔操作するようにしてもよい。また、掃除ロボット1と信号線等によって接続されたコントローラを用いて、作業者が掃除ロボット1を操作するようにしてもよい。無線通信用のコントローラや信号線で接続されたコントローラを用いて作業者が掃除ロボット1を操作するようにすれば、作業者が掃除等の作業状況を確認しながら作業を実施できる。すると、周囲の状況の変化等に合わせて、掃除ロボット1に適切な作業を実施させることができる。 On the other hand, the cleaning robot 1 may be operated by an operator from the outside to control operations such as running and cleaning. For example, the cleaning robot 1 may be remotely controlled by using wireless communication using wireless, infrared rays, or the like. That is, the operator may operate the wireless communication controller to remotely control the cleaning robot 1. Further, the operator may operate the cleaning robot 1 by using a controller connected to the cleaning robot 1 by a signal line or the like. If the operator operates the cleaning robot 1 using a controller for wireless communication or a controller connected by a signal line, the operator can perform the work while checking the work status such as cleaning. Then, the cleaning robot 1 can be made to perform appropriate work according to changes in the surrounding conditions and the like.
 このように、作業者が掃除ロボット1の作動を制御する場合でも、上述したようなエッジ検出機能や危険検出機能、ストッパー部材等を有していることが望ましい。かかる機能を有していれば、作業者の操作ミスがあっても、掃除ロボット1を適切に走行させて作業を実施できる。また、作業者の操作ミスがあっても、掃除ロボット1が太陽電池モジュールPから落下することを防止することができる。 In this way, even when the operator controls the operation of the cleaning robot 1, it is desirable to have the edge detection function, the danger detection function, the stopper member, and the like as described above. If it has such a function, even if there is an operation error of the operator, the cleaning robot 1 can be appropriately run to perform the work. Further, even if the operator makes an operation error, it is possible to prevent the cleaning robot 1 from falling from the solar cell module P.
 掃除ロボット1は、作業者による操作と自動走行(作業)の両方を併用したものでもよい。つまり、通常は自動(つまり制御機構40の制御部41のみの制御)で作業や走行をしているが、コントローラなどから作業者による操作が入力されると、自動走行(作業)の状態から作業者の操作による作動に切り替わるようにしてもよい。この場合、コントローラ等からの入力が一定以上ない場合には、自動走行(作業)の状態に切り替わるようにしておく。すると、作業者の操作ミスや自動走行(作業)の状態への切り替えを忘れても、作業を継続して実施できるので好ましい。 The cleaning robot 1 may be a combination of both operation by an operator and automatic running (work). That is, normally, work and running are performed automatically (that is, control of only the control unit 41 of the control mechanism 40), but when an operation by an operator is input from a controller or the like, work is performed from the state of automatic running (work). It may be switched to the operation by the operation of the person. In this case, if the input from the controller or the like does not exceed a certain level, the state is switched to the automatic driving (working) state. Then, even if the operator makes an operation error or forgets to switch to the automatic driving (work) state, the work can be continued, which is preferable.
<除電部材>
 掃除部10のブラシ12が太陽電池モジュールPの表面を擦ることによって、太陽電池モジュールPやブラシ12に静電気が帯電する可能性がある。シャシフレーム2が導電性材料によって形成されている場合には、ブラシ12に帯電した静電気は、掃除ロボット1のシャシフレーム2に作業者が接近した際にシャシフレーム2から放電される場合がある。放電が発生した場合、マイクロコントローラ等の誤動作や電子部品の故障等の問題が生じるため、帯電した静電気をシャシフレーム2等から除去する必要がある。
<Static elimination member>
When the brush 12 of the cleaning unit 10 rubs the surface of the solar cell module P, the solar cell module P and the brush 12 may be charged with static electricity. When the chassis frame 2 is made of a conductive material, the static electricity charged on the brush 12 may be discharged from the chassis frame 2 when an operator approaches the chassis frame 2 of the cleaning robot 1. When a discharge occurs, problems such as malfunction of the microcontroller and the like and failure of electronic parts occur. Therefore, it is necessary to remove the charged static electricity from the chassis frame 2 and the like.
 そこで、帯電した静電気をシャシフレーム2から除去する除電部材DBを設けておくことが望ましい。この除電部材DBを設ける位置はとくに限定されない。人が掃除ロボット1に触れる状況となったときに、静電気が除去された状態にできるように設けられていることが望ましい。つまり、人が掃除ロボット1に触れる状況となったときに、アースされた部材に接触する位置に除電部材DBは設けられていることが望ましい。 Therefore, it is desirable to provide a static eliminator DB that removes the charged static electricity from the chassis frame 2. The position where the static elimination member DB is provided is not particularly limited. It is desirable that the robot 1 is provided so that static electricity can be removed when a person touches the cleaning robot 1. That is, it is desirable that the static elimination member DB is provided at a position where it comes into contact with the grounded member when a person touches the cleaning robot 1.
 例えば、一の太陽電池アレイLPの掃除が終了すると、一の太陽電池アレイLPの端に位置する太陽電池モジュールPの端部で掃除ロボット1は停止し、人が掃除ロボット1に触れる状況となる。この状態になった際に、連結部CEと接触するように除電部材DBを設けることができる。具体的には、除電部材DBは、掃除ロボット1が太陽電池アレイLPの端に位置する太陽電池モジュールPの端部に載せられている状態においてシャシフレーム2の軸方向において連結部CEが設けられている位置であって、太陽電池モジュールPのエッジよりも外方に位置するように設ける。そして、除電部材DBを、その先端が連結部CEと接触する長さにする。例えば、除電部材DBが、その長手方向(つまり図12(B)の上下方向)において、15mm程度連結部CEと接触する長さに形成する。すると、一の太陽電池アレイLPの掃除が終了して掃除ロボット1が停止すれば、除電部材DBの先端部(下端部)が連結部CEに接触し、シャシフレーム2を除電することができる。なお、かかる構成とする場合において、除電部材DBは、太陽電池モジュールPの端部に位置していない状態では、その先端(下端)が太陽電池アレイLPの表面に接触しないように配設されていることが望ましい。例えば、掃除ロボット1を太陽電池モジュールPの表面に配置すると、除電部材DBの先端(下端)と太陽電池モジュールPの表面との間に5mm程度の隙間ができるように設けられていることが望ましい。 For example, when the cleaning of one solar cell array LP is completed, the cleaning robot 1 stops at the end of the solar cell module P located at the end of the one solar cell array LP, and a person touches the cleaning robot 1. .. When this state is reached, the static elimination member DB can be provided so as to come into contact with the connecting portion CE. Specifically, the static elimination member DB is provided with a connecting portion CE in the axial direction of the chassis frame 2 in a state where the cleaning robot 1 is mounted on the end of the solar cell module P located at the end of the solar cell array LP. It is provided so as to be located outside the edge of the solar cell module P. Then, the static elimination member DB is set to a length at which the tip thereof contacts the connecting portion CE. For example, the static elimination member DB is formed to have a length of about 15 mm in contact with the connecting portion CE in the longitudinal direction thereof (that is, the vertical direction in FIG. 12B). Then, when the cleaning of one solar cell array LP is completed and the cleaning robot 1 is stopped, the tip end portion (lower end portion) of the static elimination member DB comes into contact with the connecting portion CE, and the chassis frame 2 can be statically eliminated. In the case of such a configuration, the static elimination member DB is arranged so that its tip (lower end) does not come into contact with the surface of the solar cell array LP when it is not located at the end of the solar cell module P. It is desirable to be there. For example, when the cleaning robot 1 is arranged on the surface of the solar cell module P, it is desirable that the cleaning robot 1 is provided so as to have a gap of about 5 mm between the tip (lower end) of the static elimination member DB and the surface of the solar cell module P. ..
