WO2021024507A1 - 発光装置、光学装置及び情報処理装置 - Google Patents

発光装置、光学装置及び情報処理装置 Download PDF

Info

Publication number
WO2021024507A1
WO2021024507A1 PCT/JP2019/048787 JP2019048787W WO2021024507A1 WO 2021024507 A1 WO2021024507 A1 WO 2021024507A1 JP 2019048787 W JP2019048787 W JP 2019048787W WO 2021024507 A1 WO2021024507 A1 WO 2021024507A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
light emitting
emitting device
emitted
Prior art date
Application number
PCT/JP2019/048787
Other languages
English (en)
French (fr)
Inventor
健史 皆見
智志 稲田
貴史 樋口
滋年 中村
健一 大野
Original Assignee
富士ゼロックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士ゼロックス株式会社 filed Critical 富士ゼロックス株式会社
Publication of WO2021024507A1 publication Critical patent/WO2021024507A1/ja
Priority to US17/559,293 priority Critical patent/US20220115836A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02257Out-coupling of light using windows, e.g. specially adapted for back-reflecting light to a detector inside the housing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02255Out-coupling of light using beam deflecting elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • G01S17/8943D imaging with simultaneous measurement of time-of-flight at a 2D array of receiver pixels, e.g. time-of-flight cameras or flash lidar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/4802Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • G01S7/4815Constructional features, e.g. arrangements of optical elements of transmitters alone using multiple transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/484Transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4861Circuits for detection, sampling, integration or read-out
    • G01S7/4863Detector arrays, e.g. charge-transfer gates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4865Time delay measurement, e.g. time-of-flight measurement, time of arrival measurement or determining the exact position of a peak
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B15/00Special procedures for taking photographs; Apparatus therefor
    • G03B15/02Illuminating scene
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B35/00Stereoscopic photography
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04256Electrodes, e.g. characterised by the structure characterised by the configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18344Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] characterized by the mesa, e.g. dimensions or shape of the mesa
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18358Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] containing spacer layers to adjust the phase of the light wave in the cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2004Confining in the direction perpendicular to the layer structure
    • H01S5/2018Optical confinement, e.g. absorbing-, reflecting- or waveguide-layers
    • H01S5/2022Absorbing region or layer parallel to the active layer, e.g. to influence transverse modes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34313Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/16Semiconductor lasers with special structural design to influence the modes, e.g. specific multimode
    • H01S2301/163Single longitudinal mode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0239Combinations of electrical or optical elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18308Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
    • H01S5/18311Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement using selective oxidation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/42Arrays of surface emitting lasers
    • H01S5/423Arrays of surface emitting lasers having a vertical cavity

Definitions

  • the present invention relates to a light emitting device, an optical device, and an information processing device.
  • Patent Document 1 has a light source, a plurality of lenses arranged adjacent to each other on a predetermined plane, a diffuser plate for diffusing the light emitted by the light source, and light diffused by the diffuser plate as a subject.
  • An imaging device including an imaging element that receives the reflected reflected light and a plurality of lenses arranged so that the period of interference fringes in the diffused light is three pixels or less is described.
  • the light emitted from the light source is diffused and irradiated in a predetermined range with a predetermined light intensity distribution. Is required to do. At this time, outside the predetermined range, the light intensity gradually attenuates as the distance from the predetermined range increases. The light emitted outside the predetermined range is wasted because it does not contribute to the measurement of the three-dimensional shape.
  • An object of the present invention is to provide a light emitting device or the like in which the amount of light reaching outside a predetermined range is suppressed as compared with the case of using a light source using a light emitting element in multiple transverse mode.
  • the light emitting device is provided with a light source in which a plurality of light emitting elements oscillating in a single transverse mode are arranged and a light emitting side of the light source, and diffuses and irradiates the light emitted by the light source. It is characterized by including an optical member.
  • the light emitting device according to the second aspect of the present invention is the light emitting device according to the first aspect, wherein the light emitting element is a vertical resonance type surface emitting laser element.
  • the light emitting device according to the third aspect of the present invention is characterized in that, in the light emitting device according to the second aspect, the vertical resonance type surface emitting laser element has a long resonator structure.
  • the light emitting device is the light emitting device according to any one of the first to third aspects, wherein the plurality of the light emitting elements are connected in parallel to each other by an electrode pattern, and the electrode pattern is It is characterized in that the region excluding the output port of each light emitting element is covered with a continuous pattern.
  • the light emitting device according to the fifth aspect of the present invention is the light emitting device according to any one of the first to fourth aspects, wherein the optical member irradiates the light emitted from the light source with different directivity. It is a feature.
  • the light emitting device is the light emitting device according to the fifth aspect, wherein the optical member is a plate-shaped member, and at least one surface is provided with a structure for changing the light directivity characteristic. It is characterized by being.
  • the light emitting device according to the seventh aspect of the present invention is the light emitting device according to any one of the first to sixth aspects, wherein the optical member irradiates light used for measuring a three-dimensional shape by a time-of-flight method. It is characterized by.
  • the light source and the optical member are mounted on a portable information processing terminal in the light emitting device according to any one of the first to seventh aspects, and the light source is driven by a battery. It is characterized by being done.
  • the light emitting device according to the ninth aspect of the present invention is provided in a light source in which a plurality of vertical resonance type surface emitting laser elements having a long resonator structure are arranged and a light emitting path of the light source, and diffuses the light emitted by the light source. It is characterized by including an optical member that irradiates the light source.
  • the optical device includes any one of the first to ninth light emitting devices, a light receiving unit that receives the reflected light emitted from the light source included in the light emitting device and reflected by the measurement target.
  • the light receiving unit is characterized in that it outputs a signal corresponding to the time from when light is emitted from the light source to when the light is received by the light receiving unit.
  • the information processing device is the reflected light emitted from the optical device according to the tenth aspect and the light source included in the optical device and reflected by the measurement target, and received by the light receiving unit included in the optical device.
  • the information processing device according to the eleventh aspect n of the present invention further includes an authentication processing unit that performs an authentication process regarding the use of the own device based on the specific result in the shape specifying unit in the information processing device according to the eleventh aspect. It is characterized by being prepared.
  • the amount of light emitted outside the predetermined range is suppressed as compared with the case of using a light source using a light emitting element in the multiple transverse mode.
  • the light output is large as compared with the case of a single transverse mode light emitting device which does not have a long resonator structure.
  • the voltage drop when the drive current flows is suppressed as compared with the case where the wiring is provided for each light emitting element.
  • the amount of light emitted outside the predetermined range is suppressed as compared with the case where the directivity of the light is not changed.
  • the absorption of light is suppressed as compared with the case where it does not depend on the structure.
  • the light utilization efficiency can be increased as compared with the case where the hem portion of the light is not suppressed.
  • the driving time can be longer than in the case where the hem portion of the light is not suppressed.
  • the skirt portion of the light spreading out of the predetermined range is suppressed.
  • an optical device capable of measuring the time from when light is emitted to when it is received.
  • an information processing device capable of measuring a three-dimensional shape is provided.
  • an information processing device equipped with an authentication process based on a three-dimensional shape is provided.
  • FIG. 1 It is a figure which shows an example of the information processing apparatus to which this embodiment is applied. It is a figure explaining the measurement of a three-dimensional shape by an information processing apparatus. It is a figure explaining the irradiation surface.
  • (A) is a diagram showing an example of an irradiation pattern on an irradiation surface, and (b) is a light intensity distribution on the AA line of (a).
  • FIG. 1 shows an example of the plan view and the sectional view of the optical apparatus to which this embodiment is applied.
  • (A) is a plan view
  • (b) is a cross-sectional view taken along the line VB-VB of (a).
  • FIG. 1 It is a figure which shows an example of the plan view of a light source. It is a figure explaining the cross-sectional structure of the single mode VCSEL of one long resonator structure provided by a light source. It is a figure explaining the cross-sectional structure of the multimode VCSEL of one ⁇ resonator structure provided by the light source for comparison. It is a figure which shows typically the relationship between the spread angle of the light emitted from a single mode VCSEL of a long resonator structure, and the spread amount of a tail in a light intensity distribution.
  • (A) is a diagram for explaining the spread angle of the light emitted from the single mode VCSEL, and (b) shows the light intensity distribution.
  • FIG. 1 It is a figure which shows typically the relationship between the spread angle of the light emitted from a multimode VCSEL of a ⁇ resonator structure shown for comparison, and the spread amount of a tail in a light intensity distribution.
  • (A) is a diagram for explaining the spread angle of the light emitted from the multi-mode VCSEL, and (b) shows the light intensity distribution. It is a figure explaining the relationship between the spread angle of the emitted light of a VCSEL, the spread amount of a hem, and the light utilization efficiency.
  • the information processing device is its own device only when it identifies whether or not the user who has accessed the information processing device is permitted to access it and is authenticated as a user who is permitted to access the information processing device. In many cases, the use of information processing equipment is permitted. So far, a method of authenticating a user by a password, a fingerprint, an iris, or the like has been used. Recently, there is a demand for an authentication method with even higher security. As this method, authentication is performed using a three-dimensional image of the user's face.
  • the information processing device will be described as an example of a portable information processing terminal, and will be described as authenticating a user by recognizing a face captured as a three-dimensional image.
  • the information processing device can be applied to an information processing device such as a personal computer (PC) other than a portable information processing terminal.
  • PC personal computer
  • the configuration, function, method, etc. described in this embodiment can be applied to the acquisition of a three-dimensional image of an object in addition to the recognition based on the shape of the face. That is, it may be applied to acquire a three-dimensional image by measuring the three-dimensional shape of the measurement target with an object other than the face as the measurement target.
  • the distance to the measurement target (hereinafter referred to as the measurement distance) does not matter.
  • the face or an object other than the face for which the three-dimensional image is to be acquired may be referred to as an irradiated object or an object to be measured.
  • FIG. 1 is a diagram showing an example of an information processing apparatus 1 to which the present embodiment is applied.
  • the information processing device 1 is, for example, a portable information processing terminal.
  • the information processing device 1 includes a user interface unit (hereinafter, referred to as a UI unit) 2 and an optical device 3 for acquiring a three-dimensional image.
  • the UI unit 2 is configured by integrating, for example, a display device that displays information to the user and an input device that inputs instructions for information processing by the user's operation.
