WO2021024909A1 - 光センサー、センサーユニット及び光センサーを利用した物体検出装置 - Google Patents

光センサー、センサーユニット及び光センサーを利用した物体検出装置 Download PDF

Info

Publication number
WO2021024909A1
WO2021024909A1 PCT/JP2020/029266 JP2020029266W WO2021024909A1 WO 2021024909 A1 WO2021024909 A1 WO 2021024909A1 JP 2020029266 W JP2020029266 W JP 2020029266W WO 2021024909 A1 WO2021024909 A1 WO 2021024909A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength
light
absorber
sensor
optical sensor
Prior art date
Application number
PCT/JP2020/029266
Other languages
English (en)
French (fr)
Inventor
忠昭 長尾
デュイ タン ダオ
Original Assignee
国立研究開発法人物質・材料研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人物質・材料研究機構 filed Critical 国立研究開発法人物質・材料研究機構
Priority to JP2021537272A priority Critical patent/JP7210067B2/ja
Priority to US17/631,147 priority patent/US20220271211A1/en
Priority to EP20849844.4A priority patent/EP4009015A4/en
Publication of WO2021024909A1 publication Critical patent/WO2021024909A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N15/00Thermoelectric devices without a junction of dissimilar materials; Thermomagnetic devices, e.g. using the Nernst-Ettingshausen effect
    • H10N15/10Thermoelectric devices using thermal change of the dielectric constant, e.g. working above and below the Curie point
    • H10N15/15Thermoelectric active materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/42Absorption spectrometry; Double beam spectrometry; Flicker spectrometry; Reflection spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • G01J5/046Materials; Selection of thermal materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0801Means for wavelength selection or discrimination
    • G01J5/0802Optical filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0853Optical arrangements having infrared absorbers other than the usual absorber layers deposited on infrared detectors like bolometers, wherein the heat propagation between the absorber and the detecting element occurs within a solid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/20Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using resistors, thermistors or semiconductors sensitive to radiation, e.g. photoconductive devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/34Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using capacitors, e.g. pyroelectric capacitors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/002Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of materials engineered to provide properties not available in nature, e.g. metamaterials
    • G02B1/005Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of materials engineered to provide properties not available in nature, e.g. metamaterials made of photonic crystals or photonic band gap materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/008Surface plasmon devices
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/204Filters in which spectral selection is performed by means of a conductive grid or array, e.g. frequency selective surfaces
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N19/00Integrated devices, or assemblies of multiple devices, comprising at least one thermoelectric or thermomagnetic element covered by groups H10N10/00 - H10N15/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J2003/1213Filters in general, e.g. dichroic, band
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J2005/103Absorbing heated plate or film and temperature detector