 また、除電部材DBは、掃除ロボット1が太陽電池モジュールP上を走行した際に、太陽電池アレイLPの連結部CEと接触する位置に設けてもよい(図12参照)。この場合には、掃除ロボット1が走行している状態において、隣接する太陽電池モジュールPに移動するたびに、除電部材DBが連結部CEに接触して放電させることができる。すると、掃除ロボット1が緊急に停止した際(例えば、危険制御部46によって掃除ロボット1が停止された場合や、ストッパー部材SMによって掃除ロボット1の落下が防止された場合など)、除電部材DBがアースされた部材に接触できない場合でも、帯電している静電気の量を少なくできる。 Further, the static elimination member DB may be provided at a position where the cleaning robot 1 comes into contact with the connecting portion CE of the solar cell array LP when traveling on the solar cell module P (see FIG. 12). In this case, while the cleaning robot 1 is running, the static elimination member DB can come into contact with the connecting portion CE and discharge each time it moves to the adjacent solar cell module P. Then, when the cleaning robot 1 is stopped urgently (for example, when the cleaning robot 1 is stopped by the danger control unit 46 or when the stopper member SM prevents the cleaning robot 1 from falling), the static eliminator member DB is released. Even when the grounded member cannot be contacted, the amount of static electricity charged can be reduced.
 さらに、上述した走行時に太陽電池アレイLPの連結部CEと接触する除電部材DBと、掃除ロボット1が停止した際に支持部材SEに接触する除電部材DBと、をそれぞれ設けてもよい。つまり、走行時の除電部材DBと停止時の除電部材DBと、を別々に設けてもよい。 Further, the static elimination member DB that contacts the connecting portion CE of the solar cell array LP during traveling and the static elimination member DB that contacts the support member SE when the cleaning robot 1 is stopped may be provided, respectively. That is, the static elimination member DB at the time of traveling and the static elimination member DB at the time of stopping may be provided separately.
 また、除電部材DBは、掃除部10のブラシ12に対して、走行方向の後方に位置するように設けることが望ましい。この場合、除電部材DBからシャシフレーム2に蓄積したある程度の静電気を太陽電池アレイLPの表面に放出することができる。 Further, it is desirable that the static elimination member DB is provided so as to be located behind the brush 12 of the cleaning unit 10 in the traveling direction. In this case, a certain amount of static electricity accumulated in the chassis frame 2 can be released from the static eliminator member DB to the surface of the solar cell array LP.
 本明細書における、アースされた部材とは、直接または間接的に地面に電気的に接続された導電性の部材を意味している。例えば、図12であれば、地面に設置された架台MTの揺動軸SSに連結された支持部材SEや連結部CEがアースされた部材に相当する。また、太陽電池モジュールPがパネルフレームを有する場合には、パネルフレームも架台MTに連結されるので、アースされた部材に相当する。さらに、太陽電池アレイLPの近傍にある建造物や設備等に除電部材DBを接触させる場合には、この建造物や設備等もアースされた部材に相当する。 In the present specification, the grounded member means a conductive member that is directly or indirectly electrically connected to the ground. For example, in FIG. 12, the support member SE and the connecting portion CE connected to the swing shaft SS of the gantry MT installed on the ground correspond to the grounded members. Further, when the solar cell module P has a panel frame, the panel frame is also connected to the gantry MT, so that it corresponds to a grounded member. Further, when the static elimination member DB is brought into contact with a building or equipment in the vicinity of the solar cell array LP, the building or equipment also corresponds to a grounded member.
 また、除電部材DBは、シャシフレーム2の静電気を外部に流すことができるものであればよく、とくにその形状や構造、素材は限定されない。例えば、金属製の本体の先端に、導電性材料によって形成されているブラシ状の部材を設けたものを採用することができる。また、導電性材料によって形成された柔軟性を有する帯状やひも状の部材や導電性繊維を除電部材DBとして採用することもできる。
 さらに、掃除部10のブラシ12に、導電性材料によって形成された柔軟性を有する帯状やひも状の部材や導電性繊維を除電部材DBとして設けてもよい。また、ブラシ12の一部または全部を形成する素材として導電性材料を使用してもよい。つまり、ブラシ12自体が除電部材DBと同等の機能を有するようにしてもよい。例えば、ブラシ12の軸部を導電性材料(金属など)で形成したり、ブラシ部を導電性材料によって形成された柔軟性を有する帯状やひも状の部材、導電性繊維によって形成したりしてもよい。また、ブラシ12に除電部材DBを設けたり、ブラシ12自体が除電部材DBと同等の機能を有するようにしたりした場合には、シャシフレーム2に連結された除電部材DBは必ずしも設けなくてもよい。
Further, the static eliminator member DB may be any as long as it can allow static electricity of the chassis frame 2 to flow to the outside, and its shape, structure, and material are not particularly limited. For example, a metal body having a brush-like member formed of a conductive material at the tip thereof can be used. Further, a flexible band-shaped or string-shaped member or conductive fiber formed of a conductive material can also be adopted as the static elimination member DB.
Further, the brush 12 of the cleaning unit 10 may be provided with a flexible band-shaped or string-shaped member or conductive fiber formed of a conductive material as a static elimination member DB. Further, a conductive material may be used as a material for forming a part or all of the brush 12. That is, the brush 12 itself may have the same function as the static elimination member DB. For example, the shaft portion of the brush 12 may be formed of a conductive material (metal or the like), or the brush portion may be formed of a flexible band-shaped or string-shaped member or conductive fiber formed of a conductive material. May be good. Further, when the brush 12 is provided with the static elimination member DB or the brush 12 itself has the same function as the static elimination member DB, the static elimination member DB connected to the chassis frame 2 does not necessarily have to be provided. ..
<待機ステーションS>
 上記例では、太陽電池アレイLPの掃除を行わない場合、作業者が掃除ロボット1を太陽電池アレイLP上から降ろして保管し、掃除を行う際に作業者が掃除ロボット1を太陽電池アレイLP上に載せる作業が必要になる。掃除ロボット1を太陽電池アレイLPに載せたり降ろしたりする作業は作業者にとって負担であるので、以下のような待機ステーションSを設ければ、作業者の負担を軽減できるし、太陽電池アレイLPを掃除する効率も向上できる。
<Standby station S>
In the above example, when the solar cell array LP is not cleaned, the worker lowers the cleaning robot 1 from the solar cell array LP and stores it, and when cleaning, the worker puts the cleaning robot 1 on the solar cell array LP. It is necessary to put it on the. Since the work of loading and unloading the cleaning robot 1 on and off the solar cell array LP is a burden on the operator, the burden on the operator can be reduced by providing the following standby station S, and the solar cell array LP can be used. Cleaning efficiency can also be improved.
 待機ステーションSを設ける位置や、待機ステーションSを設けた場合に、待機ステーションSおよび掃除ロボット1に設ける機能や機器等はとくに限定されないが、例えば、以下のような位置に待機ステーションSを設けたり、待機ステーションSおよび掃除ロボット1に以下のような機能や機器を設けたりすることが望ましい。 The position where the standby station S is provided, or when the standby station S is provided, the functions and devices provided in the standby station S and the cleaning robot 1 are not particularly limited, but for example, the standby station S may be provided at the following positions. It is desirable that the standby station S and the cleaning robot 1 are provided with the following functions and devices.