  • the display device is, for example, a liquid crystal display or an organic EL display
  • the input device is, for example, a touch panel.
  • the optical device 3 includes a light emitting device 4 and a three-dimensional sensor (hereinafter referred to as a 3D sensor) 6.
  • the light emitting device 4 emits light toward a measurement target for measuring a three-dimensional shape for acquiring a three-dimensional image, a face in the example described here.
  • the 3D sensor 6 acquires the light emitted by the light emitting device 4 as the measurement target, and the light reflected by the face in the example described here and returned.
  • TOF time of flight
  • the information processing device 1 is configured as a computer including a CPU, ROM, RAM, and the like.
  • the ROM includes a non-volatile, rewritable memory, such as a flash memory.
  • the programs and constants stored in the ROM are expanded in the RAM.
  • the CPU executes the program expanded in the RAM, the information processing device 1 operates and various types of information processing are executed.
  • FIG. 2 is a diagram illustrating measurement of a three-dimensional shape by the information processing device 1.
  • the measurement target here is the face 300.
  • the right direction of the paper surface is the x direction
  • the upward direction is the z direction
  • the back surface direction of the paper surface is the y direction.
  • FIG. 2 is a view of the head (face) viewed from above.
  • the optical device 3 of the information processing device 1 light is emitted from the light emitting device 4 toward the face 300. Then, the light reflected by the face 300 by the 3D sensor 6 is received. That is, the optical device 3 is configured such that light is emitted from the light emitting device 4 toward the measurement target and the reflected light from the measurement target is received by the 3D sensor 6. At this time, the light emitting device 4 irradiates light toward the irradiation surface 310, which is a virtual surface provided facing the light emitting device 4.
  • the light emitting device 4 and the irradiation surface 310 face each other, and the light emitting device 4 is located on the perpendicular line 321 standing on the irradiation surface 310.
  • the perpendicular line 321 stands at the center of the detection range I described later.
  • the AA line is a line that passes through the center of the detection range I (intersection with the perpendicular line 321) and crosses the irradiation surface 310 in the x direction.
  • the line connecting the light emitting device 4 and an arbitrary point on the AA line is referred to as line 322.
  • the angle ⁇ is the angle between the perpendicular line 321 and the line 322.
  • the irradiation surface 310 is formed with a detection range I that detects the face 300 and measures the three-dimensional shape of the face 300, and a hem range II that surrounds the detection range I.
  • the detection range I is a range in which when the face 300 is present in this region, light having a light intensity capable of measuring the three-dimensional shape of the face 300 by the reflected light is irradiated.
  • the tailing range II is a range in which the light intensity decreases as the distance from the detection range I increases. Therefore, even if the face 300 is present in the hemming range II, the three-dimensional shape of the face 300 is not accurately measured as compared with the case where the face 300 is present in the detection range I.
  • the hemming range II is a non-detection range that is not suitable for measuring the three-dimensional shape of the face 300.
  • the detection range I and the tailing range II are ranges in which light reaches from the light emitting device 4.
  • the detection range I is a predetermined range for measuring the three-dimensional shape, and is a range in which light is irradiated with a predetermined light intensity distribution.
  • the light intensity means the luminous intensity.
  • FIG. 3 is a diagram for explaining the irradiation surface 310.
  • FIG. 3A is a diagram showing an example of an irradiation pattern on the irradiation surface 310
  • FIG. 3B is a light intensity distribution on the line AA of FIG. 3A.
  • the shape of the irradiated surface 310 that is irradiated with light, that is, the shape of the portion where the light reaches is referred to as an irradiation pattern.
  • the horizontal axis in FIG. 3B is the angle ⁇ between the perpendicular line 321 and the line 322 shown in FIG. 2, and the vertical axis is the light intensity on the irradiation surface 310.
  • the irradiation pattern shown in FIG. 3A is a quadrangular shape with the longitudinal direction facing in the x direction and rounded corners.
  • the rectangular range surrounded by the solid line in the central portion is set as the detection range I
  • the peripheral portion of the detection range I is set as the tailing range II.
  • the tailing range II is formed so as to surround the detection range I outside the detection range I.
  • the detection range I may be set to a shape other than the rectangular shape.
  • the detection range I is set so as to have a predetermined light intensity distribution. Although it is assumed that the light intensity of the detection range I is constant in FIG. 3B, the distribution may vary within a predetermined allowable range. That is, the distribution may fluctuate within the region of the detection range I as long as the light intensity can measure the three-dimensional shape of the irradiated object. For example, in the detection range I, the light intensity on the central side may be weaker than that on the peripheral side, or vice versa. On the other hand, in the tailing range II, the light intensity gradually decreases from the light intensity of the detection range I as the distance from the detection range I increases.
  • the hemming range II the angle difference from the angle of the boundary between the detection range I and the hemming range II to the angle at which the light intensity becomes 1 / e 2 of the maximum value is defined as the hemming amount.
  • the amount of hem spread indicates the size of the hem pulling range II.
  • the hemming range II is a region unsuitable for measuring the three-dimensional shape of the face 300, and may be outside the range of the detection range used for measuring the three-dimensional shape. In this case, the light emitted to the hemming range II becomes invalid light.
  • the light utilization efficiency refers to the ratio of the amount of light emitted to the detection range I to the amount of light emitted by the light emitting device 4.
  • the light emitted to the hemming range II may be referred to as hemming light.
  • the amount of hem spread may be evaluated by the full width at half maximum (FWHM) of the light intensity. Further, the amount of hem spread may be evaluated by an index other than the angle, for example, the width of the hem range II on the irradiation surface 310 placed at a predetermined distance from the light emitting device 4.
  • FIG. 4 is a block diagram illustrating the configuration of the information processing device 1.
  • the information processing device 1 includes the above-mentioned optical device 3, an optical device control unit 8, and a system control unit 9.
  • the optical device 3 includes a light emitting device 4 and a 3D sensor 6 as described above.
  • the optical device control unit 8 controls the optical device 3.
  • the optical device control unit 8 includes a shape specifying unit 81.
  • the system control unit 9 controls the entire information processing device 1 as a system.
  • the system control unit 9 includes an authentication processing unit 91.
  • a UI unit 2, a speaker 92, a two-dimensional camera (referred to as a 2D camera in FIG. 4) 93, and the like are connected to the system control unit 9.
  • the 3D sensor 6 is an example of a light receiving unit. Hereinafter, they will be described in order.
  • the light emitting device 4 included in the optical device 3 includes a light source 10, a diffuser plate 30, a light receiving element for monitoring the amount of light (referred to as PD in FIG. 4) 40, and a driving unit 50.
  • the light source 10, the diffuser plate 30, and the light receiving element 40 for monitoring the amount of light in the light emitting device 4 will be described later.
  • the diffuser plate 30 is an example of an optical member.
  • the drive unit 50 in the light emitting device 4 drives the light source 10.
  • the light source 10 is driven by the drive unit 50 so as to emit light that repeats at several tens of MHz to several hundreds of MHz in a pulsed manner.
  • the light emitted by the light source 10 is referred to as an emitted light
  • the pulsed light emitted by the light source 10 is referred to as an emitted light pulse.
  • the 3D sensor 6 includes a plurality of light receiving regions arranged in a grid pattern.
  • the 3D sensor 6 receives the pulsed light reflected from the measurement target in response to the emitted light pulse from the light source 10 of the light emitting device 4.
  • the light pulse received by the 3D sensor 6 is referred to as a light receiving pulse.
  • the 3D sensor 6 outputs a signal corresponding to the time from when the light is emitted from the light source 10 to when it is reflected by the measurement target and received by the 3D sensor 6 as a digital value for each light receiving region.
  • the 3D sensor 6 is configured as a device having a CMOS structure in which each light receiving region has two gates and two charge storage units corresponding to them.
  • the 3D sensor 6 may include a lens for condensing light.
  • the shape specifying unit 81 of the optical device control unit 8 acquires the digital value obtained for each light receiving region of the 3D sensor 6 from the 3D sensor 6. Then, the shape specifying unit 81 measures the three-dimensional shape of the measurement target by calculating the distance from the acquired digital value to the measurement target for each light receiving region. The shape specifying unit 81 identifies a three-dimensional image from the measured three-dimensional shape.
  • the authentication processing unit 91 of the system control unit 9 is the information processing device 1 when the three-dimensional image of the measurement target, which is the specific result specified by the shape identification unit 81, matches the three-dimensional image stored in advance in the ROM or the like. Perform authentication processing related to the use of.
  • the authentication process relating to the use of the information processing device 1 is, for example, a process of whether or not to permit the use of the information processing device 1 which is its own device.
  • the measurement target is a face
  • the information processing device 1 including various applications provided by the information processing device 1 Allow use.
  • the shape specifying unit 81 and the authentication processing unit 91 are composed of a CPU that executes a program. Further, these functions may be realized by an integrated circuit such as an ASIC or FPGA. Further, these may be realized by the cooperation between the CPU that executes software such as a program and the integrated circuit.
  • the optical device 3, the optical device control unit 8 and the system control unit 9 are shown separately, but the system control unit 9 may include the optical device control unit 8. Further, the optical device control unit 8 may be included in the optical device 3. Further, the optical device 3, the optical device control unit 8 and the system control unit 9 may be integrally configured.
  • FIG. 5 is a diagram showing an example of a plan view and a cross-sectional view of the optical device 3 to which the present embodiment is applied.
  • 5 (a) is a plan view
  • FIG. 5 (b) is a cross-sectional view taken along the line VB-VB of FIG. 5 (a).
  • the lateral direction of the paper surface is the x direction
  • the upper direction of the paper surface is the y direction
  • the surface direction is the z direction.
  • the circuit board 7 uses a plate-shaped member made of an insulating material as a base material, and is provided with a conductor pattern made of a conductive material.
  • the insulating material is, for example, ceramic or epoxy resin
  • the conductive material is, for example, a metal such as copper (Cu) or silver (Ag) or a conductive paste containing these metals.
  • the circuit board 7 may be a single-layer substrate having a conductor pattern provided on the surface thereof, or may be a multilayer substrate having a plurality of layers of conductor patterns. Further, the light emitting device 4 and the 3D sensor 6 may be arranged on different circuit boards.
  • the light receiving element 40 for monitoring the amount of light, the light source 10, and the driving unit 50 are arranged so as to be arranged in the x direction on the circuit board 7 as an example.