Definitions

  • the present invention relates to an optical sensor that has a simple periodic structure, has high wavelength resolution and angular resolution, and detects light by converting light into heat.
  • the present invention also relates to a sensor unit in which a plurality of such optical sensors are arranged.
  • the present invention also relates to an object detection device that detects the presence or movement of an object by using such an optical sensor.
  • Infrared spectroscopy can obtain information on the atomic and molecular vibrations and electrical properties of substances. Therefore, infrared spectroscopy is used for substance identification and physical property evaluation in a wide range of academic fields such as materials science and infrared astronomy, and has greatly contributed to the development of the academic fields.
  • radiation thermometers and thermography are devices that can measure temperature in a non-contact manner by measuring the thermal radiation of a substance. And the industrial and social applications of radiation thermometers and thermography are rapidly advancing.
  • a gas sensor based on the non-dispersive infrared absorption method (NDIR) absorbs infrared rays emitted from a light source into gas molecules, and measures the transmittance of light having a wavelength that matches the absorption of the gas. It is a sensor that detects the concentration of. Since the gas sensor has high sensitivity with almost no deterioration of the sensor element, there is an increasing need for it as a gas detection method.
  • NDIR non-dispersive infrared absorption method
  • infrared spectroscopy for example, in the Fourier transform spectroscopy, the size of the interferometer becomes several tens of centimeters, and it is difficult to reduce the size. In addition, a complicated sample stage and a goniometer-mounted goniometer stage are required for angle-resolved measurement of thermal radiation, which is a large scale. Further, in infrared temperature measurement, when a material having an unknown emissivity is measured, the accuracy is not guaranteed because the correspondence between the light intensity and the temperature is unknown. In order to solve the above problems, a two-wavelength type radiation thermometer is commercially available as an improved type.
  • thermometer is effective for materials whose emissivity hardly changes with respect to wavelength, but when the emissivity changes with respect to wavelength, accuracy is not guaranteed and multi-wavelength measurement is possible. You will need it.
  • the narrower the infrared detection wavelength width the more accurately and selectively the absorption of gas molecules can be measured.
  • single wavelength measurement when the spectra of a plurality of molecular species overlap and separation is difficult, multi-wavelength measurement is desired. As described above, there is room for improvement in the conventionally proposed infrared spectroscopy.
  • the distance between two nearby wavelengths can be reduced by increasing the wavelength resolution, and the emissivity can be treated as being almost constant within the range of the distance between the two nearby wavelengths, and the temperature can be obtained. Can be done.
  • the function of the emissivity and the temperature can be obtained at the same time even when the wavelength dependence of the emissivity is large. If there is a small photodetector that can detect light of a plurality of wavelengths with high wavelength resolution, accurate temperature can be measured even if the emissivity is unknown.
  • the non-dispersive infrared absorption method even when the spectra of a plurality of types of gases overlap, it is possible to measure the amount of each gas separately by measuring at multiple wavelengths.
  • a photothermal conversion type infrared sensor that combines a heat detection material and a complete absorber that absorbs light of a specific wavelength and generates heat.
  • the complete absorber used in these sensors has a dielectric photonic structure or a metal plasmonic structure.
  • the complete absorber is formed by two-dimensional patterning, unlike the wavelength separation by a macro-laminated dielectric filter, and is suitable for miniaturization and multi-wavelength of the photodetector (Non-Patent Documents 1 to 3). ..
  • the microfabrication patterns and processes of these fully absorbers are complex.
  • the resolution of the sensor using the complete absorber is usually about 0.5 ⁇ m in the mid-infrared band with a detection wavelength of about 5 ⁇ m (Q value is about 10), which is much broader than the vibration of solid molecules. is there.
  • a photothermal conversion type infrared light detection element having a wavelength selectivity of less than 0.1 ⁇ m and a directivity in the vertical direction such that the acceptance angle is less than ⁇ 1 ° has not been put into practical use. Therefore, it is desired to realize a small on-chip microelement having high wavelength resolution, high directivity, and multiple wavelengths with a simple structure.
  • the resonance wavelength width of the complete absorber it is necessary to narrow the resonance wavelength width of the complete absorber by using a dielectric or a metal having a small loss as the material to be used.
  • a dielectric or a metal having a small loss As the material to be used.
  • Au, Al, Si in the infrared band, Al in the Ge ultraviolet band, and Au or Ag in the visible band are suitable.
  • the value of figure of merit (FOM) ⁇ 1 / ⁇ 2 is about 3 or more in the operating wavelength.
  • the detection of a plurality of wavelengths is required as an example, but even a single wavelength sensor having a high resolution and directivity is very useful.
  • such a sensor is also very useful for light in a wavelength range other than infrared rays (for example, a visible light range and a wide wavelength range extending from the visible light range to the low and high frequencies). Needless to say.
  • FIG. 1 shows an example of a complete absorber having four different operating principles.
  • Various complete absorbers have been proposed so far. The operating principles of many complete absorbers are mostly classified into the four illustrated in FIG.
  • the complete absorber according to FIG. 1A is a metal-insulator-metal structure (MIM structure) subjected to two-dimensional microfabrication, and is an optical sensor having wavelength selectivity in the mid-infrared band.
  • MIM structure metal-insulator-metal structure
  • the strip-shaped metal structure having a finite width in the fifth layer from the bottom (first layer from the top) serves as a resonator that confine the localized surface plasmon, and the width of the strip is large. As a result, the resonance wavelength changes.
  • Non-Patent Document 4 In addition to the strip array, there are also disk array and hall array type devices, which also exhibit similar characteristics (Non-Patent Document 4).
  • these MIM-structured elements have a complicated structure, and even if the half width of the wavelength is narrow, they are only about 10% of the incident wavelength (Q value is about 10), and are used for applications requiring high wavelength selectivity. Not suitable.
  • Q value is about 10
  • the bandwidth of the device is too wide for use as a gas sensor compared to the absorption bandwidth of gas molecules, there is a difficulty in separating the signal of the target gas molecule and the signal of a gas molecule other than the target.
  • the acceptance angle opens more than ⁇ 30 ° from the vertical direction, and there is almost no directivity.
  • the bottom metal layer, the pyroelectric layer above it, and the third metal layer above it constitute a pyroelectric heat detection sensor, and the MIM type as a photothermal conversion element is formed on the pyroelectric heat detection sensor. It has a structure in which a complete absorber is mounted. Heat is generated when light with a wavelength that resonates with the upper complete absorber or heat radiation is incident, and is detected by the heat detection unit immediately below.
  • a resonator structure in which a deep groove with a narrow width is dug on a flat metal surface can also be used as a complete absorber.
  • a resonator effect occurs in the longitudinal direction of the groove, and the deeper the groove, the longer the wavelength of resonance occurs. Further, as the width of the groove becomes smaller, the resonance wavelength becomes longer (Non-Patent Document 5).
  • the complete absorber of (b) the confinement effect of the localized surface plasmon is used as in (a), and the wavelength width becomes as large as that of (a). Also, the directivity is not good.
  • Non-Patent Document 6 a wavelength selection structure in which a resonator structure is formed between a laminated distributed reflector and a plasmonic reflecting layer as shown in FIG. 1C has been reported (Non-Patent Document 6).
  • Non-Patent Document 7 A similar structure has also been reported (Non-Patent Document 7).
  • these structures consist of a large number of thin-film deposition processes, and it is difficult to manufacture a plurality of devices having different film thicknesses in each minute region of the microscale side by side, so that it cannot be realized as an on-chip type multi-wavelength device. difficult.
  • such a wavelength selection type sensor using a laminated complete absorber has a drawback that the resonance wavelength shifts with the incident angle of light.
  • An object of the present invention is a highly directional day capable of detecting light in a specific wavelength range in an extremely narrow range, which is incident from a direction very close to the surface of an optical sensor in the direction perpendicular to the surface, for example, ⁇ 1 ° or less.
  • an optical sensor in a narrow wavelength band having a Q value of 50 or more, and an array type sensor in which the optical sensor is arrayed and can be configured as a multi-wavelength sensor having high wavelength resolution and high directivity are provided. It is to be.
  • a sensor capable of detecting light which has an absorber whose surface is formed on at least one of a metal and a dielectric and absorbs incident light, and a means for detecting heat generated by absorption of light by the absorber.
  • the absorber is provided to vertically incident on the surface of the absorber and absorbs light having the same wavelength as the resonance wavelength of the absorber, and the surface of the absorber has a plurality of raised ridges.
  • the surface of the absorber including the portion has a periodic structure in which the plurality of raised portions are arranged at a predetermined period so that a one-dimensional or two-dimensional lattice pattern is formed, and in the one-dimensional lattice pattern.
  • Each of the plurality of raised portions is formed in a long shape and is arranged in a predetermined direction so as to be parallel to each other in the first cycle, and the width of the raised portions is the width of the first cycle.
  • the thickness of the raised portion is 0.3 to 0.7 times, and the thickness of the raised portion is 0.05 to 0.2 times that of the first cycle.
  • the plurality of raised parts are raised.
  • Each of the portions is arranged in a grid pattern in the second cycle, the width of the raised portion is 0.3 to 0.7 times that of the second cycle, and the thickness of the raised portion is It is 0.05 to 0.2 times the second cycle, is excited by the surface parallel component of the light incident on the absorber and the momentum obtained from the lattice pattern, and propagates on the surface of the absorber.
  • Each of the plurality of modes of surface plasmon polaritone or surface phonon polaritone is an optical sensor that is in a retracted state when the light incident on the absorber is incident perpendicular to the surface and the wavelength is the resonance wavelength.
  • the raised portions are arranged in a two-dimensional lattice pattern, and the absorption of light by the absorber has no polarization dependence. Further, the raised portion is formed in a shape that maintains the symmetry of the two-dimensional lattice pattern. Alternatively, the raised portions are arranged in the one-dimensional grid pattern.
  • the light absorbed by the absorber is light in a specific polarization direction. The light absorbed by the absorber is ultraviolet light, visible light or infrared light.
  • the means for detecting the heat may be a means for detecting the temperature rise due to the heat. Further, the means for detecting the temperature rise may be a pyroelectric body or a bolometer.
  • the thickness of the metal is 50 nm or more.
  • the absorber vertically incidents on the surface of the absorber and absorbs 90% or more of light having the same wavelength as the resonance wavelength of the absorber.
  • the metal is selected from Au, Ag and Al, and the derivative is selected from Si, Ge, Al 2 O 3 , TiO 2 , SiO 2 and SiC.
  • the bandwidth of the detected light may correspond to a Q value of 50 or more.
  • the detection sensitivity half value angle from the direction having the highest detection sensitivity may be ⁇ 1 degree or less. Further, the direction in which the detection sensitivity is highest may be the direction perpendicular to the surface thereof.
  • a sensor unit in which a plurality of any of the above optical sensors are arranged on a single chip is provided.
  • at least one of the plurality of optical sensors may have a detection wavelength different from that of the other optical sensors.
  • the one optical sensor is different from the other optical sensors in the period in which the raised portion is arranged.
  • a thermal barrier may be provided in at least a part of the region between the plurality of optical sensors.
  • an object detection device having any of the above optical sensors and detecting the presence or movement of the object by detecting light from the object in a specific direction.
  • the object may be selected from the group consisting of articles, animals and humans.
  • the optical sensor may detect infrared rays.
  • a sensor with excellent spectral sensitivity can be realized.
  • a pyroelectric body, a bolometer, a thermoelectric electromotive element, etc. are used as the heat detector.
  • the absorption wavelength of the sensor can be flexibly changed by designing the resonance wavelength of the complete absorber.
  • the material used in the present invention and its composition may be the same regardless of the wavelength, and the spectral sensitivity curve is designed only by the structural parameters of the complete absorber.
  • the advantage is that the wavelength selectivity can be flexibly adjusted by fine processing without changing the detection material.
  • it since it is a heat detection type, it does not require low temperature cooling unlike a quantum infrared sensor, and a compact and energy-saving type sensor is possible.
  • optical sensor can mount a plurality of optical sensors having high wavelength resolution on one chip, it can be used as an ultra-small spectroscope or a multicolor imaging sensor.
  • it can be applied as a motion sensor, a gesture sensor, a motion sensor for houses, offices, hospitals, a compact and highly accurate position sensor combined with a laser light source, and the like.
  • the finite-width strip-shaped metal structure of the upper fifth layer serves as a resonator that traps the localized surface plasmon, and the resonance wavelength changes depending on the width of the strip.
  • the Q value is around 10.
  • (D) Schematic diagram of a photoabsorber used by the optical sensor of the present invention. It is a block diagram which shows an example which concerns on the object detection apparatus which concerns on this invention. It is sectional drawing which shows an example of the optical sensor which concerns on this invention. It is a top view which shows an example of the optical sensor which has a one-dimensional periodic structure. It is a top view which shows an example of the optical sensor which has a two-dimensional periodic structure.
  • (A) shows a pyroelectric photodetector element for one wavelength, and this element is manufactured in an area of 2 mm ⁇ 2 mm.
  • disk-shaped plate-like bodies (more generally, circular or regular polygonal ridges) such as metal are arranged in a grid pattern on a metal (which may be a dielectric) film formed on the surface of each element.
  • (B) is a schematic diagram of a 4-wavelength on-chip sensor in which a photodetector for 4 wavelengths is manufactured in an area of 1 cm ⁇ 1 cm.
  • (E), (f) and (g) are the results of the electromagnetic field simulation of the complete absorber.
  • (A) The figure which shows the dependence of the absorption intensity with respect to the polarization of the incident light.
  • B) The figure which shows the angle dependence of the resonance wavelength with respect to some i, j. In the case of a two-dimensional square lattice, it does not show polarization dependence. Due to the steep angle dependence as in (b), an optical sensor having high directivity in the vertical incident direction becomes possible.
  • the figure which shows the dependence of the light absorption intensity of the element with respect (a) diameter and (b) height of the disk of a unit lattice which is the smallest unit of a lattice.
  • the schematic diagram of the manufacturing process of the infrared sensor manufactured by this invention (A) both surfaces polished 100nm sided silicon oxide film of the wafer, Si 3 N 4 film deposited by 350nm sputtering. (B) A Pt electrode is formed on the Si 3 N 4 film on the upper surface, a ZnO pyroelectric film, an Au electrode, and a silicon template layer for a complete absorber are formed on the Pt electrode. (C) The resist is exposed by laser drawing, and after development, a mask pattern for forming a disk for reactive ion etching (RIE) is formed.
  • RIE reactive ion etching
  • (C) A scanning electron microscope (SEM) photograph of a sensor having a period of 3.7 ⁇ m viewed from above.
  • (D) A photograph of the cross section of the device taken by SEM from diagonally above. The figure which shows the difference of the absorption spectrum between the case where the inside of a disk structure is Au and the case where the inside is Si. Since light absorption occurs on the surface, there is almost no difference between the two. The figure which shows the optical responsiveness, the temperature rise, and the wavelength dependence of an electric signal of a 4-wavelength detection type membrane pyroelectric sensor.
  • the wavelengths are: (a) column: 3.522 ⁇ m ( ⁇ 1 ); (b) column: 3.722 ⁇ m ( ⁇ 2 ); (c) column: 3.822 ⁇ m ( ⁇ 3 ); (d) column: 3.922 ⁇ m. ( ⁇ 4 ).
  • Top row Absorption spectrum simulation; Second row: Temperature rise spectrum simulation results; and Bottom row: Spectral sensitivity curve measured from the experiment. The figure which shows the angle dependence of the spectral sensitivity curve of the sensor which has a resonance wavelength of 3.722 ⁇ m measured by an experiment. If the angle of incidence deviates from the vertical, the intensity will drop significantly.
  • a pulsed light having a time width of 104 femtoseconds having a resonance wavelength was irradiated.
  • FIG. 2 is a configuration diagram showing an example of the object detection device 300 of the present invention.
  • the object detection device 300 is a detection device that detects the existence or movement of the target object O by detecting the light L coming from the object (hereinafter referred to as “target object”) O to be analyzed.
  • the target object O is, for example, an article, an animal, or a human.
  • the object detection device 300 includes a plurality of sensor units U and an analysis device 20.
  • the sensor unit U includes a plurality of (four in FIG. 2) optical sensors 10 arranged on a single chip.
  • the optical sensors 10 are arranged in an XY plane including, for example, an X direction and a Y direction orthogonal to the X direction.
  • the direction orthogonal to the XY plane is referred to as the Z direction.
  • the optical sensor 10 is an optical sensor capable of detecting the light L incident from the target object O. Then, the optical sensor 10 generates heat according to the amount of received light L absorbed, and generates an electric signal (hereinafter referred to as "detection signal") according to the temperature of the generated heat.
  • the detection signal can also be rephrased as a signal representing a change in the light L coming from the target object O.
  • the light L detected by the optical sensor 10 according to the present invention is, for example, ultraviolet light, visible light, or infrared light.
  • an electromagnetic wave (heat radiation) emitted according to the temperature of the target object O is also included as a kind of light L.
  • the analyzer 20 detects the presence or movement of the target object O by analyzing the detection signal generated by each optical sensor 10 by any known technique.
  • FIG. 3 is a diagram schematically showing a cross section of the optical sensor 10.
  • the optical sensor 10 according to the present invention is composed of a plurality of layers.
  • the support substrate 11, the bottom electrode 12, the pyroelectric body 13, and the absorber 14 are laminated in this order.
  • the support substrate 11 is formed of, for example, an insulator such as SiNx.
  • the bottom electrode 12 is formed on the upper surface of the support substrate 11.
  • it is made of a material that reflects light (eg Pt).
  • the pyroelectric body 13 (example of "means for detecting heat") is formed of, for example, a material (for example, ZnO) capable of spontaneous polarization in response to a change in temperature.