 図22(A)に示すように、太陽電池アレイLPの一端部(図22(A)では左端部)には、待機ステーションSが設けられている。この待機ステーションSは、その表面が、実質的に、太陽電池モジュールPの表面と同一平面になるように揺動軸SSに固定されている。なお、図22(A)において、上側の太陽電池アレイLPは太陽電池モジュールP上に掃除ロボット1が配置された状態であり、下側の太陽電池アレイLPは待機ステーションS上に掃除ロボット1が配置された状態である。 As shown in FIG. 22 (A), a standby station S is provided at one end of the solar cell array LP (the left end in FIG. 22 (A)). The surface of the standby station S is fixed to the swing shaft SS so that its surface is substantially flush with the surface of the solar cell module P. In FIG. 22A, the upper solar cell array LP has the cleaning robot 1 arranged on the solar cell module P, and the lower solar cell array LP has the cleaning robot 1 on the standby station S. It is in the placed state.
 上述したような待機ステーションSを設ければ、掃除ロボット1が太陽電池モジュールPの表面の清掃作業を行わない間は、掃除ロボット1を待機ステーションS上に保管することができる。しかも、清掃作業をする際には、掃除ロボット1を太陽電池モジュールPの表面上に移動させ、清掃作業が終了すると掃除ロボット1を待機ステーションSに帰還するようにしておけば、作業者が掃除ロボット1を太陽電池アレイLPから降ろさなくてもよくなる。 If the standby station S as described above is provided, the cleaning robot 1 can be stored on the standby station S while the cleaning robot 1 does not clean the surface of the solar cell module P. Moreover, when the cleaning work is performed, the cleaning robot 1 is moved onto the surface of the solar cell module P, and when the cleaning work is completed, the cleaning robot 1 is returned to the standby station S so that the operator can clean. It is not necessary to remove the robot 1 from the solar cell array LP.
 とくに、掃除ロボット1が自動で清掃作業を開始し自動で清掃作業を終了するようにしていれば、作業者が掃除ロボット1を操作する必要もなくなる。つまり、掃除ロボット1が、自動で待機ステーションSから太陽電池モジュールPに移動して清掃作業を開始し、清掃作業が終了すれば自動で太陽電池モジュールPから待機ステーションSに移動するようにする。すると、作業者が掃除ロボット1を操作する必要もなくなるので、作業者の負担が軽減できるし、自動で掃除を実施するので、作業効率も向上できる。 In particular, if the cleaning robot 1 automatically starts the cleaning work and automatically ends the cleaning work, the operator does not need to operate the cleaning robot 1. That is, the cleaning robot 1 automatically moves from the standby station S to the solar cell module P to start the cleaning work, and when the cleaning work is completed, the cleaning robot 1 automatically moves from the solar cell module P to the standby station S. Then, since the worker does not need to operate the cleaning robot 1, the burden on the worker can be reduced, and the cleaning is automatically performed, so that the work efficiency can be improved.
 掃除ロボット1が自動で清掃作業の開始や停止を実施する方法はとくに限定されない。例えば、タイマーによって所定の時間になると清掃作業を開始するようにしたり、外部からの信号を受信した場合に清掃作業を開始したりするようにすることができる。外部からの信号で清掃作業を開始する場合には、太陽電池モジュールPの傾斜角度(つまり揺動軸SSの回転角度)等の信号に基づいて、掃除ロボット1の作動を制御することができる。例えば、追尾型太陽光発電システムの太陽電池アレイLPの場合であれば、太陽電池モジュールPの表面の角度が水平から±30度の範囲内にあるときに掃除を実施するように掃除ロボット1の作動を制御することができる。なお、掃除ロボット1が掃除を実施する太陽電池モジュールPの表面の角度は、とくに限定されない。 The method by which the cleaning robot 1 automatically starts and stops the cleaning work is not particularly limited. For example, it is possible to start the cleaning work at a predetermined time by a timer, or to start the cleaning work when a signal from the outside is received. When the cleaning work is started by a signal from the outside, the operation of the cleaning robot 1 can be controlled based on a signal such as an inclination angle of the solar cell module P (that is, a rotation angle of the swing shaft SS). For example, in the case of the solar cell array LP of the tracking type photovoltaic power generation system, the cleaning robot 1 is used to perform cleaning when the surface angle of the solar cell module P is within the range of ± 30 degrees from the horizontal. The operation can be controlled. The angle of the surface of the solar cell module P that the cleaning robot 1 cleans is not particularly limited.
<充電機能>
 また、掃除ロボット1は、待機ステーションSで待機している間に充電するようにしておくことが望ましい。そのようにすれば、掃除ロボット1のバッテリ交換や充電作業を別に行う場合に比べて作業者の負担を軽減できるし、掃除ロボット1に連続して作業させることが可能になる。
<Charging function>
Further, it is desirable that the cleaning robot 1 is charged while waiting at the standby station S. By doing so, the burden on the operator can be reduced as compared with the case where the battery replacement and charging work of the cleaning robot 1 is performed separately, and the cleaning robot 1 can be made to work continuously.
 このように、待機ステーションSで待機している間に掃除ロボット1を充電する場合には、掃除ロボット1および待機ステーションSに以下の機器を設けることが望ましい。 In this way, when charging the cleaning robot 1 while waiting at the standby station S, it is desirable to provide the following devices in the cleaning robot 1 and the standby station S.
 まず、掃除ロボット1には、待機ステーションSから電力の供給を受けるための機器を設ける。電力の供給を受けるための機器はとくに限定されない。例えば、充電のための端子を設けて、この端子を待機ステーションSに設けた端子と接続(接触)させて電力の供給を受けるようにしてもよい。また、電磁誘導等による非接触による方法で電力の供給を受ける機器を設けて非接触で電力の供給を受けるようにしてもよい。 First, the cleaning robot 1 is provided with a device for receiving power supply from the standby station S. The equipment for receiving the power supply is not particularly limited. For example, a terminal for charging may be provided, and this terminal may be connected (contacted) with the terminal provided in the standby station S to receive power supply. Further, a device that receives power by a non-contact method such as electromagnetic induction may be provided so that the power is supplied non-contact.
 また、待機ステーションSには、掃除ロボット1に電力を供給するための電源部を設ける。例えば、掃除ロボット1が待機ステーションSにおける所定の位置に停止すると、掃除ロボット1の端子と接続(接触)する端子を電源部に設けて、接続(接触)方式で掃除ロボット1に電力を供給するようにしてもよい。また、電磁誘導等による非接触による方法で電力を供給する機器を電源部に設けて、非接触で掃除ロボット1に電力を供給するようにしてもよい。 Further, the standby station S is provided with a power supply unit for supplying electric power to the cleaning robot 1. For example, when the cleaning robot 1 stops at a predetermined position on the standby station S, a terminal that connects (contacts) with the terminal of the cleaning robot 1 is provided in the power supply unit, and power is supplied to the cleaning robot 1 by a connection (contact) method. You may do so. Further, a device for supplying electric power by a non-contact method such as electromagnetic induction may be provided in the power supply unit to supply electric power to the cleaning robot 1 in a non-contact manner.
