WO2021024517A1 - Rotor for rotary electric machine, rotary electric machine, manufacturing method for rotor of rotary electric machine, and manufacturing method for rotary electric machine - Google Patents

Rotor for rotary electric machine, rotary electric machine, manufacturing method for rotor of rotary electric machine, and manufacturing method for rotary electric machine Download PDF

Info

Publication number
WO2021024517A1
WO2021024517A1 PCT/JP2020/003336 JP2020003336W WO2021024517A1 WO 2021024517 A1 WO2021024517 A1 WO 2021024517A1 JP 2020003336 W JP2020003336 W JP 2020003336W WO 2021024517 A1 WO2021024517 A1 WO 2021024517A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
core
electric machine
rotary electric
machine according
Prior art date
Application number
PCT/JP2020/003336
Other languages
French (fr)
Japanese (ja)
Inventor
貴浩 三澤
将司 石川
興起 仲
一弘 庄野
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2021537561A priority Critical patent/JP7224471B2/en
Publication of WO2021024517A1 publication Critical patent/WO2021024517A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/28Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures
    • H02K1/30Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures using intermediate parts, e.g. spiders
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present application relates to a rotor of a rotary electric machine, a rotary electric machine, a method of manufacturing a rotor of a rotary electric machine, and a method of manufacturing a rotary electric machine.
  • a reluctance motor using a rotor that uses a reluctance torque and does not require a permanent magnet has been used for the purpose of cost reduction and resource saving. ing.
  • this reluctance motor in the rotor core, a portion having a small reluctance (magnetic resistance) and easily passing a magnetic flux and a portion having a large reluctance and a portion where the magnetic flux is difficult to pass are alternately formed as many as the number of poles. Then, the reluctance torque is generated by utilizing the difference in the void magnetic flux density between each of these parts in the rotor core and the stator.
  • the reluctance motor rotates the rotor using only the reluctance torque without using a permanent magnet, so there is a problem that the output torque is smaller than that of the permanent magnet type motor, and the output torque is increased. Is required to do.
  • the rotor core of a reluctance motor generally has a drawback that a short circuit of magnetic flux occurs at a bridge portion provided at the peripheral portion of the rotor core. Therefore, as a structure for suppressing a magnetic flux short circuit, a reluctance motor having the following configuration with a small bridge portion is disclosed.
  • the rotor core of the conventional reluctance motor is composed of a first punched plate and a second punched plate.
  • the first punching plate is provided with four flux barriers composed of a plurality of holes at equal intervals along the circumferential direction. Both ends of each hole are close to the outer periphery of the first punched plate, and narrow bridge portions (bridge entanglements) are formed on the outside of the both end portions.
  • the second punched plate has substantially the same shape as the first punched plate, and a flux barrier composed of a plurality of separating gaps formed substantially the same as the holes of the first punched plate is formed in the circumferential direction. Four are provided at equal intervals along the line.
  • both ends of these separation gaps extend to the outer periphery of the second punching plate. That is, the separation gap portion has a form in which both end portions of the holes of the first punched plate are extended as they are to eliminate the bridge portion and are opened to the outer circumference in the radial direction of the second punched plate.
  • a first punched plate is arranged at both ends of the rotor core in the axial direction, and a first punched plate is arranged between them (see, for example, Patent Document 1).
  • the bridge portion of the rotor core is made smaller by sandwiching the second punched plate having a structure without the bridge portion between the first punched plates having the bridge portion.
  • the magnetic flux efficiency of the rotor core is increased.
  • the first punched plate has a bridge portion having a low magnetic resistance, there is a problem that leakage of magnetic flux cannot be sufficiently reduced.
  • the present application discloses a technique for solving the above-mentioned problems, a rotor of a rotary electric machine, a method of manufacturing a rotary electric machine, a rotor of a rotary electric machine, and a rotary electric machine capable of reducing leakage of magnetic flux. It is an object of the present invention to provide the manufacturing method of.
  • the rotor of the rotating electric machine disclosed in the present application is A rotor of a rotating electric machine having a rotor core having a plurality of salient poles at intervals in the circumferential direction.
  • the rotor core includes a plurality of core forming bodies arranged apart from each other by a set separation width in the radial direction, and the plurality of core forming bodies separate the rotor cores toward the outer peripheral surface of the rotor core.
  • a separated region extending with width is formed
  • a non-magnetic coupler having an axial length equal to or less than the axial length of the rotor core is disposed in the separation region.
  • a protrusion that protrudes in the separation width direction is formed on one of the core forming body or the coupling, and a groove that engages with the protrusion is formed on the other, and the engagement between the protrusion and the groove causes the protrusion to engage.
  • Each core forming body is fixed and held in the radial direction
  • the groove portion is formed with a first surface extending in a direction inclined by a set angle from the direction of the centrifugal force acting on the groove portion, and the protruding portion is formed with a second surface that abuts on the first surface.
  • the rotary electric machine disclosed in the present application is It is configured using the rotor of the rotating electric machine configured as described above. It is something like that.
  • the method for manufacturing a rotor of a rotary electric machine disclosed in the present application is as follows.
  • Each core forming body is punched from the electromagnetic steel sheet so that the direction of the straight line connecting the ends of each core forming body is perpendicular to the axial direction and follows the rolling direction of the electromagnetic steel sheet. It is something like that.
  • the method for manufacturing a rotary electric machine disclosed in the present application is as follows.
  • the stator is arranged coaxially with the rotor manufactured by using the rotor manufacturing method of the rotary electric machine.
  • the method of manufacturing the rotor of the rotary electric machine, the rotor of the rotary electric machine, and the method of manufacturing the rotary electric machine disclosed in the present application it is possible to reduce the leakage of magnetic flux.
  • FIG. 5 is a plan view showing the overall shape of the rotor according to the first embodiment when viewed from the axial direction.
  • FIG. 5 is an enlarged view of a main part of an enlarged rotor portion according to the first embodiment. It is sectional drawing of the rotor according to Embodiment 1.
  • FIG. It is sectional drawing which shows the schematic structure of the reluctance motor according to Embodiment 1.
  • FIG. It is a top view which shows the whole shape when the rotor of the comparative example is seen from the axial direction.
  • FIG. 5 is an enlarged view of a main part of an enlarged rotor portion according to the first embodiment.
  • FIG. 5 is an enlarged view of a main part of an enlarged rotor portion according to the first embodiment.
  • FIG. 5 is an enlarged view of a main part of an enlarged rotor portion according to the second embodiment.
  • FIG. 1 is a plan view showing the overall shape of the rotor 50 used in the reluctance motor 100 according to the first embodiment when viewed from the axial direction.
  • FIG. 2 is an enlarged view of a main part of the rotor 50 shown in FIG. 1 in which one pole portion is enlarged.
  • FIG. 3 is a cross-sectional view of the rotor 50 taken along the line AA of FIG.
  • FIG. 4 is a cross-sectional view showing a schematic configuration of the reluctance motor 100 using the rotor 50 according to the first embodiment.
  • each direction of the annular rotor 50 is set to the circumferential direction S, the radial direction X, the radial inner side X1, the radial outer side X2, and the axial direction of the rotation axis of the rotor 50 as the axial direction Y.
  • the figure of is also shown with reference to the direction.
  • the reluctance motor 100 as a rotary electric machine includes a rotor 50, a stator 80, a shaft 81, and a frame 82.
  • the stator 80 is fixed to the inside of the frame 82.
  • the rotor 50 is fixed to a shaft 81 penetrated at the axial center position of the reluctance motor 100, and is rotatably arranged around the shaft 81 on the radial inner side X1 of the stator 80.
  • the rotor 50 of the present embodiment is composed of an annular rotor core 20 made of a magnetic material and a non-magnetic material attached to the rotor core 20.
  • the combined body 30 (30a, 30b, 30c) to be formed is provided.
  • the rotor core 20 includes a plurality of outer cores 21 (21a, 21b, 21c) as core forming bodies, and an inner core 22 as a core main portion.
  • the outer cores 21a, 21b, and 21c are formed to form an arcuate outer circumference opposite to the outer circumference circle of the rotor 50, and the apex of the outer circumference of each arc is concentric circles located on the radius of the rotor 50.
  • the separation widths D1, D2, and D3 set in the radial direction X are arranged apart from each other.
  • the inner core 22 is arranged radially inside X1 with respect to the outer cores 21a, 21b, and 21c so as to be separated in the radial direction X by a separation width D1 set from the outer core 21a.
  • the rotor has separation widths D1, D2, and D3 between the inner core 22 and the outer core 21a, between the outer core 21a and the outer core 21b, and between the outer core 21b and the outer core 21c.
  • Slits 10 (10a, 10b, 10c) extending toward the outer peripheral surface of the core 20 as separation regions are secured.
  • the shapes of the slits 10a, 10b, and 10c secured in this manner are arcuate in the direction opposite to the outer circle of the rotor core 20, and the vertices of the arcs are on the radius of the rotor core 20, respectively. It is a concentric circle that is located.
  • the vertices of the arcs of the slits 10a, 10b, and 10c are the polar centers of the rotor 50.
  • the coupling bodies 30a, 30b, and 30c extending in the axial direction Y are arranged, respectively.
  • the separation widths D1, D2, and D3 have the same width, but the widths may be different from each other. Further, the separation widths D1, D2, and D3 may change, for example, as the width extends toward the outer peripheral surface of the rotor core 20.
  • the inner core 22 has a shaft hole 23 formed in the central portion thereof.
  • the shaft 81 shown in FIG. 4 is inserted into and fixed to the shaft hole 23.
  • the rotor core 20 includes a slit group 11 including the slits 10a, 10b, and 10c.
  • the slit group 11 is used as one magnetic pole, and four poles are arranged at equal intervals along the circumferential direction S of the rotor core 20.
  • the slit group 11 functions as a flux barrier (magnetic flux barrier), a portion having a small reluctance (magnetic resistance) through which the magnetic flux easily passes and a portion having a large reluctance through which the magnetic flux does not easily pass are formed, and the inside of the rotor core 20 is formed.
  • a magnetic reluctance is imparted to the core 22.
  • the rotor core 20 is configured by pulling out a thin plate-shaped electromagnetic steel plate 1 and laminating a plurality of sheets in the axial direction Y by caulking.
  • the rotor core 20 is not limited to the one in which the electromagnetic steel sheets 1 are laminated in this way, and may be a bulk product which is not a laminated structure. However, when the electromagnetic steel sheets 1 are laminated, an eddy current is used. There is a merit that can be made smaller.
  • each outer core 21 and inner core 22 are recessed in the radial direction X (separation widths D1, D2, D3 directions) from the surface facing the slit 10 as a groove portion extending in the axial direction Y.
  • Notch 25 is formed.
  • first surfaces 25S extending in a direction inclined by ⁇ by a set angle from the direction F1 of the centrifugal force due to the rotation of the rotor 50 are formed.
  • the coupling 30 is formed with an anchor portion 31 as a protrusion that protrudes so as to engage with the notch 25.
  • a second surface 31S formed so as to abut the first surface 25S of the notch 25 is formed at both ends of the anchor portion 31 of the coupling 30 in the circumferential direction S.
  • connection between the inner core 22 and the outer core 21 by the composite 30 of such a non-magnetic material imparts the outer core 21 with the proof stress due to the centrifugal force, and at the same time, magnetically connects each outer core 21 and the inner core 22. It plays a role of disconnection.
  • the couplings 30a, 30b, 30c are arranged side by side in the radial direction of the rotor core 20, that is, along the direction F1 of the centrifugal force acting on the couplings 30a, 30b, 30c. Arranged. As a result, it is possible to secure further proof stress against centrifugal force in each outer core 21.
  • the length of the couplings 30a, 30b, 30c in the axial direction Y is formed to be substantially the same as the length of the rotor core 20 in the axial direction Y, and the couplings 30a, 30b, 30b, The end portion of the rotor core 20 in the axial direction Y does not protrude outward from the end surface of the rotor core 20 in the axial direction Y. This makes it possible to reduce the size of the rotor 50 and the reluctance motor 100.
  • the length of the couplings 30a, 30b, and 30c in the axial direction Y is not limited to substantially the same as the length of the rotor core 20 in the axial direction Y, and is equal to or less than the length of the rotor core 20 in the axial direction Y. It should be.
  • FIG. 5 is a plan view showing the overall shape of the rotor of the comparative example when viewed from the axial direction.
  • both ends of the slits 90a, 90b, and 90c are close to the outer peripheral surface of the rotor core, and the width of both ends is on the outer peripheral surface side of the rotor core.
  • Narrow bridge portions 91 are formed respectively.
  • the bridge portion 91 is generally made of a magnetic material having the same low magnetic resistance as the rotor core, a magnetic path is formed through the bridge portion 91, and leakage passes through the magnetic path. A magnetic flux M1 is generated.
  • the rotor core has a small reluctance (magnetic resistance), and the direction G1 in which the magnetic flux easily passes and the direction G2 in which the reluctance is large and the magnetic flux does not easily pass are alternately formed in the same number as the number of poles to rotate.
  • Reluctance torque is generated by utilizing the difference in void magnetic flux density between each of these parts in the child core and a stator (not shown). Therefore, the presence of the leakage flux M1 short-circuited in the rotor core reduces the reluctance torque, which is not preferable in aiming at a highly efficient rotary electric machine.
  • the outer cores 21a, 21b, 21c and the inner core 22 constituting the rotor core 20 are independent of each other, and there is no bridge portion on the outer peripheral portion of the radial outer side X2. .. Therefore, the leakage flux can be reduced, and the torque of the reluctance motor can be increased.
  • the rotor 50 has a structure in which the inner core 22 and the outer core 21 are separated independently as described above, when the electromagnetic steel plate is punched with a press die, the inner core 22 and the outer core 21 are separated. Can be punched separately and in any arrangement on the electrical steel sheet.
  • the punching width between the outer cores of the electrical steel sheet is made smaller than the slit width of the rotor.
  • the space of the slit 10 is omitted from the electromagnetic steel plate, and the inner core 22 and the outer core 21 are punched out. Therefore, the amount of scraps of the electromagnetic steel plate corresponding to the space of the slit 10 can be reduced, and the material cost can be reduced.
  • the rotor core 20 of the present embodiment has a structure in which the inner core 22 and the outer core 21 are separated independently as described above, the inner core 22 and the outer core 21 are made of different electromagnetic steel plates. It is possible to combine after punching and laminating.
  • a grain-oriented electrical steel sheet is used as the electrical steel sheet constituting the outer core 21, and as shown in FIG. 2, the outer peripheral direction of the outer core 21 is aligned with the longitudinal direction of the grain-oriented electrical steel sheet, that is, the outer core.
  • the magnetic path direction P1a of 21 is arranged and punched so as to match the rolling direction P2 of the grain-oriented electrical steel sheet.
  • a non-oriented electrical steel sheet is used for the inner core 22. Combining the inner core 22 and the outer core 21 formed in this way has a merit of further improving the magnetic polarity of the rotor 50.
  • aligning the magnetic path direction P1a of the outer core 21 with the rolling direction P2 of the directional electromagnetic steel plate is a direction side perpendicular to the axial direction Y of the outer core 21 and rotates. It is synonymous with aligning the direction of the straight line P1b connecting the ends on the outer peripheral surface side of the child 50 with the rolling direction P2 of the directional electromagnetic steel plate.