  • the pyroelectric body 14 generates heat according to the light absorbed by the absorber 14. Then, the pyroelectric body 14 spontaneously polarizes according to the internal temperature, so that a detection signal corresponding to the temperature is generated.
  • the absorber 14 is formed on the upper surface of the pyroelectric body 13.
  • the absorber 14 has, for example, the structure illustrated in FIG. 1, and absorbs light in the vicinity of this resonance wavelength by resonance as described above.
  • the absorber 14 is made of a metal or a dielectric.
  • the absorber 14 also functions as a top electrode.
  • the metal forming the absorber 14 is, for example, Au, Ag, or Al.
  • Derivatives that form the absorber 14 are, for example, Si, Ge, Al 2 O 3 , TiO 2 , SiO 2 or SiC.
  • the absorber 14 may be formed of a plurality of materials. For example, an absorber 14 in which a metal and a dielectric are combined may be adopted. However, the surface of the absorber 14 may be formed on at least one of a metal or a dielectric.
  • the surface of the absorber 14 includes a raised portion (hereinafter referred to as a “raised portion”) 141.
  • a raised portion hereinafter referred to as a “raised portion”
  • the region of the surface of the absorber 14 other than the raised portion 14 is referred to as the “base portion 142” for convenience.
  • the portion protruding from the surface of the base portion 142 is the raised portion 141.
  • the surface of the absorber 14 includes a plurality of raised portions 141.
  • the absorber 14 according to the present invention is incident on the surface of the absorber 14 in the vertical direction and absorbs light having the same wavelength as the resonance wavelength of the absorber 14.
  • the absorber 90 can absorb 90% or more of the light having the same wavelength as the resonance wavelength, preferably 95% or more, and more preferably 99% or more. Therefore, it can be said that the absorber 14 according to the present invention is a complete absorber that substantially completely absorbs light.
  • the "vertical direction” is, for example, the Z direction perpendicular to the XY plane.
  • the optical sensor 10 absorbs not only the light in the vertical direction but also the light incident from the vicinity of the vertical direction including the vertical direction (within a range in which the inclination angle is ⁇ 1 ° or less with respect to the vertical direction) with a high absorption rate. To do.
  • the optical sensor 10 can absorb light incident from the vertical direction with the highest absorption rate.
  • FIG. 3 illustrates the thickness H (height in the Z direction) of the raised portion 141.
  • the thickness H of the raised portion is referred to as the thickness H of the raised portion, as described later. To do.
  • the surface of the absorber 14 has a periodic structure in which a plurality of raised portions 141 are arranged at a predetermined period (hereinafter referred to as "unit period").
  • the periodic structure is a structure in which a plurality of raised portions 141 are arranged by a unit period so that a lattice pattern is formed. That is, the plurality of raised portions 141 are positioned with each other at intervals corresponding to the unit period.
  • FIG. 4 is a plan view of the absorber 14 having a periodic structure related to the one-dimensional lattice pattern
  • FIG. 5 is a plan view of the absorber 14 having a periodic structure related to the two-dimensional lattice pattern.
  • the raised portion 141 is formed in a long shape along the Y direction in a plan view.
  • the raised portion 141 formed in a rectangular shape is illustrated in FIG. 4, the shape of the raised portion 141 is arbitrary as long as it is long.
  • the raised portion 141 may be oval.
  • the longitudinal direction of the raised portion 141 is the Y direction
  • the lateral direction is the X direction.
  • the plurality of raised portions 141 are arranged so as to be parallel to each other along the X direction (example of "predetermined direction”). Specifically, the plurality of raised portions 141 are arranged in a unit period T1 (example of "first period”). That is, two raised portions 141 adjacent to each other are periodically arranged at intervals corresponding to the unit cycle T1.
  • the unit period T1 is the moving distance when two raised portions 141 adjacent to each other are translated so that one completely overlaps the other.
  • the unit period T1 is, for example, 0.2 ⁇ m to 25 ⁇ m, preferably 3.0 ⁇ m to 14.0 ⁇ m.
  • the width W1 of the raised portion 141 is 0.3 to 0.7 times the unit period T1.
  • the exact definition of the width W1 of the raised portion 141 will be described later.
  • W1 is 0.3 to 0.7 times the unit cycle T1.
  • the width W1 is, for example, 0.1 ⁇ m to 17.0 ⁇ m, preferably 0.9 ⁇ m to 10.0 ⁇ m.
  • the thickness H of the raised portion 141 is 0.05 to 0.2 times the unit period T1.
  • the thickness H is within the above range, the directivity, sensitivity and wavelength resolution can be improved. From the viewpoint of making this effect more remarkable, it is preferable that the thickness H is 0.05 to 0.2 times the unit cycle T1.
  • the thickness H is, for example, 0.01 ⁇ m to 5.0 ⁇ m, preferably 0.15 ⁇ m to 3.0 ⁇ m.
  • the raised portion 141 is formed in a circular shape in a plan view.
  • the raised portion 141 formed in a circular shape is illustrated, but the shape of the raised portion 141 is arbitrary.
  • the raised portion 141 may be formed in a regular polygonal shape.
  • a unit lattice in which a plurality of raised portions 141 have a predetermined shape (described mainly in the present specification as a square lattice or a regular triangular lattice, but generally has a periodic structure. It can be any grid that exists) is arranged to repeat. That is, the unit grid is the smallest unit of the grid pattern.
  • FIG. 5 illustrates a case where the raised portions 141 are arranged in a square grid pattern.
  • the plurality of raised portions 141 are arranged in a unit period T2 (example of "second period"). That is, two ridges adjacent to each other are periodically arranged at intervals corresponding to the unit period T2. Since this is a two-dimensional periodic structure, the unit period of repetition in the two directions of the X direction and the Y direction (the length of the period is T2) is shown in the figure. Needless to say, since FIG. 5 is a square lattice, these two repeating directions (X direction and Y direction) are orthogonal to each other, and the magnitude of the unit period T2 is also shown as the length in the X direction and the Y direction.
  • the directions of repetition in the two-dimensional periodic structure are not necessarily orthogonal to each other.
  • the plurality of raised portions 141 are arranged in the second period T2 so as to form a grid such as a square grid or a regular triangular grid.
  • the unit period T2 is the movement distance when two raised portions 141 adjacent to each other are translated so that one completely overlaps the other.
  • the unit period T2 is, for example, 0.2 ⁇ m to 25 ⁇ m, preferably 3.0 ⁇ m to 14.0 ⁇ m.
  • the width W2 of the raised portion 141 is 0.3 to 0.7 times the unit period T2.
  • a strict definition of the width W2 of the raised portion 141 will be described later, including the case where the shape of the raised portion 141 is not necessarily rotationally symmetric.
  • the width W2 is preferably 0.3 to 0.7 times the unit period T2.
  • the width W2 is, for example, 0.1 ⁇ m to 17.0 ⁇ m, preferably 0.9 ⁇ m to 10.0 ⁇ m.
  • the thickness H of the raised portion 141 is 0.05 to 0.2 times the unit period T2.
  • the thickness H is within the above range, the directivity, sensitivity and wavelength resolution can be improved. From the viewpoint of making this effect more remarkable, it is preferable that the thickness H is 0.05 times to 0.02 times the unit cycle T2.
  • the thickness H is, for example, 0.01 ⁇ m to 5.0 ⁇ m, preferably 0.15 ⁇ m to 3.0 ⁇ m.
  • the planar shape of the raised portion 141 is arbitrary.
  • At least one of the plurality of optical sensors 10 in one sensor unit U may have a unit period different from that of the other optical sensors 10. For example, when the unit period is relatively large, the wavelength range of the absorbed light is shifted to the long wavelength side, and when the unit period is relatively small, the wavelength of the absorbed light is shifted to the short wavelength side. That is, at least one of the plurality of optical sensors 10 can have a different detection wavelength from the other optical sensors 10.
  • the unit period of all the optical sensors 10 in the sensor unit U may be different.
  • the present invention provides an optical sensor that employs a wavelength-selective complete absorber having a basic structure having a periodic structure as shown in FIG. 1D.
  • the wavelength selection element constituting this sensor is composed of a complete absorber having a simple periodic structure formed on the surface of a metal or a dielectric.
  • the periodic structure (one-dimensional lattice pattern) shown in FIG. 1 has raised portions extending in a straight line arranged in parallel.
  • a two-dimensional lattice pattern periodic structure can be adopted. 6 (a) and 6 (b) will be described later.
  • a one-dimensional grid pattern may be referred to as a "one-dimensional grid”
  • a two-dimensional grid pattern may be referred to as a "two-dimensional grid”.
  • the periodic structure is a raised structure (circular or polygonal in a plan view) formed of the metal on the metal surface or formed of the dielectric on the dielectric surface. (Square), which is a periodic arrangement, and the structures are arranged in a grid pattern.
  • the smallest unit of the grid is called a unit grid.
  • the shape of the raised structure in each unit cell is, for example, a regular n-sided polygon in a plan view.
  • the lattice is, for example, a square lattice or a regular triangular lattice among two-dimensional lattices.
  • the shape of the raised portion should be consistent with the grid. That is, the rotational symmetry of the lattice is four-fold symmetry in the case of a square lattice (1/4 rotation, that is, a rotation of (360/4) ° matches the original lattice, and so on). In some cases, it is three times symmetric. However, for each of the square lattice and the regular triangular lattice, it is desirable that the raised portion in the unit lattice is symmetrical 4 m times and 3 m times (m is a natural number).
  • the shape of the raised portion is preferably a square or a regular octagon, and in the case of a regular triangular lattice, the shape of the raised portion is preferably a regular triangle, a regular hexagon, or a regular dodecagon. If they are not matched, the half width of the absorption spectrum is widened and the background (absorption at a wavelength significantly deviated from the center wavelength) is increased. Also, complete absorption is impaired. Furthermore, it is desirable that each raised portion in the grid be the same size and shape as each other. If the size and shape of each raised structure are different, the characteristics of the complete absorber described below will deteriorate.
  • the raised portion when the raised portion is circular (disk-shaped), the circle has rotational symmetry for any number of rotations. Therefore, it should be noted that the raised portion in the circular unit grid can be either a square grid or a regular triangular grid. It should be noted that the above conditions do not necessarily have to be strictly obeyed depending on the characteristics required for the optical sensor, or can be intentionally configured to deviate from these conditions, as explained below.
  • the lattice may be a one-dimensional lattice.
  • the two-dimensional lattice may be made anisotropic, or the shape of the raised portion in the unit lattice in the two-dimensional lattice may be made anisotropic.
  • the one-dimensional lattice means a case where raised portions extending linearly in a specific direction are arranged parallel to each other and at equal intervals, as shown in FIG. 1 (d).
  • an affine transformation that is, parallel lines are parallel
  • an oblique grid, a rectangular grid, or a parallel grid obtained by performing a projection transformation that is maintained as it is.
  • anisotropy is given to the shape of the raised portion in the unit lattice in the two-dimensional lattice, for example, an elliptical raised portion obtained by extending a circular raised portion in a specific direction (n-fold symmetry (n ⁇ 3)). You can use the one that lost.
  • the ellipse has two-fold symmetry, but loses the three or more symmetries of the original circle.
  • the materials that can be used as a metal or a dielectric are, for example, Au, Ag, Al, Si, Ge, Al 2 O 3 , TiO 2 , SiO 2 , and SiC.
  • the metal and dielectric materials are not limited to the above examples.
  • the wavelength selection element composed of the complete absorber according to the present invention has a resolution of a Q value of 50 or more only for light having a desired wavelength among the light incident in a range of an angle inclined by about 1 ° from the vertical direction. Resonantly absorbs and emits heat. The heat generated on the surface of this complete absorber is conducted to the back side of the absorber by heat conduction, detected by a heat detector located immediately below it, and the heat is converted into electricity in the heat detector. And the electricity is detected.
  • the concept of "complete absorber” is used, but it should be noted that the term “complete absorption” does not mean logically all, that is, it is not limited to those that truly absorb 100%. There is a need to. Since the sensor provided in the present invention is a physical entity, it is usually rare for the elements constituting the sensor to absorb 100% of light, and in the examples and simulations described below, it is about 99%. However, even with this, the operation is substantially the same as when an element that truly absorbs 100% is used.
  • the degree of absorption that can be called a "complete absorber” in the sense of the essence of the present invention varies depending on various conditions, but for example, 90% or more, preferably 95% or more, more preferably 99%. If it has the above absorption rate, it can be regarded as a "complete absorber".
  • FIG. 6 (a) and 6 (b) are schematic views illustrating an example of the design of the optical sensor according to the present invention.
  • A shows a pyroelectric photodetector (also called a single wavelength sensor) for one wavelength, and this element is manufactured in an area of 2 mm ⁇ 2 mm.
  • FIG. 6B shows a 4-wavelength on-chip sensor in which such a 4-wavelength photodetector is manufactured in an area of 1 cm ⁇ 1 cm.
  • FIG. 6C shows the light reflection spectrum and absorption spectrum of the device for one wavelength.
  • FIG. 6D shows the results of a simulation of the wavelength dependence of the temperature distribution and temperature rise in the element for one wavelength element, that is, the single wavelength sensor.
  • the simulation was performed as follows.
  • the optical spectrum transmission, reflectance and absorptivity
  • full-wave simulation based on the FDTD method using FullWAVE of RSoft Design Inc.
  • the excited electromagnetic field is assumed to propagate in the -z-axis direction
  • the electric field is oscillated in the x-axis direction
  • the intensity of the incident field and their phases are normal to 1. It became.
  • the dielectric functions of Au, Si and SiO 2 were those described in Non-Patent Document 8, and the dielectric functions of ZnO were those described in Non-Patent Document 4. Further, Si 3 N 4 was determined by spectroscopic ellipsometry measurement.
  • the multi-wavelength sensor is a single-wavelength sensor according to the present invention, that is, an optical sensor element for one wavelength integrated on a chip.
  • the relationship between the structure of the complete absorber and the resonance wavelength in this single-wavelength sensor is described below. Will be described.
  • the basic reciprocal lattice vector of the surface lattice which is the lattice formed on the surface of the absorber by the periodic structure defined above.
  • the surface plasmon polaritons are excited when the following momentum conservation relationship holds between them, and light is efficiently absorbed.
  • be the angle from the vertical direction of the surface.
  • equation (3) can be written as follows.
  • FIG. 7 shows (a) the dependence of the incident light on the polarization of absorption and (b) the angular dependence of the resonance wavelengths on some i and j.
  • the raised portion in the unit lattice is circular and the periodic structure is also a square lattice, so that the structure has no anisotropy and does not show polarization dependence.
  • the resonance wavelength shows a clear angle dependence as shown in FIG. 7B, strongly reflecting the diffraction effect of the periodic structure.
  • some branches appearing in the range of 3.0 to 5.0 ⁇ m are degenerate, and only wavelengths near 2.6 ⁇ m and 3.7 ⁇ m show complete absorption. ing.
  • the resonance mode of 3.7 ⁇ m among them shows an angle dependence that changes sharply at 0 °, and by utilizing this, a sensor with high directivity becomes possible.
  • a strong absorption peak (a strong detection output peak in terms of sensor output) appears near the incident angle of 0 degrees, but even if the incident angle deviates slightly, there are three cases of angle deviation.
  • the intensity drops sharply, i.e. very high.
  • the effect of obtaining angular selectivity, in other words, directivity, can be obtained. This effect is obtained from the fact that degeneracy has occurred (is in a degenerate state) as described above.
  • SPP surface plasmon polariton
  • this mode of degeneracy at zero angle is not used as the mode of complete absorption, the angle resolution cannot be increased.
  • this degenerate mode is used as the mode of complete absorption, if unnecessary subpeaks due to the localization mode of surface plasmons on the surface of the raised portion in the unit cell coexist and overlap, this subpeak has low directivity. Therefore, the high directivity of the degenerate mode cannot be utilized, and the wavelength selectivity is also impaired.
  • Infrared sensors with a periodic structure have been proposed in the past (Non-Patent Documents 1 to 3), but the momentum is preserved by the momentum of the surface plasmon polariton, the surface parallel component of the incident light, and the diffraction grating, and the incident angle is 0. Resonance in degrees The degeneracy of each mode is not taken into account. Also, in the spectrum, important performances such as narrowing the band, complete absorption, and low background have not been realized. Also, the angular resolution and directivity are low. The reason for this is that the resonator effect of the localized surface plasmon and the resonance of the diffraction grating and surface plasmon polaritons optimized in the present invention are mixed without being well separated, and are broad or subpeak. It has become a lot of complicated absorption spectra.
  • the degeneracy can be indirectly controlled by performing the optimization as shown below.
  • Adjust the height and diameter of the disk generally the raised portion in the unit cell
  • the complete absorption at the incident angle of 0 degrees approaches 100%.
  • the height and diameter of the disk should not be made too large.
  • the present invention can be regarded as an "excitation phenomenon of surface plasmon polaritons via a diffraction phenomenon" in the first place. This is different from the resonance due to the confinement effect of the "localized surface plasmon" illustrated in FIGS. 1 (a) and 1 (b) in a finite-sized object. As the disc grows taller and larger, not only does the disc act purely as a diffraction grating, but each disc in turn becomes an object that also acts as a resonator independently.
  • the surface plasmon confined in the disk begins to appear as a broad background having a structure in the vicinity of 4 to 6 ⁇ m as a mode of “localized surface plasmon”.
  • the size of the disk is about 2 to 3 ⁇ m, which is smaller than the period, but the resonance wavelength of the confined mode is considered to appear in about 4 to 6 ⁇ m, which is longer than that.
  • the "localized surface plasmon" has a wide half-value width as shown in the graph of the simulation result of the absorption rate shown in the lower part of FIGS. 1 (a) and 1 (b), which is not preferable as a sensor.
  • FIG. 1A is a horizontal confinement mode
  • FIG. 1B is a vertical confinement mode. If the disk diameter becomes too large, the characteristics of the structure shift to the groove structure as shown in FIG. 1 (b), and not only the horizontal mode but also the vertical confinement mode comes out, which is more complicated. It is considered to be a spectrum.
  • the optical filter is designed and created without noticing the difference between the above two resonances, the mode of "localized surface plasmon" cannot be suppressed, and therefore an unwanted peak or background appears in the spectrum, which is an unfavorable characteristic. It will only have.
  • the disk diameter and height are too small, the diffraction effect becomes small and complete absorption cannot be achieved, but conversely, if the disk diameter and height are too large, it is more like a diffraction grating.
  • the behavior as an isolated resonator also appears, and there is a problem that a clean spectrum cannot be obtained.
  • the optimum structure is obtained in consideration of this point.
  • an arrangement of disks (raised portions) as protrusions is formed on the surface of the optical sensor, and the height and diameter of the protrusions suppress the manifestation of absorption due to the generation of localized surface plasmon, and the surface plasmon polariton.