  • the diffuser plate 30 is provided so as to cover the light source 10 and the light intensity monitoring light receiving element 40.
  • the light source 10 has a rectangular planar shape as an example.
  • the planar shape of the light source 10 does not have to be rectangular.
  • the light emitting direction (light emitting side) of the light source 10 is the z direction.
  • the light source 10 may be mounted directly on the circuit board 7, or may be mounted on the circuit board 7 via a heat-dissipating base material such as aluminum oxide or aluminum nitride. When passing through the heat radiating base material, the electric power supplied to the light source 10 may be increased to increase the light output of the light source 10.
  • the light source 10 will be described as being mounted directly on the circuit board 7.
  • the plan view is a shape when viewed in a plan view, and the plan view means a view seen from the z direction in FIG. 5A. The same applies hereinafter.
  • the light output means a luminous flux.
  • the diffusion plate 30 is a member having a rectangular planar shape as an example.
  • the diffuser plate 30 diffuses and emits the light incident on the diffuser plate 30.
  • the diffuser plate 30 changes the directivity of the light incident on the diffuser plate 30 and emits the light. That is, the diffuser plate 30 emits light so that the light emitted from the light source 10 has a light intensity distribution different from the light intensity distribution when the irradiation surface 310 is irradiated without passing through the diffuser plate 30.
  • the light source 10 can be regarded as a point light source because of its small size as described later.
  • the diffuser plate 30 changes the irradiation pattern by the light incident from the light source 10 to the irradiation pattern on the irradiation surface 310 as shown in FIG. 3A.
  • the size of the diffusion plate 30 may be, for example, 1 mm to 10 mm in width and length and 0.1 mm to 1 mm in thickness.
  • the diffuser plate 30 may cover the light source 10 and the light receiving element 40 for monitoring the amount of light in a plan view. Further, in FIG. 5A, an example in which the shape of the diffusion plate 30 in a plan view is rectangular, but other shapes such as polygons and circles may be used. If the size and shape are as described above, the diffusion plate 30 suitable for face recognition of a portable information processing terminal and measurement of a three-dimensional shape at a relatively short distance up to about several meters is provided.
  • the diffuser plate 30 is supported by a side wall 33 on the z-direction side, which is the light emitting side of the light source 10.
  • the side wall 33 is provided so as to surround the light source 10 and the light receiving element 40 for monitoring the amount of light.
  • the diffuser plate 30 is held by the side wall 33 at a predetermined distance from the light source 10 and the light intensity monitoring light receiving element 40. Then, the light incident on the diffuser plate 30 from the light source 10 is emitted from the diffuser plate 30 and is irradiated on the irradiation surface 310 (see FIG. 2).
  • the side wall 33 is composed of a member that absorbs the light emitted by the light source 10, the light emitted by the light source 10 is suppressed from being transmitted to the outside through the side wall 33. Further, by sealing the light source 10 and the light receiving element 40 for monitoring the amount of light with the diffusion plate 30 and the side wall 33, dustproof, moistureproof and the like can be achieved. In the present embodiment, by arranging the light source 10 and the light receiving element 40 for monitoring the amount of light close to each other, it becomes easy to surround the light source 10 with the side wall 33 having a small size, and the diffuser plate 30 having a small size is sufficient.
  • the light amount monitoring light receiving element 40 is a device that outputs an electric signal according to the received light amount (hereinafter, referred to as the light receiving amount).
  • the light intensity monitoring light receiving element 40 is a photodiode (PD: Photo Diode) made of, for example, silicon.
  • PD Photo Diode
  • the light quantity monitoring light receiving element 40 is configured to receive light emitted from the light source 10 and reflected on the back surface of the diffuser plate 30, that is, the surface of the diffuser plate 30 on the ⁇ z direction side.
  • the light source 10 is controlled to maintain a predetermined light output based on the light receiving amount of the light amount monitoring light receiving element 40. That is, the optical device control unit 8 controls the light source 10 via the drive unit 50 based on the light reception amount of the light amount monitoring light receiving element 40.
  • the optical device control unit 8 suppresses the light output of the light source 10 via the drive unit 50. For example, the optical device control unit 8 stops the emission of light from the light source 10.
  • FIG. 6 is a diagram showing an example of a plan view of the light source 10.
  • the cathode patterns 71, the anode patterns 72A and 72B, which are conductor patterns provided on the circuit board 7, and the bonding wires 73A and 73B connecting the light source 10 and these conductor patterns are shown together.
  • the light source 10 includes a vertical cavity surface emitting laser element VCSEL (Vertical Cavity Surface Emitting Laser).
  • VCSEL Vertical Cavity Surface Emitting Laser
  • the vertical resonance type surface emitting laser element VCSEL will be referred to as a VCSEL.
  • the VCSEL is an example of a light emitting element.
  • the VCSEL provides an active region serving as a light emitting region between the lower multilayer film reflector and the upper multilayer film reflector laminated on the substrate, and emits laser light in a direction perpendicular to the substrate. From this, it is easy to make an array in which a plurality of VCSELs are arranged two-dimensionally.
  • the light source 10 is configured by integrally integrating a plurality of VCSELs as one semiconductor component.
  • the light source 10 having a plurality of VCSELs is provided with a cathode electrode 114 on the back surface (see FIG. 7 described later) and an anode electrode 118 on the front surface.
  • the anode electrode 118 includes a portion for connecting the p-side electrodes 112 of a plurality of VCSELs, a pad portion 118A to which the bonding wire 73A described later is connected, and a pad portion 118B to which the bonding wire 73B is connected. .. That is, the plurality of VCSELs are connected in parallel.
  • a plurality of VCSELs included in the light source 10 are arranged at each grid point of a grid formed in a square as an example.
  • the plurality of VCSELs may be other sequences such as an array in which the positions where the VCSELs are arranged for each row are shifted by half of the repeating unit.
  • a cathode pattern 71 and anode patterns 72A and 72B are provided as conductor patterns on the circuit board 7.
  • the cathode pattern 71 is formed in an area larger than that of the light source 10 so that the cathode electrode 114 provided on the back surface of the light source 10 is connected. Then, in the light source 10, the cathode electrode 114 provided on the back surface is adhered to the cathode pattern 71 on the circuit board 7 with a conductive adhesive.
  • the pad portion 118A of the anode electrode 118 of the light source 10 is connected to the anode pattern 72A on the circuit board 7 by the bonding wire 73A, and the pad portion 118B of the anode electrode 118 of the light source 10 is connected by the bonding wire 73B. It is connected to the anode pattern 72B on the circuit board 7.
  • the number of VCSELs included in the light source 10 is, for example, 10 to 1000.
  • a plurality of VCSELs are connected in parallel and driven in parallel. That is, the plurality of VCSELs emit light at the same time.
  • the light source 10 is, for example, 0.5 mm square to 3 mm square. When irradiating a distant object to be irradiated, the number of VCSELs may be further increased.
  • the light source 10 emits light for measuring the three-dimensional shape of the measurement target. In the user authentication based on the face shape described above, the measurement distance is about 10 cm to 1 m. The length of one side of the detection range I is about 1 m. Since the light source 10 is required to irradiate the detection range I with light having a predetermined light intensity, the VCSEL included in the light source 10 is required to have a large light output.
  • a VCSEL that oscillates in a single transverse mode is used as the VCSEL included in the light source 10.
  • the single transverse mode may be referred to as a single mode.
  • the VCSEL that oscillates in the single transverse mode is referred to as a single mode VCSEL.
  • the single mode VCSEL has a smaller spread angle of the emitted light than the VCSEL that oscillates in the multiple transverse mode.
  • the multiple transverse mode may be referred to as a multi-mode. Therefore, the VCSEL that oscillates in the multiple horizontal mode is referred to as a multi-mode VCSEL.
  • the single transverse mode refers to a mode in which the light intensity profile of the emitted light with the spread angle as a parameter has a single peak, that is, a characteristic that the peak of the light intensity is one.
  • a plurality of transverse modes may be included as long as the monomodality is maintained.
  • the spread angle of the emitted light refers to an angle range in which the light intensity is 1 / e 2 of the maximum value. Further, the spread angle may be an angle range which is the full width at half maximum (FWHM) of the light intensity.
  • a VCSEL having a long resonator structure may be used as the single mode VCSEL.
  • the VCSEL with a long cavity structure has a spacer of several ⁇ to several tens of ⁇ between the active region in the VCSEL of a general ⁇ cavity structure in which the resonator length is the oscillation wavelength ⁇ and one multilayer film reflector.
  • the loss in higher-order transverse mode is increased, which enables single-mode oscillation with an oxide aperture diameter larger than the oxidation aperture diameter of VCSEL with a general ⁇ resonator structure. to enable.
  • the longitudinal mode interval (sometimes called a free spectrum range) is large, stable operation can be obtained in a single longitudinal mode.
  • the longitudinal mode interval becomes narrow due to the increase in the cavity length, and a plurality of standing waves in the longitudinal mode exist in the resonator. Switching between longitudinal modes is more likely to occur.
  • the VCSEL having a long resonator structure is provided with a layer that suppresses switching between longitudinal modes (layer 120 that gives an optical loss in FIG. 7 described below).
  • the single-mode VCSEL with a ⁇ -resonator structure has a smaller oxidation aperture diameter than the multi-mode VCSEL with a ⁇ -resonator structure, so it was difficult to increase the optical output. Therefore, as the light source 10 for measuring the three-dimensional shape, a multi-mode VCSEL having a large light output has been used. However, in order to reduce the amount of light that spreads by pulling the hem to the hem range II and improve the light utilization efficiency, it is preferable to use a single mode VCSEL having a small spread angle, as will be described later.
  • the VCSEL having a long resonator structure tends to have a larger oxide aperture diameter than the single-mode VCSEL having a general ⁇ resonator structure, it tends to increase the optical output.
  • the VCSEL having a long resonator structure is more likely to have a narrower spread angle than the single mode VCSEL having a general ⁇ resonator structure.
  • FIG. 7 is a diagram illustrating a cross-sectional structure of a single-mode VCSEL having a single long resonator structure included in the light source 10.
  • a single-mode VCSEL having a long resonator structure will be referred to as a VCSEL-A.
  • the upward direction of the paper surface is the z direction.