  • FIG. 6 is an enlarged view of a main part of the rotor 50A of the present embodiment in which one pole portion is enlarged.
  • FIG. 7 is an enlarged view of a main part of the rotor 50B of the present embodiment in which one pole portion is enlarged.
  • the rotor 50A is characterized in that the notch portion is provided not on the outer core side but on the coupling side, and the anchor portion is provided on the outer core side.
  • the rotor 50A includes an anchor portion 26 as a protrusion in which the outer core 21 and the inner core 22 project toward the separation widths D1, D2, and D3.
  • the coupling body 30 includes a notch portion 35 as a groove portion that engages with the anchor portion 26.
  • first surfaces 35S extending in a direction inclined by ⁇ by a set angle from the direction F1 of the centrifugal force are formed.
  • a second surface 26S formed so as to abut the first surface 35S of the notch portion 35 is formed.
  • each notch 35 formed in the coupling 30 and the anchor portion 26 formed in the outer core 21 and the inner core 22 are engaged with each other, and each outer core 21 is mechanically fixed in the radial direction X. Be retained.
  • a notch that locally narrows the width is not formed on the outer core 21 side. Therefore, the magnetic resistance of the magnetic path passing through the outer core 21 and the inner core 22 does not decrease due to the notch, and the torque does not decrease. Therefore, the magnetic flux that can be effectively used increases, and the magnetic characteristics of the rotor are improved.
  • a coupling body 30 having the same configuration as that shown in the rotor 50A is double-arranged in one slit 10. In this way, a plurality of couplings 30 may be arranged in one slit 10 as needed, and it is also possible to impart a large centrifugal force proof stress.
  • the coupling body 30 arranged on the radius of the rotor core 20 the coupling body 30 arranged within a set distance E within the radial inner side X1 from the outer peripheral surface of the rotor core 20 is provided.
  • each of the couplings 30a, 30b, 30c is located at the outermost radial X2 of the plurality of core forming bodies 21 (outer cores 21a, 21b, 21c) provided with the couplings 30a, 30b, 30c.
  • the radial inner end faces 30c-in of the coupling 30c provided on the core forming body 21 are arranged so as to be located within a distance E from the outer peripheral surface of the rotor core 20 in the radial direction.
  • the anchor portions 26 of the core forming bodies 21 adjacent to each other in the radial direction X, which are engaged by the coupling body 30, are arranged so as to face each other in the slit 10.
  • the binder 30 is cured by filling the slit 10 with a thermoplastic material such as PPS (Polyphenylene sulfide) resin or a thermosetting resin material such as BMC (Bulk Molding Compound) by insert molding. Obtained at.
  • PPS Polyphenylene sulfide
  • BMC Bulk Molding Compound
  • the PPS is not limited to the thermoplastic resin containing such a filler, and other resin materials such as other thermoplastic resins and thermosetting resins can be used, and the rotor core 20 It can be used properly according to the size and shape of the plastic.
  • the couplers 30 constituting the rotor 50 are mutually formed during resin filling.
  • No end plate is formed so that the space is connected to each other on both end faces in the axial direction, which are the uppermost stage and the lowermost stage of the rotor core 20. That is, the coupling body 30 is formed so as not to connect the coupling bodies 30 to each other on both end faces in the axial direction of the rotor core 20.
  • the present embodiment can be achieved by press-fitting the combined body into the notch portion of the rotor core, insert molding can be eliminated, and equipment cost and processing cost can be expected to be reduced.
  • the structure formation by press fitting enables the use of non-magnetic metals other than aluminum such as SUS steel (stainless steel) and copper which cannot be formed by insert molding, and has an advantage of expanding the range of material selection of the conjugate.
  • the molding method can be properly used depending on the relationship between the shapes of the rotor core and the non-magnetic member, such as injection molding, die casting, and press fitting.
  • each notch 25 may extend in a direction inclined by ⁇ by a set angle from the direction F1 of the centrifugal force, and a first surface 25S capable of countering the centrifugal force may be formed.
  • the shape may be set in consideration of the balance between mechanical strength and press workability.
  • the shape of the rotor core 20 having four poles is illustrated, it can be applied to different pole numbers such as 6 poles and 8 poles.
  • the reluctance motor as the rotary electric machine shown in the present embodiment is assumed to be a rotary electric machine mounted on a compressor or an electric vehicle, but a rotary electric machine for other purposes may be used, and a magnet may be used. Needless to say, even if it is inserted into the rotor core, it is effective in all cases.
  • the rotor of the rotary electric machine of the present embodiment configured as described above is A rotor of a rotating electric machine having a rotor core having a plurality of salient poles at intervals in the circumferential direction.
  • the rotor core includes a plurality of core forming bodies arranged apart from each other by a set separation width in the radial direction, and the plurality of core forming bodies separate the rotor cores toward the outer peripheral surface of the rotor core.
  • a separated region extending with width is formed
  • a non-magnetic coupler having an axial length equal to or less than the axial length of the rotor core is disposed in the separation region.
  • a protrusion that protrudes in the separation width direction is formed on one of the core forming body or the coupling, and a groove that engages with the protrusion is formed on the other, and the engagement between the protrusion and the groove causes the protrusion to engage.
  • Each core forming body is fixed and held in the radial direction
  • the groove portion is formed with a first surface extending in a direction inclined by a set angle from the direction of the centrifugal force acting on the groove portion, and the protruding portion is formed with a second surface that abuts on the first surface. It is a thing.
  • the rotor of the rotary electric machine of the present embodiment configured as described above is The couplings are formed on both axial end faces of the rotor core so as not to connect each other. It is a thing. Further, the rotary electric machine of the present embodiment configured as described above is It is configured using the rotor of the rotating electric machine configured as described above. It is a thing.
  • the outer cores forming the rotor core are arranged apart from each other in the radial direction.
  • a bridge portion that connects the ends of the outer cores to each other is not provided, and instead, the rotor core is inserted into the slit and is made of a non-magnetic material.
  • the outer cores are held fixed and held radially to each other.
  • the reluctance of the conjugate and the atmosphere is extremely large as compared with the bridge portion of the comparative example which is a magnetic material, the short-circuit magnetic flux is significantly reduced as compared with the rotor of the rotating electric machine of the comparative example.
  • the groove formed on one of the outer core or the coupling has a first surface extending in a direction inclined by a set angle from the direction of the centrifugal force acting on the groove, and the protruding portion hits the first surface.
  • a second surface in contact is formed.
  • the coupling has an axial length of the rotor core. Can be configured to be less than or equal to the axial length of.
  • the rotor of the rotary electric machine of the present embodiment configured as described above is In a configuration in which a plurality of the separated regions are formed in the radial direction,
  • the coupling is arranged along the radial direction of the rotor core. It is a thing. In this way, by arranging the coupled bodies so as to line up in the radial direction of the rotor, that is, in the direction of the centrifugal force, the proof stress against the centrifugal force can be further improved.
  • the rotor of the rotary electric machine of the present embodiment configured as described above is
  • the protrusion is formed on the core-forming body, and the groove is formed on the coupling. It is a thing. With such a configuration, a portion of the outer core whose width is locally narrowed is not formed. Therefore, the magnetic resistance of the magnetic path passing through the outer core does not decrease and the torque does not decrease. As a result, the magnetic flux that can be effectively used increases, and the magnetic characteristics of the rotor can be improved.
  • the rotor of the rotary electric machine of the present embodiment configured as described above is A plurality of the conjugates are arranged in one separation region. It is a thing. Further, the rotor of the rotary electric machine of the present embodiment configured as described above is The protrusions formed on the core forming bodies adjacent to each other in the radial direction are arranged so as to face each other in the separation region. It is a thing. With such a configuration, the yield strength of the rotor against the centrifugal force can be improved, and high rigidity can be ensured.
  • the rotor of the rotary electric machine of the present embodiment configured as described above is Each said conjugate Of the core forming bodies provided with the coupling body, the radial inner end surface of the coupling body provided in the core forming body located on the outermost radial direction is radially inside from the outer peripheral surface of the rotor core. Each placed so that it is located within the distance to, It is a thing. Thereby, for example, when the rotor is started to rotate, high rigidity of the rotor can be ensured in the vicinity of the outer peripheral surface of the rotor to which a strong stress is applied.
  • the rotor of the rotary electric machine of the present embodiment configured as described above is
  • the rotor core It is provided with a core main portion that is arranged radially inside the core forming body with the separation width separated and to which the salient pole is provided.
  • the coupling is disposed in the separation region between the core main portion and the core forming body.
  • the protrusion is formed on one of the core-forming body and the coupling, and the groove is formed on the other. By engaging the protrusion and the groove, the core-forming body and the core main portion are brought together. Fixed and held, It is a thing.
  • the rotor core does not have a bridge portion at the peripheral edge of the rotor core that connects the inner core and the outer core, and the non-magnetic bond prevents the outer core and the inner core from directly touching each other.
  • Each outer core can be held against centrifugal force while being fixedly held in a state where a specific position is secured. As a result, the leakage of magnetic flux can be reduced, and the torque of the rotary electric machine can be further increased.
  • the rotor of the rotary electric machine of the present embodiment configured as described above is
  • the core forming body is formed by laminating directional electromagnetic steel sheets in the axial direction.
  • the direction of the straight line connecting the ends of the core forming body on the outer peripheral surface side of the rotor, which is perpendicular to the axial direction, is along the rolling direction of the electromagnetic steel sheet constituting the core forming body.
  • the method for manufacturing the rotor of the rotary electric machine according to the present embodiment configured as described above is as follows.
  • a grain-oriented electrical steel sheet is used for the outer core, and the electrical steel sheet is punched out so that the direction of the straight line connecting the ends of the outer core, that is, the magnetic path direction of the outer core is along the rolling direction.
  • the grain-oriented electrical steel sheet exhibits excellent magnetic characteristics in the rolling direction, such a configuration can further improve the magnetic polarity of the rotor and improve the efficiency of the rotating electric machine.
  • the inner core and the outer core are not separated from each other, but are integrally connected by a bridge portion. With such a configuration, when punching a grain-oriented electrical steel sheet, the magnetic path direction of each outer core cannot be punched along the rolling direction of the grain-oriented electrical steel sheet.
  • the magnetic characteristics of the rotor core become non-uniform in the radial direction, and the efficiency of the rotor is significantly impaired, making it difficult to use.
  • the rotor core can be formed by punching the magnetic path directions of all the outer cores in the rolling direction of the electrical steel sheet. As a result, the efficiency of the rotary electric machine can be further improved.
  • the rotor of the rotary electric machine of the present embodiment configured as described above is
  • the core main portion is formed by laminating non-oriented electrical steel sheets in the axial direction. It is a thing. In this way, by using non-oriented electrical steel sheets that can obtain almost uniform magnetic characteristics in all directions for the inner core and directional electrical steel sheets for the outer core, the magnetic salientity of the rotor The improvement can be further improved. Further, the inner core and the outer core are further separated, press-punched, laminated, and then combined. As a result, the press device can be miniaturized.
  • the method for manufacturing the rotor of the rotary electric machine according to the present embodiment configured as described above is as follows.
  • the punching width between the core forming bodies in the electromagnetic steel sheet is configured to be smaller than the separation width. It is a thing. Since the outer cores have independent configurations, each outer core is punched out of the electrical steel sheet with a punching width smaller than the slit width when the rotor is constructed. As a result, the amount of scraps of the electromagnetic steel sheet corresponding to the width of the slit can be reduced, and the material cost can be reduced.
  • the method for manufacturing the rotary electric machine of the present embodiment configured as described above is as follows.
  • the stator is placed coaxially with the rotor manufactured by using the rotor manufacturing method of the rotary electric machine described above. It is a thing. As a result, in the manufacture of rotary electric machines, the press device can be miniaturized, the amount of scraps of the electromagnetic steel sheet corresponding to the width of the slit can be reduced, and the material cost can be reduced.
  • the productivity of punching of the inner core and the outer core by the press die can be further improved.
  • the shape of the rotor core of the comparative example since the inner core and the outer core were connected by a bridge, the pressed holes of the electrical steel sheet to be punched were annular, and a lot of scraps were generated between the adjacent punched holes.
  • the shapes of the inner core and the outer core are integrated and punched out from the electrical steel sheet. For example, taking the rotor core of FIG.
  • the inner diameter side core has a shape close to a quadrangle, the amount of scraps is reduced by consolidating only the inner diameter side core shapes and punching them in a grid pattern. it can.
  • the same effect can be obtained with a rotor other than the four poles as long as it is a polygon. For example, in the case of 6 poles, the yield can be expected to be improved by arranging the punched holes in a honeycomb shape.
  • FIG. 8 is an enlarged view of a main part in which one pole portion of the rotor 250 according to the second embodiment is enlarged.
  • the structure of the rotor 250 of the present embodiment is obtained by filling slits 10a, 10b, and 10c with a thermoplastic material such as PPS resin and a thermosetting resin material such as BMC by insert molding and solidifying the slits 10a, 10b, and 10c. can get.
  • the couplers 230a, 230b, 230c having a shape that completely fills the slits 10a, 10b, and 10c are formed.
  • the rotor of the present embodiment configured as described above is The combined body is configured to fill the entire separated region. It is a thing. Since the coupling body is configured to fill the entire slit in this way, the rigidity of the rotor can be further improved. Further, by filling the slit between the inner core and the outer core with the coupling body, vibration during rotation is suppressed, and noise due to vibration is reduced.
  • the arrangement of the conjugates is not limited to the above-described embodiment, and the number of conjugates is not limited to the example.
  • the coupling is mainly arranged at the pole center has been described, but the same effect can be obtained by arranging the couplings at both ends of the magnetic poles or between the poles.
  • the shape of the combined body is not limited to the shape shown above, and may be other than the shape shown above.
  • the coupling has a shape that maintains the relative positional relationship between the outer core and the inner core, and the outer core has a shape with respect to centrifugal force.
  • An anchor portion and a groove portion having a first surface and a second slope that can withstand centrifugal force may be formed so as to hold the inner core.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Synchronous Machinery (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