  • the adjustment is made so that complete absorption occurs by promoting the diffraction effect of.
  • the directivity and wavelength resolution of the device can be improved by avoiding the appearance of absorption by localized surface plasmon (LSPR) as much as possible and maximizing the excitation of surface plasmon polaritons (SPP) by the diffraction phenomenon. it can.
  • LSPR localized surface plasmon
  • SPP surface plasmon polaritons
  • the shape of the raised portion in the unit lattice which is the symmetric unit of the lattice, is not limited to a circle, and a regular polygon having rotational symmetry can also be used. Moreover, this lattice can use not only a square lattice but also a regular triangular lattice. Further, the shape of the raised portion in the unit grid should be consistent with the symmetry of the grid having the unit grid as the minimum unit as described above.
  • a raised portion such as a square or a regular octagon
  • a regular triangular lattice it is preferable to use a raised portion such as an equilateral triangle, a regular hexagon, or a regular dodecagon.
  • the raised portion in the lattice and / or the unit lattice has anisotropy.
  • a one-dimensional grid may be used instead of the two-dimensional grid as shown in FIG. 6 (c). More specifically, as shown in FIG. 1 (d), the linear and strip-shaped ridges extending in a specific direction may be arranged parallel to each other at equal intervals, that is, in a one-dimensional lattice pattern. ..
  • the resonance wavelength that is, the wavelength of light that completely absorbs and is detected by the optical sensor.
  • the description mainly targets light in the mid-wavelength infrared region, but as is clear from the theoretical explanation given above, the resonance wavelength does not need to be limited to this region, and ultraviolet rays, It is possible to configure a sensor that operates for a wide range of light including visible light and various infrared rays.
  • FIG. 6 shows the results of the electromagnetic field simulation. From FIG. 6 (e), it can be seen that the enhancement of the x-direction component of the electric field occurs at the end of the disk structure with respect to the incident of light from the ⁇ z direction. More specifically, in the side wall of the disk structure, the Ex-direction component of the electric field has a value of about 12 on the scale shown on the right side of the figure, but it is shown that this value decreases as the distance increases. .. Further, from FIG.
  • the phase of the electric field in the z direction is inverted at the left end and the right end of the disk (values of about -18 and 18 on the scale on the right side of the figure, respectively), and the propagation type surface plasmon polariton. Can be seen to be excited. From FIG. 6 (g), it can be seen that light absorption occurs on the upper surface of the fully absorbing structure by Au. From FIG. 6 (d), it is shown that when infrared light having a resonance wavelength of 1 mW is irradiated in a radius of 0.5 mm, a temperature rise of 2.3 K occurs in the pyroelectric sensor portion, and infrared light is observed. It can be seen that it has sufficiently high responsiveness as a sensor.
  • the chip When a plurality of optical sensors according to the present invention are integrated on one chip to form a multi-wavelength optical sensor, the chip is designed so as not to be affected by heat from adjacent optical sensors as much as possible. Between the upper photosensors, a component with high thermal resistance, such as a material with high thermal resistance, or a thermal barrier that reduces heat propagation by slits or notches can be installed.
  • a component with high thermal resistance such as a material with high thermal resistance, or a thermal barrier that reduces heat propagation by slits or notches can be installed.
  • FIG. 1 (a) using the confined type localized surface plasmon.
  • FIG. 8 (a) shows the dependence of the spectral intensity on the diameter of the Au disk structure
  • the optimum diameter of the disc was around 50% of the period p (0.3p to 0.7p)), and the optimum height of the disc was in the range of 0.05 to 0.2p.
  • the optimum diameter (or the size of the corresponding portion) of the raised portion which is a more generalized disc, is the diameter of the circumscribed circle when the raised portion is a regular polygon.
  • the raised portion when the raised portion has an elongated shape so that the polarization direction can be detected, that is, an elliptical shape or an elongated polygon, or when considering the width of the raised portion having another planar shape, the raised portion in the other direction.
  • the width is the length of the line segment formed by the normal projection of the raised portion on the straight line in the relevant direction.
  • the width differs depending on the direction, so here, the maximum and minimum values of the width when the direction is changed are referred to as the width of the widest part and the width of the narrowest part, respectively.
  • the width of the narrowest portion of such a raised portion is 0.3 p or more, and the width of the widest portion is Optimal is 0.7p or less.
  • the width of the widest part and the width of the narrowest part do not match, when simply referring to the range of width values without specifying which width, "between the maximum and the minimum”. It means "for values of arbitrary width”. That is, the "width" of the raised portion is the distance between two parallel straight lines that are in contact with the peripheral edge of the raised portion and sandwich the raised portion in a plan view, and the distance is 0.3 to 0.7 times the period. It should be within the double range. It should be noted that there may be a plurality of distances (that is, "widths”) conceived by two parallel straight lines depending on the planar shape of the raised portion.
  • FIG. 8 is a diagram of an Au disc, the optimum conditions shown for the case of Au are applied to the size of the raised portion made of these metals even with other metals and alloys such as Al, Ag, and Cu. .. Furthermore, the above optimum conditions for size can be applied as they are even when the raised portion of a disk or the like is made of a dielectric material.
  • FIG. 6C shows the result of a simulation of a structure in which disks having a diameter of 1.85 ⁇ m and a disk height of 0.34 ⁇ m are arranged in a period of 3.7 ⁇ m.
  • the periodic surface structure may be composed of only metal, or a surface structure such as Si is etched, and an Au film of about 100 nm is formed on the surface structure so as to maintain the underlying shape. The film may be formed conformally. This is because most of the induced charges and polarizations due to the incident light occur on the upper side of the metal periodic structure (see FIG. 6 (g)), and there is almost no difference even if the inside is Si.
  • the thickness of a film of Au or other metal on such a surface is about 50 nm or more, light cannot reach the back side of such a film, and therefore the influence of a material or the like located 50 nm or more deep from the surface. Can be ignored.
  • FIG. 11 shows a wavelength selection element used in the optical sensor according to the present invention, which has a structure of a tall Au disk (shown by a broken line) and a Si disk (shown by a solid line) coated with Au having a thickness of 80 nm.
  • the simulation result of the light absorption spectrum is shown.
  • these two wavelength selection elements have the same parameters as each other. Specifically, the period was 3.7 ⁇ m, and the diameter and height of the disk were 1.85 ⁇ m and 0.34 ⁇ m, respectively. It was confirmed that both of these two complete absorbers had a period of 3.7 ⁇ m, and both showed an absorption rate of 0.99 at a resonance wavelength of 3.722 ⁇ m and were almost perfect absorbers.
  • the wavelength resolution was 51 nm and the Q value was 71.
  • a pyroelectric body, a bolometer, a thermoelectric electromotive element, etc. can be used as the heat detector, but in the following examples, a ZnO pyroelectric body was adopted as the heat detector. However, of course, other types of thermal detectors can be used in the same manner, and even when a pyroelectric body is used, the material may be other than ZnO.
  • a four-wavelength infrared sensor in which four single-wavelength sensors according to the present invention are integrated on a single Si chip at different wavelengths will be described in detail below.
  • the present invention is not intended to limit the present invention to such a configuration in which a plurality of single wavelength sensors are combined / integrated, and the present invention may be a single wavelength sensor, or may be a composite / integrated configuration. Note that it is included in the technical scope.
  • optical sensor of the present invention is taken as an example of a four-wavelength (quad-wavelength IR sensor) infrared sensor in which four optical sensors according to the present invention and those having different absorption wavelengths are integrated on a single chip.
  • RIE reactive ion etching
  • anisotropic wet etching were performed on a 3-inch double-sided polished Si substrate.
  • a set of 25 4-wavelength infrared sensors was arranged on this substrate. This creation procedure is shown in FIG.
  • a 100 nm-thick Pt film deposited by electron beam (EB) deposition was used as the bottom electrode, but this film also provided a (111) plane for growing a highly crystalline ZnO (0001) film. It also functions as an epitaxial substrate.
  • EB electron beam
  • FIG. 9 The method for producing the four-infrared wavelength sensor will be described in detail below.
  • a 3-inch double-sided polished Si wafer was thermally oxidized by dry oxidation at 1150 ° C. to form two SiO2 layers having a thickness of about 100 nm on both sides of the Si wafer.
  • a 350 nm thick Si 3 N 4 film was deposited on both sides of the SiO 2 / Si wafer by direct current (200 W) reactive sputtering using a boron-doped Si target and an Ar / N 2 (18/10 sccm) mixed gas (1).
  • a sputter i_Miller CFS-4EP-LL of Shibaura Mechatronics Co., Ltd. (Fig. 9 (a)).
  • a rapid thermal annealing (RTA) process is then applied on the sputtered Si 3 N 4 / SiO 2 / Si substrate in an N 2 atmosphere (specifically, heating at a rate of 5 ° C./sec). to, and maintained at a constant temperature for 1 minute at 1000 ° C., then allowed to cool) to improve the quality (hardness) of the Si 3 N 4 film.
  • RTA rapid thermal annealing
  • a photoresist pattern was generated as a mask for the lift-off process of the bottom Pt film electrode by a maskless lithography process.
  • a 100 nm thick Pt film for the sensor bottom electrode with a 10 nm thick adhesive Ti layer was subjected to Si 3 N 4 / by an electron beam deposition apparatus (UEP300-1C of ULVAC Co., Ltd.) using a patterned photoresist mask. It was deposited on a SiO 2 / Si substrate. The lift-off process was performed using a PG remover. The same maskless lithography process as described above was applied for patterning of the ZnO pyroelectric film and the top Au electrode (by sputtering and electron beam deposition, respectively).
  • RF sputtering treatment 300 W using a ZnO target and an Ar / O 2 mixed gas (16/04 sccm) was used for epitaxial growth of a ZnO film having a high degree of crystallinity on the Pt bottom film electrode.
  • a 340 nm thick amorphous Si (boron-doped) film was patterned on the top Au electrode as a template layer for an Au disk array (FIG. 9 (b)).
  • a photoresist disk array designed for each 4-wavelength sensor as a RIE mask for etching Si was patterned on a Si template using a direct laser drawing lithography process (FIG. 9 (c)).
  • the remaining photoresist was removed by O 2 plasma and acetone.
  • the Au disk array of the plasmonic absorber (complete absorber) having a two-dimensional periodic structure is finalized by applying the above maskless lithography process by CD sputtering of an 80 nm thick Au film after a 5 nm thick adhesive Ti layer. (Fig. 9 (e)).
  • the 4-wavelength IR sensor chip on the 3-inch wafer was then subjected to a process for thermal isolation from the membrane support.
  • a Si 3 N 4 layer AZ-514E photoresist RIE mask (for membranes and for heat isolation slits around individual single wavelength sensors) was first patterned.
  • a Si 3 N 4 mask for anisotropic wet etching of Si was formed using RIE treatment (CHF 3 plasma).
  • CHF 3 plasma RIE treatment
  • the Si substrate on the bottom of each single wavelength sensor was heated with KOH solution (8 mg). / L, 80 ° C.) was used for complete etching by low speed anisotropic wet etching (FIG. 9 (f)).
  • the sensor chip wafer was then held in a PG remover for 1 day, finally rinsed with acetone and then separated into 4 wavelength IR membrane sensor chips measuring 1 x 1 cm 2 .
  • FIG. 10 summarizes the morphological features of the created 4-wavelength infrared membrane sensor.
  • FIG. 10A is a photograph of nine sets of 4-wavelength infrared sensor chips made from the entire 3-inch wafer. The inset photograph shown in the upper right part of this figure is taken by irradiating a typical 4-wavelength infrared sensor created with white light from the bottom. From this inset photograph, it can be seen that there is an optically transparent Si 3 N 4 film around each of the single wavelength sensors, which is sufficiently retained by the Si 3 N 4 film created. (See also FIG. 9 (f)).
  • FIG. 10B is a brightfield optical microscope image showing the entire four-wavelength infrared sensor including four single-wavelength sensors and also displaying a 2 mm long scale bar. From this, it can be seen that in the created sensors, each single wavelength sensor has a size of 2 ⁇ 2 mm 2 , and the entire 4-wavelength infrared sensor has a size of 1 ⁇ 1 cm 2 .
  • the top SEM image shown in FIG. 10 (c) shows a typical four-wavelength infrared sensor according to the present invention created.
  • the cross-sectional image shown in FIG. 10D illustrates the structure of this sensor, which means that the Au shell disk supported by the Si core template is well constructed by using the manufacturing process described above. Becomes clear. Plasmonic disk array, Au top electrodes of the pyroelectric body ZnO film, the bottom Pt electrode, also the size parameters of each film or layers in the sensor, such as the Si 3 N 4 film be read clearly from FIG. 10 (d) We were able to verify, but these were the same as the design values.
  • the SEM image of the created 4-wavelength infrared sensor was obtained using a scanning electron microscope (SU8230, Hitachi High-Technologies Corporation) under an acceleration voltage of 5 kV.
  • a focused ion beam miller (FB-2100, Hitachi High-Technologies Corporation) was used to generate a rectangular through hole in the membrane sensor chip.
  • the performance (spectral response) of the manufactured 4-wavelength infrared sensor was measured using a tunable infrared laser system as a frequency-variable excitation source.
  • the characteristics of the infrared laser output from this system are a broad spectral line width with a Q value of about 10 to 15, a collimated beam diameter (diameter) of 1 mm, a repetition frequency of 1 kHz, and an average power of several milliwatts (wavelength). Dependence).
  • the sensor to be measured was directly irradiated with a laser beam having a diameter of 1 mm.
  • the spectral line width of the output infrared pulsed laser was very wide compared to the absorption bandwidth of the infrared sensor to be measured, which made the spectral response of the infrared sensor broad. became.
  • the spectral response of each infrared sensor was calculated by performing an inverse convolution of the spectral output voltage of the infrared sensor with the measured spectral power distribution of the infrared laser.
  • the time response characteristics of the manufactured infrared sensor were measured using a high-performance oscilloscope (500 MHz, using Tektronix TDS520A) combined with an SR560 amplifier.
  • FIG. 12 shows the simulation result of the absorption spectrum in the first row, the simulation result of the average heat increase spectrum in the second row, and the curve of the measurement result of the spectral response in the third row from the top to the bottom. ..
  • columns (a) to (d) of FIG. 12 show simulation or measurement results for a single wavelength sensor among the four wavelength infrared sensors, respectively.
  • the resonance wavelengths of the single wavelength sensors corresponding to columns (a) to (d) are 3.522 ⁇ m ( ⁇ 1 ), 3.722 ⁇ m ( ⁇ 2 ), 3.822 ⁇ m ( ⁇ 3 ) and 3.922 ⁇ m ( ⁇ ), respectively. 4 ).
  • the disc heights were all set to 340 nm, but the period p was 3.5 ⁇ m (corresponding to ⁇ 1 ), 3.7 ⁇ m (corresponding to ⁇ 2 ), and 3.8 ⁇ m (corresponding to ⁇ 2 ), respectively. (Corresponding to ⁇ 3 ) and 3.9 ⁇ m (corresponding to ⁇ 4 ), and the diameter of each disc was set to 1/2 of each period.
  • the optical response spectrum of the four-wavelength infrared sensor (more accurately, the response of each of the four single-wavelength sensors constituting the four-wavelength infrared sensor).
  • the simulation result of the spectrum is almost 1 (0.99) at the peak and very narrow (half-value width 50 nm). This proves that the designed sensor can efficiently absorb infrared light at each resonance wavelength.
  • the simulation results of the average temperature increase on the thermoelectric ZnO film during thermal equilibrium at each of the four single wavelength sensors, as shown in the four graphs lined up in the center row of FIG.
  • this four-wavelength infrared sensor was able to absorb infrared light within a narrow spectral bandwidth at the designed resonance wavelength almost completely, thus converting the absorbed infrared energy for the absorption spectrum into heat and evoking it. It can be clearly seen that the heat is transferred to the ZnO detection layer. As expected, the measured spectral response curves shown in the graph in the bottom row of FIG. 12 clearly prove that the design according to the technical idea of the present invention is correct. There is.
  • the sensor of the present invention has a dependency on the angle of incidence because it is a diffraction grating-like plasmonic array having a 2D periodic structure. Therefore, by measuring this dependence, the angle response characteristics of this sensor were verified.
  • the angle of incidence is perpendicular to the surface (indicated as 0 degrees in the figure), and is tilted 5 degrees and 10 degrees from the vertical direction (FIG. 13).
  • Spectral response curves (shown as 5 ° and 10 °, respectively) were plotted.
  • the resonance depends on the angle of incidence, when the angle of incidence is tilted vertically, the response decreases rapidly as the angle of tilt increases. This indicates that the sensor according to the present invention has a high degree of directivity in the vertical direction.
  • the time response of the single wavelength sensor of the invention to a pulsed laser of 104 femtoseconds, which resonates at a wavelength of 3.722 ⁇ m was experimentally measured using a high-performance oscilloscope. saw.
  • the result is shown in FIG.
  • the uniform response (FIG. 15 (a)) of the sensor measured by applying 10 pulses with a period of 1 msec indicates the high-speed response and stability of this sensor.
  • the impulse response of this sensor (FIG. 15 (b)) measured by stimulating with a single pulse shows a high-speed response of 16 ⁇ s and a attenuation of 153 ⁇ s, which is sufficient for practical equipment. It can be used.
  • a four-wavelength infrared sensor constructed by integrating four single-wavelength sensors according to the present invention having resonance wavelengths shifted from each other on a chip has been produced, but this can be applied to actual applications. It can be easily extended to more multi-wavelength sensors.
  • the optical sensor of the present invention is not limited to this, but is a portable spectroscopic infrared measuring instrument that can be used for a multicolor radiation thermometer, color imaging used for environmental recognition, and air pollution detection. It can be applied to remote sensing and imaging for.
  • the sensor of the present invention exhibits a high degree of directivity in the vertical direction, it is possible to further improve the directivity by adopting a pinhole aperture or a collimator.
  • the resonance wavelength of the single wavelength sensor according to the present invention is not limited to the MWIR region, and UV, visible light, and various types of red are maintained while maintaining its basic structure. It can be applied to the outer area.
  • the detection angle can be set to an extremely narrow angle of, for example, 1 degree or less.
  • the simulation result of the change in the absorption rate when changed with is shown. As can be seen from the figure, the absorption rate is reduced from 1 to 1/2 or less when the deviation of the incident angle from the vertical direction is only ⁇ 0.5 degrees, and further to about 1/3 when the deviation is ⁇ 1 degrees. It can be seen that it decreases.
  • the decrease in the absorption rate becomes slightly slower with respect to the increase in the deviation of the incident angle. If you want to detect that the incident angle has become larger than a certain level more sensitively, it is not limited to this, but for example, if the deviation of the incident angle is about ⁇ 0.5 degrees to 1 degree, it will be detected. Although the sensitivity is low, if this deviation becomes larger, it can be dealt with by combining it with another type of sensor that can detect it more sensitively than shown in FIG.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