  • a VCSEL-A is an n-type distributed Bragg reflector (DBR: Distributed Bragg Reflector, hereinafter referred to as a distributed black reflector) in which AlGaAs layers having different Al compositions are alternately laminated on an n-type GaAs substrate 100.
  • DBR Distributed Bragg Reflector
  • DBR. It is referred to as DBR.
  • DBR. 102
  • the resonator extension region 104 A p-type upper DBR108 in which an active region 106 including an upper spacer layer and a quantum well layer sandwiched between the upper spacer layers and an AlGaAs layer having different Al compositions formed on the active region 106 are alternately stacked. It is composed of laminated layers.
  • the n-type lower DBR102 is a multi-layer laminate consisting of a pair of Al 0.9 Ga 0.1 As layer and a GaAs layer, and the thickness of each layer is ⁇ / 4 n r (where ⁇ is the oscillation wavelength and n r is. Refractive index of the medium), and these are alternately laminated in 40 cycles.
  • the carrier concentration after doping silicon, which is an n-type impurity, is, for example, 3 ⁇ 10 18 cm -3 .
  • the resonator extension region 104 is a monolithic layer formed by a series of epitaxial growth. Therefore, the resonator extension region 104 is composed of AlGaAs, GaAs, or AlAs so that the lattice constants match or match the GaAs substrate.
  • the resonator extension region 104 is made of AlGaAs that does not cause light absorption.
  • the film thickness of the resonator extension region 104 is set to 2 ⁇ m to 5 ⁇ m and an oscillation wavelength ⁇ of 5 ⁇ to 20 ⁇ . Therefore, the moving distance of the carrier becomes long.
  • the resonator extension region 104 is often n-type with high carrier mobility and is therefore inserted between the n-type lower DBR 102 and the active region 106.
  • Such a resonator extension region 104 may be referred to as a cavity extension region or cavity space.
  • a carrier block layer 105 having a large band gap for example, made of Al 0.9 Ga 0.1 As, is formed between the resonator extension region 104 and the active region 106. Insertion of the carrier block layer 105 prevents carrier leakage from the active region 106 and improves luminous efficiency. As will be described later, since the layer 120 that gives an optical loss that attenuates the oscillation intensity of the laser beam to some extent is inserted in the resonator extension region 104, the carrier block layer 105 plays a role of compensating for such loss. To bear.
  • the film thickness of the carrier block layer 105 is ⁇ / 4 mn r (where ⁇ is the oscillation wavelength, m is an integer, and n r is the refractive index of the medium).
  • the active region 106 is configured by laminating a lower spacer layer, a quantum well active layer, and an upper spacer layer.
  • the lower spacer layer is an undoped Al 0.6 Ga 0.4 As layer
  • the quantum well active layer is an undoped InGaAs quantum well layer and an undoped GaAs barrier layer
  • the upper spacer layer is an undoped GaAs barrier layer. It is an Al 0.6 Ga 0.4 As layer.
  • the p-type upper DBR108 is a laminate of a p-type Al 0.9 Ga 0.1 As layer and a GaAs layer, and the thickness of each layer is ⁇ / 4 nr , and these are alternately laminated for 29 cycles. is there.
  • the carrier concentration after doping with carbon, which is a p-type impurity, is, for example, 3 ⁇ 10 18 cm -3 .
  • a contact layer made of p-type GaAs is preferably formed on the uppermost layer of the upper DBR 108.
  • a p-type AlAs current constriction layer 110 is formed in or inside the lowermost layer of the upper DBR 108.
  • a columnar mesa M1 is formed on the substrate 100 by etching the laminated semiconductor layers from the upper DBR 108 to the lower DBR 102.
  • the current constriction layer 110 is exposed on the side surface of the mesa M1.
  • a conductive region 110B surrounded by an oxidation region 110A and an oxidation region 110A selectively oxidized from the side surface of the mesa M1 is formed.
  • the conductive region 110B is an oxidation aperture.
  • the AlAs layer has a higher oxidation rate than the AlGaAs layer, and the oxidation region 110A is oxidized from the side surface of the mesa M1 toward the inside at a substantially constant rate, so that the plane shape is parallel to the substrate of the conductive region 110B.
  • the diameter of the conductive region 110B for obtaining a single transverse mode can be easily increased as compared with the VCSEL having a normal ⁇ resonator structure.
  • the diameter of the conductive region 110B can be increased to 7 ⁇ m to 8 ⁇ m. Can be done.
  • the semiconductor layers from the upper DBR 108 to the lower DBR 102 are laminated by epitaxialization. Therefore, this semiconductor layer may be referred to as an epitaxial layer.
  • An annular p-side electrode 112 made of metal in which Ti / Au or the like is laminated is formed on the uppermost layer of the mesa M1.
  • the p-side electrode 112 makes ohmic contact with the contact layer of the upper DBR 108.
  • the inside of the annular p-side electrode 112 is a light outlet 112A through which laser light is emitted to the outside. That is, the axial direction of the mesa M1 is the optical axis.
  • the surface of the upper DBR 108 including the light emission port 112A is the emission surface.
  • a cathode electrode 114 is formed on the back surface of the substrate 100 as an n-side electrode.
  • the insulating layer 116 is provided so as to cover the surface of the mesa M1 except for the portion where the p-side electrode 112 and the anode electrode 118 described later are connected and the light emission port 112A.
  • the anode electrode 118 is provided so as to make ohmic contact with the p-side electrode 112.
  • the anode electrode 118 is provided except for the light emission port 112A of each of the plurality of VCSEL-A. That is, in the plurality of VCSEL-A included in the light source 10, each p-side electrode 112 is connected in parallel by the anode electrode 118 (see FIG. 6).
  • the anode electrode 118 is provided as a continuous electrode pattern covering the region between each VCSEL-A except for the light emitting port 112A of each VCSEL-A. Therefore, as compared with the case where the drive wiring is individually provided for each VCSEL-A, a pattern having a large area is formed, and the voltage drop when the drive current flows is suppressed.
  • the required longitudinal mode oscillation wavelength band is set to 940 nm, and in order to suppress switching to the other longitudinal mode oscillation wavelength bands, an unnecessary longitudinal mode standing wave is generated in the resonator extension region 104.
  • a layer 120 that gives an optical loss is provided. That is, the layer 120 that gives the optical loss is introduced at the position of the required vertical mode standing wave node.
  • the layer 120 that gives an optical loss is made of a semiconductor material having the same Al composition as the semiconductor layer constituting the resonator extension region 104, and is made of, for example, Al 0.3 Ga 0.7 As.
  • the layer 120 that gives the optical loss preferably has a higher impurity doping concentration than the semiconductor layer that constitutes the resonator extension region 104, and for example, the impurity concentration of AlGaAs that constitutes the resonator extension region 104 is 1 ⁇ 10 17 When it is cm -3 , the layer 120 that gives an optical loss has an impurity concentration of 1 ⁇ 10 18 cm -3 , and is configured to have an impurity concentration that is about an order of magnitude higher than that of other semiconductor layers. ..
  • the film thickness of the layer 120 that gives the optical loss is selected so that the loss to the required longitudinal mode is not large, and is preferably the same film thickness (10 nm) as the current constriction layer 110 located at the node of the standing wave. ⁇ 30 nm).
  • the layer 120 that gives optical loss is inserted so as to be located at the node for the required vertical mode standing wave. Since the light intensity is weak in the standing wave node, the effect of the loss on the required longitudinal mode by the layer 120 that gives the optical loss is small. On the other hand, for an unwanted longitudinal mode standing wave, the layer 120, which provides optical loss, is located on the antinode other than the node. Since the antinode of the standing wave has a higher light intensity than the node, the loss given to the unnecessary longitudinal mode by the layer 120 that gives an optical loss becomes large. In this way, by reducing the loss to the required longitudinal mode and increasing the loss to the unnecessary longitudinal mode, the unnecessary longitudinal mode is selectively prevented from resonating, and the longitudinal mode hopping is suppressed.
  • the layer 120 that gives the optical loss does not necessarily have to be provided at the position of each node of the required vertical mode standing wave in the resonator extension region 104, and may be a single layer. In this case, the intensity of the standing wave increases as it approaches the active region 106, so that the layer 120 that gives an optical loss to the position of the node near the active region 106 may be formed. Further, if switching or hopping between longitudinal modes is allowed, the layer 120 that causes optical loss may not be provided.
  • Multi-mode VCSEL (VCSEL-B) with ⁇ resonator structure)
  • VCSEL-B Multiple transverse mode VCSEL
  • the light source 10'shown for comparison is shown for explaining the influence of the spreading angle of the emitted light of the VCSEL on the amount of skirt spreading.
  • the light emitting device 4 for comparison is a light source 10 shown in FIG. 5 replaced with a light source 10'described below.
  • the multi-mode VCSEL having a ⁇ resonator structure has a larger spread angle of the emitted light than the single-mode VCSEL having a long resonator structure.
  • FIG. 8 is a diagram illustrating a cross-sectional structure of a multi-mode VCSEL having a single ⁇ resonator structure included in the light source 10'for comparison.
  • the multi-mode VCSEL having a ⁇ resonator structure will be referred to as VCSEL-B.
  • the VCSEL-B does not include the resonator extension region 104 in the VCSEL-A.
  • the upward direction of the paper surface is the z direction.
  • the VCSEL-B is sandwiched between the upper spacer layer and the lower spacer layer formed on the n-type lower DBR202 and the lower DBR202 in which AlGaAs layers having different Al compositions are alternately laminated on the n-type GaAs substrate 200.
  • the active region 206 including the quantum well layer and the p-type upper DBR208 formed by alternately stacking AlGaAs layers having different Al compositions formed on the active region 206 are laminated.
  • a p-type AlAs current constriction layer 210 is formed in or inside the lowermost layer of the upper DBR208.
  • the lower DBR202, the active region 206, the upper DBR208, and the current constriction layer 210 are the same as the lower DBR102, the active region 106, the upper DBR108, and the current constriction layer 110 of the VCSEL-A described above, and thus the description thereof will be omitted.
  • a columnar mesa M2 is formed on the substrate 200, and the current constriction layer 210 is exposed on the side surface of the mesa M2.
  • the current constriction layer 210 is formed with an oxidized region 210A selectively oxidized from the side surface of the mesa M2 and a conductive region 210B surrounded by the oxidized region 210A.
  • the conductive region 210B is an oxidation aperture.