A rotor core (20) of a rotor (50) comprises a plurality of outside cores (21) disposed so as to be spaced apart in the radial direction at a set spacing width (D), wherein: slits (10) are formed so as to have the spacing width (D) and extend toward the outer circumferential surface of the rotor core (20); non-magnetic joining bodies (30) configured such that the length thereof in the axial direction is no greater than the length of the rotor core (20) in the axial direction are arranged inside the slits (10); anchor parts (31) that project in the spacing width (D) direction are formed on one of either the outside cores (21) or the joining bodies (30); notch parts (25) that engage with the anchor parts (31) are formed on the other thereof; each notch part (25) has formed thereon a first surface (25S) that extends in a direction inclined at a set angle θ from the centrifugal force direction; and each anchor part (31) has formed thereon a second surface (31S) that contacts the first surface (25S).

Description

回転電機の回転子、回転電機、回転電機の回転子の製造方法、および回転電機の製造方法Rotor of rotary electric machine, manufacturing method of rotary electric machine, rotor of rotary electric machine, and manufacturing method of rotary electric machine
 本願は、回転電機の回転子、回転電機、回転電機の回転子の製造方法、および回転電機の製造方法に関するものである。 The present application relates to a rotor of a rotary electric machine, a rotary electric machine, a method of manufacturing a rotor of a rotary electric machine, and a method of manufacturing a rotary electric machine.
 従来より、圧縮機、電気自動車などに搭載される回転電機として、低コスト化、省資源化等を目的として、リラクタンストルクを利用して永久磁石を不要とした回転子を用いるリラクタンスモータが用いられている。
 このリラクタンスモータは、回転子鉄心において、リラクタンス(磁気抵抗)が小さく磁束の通りやすい部分と、リラクタンスが大きく磁束の通り難い部分とを、極数と同数交互に形成する。そして、回転子鉄心におけるこれらの各部分と、固定子との間の空隙磁束密度の差を利用してリラクタンストルクを発生させる。
Conventionally, as a rotating electric machine mounted on a compressor, an electric vehicle, etc., a reluctance motor using a rotor that uses a reluctance torque and does not require a permanent magnet has been used for the purpose of cost reduction and resource saving. ing.
In this reluctance motor, in the rotor core, a portion having a small reluctance (magnetic resistance) and easily passing a magnetic flux and a portion having a large reluctance and a portion where the magnetic flux is difficult to pass are alternately formed as many as the number of poles. Then, the reluctance torque is generated by utilizing the difference in the void magnetic flux density between each of these parts in the rotor core and the stator.
 このように、リラクタンスモータは、永久磁石を使用せずにリラクタンストルクのみを利用して回転子を回転させるため、永久磁石型のモータに比べて出力トルクが小さいという問題があり、出力トルクを大きくすることが要求される。
 しかしながらリラクタンスモータの回転子鉄心は、一般的に回転子鉄心の周縁部に設けられたブリッジ部において磁束の短絡が生じるという欠点がある。そこで、磁束短絡を抑制するための構造として、ブリッジ部分を小さくした以下のような構成のリラクタンスモータが開示されている。
In this way, the reluctance motor rotates the rotor using only the reluctance torque without using a permanent magnet, so there is a problem that the output torque is smaller than that of the permanent magnet type motor, and the output torque is increased. Is required to do.
However, the rotor core of a reluctance motor generally has a drawback that a short circuit of magnetic flux occurs at a bridge portion provided at the peripheral portion of the rotor core. Therefore, as a structure for suppressing a magnetic flux short circuit, a reluctance motor having the following configuration with a small bridge portion is disclosed.
 即ち、従来のリラクタンスモータの回転子鉄心は、第1の打ち抜き板と、第2の打ち抜き板とから構成される。第1の打ち抜き板は、複数の孔からなるフラックスバリアが、円周方向に沿って等間隔に4つ設けられている。各孔の両端部は、第1の打ち抜き板の外周に接近しており、当該両端部の外側には幅の狭いブリッジ部(橋絡部)がそれぞれ形成される。第2の打ち抜き板は、第1の打ち抜き板と略同様の形状をなしており、第1の打ち抜き板の孔と略同様に形成された複数の離間空隙部からなるフラックスバリアが、円周方向に沿って等間隔に4つ設けられている。これら離間空隙部は、それぞれの両端部が第2の打ち抜き板の外周まで延びている。すなわち、離間空隙部は、第1の打ち抜き板の孔のそれぞれの両端部を、そのまま延長してブリッジ部をなくして第2の打ち抜き板の径方向外周に開放させた形態になっている。そして、回転子鉄心の軸方向における両端には第1の打ち抜き板が配置され、それらの中間には、第1打ち抜き板が配置される(例えば、特許文献1参照)。 That is, the rotor core of the conventional reluctance motor is composed of a first punched plate and a second punched plate. The first punching plate is provided with four flux barriers composed of a plurality of holes at equal intervals along the circumferential direction. Both ends of each hole are close to the outer periphery of the first punched plate, and narrow bridge portions (bridge entanglements) are formed on the outside of the both end portions. The second punched plate has substantially the same shape as the first punched plate, and a flux barrier composed of a plurality of separating gaps formed substantially the same as the holes of the first punched plate is formed in the circumferential direction. Four are provided at equal intervals along the line. Both ends of these separation gaps extend to the outer periphery of the second punching plate. That is, the separation gap portion has a form in which both end portions of the holes of the first punched plate are extended as they are to eliminate the bridge portion and are opened to the outer circumference in the radial direction of the second punched plate. A first punched plate is arranged at both ends of the rotor core in the axial direction, and a first punched plate is arranged between them (see, for example, Patent Document 1).
特開2008-22672号公報(段落[0009]~[0026]、図1~図6)Japanese Unexamined Patent Publication No. 2008-22672 (paragraphs [0009] to [0026], FIGS. 1 to 6)
 上記特許文献1のような従来のリラクタンスモータでは、ブリッジ部をなくした構造の第2打ち抜き板を、ブリッジ部を有する第1打ち抜き板の間に挟み込むこむことで、回転子鉄心のブリッジ部分を小さくし、回転子鉄心の磁束効率を高めている。しかしながら、第1打ち抜き板は、磁気抵抗の低いブリッジ部分を有する以上、磁束の漏洩を十分には低減できないという課題がある。 In the conventional reluctance motor as in Patent Document 1, the bridge portion of the rotor core is made smaller by sandwiching the second punched plate having a structure without the bridge portion between the first punched plates having the bridge portion. The magnetic flux efficiency of the rotor core is increased. However, since the first punched plate has a bridge portion having a low magnetic resistance, there is a problem that leakage of magnetic flux cannot be sufficiently reduced.
 本願は、上記のような課題を解決するための技術を開示するものであり、磁束の漏洩を低減可能な、回転電機の回転子、回転電機、回転電機の回転子の製造方法、および回転電機の製造方法を提供することを目的とする。 The present application discloses a technique for solving the above-mentioned problems, a rotor of a rotary electric machine, a method of manufacturing a rotary electric machine, a rotor of a rotary electric machine, and a rotary electric machine capable of reducing leakage of magnetic flux. It is an object of the present invention to provide the manufacturing method of.
 本願に開示される回転電機の回転子は、
周方向に間隔を隔てて複数の突極を有する回転子コアを備えた回転電機の回転子であって、
前記回転子コアは、設定された離間幅分、径方向に離間して配置される複数のコア形成体を備え、複数の前記コア形成体により、該回転子コアの外周面に向かって前記離間幅を有して延びる離間領域が形成され、
軸方向の長さが前記回転子コアの軸方向の長さ以下に構成される非磁性の結合体が、前記離間領域内に配設され、
前記コア形成体あるいは前記結合体の一方に、前記離間幅方向に突出する突出部が形成され、他方に前記突出部に係合する溝部が形成され、該突出部と該溝部との係合により、各前記コア形成体が径方向に固定保持され、
前記溝部は、該溝部に働く遠心力の方向から設定角度分傾斜する方向に延びる第1面が形成され、前記突出部は、前記第1面に当接する第2面が形成される、
ようにしたものである。
 また、本願に開示される回転電機は、
上記のように構成された回転電機の回転子を用いて構成される、
ようにしたものである。
 また、本願に開示される回転電機の回転子の製造方法は、
各前記コア形成体の、軸方向に垂直な方向側であって、端部同士を結ぶ直線の方向が、電磁鋼板の圧延方向に沿うように、前記電磁鋼板から各前記コア形成体を打ち抜く、
ようにしたものである。
 また、本願に開示される回転電機の製造方法は、
上記回転電機の回転子の製造方法を用いて製造された回転子と同軸上に固定子を配置するようにしたものである。
The rotor of the rotating electric machine disclosed in the present application is
A rotor of a rotating electric machine having a rotor core having a plurality of salient poles at intervals in the circumferential direction.
The rotor core includes a plurality of core forming bodies arranged apart from each other by a set separation width in the radial direction, and the plurality of core forming bodies separate the rotor cores toward the outer peripheral surface of the rotor core. A separated region extending with width is formed
A non-magnetic coupler having an axial length equal to or less than the axial length of the rotor core is disposed in the separation region.
A protrusion that protrudes in the separation width direction is formed on one of the core forming body or the coupling, and a groove that engages with the protrusion is formed on the other, and the engagement between the protrusion and the groove causes the protrusion to engage. , Each core forming body is fixed and held in the radial direction,
The groove portion is formed with a first surface extending in a direction inclined by a set angle from the direction of the centrifugal force acting on the groove portion, and the protruding portion is formed with a second surface that abuts on the first surface.
It is something like that.
In addition, the rotary electric machine disclosed in the present application is
It is configured using the rotor of the rotating electric machine configured as described above.
It is something like that.
Further, the method for manufacturing a rotor of a rotary electric machine disclosed in the present application is as follows.
Each core forming body is punched from the electromagnetic steel sheet so that the direction of the straight line connecting the ends of each core forming body is perpendicular to the axial direction and follows the rolling direction of the electromagnetic steel sheet.
It is something like that.
Further, the method for manufacturing a rotary electric machine disclosed in the present application is as follows.
The stator is arranged coaxially with the rotor manufactured by using the rotor manufacturing method of the rotary electric machine.
 本願に開示される回転電機の回転子、回転電機、回転電機の回転子の製造方法、および回転電機の製造方法によれば、磁束の漏洩を低減可能となる。 According to the rotor of the rotary electric machine, the method of manufacturing the rotor of the rotary electric machine, the rotor of the rotary electric machine, and the method of manufacturing the rotary electric machine disclosed in the present application, it is possible to reduce the leakage of magnetic flux.
実施の形態1による回転子を、軸方向から見た時の全体形状を示す平面図である。FIG. 5 is a plan view showing the overall shape of the rotor according to the first embodiment when viewed from the axial direction. 実施の形態1による回転子の一極部分を拡大した要部拡大図である。FIG. 5 is an enlarged view of a main part of an enlarged rotor portion according to the first embodiment. 実施の形態1による回転子の断面図である。It is sectional drawing of the rotor according to Embodiment 1. FIG. 実施の形態1によるリラクタンスモータの概略構成を示す断面図である。It is sectional drawing which shows the schematic structure of the reluctance motor according to Embodiment 1. FIG. 比較例の回転子を軸方向から見た時の全体形状を示す平面図である。It is a top view which shows the whole shape when the rotor of the comparative example is seen from the axial direction. 実施の形態1による回転子の一極部分を拡大した要部拡大図である。FIG. 5 is an enlarged view of a main part of an enlarged rotor portion according to the first embodiment. 実施の形態1による回転子の一極部分を拡大した要部拡大図である。FIG. 5 is an enlarged view of a main part of an enlarged rotor portion according to the first embodiment. 実施の形態2による回転子の一極部分を拡大した要部拡大図である。FIG. 5 is an enlarged view of a main part of an enlarged rotor portion according to the second embodiment.
実施の形態1.
 図1は、実施の形態1によるリラクタンスモータ100に用いられる回転子50を、軸方向から見た時の全体形状を示す平面図である。
 図2は、図1に示す回転子50の一極部分を拡大した要部拡大図である。
 図3は、図1のA-A線矢視による回転子50の断面図である。
 図4は、実施の形態1による回転子50を用いたリラクタンスモータ100の概略構成を示す断面図である。
 なお、図において、環状の回転子50における各方向を、周方向S、径方向X、径方向内側X1、径方向外側X2、回転子50の回転軸の軸心方向を軸方向Yとし、他の図も当該方向を基準としてそれぞれを示す。
Embodiment 1.
FIG. 1 is a plan view showing the overall shape of the rotor 50 used in the reluctance motor 100 according to the first embodiment when viewed from the axial direction.
FIG. 2 is an enlarged view of a main part of the rotor 50 shown in FIG. 1 in which one pole portion is enlarged.
FIG. 3 is a cross-sectional view of the rotor 50 taken along the line AA of FIG.
FIG. 4 is a cross-sectional view showing a schematic configuration of the reluctance motor 100 using the rotor 50 according to the first embodiment.
In the figure, each direction of the annular rotor 50 is set to the circumferential direction S, the radial direction X, the radial inner side X1, the radial outer side X2, and the axial direction of the rotation axis of the rotor 50 as the axial direction Y. The figure of is also shown with reference to the direction.
 先ず、本実施の形態のリラクタンスモータ100の概略構成を図4を用いて説明する。
 図4に示すように、回転電機としてのリラクタンスモータ100は、回転子50と、固定子80と、シャフト81と、フレーム82とを備える。
 固定子80は、フレーム82の内側に固着される。回転子50は、リラクタンスモータ100の軸心位置に貫通されたシャフト81に固着されて、固定子80の径方向内側X1においてこのシャフト81を軸心として回転可能に配設される。
First, a schematic configuration of the reluctance motor 100 of the present embodiment will be described with reference to FIG.
As shown in FIG. 4, the reluctance motor 100 as a rotary electric machine includes a rotor 50, a stator 80, a shaft 81, and a frame 82.
The stator 80 is fixed to the inside of the frame 82. The rotor 50 is fixed to a shaft 81 penetrated at the axial center position of the reluctance motor 100, and is rotatably arranged around the shaft 81 on the radial inner side X1 of the stator 80.
 次に、上記リラクタンスモータ100に用いられる回転子50の構成について説明する。
 図1、図2に示すように、本実施の形態の回転子50は、磁性体材料により構成される円環状の回転子コア20と、この回転子コア20に取り付けられる非磁性体材料により構成される結合体30(30a、30b、30c)と、を備える。
Next, the configuration of the rotor 50 used in the reluctance motor 100 will be described.
As shown in FIGS. 1 and 2, the rotor 50 of the present embodiment is composed of an annular rotor core 20 made of a magnetic material and a non-magnetic material attached to the rotor core 20. The combined body 30 (30a, 30b, 30c) to be formed is provided.
 回転子コア20は、コア形成体としての複数の外側コア21(21a、21b、21c)と、コア主部としての内側コア22とを備える。
 外側コア21a、21b、21cは、回転子50の外周円とは逆向きの円弧状の外周をなして形成され、その各円弧の外周の頂点が回転子50の半径上にそれぞれ位置する同心円状に、径方向Xに設定された離間幅D1、D2、D3分、互いに離間して配置される。
 内側コア22は、これら外側コア21a、21b、21cよりも径方向内側X1において、外側コア21aから設定された離間幅D1分、径方向Xに離間して配置される。
The rotor core 20 includes a plurality of outer cores 21 (21a, 21b, 21c) as core forming bodies, and an inner core 22 as a core main portion.
The outer cores 21a, 21b, and 21c are formed to form an arcuate outer circumference opposite to the outer circumference circle of the rotor 50, and the apex of the outer circumference of each arc is concentric circles located on the radius of the rotor 50. The separation widths D1, D2, and D3 set in the radial direction X are arranged apart from each other.
The inner core 22 is arranged radially inside X1 with respect to the outer cores 21a, 21b, and 21c so as to be separated in the radial direction X by a separation width D1 set from the outer core 21a.
 こうして、内側コア22と外側コア21aの相互間、外側コア21aと外側コア21bの相互間、外側コア21bと外側コア21cの相互間には、離間幅D1、D2、D3を有して回転子コア20の外周面に向かって伸びる、離間領域としてのスリット10(10a、10b、10c)がそれぞれ確保される。このようにして確保されたこれらスリット10a、10b、10cの形状は、回転子コア20の外周円とは逆向きの円弧状であり、その各円弧の頂点が回転子コア20の半径上にそれぞれ位置する同心円状である。このように、スリット10a、10b、10cの円弧の頂点は、回転子50の極中心となる。
 スリット10a、10b、10c内の極中心付近には、外側コア21a、21b、21cを固定保持するため、軸方向Yに延びる結合体30a、30b、30cがそれぞれ配設される。
 なお、本実施の形態では、離間幅D1、D2、D3はそれぞれ同じ幅のものを示したが、それぞれ幅が異なるものでもよい。また、離間幅D1、D2、D3は、例えば、その幅が回転子コア20の外周面に向かって延びるにつれて変化してもよい。