低損失の金属材料あるいは誘電体からなる波長選択型完全吸収体による光熱変換器と、熱検知センサーとを組み合わせ、特定波長の光を高効率に熱へと変換しさらに電気的に検出するセンサーを開発する。ここで、本発明の波長選択型完全吸収体は周期構造を持つため、高い指向性を持ち、熱ふく射の検知を利用した小型のモーションセンサーや人見守りセンサーなどとしても利用できる。また、センサーの共鳴波長に合ったレーザー光源と組わせることで高精度小型な位置センサーとしても使用できる。

Description

光センサー、センサーユニット及び光センサーを利用した物体検出装置
 本発明は、簡単な周期構造を持ち、高い波長分解能と角度分解能とを持ち、光を熱に変換することで光を検出する光センサーに関する。本発明は、そのような光センサーを複数並べたセンサーユニットにも関する。本発明は、そのような光センサーを利用して物体の存在や動きを検出する物体検出装置にも関する。
 赤外分光法は、物質の原子分子振動や電気的性質に関する情報を得ることができる。したがって、赤外分光法は、材料科学および赤外線天文学など広範囲な学問分野で物質の同定や物性評価に使用され、当該学問分野の発展に大きく貢献している。また、放射温度計およびサーモグラフィーは、物質の熱ふく射を測定することで、非接触で温度を計測できる装置である。そして、放射温度計やサーモグラフィーに関する産業および社会への応用が急速に進んでいる。また、非分散型赤外吸収法(NDIR)によるガスセンサーは、光源から出た赤外線を気体分子に吸収させ、その気体の吸収に合致した波長の光の透過率を計測することで、気体分子の濃度を検知するセンサーである。そして、当該ガスセンサーは、センサー素子の劣化がほとんど無く高感度であるため、ガス検知法としてニーズが高まっている。
 上記の赤外分光法においては、例えばフーリエ変換分光法は、干渉計の大きさが数十センチにもなり、小型化は難しい。また、熱ふく射の角度分解計測には複雑な試料ステージや分光器搭載ゴニオステージが必要となり、大掛かりになる。また、赤外線温度計測では、放射率が未知な材料を計測すると、光の強度と温度との対応関係がわからないため、精度が保証されない。以上の問題を解決するため、2波長型の放射温度計が改良型として市販されている。しかし、2波長型の放射温度計は、放射率が波長に対して殆ど変化しない材料では有効であるが、放射率が波長に対して変化する場合は、精度が保証されず、多波長計測が必要となる。非分散型赤外吸収法によるガスセンサーでは、赤外線の検出波長幅が狭帯域であるほど、正確かつ選択的に気体分子の吸収を測定することができる。しかし、一波長計測では複数の分子種のスペクトルが重なって分離が難しい場合には、多波長計測が望まれる。以上の通り、従来から提案されている赤外分光法では改良の余地がある。
 具体的には、赤外分光法の高性能化には、波長分解能の高さとともに、多波長での計測が望まれている。例えば、温度センシングの際には、波長分解能を高くすることで、近接2波長の距離を小さくでき、当該近接2波長間の距離の範囲で放射率がほぼ定数であるとして扱え、温度を求めることができる。あるいは、多波長での計測を行うことで、放射率の波長依存性が大きい場合でも、放射率の関数と温度とを同時に求めることができる様になる。複数の波長の光を高い波長分解能で検出できる小型な光検知素子があれば、放射率が未知であっても正確な温度を計測することができる。また、非分散型赤外吸収法において、複数種類のガスのスペクトルが重なるような場合でも、多波長で計測することにより、それぞれのガスの量を分離して計測することも可能となる。
 以上の通り、計測精度の向上と計測装置の小型化とを目指し、熱検知材料と特定の波長の光とを吸収し熱を発生する完全吸収体を組みあわせた光熱変換型の赤外線センサーが提案されている。これらのセンサーで用いられる完全吸収体は、誘電体フォトニック構造、または、金属プラズモニック構造が用いられている。完全吸収体は、マクロな積層型の誘電体フィルターによる波長分別とは異なり、二次元パターニングにより形成され、光検知素子の微細化と多波長化とに適している(非特許文献1~3)。しかし、これらの完全吸収体の微細加工のパターンおよびプロセスは、複雑である。また、完全吸収体を使用したセンサーの分解能は、検出波長5μm程度の中赤外帯域において通常0.5μm程度であり(Q値にして10程度)、固体分子の振動と比べると格段にブロードである。さらに、0.1μmを切る波長選択性とともに、受け入れ角が±1°を切るような垂直方向への指向性を持つ光熱変換型の赤外光検知素子はこれまで実用化の例がない。このため、高波長分解能、高指向性および多波長でありオンチップの小型マイクロ素子を、簡単な構造で実現することが望まれている。また、使用する材料は、誘電体や損失の少ない金属を用いることで、完全吸収体の共鳴波長幅を狭くする必要がある。たとえば、赤外帯域でAu、Al、Si、Ge紫外帯域ではAl、可視帯域ではAuやAgなどが適している。金属材料の場合は、動作波長において、性能指数(figure of merit: FOM) -ε/εの値が3程度以上のものが望まれる。また、上の説明では複数波長の検出が求められていることを例として説明したが、単一波長のセンサーであっても高度な分解能や指向性を有するものも大いに有用である。さらには、赤外線以外の波長域(例えば、可視光域と、可視光域よりも低域側および高域側とにわたる広い波長域)の光においても、このようなセンサーは大いに有用であることは言うまでもない。
 図1に4つの異なる動作原理を持つ完全吸収体の例を示す。様々な完全吸収体がこれまで提案されている。多くの完全吸収体の動作原理は図1に例示する4つに分類されることがほとんどである。図1(a)に係る完全吸収体は、二次元微細加工を施した金属‐絶縁体‐金属構造(MIM構造)であり、中赤外帯域の波長選択性を持つ光センサーである。図1(a)の完全吸収体の構造では、下側から5層目(上側から1層目)の有限幅の短冊状金属構造が局在表面プラズモンを閉じ込める共振器となり、短冊の幅の大きさにより共鳴波長が変化する。また、短冊のアレイ以外に、ディスク・アレイ、ホール・アレイ型のデバイスもあり、これらも同様の特性を示す(非特許文献4)。しかし、これらのMIM構造の素子は、構造が複雑であり、波長の半値幅は狭いものでも入射波長の10%程度にとどまり(Q値が約10)、高い波長選択性が必要な用途には向かない。特に気体センサーとして用いるには気体分子の吸収バンド幅に比べて素子の帯域波長幅が広すぎるため、目的の気体分子のシグナルと目的以外の気体分子のシグナルとの分離に難点がある。また、角度分解能や素子の指向性の点でも、受け入れ角は垂直方向から±30°以上に開き、指向性は殆ど無いに等しい。この為、素子に対して垂直方向への指向性を持たせるためには、アパチャーなど、別途追加の光学部品が必要となる。なお、この図では一番下の金属層、その上の焦電体層、さらに上の3層目の金属層が焦電体熱検知センサーを構成し、その上に光熱変換素子としてMIM型の完全吸収体が搭載された構造となっている。上側の完全吸収体と共鳴する波長の光や熱ふく射が入射した際に熱が発生し、そのすぐ下の熱検知部で検出される。
 一方で、図1(b)のように平坦金属表面上に、幅のせまく深い溝を掘った共振器構造も完全吸収体として使用できる。この場合は溝の縦方向への共振器効果が生じ、溝が深いほど長波長の共鳴が生じる。また、溝の幅が小さくなるほど、その共鳴波長は長くなる(非特許文献5)。(b)の完全吸収体の場合も(a)と同じように、局在表面プラズモンの閉じ込め効果を用いており、波長幅は(a)と同程度に大きくなる。また、指向性も良くない。
また、他方では、図1(c)のような積層型の分布反射器とプラズモニック反射層との間に共振器構造を形成した波長選択構造が報告されおり(非特許文献6)、また、その類似構造も報告されている(非特許文献7)。これらの構造では波長分解能は理論的にQ値が150以上、また実験的にも50以上の高分解能が容易に得られ、高波長分解能なセンサーが可能である。しかしながら、これらの構造は多数の蒸着プロセスからなり、また、マイクロスケールの各微小領域に異なった膜厚を持つ素子を複数並べて製作することは難しく、オンチップ型の多波長素子として実現することは難しい。さらにこのような積層型の完全吸収体による波長選択型センサーは、光の入射角度と共に共鳴波長がシフトしてしまう難点がある。
本発明の目的は、光センサーの表面に対して垂直方向のごく近傍、例えば±1°以下の方向から入射する、極めて狭い範囲の特定の波長域の光を検知できる、高指向デイであって、かつ、例えばQ値50以上の狭波長帯域の光センサー、及び、この光センサーをアレイ化し、高波長分解能かつ高指向性を持つ、多波長センサーとして構成することも可能なアレイ型センサーを提供することである。
 本発明の一側面によれば、
 光を検出可能なセンサーであって、表面が金属および誘電体の少なくとも一方で形成され、入射する光を吸収する吸収体と、前記吸収体による光の吸収によって発生する熱を検出する手段とを設け、前記吸収体は、当該吸収体の表面に垂直に入射し、かつ、当該吸収体の共鳴波長と同じ波長を持つ光を吸収し、前記吸収体の表面は、隆起している複数の隆起部分を含み、前記吸収体の表面は、一次元または二次元の格子パターンが形成されるように前記複数の隆起部分が所定の周期で配列される周期構造をとり、前記一次元の格子パターンにおいては、前記複数の隆起部分の各々は、長尺状に形成され、相互に平行になるように所定の方向に沿って第1周期で配列され、前記隆起部分の幅は、前記第1周期の0.3倍~0.7倍であり、前記隆起部分の厚さは、前記第1周期の0.05倍~0.2倍であり、前記二次元の格子パターンにおいては、前記複数の隆起部分の各々は、格子状になるように第2周期で配列され、前記隆起部分の幅は、前記第2周期の0.3倍~0.7倍であり、前記隆起部分の厚さは、前記第2周期の0.05倍~0.2倍であり、前記吸収体に入射した光の表面平行成分と前記格子パターンとから得た運動量とによって励起され、前記吸収体の表面を伝搬する表面プラズモンポラリトンまたは表面フォノンポラリトンの複数のモードの各々は、当該吸収体へ入射する光が表面に対して垂直に入射し、かつ、波長が前記共鳴波長であるときに縮退状態となる光センサー。
 ここで、前記隆起部分は、二次元の格子パターンで配列され、前記吸収体の光の吸収には偏光依存性がない。
 また、前記隆起部分は、前記二次元の格子パターンの対称性が維持される形状に形成される、
 あるいは、記隆起部分は、前記一次元の格子パターンに配列され、
 前記吸収体が吸収する光は、特定の偏光方向の光である。
 また、前記吸収体が吸収する光は、紫外線、可視光または赤外線である。
 また、前記熱を検出する手段は前記熱による温度上昇を検出する手段であってよい。
 また、前記温度上昇を検出する手段は焦電体またはボロメーターであってよい。
 また前記隆起部分の表面において、前記金属の厚さが50nm以上である、
 また前記吸収体は、当該吸収体の表面に垂直に入射し、かつ、当該吸収体の共鳴波長と同じ波長を持つ光を90%以上吸収する。
 また、前記金属は、Au、Ag及びAlから選択され、前記誘導体は、Si、Ge、Al、TiO,SiO及びSiCから選択される。
 また、検出する光の帯域幅が50以上のQ値に対応するものであってよい。
 また、最も検出感度が高い方向からの検出感度半値角度が±1度以下であってよい。
 また、前記検出感度が最も高い方向はその表面に垂直な方向であってよい。
 本発明の他の側面によれば、上記何れかの光センサーを単一のチップ上に複数個配列したセンサーユニットが与えられる。
 ここで、前記複数個の光センサーのうちの少なくとも1つは検出波長が他の光センサーと異なるものであってよい。
 また、前記1つの光センサーは、前記他の光センサーとは前記隆起部分が配列される前記周期が異なる。
 また、前記複数個の光センサーの間の少なくとも一部の領域に熱障壁を設けてよい。
 本発明のさらに他の側面によれば、上記何れかの光センサーを有し、特定方向にある物体からの光を検出することにより前記物体の存在または動きを検出する物体検出装置が与えられる。
 ここで、前記物体は物品、動物及び人間からなる群から選択されてよい。
 また、前記光センサーは赤外線を検出するものであってよい。
波長選択性の高い完全吸収体と熱検知センサーとを組み合わせることにより、優れた分光感度を持つセンサーが実現できる。熱検知器には焦電体、ボロメーター、熱起電素子などを用いる。センサーの吸収波長は完全吸収体の共鳴波長を設計することにより、柔軟に変更できる。また、光を直接電気に変換する光電型(量子型)のセンサーと異なり、本発明では用いる材料とその組成は波長に依らず同一で良く、完全吸収体の構造パラメーターのみにより分光感度曲線を設計でき、検知材料を変化させずに微細加工により波長選択性を柔軟に調整できる点が利点である。また、熱検知型であるため、量子型赤外センサーの様に低温の冷却が必要なく、小型かつ省エネルギータイプのセンサーが可能である。
このような光センサーは、高い波長分解能を持つ複数の光センサーを一つのチップに搭載することができるため、超小型な分光器やマルチカラーイメージングセンサーとして使用ができる。また、その高い指向性を利用して、モーションセンサー、ジェスチャーセンサーや、住宅・オフィス・病院用の人見守りセンサー、レーザー光源と組み合わせた小型高精度な位置センサーなどとしての応用が可能である。
(a)金属-絶縁体-金属(MIM)構造による、表面プラズモン共鳴を利用した完全吸収体の模式図。上側の5層目の有限幅の短冊状金属構造が局在表面プラズモンを閉じ込める共振器となり、短冊の幅の大きさにより共鳴波長が変化する。Q値は10前後である。(b)溝表面の縦方向への表面プラズモンの共振器効果を利用した完全吸収体の模式図。溝が深いほど長波長の共鳴が生じる。Q値および指向性は(a)と同程度である。(c)分布反射器と金属全反射器で誘電体共振器を挟んだ完全吸収体の模式図。共鳴光が内部多重反射を生じ、金属全反射器表面で反射する際の損失により吸収が繰り返され、光が減衰し完全吸収が実現する。(d)本発明の光センサーが利用する光吸収体の模式図。 本発明に係る物体検出装置に係る一例を示す構成図である。 本発明に係る光センサーの一例を示す断面図である。 一次元の周期構造をもつ光センサーの一例を示す平面図である。 二次元の周期構造をもつ光センサーの一例を示す平面図である。 (a)及び(b):本発明におけるセンサーのデザインを説明する模式図。(a)は一波長分の焦電型光検知素子を示し、この素子が2mm×2mmのエリアに製作されている。各素子ではその表面に形成された金属(誘電体でもよい)膜上に金属等の円盤状の板状体(より一般的には円形や正多角形形状の隆起部分)が格子状に配列されている。(b)は4波長分の光検知素子が1cm×1cmのエリアに製作された、4波長型のオンチップセンサーの模式図である。(c):一波長分の素子の光反射スペクトルと吸収スペトル。(d):一波長素子内の温度分布及び温度上昇の波長依存性のシミュレーションの結果を示す図。(e)(f)(g)は完全吸収体の電磁場シミュレーションの結果。 (a)入射光の偏光に対する吸収強度の依存性を示す図。(b)いくつかのi、jに対する共鳴波長の角度依存性を示す図。二次元正方格子の場合は偏光依存性を示さない。(b)の様な急峻な角度依存性から、垂直入射方向で高い指向性を持つ光センサーが可能となる。 格子の最小単位である単位格子のディスクの(a)直径及び(b)高さに対する素子の光吸収強度の依存性を示す図。この結果に基づいてディスク高さ及び直径の値を決め、吸収率と波長分解能の最適化を行う。 本発明で製作した赤外線センサーの製造プロセスの模式図。(a)両面研磨したウエハの両面に酸化シリコン膜を100nm、Si膜を350nmスパッタにより成膜。(b)上面のSi膜上に、Pt電極、その上にZnO焦電体膜、Au電極、そして完全吸収体用のシリコンテンプレート層を成膜。(c)レーザー描画によりレジストを露光し、現像後、反応性イオンエッチング(RIE)用のディスク形成用のマスクパターンを形成。(d)マスクを用いてSiのRIEを行い、Siディスク構造を形成。(e)Siディスク上にコンフォーマルなAu膜をスパッタにより成膜。(f)最上層のSi膜をRIEによりエッチングし、熱絶縁構造を製作。裏面Si膜をマスクとし、SiをKOHによりエッチングし、メンブレン構造を製作。 (a)4波長検出型メンブレン焦電センサーを9セット集積したチップの写真。挿入写真は一つの4波長センサー。裏面からSiからなる熱絶縁用の薄いメンブレン部分を通して白色光が漏れている様子が分かる。(b)一つの4波長センサーの光学顕微鏡写真。(c)3.7μmの周期を持つセンサーを上側から見た走査電子顕微鏡(SEM)写真。(d)デバイスの断面を斜め上からSEMで撮影した写真。 ディスク構造の内部までAuである場合と内部がSiである場合との吸収スペクトルの違いを示す図。光の吸収は表面で生じるため、両者に殆ど違いが無い。 4波長検出型メンブレン焦電センサーの光学応答性、温度上昇及び電気シグナルの波長依存性を示す図。波長は、(a)列:3.522μm(λ);(b)列:3.722μm(λ);(c)列:3.822μm(λ);(d)列:3.922μm(λ)。最上行:吸収スペクトルのシミュレーション;2番目の行:温度上昇スペクトルのシミュレーションの結果;及び最下行:実験より計測された分光感度曲線。 実験により測定された、3.722μmの共鳴波長を持つセンサーの分光感度曲線の角度依存性を示す図。入射角が垂直からずれると、強度が大きく下がる。 図13の場合と同じ設計のセンサーにおける、共鳴波長を持つ光に対する吸収率の入射角度の依存性を示す図。1°程度の半値幅の指向性を持つ。 3.722μmの共鳴波長を持つセンサーの時間応答性を示す図。共鳴波長を持つ104フェムト秒の時間幅を持ったパルス光を照射した。(a)10パルスの照射による安定性の確認。(b)1パルスに対する応答。16マイクロ秒のライズタイム、153マイクロ秒の減衰時間を持つ。
 図2は、本発明の物体検出装置300の一例を示す構成図である。物体検出装置300は、分析対象となる物体(以下「対象物体」という)Oから飛来する光Lを検出することで、対象物体Oの存在または動きを検出する検出機器である。対象物体Oは、例えば、物品、動物または人間である。
 物体検出装置300の概略は、以下の通りである。物体検出装置300は、図2に例示される通り、複数のセンサーユニットUと、分析装置20とを具備する。センサーユニットUは、単一のチップ上に配列された複数(図2では4個)の光センサー10を含む。光センサー10は、例えば、X方向とX方向に直交するY方向とを含むXY平面内に配列される。なお、XY平面に直交する方向をZ方向と表記する。
 光センサー10は、対象物体Oから入射する光Lを検出可能な光学的なセンサーである。そして、光センサー10は、吸収した光Lの受光量に応じた熱を発生し、当該発生した熱の温度に応じて電気的な信号(以下「検出信号」という)を生成する。検出信号は、対象物体Oから飛来する光Lの変化を表す信号とも換言できる。
 本発明に係る光センサー10が検出する光Lは、例えば、紫外線、可視光または赤外線である。なお、本発明では、対象物体Oの温度に応じて放射される電磁波(熱ふく射)も光Lの一種として包含される。
 分析装置20は、各光センサー10が生成した検出信号を公知の任意の技術により解析することで、対象物体Oの存在または動きを検出する。
<光センサー>
 図3は、光センサー10の断面を模式的に表した図である。本発明に係る光センサー10は、複数の積層で構成される。光センサー10は、図3に例示される通り、支持基板11と底部電極12と焦電体13と吸収体14とがこの順番で積層される。
 支持基板11は、例えば、例えばSiNx等の絶縁体で形成される。底部電極12は、支持基板11の上面に形成される。例えば、光を反射する材料(例えばPt)で形成される。
 焦電体13(「熱を検出する手段」の例示)は、例えば、温度の変化に応じて自発分極が可能な材料(例えばZnO等)で形成される。焦電体14は、吸収体14が吸収した光に応じて熱を発生する。そして、焦電体14が内部の温度に応じて自発分極することで、当該温度に応じた検出信号が生成される。
 吸収体14は、焦電体13の上面に形成される。吸収体14は例えば図1に例示した構造を取り、上述したように共鳴によりこの共鳴波長付近の光を吸収する。具体的には、吸収体14は、金属または誘電体で形成される。なお、吸収体14は頂部電極としても機能する。吸収体14を形成する金属は、例えば、Au、Ag、または、Alである。吸収体14を形成する誘導体は、例えば、Si、Ge、Al、TiO,SiOまたはSiCである。なお、吸収体14を複数の材料で形成してもよい。例えば、金属と誘電体とを組み合わせた吸収体14を採用してもよい。ただし、吸収体14の表面が金属または誘電体の少なくとも一方で形成されればよい。
 図3に例示される通り、吸収体14の表面は、隆起している部分(以下「隆起部分」という)141を含む。なお、以下の説明では、吸収体14の表面のうち隆起部分14以外の領域を便宜的に「基体部分142」という。基体部分142の表面に対して突出している部分が隆起部分141であるとも換言できる。本発明においては、吸収体14の表面が複数の隆起部分141を含む。
 本発明に係る吸収体14は、当該吸収体14の表面に垂直方向に入射し、かつ、吸収体14の共鳴波長と同じ波長をもつ光を吸収する。例えば、吸収体90は、共鳴波長と同じ波長をもつ光のうち90%以上を吸収可能であり、好ましくは95%以上であり、さらに好ましくは99%以上である。したがって、本発明に係る吸収体14は、実質的に光を完全に吸収する完全吸収体であると換言できる。
 本願において「垂直方向」とは、例えばXY平面に垂直なZ方向である。なお、実際は、光センサー10は、垂直方向のみだけではなく、垂直方向を含む垂直方向近傍(垂直方向に対して傾斜角度が±1°以下の範囲内)から入射した光も高い吸収率で吸収する。ただし、光センサー10は、垂直方向から入射する光を最も高い吸収率で吸収可能である。
 図3には、隆起部分141の厚さH(Z方向における高さ)が例示されている。本発明において、隆起部分141の厚さ(高さ)が均一でない場合には、後述する通り、隆起部分141の厚さのうち最も厚い部分における厚み(高さ)を隆起部分の厚さHとする。
 吸収体14の表面は、所定の周期(以下「単位周期」という)で複数の隆起部分141が配列される周期構造をとる。周期構造は、格子パターンが形成されるように複数の隆起部分141が単位周期により配列される構造である。すなわち、複数の隆起部分141は、単位周期に対応する間隔をあけて相互に位置する。
 本発明では、吸収体14の表面に一次元または二次元の格子パターンが形成される。図4は、一次元の格子パターンに係る周期構造をもつ吸収体14の平面図であり、図5は、二次元の格子パターンに係る周期構造をもつ吸収体14の平面図である。