 待機ステーションSに電源部を設けた場合、電源部に電力を供給するまたは電源部が電力を貯蔵しておく必要がある。電源部に電力を供給する方法はとくに限定されない。例えば、待機ステーションSの外部から電源ケーブル等によって電源部の端子や電磁誘導用の機器に直接電力を供給するようにしてもよいし、電源部にバッテリを設けて外部から供給される電力をバッテリに充電し充電した電力を電源部の端子や電磁誘導用の機器に供給しするようにしてもよい。また、待機ステーションSに太陽電池モジュールを設けて、太陽電池モジュールで発電した電力を電源部に供給するようにしてもよい。この場合も、外部から電力を供給する場合と同様に、電源部の端子や電磁誘導用の機器に直接電力を供給するようにしてもよいし、電源部にバッテリを設けて太陽電池モジュールから供給される電力をバッテリに充電しバッテリに充電した電力を電源部の端子や電磁誘導用の機器に供給しするようにしてもよい。 When the standby station S is provided with a power supply unit, it is necessary to supply power to the power supply unit or store the power in the power supply unit. The method of supplying power to the power supply unit is not particularly limited. For example, power may be directly supplied to the terminals of the power supply unit or the device for electromagnetic induction from the outside of the standby station S by a power cable or the like, or a battery may be provided in the power supply unit to supply the power supplied from the outside to the battery. The charged electric power may be supplied to the terminal of the power supply unit or the device for electromagnetic induction. Further, a solar cell module may be provided in the standby station S to supply the electric power generated by the solar cell module to the power supply unit. In this case as well, as in the case of supplying power from the outside, the power may be directly supplied to the terminal of the power supply unit or the device for electromagnetic induction, or a battery may be provided in the power supply unit and supplied from the solar cell module. The electric power generated may be charged to the battery, and the electric power charged to the battery may be supplied to the terminal of the power supply unit or the device for electromagnetic induction.
<待機ステーションSついて>
 待機ステーションSは、その大きさや形状はとくに限定されない。例えば、太陽電池モジュールPと実質的に同じ形状大きさに形成してもよい。とくに、待機ステーションSは、以下のような大きさや形状に形成されていることが望ましい。つまり、待機ステーションSは、その長手方向の長さ(図22(A)の上下方向の長さ)が、太陽電池モジュールPの長手方向の長さ(つまり、第一端部P1、第二端部P2間の長さ)と同じになるように形成されていることが望ましい。そして、待機ステーションSは、その一端面(図22(A)では上端面)が、太陽電池アレイLPの複数枚の太陽電池モジュールPの第一端部P1の端面(第一端面)とほぼ同じ面になるように設けられていることが望ましい。加えて、待機ステーションSは、その他端面(図22(A)では下端面)が、太陽電池アレイLPの複数枚の太陽電池モジュールPの第二端部P2の端面(第二端面)とほぼ同じ面になるように設けられていることが望ましい。上記のようにすれば、待機ステーションSと太陽電池モジュールPとの間を掃除ロボット1が移動するとき、また、待機ステーションS上を掃除ロボット1が移動する際に、太陽電池アレイLP上を移動するときと同様にサポート機構50を機能させることができる。すると、待機ステーションSと太陽電池モジュールPとの間を、掃除ロボット1が安定して移動することができる。
<About standby station S>
The size and shape of the standby station S are not particularly limited. For example, it may be formed in substantially the same shape and size as the solar cell module P. In particular, it is desirable that the standby station S is formed in the following size and shape. That is, the length of the standby station S in the longitudinal direction (the length in the vertical direction of FIG. 22A) is the length in the longitudinal direction of the solar cell module P (that is, the first end portion P1 and the second end). It is desirable that it is formed so as to be the same as the length between the portions P2). The one end surface (upper end surface in FIG. 22A) of the standby station S is substantially the same as the end surface (first end surface) of the first end portion P1 of the plurality of solar cell modules P of the solar cell array LP. It is desirable that it is provided so as to be a surface. In addition, the other end face (lower end face in FIG. 22A) of the standby station S is substantially the same as the end face (second end face) of the second end P2 of the plurality of solar cell modules P of the solar cell array LP. It is desirable that it is provided so as to be a surface. According to the above, when the cleaning robot 1 moves between the standby station S and the solar cell module P, and when the cleaning robot 1 moves on the standby station S, it moves on the solar cell array LP. The support mechanism 50 can be made to function in the same manner as when it is used. Then, the cleaning robot 1 can stably move between the standby station S and the solar cell module P.
<待機ステーションSの設置について>
 待機ステーションSを設けた場合、待機ステーションSで待機している掃除ロボット1に対して日射や雨が当たらないようにすることが望ましい。例えば、待機ステーションSに、屋根や掃除ロボット1を収容するボックス等を設けてもよい。
<Installation of standby station S>
When the standby station S is provided, it is desirable to prevent the cleaning robot 1 waiting at the standby station S from being exposed to sunlight or rain. For example, the standby station S may be provided with a roof, a box for accommodating the cleaning robot 1, and the like.
 上記例では、待機ステーションSを太陽電池アレイLPの揺動軸SSの一方の端部(図22(A)では左端部)に設けた場合を説明したが、待機ステーションSを設ける位置はとくに限定されない。太陽電池モジュールPの揺動軸SSの他方の端部(図22(A)では右端部)に設けてもよい。場合によっては、太陽電池アレイLPの揺動軸SSの左右方向の中間に設けてもよい。また、1つの太陽電池アレイLPに掃除ロボット1は1台だけ設けるが、待機ステーションSは、1つの太陽電池アレイLPに対して複数設けてもよい。例えば、太陽電池アレイLPの揺動軸SSの両端部にそれぞれ待機ステーションSを設けてもよいし、太陽電池アレイLPの揺動軸SSのいずれか一方の端部と太陽電池アレイLPの揺動軸SSの左右方向の中間に待機ステーションSを設けてもよい。また、待機ステーションSはある程度の間隔を空けて3つ以上設けてもよい。例えば、太陽電池モジュールPの揺動軸SSの両端部と左右方向の中間の3か所に待機ステーションSを設けてもよい。この場合、強風時などのように、掃除ロボット1を待機ステーションSに緊急退避させる際の移動距離を短くできるので、掃除ロボット1を迅速に安全な場所に退避させることができる。もちろん、太陽電池アレイLPの揺動軸SSの左右方向の両端間に、間隔を空けて、2つ以上の待機ステーションSを設けてもよい。 In the above example, the case where the standby station S is provided at one end of the swing shaft SS of the solar cell array LP (the left end in FIG. 22A) has been described, but the position where the standby station S is provided is particularly limited. Not done. It may be provided at the other end of the swing shaft SS of the solar cell module P (the right end in FIG. 22A). In some cases, it may be provided in the middle of the swing shaft SS of the solar cell array LP in the left-right direction. Further, although only one cleaning robot 1 is provided in one solar cell array LP, a plurality of standby stations S may be provided in one solar cell array LP. For example, standby stations S may be provided at both ends of the swing shaft SS of the solar cell array LP, or swing between one end of the swing shaft SS of the solar cell array LP and the swing shaft SS of the solar cell array LP. A standby station S may be provided in the middle of the axis SS in the left-right direction. Further, three or more standby stations S may be provided at a certain interval. For example, standby stations S may be provided at three locations between both ends of the swing shaft SS of the solar cell module P and the middle in the left-right direction. In this case, since the moving distance when the cleaning robot 1 is urgently evacuated to the standby station S can be shortened as in a strong wind, the cleaning robot 1 can be quickly evacuated to a safe place. Of course, two or more standby stations S may be provided at intervals between both ends of the swing shaft SS of the solar cell array LP in the left-right direction.