  • the planar shape of the conductive region 210B parallel to the substrate is a shape that reflects the outer shape of the mesa M2, that is, a circular shape, and the center thereof substantially coincides with the axial direction of the mesa M2 indicated by the one-point chain line.
  • An annular p-side electrode 212 made of metal in which Ti / Au or the like is laminated is formed on the uppermost layer of the mesa M2, and the p-side electrode 212 is ohmic-connected to the contact layer of the upper DBR208.
  • a circular light emitting port 212A whose center coincides with the axial direction of the mesa M2 is formed on the p-side electrode 212, and laser light is emitted to the outside from the light emitting port 212A. That is, the axial direction of the mesa M2 is the optical axis.
  • a cathode electrode 214 as an n-side electrode is formed on the back surface of the substrate 200.
  • the surface of the upper DBR 208 including the light emission port 212A is the emission surface.
  • the insulating layer 216 is provided so as to cover the surface of the mesa M2 except for the portion where the p-side electrode 212 and the anode electrode 218 described later are connected and the light emitting port 212A. Then, except for the light emission port 212A, the anode electrode 218 is provided so as to make ohmic contact with the p-side electrode 212. The anode electrode 218 is provided except for the light emission port 212A of each of the plurality of VCSEL-Bs. That is, in the plurality of VCSEL-Bs included in the light source 10', the p-side electrodes 212 are connected in parallel by the anode electrodes 218.
  • FIG. 9 is a diagram schematically explaining the relationship between the spread angle of the emitted light from the single-mode VCSEL (VCSEL-A) having a long resonator structure and the amount of tail spread in the light intensity distribution.
  • FIG. 9 (a) is a diagram for explaining the spread angle ⁇ of the emitted light from the single mode VCSEL (VCSEL-A), and
  • FIG. 9 (b) shows the light intensity distribution.
  • the upward direction of the paper surface is the z direction.
  • the light intensity distribution shown in FIG. 9B is the light intensity distribution on the AA line shown in FIG. 3A.
  • the light emitted from the VCSEL-A of the light source 10 emits light at a spreading angle ⁇ .
  • divergence angle is the full width at half maximum (FWHM) or 1 / e 2 of the light intensity.
  • the diffuser plate 30 includes, for example, a glass base material 31 having both sides parallel and flat, and a resin layer 32 having a plurality of minute irregularities formed on one surface of the glass base material to diffuse light. .. Then, the diffuser plate 30 is provided on the path of the emitted light of the VCSEL-A of the light source 10 (referred to as the light emission path), and the incident light is diffused and irradiated by the unevenness of the resin layer 32.
  • At least one of the plurality of convex portions and the plurality of concave portions constituting the unevenness of the resin layer 32 has a width of 10 ⁇ m or more and 100 ⁇ m or less, and a height (depth) of 1 ⁇ m or more and 50 ⁇ m or less, as an example. Further, the unevenness may be a pattern having a period or a random pattern having no period.
  • the diffuser plate 30 controls the refraction direction of light by the pattern of the unevenness, and changes the light emitted from the light source 10 into a desired irradiation pattern.
  • the uneven pattern is sometimes called a lens pattern.
  • the diffusion plate 30 may be configured to have a uniform diffusion angle as a whole, or may be configured so that the diffusion angle differs depending on the position. Further, the diffuser plate 30 may be configured so that the optical axis of the VCSEL-A and the central axis of the light emitted from the diffuser plate 30 coincide with each other, and the diffuser plate 30 emits light from the diffuser plate 30 with respect to the optical axis of the VCSEL-A. The central axis of the light to be emitted may be intentionally shifted so that the irradiation area is expanded.
  • the diffusion angle refers to the spread angle of the emitted light when parallel light is incident.
  • the diffuser plate 30 diffuses the light of the spreading angle ⁇ emitted by the VCSEL-A and irradiates the irradiation surface 310 (see FIG. 2). At this time, the diffuser plate 30 superimposes and irradiates the light emitted by each VCSEL-A.
  • FIG. 10 is a diagram schematically explaining the relationship between the spread angle ⁇ of the emitted light from the multi-mode VCSEL (VCSEL-B) of the ⁇ resonator structure shown for comparison and the amount of tail spread in the light intensity distribution.
  • FIG. 10 (a) is a diagram for explaining the spread angle ⁇ of the emitted light from the multi-mode VCSEL (VCSEL-B), and FIG. 10 (b) shows the light intensity distribution.
  • the upward direction of the paper surface is the z direction.
  • the light intensity distribution shown in FIG. 10B is the light intensity distribution on the line AA shown in FIG. 3A.
  • the diffuser plate 30 is the same as the case of the single-mode VCSEL (VCSEL-A) having a long resonator structure shown in FIG.
  • the VCSEL-B emits light at a spread angle ⁇ larger than the spread angle of the light emitted from the VCSEL-A ( ⁇ ⁇ ).
  • the hem expansion amount includes the VCSEL-A (expansion angle ⁇ ) shown in FIG. 9 (b). This is larger than the amount of hem spread when the light source 10 is used.
  • FIG. 11 is a diagram for explaining the relationship between the spread angle of the emitted light of the VCSEL, the spread amount of the hem, and the light utilization efficiency.
  • the horizontal axis is the spread angle of the emitted light
  • the vertical axis on the left side is the amount of spread at the hem
  • the vertical axis on the right side is the light utilization efficiency.