In this way, the rotor has separation widths D1, D2, and D3 between the inner core 22 and the outer core 21a, between the outer core 21a and the outer core 21b, and between the outer core 21b and the outer core 21c. Slits 10 (10a, 10b, 10c) extending toward the outer peripheral surface of the core 20 as separation regions are secured. The shapes of the slits 10a, 10b, and 10c secured in this manner are arcuate in the direction opposite to the outer circle of the rotor core 20, and the vertices of the arcs are on the radius of the rotor core 20, respectively. It is a concentric circle that is located. In this way, the vertices of the arcs of the slits 10a, 10b, and 10c are the polar centers of the rotor 50.
In order to fix and hold the outer cores 21a, 21b, and 21c near the polar centers in the slits 10a, 10b, and 10c, the coupling bodies 30a, 30b, and 30c extending in the axial direction Y are arranged, respectively.
In the present embodiment, the separation widths D1, D2, and D3 have the same width, but the widths may be different from each other. Further, the separation widths D1, D2, and D3 may change, for example, as the width extends toward the outer peripheral surface of the rotor core 20.
 また内側コア22は、その中央部にシャフト孔23が形成されている。このシャフト孔23には、図4に示したシャフト81が挿入されて固着される。 Further, the inner core 22 has a shaft hole 23 formed in the central portion thereof. The shaft 81 shown in FIG. 4 is inserted into and fixed to the shaft hole 23.
 回転子コア20は、上記スリット10a、10b、10cからなるスリット群11を備える。回転子コア20は、このスリット群11を磁極1極分として、4極分が回転子コア20の周方向Sに沿って等間隔に配列される。このスリット群11がフラックスバリア(磁束障壁)として機能することで、磁束の通り易いリラクタンス(磁気抵抗)の小さい部分と、磁束の通り難いリラクタンスの大きい部分とが形成され、回転子コア20の内側コア22に磁気的な突極性が付与される。そしてこの回転子コア20が有する、周方向に間隔を隔てた各突極と固定子80との間の空隙磁束密度と、フラックスバリアの形成された部分と固定子80との間の空隙磁束密度と、の差を利用してリラクタンストルクを発生させる。 The rotor core 20 includes a slit group 11 including the slits 10a, 10b, and 10c. In the rotor core 20, the slit group 11 is used as one magnetic pole, and four poles are arranged at equal intervals along the circumferential direction S of the rotor core 20. When the slit group 11 functions as a flux barrier (magnetic flux barrier), a portion having a small reluctance (magnetic resistance) through which the magnetic flux easily passes and a portion having a large reluctance through which the magnetic flux does not easily pass are formed, and the inside of the rotor core 20 is formed. A magnetic reluctance is imparted to the core 22. The gap magnetic flux density between the salient poles and the stator 80, which are spaced apart in the circumferential direction, and the gap magnetic flux density between the portion where the flux barrier is formed and the stator 80, which the rotor core 20 has. Reluctance torque is generated using the difference between and.
 また、図3に示すように回転子コア20は、薄板状の電磁鋼板1を抜きカシメにより複数枚軸方向Yに積層して構成される。
 なお、回転子コア20は、このように電磁鋼板1を積層して構成するものに限定するものではなく、積層構成でない塊状のバルク品でもよいが、電磁鋼板1を積層する構成とすると渦電流を小さくできるメリットがある。
Further, as shown in FIG. 3, the rotor core 20 is configured by pulling out a thin plate-shaped electromagnetic steel plate 1 and laminating a plurality of sheets in the axial direction Y by caulking.
The rotor core 20 is not limited to the one in which the electromagnetic steel sheets 1 are laminated in this way, and may be a bulk product which is not a laminated structure. However, when the electromagnetic steel sheets 1 are laminated, an eddy current is used. There is a merit that can be made smaller.
 以下、結合体30による各外側コア21を固定保持する構成について説明する。
 図2に示すように、各外側コア21および内側コア22には、スリット10に相対する面から径方向X(離間幅D1、D2、D3方向)に窪み、軸方向Yに延在する溝部としての切欠部25が形成される。
 各切欠部25の周方向Sの両端には、回転子50の回転による遠心力の方向F1から設定角度分θ分傾斜する方向に延びる第1面25Sが形成される。
Hereinafter, a configuration in which each outer core 21 is fixedly held by the coupling 30 will be described.
As shown in FIG. 2, each outer core 21 and inner core 22 are recessed in the radial direction X (separation widths D1, D2, D3 directions) from the surface facing the slit 10 as a groove portion extending in the axial direction Y. Notch 25 is formed.
At both ends of each notch 25 in the circumferential direction S, first surfaces 25S extending in a direction inclined by θ by a set angle from the direction F1 of the centrifugal force due to the rotation of the rotor 50 are formed.
 また、結合体30には、この切欠部25に係合するように突出する、突起部としてのアンカー部31が形成される。
 この結合体30のアンカー部31の周方向Sの両端には、切欠部25の第1面25Sに当接するように形成された第2面31Sが形成される。
 この結合体30のアンカー部31と切欠部25とが係合することで、各外側コア21が径方向Xに機械的に固定保持される。こうして、回転子50の回転時の遠心力による各外側コア21の径方向外側X2への飛散と、周方向Sへの横ずれの防止が可能となる。
Further, the coupling 30 is formed with an anchor portion 31 as a protrusion that protrudes so as to engage with the notch 25.
A second surface 31S formed so as to abut the first surface 25S of the notch 25 is formed at both ends of the anchor portion 31 of the coupling 30 in the circumferential direction S.
By engaging the anchor portion 31 of the coupling body 30 with the notch portion 25, each outer core 21 is mechanically fixed and held in the radial direction X. In this way, it is possible to prevent the outer cores 21 from scattering to the outer side X2 in the radial direction due to the centrifugal force during rotation of the rotor 50 and to prevent lateral displacement in the circumferential direction S.
 またこのような非磁性材料の結合体30による内側コア22と外側コア21との接続は、外側コア21に遠心力による耐力を付与すると同時に、各外側コア21と内側コア22とを磁気的に断絶する役割を果たす。 Further, the connection between the inner core 22 and the outer core 21 by the composite 30 of such a non-magnetic material imparts the outer core 21 with the proof stress due to the centrifugal force, and at the same time, magnetically connects each outer core 21 and the inner core 22. It plays a role of disconnection.
 また、本実施の形態では、各結合体30a、30b、30cは、回転子コア20の径方向上、即ち、結合体30a、30b、30cに働く遠心力の方向F1上に沿って、並んで配設される。これにより各外側コア21において遠心力に対する更なる耐力を確保できる。 Further, in the present embodiment, the couplings 30a, 30b, 30c are arranged side by side in the radial direction of the rotor core 20, that is, along the direction F1 of the centrifugal force acting on the couplings 30a, 30b, 30c. Arranged. As a result, it is possible to secure further proof stress against centrifugal force in each outer core 21.
 また、図3に示すように、結合体30a、30b、30cの軸方向Yの長さは、回転子コア20の軸方向Yの長さと略同一に形成されており、結合体30a、30b、30cの軸方向Yの端部は、回転子コア20の軸方向Yの端面から外側へは突出しない。これにより、回転子50およびリラクタンスモータ100の小型化が可能になる。
 なお、結合体30a、30b、30cの軸方向Yの長さは、回転子コア20の軸方向Yの長さと略同一に限定するものではなく、回転子コア20の軸方向Yの長さ以下であればよい。
Further, as shown in FIG. 3, the length of the couplings 30a, 30b, 30c in the axial direction Y is formed to be substantially the same as the length of the rotor core 20 in the axial direction Y, and the couplings 30a, 30b, 30b, The end portion of the rotor core 20 in the axial direction Y does not protrude outward from the end surface of the rotor core 20 in the axial direction Y. This makes it possible to reduce the size of the rotor 50 and the reluctance motor 100.
The length of the couplings 30a, 30b, and 30c in the axial direction Y is not limited to substantially the same as the length of the rotor core 20 in the axial direction Y, and is equal to or less than the length of the rotor core 20 in the axial direction Y. It should be.
 ここで、本実施の形態の回転子50における磁気的な突極性について、比較例を用いて説明する。
 図5は、比較例の回転子を軸方向から見た時の全体形状を示す平面図である。
 この比較例の回転子コアでは、各スリット90a、90b、90cの両端部が、回転子鉄心の外周面に近接しており、当該両端部の、回転子鉄心の外周面側には、幅の狭いブリッジ部91が夫々形成されている。このブリッジ部91の径方向Xの幅が広いほど遠心力に対する強度は高く、回転子の回転による遠心力が作用しても、ブリッジ部91が破壊されずに回転子の強度を維持できる。しかしながら、一般的にはブリッジ部91は、回転子コアと同じ磁気抵抗の低い磁性体材料で構成されるため、このブリッジ部91を介した磁路が形成されて、この磁路を通過する漏れ磁束M1が発生する。
Here, the magnetic salientity of the rotor 50 of the present embodiment will be described with reference to a comparative example.
FIG. 5 is a plan view showing the overall shape of the rotor of the comparative example when viewed from the axial direction.
In the rotor core of this comparative example, both ends of the slits 90a, 90b, and 90c are close to the outer peripheral surface of the rotor core, and the width of both ends is on the outer peripheral surface side of the rotor core. Narrow bridge portions 91 are formed respectively. The wider the width of the bridge portion 91 in the radial direction X, the higher the strength against centrifugal force, and even if the centrifugal force due to the rotation of the rotor acts, the strength of the rotor can be maintained without destroying the bridge portion 91. However, since the bridge portion 91 is generally made of a magnetic material having the same low magnetic resistance as the rotor core, a magnetic path is formed through the bridge portion 91, and leakage passes through the magnetic path. A magnetic flux M1 is generated.
 前述のように、リラクタンスモータは、回転子コアが備えるリラクタンス(磁気抵抗)が小さく、磁束の通り易い方向G1とリラクタンスが大きく磁束の通り難い方向G2とを極数と同数交互に形成し、回転子コアにおけるこれら各部分と図示しない固定子との間の空隙磁束密度の差を利用してリラクタンストルクを発生させるものである。そのため回転子コア内で短絡する漏れ磁束M1の存在はリラクタンストルクを減少させ、高効率な回転電機を目指す上で好ましくない。
 本実施の形態の回転子50は、回転子コア20を構成する外側コア21a、21b、21c、内側コア22はそれぞれ独立しており、その径方向外側X2の外周部にはブリッジ部は存在しない。そのため、漏れ磁束を低減することができ、リラクタンスモータの高トルク化が可能となる。
As described above, in the reluctance motor, the rotor core has a small reluctance (magnetic resistance), and the direction G1 in which the magnetic flux easily passes and the direction G2 in which the reluctance is large and the magnetic flux does not easily pass are alternately formed in the same number as the number of poles to rotate. Reluctance torque is generated by utilizing the difference in void magnetic flux density between each of these parts in the child core and a stator (not shown). Therefore, the presence of the leakage flux M1 short-circuited in the rotor core reduces the reluctance torque, which is not preferable in aiming at a highly efficient rotary electric machine.
In the rotor 50 of the present embodiment, the outer cores 21a, 21b, 21c and the inner core 22 constituting the rotor core 20 are independent of each other, and there is no bridge portion on the outer peripheral portion of the radial outer side X2. .. Therefore, the leakage flux can be reduced, and the torque of the reluctance motor can be increased.
 また、回転子50は、上記のように、内側コア22と外側コア21とがそれぞれ独立して分離した構造であるため、電磁鋼板をプレス金型で打ち抜く際は、内側コア22と外側コア21とを別々に、しかも電磁鋼板上において任意の配置で打ち抜くことが可能となる。例えば、電磁鋼板における各外側コア間の打ち抜き幅を、回転子のスリット幅よりも小さく構成する。これにより、電磁鋼板からスリット10の空間を省いて、内側コア22および外側コア21を打ち抜けるため、このスリット10の空間分の電磁鋼板の端材の量を削減し、材料費を低減できる。 Further, since the rotor 50 has a structure in which the inner core 22 and the outer core 21 are separated independently as described above, when the electromagnetic steel plate is punched with a press die, the inner core 22 and the outer core 21 are separated. Can be punched separately and in any arrangement on the electrical steel sheet. For example, the punching width between the outer cores of the electrical steel sheet is made smaller than the slit width of the rotor. As a result, the space of the slit 10 is omitted from the electromagnetic steel plate, and the inner core 22 and the outer core 21 are punched out. Therefore, the amount of scraps of the electromagnetic steel plate corresponding to the space of the slit 10 can be reduced, and the material cost can be reduced.
 更に、本実施の形態の回転子コア20では、上記のように内側コア22と外側コア21とは独立して分離した構造であるため、内側コア22と外側コア21とを、それぞれ異なる電磁鋼板から打ち抜き、積層後に組み合わせることが可能である。
 例えば、外側コア21を構成する電磁鋼板には方向性電磁鋼板を使用し、図2に示すように、外側コア21の外周方向を、方向性電磁鋼板の長手方向に合わせるように、すなわち外側コア21の磁路方向P1aを、方向性電磁鋼板の圧延方向P2に合わせるように配置して打ち抜く。一方で内側コア22には無方向性電磁鋼板を使用する。
 このようにして形成された内側コア22と外側コア21とを組み合わせることで、回転子50の磁気的な突極性を更に向上させるメリットがある。
Further, since the rotor core 20 of the present embodiment has a structure in which the inner core 22 and the outer core 21 are separated independently as described above, the inner core 22 and the outer core 21 are made of different electromagnetic steel plates. It is possible to combine after punching and laminating.
For example, a grain-oriented electrical steel sheet is used as the electrical steel sheet constituting the outer core 21, and as shown in FIG. 2, the outer peripheral direction of the outer core 21 is aligned with the longitudinal direction of the grain-oriented electrical steel sheet, that is, the outer core. The magnetic path direction P1a of 21 is arranged and punched so as to match the rolling direction P2 of the grain-oriented electrical steel sheet. On the other hand, a non-oriented electrical steel sheet is used for the inner core 22.
Combining the inner core 22 and the outer core 21 formed in this way has a merit of further improving the magnetic polarity of the rotor 50.
 なお、図2に示すように、外側コア21の磁路方向P1aを、方向性電磁鋼板の圧延方向P2に合わせるということは、外側コア21の軸方向Yに垂直な方向側であって、回転子50の外周面側の端部同士を結ぶ直線P1bの方向を、方向性電磁鋼板の圧延方向P2に合わせることと同義である。 As shown in FIG. 2, aligning the magnetic path direction P1a of the outer core 21 with the rolling direction P2 of the directional electromagnetic steel plate is a direction side perpendicular to the axial direction Y of the outer core 21 and rotates. It is synonymous with aligning the direction of the straight line P1b connecting the ends on the outer peripheral surface side of the child 50 with the rolling direction P2 of the directional electromagnetic steel plate.
 以下、上記に示した回転子50と異なる構成の回転子50A、50Bについて図を用いて説明する。
 図6は、本実施の形態の回転子50Aの一極部分を拡大した要部拡大図である。
 図7は、本実施の形態の回転子50Bの一極部分を拡大した要部拡大図である。
 回転子50Aでは、切欠部を外側コア側ではなく、結合体側に備え、且つ、アンカー部を外側コア側に備えている点が特徴である。
Hereinafter, the rotors 50A and 50B having a configuration different from that of the rotor 50 shown above will be described with reference to the drawings.
FIG. 6 is an enlarged view of a main part of the rotor 50A of the present embodiment in which one pole portion is enlarged.
FIG. 7 is an enlarged view of a main part of the rotor 50B of the present embodiment in which one pole portion is enlarged.
The rotor 50A is characterized in that the notch portion is provided not on the outer core side but on the coupling side, and the anchor portion is provided on the outer core side.
 図6に示すように回転子50Aは、外側コア21および内側コア22が、離間幅D1、D2、D3方向側に突出する突起部としてのアンカー部26を備える。そして、結合体30が、このアンカー部26に係合する溝部としての切欠部35を備える。そして、切欠部35の周方向Sの両端には、遠心力の方向F1から設定角度分θ分傾斜する方向に延びる第1面35Sが形成される。
 また、外側コア21および内側コア22のアンカー部26の周方向Sの両端には、切欠部35の第1面35Sに当接するように形成された第2面26Sが形成される。
As shown in FIG. 6, the rotor 50A includes an anchor portion 26 as a protrusion in which the outer core 21 and the inner core 22 project toward the separation widths D1, D2, and D3. Then, the coupling body 30 includes a notch portion 35 as a groove portion that engages with the anchor portion 26. Then, at both ends of the notch 35 in the circumferential direction S, first surfaces 35S extending in a direction inclined by θ by a set angle from the direction F1 of the centrifugal force are formed.
Further, at both ends of the anchor portion 26 of the outer core 21 and the inner core 22 in the circumferential direction S, a second surface 26S formed so as to abut the first surface 35S of the notch portion 35 is formed.