 また、待機ステーションSは、その表面が太陽電池モジュールPの表面と同一平面になっている状態で、太陽電池モジュールPとの間に形成される隙間および段差が、太陽電池アレイLPにおける、隣接する太陽電池モジュールP間の隙間および段差の大きさと同程度またはそれ以下にすることが望ましい。かかる隙間および段差にしておけば、掃除ロボット1は、太陽電池アレイLPにおいて隣接する太陽電池モジュールP間を移動する場合と同様に、待機ステーションSと太陽電池モジュールPとの間を移動することができる。 Further, in the state where the surface of the standby station S is flush with the surface of the solar cell module P, the gaps and steps formed between the standby station S and the solar cell module P are adjacent to each other in the solar cell array LP. It is desirable that the size of the gap and the step between the solar cell modules P be the same as or smaller than that. If such a gap and a step are provided, the cleaning robot 1 can move between the standby station S and the solar cell module P in the same manner as when moving between adjacent solar cell modules P in the solar cell array LP. it can.
 上述したように、待機ステーションSを揺動軸SSに設ければ、太陽電池モジュールPが揺動しても、待機ステーションSの表面と太陽電池モジュールPの表面の傾きを常に一致させることができる。
 一方、待機ステーションSを揺動軸SSに設けずに、待機ステーションS用の架台を別途設けてもよい。この場合、待機ステーションSを揺動させる機能を設けておけば、掃除ロボット1を待機ステーションSと太陽電池モジュールPとの間で移動させるときだけ、両者の角度を一致させるようにすることもできる。すると、掃除ロボット1が待機ステーションS上に配置されている間(掃除を待機している間)は、待機ステーションSの表面を水平にしておけば、待機ステーションS上に安定して掃除ロボット1を配置することができる。
As described above, if the standby station S is provided on the swing shaft SS, even if the solar cell module P swings, the inclinations of the surface of the standby station S and the surface of the solar cell module P can always be matched. ..
On the other hand, instead of providing the standby station S on the swing shaft SS, a stand for the standby station S may be provided separately. In this case, if the function of swinging the standby station S is provided, the angles of the cleaning robot 1 can be made to match only when the cleaning robot 1 is moved between the standby station S and the solar cell module P. .. Then, while the cleaning robot 1 is arranged on the standby station S (while waiting for cleaning), if the surface of the standby station S is kept horizontal, the cleaning robot 1 is stably placed on the standby station S. Can be placed.
 もちろん、待機ステーションSの表面の傾きと太陽電池モジュールPの傾きとを常に一致させるようにしてもよい。この場合、緊急に掃除ロボット1を太陽電池モジュールPから待機ステーションSに退避させる際に、迅速かつ確実な退避が可能になる。 Of course, the inclination of the surface of the standby station S and the inclination of the solar cell module P may always be matched. In this case, when the cleaning robot 1 is urgently retracted from the solar cell module P to the standby station S, quick and reliable evacuation is possible.
 また、待機ステーションSは、その表面の傾きを一定、つまり、固定した状態としてもよい。例えば、待機ステーションSの表面を、水平な状態や、水平に対して所定の角度(水平に対して±30度程度)に固定していてもよい。この場合には、掃除ロボット1の作動を制御して、待機ステーションSの表面と太陽電池モジュールPの表面と実質的に同一平面になったときに、掃除ロボット1が待機ステーションSと太陽電池モジュールPのとの間で移動するようにすればよい。もちろん、太陽電池モジュールPの表面の傾きを制御して、掃除ロボット1が待機ステーションSと太陽電池モジュールPのとの間で移動する際に、太陽電池モジュールPの表面の傾きを待機ステーションSの表面と実質的に同一平面になるようにしてもよい。 Further, the standby station S may have a constant surface inclination, that is, a fixed state. For example, the surface of the standby station S may be fixed in a horizontal state or at a predetermined angle with respect to the horizontal (about ± 30 degrees with respect to the horizontal). In this case, when the operation of the cleaning robot 1 is controlled so that the surface of the standby station S and the surface of the solar cell module P are substantially flush with each other, the cleaning robot 1 controls the operation of the standby station S and the solar cell module. It suffices to move between P and. Of course, by controlling the inclination of the surface of the solar cell module P, when the cleaning robot 1 moves between the standby station S and the solar cell module P, the inclination of the surface of the solar cell module P of the standby station S is adjusted. It may be substantially flush with the surface.
<掃除ロボット1の太陽電池アレイLP間の移動>
 掃除ロボット1は、太陽電池アレイLPにそれぞれ1つ設けてもよいし、複数の太陽電池アレイLPで1つの掃除ロボットを共有してもよい。例えば、隣接する太陽電池アレイLP、つまり、揺動軸SSの軸方向に並ぶ太陽電池アレイLPの待機ステーションS間に、掃除ロボット1が移動できる連結路を設ける。そして、連結路の上面の高さを、太陽電池アレイLPの表面が略水平になった状態(または太陽電池アレイLPの表面が適切な角度になった状態)における太陽電池アレイLPの表面、つまり、待機ステーションSとほぼ同じになるように設置する。すると、掃除ロボット1を待機ステーションSに移動させれば、連結路上を走行させることによって、掃除ロボット1を一の太陽電池アレイLPから他の太陽電池アレイLPに移動させることができる。
<Movement of cleaning robot 1 between solar cell array LPs>
One cleaning robot 1 may be provided in each of the solar cell array LPs, or one cleaning robot may be shared by a plurality of solar cell array LPs. For example, a connecting path through which the cleaning robot 1 can move is provided between the adjacent solar cell array LPs, that is, the standby stations S of the solar cell array LPs arranged in the axial direction of the swing axis SS. Then, the height of the upper surface of the connecting path is set to the surface of the solar cell array LP in a state where the surface of the solar cell array LP is substantially horizontal (or a state where the surface of the solar cell array LP is at an appropriate angle), that is, , Install so that it is almost the same as the standby station S. Then, if the cleaning robot 1 is moved to the standby station S, the cleaning robot 1 can be moved from one solar cell array LP to another solar cell array LP by traveling on the connecting road.
 なお、複数の太陽電池アレイLPで1つの掃除ロボットを共有する場合も、複数の太陽電池アレイLPに複数の待機ステーションSを設ければ、上述したように、掃除ロボット1を待機ステーションSに緊急退避させる際の移動距離を短くできるので、掃除ロボット1を迅速に安全な場所に退避させることができる。 Even when one cleaning robot is shared by a plurality of solar cell array LPs, if a plurality of standby stations S are provided in the plurality of solar cell array LPs, the cleaning robot 1 is urgently sent to the standby station S as described above. Since the moving distance when retracting can be shortened, the cleaning robot 1 can be quickly retracted to a safe place.
 本発明の掃除ロボットは、トラッキングタイプに使用するフレームレスの太陽電池モジュールの表面の掃除に適している。 The cleaning robot of the present invention is suitable for cleaning the surface of a frameless solar cell module used for a tracking type.
   1      掃除ロボット
   2      シャシフレーム
  10      掃除部
  12      ブラシ
  20      走行部
  21      走行体
  22      走行輪
  25      補助走行体
  26      走行輪
  30      駆動部
  32      駆動源
  33      バッテリ
  35      伝達機構
  36      駆動軸
  40      制御機構
  41      制御部
  50      サポート機構
  51      第一サポート部
  51a     フリーローラ
  52      第二サポート部
  52a     フリーローラ
  SP      太陽光発電設備
  LP      太陽電池アレイ
   P      太陽電池モジュール
  SS      揺動軸
   S      待機ステーション
  CE      連結部
  DB      除電部材
1 Cleaning robot 2 Chassis frame 10 Cleaning unit 12 Brush 20 Traveling unit 21 Traveling body 22 Traveling wheel 25 Auxiliary traveling body 26 Traveling wheel 30 Drive unit 32 Drive source 33 Battery 35 Transmission mechanism 36 Drive shaft 40 Control mechanism 41 Control unit 50 Support mechanism 51 1st support part 51a Free roller 52 2nd support part 52a Free roller SP Photovoltaic power generation equipment LP Solar cell array P Solar cell module SS Swing axis S Standby station CE connection part DB Static elimination member