  • the spreading angle of the emitted light is related to the spreading amount of the hem on the irradiation surface 310, a large light output can be intentionally obtained in the three-dimensional shape measurement by the TOF method in which the light source 10 having a large light output is required.
  • the multi-mode VCSEL having a resonator structure is not adopted, but the single-mode VCSEL having a small spread angle of the emitted light is used.
  • the tailing range II in which the light is irradiated to the irradiation surface 310 outside the predetermined range is narrowed.
  • the light utilization efficiency is improved by making the hem portion of the light smaller, that is, suppressing the amount of hem spreading.
  • the power consumption of the light source is reduced as compared with the case where the amount of hem spread is not suppressed.
  • a long drive time can be obtained in a battery-powered information processing device such as a portable information processing device.
  • a VCSEL having an oxidative constriction structure may be configured by providing a plurality of holes so as to surround the periphery of the exit port of each VCSEL and oxidizing the current constriction layer 110 using the holes.
  • the plurality of VCSELs show a form in which light is emitted from the surface side (surface side) on the substrate 100 on which the epitaxial layer is formed, but the surface side on which the epitaxial layer is not formed. It may be in the form of emitting light from (back side).
  • the light source 10 and the diffuser plate 30 are arranged at a position where they overlap when viewed from the light emitting surface side, but the form is arranged at a position where they do not overlap. You may.
  • the structure may be such that light can be diffused even at a position where the diffuser plate 30 and the light source 10 do not overlap with each other through a reflection member such as a reflection mirror.
  • the present application claims priority based on Japanese Patent Application No. 2019-146381 dated August 8, 2019.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Geometry (AREA)
  • Semiconductor Lasers (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Stereoscopic And Panoramic Photography (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

多重横モードの発光素子を用いた光源を使用する場合に比べ、予め定められた範囲外に到達する光量を抑制した発光装置などを提供する。発光装置は、単一横モードで発振する発光素子を複数配列した光源と、光源の光出射経路に設けられ、光源が出射する光を拡散して照射する光学部材と、を備える。

Description

発光装置、光学装置及び情報処理装置
 本発明は、発光装置、光学装置及び情報処理装置に関する。
 特許文献1には、光源と、所定の平面上において互いに隣接して配置される複数のレンズを有すると共に、光源が出射する光を拡散する拡散板と、拡散板によって拡散された光が被写体で反射した反射光を受光する撮像素子と、を備え、複数のレンズは、拡散された光における干渉縞の周期が三画素以下となるように配置された撮像装置が記載されている。
特開2018-54769号公報
 ところで、タイムオブフライト方式の三次元形状の計測では、計測対象へ光を照射するため、光源から出射された光を拡散させて、予め定められた範囲に、予め定められた光強度分布で照射することが求められる。このとき、予め定められた範囲外では、予め定められた範囲から遠ざかるに従い光強度が徐々に減衰する。この予め定められた範囲外に照射される光は三次元形状の計測に寄与しないため無駄になる。
 本発明の目的は、多重横モードの発光素子を用いた光源を使用する場合に比べ、予め定められた範囲外に到達する光量を抑制した発光装置などを提供する。
 本発明の第1態様に係る発光装置は、単一横モードで発振する発光素子を複数配列した光源と、前記光源の光出射側に設けられ、当該光源が出射する光を拡散して照射する光学部材と、を備えることを特徴とする。
 本発明の第2態様に係る発光装置は、第1態様に係る発光装置において、前記発光素子は、垂直共振型面発光レーザ素子であることを特徴とする。
 本発明の第3態様に係る発光装置は、第2態様に係る発光装置において、前記垂直共振型面発光レーザ素子は、長共振器構造であることを特徴とする。
 本発明の第4態様に係る発光装置は、第1~第3のいずれかの態様に係る発光装置において、複数の前記発光素子は、電極パターンにより互いに並列に接続されるとともに、当該電極パターンは、各発光素子の出射口を除く領域を、連続したパターンで覆っていることを特徴とする。
 本発明の第5態様に係る発光装置は、第1~第4のいずれかの態様に係る発光装置において、前記光学部材は、前記光源から出射される光の指向性を変えて照射することを特徴とする。
 本発明の第6態様に係る発光装置は、第5の態様に係る発光装置において、前記光学部材は、板状の部材であって、少なくとも一方の面に光の指向特性を変える構造が設けられていることを特徴とする。
 本発明の第7態様に係る発光装置は、第1~第6のいずれかの態様に係る発光装置において、前記光学部材は、タイムオブフライト方式による三次元形状の計測に用いる光を照射することを特徴とする。
 本発明の第8態様に係る発光装置は、第1~第7のいずれかの態様に係る発光装置において、前記光源及び前記光学部材が携帯型情報処理端末に搭載され、当該光源は電池によって駆動されることを特徴とする。
 本発明の第9態様に係る発光装置は、長共振器構造の垂直共振型面発光レーザ素子を複数配列した光源と、前記光源の光出射経路に設けられ、当該光源が出射する光を拡散して照射する光学部材と、を備えることを特徴とする。
 本発明の第10態様に係る光学装置は、第1~第9のいずれか1つの発光装置と、前記発光装置が備える光源から出射され計測対象で反射された反射光を受光する受光部と、を備え、前記受光部は、前記光源から光が出射されてから当該受光部で受光されるまでの時間に相当する信号を出力することを特徴とする。
 本発明の第11態様に係る情報処理装置は、第10態様に係る光学装置と、前記光学装置が備える光源から出射され計測対象で反射され、当該光学装置が備える受光部が受光した反射光に基づき、当該計測対象の三次元形状を特定する形状特定部と、を備えることを特徴とする。
 本発明の第11態様n係る情報処理装置は、第11態様に係る情報処理装置において、前記形状特定部での特定結果に基づき、自装置の使用に関する認証処理を行う認証処理部と、をさらに備えることを特徴とする。
 本発明の第1態様によれば、多重横モードの発光素子を用いた光源を使用する場合に比べ、予め定められた範囲外に照射される光量が抑制される。
 本発明の第2態様によれば、垂直共振型面発光レーザ素子でない場合に比べ、面発光の光源が構成しやすい。
 本発明の第3態様によれば、長共振器構造でない単一横モードの発光素子の場合に比べ、光出力が大きい。
 本発明の第4態様によれば、発光素子毎に配線が設けられる場合に比べ、駆動電流が流れた場合の電圧降下が抑制される。
 本発明の第5態様によれば、光の指向性を変えない場合に比べて、予め定められた範囲外に照射される光量が抑制される。
 本発明の第6態様によれば、構造によらない場合に比べ、光の吸収が抑制される。
 本発明の第7態様によれば、光の裾の部分を抑制しない場合に比べ、光利用効率を高くできる。
 本発明の第8態様によれば、光の裾の部分を抑制しない場合に比べ、駆動時間が長くできる。
 本発明の第9態様によれば、多重横モードの垂直共振型面発光レーザ素子を用いた光源を使用する場合に比べ、予め定められた範囲外に拡がる光の裾の部分が抑制される。
 本発明の第10態様によれば、光が出射されてから受光されるまでの時間が計測できる光学装置が提供される。
 本発明の第11態様によれば、三次元形状を計測できる情報処理装置が提供される。
 本発明の第12態様によれば、三次元形状に基づく認証処理を搭載した情報処理装置が提供される。
本実施の形態が適用される情報処理装置の一例を示す図である。 情報処理装置による三次元形状の計測について説明する図である。 照射面を説明する図である。(a)は、照射面における照射パターンの一例を示す図、(b)は、(a)のA-A線での光強度分布である。 情報処理装置の構成を説明するブロック図である。 本実施の形態が適用される光学装置の平面図及び断面図の一例を示す図である。(a)は、平面図、(b)は、(a)のVB-VB線での断面図である。 光源の平面図の一例を示す図である。 光源が備える1個の長共振器構造のシングルモードVCSELの断面構造を説明する図である。 比較のための光源が備える1個のλ共振器構造のマルチモードVCSELの断面構造を説明する図である。 長共振器構造のシングルモードVCSELからの出射光の拡がり角と光強度分布における裾拡がり量との関係を模式的に説明する図である。(a)は、シングルモードVCSELからの出射光の拡がり角を説明する図、(b)は、光強度分布を示す。 比較のために示すλ共振器構造のマルチモードVCSELからの出射光の拡がり角と光強度分布における裾拡がり量との関係を模式的に説明する図である。(a)は、マルチモードVCSELからの出射光の拡がり角を説明する図、(b)は、光強度分布を示す。 VCSELの出射光の拡がり角と裾拡がり量及び光利用効率との関係を説明する図である。
 以下、添付図面を参照して、本発明の実施の形態について詳細に説明する。
 情報処理装置は、その情報処理装置にアクセスしたユーザがアクセスすることが許可されているか否かを識別し、アクセスが許可されているユーザであることが認証された場合にのみ、自装置である情報処理装置の使用を許可するようになっていることが多い。これまで、パスワード、指紋、虹彩などにより、ユーザを認証する方法が用いられてきた。最近では、さらにセキュリティ性の高い認証方法が求められている。この方法として、ユーザの顔の三次元像による認証が行われるようになっている。
 ここでは、情報処理装置は、一例として携帯型情報処理端末であるとして説明し、三次元像として捉えられた顔を認識することで、ユーザを認証するとして説明する。なお、情報処理装置は、携帯型情報処理端末以外のパーソナルコンピュータ(PC)などの情報処理装置に適用しうる。
 さらに、本実施の形態で説明する構成、機能、方法等は、顔の形状による認識以外に、物体の三次元像の取得にも適用しうる。すなわち、顔以外の物体を計測対象として、計測対象の三次元形状を計測して三次元像を取得することに適用してもよい。また、計測対象までの距離(以下では、計測距離と表記する。)は問わない。なお、本実施の形態では、三次元像の取得の対象となる顔や顔以外の物体を、被照射物または被計測物と表記する場合がある。