 こうして、結合体30に形成された各切欠部35と、外側コア21および内側コア22に形成されたアンカー部26とがそれぞれ係合して、各外側コア21が径方向Xに機械的に固定保持される。こうして、前述の回転子50と同様に、遠心力による各外側コア21の径方向外側X2への飛散と、周方向Sへの横ずれの防止が可能となる。 In this way, each notch 35 formed in the coupling 30 and the anchor portion 26 formed in the outer core 21 and the inner core 22 are engaged with each other, and each outer core 21 is mechanically fixed in the radial direction X. Be retained. In this way, similarly to the rotor 50 described above, it is possible to prevent the outer cores 21 from scattering to the outer side X2 in the radial direction due to centrifugal force and laterally shifting in the circumferential direction S.
 更に、外側コア21側には、その幅を局所的に狭める切欠部が形成されていない。そのため、外側コア21および内側コア22を通る磁路の磁気抵抗が切欠部により低下してトルクが低下することがない。そのため有効に利用できる磁束が増加し、回転子の磁気特性が向上する。 Further, on the outer core 21 side, a notch that locally narrows the width is not formed. Therefore, the magnetic resistance of the magnetic path passing through the outer core 21 and the inner core 22 does not decrease due to the notch, and the torque does not decrease. Therefore, the magnetic flux that can be effectively used increases, and the magnetic characteristics of the rotor are improved.
 図7に示す回転子50Bでは、上記回転子50Aに示す構成と同様の結合体30が、一つのスリット10において複配設される。
 このように、必要に応じて一つのスリット10において複数個の結合体30を配置しても良く、これにより大きな遠心力への耐力を付与することも可能である。
 回転子コア20の半径上に配設された結合体30に加えて、回転子コア20の外周面から径方向内側X1に設定距離E以内の範囲において配設された結合体30を備える。これにより、例えば、回転子50Bの回転始動時において、応力が付加される回転子50の外周面近傍における剛性を確保でき、回転子コア20の半径上に配設された結合体30にかかる負荷を軽減できる。そのため、結合体30は外周面近傍に配置するのが効果的であり、前記距離Eは回転子コア20の構造上可能な限り小さく設定する。例えば、各結合体30a、30b、30cは、当該結合体30a、30b、30cが設けられた複数のコア形成体21(外側コア21a、21b、21c)の内、最も径方向外側X2に位置するコア形成体21(外側コア21c)に設けられた結合体30cにおける径方向内側端面30c-inの、回転子コア20の外周面から径方向内側への距離E以内に位置するようにそれぞれ配置される。
 また、結合体30により係合される、径方向Xに隣り合うコア形成体21のアンカー部26は、スリット10内において互いに対向するように配置される。これにより、例えば、回転子50Bに遠心力が作用する際、結合体30に作用する曲げモーメントを最小に抑えることができるので、結合体30の変形、破壊等を低減できる。
In the rotor 50B shown in FIG. 7, a coupling body 30 having the same configuration as that shown in the rotor 50A is double-arranged in one slit 10.
In this way, a plurality of couplings 30 may be arranged in one slit 10 as needed, and it is also possible to impart a large centrifugal force proof stress.
In addition to the coupling body 30 arranged on the radius of the rotor core 20, the coupling body 30 arranged within a set distance E within the radial inner side X1 from the outer peripheral surface of the rotor core 20 is provided. Thereby, for example, at the time of starting the rotation of the rotor 50B, the rigidity in the vicinity of the outer peripheral surface of the rotor 50 to which stress is applied can be secured, and the load applied to the coupling 30 arranged on the radius of the rotor core 20 can be secured. Can be reduced. Therefore, it is effective to arrange the coupling body 30 in the vicinity of the outer peripheral surface, and the distance E is set as small as possible due to the structure of the rotor core 20. For example, each of the couplings 30a, 30b, 30c is located at the outermost radial X2 of the plurality of core forming bodies 21 ( outer cores 21a, 21b, 21c) provided with the couplings 30a, 30b, 30c. The radial inner end faces 30c-in of the coupling 30c provided on the core forming body 21 (outer core 21c) are arranged so as to be located within a distance E from the outer peripheral surface of the rotor core 20 in the radial direction. To.
Further, the anchor portions 26 of the core forming bodies 21 adjacent to each other in the radial direction X, which are engaged by the coupling body 30, are arranged so as to face each other in the slit 10. As a result, for example, when a centrifugal force acts on the rotor 50B, the bending moment acting on the coupling body 30 can be minimized, so that deformation, breakage, etc. of the coupling body 30 can be reduced.
 なお、結合体30は、インサート成形により例えばPPS(Poly Phenylene Sulfide)樹脂のような熱可塑性材料、BMC(Bulk Molding Compound)のような熱硬化性樹脂材料をスリット10内に充填して硬化させることで得られる。
 しかしながら、このようなフィラを含んだ熱可塑性樹脂のPPSに限定するものではなく、それ以外の樹脂材料、例えば他の熱可塑性樹脂、さらには熱硬化性樹脂の利用も考えられ、回転子コア20のサイズ、形状等に応じて使い分けられる。
 なお、前述の通り、結合体30の軸方向Yの長さは、回転子コア20の軸方向Yの長さ以下であるので、樹脂充填の際に回転子50を構成する結合体30の相互間が、回転子コア20の最上段および最下段である軸方向両端面で互いに繋がるような端板は形成されない。即ち、結合体30は、回転子コア20の軸方向両端面において、当該結合体30の相互間を互いに接続しない構成に形成される。
The binder 30 is cured by filling the slit 10 with a thermoplastic material such as PPS (Polyphenylene sulfide) resin or a thermosetting resin material such as BMC (Bulk Molding Compound) by insert molding. Obtained at.
However, the PPS is not limited to the thermoplastic resin containing such a filler, and other resin materials such as other thermoplastic resins and thermosetting resins can be used, and the rotor core 20 It can be used properly according to the size and shape of the plastic.
As described above, since the length of the coupler 30 in the axial direction Y is equal to or less than the length of the rotor core 20 in the axial direction Y, the couplers 30 constituting the rotor 50 are mutually formed during resin filling. No end plate is formed so that the space is connected to each other on both end faces in the axial direction, which are the uppermost stage and the lowermost stage of the rotor core 20. That is, the coupling body 30 is formed so as not to connect the coupling bodies 30 to each other on both end faces in the axial direction of the rotor core 20.
 また、本実施の形態は、結合体を回転子コアの切欠き部へ圧入することでも達成できるため、インサート成形を不要とすることもでき、設備費および加工費の低減が期待できる。
 また圧入による構造形成は、インサート成形では形成できないSUS鋼(stainless steel)、銅のようなアルミニウム以外の非磁性体金属の利用を可能とし、結合体の材料選択の幅を広げるメリットがある。
 また、成形方法に関しても、射出成形、ダイカスト、圧入など、回転子コアと非磁性部材の形状の関係に応じて使い分け可能である。
Further, since the present embodiment can be achieved by press-fitting the combined body into the notch portion of the rotor core, insert molding can be eliminated, and equipment cost and processing cost can be expected to be reduced.
Further, the structure formation by press fitting enables the use of non-magnetic metals other than aluminum such as SUS steel (stainless steel) and copper which cannot be formed by insert molding, and has an advantage of expanding the range of material selection of the conjugate.
Further, the molding method can be properly used depending on the relationship between the shapes of the rotor core and the non-magnetic member, such as injection molding, die casting, and press fitting.
 また、樹脂が充填される切欠部25の形状は、本実施の形態に示した形状に限定するものではない。各切欠部25は、遠心力の方向F1から設定角度分θ分傾斜する方向に延び、遠心力に対抗できる第1面25Sが形成されていれば良く、この他に、磁束短絡の低減効果、機械強度、およびプレス加工性のバランス等を考慮して形状を設定すればよい。 Further, the shape of the notch 25 filled with the resin is not limited to the shape shown in the present embodiment. Each notch 25 may extend in a direction inclined by θ by a set angle from the direction F1 of the centrifugal force, and a first surface 25S capable of countering the centrifugal force may be formed. In addition, the effect of reducing magnetic flux short circuit, The shape may be set in consideration of the balance between mechanical strength and press workability.
 また、回転子コア20の形状として磁極数が4極のものを例示したが、6極、8極など、異なる極数のものにも適用できる。
 さらに、本実施の形態に示した回転電機としてのリラクタンスモータは、圧縮機、電気自動車に搭載される回転電機を想定しているが、それ以外の用途の回転電機でも良く、更には、磁石を回転子鉄心内に挿入する形態をとるものでも、全てにおいて有効であることは言うまでもない。
Further, although the shape of the rotor core 20 having four poles is illustrated, it can be applied to different pole numbers such as 6 poles and 8 poles.
Further, the reluctance motor as the rotary electric machine shown in the present embodiment is assumed to be a rotary electric machine mounted on a compressor or an electric vehicle, but a rotary electric machine for other purposes may be used, and a magnet may be used. Needless to say, even if it is inserted into the rotor core, it is effective in all cases.
 上記のように構成された本実施の形態の回転電機の回転子は、
周方向に間隔を隔てて複数の突極を有する回転子コアを備えた回転電機の回転子であって、
前記回転子コアは、設定された離間幅分、径方向に離間して配置される複数のコア形成体を備え、複数の前記コア形成体により、該回転子コアの外周面に向かって前記離間幅を有して延びる離間領域が形成され、
軸方向の長さが前記回転子コアの軸方向の長さ以下に構成される非磁性の結合体が、前記離間領域内に配設され、
前記コア形成体あるいは前記結合体の一方に、前記離間幅方向に突出する突出部が形成され、他方に前記突出部に係合する溝部が形成され、該突出部と該溝部との係合により、各前記コア形成体が径方向に固定保持され、
前記溝部は、該溝部に働く遠心力の方向から設定角度分傾斜する方向に延びる第1面が形成され、前記突出部は、前記第1面に当接する第2面が形成される、
ものである。
 また、上記のように構成された本実施の形態の回転電機の回転子は、
前記結合体は、前記回転子コアの軸方向両端面において、該結合体の相互間を互いに接続しない構成に形成される、
ものである。
 また、上記のように構成された本実施の形態の回転電機は、
上記のように構成された回転電機の回転子を用いて構成される、
ものである。
The rotor of the rotary electric machine of the present embodiment configured as described above is
A rotor of a rotating electric machine having a rotor core having a plurality of salient poles at intervals in the circumferential direction.
The rotor core includes a plurality of core forming bodies arranged apart from each other by a set separation width in the radial direction, and the plurality of core forming bodies separate the rotor cores toward the outer peripheral surface of the rotor core. A separated region extending with width is formed
A non-magnetic coupler having an axial length equal to or less than the axial length of the rotor core is disposed in the separation region.
A protrusion that protrudes in the separation width direction is formed on one of the core forming body or the coupling, and a groove that engages with the protrusion is formed on the other, and the engagement between the protrusion and the groove causes the protrusion to engage. , Each core forming body is fixed and held in the radial direction,
The groove portion is formed with a first surface extending in a direction inclined by a set angle from the direction of the centrifugal force acting on the groove portion, and the protruding portion is formed with a second surface that abuts on the first surface.
It is a thing.
Further, the rotor of the rotary electric machine of the present embodiment configured as described above is
The couplings are formed on both axial end faces of the rotor core so as not to connect each other.
It is a thing.
Further, the rotary electric machine of the present embodiment configured as described above is
It is configured using the rotor of the rotating electric machine configured as described above.
It is a thing.
 このように、回転子コアを形成する各外側コアは、それぞれ径方向に離間して配置される。このように、回転子コアの軸方向両端面において、各外側コアの端部を互いに繋ぐブリッジ部分を備えない構成とし、代わりにスリット内に挿入され、非磁性体材料で構成される結合体により各外側コアが互いに径方向に固定保持される。
 このように、磁気抵抗が小さい電磁鋼板により構成されるブリッジ部分を設けない構成とすることでトルクに寄与しない短絡磁束を減らし、高トルクの回転電機を得られる。
 また、結合体および大気の磁気抵抗は、磁性材料である比較例のブリッジ部分と比較して極めて大きいので、短絡磁束は比較例の回転電機の回転子より大幅に低減される。
In this way, the outer cores forming the rotor core are arranged apart from each other in the radial direction. In this way, on both end faces in the axial direction of the rotor core, a bridge portion that connects the ends of the outer cores to each other is not provided, and instead, the rotor core is inserted into the slit and is made of a non-magnetic material. The outer cores are held fixed and held radially to each other.
As described above, the short-circuit magnetic flux that does not contribute to torque can be reduced by not providing the bridge portion made of the electromagnetic steel plate having a small magnetic resistance, and a high torque rotary electric machine can be obtained.
Further, since the reluctance of the conjugate and the atmosphere is extremely large as compared with the bridge portion of the comparative example which is a magnetic material, the short-circuit magnetic flux is significantly reduced as compared with the rotor of the rotating electric machine of the comparative example.
 また、外側コアあるいは結合体の一方に形成される溝部は、この溝部に働く遠心力の方向から設定角度分傾斜する方向に延びる第1面が形成され、突出部は、この第1面に当接する第2面が形成される。このように遠心力に対抗するように形成された第1面と、この第1面に当接する第2面を備える構成とすることで、回転子の回転時において大きな遠心力が付加される場合においても、外側コアの飛散を防止し、回転子の高い剛性を確保できる。
 また、このように外側コアと結合体とは、第1面と第2面とにより互いに強固に固定保持されている。よって、遠心力に対抗するために、各スリット内に配設された結合体同士を回転子の外側で繋ぐ構造部を不要とできるため、結合体は、その軸方向の長さを回転子コアの軸方向の長さ以下に構成できる。この構造により、結合体の材料の使用量を低減できるだけでなく、回転電機を小型化できる。
 こうして、漏れ磁束が低減されて高特性で、回転子の高速回転に耐える高い剛性が確保され、小型で、且つ、低コストの回転電機の提供が可能となる。
Further, the groove formed on one of the outer core or the coupling has a first surface extending in a direction inclined by a set angle from the direction of the centrifugal force acting on the groove, and the protruding portion hits the first surface. A second surface in contact is formed. When a large centrifugal force is applied during rotation of the rotor by the configuration including the first surface formed so as to oppose the centrifugal force and the second surface in contact with the first surface. In this case as well, it is possible to prevent the outer core from scattering and ensure high rigidity of the rotor.
Further, as described above, the outer core and the coupling body are firmly fixed and held by the first surface and the second surface. Therefore, in order to counter the centrifugal force, it is possible to eliminate the need for a structural portion that connects the couplings arranged in each slit to each other on the outside of the rotor. Therefore, the coupling has an axial length of the rotor core. Can be configured to be less than or equal to the axial length of. With this structure, not only the amount of material used for the combined body can be reduced, but also the rotary electric machine can be miniaturized.
In this way, the leakage flux is reduced, the characteristics are high, the high rigidity that can withstand the high-speed rotation of the rotor is secured, and it is possible to provide a compact and low-cost rotary electric machine.
 また、上記のように構成された本実施の形態の回転電機の回転子は、
径方向に複数の前記離間領域が形成された構成において、
前記結合体は、前記回転子コアの径方向に沿って配設される、
ものである。
 このように、結合体を、回転子の径方向、即ち遠心力の方向上に並ぶように配設させることで、遠心力に対しての耐力を更に向上できる。
Further, the rotor of the rotary electric machine of the present embodiment configured as described above is
In a configuration in which a plurality of the separated regions are formed in the radial direction,
The coupling is arranged along the radial direction of the rotor core.
It is a thing.
In this way, by arranging the coupled bodies so as to line up in the radial direction of the rotor, that is, in the direction of the centrifugal force, the proof stress against the centrifugal force can be further improved.
 また、上記のように構成された本実施の形態の回転電機の回転子は、
前記突出部は、前記コア形成体に形成され、前記溝部は、前記結合体に形成される、
ものである。
 このような構成とすることで、外側コアにおいて、その幅を局所的に狭める箇所が形成されない。そのため、外側コアを通る磁路の磁気抵抗が低下してトルクが低下することがない。これにより有効に利用できる磁束が増加し、回転子の磁気特性が向上できる。
Further, the rotor of the rotary electric machine of the present embodiment configured as described above is
The protrusion is formed on the core-forming body, and the groove is formed on the coupling.
It is a thing.
With such a configuration, a portion of the outer core whose width is locally narrowed is not formed. Therefore, the magnetic resistance of the magnetic path passing through the outer core does not decrease and the torque does not decrease. As a result, the magnetic flux that can be effectively used increases, and the magnetic characteristics of the rotor can be improved.
 また、上記のように構成された本実施の形態の回転電機の回転子は、
一つの前記離間領域において複数の前記結合体が配設される、
ものである。
 また、上記のように構成された本実施の形態の回転電機の回転子は、
径方向に隣合う前記コア形成体にそれぞれ形成された前記突出部が、前記離間領域において互いに対向するように配置される、
ものである。
 このような構成とすることで、回転子の遠心力に対しての耐力を向上でき、高い剛性を確保できる。