 図4に例示される通り、一次元の格子パターンにおいては、隆起部分141は、平面視においてY方向に沿った長尺状に形成される。なお、図4では、矩形状に形成される隆起部分141を例示したが、長尺状であれば隆起部分141の形状は任意である。例えば、隆起部分141は楕円形でもよい。なお、一次元の格子パターンにおいては、隆起部分141の長手方向がY方向であり、短手方向がX方向である。
 複数の隆起部分141は、X方向(「所定の方向」の例示)に沿って、相互に平行になるように配列される。具体的には、複数の隆起部分141は、単位周期T1(「第1周期」の例示)で配列される。すなわち、相互に隣り合う2つの隆起部分141が単位周期T1に対応する間隔をあけて周期的に配置される。
 具体的には、単位周期T1は、相互に隣り合う2つの隆起部分141において、一方を他方に完全に重なるように平行移動させたときの移動距離である。単位周期T1は、例えば、0.2μm~25μmであり、好ましくは、3.0μm~14.0μmである。
 一次元の格子パターンにおいて、隆起部分141の幅W1は、単位周期T1の0.3倍~0.7倍である。隆起部分141の幅W1の厳密な定義は後述する。幅W1が上記の範囲内にあることで、光センサー10の表面に対して垂直方向から入射した光を非常に高い吸収率で吸収することが可能になる。なお、この効果をより顕著にする観点からは、W1が単位周期T1の0.3倍~0.7倍であることが好ましい。幅W1は、例えば、0.1μm~17.0μmであり、好ましくは、0.9μm~10.0μmである。
 一次元の格子パターンにおいて、隆起部分141の厚さHは、単位周期T1の0.05倍~0.2倍である。厚さHが上記の範囲内にあることで、指向性、感度および波長分解能を向上させることができる。なお、この効果をより顕著にする観点からは、厚さHが単位周期T1の0.05倍~0.2倍であることが好ましい。厚さHは、例えば、0.01μm~5.0μmであり、好ましくは、0.15μm~3.0μmである。
 図5に例示される通り、二次元の格子パターンにおいては、例えば、隆起部分141は、平面視において円形状に形成される。なお、図5では、円形状に形成される隆起部分141を例示したが、隆起部分141の形状は任意である。例えば、正多角形状に隆起部分141を形成してもよい。
 二次元の格子パターンにおいては、複数の隆起部分141が所定の形状を有する単位格子(本明細書中では正方格子または正三角格子を中心に説明するが、一般的には周期構造を有している任意の格子であってよい)が繰り返されるように配列される。すなわち、単位格子は、格子パターンの最小単位である。図5では、正方格子状に隆起部分141が配列される場合を例示した。
 複数の隆起部分141は、単位周期T2(「第2周期」の例示)で配列される。すなわち、相互に隣り合う2つの隆起部分が単位周期T2に対応する間隔をあけて周期的に配置される。ここでは二次元の周期構造なので、X方向及びY方向の2つの方向の繰り返しの単位周期(周期の長さはいずれもT2)が図示されている。なお、言うまでもないことであるが、図5は正方格子なのでこれら2つの繰り返しの方向(X方向とY方向)は互いに直交していて単位周期T2の大きさもX方向及びY方向の長さとして図示されているものの、他の種類の格子では二次元周期構造における繰り返しの方向は必ずしも互いに直交するわけではないことに注意されたい。以上の説明から理解される通り、複数の隆起部分141は、正方格子状または正三角格子状等の格子状になるように第2周期T2で配列される。
 具体的には、単位周期T2は、相互に隣り合う2つの隆起部分141において、一方を他方に完全に重なるように平行移動させたときの移動距離である。単位周期T2は、例えば、0.2μm~25μmであり、好ましくは、3.0μm~14.0μmである。
 二次元の格子パターンにおいて、隆起部分141の幅W2は、単位周期T2の0.3倍~0.7倍である。隆起部分141の幅W2については、隆起部分141の形状が必ずしも回転対称ではない一般の図形の場合も含めて、厳密な定義を後述する。幅W2が上記の範囲内にあることで、垂直方向から入射した光をのみを吸収することが可能になる。なお、この効果をより顕著にする観点からは、幅W2が単位周期T2の0.3倍~0.7倍であることが好ましい。幅W2は、例えば、0.1μm~17.0μmであり、好ましくは、0.9μm~10.0μmである。
 二次元の格子パターンにおいて、隆起部分141の厚さHは、単位周期T2の0.05倍~0.2倍である。厚さHが上記の範囲内にあることで、指向性、感度および波長分解能を向上させることができる。なお、この効果をより顕著にする観点からは、厚さHが単位周期T2の0.05倍~0.02倍であることが好ましい。厚さHは、例えば、0.01μm~5.0μmであり、好ましくは、0.15μm~3.0μmである。
 なお、二次元の格子パターンにおいては、隆起部分141が単位周期T2で形成され、格子状に形成されれば、隆起部分141の平面形状は任意である。
 本発明において、1つのセンサーユニットUにおける複数の光センサー10のうち少なくとも1つの光センサー10を、他の光センサー10とは単位周期を相違させてもよい。例えば、単位周期が相対的に大きくなると、吸収する光の波長域が長波長側にシフトし、単位周期が相対的に小さくなると、吸収する光の波長が短波長側にシフトする。すなわち、複数の光センサー10のうち少なくとも1つの光センサー10を、他の光センサー10とは検出波長を相違させることが可能になる。なお、センサーユニットUにおける全ての光センサー10の単位周期を相違させてもよい。
 本発明では、波長選択型の完全吸収体として、基本構造が図1(d)のような周期構造を持つものを採用した光センサーが提供される。このセンサーを構成する波長選択素子は、金属あるいは誘電体表面に単純な周期構造を形成した完全吸収体からなる。なお、図1に示した周期構造(一次元の格子パターン)は、直線状に延びた隆起部分を平行に配置したものである。ただし、図6(a)、(b)に関してすでに説明したように、二次元の格子パターンの周期構造を取ることができる。なお、図6(a)、(b)については後述する。以下の説明では、一次元の格子パターンを「一次元格子」と表記し、二次元の格子パターンを「二次元格子」と表記する場合がある。ここで、具体的には、周期構造とは、金属表面上に当該金属で形成された、または、誘電体表面上に当該誘電体で形成された隆起状の構造物(平面視において円形または多角形)、の周期的な配列であり、当該構造物が格子状に配列されている。ここで、格子の最小単位を単位格子と呼ぶ。また、偏光検出を行わない光センサーを構成する場合には、各単位格子内の隆起した構造物の形状は、例えば、平面視において正n角形である。格子は、例えば、二次元格子のうちの正方格子または正三角格子である。隆起部分の形状は、格子と整合が取れているようにすることが望ましい。つまり、格子の回転対称性は、正方格子の場合には4回対称(1/4回転、つまり(360/4)°の回転で元の格子と一致、以下同様)であり、正三角格子の場合には3回対称である。ただし、正方格子および正三角格子のそれぞれについて、単位格子内の隆起部分は4m回、3m回対称であるのが望ましい(mは自然数)。例えば、正方格子の場合には、隆起部分の形状は正方形や正八角形などが望ましく、正三角格子の場合は、隆起部分の形状は正三角形、正六角形、正十二角形などが望ましい。整合が取れていない場合には、吸収スペクトルの半値幅が広がり、バックグラウンド(中心波長から大きくずれた波長における吸収)が大きくなる。また、完全吸収も損なわれる。更に、格子内の各隆起部分は、相互にサイズおよび形状が同じであることが望ましい。仮に、各隆起構造部のサイズおよび形状が相違すると、以下で述べる完全吸収体の特性が劣化する。なお、ここで隆起部分が円形(円盤状)である場合には、円が任意数の回転についての回転対称性を持つ。したがって、円形の単位格子内の隆起部分は、正方格子および正三角格子の何れであっても使用できることに注意されたい。なお、以上の条件は、下で説明するように、光センサーに求められる特性によっては必ずしも厳密に従う必要がなく、あるいは意図的にこれら条件から外れるように構成できることに注意されたい。
 本発明の光センサーに偏光依存性(つまり特定の変更方向の光に高い選択性)を有するようにする場合には、格子を一次元格子とすればよい。あるいは、二次元格子に異方性を持たせるか、二次元格子における単位格子内の隆起部分の形状に異方性を持たせばよい。一次元格子とは、具体的には図1(d)に示すような、特定の方向に直線状に延びる隆起部分を、互いに平行かつ等間隔に配列した場合を意味する。二次元格子に異方性を持たせる場合には、上述したn回対称性(n≧3)を有する正方格子および正三角格子を特定の方向に引き延ばすなどのアフィン変換(つまり平行線を平行のままに維持する射影変換)を行って得られる斜方格子、矩形格子、または、平行体格子を使用する。二次元格子における単位格子内の隆起部分の形状に異方性を持たせる場合には、例えば円形の隆起部分を特定の方向に引き延ばした楕円形の隆起部分(n回対称性(n≧3)を失わせたもの)を使用すればよい。楕円形では2回対称性は有するが、元の円が有する3以上の対称性は失われている。
 また、金属あるいは誘電体として使用できる材料は、例えば、Au、Ag、Al、Si、Ge、Al、TiO,SiO、SiCである。ただし、金属および誘電体の材料は以上の例示に限定されない。本発明に係る完全吸収体により構成される波長選択素子は、垂直方向から約1°傾斜した角度の範囲内に入射する光のうち所望の波長を持つ光のみを、Q値が50以上の分解能で共鳴的に吸収して熱を発する。この完全吸収体の表面で発生した熱は、熱伝導により吸収体の裏側に伝導し、そのすぐ下に配置された熱検知器で検出される、そして、熱検知器において、熱が電気に変換され、当該電気が検出される。
 なお、本願では「完全吸収体」なる概念を使用するが、ここで「完全吸収」と言っても論理的に全てという意味、つまり真に100%吸収するものに限定するわけではないことに注意する必要がある。本発明で提供されるセンサーは物理的な実体である以上、それを構成する素子においては光を100%吸収することは通常は稀であり、以下で説明する実施例やシミュレーションにおいては99%程度の吸収にとどまっているが、これでも真に100%吸収する素子を使用した場合と実質的に同じように動作する。どの程度の吸収率であれば本発明の本質にかかる意味で「完全吸収体」ということができるかは各種の条件により異なるが、例えば90%以上、好ましくは95%以上、さらに好ましくは99%以上の吸収率であれば「完全吸収体」とみなすことができる。
 図6(a)、(b)は本発明にかかる光センサーのデザインの一例を説明する模式図である。(a)は一波長分の焦電型光検知素子(単一波長センサーとも呼ぶ)を示しており、この素子が2mm×2mmのエリアに製作されている。図6(b)にはそのような4波長分の光検知素子が1cm×1cmのエリアに製作された、4波長型のオンチップセンサーが示されている。図6(c)には一波長分の素子の光反射スペクトルと吸収スペクトルが示されている。また、図6(d)には一波長素子分の素子、つまり単一波長センサー内の温度分布と温度上昇の波長依存性のシミュレーションの結果を示す。
 なお、本願明細書全体にわたって、シミュレーションは以下のようにして行った。光スペクトル(伝達率、反射率及び吸収率)はRCWA法(RSoft Design Inc.のDiffractMODを使用)を使用してシミュレートした。電界及び吸収の分布については、FDTD法に基づく全波シミュレーション(full-wave simulation)(RSoft Design Inc.のFullWAVEを使用)を採用した。RCWA法とFDTD法の何れのシミュレーションにおいても、励起電磁界は-z軸方向に伝搬し、また電界はx軸方向に振動するものとし、さらに入射するフィールドの強度及びそれらの位相は1に正規化した。電磁シミュレーションにおいては、Au、Si及びSiOの誘電関数(dielectric function)は非特許文献8に記載のものを、ZnOの誘電関数は非特許文献4に記載のものを使用した。また、Siについては分光偏光解析法測定により求めた。
 多波長センサーは本発明にかかる単一波長センサーつまり一波長分の光センサー素子をチップ上に集積したものであるが、以下でこの単一波長センサーにおける完全吸収体の構造と共鳴波長との関係について述べる。
 入射光の運動量の表面平行成分と回折格子の逆格子(運動量)との和が、表面を伝搬する表面プラズモンポラリトンの運動量と一致する際に、回折方向からの入射光の吸収が増大する。本発明にかかる光センサーで使用する完全吸収体においては、この効果を利用する。
Figure JPOXMLDOC01-appb-M000001
を素子表面を伝搬する表面プラズモンポラリトンの波数の絶対値
Figure JPOXMLDOC01-appb-M000002
は、入射光の運動量絶対値、εは周期構造素子を形成する金属あるいは誘電体の複素誘電率とすると、素子表面で励起される表面プラズモンポラリトンに関して以下の関係式が成り立つ。
Figure JPOXMLDOC01-appb-M000003
この時、表面プラズモンポラリトンの運動量
Figure JPOXMLDOC01-appb-M000004
入射光の運動量の表面平行成分
Figure JPOXMLDOC01-appb-M000005
上で定義した周期構造が吸収体表面に形成する格子である表面格子の基本逆格子ベクトル
Figure JPOXMLDOC01-appb-M000006
の間に以下の運動量保存の関係が成り立つときに表面プラズモンポラリトンが励起され、光は効率的に吸収される。
Figure JPOXMLDOC01-appb-M000007
ここで、θを表面垂直方向からの角度として、
Figure JPOXMLDOC01-appb-M000008
であり、入射光の運動量ベクトルの表面平行方向への射影の大きさとなっている。ここでi、jは整数である。ベクトル
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
の方向(図6(a)のΓ-X方向)の場合、等式(3)は以下の様に書くことができる。
Figure JPOXMLDOC01-appb-M000011
等式(2)及び(4)において、
Figure JPOXMLDOC01-appb-M000012
であり、Γ-X方向の表面ポラリトンの分散関係は以下の様に書ける。
Figure JPOXMLDOC01-appb-M000013
この式において、垂直入射である場合、波長は
Figure JPOXMLDOC01-appb-M000014
と計算できる。つまり、垂直入射の場合は表面格子の周期p、整数i、jによって、共鳴波長の大きさが決まる。図7は(a)入射光の偏光に対する吸収の依存性と共に、(b)いくつかのi、jに対する共鳴波長の角度依存性を示している。この設計の例では、単位格子内の隆起部分は円形であり、周期構造も正方格子であるため、異方性のない構造であり、偏光依存性を示さない。なお、上述したように、単位格子内の隆起部分の形状や周期構造に異方性を導入することによって偏光依存性、つまり波長だけではなく特定の偏光方向の入射光を強く吸収する特性を持たせることができる。また、周期構造の回折効果であることを強く反映し、共鳴波長は図7(b)の様に明瞭な角度依存性を示す。この設計では、入射角度0°においては、3.0~5.0μmの範囲に現れるいくつかの分枝が縮退し、2.6μm及び3.7μm付近の波長しか完全吸収を示さないようになっている。その結果、このうちの3.7μmの共鳴モードは0°において急峻に変化する角度依存性を示し、これを利用することで高い指向性を持つセンサーが可能となる。つまり、縮退があると、入射角が0度付近で強い吸収ピーク(センサー出力と言う点では、強い検出出力ピーク)が現れるが、入射角度がわずかにずれても、角度ずれの際の3つの回折のモード(図7(b)において、入射角=0度かつ波長3.7μmへの3つのモードの縮退を参照)への分裂効果のために、強度が急峻に低下する、つまり極めて高い入射角方向の選択性、言い換えれば指向性が得られるという効果が得られる。この効果は上述したように縮退が起こっている(縮退状態になっている)ことから得られるものである。
 結局、本発明では、光の回折の起きる方向でしか吸収が起きない「光の回折現象を介した表面プラズモンポラリトン(SPP)励起」(Wood's Anomaly:ウッドの異常回折)を利用しているため、角度の分解能を高くできる。また、この現象はゼロ度で縮退する特徴を持つため、ゼロ度の近傍での角度分解能(指向性)が特に高くなる。なお、回折の起きる方向でしか吸収が起きないのは、SPPが格子から逆格子ベクトル分だけの運動量を受け取って励起されているからであるとも説明できる。
 ここで、上述した縮退について、更に詳細に説明する。図7(b)において、入射角0度で3重縮退が起こっている理由は、式(5)において、θは入射角=0度、つまり垂直入射であることから0となり、そのため式(5)の次に記載された式が得られる。この式において、i+j=1となる4つのモードが同じエネルギーを取り、角度0では全て縮退する。なお、ここでビームをx軸に対して平行に入れており、xに対して鏡映対象となることから、4つのモードのうち(0,1)と(0,-1)の2つのモードは同等なため重なり、このため図7(b)では3本に見える。つまり、先に「3つのモード」と呼んだものは、厳密に言うならば、完全に重なっているモードまで数えれば4つのモードである。
 この角度ゼロで縮退するモードを完全吸収のモードとして利用しない場合は、角度分解能を高くできない。一方、この縮退したモードを完全吸収のモードとして用いる場合でも、単位格子内の隆起部分表面における表面プラズモンの局在モードに起因する不要なサブピークが共存して重なると、このサブピークは指向性が低い為、縮退モードの高い指向性が生かせず、また、波長選択性も損なわれてしまう。
周期構造を持つ赤外線センサーは過去にも提案されているが(非特許文献1~3)、表面プラズモンポラリトン、入射光の表面平行成分、回折格子の3者の運動量による運動量保存と、入射角0度における共鳴各モードの縮退が考慮なされていない。また、スペクトルにおいて、狭帯域化、完全吸収、低いバックグラウンドなどの、重要な性能が実現できていない。また、角度分解能や指向性も低い。このような理由としては、局在表面プラズモンの共振器効果と、本発明で最適化している回折格子と表面プラズモンポラリトンの共鳴とが良く分離できずに混在してしまい、ブロードな、あるいはサブピークの多い複雑な吸収スペクトルになってしまっていること、などが挙げられる。
 そこで、本願では以下に示すようにして最適化を行うことで、間接的に縮退を制御できることを見出した。
(1)入射角0度における完全吸収を100%に近づくようにディスク(一般的には単位格子内の隆起部分)の高さ及び直径を可能な限り大きくなるよう調整する。
(2)一方、スペクトル中に不要な局在表面プラズモンのピークが出ないようにするため、ディスクの高さ及び直径をあまり大きくしすぎないようにする。
 上記(2)が何を意味するかを説明すれば、そもそも本発明は「回折現象を介した表面プラズモンポラリトンの励起現象」としてとらえることができる。これは、図1(a)、(b)で例示した「局在表面プラズモン」の有限サイズな物体への閉じ込め効果による共鳴とは異なるものである。ディスクが高くなり、かつ大きくなると、ディスクが純粋に回折格子としての役割を示すだけでなく、今度は個々のディスクが独立に共振器の働きもする物体になってしまう。このようになった場合、ここで取り上げている例では、ディスクに閉じ込められた表面プラズモンが、「局在表面プラズモン」のモードとして4~6μm近傍に構造を持つブロードなバックグラウンドとして現れ始める。ディスクのサイズは周期より小さい2~3μm程度であるが、閉じ込められるモードの共鳴波長はそれより長い4~6μm程度に現れると考えられる。
 ここで、「局在表面プラズモン」は図1(a)、(b)の下部に示す吸収率のシミュレーション結果のグラフに示すように半値幅が太く、センサーとしては好ましくない。図1(a)は横方向の閉じ込め、同図(b)は縦方向の閉じ込めモードである。なお、ディスク直径が大きくなりすぎると、図1(b)のような溝構造へと構造の特徴が遷移してゆき、横モードだけでなく縦閉じ込めモードもでてくるようになり、さらに複雑なスペクトルになると考えられる。
 上記2つの共鳴の違いに気付かずに光フィルターを設計・作成した場合には「局在表面プラズモン」のモードを抑えることができず、従ってスペクトルに不要なピークやバックグランドが現れるという好ましくない特性しか持たないものとなってしまう。
 上記(1)について説明を補足すれば、ディスク径と高さが小さすぎると回折効果が小さくなり、完全吸収が達成できないが、逆にディスク径と高さが大きすぎると、回折格子と言うより孤立共振器としての挙動も現れてきて、きれいなスペクトルにならないという問題がある。本願ではこの点も考慮して最適な構造を得ている。本発明においては、光センサー表面上に突起としてのディスク(隆起部分)の配列を形成し、この突起の高さと直径を、局在表面プラズモンの発生による吸収の顕在化を抑えるとともに、表面プラズモンポラリトンの回折効果を促進することで完全吸収を生じさせるようにする、という調節を行っている。このように、局在表面プラズモン(LSPR)による吸収の出現を出来るだけ避け、回折現象による表面プラズモンポラリトン(SPP)の励起を最大限に生かすことにより、素子の指向性と波長分解能を高めることができる。
 なお、これもすでに述べたように、格子の対称単位である単位格子内の隆起部分の形状は円形に限定されるものではなく、回転対称性を有する正多角形を使用することもできる。また、この格子は正方格子だけではなく、正三角格子も使用できる。また、単位格子内の隆起部分の形状は、上述のように当該単位格子を最小単位とする格子の対称性と整合するものとするのがよい。具体的には正方格子の場合には正方形、正八角形などの隆起部分を、また正三角格子の場合は正三角形、正六角形、正十二角形などの隆起部分を使用するのがよい。
 また、本発明の光センサーに偏光依存性を持たせる、つまり特定の偏光方向の光に応答するようにするためには、一般には格子及び/または単位格子内の隆起部分に異方性を持たせればよいが、最も簡単な構成としては、図6(c)のような二次元格子を使用する代わりに、一次元格子を使用すればよい。より具体的にいえば、図1(d)に示すように特定の方向に延びた線状、短冊状の形状の隆起部分を互いに平行で等間隔に、つまり一次元格子状に配列すればよい。
 なお、上記は金属構造を持つ場合の説明であるが、構成材料を誘電体とし、表面プラズモンポラリトンの代わりに、表面フォノンポラリトンを用いても同様の機能を持つ素子が可能である。また、円形だけでなく四角や六角形等の多角形、また、正方格子だけでなく正三角格子、更には特定の変更方向の光を検出すセンサーとする場合には一次元格子を使用しても同様な機能を持つ素子が可能である。