(情報処理装置1)
 図1は、本実施の形態が適用される情報処理装置1の一例を示す図である。前述したように、情報処理装置1は、一例として携帯型情報処理端末である。
 情報処理装置1は、ユーザインターフェイス部(以下では、UI部と表記する。)2と三次元像を取得する光学装置3とを備えている。UI部2は、例えばユーザに対して情報を表示する表示デバイスとユーザの操作により情報処理に対する指示が入力される入力デバイスとが一体化されて構成されている。表示デバイスは、例えば液晶ディスプレイや有機ELディスプレイであり、入力デバイスは、例えばタッチパネルである。
 光学装置3は、発光装置4と、三次元センサ(以下では、3Dセンサと表記する。)6とを備えている。発光装置4は、三次元像の取得のために三次元形状を計測する計測対象、ここで説明する例では顔、に向けて光を出射する。3Dセンサ6は、発光装置4が出射した光が計測対象、ここで説明する例では顔、で反射されて戻ってきた光を取得する。ここでは、光の飛行時間による、いわゆるタイムオブフライト(TOF:Time of Flight)方式に基づいて、顔の三次元像を取得するとする。以下では、計測対象が顔である場合、顔を計測対象と表記することがある。
 情報処理装置1は、CPU、ROM、RAMなどを含むコンピュータとして構成されている。ROMには、不揮発性の書き換え可能なメモリ、例えばフラッシュメモリを含む。ROMに蓄積されたプログラムや定数が、RAMに展開される。CPUがRAMに展開されたプログラムを実行することによって、情報処理装置1が動作し、各種の情報処理が実行される。
(情報処理装置1による三次元形状の計測)
 図2は、情報処理装置1による三次元形状の計測について説明する図である。ここでの計測対象は、顔300である。図2に図示するように、紙面の右方向をx方向、上方向をz方向とし、紙面の裏面方向をy方向とする。図2は、頭上方向から頭(顔)を見た図である。
 情報処理装置1の光学装置3において、発光装置4から光が顔300に向けて出射される。そして、3Dセンサ6により顔300で反射された光が受光される。つまり、光学装置3は、発光装置4から計測対象に向けて光が照射され、3Dセンサ6で計測対象からの反射光が受光されるように構成されている。このとき、発光装置4は、発光装置4に対向して設けられる仮想的な面である照射面310に向けて光を照射する。ここで、発光装置4と照射面310とが正対し、照射面310に立てた垂線321上に発光装置4がある。垂線321は後述する検知範囲Iの中心に立つ。A-A線は、検知範囲Iの中心(垂線321との交点)を通り照射面310をx方向に横切る線である。発光装置4とA-A線上の任意の点とを結ぶ線を線322とする。角度θは、垂線321と線322との間の角度である。
 照射面310には、顔300を検知して顔300の三次元形状を計測する検知範囲Iと、検知範囲Iを取り囲む裾引き範囲IIとが形成される。検知範囲Iは、この領域に顔300が存在する場合に、反射光により顔300の三次元形状を計測しうる光強度の光が照射される範囲である。一方、裾引き範囲IIは、検知範囲Iから離れるにしたがい光強度が低下する範囲である。よって、裾引き範囲IIに顔300が存在しても、検知範囲Iに顔300が存在する場合と比べ、顔300の三次元形状は精度よく計測されない。つまり、裾引き範囲IIは、顔300の三次元形状を計測するのに適さない非検知範囲となる。検知範囲I及び裾引き範囲IIは、発光装置4から光が到達する範囲である。そして、検知範囲Iは、三次元形状の計測のために予め定められた範囲であって、予め定められた光強度分布で光が照射される範囲である。ここで、光強度とは、光度を言う。
 図3は、照射面310を説明する図である。図3(a)は、照射面310における照射パターンの一例を示す図、図3(b)は、図3(a)のA-A線での光強度分布である。照射面310において光が照射された形状、つまり光が到達した部分の形状を照射パターンと表記する。図3(b)における横軸は、図2に示した垂線321と線322との間の角度θであり、縦軸は、照射面310における光強度である。
 図3(a)で示す照射パターンは、x方向に長手方向が向き、角が丸くなった四角形状であるとする。この照射パターンにおいて、中央部の実線で囲んだ長方形の範囲を検知範囲Iに設定し、検知範囲Iの周辺部を裾引き範囲IIとしている。裾引き範囲IIは、検知範囲Iの外側に検知範囲Iを取り巻くように形成されている。なお、検知範囲Iは、長方形状以外の形状に設定されてもよい。
 検知範囲Iは、予め定められた光強度分布になるように設定されている。なお、図3(b)では、検知範囲Iは、光強度が一定であるとしているが、予め定められた許容範囲において変動した分布であってもよい。すなわち、被照射物の三次元形状を計測可能な光強度であれば、検知範囲Iの領域内において変動した分布であってもよい。例えば、検知範囲Iにおいて、中央側の方が周辺側より光強度が弱い分布であってもよく、この逆の分布であってもよい。一方、裾引き範囲IIでは、検知範囲Iから離れるにつれて、検知範囲Iの光強度から徐々に光強度が低下していく。ここで、裾引き範囲IIにおいて、検知範囲Iと裾引き範囲IIとの境界の角度から、光強度が最大値の1/eになる角度までの角度差を裾拡がり量とする。裾拡がり量は、裾引き範囲IIの大きさを示す。前述したように、裾引き範囲IIは顔300の三次元形状の計測に適さない領域であり、三次元形状の計測に用いる検知範囲の範囲外となる場合がある。この場合、裾引き範囲IIに照射される光は無効な光となる。よって、裾引き範囲IIの面積が小さいほど、つまり裾拡がり量が小さいほど、発光装置4が出射する光の利用効率(以下では、光利用効率と表記する。)が大きくなる。なお、光利用効率とは、発光装置4が出射する光量の内、検知範囲Iに照射される光量の割合をいう。そして、裾引き範囲IIに照射される光を裾引き光と表記することがある。なお、裾拡がり量を、光強度の半値全幅(FWHM:Full Width at Half Maximum)で評価してもよい。また、裾拡がり量を、角度以外の指標、例えば発光装置4から予め定め設定された距離に置かれた照射面310における裾引き範囲IIの幅などで評価してもよい。
 図4は、情報処理装置1の構成を説明するブロック図である。
 情報処理装置1は、上記した光学装置3と、光学装置制御部8と、システム制御部9とを備えている。光学装置3は、前述したように発光装置4と3Dセンサ6を備えている。光学装置制御部8は、光学装置3を制御する。そして、光学装置制御部8は、形状特定部81を含む。システム制御部9は、情報処理装置1全体をシステムとして制御する。そして、システム制御部9は、認証処理部91を含む。そして、システム制御部9には、UI部2、スピーカ92、二次元カメラ(図4では、2Dカメラと表記する。)93などが接続されている。なお、3Dセンサ6は、受光部の一例である。
 以下、順に説明する。
 光学装置3が備えている発光装置4は、光源10と、拡散板30と、光量監視用受光素子(図4では、PDと表記する。)40と、駆動部50とを備えている。なお、発光装置4における光源10、拡散板30及び光量監視用受光素子40については、後述する。なお、拡散板30は、光学部材の一例である。
 発光装置4における駆動部50は、光源10を駆動する。例えば、光源10は、駆動部50により、数10MHz~数100MHzで繰り返す光をパルス状に出射するように駆動される。光源10が出射する光を出射光と表記し、光源10が出射するパルス状の光を、出射光パルスと表記する。
 3Dセンサ6は、格子状に配列された複数の受光領域を備えている。3Dセンサ6は、発光装置4の光源10からの出射光パルスに対応して計測対象から反射されたパルス光を受光する。3Dセンサ6が受光する光パルスを受光パルスと表記する。そして、3Dセンサ6は、光源10から光が出射されてから計測対象で反射され3Dセンサ6で受光されるまでの時間に相当する信号を受光領域毎にデジタル値として出力する。例えば、3Dセンサ6は、各受光領域が2つのゲートとそれらに対応した2つの電荷蓄積部を備えたCMOS構造のデバイスとして構成されている。そして、2つのゲートに交互にパルスを加えることによって、各受光領域で発生した光電子を2つの電荷蓄積部の何れかに交互に転送し、出射光パルスと受光パルスとの位相差に応じた電荷を蓄積するように構成されている。そして、ADコンバータを介して、受光領域毎に出射光パルスと受光パルスとの位相差に応じた電荷に対応するデジタル値を信号として出力する。
 なお、3Dセンサ6は、集光用のレンズを備えてもよい。
 光学装置制御部8の形状特定部81は、3Dセンサ6の受光領域毎に得られるデジタル値を3Dセンサ6から取得する。そして、形状特定部81は、取得したデジタル値から受光領域毎に計測対象までの距離を算出することで計測対象の三次元形状を計測する。形状特定部81は、計測した三次元形状から、三次元像を特定する。
 システム制御部9の認証処理部91は、形状特定部81により特定された特定結果である計測対象の三次元像がROMなどに予め蓄積された三次元像と一致する場合に、情報処理装置1の使用に関する認証処理を行う。なお、情報処理装置1の使用に関する認証処理とは、一例として、自装置である情報処理装置1の使用を許可するか否かの処理である。計測対象が顔である場合、顔の三次元像がROM等の記憶部材に記憶された顔の三次元像に一致すれば、情報処理装置1が提供する各種アプリケーション等を含む情報処理装置1の使用を許可する。
 上記の形状特定部81及び認証処理部91は、一例として、プログラムを実行するCPUによって構成される。また、これらの機能は、ASICやFPGA等の集積回路によって実現されてもよい。さらには、これらは、プログラム等のソフトウエアを実行するCPUと集積回路との協働により実現されてもよい。
 図4においては、光学装置3、光学装置制御部8及びシステム制御部9をそれぞれ分けて示したが、システム制御部9が光学装置制御部8を含んでもよい。また、光学装置制御部8が光学装置3に含まれてもよい。さらに、光学装置3、光学装置制御部8及びシステム制御部9が一体に構成されてもよい。
(光学装置3の全体構成)
 次に、光学装置3について、詳細に説明する。
 図5は、本実施の形態が適用される光学装置3の平面図及び断面図の一例を示す図である。図5(a)は、平面図、図5(b)は、図5(a)のVB-VB線での断面図である。ここで、図5(a)において、紙面の横方向をx方向、紙面の上方向をy方向とし、表面方向をz方向とする。
 まず、図5(a)に示す平面図を説明する。
 光学装置3において、発光装置4と3Dセンサ6とは、一例として回路基板7上にx方向に並ぶように配置されている。回路基板7は、絶縁性材料で構成された板状の部材を基材とし、導電性材料で構成された導体パターンが設けられている。絶縁性材料は、例えばセラミック、エポキシ樹脂などであり、導電性材料は、例えば銅(Cu)、銀(Ag)などの金属又はこれらの金属を含む導電性ペーストである。回路基板7は、導体パターンが表面に設けられた単層基板であってもよく、導体パターンが複数層設けられた多層基板であってもよい。また、発光装置4と3Dセンサ6とは、それぞれが別の回路基板上に配置されていてもよい。
 そして、発光装置4において、光量監視用受光素子40、光源10及び駆動部50は、一例として回路基板7上にx方向に並ぶように配置されている。そして、拡散板30は、光源10及び光量監視用受光素子40を覆うように設けられている。
 光源10は、一例として平面形状が長方形である。なお、光源10の平面形状は、長方形でなくともよい。光源10の光出射方向(光出射側)は、z方向である。なお、光源10は、回路基板7上に直接搭載されてもよいし、酸化アルミニウムや窒化アルミ等の放熱用基材を介して、回路基板7上に搭載されてもよい。放熱用基材を介する場合、光源10に供給する電力を大きくして、光源10の光出力を大きくしてもよい。以下では、光源10は、回路基板7上に直接搭載されているとして説明する。ここで、平面形状とは、平面視した場合の形状であり、平面視とは、図5(a)において、z方向から見ることをいう。以下同様である。ここで、光出力とは光束をいう。
 拡散板30は、一例として平面形状が長方形の部材である。拡散板30は、拡散板30に入射する光を拡散させて出射する。このとき、拡散板30は、拡散板30に入射する光の指向性を変えて出射する。つまり、拡散板30は、光源10から出射された光が拡散板30を経ずに照射面310に照射された場合における光強度分布と異なる光強度分布となるように光を出射する。例えば、光源10は、後述するようにサイズが小さいため、点光源と見なせる。拡散板30は、この光源10から入射する光による照射パターンを、図3(a)に示したような照射面310における照射パターンに変える。
 拡散板30の大きさは、例えば、横幅及び縦幅が1mm~10mm、厚みは0.1mm~1mmとすればよい。なお、拡散板30は、平面視した状態において、光源10及び光量監視用受光素子40を覆っていればよい。また、図5(a)では、拡散板30を平面視した形状が長方形である例を示したが、多角形や円形など、他の形状であってもよい。そして、以上のような大きさ及び形状であれば、携帯型情報処理端末の顔認証や、数m程度までの比較的近距離の三次元形状の計測に適した拡散板30が提供される。