Further, the rotor of the rotary electric machine of the present embodiment configured as described above is
A plurality of the conjugates are arranged in one separation region.
It is a thing.
Further, the rotor of the rotary electric machine of the present embodiment configured as described above is
The protrusions formed on the core forming bodies adjacent to each other in the radial direction are arranged so as to face each other in the separation region.
It is a thing.
With such a configuration, the yield strength of the rotor against the centrifugal force can be improved, and high rigidity can be ensured.
 また、上記のように構成された本実施の形態の回転電機の回転子は、
各前記結合体は、
前記結合体が設けられた前記コア形成体の内、最も径方向外側に位置する前記コア形成体に設けられた前記結合体における径方向内側端面の、前記回転子コアの外周面から径方向内側への距離以内に位置するようにそれぞれ配置される、
ものである。
 これにより、例えば、回転子の回転始動時において、強い応力が付加される回転子の外周面近傍における、回転子の高い剛性を確保できる。
Further, the rotor of the rotary electric machine of the present embodiment configured as described above is
Each said conjugate
Of the core forming bodies provided with the coupling body, the radial inner end surface of the coupling body provided in the core forming body located on the outermost radial direction is radially inside from the outer peripheral surface of the rotor core. Each placed so that it is located within the distance to,
It is a thing.
Thereby, for example, when the rotor is started to rotate, high rigidity of the rotor can be ensured in the vicinity of the outer peripheral surface of the rotor to which a strong stress is applied.
 また、上記のように構成された本実施の形態の回転電機の回転子は、
前記回転子コアは、
前記コア形成体よりも径方向内側に前記離間幅分離間して配置され、前記突極が付与されるコア主部を備え、
前記コア主部と前記コア形成体との間の前記離間領域内に前記結合体が配設され、
前記コア形成体あるいは前記結合体の一方に、前記突出部が形成され、他方に前記溝部が形成され、該突出部と該溝部との係合により、前記コア形成体と前記コア主部とが固定保持される、
ものである。
 このように、回転子コアは、内側コアと外側とをつなぐ回転子コアの周縁部のブリッジ部分を有さず、非磁性の結合体により、外側コアと内側コアとが直接触れないような相対的な位置が確保された状態で固定保持され、かつ遠心力に対して各外側コアを保持できる。これにより、磁束の漏れを低減することができ、回転電機の更なる高トルク化が可能となる。
Further, the rotor of the rotary electric machine of the present embodiment configured as described above is
The rotor core
It is provided with a core main portion that is arranged radially inside the core forming body with the separation width separated and to which the salient pole is provided.
The coupling is disposed in the separation region between the core main portion and the core forming body.
The protrusion is formed on one of the core-forming body and the coupling, and the groove is formed on the other. By engaging the protrusion and the groove, the core-forming body and the core main portion are brought together. Fixed and held,
It is a thing.
In this way, the rotor core does not have a bridge portion at the peripheral edge of the rotor core that connects the inner core and the outer core, and the non-magnetic bond prevents the outer core and the inner core from directly touching each other. Each outer core can be held against centrifugal force while being fixedly held in a state where a specific position is secured. As a result, the leakage of magnetic flux can be reduced, and the torque of the rotary electric machine can be further increased.
 また、上記のように構成された本実施の形態の回転電機の回転子は、
前記コア形成体は、方向性の電磁鋼板を軸方向に積層して構成され、
前記コア形成体の、軸方向に垂直な方向側であって、前記回転子の外周面側の端部同士を結ぶ直線の方向が、該コア形成体を構成する前記電磁鋼板の圧延方向に沿うように構成される、
ものである。
 また、上記のように構成された本実施の形態の回転電機の回転子の製造方法は、
各前記コア形成体の、軸方向に垂直な方向側であって、前記回転子の外周面側の端部同士を結ぶ直線の方向が、電磁鋼板の圧延方向に沿うように、前記電磁鋼板から各前記コア形成体を打ち抜く、
ものである。
Further, the rotor of the rotary electric machine of the present embodiment configured as described above is
The core forming body is formed by laminating directional electromagnetic steel sheets in the axial direction.
The direction of the straight line connecting the ends of the core forming body on the outer peripheral surface side of the rotor, which is perpendicular to the axial direction, is along the rolling direction of the electromagnetic steel sheet constituting the core forming body. Is configured as
It is a thing.
Further, the method for manufacturing the rotor of the rotary electric machine according to the present embodiment configured as described above is as follows.
From the electrical steel sheet so that the direction of the straight line connecting the ends on the outer peripheral surface side of the rotor, which is the direction perpendicular to the axial direction of each core forming body, is along the rolling direction of the electrical steel sheet. Punching each of the core forming bodies,
It is a thing.
 このように、外側コアに方向性電磁鋼板を使用し、外側コアの端部同士を結ぶ直線の方向、即ち、外側コアの磁路方向が圧延方向に沿うように電磁鋼板を打ち抜いて回転子コアを構成する。方向性電磁鋼板は圧延方向に優れた磁気特性を発揮するため、このような構成とすることで、回転子の磁気的な突極性を更に向上させ、回転電機を高効率化できる。
 更に、比較例に示す回転子では、内側コア、外側コアがそれぞれ分離されておらず、ブリッジ部分により一体に接続されている。このような構成では、方向性電磁鋼板を打ち抜く際に、それぞれの外側コアの磁路方向を、方向性電磁鋼板の圧延方向沿うように打ち抜くことができない。そのため、回転子コアの磁気的特性が放射方向に不均一になり、回転子の効率を著しく損なうため利用が困難となる。
 本実施の形態では、上記のように外側コアが分離されているため、全ての外側コアの磁路方向を、電磁鋼板の圧延方向にそうように打ち抜いて回転子コアを構成できる。これにより、回転電機を更に高効率化できる。
In this way, a grain-oriented electrical steel sheet is used for the outer core, and the electrical steel sheet is punched out so that the direction of the straight line connecting the ends of the outer core, that is, the magnetic path direction of the outer core is along the rolling direction. To configure. Since the grain-oriented electrical steel sheet exhibits excellent magnetic characteristics in the rolling direction, such a configuration can further improve the magnetic polarity of the rotor and improve the efficiency of the rotating electric machine.
Further, in the rotor shown in the comparative example, the inner core and the outer core are not separated from each other, but are integrally connected by a bridge portion. With such a configuration, when punching a grain-oriented electrical steel sheet, the magnetic path direction of each outer core cannot be punched along the rolling direction of the grain-oriented electrical steel sheet. Therefore, the magnetic characteristics of the rotor core become non-uniform in the radial direction, and the efficiency of the rotor is significantly impaired, making it difficult to use.
In the present embodiment, since the outer cores are separated as described above, the rotor core can be formed by punching the magnetic path directions of all the outer cores in the rolling direction of the electrical steel sheet. As a result, the efficiency of the rotary electric machine can be further improved.
 また、上記のように構成された本実施の形態の回転電機の回転子は、
前記コア主部は、無方向性の電磁鋼板を軸方向に積層して構成される、
ものである。
 このように、すべての方向にほぼ均一な磁気特性が得られる無方向性の電磁鋼板を内側コアに用いて、外側コアには方向性電磁鋼板を用いることで、回転子の磁気的な突極性向上を更に向上できる。
 また、さらに内側コアと外側コアとを分離してプレス打抜き、積層後に組み合わせられる。これによりプレス装置を小型化できる。
Further, the rotor of the rotary electric machine of the present embodiment configured as described above is
The core main portion is formed by laminating non-oriented electrical steel sheets in the axial direction.
It is a thing.
In this way, by using non-oriented electrical steel sheets that can obtain almost uniform magnetic characteristics in all directions for the inner core and directional electrical steel sheets for the outer core, the magnetic salientity of the rotor The improvement can be further improved.
Further, the inner core and the outer core are further separated, press-punched, laminated, and then combined. As a result, the press device can be miniaturized.
 また、上記のように構成された本実施の形態の回転電機の回転子の製造方法は、
前記電磁鋼板における前記コア形成体間の打ち抜き幅は、前記離間幅より小さく構成される、
ものである。
 外側コアはそれぞれ独立した構成であるため、回転子が構成された際のスリット幅よりも小さい打ち抜き幅で、各外側コアを電磁鋼板から打ち抜ける。これにより、スリットの幅分の電磁鋼板の端材の量を削減し、材料費を低減できる。
 また、上記のように構成された本実施の形態の回転電機の製造方法は、
上記の回転電機の回転子の製造方法を用いて製造された回転子と同軸上に固定子を配置する、
ものである。
 これにより、回転電機の製造において、これによりプレス装置を小型化できると共に、スリットの幅分の電磁鋼板の端材の量を削減し、材料費を低減できる。
Further, the method for manufacturing the rotor of the rotary electric machine according to the present embodiment configured as described above is as follows.
The punching width between the core forming bodies in the electromagnetic steel sheet is configured to be smaller than the separation width.
It is a thing.
Since the outer cores have independent configurations, each outer core is punched out of the electrical steel sheet with a punching width smaller than the slit width when the rotor is constructed. As a result, the amount of scraps of the electromagnetic steel sheet corresponding to the width of the slit can be reduced, and the material cost can be reduced.
Further, the method for manufacturing the rotary electric machine of the present embodiment configured as described above is as follows.
The stator is placed coaxially with the rotor manufactured by using the rotor manufacturing method of the rotary electric machine described above.
It is a thing.
As a result, in the manufacture of rotary electric machines, the press device can be miniaturized, the amount of scraps of the electromagnetic steel sheet corresponding to the width of the slit can be reduced, and the material cost can be reduced.
 さらに、以下に説明するように、回転子コアの幾何学的な形状に着目すると、内側コアおよび外側コアのプレス金型による打ち抜きの生産性を一層向上できる。
 比較例の回転子コアの形状では、内側コアと外側コアはブリッジでつながっていたため、打ち抜かれる電磁鋼板のプレス穴は環状になり、隣接する打ち抜き穴間に多くの端材が発生していた。これに対し、本実施の形態に示す手法では、内側コアまたは外側コアの形状をそれぞれ集約して電磁鋼板から打ち抜ける。例えば図1の回転子コアを例にとると、内径側コアは四角形に近い形状をしているので、内径側コアの形状のみを集約して格子状に打ち抜くことで、端材の量を削減できる。例示した4極以外の回転子でも、多角形であれば同様の効果が得られる。例えば6極の場合では、打ち抜き穴を蜂の巣状に配置することで歩留まり改善が期待できる。
Further, as described below, focusing on the geometric shape of the rotor core, the productivity of punching of the inner core and the outer core by the press die can be further improved.
In the shape of the rotor core of the comparative example, since the inner core and the outer core were connected by a bridge, the pressed holes of the electrical steel sheet to be punched were annular, and a lot of scraps were generated between the adjacent punched holes. On the other hand, in the method shown in the present embodiment, the shapes of the inner core and the outer core are integrated and punched out from the electrical steel sheet. For example, taking the rotor core of FIG. 1 as an example, since the inner diameter side core has a shape close to a quadrangle, the amount of scraps is reduced by consolidating only the inner diameter side core shapes and punching them in a grid pattern. it can. The same effect can be obtained with a rotor other than the four poles as long as it is a polygon. For example, in the case of 6 poles, the yield can be expected to be improved by arranging the punched holes in a honeycomb shape.
実施の形態2.
 以下、本願の実施の形態2を、上記実施の形態1と異なる箇所を中心に図を用いて説明する。上記実施の形態1と同様の部分は同一符号を付して説明を省略する。
 図8は、実施の形態2による回転子250の一極部分を拡大した要部拡大図である。
 本実施の形態の回転子250の構造は、インサート成形により例えばPPS樹脂のような熱可塑性材料、BMCのような熱硬化性樹脂材料を、スリット10a、10b、10cに充填し、固化させることで得られる。これにより、スリット10a、10b、10c内を全て埋める形状の結合体230a、230b、230cが形成される。
Embodiment 2.
Hereinafter, the second embodiment of the present application will be described with reference to the parts different from the first embodiment. The same parts as those in the first embodiment are designated by the same reference numerals, and the description thereof will be omitted.
FIG. 8 is an enlarged view of a main part in which one pole portion of the rotor 250 according to the second embodiment is enlarged.
The structure of the rotor 250 of the present embodiment is obtained by filling slits 10a, 10b, and 10c with a thermoplastic material such as PPS resin and a thermosetting resin material such as BMC by insert molding and solidifying the slits 10a, 10b, and 10c. can get. As a result, the couplers 230a, 230b, 230c having a shape that completely fills the slits 10a, 10b, and 10c are formed.
 上記のように構成された本実施の形態の回転子は、
前記結合体は、前記離間領域を全て埋める形状に構成される、
ものである。
 このように結合体はスリット内を全て埋める構成であるため、回転子の剛性を更に向上できる。また、結合体を内側コアおよび外側コアとの間のスリット内に充填することで、回転時の振動が抑制され、振動による騒音が低減される効果を奏する。
The rotor of the present embodiment configured as described above is
The combined body is configured to fill the entire separated region.
It is a thing.
Since the coupling body is configured to fill the entire slit in this way, the rigidity of the rotor can be further improved. Further, by filling the slit between the inner core and the outer core with the coupling body, vibration during rotation is suppressed, and noise due to vibration is reduced.
 以上、上記実施の形態1、2においては、結合体の配置は上記実施の形態に限定されるものではなく、結合体の個数も例示したものに限定されるものではない。例えば、本実施の形態では主に結合体の配置が極中心である場合を示して説明したが、磁極の両端、あるいは、極間に配置しても同様の効果を得られる。
 同様に、結合体の形状も上記に示した形状に限定されるものではなく、上記に示した形状以外であってもよい。外側コアと内側コアとが直接触れないような回転子コアの構造において、結合体は、外側コア、内側コア、の相対的な位置関係を保持する形状であって、遠心力に対して外側コア、内側コアを保持できるように、遠心力に対抗できる第1面、第2斜面を備えたアンカー部と溝部が形成されていればよい。
As described above, in the above-described first and second embodiments, the arrangement of the conjugates is not limited to the above-described embodiment, and the number of conjugates is not limited to the example. For example, in the present embodiment, the case where the coupling is mainly arranged at the pole center has been described, but the same effect can be obtained by arranging the couplings at both ends of the magnetic poles or between the poles.
Similarly, the shape of the combined body is not limited to the shape shown above, and may be other than the shape shown above. In the structure of the rotor core in which the outer core and the inner core do not come into direct contact with each other, the coupling has a shape that maintains the relative positional relationship between the outer core and the inner core, and the outer core has a shape with respect to centrifugal force. An anchor portion and a groove portion having a first surface and a second slope that can withstand centrifugal force may be formed so as to hold the inner core.
 本願は、様々な例示的な実施の形態及び実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。
従って、例示されていない無数の変形例が、本願に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
Although the present application describes various exemplary embodiments and examples, the various features, embodiments, and functions described in one or more embodiments are applications of a particular embodiment. It is not limited to, but can be applied to embodiments alone or in various combinations.
Therefore, innumerable variations not illustrated are envisioned within the scope of the techniques disclosed in the present application. For example, it is assumed that at least one component is modified, added or omitted, and further, at least one component is extracted and combined with the components of other embodiments.
 1 電磁鋼板、10,10a,10b,10c スリット(離間領域)、20 回転子コア、21,21a,21b,21c 外側コア(コア形成体)、22 内側コア(コア主部)、25 切欠部(溝部)、25S 第1面、30,30a,30b,30c 結合体、31 アンカー部(突出部)、31S 第2面、50 回転子、100 リラクタンスモータ(回転電機)。 1 electrical steel sheet, 10, 10a, 10b, 10c slit (separation area), 20 rotor core, 21,21a, 21b, 21c outer core (core forming body), 22 inner core (core main part), 25 notch (core main part) Groove part), 25S first surface, 30, 30a, 30b, 30c combined body, 31 anchor part (protruding part), 31S second surface, 50 rotor, 100 reluctance motor (rotary electric machine).