Claims (16)

  1.  複数枚の太陽電池モジュールをその第一端部および第二端部が直線状に並ぶように架台に並べて設置され、前記太陽電池モジュールと架台とを連結する連結部が、前記太陽電池モジュールの第一端部と第二端部の中間線と該太陽電池モジュールの第一端部との間および前記中間線と第二端部との間にそれぞれ設けられた太陽電池アレイの表面を掃除する掃除ロボットであって、
    前記太陽電池アレイの表面を掃除する掃除部と、
    シャシフレームと、
    該シャシフレームに設けられた、掃除ロボットを走行させる走行部と、
    前記シャシフレームにおける掃除ロボットの走行方向と交差する方向の両端部または一方の端部に設けられ、前記太陽電池アレイを構成する前記太陽電池モジュールの第一端部または第二端部のいずれかに沿った前記シャシフレームの走行をサポートするサポート機構と、を備えており、
    前記走行部が、
    複数の走行体を備えており、
    該複数の走行体は、
    掃除ロボットを前記太陽電池アレイ上に配置したときに、少なくとも2つの走行体が、掃除ロボットの走行方向と交差する方向において前記太陽電池モジュール中間線を挟むよう配置されており、
    前記走行部は、
    掃除ロボットを前記太陽電池アレイ上に配置したときに、前記太陽電池モジュールにおける第一端部および第二端部の近傍を走行する走行体を備えていない
    ことを特徴とする掃除ロボット。
    A plurality of solar cell modules are installed side by side on a gantry so that the first end portion and the second end portion thereof are lined up in a straight line, and the connecting portion connecting the solar cell module and the gantry is the first of the solar cell modules. Cleaning the surface of the solar cell array provided between the intermediate line between one end and the second end and the first end of the solar cell module and between the intermediate line and the second end, respectively. Being a robot
    A cleaning unit that cleans the surface of the solar cell array,
    Chassis frame and
    A traveling unit for running the cleaning robot provided on the chassis frame,
    One of the first end or the second end of the solar cell module provided at both ends or one end of the chassis frame in a direction intersecting the traveling direction of the cleaning robot and constituting the solar cell array. It is equipped with a support mechanism that supports the running of the chassis frame along the line.
    The traveling part
    Equipped with multiple running bodies,
    The plurality of traveling bodies
    When the cleaning robot is arranged on the solar cell array, at least two traveling bodies are arranged so as to sandwich the solar cell module intermediate line in a direction intersecting the traveling direction of the cleaning robot.
    The traveling unit
    A cleaning robot characterized in that when the cleaning robot is arranged on the solar cell array, it does not include a traveling body that travels in the vicinity of the first end portion and the second end portion of the solar cell module.
  2.  前記走行部の複数の走行体のうち、掃除ロボットの走行方向と交差する方向においてもっとも外方に位置する2つの走行体は、
    掃除ロボットが前記太陽電池モジュール上に配置された状態において、
    該太陽電池モジュールの第一端部と第二端部とを繋ぐ方向における前記太陽電池モジュールの中間線から各走行体の幅方向の中間線までの距離が、前記太陽電池モジュールの第一端部から第二端部までの距離の1/8~3/8となるように設けられている
    ことを特徴とする請求項1記載の掃除ロボット。
    Of the plurality of traveling bodies of the traveling unit, the two traveling bodies located on the outermost side in the direction intersecting the traveling direction of the cleaning robot are
    In the state where the cleaning robot is placed on the solar cell module,
    The distance from the intermediate line of the solar cell module in the direction connecting the first end portion and the second end portion of the solar cell module to the intermediate line in the width direction of each traveling body is the first end portion of the solar cell module. The cleaning robot according to claim 1, wherein the cleaning robot is provided so as to be 1/8 to 3/8 of the distance from the second end to the second end.
  3.  前記複数の走行体は、
    複数の走行部材を備えており、
    前記複数の走行体のうち少なくとも2つの走行体では、
    該2つの走行体の複数の走行部材のうち、少なくとも2つの走行部材が、掃除ロボットの走行方向と交差する方向において、前記太陽電池アレイの連結部を挟むように設けられている
    ことを特徴とする請求項2記載の掃除ロボット。
    The plurality of traveling bodies
    Equipped with multiple running members,
    In at least two of the plurality of traveling bodies,
    Among the plurality of traveling members of the two traveling bodies, at least two traveling members are provided so as to sandwich the connecting portion of the solar cell array in a direction intersecting the traveling direction of the cleaning robot. The cleaning robot according to claim 2.
  4.  前記走行部の複数の走行体は、
    掃除ロボットの走行方向から見たときに、各走行体が前記太陽電池アレイの表面と接触する部分が重ならないように配設されている
    ことを特徴とする請求項1から3のいずれかに記載の掃除ロボット。
    The plurality of traveling bodies of the traveling portion
    The invention according to any one of claims 1 to 3, wherein the traveling bodies are arranged so that the portions in contact with the surface of the solar cell array do not overlap when viewed from the traveling direction of the cleaning robot. Cleaning robot.
  5.  前記走行部の複数の走行体のうち少なくとも1つの走行体が複数の走行部材を備えており、
    該複数の走行部材を
    掃除ロボットの走行方向から見たときに、各走行体の複数の走行部材のうち、少なくとも一つの走行部材が前記太陽電池アレイの表面と接触する部分が、他の走行部材が前記太陽電池アレイの表面と接触する部分と重ならないように配設されている
    ことを特徴とする請求項1から4のいずれかに記載の掃除ロボット。
    At least one of the plurality of traveling bodies of the traveling unit includes a plurality of traveling members.
    When the plurality of traveling members are viewed from the traveling direction of the cleaning robot, the portion where at least one traveling member of the plurality of traveling members of each traveling body comes into contact with the surface of the solar cell array is another traveling member. The cleaning robot according to any one of claims 1 to 4, wherein the robot is arranged so as not to overlap a portion of the solar cell array that comes into contact with the surface of the solar cell array.
  6.  前記走行部の各走行体は複数の走行輪を備えており、
    該複数の走行輪は、
    少なくとも2つの駆動輪を有しており、
    掃除ロボットの走行方向において、該複数の走行輪のうち掃除ロボットの走行方向において最も離れた2つの走行輪の間に該掃除ロボットの重心が位置するように配設されており、
    前記走行部は、
    掃除ロボットの走行方向において、前記走行体の複数の走行輪のうち掃除ロボットの走行方向において最も離れた2つの走行輪よりも外方に位置する補助走行体を備えており、
    該補助走行体は、
    掃除ロボットの走行方向において、隣接する駆動輪との距離が前記走行体における複数の駆動輪のうち掃除ロボットの走行方向において最も近い2つの走行輪間の距離と同等以上となるように配設されている
    ことを特徴とする請求項1から5のいずれかに記載の掃除ロボット。
    Each traveling body of the traveling unit includes a plurality of traveling wheels.
    The plurality of traveling wheels
    It has at least two drive wheels and
    In the traveling direction of the cleaning robot, the center of gravity of the cleaning robot is arranged between the two traveling wheels farthest from each other in the traveling direction of the cleaning robot among the plurality of traveling wheels.
    The traveling unit
    It is provided with an auxiliary traveling body located outside the two traveling wheels that are farthest from the two traveling wheels of the cleaning robot in the traveling direction of the cleaning robot among the plurality of traveling wheels of the traveling body.