 ここで、共鳴波長(つまり、完全吸収が起こり、また光センサーが検出する光の波長)について注意しておく。本願明細書では主に中波長赤外線領域の光を対象として説明を行っているが、上で与えた理論的な説明から明らかなように、共鳴波長はこの領域に限定する必要はなく、紫外線、可視光線、各種の赤外線を含む広い範囲の光に対して動作するセンサーを構成することができる。
 図6の(e)、(f)及び(g)は電磁場シミュレーションの結果を示したものである。-z方向からの光の入射に対し、図6(e)からは、電場のx方向成分の増強がディスク(円盤)構造の端に生じていることが分かる。より具体的には、ディスク構造の側壁部では電場のEx方向成分が図右側に示すスケール上で12程度の値を持つが、この値が遠方に向かうにつれて減少していく様子が示されている。また図6(f)からは、z方向の電場の位相がディスクの左端と右端とで反転しており(図右側のスケール上でそれぞれ-18及び18程度の値)、伝搬型の表面プラズモンポラリトンが励起されていることが分かる。図6(g)からは、Auによる完全吸収構造の上側の表面で光の吸収が生じていることが分かる。図6(d)からは、半径0.5mmの範囲に1mWの共鳴波長の赤外光を照射したときに、焦電体センサー部分で2.3Kの温度上昇を生じることが示され、赤外センサーとしては十分高い応答性を持つことが分かる。なお、本発明にかかる光センサーを一つのチップ上に複数個集積して、多波長光センサーを構成する場合には、隣接した光センサーからの熱の影響をできるだけ受けないようにするため、チップ上の光センサー間に熱抵抗の高い構成要素、例えば熱抵抗の高い物質でできていたり、スリットや切り欠きによって熱の伝搬を低減させる熱障壁を設置することができる。
 このように、本発明にかかる光センサーで使用される波長選択素子は、回折格子と伝搬型の表面プラズモンポラリトンとの結合効果を用いるため、閉じ込め型の局在表面プラズモンを用いた図1(a)や(b)の様な素子とは異なり、Q値50以上を示す狭帯域な完全吸収を実現できる。また、光の受け入れ角度も、この現象が回折現象として示す高い角度依存性を利用して、高くすることができる。この素子の吸収の強さは、単位格子内の構造、例えば図6(a)の場合のディスク構造の半径と高さに依存する。これを示したのが、図8である。図8(a)はAuディスク構造の直径に、また図8(b)はディスク構造の高さに対する、スペクトルの強度の依存性を示したものであり、この結果に基づいてディスク高さと直径の値を決め、吸収率と波長分解能の最適化を行った。なお、図8において、ディスクの最適な直径は周期pの50%前後(0.3p~0.7p))、ディスクの最適な高さは0.05~0.2pの範囲となった。ここで、ディスクをより一般化した隆起部分についてその最適な直径(あるいはそれに相当する部分の大きさ)の範囲としては、隆起部分が正多角形の場合にはその外接円の直径となる。また、偏光方向も検出できるように隆起部分を細長い形状、つまり楕円形や細長い多角形とした場合、またその他の平面形状を有する隆起部分の幅を考える場合には、余所の方向の隆起部分の幅として当該方向の直線への隆起部分の正射影がなす線分の長さを幅とする。当然方向により幅は異なるので、ここでは方向を変えた場合の幅の際の最大値及び最小値をそれぞれ最も広い部分の幅及び最も狭い部分の幅と呼ぶ。従って細長い等二次元図形一般であってよい隆起部分の一般的な形状を考える場合には、そのような隆起部分の最も狭い部分の幅が0.3p以上であって、最も広い部分の幅が0.7p以下とするのが最適である。また、最も広い部分の幅と最も狭い部分の幅とが不一致である形状については、どの幅かを特定せずに単に幅の値の範囲に言及する場合は、「最大と最小との間の任意の幅の値について」という意味である。すなわち、隆起部分の「幅」は、平面視において、隆起部分の周縁に接し、当該隆起部分を挟み込む2つの平行な直線間の距離であり、当該距離が周期の0.3倍から0.7倍の範囲内にあればよい。なお、2つの平行な直線により観念される距離(すなわち「幅」)は、隆起部分の平面形状に応じて複数存在し得る。
 隆起部分が矩形状等の一方向に延びる一次元構造の場合はその長手方向に直交する方向の大きさ、つまりいわゆる幅が0.3p~0.7pとするのが最適である。また、隆起部分の高さについては、その平面形状に関わらず0.05p~0.2pの範囲が最適である。なお、図8はAuのディスクについての図であるが、Al、Ag、Cu等の他の金属や合金でもそれら金属でできた隆起部分のサイズについては上記Auの場合について示した最適条件が当てはまる。更には、ディスク等の隆起部分が誘電体で出来ている場合にもサイズについての上記最適条件をそのまま適用できる。ここにおいて、表面定在波がそれらの「幅」の範囲内で生じる。図6(c)には、直径1.85μm、ディスク高さ0.34μmを持つディスクが3.7μmの周期で配列した構造のシミュレーションの結果である。この構造を実際に製作する際は、周期的表面構造は金属のみから構成されても良いし、Siなどの表面構造をエッチングし、その上に100nm程度のAuの膜を、下地形状を保つようにコンフォーマルに製膜しても良い。これは、入射光による誘起電荷や分極は、その殆どが金属周期構造の上側で生じるため(図6(g)参照)、内部がSiであっても、違いは殆ど無いからである。一般に、このような表面のAuその他の金属の膜の厚さが50nm程度以上になれば、光はそのような膜の裏側まで到達できず、従って表面から50nm以上深い位置にある材料等の影響を無視することができる。
 これについて更にシミュレーションを行った。図11には背の高いAuディスク(破線で示す)及び80nmの厚さのAuで被覆したSiディスク(実線で示す)という構造を有する、本発明にかかる光センサーで使用される波長選択素子の光吸収スペクトルのシミュレーション結果を示す。ここで、これらの2つの波長選択素子は互いに同一のパラメーターを有するものとした。具体的には、周期を3.7μm、またディスクの直径及び高さをそれぞれ1.85μm及び0.34μmであるとした。これら2つの完全吸収体は両方とも周期3.7μmであり、また両方とも共鳴波長3.722μmにおいて吸収率0.99を示しほぼ完全な吸収体となっていることが確認できた。また、波長分解能は51nm、Q値は71であった。
 なお、熱検知器には焦電体、ボロメーター、熱起電素子などを用いることができるが、以下の実施例では熱検知器としてZnO焦電体を採用した。しかし、当然ながら他の種類の熱検知器も同様に使用でき、また焦電体を使用する場合であってもその材料はZnO以外であってよい。
 また、以下では本発明の実施例として、単一のSiチップ上に本発明にかかる単一波長センサーを互いに波長を違えて4つ集積した4波長赤外センサーを例に挙げて詳細に説明するが、本発明をこのような複数の単一波長センサーを複合・集積した構成に限定する意図はなく、単一波長センサーであっても、また複合、集積等した構成であっても本発明の技術的範囲に包含されることに注意されたい。
 本発明にかかる光センサーを4つ、互いに吸収波長をずらしたものを単一のチップ上に集積した4波長(quad-wavelength IR sensor)赤外センサーを例として、本発明の光センサーをさらに詳細に説明する。ここでは、膜堆積及びリフトオフを伴う直接レーザー書き込みリソグラフィー、反応生成イオンエッチング(RIE)、並びに異方性湿式エッチングのいくつかのステップを3インチ両面研磨Si基板上で行った。この基板上に25個の4波長赤外センサーの組を配置した。この作成手順を図9に示す。
 上で議論したように、2D構造の本発明の光センサーにおいて背の高いAuディスク(340nm)アレイを使用する代わりに、340nm厚のSiディスクアレイ上にコーティングされた80nm厚のAu膜を使用して金の使用量を節約する一方で、この構成を採用することで、背の高いAuディスクアレイと基本的に同一の性能を発揮した。その共鳴がMWIR(mid-wavelength infrared、中波長赤外線、波長3~8μm)領域中の赤外透明である大気の窓波長帯域に入る様に設計された4つのプラズモニックアレイセンサーの周期はそれぞれ3.5μm、3.7μm、3.8μm及び3.9μmであった。ここで、電子ビーム(EB)蒸着によって堆積した100nm厚のPt膜を底部電極として使用したが、この膜はまた高度な結晶性を有するZnO(0001)膜を成長させるための(111)面を有するエピタキシャル基板としても機能するものである。
 以下で、この4赤外波長センサーの作成方法を詳細に説明する。図9において、まず、3インチ両面研磨Siウエハを1150℃でドライ酸化することにより熱酸化して、このSiウエハの両面に約100nm厚のSiO層を形成した。次に、ボロンドープSiターゲット及びAr/N(18/10sccm)混合ガスを使用した直流(200W)反応性スパッタリングで、350nm厚のSi膜をSiO/Siウエハの両面に堆積した(芝浦メカトロニクス株式会社のsputter i_Miller CFS-4EP-LLを使用)(図9(a))。
 次いで、スパッタされたSi/SiO/Si基板上にN雰囲気中で高速熱アニーリング(rapid thermal annealing、RTA)プロセスを適用して(具体的には、速度5℃/秒で加熱して、1000℃において1分間一定温度に維持し、次いで自然冷却した)、Si膜の品質(硬度)を改善した。次に、マスクレスリソグラフィープロセスによって、底部Pt膜電極のリフトオフプロセス用のマスクとしてフォトレジストパターンを生成した。10nm厚接着用Ti層付きの、センサー底部電極用100nm厚Pt膜を、パターン形成されたフォトレジストマスクを使用して、電子ビーム蒸着装置(株式会社アルバックのUEP300-1C)によりSi/SiO/Si基板上に堆積させた。リフトオフプロセスはPGリムーバーを使用して行った。ZnO焦電体膜及び頂部Au電極のパターン形成(それぞれ、スパッタリング及び電子ビーム堆積による)のため、上述したものと同じマスクレスリソグラフィープロセスを適用した。ここで、Pt底部膜電極上への高度の結晶性を有するZnO膜のエピタキシャル成長のためにZnOターゲット及びAr/O混合ガス(16/04sccm)を使用したRFスパッタリング処理(300W)を使用したことを注意しておく。頂部Au電極を作製した後、340nm厚のアモルファスSi(ボロンドープしたもの)膜を、Auディスクアレイ用のテンプレート層として頂部Au電極上にパターン形成した(図9(b))。
 SiをエッチングするためのRIEマスクとして各4波長センサー用に設計されたフォトレジストディスクアレイを、直接レーザー描画リソグラフィープロセスを使用してSiテンプレート上にパターン形成した(図9(c))。
 次に、RIE処理を使用して、フォトレジストディスク周りのSiをエッチングした(図9(d))。
 残ったフォトレジストをOプラズマ及びアセトンによって除去した。2次元周期構造を持つプラズモニック吸収器(完全吸収体)のAuディスクアレイは、5nm厚の接着用Ti層の後に80nm厚のAu膜のCDスパッタリングによる上記マスクレスリソグラフィー処理を適用することによって最終的に形成した(図9(e))。
 3インチウエハ上の4波長IRセンサーチップに対して、次にメンブレン支持部との熱隔離のための処理を行った。ここにおいて、Si層のAZ-514EフォトレジストRIEマスク(メンブレン用及び個々の単一波長センサーの周囲の熱隔離用スリット用)を最初にパターン形成した。次いで、Siを異方性ウエットエッチングするためのSiマスクを、RIE処理(CHFプラズマ)を使用して形成した。Siウエハ頂部中のセンサーチップをポリマー保護層(ProTEK(商標)B3プライマー上のProTEK B3-25)によって保護した後、個々の単一波長センサーの底部のSi基板を、熱せられたKOH溶液(8mg/L、80℃)を使用して低速異方性ウエットエッチングにより完全にエッチングした(図9(f))。
 次いで、センサーチップウエハをPGリムーバー中に1日の間保持し、最後にアセトンですすいでから、これを1×1cmの大きさの4波長IRメンブレンセンサーチップに分離した。
 図10は作成した4波長赤外メンブレンセンサーの形態的な特徴をまとめたものである。図10(a)は3インチウエハ全体から作成された4波長赤外センサーチップの9個の組の写真である。この図の右上部に示す差し込み写真は、作成された典型的な4波長赤外センサーを底部から白色光を照射しながら撮影したものである。この差し込み写真から、単一波長センサーの各々の周囲に光学的に透明なSi膜が存在していることがわかるが、これは作成されたセンサーがSi膜によって十分に保持されている(図9(f)も参照のこと)ことを示している。
 図10(b)は4個の単一波長センサーを含む1個の4波長赤外センサー全体を示すとともに、2mm長のスケールバーも表示している明視野光学顕微鏡像である。これから、作成されたセンサーにおいて、個々の単一波長センサーは2×2mmのサイズであり、また4波長赤外センサー全体では1×1cmのサイズとなっていることがわかる。
 図10(c)に示すところの上面SEM像は、作成された典型的な本発明にかかる4波長赤外センサーを示す。図10(d)に示す断面像は本センサーの構造を図示するが、これにより上で説明した製造プロセスを使用することで、Siコアテンプレートによって支持されたAuシェルディスクがうまく構築されていることが明らかになる。プラズモニックディスクアレイ、Auの頂部電極、焦電体ZnO膜、底部Pt電極、またSi膜等のセンサー中の各々の膜や層の寸法パラメーターも図10(d)から明確に読み取って検証できたが、これらは設計値と同じであった。
 なお、作成した4波長赤外センサーのSEM像は、走査電子顕微鏡(株式会社日立ハイテクノロジーズのSU8230)を使用し、加速電圧5kVの下で得た。断面SEM像の取得にあたっては、収束イオンビーム加工装置(focused ion beam miller)(株式会社日立ハイテクノロジーズのFB-2100)を使用してメンブレンセンサーチップ中に長方形のスルーホールを生成した。
 作製した4波長赤外センサーの性能(スペクトル応答)を、周波数可変励起源として波長可変赤外レーザーシステムを使用して測定した。このシステムから出力される赤外レーザーの特性は、Q値が約10~15のブロードなスペクトル線幅、コリメートされたビーム径(直径)が1mm、繰返し周波数1kHz、平均パワーが数ミリワット(波長に依存)であった。測定にあたって、測定対象のセンサーに直径1mmのレーザービームを直接照射した。ここで注意しておくが、出力された赤外パルスレーザーのスペクトル線幅は測定対象の赤外センサーの吸収帯域幅に比べて非常に広かったので、これにより赤外センサーのスペクトル応答がブロードになった。各赤外線センサーのスペクトル応答は、赤外センサーのスペクトル出力電圧を赤外レーザーの測定されたスペクトルパワー分布で畳み込みの逆変換を行うことで計算した。作製した赤外センサーの時間応答特性は、高性能オシロスコープ(500MHz、Tektronix社のTDS 520Aを使用)をSR560増幅器と組み合わせたものを使用して測定した。
 図12に、その上から下に向かって、1行目に吸収スペクトルのシミュレーション結果を、2行目に平均熱増加スペクトルのシミュレーション結果を、また3行目にスペクトル応答の測定結果のカーブを示す。ここで、図12の(a)~(d)列はそれぞれ4波長赤外センサー中の単一波長センサーについてのシミュレーションまたは測定結果を示す。(a)列~(d)列に対応する単一波長センサーの共鳴波長はそれぞれ3.522μm(λ)、3.722μm(λ)、3.822μm(λ)及び3.922μm(λ)であった。ここで、これら4種類の単一波長センサーにおいて、ディスク高は皆340nmとしたが、周期pをそれぞれ3.5μm(λに対応)、3.7μm(λに対応)、3.8μm(λに対応)及び3.9μm(λに対応)とし、各ディスクの直径はそれぞれの周期の1/2に定めた。
 図12の最上行に並べた4つのグラフからわかるように、4波長赤外センサーの光学応答スペクトル(より正確にいえば、4波長赤外センサーを構成する4つの単一波長センサーの各々の応答スペクトル。以下同様である)のシミュレーション結果は、そのピークでほとんど1(0.99)となるとともに非常に狭い(半値幅50nm)。このことは、設計されたセンサーは各共鳴波長において赤外光を効率的に吸収できることを証明している。実際、図12の中央の行に並べた4つのグラフに示されているところの、4つの単一波長センサーのそれぞれにおける熱平衡時の焦電体ZnO膜上での平均された温度増加のシミュレーション結果から、この4波長赤外センサーは設計された共鳴波長における狭いスペクトル帯域幅内の赤外光をほぼ完全に吸収でき、かくして吸収スペクトルについての吸収した赤外エネルギーを熱に変換し、誘起された熱がZnO検出層へ伝達されることがはっきりとわかる。期待されるように、図12の一番下の行のグラフに示されるところの測定されたスペクトル応答カーブは、本発明の技術思想に従った設計が正しいものであることをはっきりと証明している。
 作製した4波長赤外センサーチップ中の4つの単一波長センサーは何れも狭いスペクトル応答カーブを示しており、またこれらの応答は事前に行った吸収スペクトルのシミュレーション結果とよく一致した。測定されたスペクトル応答カーブが吸収率及び温度上昇スペクトルのシミュレーション結果と比べてブロードになったのは、先にも触れたように、測定に使用した赤外パルスレーザーのスペクトル線幅が広かったこと(Q値が10~15)によるものである。
 本発明のセンサーは、すでに説明したように2D周期構造を有する回折格子的状のプラズモニックアレイであることから入射角への依存性を有する。そこで、この依存性の測定を行うことで、本センサーの角度応答特性を検証した。図13では、周期が3.7μmの単一波長センサーについて、入射角がその表面に垂直な方向(図では0度として示す)の場合、並びに垂直方向から5度及び10度傾いた場合(図中ではそれぞれ5°及び10°として示す)のスペクトル応答カーブをプロットした。興味深いことに、共鳴が入射角に依存する一方で、入射角を垂直方向から傾けた場合には、傾斜角を増大させていくにつれてその応答は急速に減少した。このことは、本発明にかかるセンサーは垂直方向への高度な指向性を有することを示している。
 本デバイスの動的な応答を理解するため、波長3.722μmで共鳴する本発明の単一波長センサーの104フェムト秒のパルスレーザーに対する時間応答を、高性能オシロスコープを使用して試しに測定してみた。その結果を図15に示す。ここでは10個のパルスを周期1m秒で与えて測定したセンサーの応答(図15(a))が一様であることは、本センサーの高速応答性及び安定性を示している。また、単一パルスで刺激して測定した本センサーのインパルス応答(図15(b))は、16μ秒という高速応答性及び153μ秒の減衰を示しているが、これは実用的な機器に十分使用できるものである。
 本願の実施例では共鳴波長を互いにずらした4つの本発明にかかる単一波長センサーをチップ上に集積して構成した4波長赤外センサーを作製したが、これは実際の用途に適用可能な、より多波長のセンサーに容易に拡張可能である。本発明の光センサーは、これに限定するわけではないが、多色放射温度計等に使用できる携帯型の分光型赤外線計測器、環境認識のためなどに使用されるカラーイメージング、また大気汚染検出のためのリモートセンシングやイメージングなどに適用することができる。また、本発明のセンサーは垂直方向への高度の指向性を示すが、ピンホールアパーチャやコリメーターを採用することで、指向性をさらに向上させることが可能である。もちろん単一波長センサーを集積することなく単独で使用することも可能である。また、これもすでに述べたように、本発明にかかる単一波長センサーの共鳴波長はMWIR領域に限定されるものではなく、その基本的な構造を維持したままで紫外、可視光、各種の赤外領域に適用することができる。
 さらには、本発明の単一センサーをその共鳴波長における単色光で使用するのであれば、その検出角を例えば1度以下の極めて狭い角度とすることができる。図14は本発明にかかる単一波長センサーにその共鳴波長の光を与えながら光の入射角をセンサー表面に垂直な方向(図ではこれを入射角=0度とする)から±5度の範囲で変化させたときの吸収率の変化のシミュレーション結果を示す。図からわかるように、垂直方向からの入射角のずれが±0.5度になっただけで、吸収率が1から1/2以下まで、さらにずれが±1度では1/3程度にまで低下することがわかる。なお、吸収率が1/3程度まで低下してからは入射角のずれの増加に対する吸収率の低下がやや緩慢になる。もし入射角がある程度以上大きくなったことをより鋭敏に検出したいのであれば、これに限定されるものではないが、例えば入射角のずれが±0.5度~1度程度の場合については検出感度が低いが、このずれがさらに大きくなった場合にはそれを図14に示すよりも鋭敏に検出できる別のタイプのセンサーと組み合わせることで対処することも可能である。
S. Ogawa, K. Okada, N. Fukushima, M. Kimata, Appl. Phys. Lett. 2012, 100, 021111. T. D. Dao, S. Ishii, T. Yokoyama, T. Sawada, R. P. Sugavaneshwar, K. Chen, Y. Wada, T. Nabatame, T. Nagao, ACS Photonics 2016, 3, 1271. J. Y. Suen, K. Fan, J. Montoya, C. Bingham, V. Stenger, S. Sriram, W. J. Padilla, Optica2017, 4, 276. T. D. Dao, S. Ishii, T. Yokoyama, T. Sawada, R. P. Sugavaneshwar, K. Chen, Y. Wada, T. Nabatame, T. Nagao, ACS Photonics 2016, 3, 1271. Appl. Phys. Lett. 2008, 92, 141114. Physical Review B 72, 075127(2005). Optics Express, Vol 27, A725-A737(2019). E. D. Palik, Handbook of Optical Constants of Solids, Academic Press: New York, 1998. T. D. Dao, S. Ishii, T. Yokoyama, T. Sawada, R. P. Sugavaneshwar, K. Chen, Y. Wada, T. Nabatame, T. Nagao, ACS Photonics 2016, 3, 1271.