Claims (15)

  1. 周方向に間隔を隔てて複数の突極を有する回転子コアを備えた回転電機の回転子であって、
    前記回転子コアは、設定された離間幅分、径方向に離間して配置される複数のコア形成体を備え、複数の前記コア形成体により、該回転子コアの外周面に向かって前記離間幅を有して延びる離間領域が形成され、
    軸方向の長さが前記回転子コアの軸方向の長さ以下に構成される非磁性の結合体が、前記離間領域内に配設され、
    前記コア形成体あるいは前記結合体の一方に、前記離間幅方向に突出する突出部が形成され、他方に前記突出部に係合する溝部が形成され、該突出部と該溝部との係合により、各前記コア形成体が径方向に固定保持され、
    前記溝部は、該溝部に働く遠心力の方向から設定角度分傾斜する方向に延びる第1面が形成され、前記突出部は、前記第1面に当接する第2面が形成される、
    回転電機の回転子。
    A rotor of a rotating electric machine having a rotor core having a plurality of salient poles at intervals in the circumferential direction.
    The rotor core includes a plurality of core forming bodies arranged apart from each other by a set separation width in the radial direction, and the plurality of core forming bodies separate the rotor cores toward the outer peripheral surface of the rotor core. A separated region extending with width is formed
    A non-magnetic coupler having an axial length equal to or less than the axial length of the rotor core is disposed in the separation region.
    A protrusion that protrudes in the separation width direction is formed on one of the core forming body or the coupling, and a groove that engages with the protrusion is formed on the other, and the engagement between the protrusion and the groove causes the protrusion to engage. , Each core forming body is fixed and held in the radial direction,
    The groove portion is formed with a first surface extending in a direction inclined by a set angle from the direction of the centrifugal force acting on the groove portion, and the protruding portion is formed with a second surface that abuts on the first surface.
    Rotor of rotating electric machine.
  2. 前記結合体は、前記回転子コアの軸方向両端面において、該結合体の相互間を互いに接続しない構成に形成される、
    請求項1に記載の回転電機の回転子。
    The couplings are formed on both axial end faces of the rotor core so as not to connect each other.
    The rotor of the rotary electric machine according to claim 1.
  3. 径方向に複数の前記離間領域が形成された構成において、
    前記結合体は、前記回転子コアの径方向に沿って配設される、
    請求項1または請求項2に記載の回転電機の回転子。
    In a configuration in which a plurality of the separated regions are formed in the radial direction,
    The coupling is arranged along the radial direction of the rotor core.
    The rotor of the rotary electric machine according to claim 1 or 2.
  4. 前記突出部は、前記コア形成体に形成され、前記溝部は、前記結合体に形成される、
    請求項1から請求項3のいずれか1項に記載の回転電機の回転子。
    The protrusion is formed on the core-forming body, and the groove is formed on the coupling.
    The rotor of the rotary electric machine according to any one of claims 1 to 3.
  5. 一つの前記離間領域において複数の前記結合体が配設される、
    請求項1から請求項4のいずれか1項に記載の回転電機の回転子。
    A plurality of the conjugates are arranged in one separation region.
    The rotor of a rotary electric machine according to any one of claims 1 to 4.
  6. 径方向に隣合う前記コア形成体にそれぞれ形成された前記突出部が、前記離間領域において互いに対向するように配置される、
    請求項1から請求項5のいずれか1項に記載の回転電機の回転子。
    The protrusions formed on the core forming bodies adjacent to each other in the radial direction are arranged so as to face each other in the separation region.
    The rotor of a rotary electric machine according to any one of claims 1 to 5.
  7. 各前記結合体は、
    前記結合体が設けられた前記コア形成体の内、最も径方向外側に位置する前記コア形成体に設けられた前記結合体における径方向内側端面の、前記回転子コアの外周面から径方向内側への距離以内に位置するようにそれぞれ配置される、
    請求項1から請求項6のいずれか1項に記載の回転電機の回転子。
    Each said conjugate
    Of the core forming bodies provided with the coupling body, the radial inner end surface of the coupling body provided in the core forming body located on the outermost radial direction is radially inside from the outer peripheral surface of the rotor core. Each placed so that it is located within the distance to,
    The rotor of the rotary electric machine according to any one of claims 1 to 6.
  8. 前記結合体は、前記離間領域を全て埋める形状に構成される、
    請求項1に記載の回転電機の回転子。
    The combined body is configured to fill the entire separated region.
    The rotor of the rotary electric machine according to claim 1.
  9. 前記回転子コアは、
    前記コア形成体よりも径方向内側に前記離間幅分離間して配置され、前記突極が付与されるコア主部を備え、
    前記コア主部と前記コア形成体との間の前記離間領域内に前記結合体が配設され、
    前記コア形成体あるいは前記結合体の一方に、前記突出部が形成され、他方に前記溝部が形成され、該突出部と該溝部との係合により、前記コア形成体と前記コア主部とが固定保持される、
    請求項1から請求項8のいずれか1項に記載の回転電機の回転子。
    The rotor core
    It is provided with a core main portion that is arranged radially inside the core forming body with the separation width separated and to which the salient pole is provided.
    The coupling is disposed in the separation region between the core main portion and the core forming body.
    The protrusion is formed on one of the core-forming body and the coupling, and the groove is formed on the other. By engaging the protrusion and the groove, the core-forming body and the core main portion are brought together. Fixed and held,
    The rotor of the rotary electric machine according to any one of claims 1 to 8.
  10. 前記コア形成体は、方向性の電磁鋼板を軸方向に積層して構成され、
    前記コア形成体の、軸方向に垂直な方向側であって、前記回転子の外周面側の端部同士を結ぶ直線の方向が、該コア形成体を構成する前記電磁鋼板の圧延方向に沿うように構成される、
    請求項1から請求項9のいずれか1項に記載の回転電機の回転子。
    The core forming body is formed by laminating directional electromagnetic steel sheets in the axial direction.
    The direction of the straight line connecting the ends of the core forming body on the outer peripheral surface side of the rotor, which is perpendicular to the axial direction, is along the rolling direction of the electromagnetic steel sheet constituting the core forming body. Is configured as
    The rotor of the rotary electric machine according to any one of claims 1 to 9.
  11. 前記コア主部は、無方向性の電磁鋼板を軸方向に積層して構成される、
    請求項9に記載の回転電機の回転子。
    The core main portion is formed by laminating non-oriented electrical steel sheets in the axial direction.
    The rotor of the rotary electric machine according to claim 9.
  12. 請求項1から請求項11のいずれか1項に記載の回転電機の回転子を用いて構成される回転電機。 A rotary electric machine configured by using the rotor of the rotary electric machine according to any one of claims 1 to 11.
  13. 請求項1から請求項11のいずれか1項に記載の回転電機の回転子の製造方法であって、
    各前記コア形成体の、軸方向に垂直な方向側であって、前記回転子の外周面側の端部同士を結ぶ直線の方向が、電磁鋼板の圧延方向に沿うように、前記電磁鋼板から各前記コア形成体を打ち抜く、
    回転電機の回転子の製造方法。
    The method for manufacturing a rotor of a rotary electric machine according to any one of claims 1 to 11.
    From the electrical steel sheet so that the direction of the straight line connecting the ends on the outer peripheral surface side of the rotor, which is the direction perpendicular to the axial direction of each core forming body, is along the rolling direction of the electrical steel sheet. Punching each of the core forming bodies,
    A method for manufacturing a rotor for a rotating electric machine.
  14. 前記電磁鋼板における前記コア形成体間の打ち抜き幅は、前記回転子の前記離間幅よりも小さく構成される、
    請求項13に記載の回転電機の回転子の製造方法。
    The punching width between the core forming bodies in the electrical steel sheet is configured to be smaller than the separation width of the rotor.
    The method for manufacturing a rotor of a rotary electric machine according to claim 13.
  15. 請求項13または請求項14に記載の回転電機の回転子の製造方法を用いて製造された回転子と同軸上に固定子を配置する、
    回転電機の製造方法。
    A stator is arranged coaxially with a rotor manufactured by using the method for manufacturing a rotor of a rotary electric machine according to claim 13 or 14.
    Manufacturing method of rotary electric machine.
PCT/JP2020/003336 2019-08-05 2020-01-30 Rotor for rotary electric machine, rotary electric machine, manufacturing method for rotor of rotary electric machine, and manufacturing method for rotary electric machine WO2021024517A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021537561A JP7224471B2 (en) 2019-08-05 2020-01-30 Rotor of rotating electrical machine, rotating electrical machine, method for manufacturing rotor of rotating electrical machine, and method for manufacturing rotating electrical machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-143456 2019-08-05
JP2019143456 2019-08-05