    The auxiliary traveling body is
    Arranged so that the distance to the adjacent drive wheels in the traveling direction of the cleaning robot is equal to or greater than the distance between the two closest driving wheels in the traveling direction of the cleaning robot among the plurality of driving wheels in the traveling body. The cleaning robot according to any one of claims 1 to 5, wherein the cleaning robot is characterized by the above.
  7.  前記補助走行体を複数備えており、
    該複数の補助走行体は、
    掃除ロボットの走行方向において、該複数の補助走行体のうち少なくとも2つの補助走行体が前記走行体を挟むように設けられている
    ことを特徴とする請求項6記載の掃除ロボット。
    It is equipped with a plurality of the auxiliary traveling bodies.
    The plurality of auxiliary traveling bodies
    The cleaning robot according to claim 6, wherein at least two auxiliary traveling bodies out of the plurality of auxiliary traveling bodies are provided so as to sandwich the traveling body in the traveling direction of the cleaning robot.
  8.  前記掃除部が軸周りに回転する掃除部材を備えており、
    前記走行体と前記掃除部の掃除部材とが一つの駆動源によって駆動されている
    ことを特徴とする請求項1から7のいずれかに記載の掃除ロボット。
    The cleaning unit is provided with a cleaning member that rotates around an axis.
    The cleaning robot according to any one of claims 1 to 7, wherein the traveling body and the cleaning member of the cleaning unit are driven by one drive source.
  9.  前記サポート機構は、
    掃除ロボットの走行方向および、平面視で掃除ロボットの走行方向と交差する方向の両方と平行な面と交差する回転軸を有するフリーローラを備えている
    ことを特徴とする請求項1から8のいずれかに記載の掃除ロボット。
    The support mechanism
    Any of claims 1 to 8, wherein the free roller has a rotation axis that intersects a plane parallel to both the traveling direction of the cleaning robot and the traveling direction of the cleaning robot in a plan view. The cleaning robot described in the direction.
  10.  前記サポート機構は、
    前記シャシフレームにおける掃除ロボットの走行方向と交差する方向の一方の端部に設けられた第一サポート部と、
    前記シャシフレームの一方の端部と反対側に位置する他方の端部に設けられた第二サポート部と、を備えており、
    前記第一サポート部および前記第二サポート部には、
    掃除ロボットの走行方向および、平面視で掃除ロボットの走行方向と交差する方向の両方と平行な面と交差する回転軸を有するフリーローラが設けられており、
    掃除ロボットの走行方向と交差する方向における前記第一サポート部のフリーローラと前記第二サポート部のフリーローラとの間の距離が、前記太陽電池モジュールの両端間の距離よりも長くなるように設けられている
    ことを特徴とする請求項9記載の掃除ロボット。
    The support mechanism
    A first support portion provided at one end of the chassis frame in a direction intersecting the traveling direction of the cleaning robot,
    It is provided with a second support portion provided at the other end located on the opposite side of one end of the chassis frame.
    The first support unit and the second support unit
    A free roller having a rotation axis that intersects a plane parallel to both the traveling direction of the cleaning robot and the direction intersecting the traveling direction of the cleaning robot in a plan view is provided.
    The distance between the free roller of the first support portion and the free roller of the second support portion in the direction intersecting the traveling direction of the cleaning robot is set to be longer than the distance between both ends of the solar cell module. The cleaning robot according to claim 9, wherein the cleaning robot is provided.
  11.  前記サポート機構は、
    掃除ロボットの走行方向に沿って間隔を空けて並ぶように設けられた2つのフリーローラを有している
    ことを特徴とする請求項9または10記載の掃除ロボット。
    The support mechanism
    The cleaning robot according to claim 9 or 10, wherein the cleaning robot has two free rollers provided so as to be arranged at intervals along the traveling direction of the cleaning robot.
  12.  前記シャシフレームには除電部材が設けられており、
    該除電部材は、
    掃除ロボットを前記太陽電池アレイの上に配置したときに、その先端が該太陽電池アレイにおけるアースされた部材に接触し得る長さに形成されている
    ことを特徴とする請求項1から11のいずれかに記載の掃除ロボット。
    The chassis frame is provided with a static elimination member.
    The static elimination member is
    Any of claims 1 to 11, wherein when the cleaning robot is placed on the solar cell array, its tip is formed to have a length that allows contact with a grounded member in the solar cell array. The cleaning robot described in Crab.
  13.  前記除電部材は、
    掃除ロボットを前記太陽電池アレイ上に配置したときに、前記太陽電池モジュールの第一端部と第二端部とを繋ぐ方向において、前記太陽電池アレイにおける前記太陽電池モジュールと前記架台とを連結する連結部に接触し得る位置に設けられている
    ことを特徴とする請求項12記載の掃除ロボット。
    The static elimination member is
    When the cleaning robot is arranged on the solar cell array, the solar cell module in the solar cell array and the gantry are connected in the direction of connecting the first end portion and the second end portion of the solar cell module. The cleaning robot according to claim 12, wherein the cleaning robot is provided at a position where it can come into contact with the connecting portion.
  14.  複数枚の太陽電池モジュールをその第一端部および第二端部が直線状に並ぶように架台に並べて設置され、前記太陽電池モジュールと架台とを連結する連結部が、前記太陽電池モジュールの第一端部と第二端部の中間線と該太陽電池モジュールの第一端部との間および前記中間線と第二端部との間にそれぞれ設けられた太陽電池アレイと、
    該太陽電池アレイの表面を掃除する請求項1から13のいずれかに記載の掃除ロボットと、を備えている
    ことを特徴とする太陽光発電設備。
    A plurality of solar cell modules are installed side by side on a gantry so that the first end portion and the second end portion thereof are lined up in a straight line, and the connecting portion connecting the solar cell module and the gantry is the first of the solar cell modules. A solar cell array provided between the intermediate line between one end and the second end and the first end of the solar cell module and between the intermediate line and the second end, respectively.
    A photovoltaic power generation facility comprising the cleaning robot according to any one of claims 1 to 13, which cleans the surface of the solar cell array.
  15.  前記太陽電池アレイは、
    前記架台に設けられた揺動軸の軸方向に沿って前記複数の太陽電池モジュールを並べて設けられたものである
    ことを特徴とする請求項14記載の太陽光発電設備。
    The solar cell array is
    The photovoltaic power generation facility according to claim 14, wherein the plurality of solar cell modules are arranged side by side along the axial direction of a swing shaft provided on the gantry.
  16.  前記太陽電池アレイを構成する太陽電池モジュールが、フレームレスの太陽電池モジュールである
    ことを特徴とする請求項14または15記載の太陽光発電設備。
    The photovoltaic power generation facility according to claim 14 or 15, wherein the solar cell module constituting the solar cell array is a frameless solar cell module.
PCT/JP2020/029595 2019-08-02 2020-08-01 Cleaning robot, and solar power generating facility WO2021024968A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021535243A JPWO2021024968A1 (en) 2019-08-02 2020-08-01 Cleaning robot and solar power generation equipment