Claims (20)

  1.  光を検出可能なセンサーであって、
     表面が金属および誘電体の少なくとも一方で形成され、入射する光を吸収する吸収体と、
     前記吸収体による光の吸収によって発生する熱を検出する手段と
    を設け、
     前記吸収体は、当該吸収体の表面に垂直に入射し、かつ、当該吸収体の共鳴波長と同じ波長を持つ光を吸収し、
     前記吸収体の表面は、隆起している複数の隆起部分を含み、
     前記吸収体の表面は、一次元または二次元の格子パターンが形成されるように前記複数の隆起部分が所定の周期で配列される周期構造をとり、
     前記一次元の格子パターンにおいては、
     前記複数の隆起部分の各々は、長尺状に形成され、相互に平行になるように所定の方向に沿って第1周期で配列され、
     前記隆起部分の幅は、前記第1周期の0.3倍~0.7倍であり、
     前記隆起部分の厚さは、前記第1周期の0.05倍~0.2倍であり、
     前記二次元の格子パターンにおいては、
     前記複数の隆起部分の各々は、格子状になるように第2周期で配列され、
     前記隆起部分の幅は、前記第2周期の0.3倍~0.7倍であり、
     前記隆起部分の厚さは、前記第2周期の0.05倍~0.2倍であり、
     前記吸収体に入射した光の表面平行成分と前記格子パターンとから得た運動量とによって励起され、前記吸収体の表面を伝搬する表面プラズモンポラリトンまたは表面フォノンポラリトンの複数のモードの各々は、当該吸収体へ入射する光が表面に対して垂直に入射し、かつ、波長が前記共鳴波長であるときに縮退状態となる
     光センサー。
  2.  前記隆起部分は、二次元の格子パターンで配列され、
     前記吸収体の光の吸収には偏光依存性がない、
     請求項1に記載の光センサー。
  3.  前記隆起部分は、前記二次元の格子パターンの対称性が維持される形状に形成される、
     請求項2に記載の光センサー。
  4.  前記隆起部分は、前記一次元の格子パターンに配列され、
     前記吸収体が吸収する光は、特定の偏光方向の光である、
     請求項1に記載の光センサー。
  5.  前記吸収体が吸収する光は、紫外線、可視光または赤外線である、
     請求項1から4の何れかに記載の光センサー。
  6.  前記熱を検出する手段は、前記熱による温度上昇を検出する手段である、
     請求項1から5の何れかに記載の光センサー。
  7.  前記温度上昇を検出する手段は焦電体またはボロメーターである、請求項6に記載の光センサー。
  8.  前記隆起部分の表面において、前記金属の厚さが50nm以上である、
     請求項1から7の何れかに記載の光センサー。
  9.  前記吸収体は、当該吸収体の表面に垂直に入射し、かつ、当該吸収体の共鳴波長と同じ波長を持つ光を90%以上吸収する、
     請求項1から8の何れかに記載の光センサー。
  10.  前記金属は、Au、Ag及びAlから選択され、
     前記誘導体は、Si、Ge、Al、TiO,SiO及びSiCから選択される、
     請求項1から9の何れかに記載の光センサー。
  11.  検出する光の帯域幅が50以上のQ値に対応するものである、請求項1から10の何れかに記載の光センサー。
  12.  最も検出感度が高い方向からの検出感度半値角度が±1度以下である、請求項1から11の何れかに記載の光センサー。
  13.  前記検出感度が最も高い方向は、前記吸収体の表面に垂直な方向である、
     請求項1から12の何れかに記載の光センサー。
  14.  請求項1から13の何れかに記載された光センサーが単一のチップ上に複数配列されたセンサーユニット。
  15.  前記複数の光センサーのうちの少なくとも1つの光センサーは検出波長が他の光センサーと異なる、
     請求項14に記載のセンサーユニット。
  16.  前記1つの光センサーは、前記他の光センサーとは前記隆起部分が配列される前記周期が異なる
     請求項15に記載のセンサーユニット。
  17.  前記複数の光センサーの間の少なくとも一部の領域に熱障壁を設けた、
     請求項14から16の何れかに記載のセンサーユニット。
  18.  請求項14から17の何れかに記載のセンサーユニットを有し、
     前記センサーユニットにおける各光センサーは、特定方向にある物体から飛来する光を検出し、
     前記検出された光に応じて前記物体の存在または動きを検出する物体検出装置。
  19.  前記物体は物品、動物及び人間から選択される、
     請求項18に記載の物体検出装置。
  20.  前記光センサーは、前記物体から飛来する赤外線を検出する、
     請求項18または19に記載の物体検出装置。
PCT/JP2020/029266 2019-08-02 2020-07-30 光センサー、センサーユニット及び光センサーを利用した物体検出装置 WO2021024909A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021537272A JP7210067B2 (ja) 2019-08-02 2020-07-30 光センサー、センサーユニット及び光センサーを利用した物体検出装置
US17/631,147 US20220271211A1 (en) 2019-08-02 2020-07-30 Photosensor, sensor unit, and object detection apparatus using photosensor
EP20849844.4A EP4009015A4 (en) 2019-08-02 2020-07-30 OPTICAL SENSOR, SENSOR UNIT AND OBJECT DETECTION DEVICE USING OPTICAL SENSOR

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-142927 2019-08-02
JP2019142927 2019-08-02

Publications (1)

Publication Number Publication Date
WO2021024909A1 true WO2021024909A1 (ja) 2021-02-11

Family

ID=74503555

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/029266 WO2021024909A1 (ja) 2019-08-02 2020-07-30 光センサー、センサーユニット及び光センサーを利用した物体検出装置

Country Status (4)

Country Link
US (1) US20220271211A1 (ja)
EP (1) EP4009015A4 (ja)
JP (1) JP7210067B2 (ja)
WO (1) WO2021024909A1 (ja)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005338882A (ja) * 1999-03-22 2005-12-08 Mems Optical Inc 回折選択偏光ビームスプリッタおよびそれにより製造されたビームルーチングプリズム
JP2007501391A (ja) * 2003-08-06 2007-01-25 ユニバーシティー オブ ピッツバーグ 表面プラズモンを増強するナノ光学素子及びこの製造方法
JP2011128133A (ja) * 2009-11-19 2011-06-30 Seiko Epson Corp センサーチップ、センサーカートリッジ及び分析装置
JP2011232186A (ja) * 2010-04-28 2011-11-17 Seiko Epson Corp 光デバイス、分析装置及び分光方法
WO2013164910A1 (ja) * 2012-05-01 2013-11-07 セイコーエプソン株式会社 光学デバイス及び検出装置
JP2014119262A (ja) * 2012-12-13 2014-06-30 Seiko Epson Corp 光学デバイス、検出装置、及び電子機器
JP2014134553A (ja) * 2014-04-21 2014-07-24 Seiko Epson Corp 分析装置
JP2015055482A (ja) * 2013-09-10 2015-03-23 セイコーエプソン株式会社 分析装置、分析方法、これらに用いる光学素子及び電子機器
JP2015114497A (ja) * 2013-12-12 2015-06-22 株式会社豊田中央研究所 電磁波−表面ポラリトン変換素子。
JP2015212674A (ja) * 2014-05-07 2015-11-26 セイコーエプソン株式会社 分析装置及び電子機器
WO2019039551A1 (ja) * 2017-08-23 2019-02-28 国立大学法人東北大学 メタマテリアル構造体および屈折率センサ

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005338882A (ja) * 1999-03-22 2005-12-08 Mems Optical Inc 回折選択偏光ビームスプリッタおよびそれにより製造されたビームルーチングプリズム
JP2007501391A (ja) * 2003-08-06 2007-01-25 ユニバーシティー オブ ピッツバーグ 表面プラズモンを増強するナノ光学素子及びこの製造方法
JP2011128133A (ja) * 2009-11-19 2011-06-30 Seiko Epson Corp センサーチップ、センサーカートリッジ及び分析装置
JP2011232186A (ja) * 2010-04-28 2011-11-17 Seiko Epson Corp 光デバイス、分析装置及び分光方法
WO2013164910A1 (ja) * 2012-05-01 2013-11-07 セイコーエプソン株式会社 光学デバイス及び検出装置
JP2014119262A (ja) * 2012-12-13 2014-06-30 Seiko Epson Corp 光学デバイス、検出装置、及び電子機器
JP2015055482A (ja) * 2013-09-10 2015-03-23 セイコーエプソン株式会社 分析装置、分析方法、これらに用いる光学素子及び電子機器
JP2015114497A (ja) * 2013-12-12 2015-06-22 株式会社豊田中央研究所 電磁波−表面ポラリトン変換素子。
JP2014134553A (ja) * 2014-04-21 2014-07-24 Seiko Epson Corp 分析装置
JP2015212674A (ja) * 2014-05-07 2015-11-26 セイコーエプソン株式会社 分析装置及び電子機器
WO2019039551A1 (ja) * 2017-08-23 2019-02-28 国立大学法人東北大学 メタマテリアル構造体および屈折率センサ

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
APPL. PHYS. LETT., vol. 92, 2008, pages 141114
E. D. PALIK: "Handbook of Optical Constants of Solids", 1998, ACADEMIC PRESS
J. Y. SUENK. FANJ. MONTOYAC. BINGHAMV. STENGERS. SRIRAMW. J. PADILLA, OPTICA, vol. 4, 2017, pages 276
OPTICS EXPRESS, vol. 27, 2019, pages A725 - A737
PHYSICAL REVIEW B, vol. 72, 2005, pages 075127
S. OGAWAK. OKADAN. FUKUSHIMAM. KIMATA, APPL. PHYS. LETT., vol. 100, 2012, pages 021111
See also references of EP4009015A4
T. D. DAOS. ISHIIT. YOKOYAMAT. SAWADAR. P. SUGAVANESHWARK. CHENY. WADAT. NABATAMET. NAGAO, ACS PHOTONICS, vol. 3, 2016, pages 1271

Also Published As

Publication number Publication date
EP4009015A4 (en) 2023-12-27
EP4009015A1 (en) 2022-06-08
US20220271211A1 (en) 2022-08-25
JP7210067B2 (ja) 2023-01-23
JPWO2021024909A1 (ja) 2021-02-11

Similar Documents

Publication Publication Date Title
Gordon et al. Resonant optical transmission through hole‐arrays in metal films: physics and applications
CN107561028B (zh) 用于增强红外光谱探测的金属-石墨烯等离激元器件及制备方法
Yoon et al. Interference effect on Raman spectrum of graphene on SiO 2/Si
JP5810667B2 (ja) 光デバイス及び検出装置
US9057697B2 (en) Optical device with propagating and localized surface plasmons and detection apparatus
US9052454B2 (en) Spectral band-pass filter having high selectivity and controlled polarization
US8599486B2 (en) Three dimensional sub-wavelength structure with surface plasmon energy matching properties
US20150118124A1 (en) Structural colorimetric sensor
JP4117665B2 (ja) 光学分析用チップとその製造方法、光学分析用装置、および光学分析方法
Dao et al. An on‐chip quad‐wavelength pyroelectric sensor for spectroscopic infrared sensing
US20180059026A1 (en) Surface Enhanced Raman Spectroscopy (SERS) Structure For Double Resonance Output
WO2008039212A2 (en) Optical sensing based on surface plasmon resonances in nanostructures
US10883820B2 (en) Apparatus and method for metrology
Jubb et al. Elevated gold ellipse nanoantenna dimers as sensitive and tunable surface enhanced Raman spectroscopy substrates
US11920982B2 (en) Image sensor and method of operating
Kusunoki et al. Narrow-band thermal radiation with low directivity by resonant modes inside tungsten microcavities
WO2013164644A2 (en) Tunable optical filter
US8395768B2 (en) Scattering spectroscopy apparatus and method employing a guided mode resonance (GMR) grating
WO2021024909A1 (ja) 光センサー、センサーユニット及び光センサーを利用した物体検出装置
US20210223444A1 (en) Dispersion array and method of fabricating
Yuan et al. High refractive index sensitivity sensing in gold nanoslit arrays
Ji et al. Narrow-band midinfrared thermal emitter based on photonic crystal for NDIR gas sensor
Kang Ultra-Narrowband Metamaterial Absorbers for Multispectral Infrared Microsystems
JP2017173084A (ja) 表面増強ラマン散乱分析用基板、その製造方法およびその使用方法
González-Colsa et al. Gradient-free temperature control over micrometric areas for thermoplasmonic applications in micro-and nano-devices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20849844

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021537272

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020849844

Country of ref document: EP

Effective date: 20220302