Publications (1)

Publication Number Publication Date
WO2021024517A1 true WO2021024517A1 (en) 2021-02-11

Family

ID=74503394

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/003336 WO2021024517A1 (en) 2019-08-05 2020-01-30 Rotor for rotary electric machine, rotary electric machine, manufacturing method for rotor of rotary electric machine, and manufacturing method for rotary electric machine

Country Status (2)

Country Link
JP (1) JP7224471B2 (en)
WO (1) WO2021024517A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10271779A (en) * 1997-03-24 1998-10-09 Okuma Mach Works Ltd Rotor for synchronous motor
JP2003125567A (en) * 2001-10-11 2003-04-25 Mitsubishi Electric Corp Rotor of synchronous induction motor, synchronous induction motor, fan motor, compressor, air conditioner, and refrigerator

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09289762A (en) * 1996-04-23 1997-11-04 Toshiba Mach Co Ltd Rotor for reluctance synchronous motor and manufacture therefor
JP5039482B2 (en) * 2007-08-31 2012-10-03 株式会社三井ハイテック Rotor laminated core for reluctance motor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10271779A (en) * 1997-03-24 1998-10-09 Okuma Mach Works Ltd Rotor for synchronous motor
JP2003125567A (en) * 2001-10-11 2003-04-25 Mitsubishi Electric Corp Rotor of synchronous induction motor, synchronous induction motor, fan motor, compressor, air conditioner, and refrigerator

Also Published As

Publication number Publication date
JP7224471B2 (en) 2023-02-17
JPWO2021024517A1 (en) 2021-11-25

Similar Documents

Publication Publication Date Title
EP1734639B1 (en) Rotor of flux barrier type synchronous reluctance motor and flux barrier type synchronous motor having the same
JP6305651B1 (en) Permanent magnet type synchronous machine and method of manufacturing stator of permanent magnet type synchronous machine
JP4010319B2 (en) Core and rotor, motor and compressor
JP4110146B2 (en) Magnetic material, rotor, electric motor
JP5722301B2 (en) Embedded magnet type synchronous motor rotor and embedded magnet type synchronous motor
US11621621B2 (en) Magnets, pole shoes, and slot openings of axial flux motor
JP2010220288A (en) Core block and magnetic pole core for motors using the core block
JP6026021B2 (en) Magnetic inductor type motor and method of manufacturing the same
JPH11262205A (en) Permanent magnet motor
US20150061443A1 (en) Rotor and rotary electric machine having the same
WO2017195498A1 (en) Rotor and rotary electric machine
JP6545387B2 (en) Conscious pole rotor, motor and air conditioner
JP6112970B2 (en) Permanent magnet rotating electric machine
CN113169596B (en) Rotor and rotating electrical machine including the same
WO2021024517A1 (en) Rotor for rotary electric machine, rotary electric machine, manufacturing method for rotor of rotary electric machine, and manufacturing method for rotary electric machine
JP7435154B2 (en) Plate laminates, laminated cores and motors
CN111630752B (en) Stator of rotating electric machine and method for manufacturing stator of rotating electric machine
WO2020208924A1 (en) Permanent magnet rotating electric machine and permanent magnet rotating electric machine manufacturing method
CN114731067A (en) Axial flux machine comprising a stator with radially extending sheet metal sections
JPH10112965A (en) Rotor core of reluctance motor and its manufacture
WO2013111335A1 (en) Rotary electric machine
JP2020156199A (en) Rotary electric machine
JP7150221B1 (en) Electric motor stator, electric motor, and method for manufacturing electric motor stator
WO2024095945A1 (en) Rotor for rotary electric machine
WO2023132011A1 (en) Rotor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20849957

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021537561

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20849957

Country of ref document: EP

Kind code of ref document: A1