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-143307 2019-08-02
JP2019143307 2019-08-02
JP2019-238939 2019-12-27
JP2019238939 2019-12-27

Publications (1)

Publication Number Publication Date
WO2021024968A1 true WO2021024968A1 (en) 2021-02-11

Family

ID=74502673

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/029595 WO2021024968A1 (en) 2019-08-02 2020-08-01 Cleaning robot, and solar power generating facility

Country Status (2)

Country Link
JP (1) JPWO2021024968A1 (en)
WO (1) WO2021024968A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113193830A (en) * 2021-05-28 2021-07-30 中清能绿洲科技股份有限公司 Photovoltaic cleaning system

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009136603A (en) * 2007-12-10 2009-06-25 Panasonic Corp Cleaner suction tool and vacuum cleaner
JP2013031550A (en) * 2011-08-02 2013-02-14 Toshiba Corp Rotary cleaning body, suction port body for vacuum cleaner, and vacuum cleaner
US8726458B1 (en) * 2011-05-26 2014-05-20 Scott Reinhold Mahr Solar collector washing device
EP2942116A1 (en) * 2014-05-09 2015-11-11 Jader Pavanetto Washing apparatus for a surface
JP2016026861A (en) * 2014-06-24 2016-02-18 シャープ株式会社 Solar panel cleaning device
US20160365827A1 (en) * 2015-06-09 2016-12-15 Nextracker Inc. Frameless solar module mounting
JP2017154039A (en) * 2016-02-29 2017-09-07 フジクス株式会社 Cleaning device of photovoltaic power generation panel
JP2018069223A (en) * 2016-10-27 2018-05-10 PV Japan株式会社 Solar panel maintenance device
CN108499943A (en) * 2018-06-14 2018-09-07 常州索拉克林智能科技有限公司 A kind of spliced photovoltaic array O&M equipment
WO2019012402A1 (en) * 2017-07-08 2019-01-17 Choori Geetanjali Umesh Robotic waterless cleaning and inspection system with an assistive robotic docking train system and method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9518596B2 (en) * 2009-07-02 2016-12-13 Solarcity Corporation Pivot-fit frame, system and method for photovoltaic modules
KR20160030229A (en) * 2013-07-10 2016-03-16 쌩-고벵 글래스 프랑스 Solar panel with an electrically insulating module support and method for the production thereof
WO2016001944A1 (en) * 2014-06-30 2016-01-07 株式会社 スカイロボット Solar-panel cleaning device
CN105406813A (en) * 2015-12-22 2016-03-16 九格能源科技(天津)有限公司 Electrostatic elimination carbon brush

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009136603A (en) * 2007-12-10 2009-06-25 Panasonic Corp Cleaner suction tool and vacuum cleaner
US8726458B1 (en) * 2011-05-26 2014-05-20 Scott Reinhold Mahr Solar collector washing device
JP2013031550A (en) * 2011-08-02 2013-02-14 Toshiba Corp Rotary cleaning body, suction port body for vacuum cleaner, and vacuum cleaner
EP2942116A1 (en) * 2014-05-09 2015-11-11 Jader Pavanetto Washing apparatus for a surface
JP2016026861A (en) * 2014-06-24 2016-02-18 シャープ株式会社 Solar panel cleaning device
US20160365827A1 (en) * 2015-06-09 2016-12-15 Nextracker Inc. Frameless solar module mounting
JP2017154039A (en) * 2016-02-29 2017-09-07 フジクス株式会社 Cleaning device of photovoltaic power generation panel
JP2018069223A (en) * 2016-10-27 2018-05-10 PV Japan株式会社 Solar panel maintenance device
WO2019012402A1 (en) * 2017-07-08 2019-01-17 Choori Geetanjali Umesh Robotic waterless cleaning and inspection system with an assistive robotic docking train system and method
CN108499943A (en) * 2018-06-14 2018-09-07 常州索拉克林智能科技有限公司 A kind of spliced photovoltaic array O&M equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113193830A (en) * 2021-05-28 2021-07-30 中清能绿洲科技股份有限公司 Photovoltaic cleaning system
CN113193830B (en) * 2021-05-28 2022-01-04 中清能绿洲科技股份有限公司 Photovoltaic cleaning system

Also Published As

Publication number Publication date
JPWO2021024968A1 (en) 2021-11-18

Similar Documents

Publication Publication Date Title
JP6732230B2 (en) Self-propelled robot
CN108745998B (en) Full-automatic solar photovoltaic panel cleaning and detecting robot
CN105414069B (en) Cleaning device
KR102474107B1 (en) Solar module cleaner
JP7359450B2 (en) cleaning robot
US9931009B2 (en) Autonomous-travel cleaning robot
EP2898961B1 (en) Self-propelled cleaning robot
CN205762538U (en) Cleaning device and photovoltaic array
CN107617616A (en) Cleaning device and photovoltaic array
US11045059B2 (en) Self-propelled robot
CN205183214U (en) Cleaning device
WO2018053984A1 (en) Path navigation method for robot running on rectangular slope
CN110876578A (en) Automatic-turning and obstacle-crossing glass cleaning robot and working method thereof
CN105057246A (en) Cleaning device
WO2021024968A1 (en) Cleaning robot, and solar power generating facility
KR20190130941A (en) Solar panel cleaning robot system
WO2021070960A1 (en) Work device
CN102580934A (en) Cleaning device for solar panel
CN113334351B (en) Obstacle-surmounting photovoltaic power station cleaning robot
WO2020189620A1 (en) Cleaning device, cleaning system for solar photovoltaic devices, and cleaning method for solar photovoltaic devices
CN220373274U (en) Photovoltaic robot
CN221231119U (en) Cleaning robot
CN204866647U (en) Cleaning device
CN116388673B (en) Photovoltaic cell board cleaning robot positioner
CN117060840A (en) Method for operating a photovoltaic robot

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20849847

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021535243

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 23/05/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20849847

Country of ref document: EP

Kind code of ref document: A1