 次に、図5(b)に示す断面図を説明する。
 拡散板30は、光源10の光出射側であるz方向側に側壁33で支えられている。側壁33は、光源10及び光量監視用受光素子40を囲むように設けられている。拡散板30は、側壁33により光源10及び光量監視用受光素子40から予め定められた距離に保持されている。そして、光源10から拡散板30に入射する光は、拡散板30から出射し、照射面310(図2参照)に照射される。
 側壁33が光源10の出射する光を吸収する部材で構成されていると、光源10が出射する光が側壁33を透過して外部に放射されることが抑制される。また、拡散板30と側壁33とで光源10及び光量監視用受光素子40を封止することで、防塵、防湿等が図られる。本実施の形態では、光源10と光量監視用受光素子40とを近接して配置することで、小さなサイズの側壁33で囲いやすくなるとともに、小さなサイズの拡散板30で済む。
 光量監視用受光素子40は、受光した光量(以下では、受光量と表記する。)に応じた電気信号を出力するデバイスである。光量監視用受光素子40は、例えばシリコンなどで構成されたフォトダイオード(PD:Photo Diode)である。光量監視用受光素子40は、光源10から出射され、拡散板30の裏面、つまり拡散板30の-z方向側の面で反射した光が受光されるように構成されている。
 光源10は、光量監視用受光素子40の受光量に基づいて、予め定められた光出力を維持するように制御される。つまり、光学装置制御部8は、光量監視用受光素子40の受光量に基づいて、駆動部50を介して光源10を制御する。なお、光量監視用受光素子40の受光量が極端に低下した場合には、拡散板30が外れたり破損したりして、光源10の出射する光が拡散板30で拡散されずに直接外部に照射されているおそれがある。このような場合には、光学装置制御部8は、駆動部50を介して光源10の光出力を抑制する。例えば、光学装置制御部8は、光源10からの光の出射を停止させる。
(光源10の構成)
 図6は、光源10の平面図の一例を示す図である。ここでは、回路基板7上設けられた導体パターンであるカソードパターン71、アノードパターン72A、72B、及び光源10とこれらの導体パターンとを接続するボンディングワイヤ73A、73Bを合わせて示す。
 本実施の形態では、光源10は、垂直共振型面発光レーザ素子VCSEL(Vertical Cavity Surface Emitting Laser)を備えている。以下では、垂直共振型面発光レーザ素子VCSELをVCSELと表記する。なお、VCSELは、発光素子の一例である。後述するように、VCSELは、基板上に積層された下部多層膜反射鏡と上部多層膜反射鏡との間に発光領域となる活性領域を設け、基板に垂直な方向にレーザ光を出射させる。このことから、VCSELを二次元状に複数配列したアレイ化が容易である。光源10は、複数のVCSELが一つの半導体部品として一体集積されて構成されている。
 複数のVCSELを備える光源10は、裏面にカソード電極114が設けられ(後述する図7参照)、表面にアノード電極118が設けられている。なお、アノード電極118は、複数のVCSELのp側電極112を接続する部分と、後述するボンディングワイヤ73Aが接続されるパッド部118Aと、ボンディングワイヤ73Bが接続されるパッド部118Bとを備えている。つまり、複数のVCSELは、並列接続されている。
 図6では、光源10が備える複数のVCSELは、一例として正方形に組まれた格子の各格子点に配列されている。複数のVCSELは、例えば行毎にVCSELを配置する位置を繰り返し単位の半分ずらした配列など、他の配列としてもよい。
 回路基板7上には、導体パターンとして、カソードパターン71、アノードパターン72A、72Bが設けられている。カソードパターン71は、光源10の裏面に設けられたカソード電極114が接続されるように、光源10より広い面積で形成されている。そして、光源10は、裏面に設けられたカソード電極114が回路基板7上のカソードパターン71に導電性接着剤にて接着されている。そして、光源10のアノード電極118のパッド部118Aは、ボンディングワイヤ73Aにて、回路基板7上のアノードパターン72Aと接続され、光源10のアノード電極118のパッド部118Bは、ボンディングワイヤ73Bにて、回路基板7上のアノードパターン72Bと接続されている。
 光源10が備えるVCSELの数は、例えば、10個~1000個である。複数のVCSELは、並列に接続され並列駆動される。つまり、複数のVCSELは、同時に光を出射する。光源10は、例えば、0.5mm角~3mm角である。なお、より遠くの被照射物に照射する場合は、さらにVCSELの数を増やしてもよい。
 前述したように、光源10は、計測対象の三次元形状を計測するための光を出射する。前述した顔の形状によるユーザの認証では、計測距離は10cm程度から1m程度である。そして、検知範囲Iの一辺長は、1m程度である。光源10としては、検知範囲Iに予め定められた光強度の光を照射することが求められることから、光源10が備えるVCSELは、光出力が大きいことが求められる。
 本実施の形態においては、光源10が備えるVCSELとして、単一横モードで発振するVCSELを用いる。なお、単一横モードは、シングルモードと表記されることがある。以下では、単一横モードで発振するVCSELをシングルモードVCSELと表記する。シングルモードVCSELは、多重横モードで発振するVCSELと比べて、出射光の拡がり角が小さい。なお、多重横モードは、マルチモードと表記されることがある。そこで、多重横モードで発振するVCSELをマルチモードVCSELと表記する。なお、単一横モードとは、拡がり角をパラメータとした出射光の光強度プロファイルが単峰性、つまり光強度のピークが1つである特性を有するものを言う。例えば、単峰性が維持される範囲において複数の横モードを含んでもよい。なお、出射光の拡がり角は、光強度が最大値の1/eとなる角度範囲を言う。また、拡がり角は、光強度の半値全幅(FWHM)である角度範囲などとしてもよい。
 シングルモードVCSELとして、長共振器構造のVCSELを用いてもよい。
 長共振器構造のVCSELは、共振器長が発振波長λである一般的なλ共振器構造のVCSEL内の活性領域と一方の多層膜反射鏡との間に、数λ~数10λ分のスペーサ層を導入して共振器長を長くすることで高次横モードの損失を増加させ、これにより、一般的なλ共振器構造のVCSELの酸化アパーチャ径よりも大きい酸化アパーチャ径でシングルモード発振を可能にする。典型的なλ共振器構造のVCSELでは、縦モード間隔(フリースペクトルレンジと呼ばれることがある。)が大きいため、単一縦モードで安定的な動作を得ることができる。これに対し、長共振器構造のVCSELの場合には、共振器長が長くなることで縦モード間隔が狭くなり、共振器内に複数の縦モードである定在波が存在し、その結果、縦モード間のスイッチングが起こり易くなる。このため、長共振器構造のVCSELでは、縦モード間のスイッチングを抑制する層(以下で説明する図7における光学的損失を与える層120)を設けている。
 λ共振器構造のシングルモードVCSELは、λ共振器構造のマルチモードVCSELより酸化アパーチャ径が小さく設定されるため、光出力を大きくしにくかった。このため、三次元形状を計測する光源10としては、光出力が大きいマルチモードVCSELが用いられてきた。しかし、裾引き範囲IIに裾を引いて拡がる光を少なくして光の利用効率を高めるためには、後述するように、拡がり角が小さいシングルモードVCSELを用いることがよい。そして、長共振器構造のVCSELは、一般的なλ共振器構造のシングルモードVCSELより酸化アパーチャ径を大きくしやすいため、光出力を大きくしやすい。そして、長共振器構造のVCSELは、一般的なλ共振器構造のシングルモードVCSELと比較し、拡がり角をさらに狭くしやすい。
(長共振器構造のシングルモードVCSEL(VCSEL-A))
 図7は、光源10が備える1個の長共振器構造のシングルモードVCSELの断面構造を説明する図である。以下では、長共振器構造のシングルモードVCSELをVCSEL-Aと表記する。なお、紙面の上方向がz方向である。
 VCSEL-Aは、n型のGaAsの基板100上に、Al組成の異なるAlGaAs層を交互に重ねたn型の下部分布ブラック型反射鏡(DBR:Distributed Bragg Reflector、以下では分布ブラック型反射鏡をDBRと表記する。)102、下部DBR102上に形成された、共振器長を延長する共振器延長領域104、共振器延長領域104上に形成されたn型のキャリアブロック層105、キャリアブロック層105上に形成された、上部スペーサ層及び下部スペーサ層に挟まれた量子井戸層を含む活性領域106、活性領域106上に形成されたAl組成の異なるAlGaAs層を交互に重ねたp型の上部DBR108を積層して構成されている。
 n型の下部DBR102は、Al0.9Ga0.1As層とGaAs層とのペアの複数層積層体で、各層の厚さはλ/4n(但し、λは発振波長、nは媒質の屈折率)であり、これらを交互に40周期で積層してある。n型不純物であるシリコンをドーピングした後のキャリア濃度は、例えば、3×1018cm-3である。
 共振器延長領域104は、一連のエピタキシャル成長により形成されたモノリシックな層である。従って、共振器延長領域104は、GaAs基板と格子定数が一致し、又は整合するような、AlGaAs、GaAs又はAlAsから構成される。ここでは、940nm帯のレーザ光を出射させるため、共振器延長領域104は、光吸収を生じさせないAlGaAsから構成されている。共振器延長領域104の膜厚は、2μm~5μm、発振波長λの5λ~20λに設定される。このため、キャリアの移動距離が長くなる。よって、共振器延長領域104は、キャリア移動度が大きいn型であることがよく、それゆえn型の下部DBR102と活性領域106との間に挿入される。このような共振器延長領域104は、空洞延長領域又はキャビティスペースと呼ばれることがある。
 共振器延長領域104と活性領域106との間に、例えばAl0.9Ga0.1Asからなるバンドギャップの大きいキャリアブロック層105が形成されるとよい。キャリアブロック層105の挿入により、活性領域106からのキャリアリークが防止され、発光効率が改善される。後述するように、共振器延長領域104には、レーザ光の発振強度を幾分減衰させるような光学的損失を与える層120が挿入されるので、キャリアブロック層105は、こうした損失を補填する役割を担う。例えば、キャリアブロック層105の膜厚は、λ/4mn(但し、λは発振波長、mは整数、nは媒質の屈折率)である。
 活性領域106は、下部スペーサ層と、量子井戸活性層と、上部スペーサ層とが積層されて構成されている。例えば、下部スペーサ層は、アンドープのAl0.6Ga0.4As層であり、量子井戸活性層は、アンドープのInGaAs量子井戸層及びアンドープのGaAs障壁層であり、上部スペーサ層は、アンドープのAl0.6Ga0.4As層である。
 p型の上部DBR108は、p型のAl0.9Ga0.1As層とGaAs層との積層体で、各層の厚さはλ/4nであり、これらを交互に29周期積層してある。p型不純物であるカーボンをドーピングした後のキャリア濃度は、例えば、3×1018cm-3である。上部DBR108の最上層には、p型GaAsからなるコンタクト層が形成されるのがよい。上部DBR108の最下層又はその内部に、p型AlAsの電流狭窄層110が形成される。
 上部DBR108から下部DBR102に至るまでの積層された半導体層をエッチングすることにより、基板100上に円柱状のメサM1が形成される。電流狭窄層110は、メサM1の側面に露出する。電流狭窄層110には、メサM1の側面から選択的に酸化された酸化領域110Aと酸化領域110Aによって囲まれた導電領域110Bが形成される。導電領域110Bが、酸化アパーチャである。酸化工程において、AlAs層はAlGaAs層よりも酸化速度が速く、酸化領域110Aは、メサM1の側面から内部に向けてほぼ一定の速度で酸化されるため、導電領域110Bの基板と平行な平面形状は、メサM1の外形を反映した形状、すなわち円形状となり、その中心は、一点鎖線で示すメサM1の軸方向と一致する。長共振器構造のVCSELでは、単一横モードを得るための導電領域110Bの径を、通常のλ共振器構造のVCSELよりも大きくしやすく、例えば、導電領域110Bの径を7μm~8μmまで大きくしうる。なお、上部DBR108から下部DBR102に至る半導体層は、エピタキシャルにより積層される。よって、この半導体層をエピタキシャル層と表記することがある。
 メサM1の最上層には、Ti/Auなどを積層した金属製の環状のp側電極112が形成される。p側電極112は、上部DBR108のコンタクト層にオーミック接触する。環状のp側電極112の内側は、レーザ光が外部へ出射される光出射口112Aとなる。つまり、メサM1の軸方向が光軸になる。なお、光出射口112Aを含む上部DBR108の表面が出射面である。さらに、基板100の裏面には、n側電極としてカソード電極114が形成される。
 そして、p側電極112と後述するアノード電極118とが接続される部分及び光出射口112Aを除いて、メサM1の表面を覆うように、絶縁層116が設けられる。そして、光出射口112Aを除いて、アノード電極118がp側電極112とオーミック接触するように設けられる。なお、アノード電極118は、複数のVCSEL-Aのそれぞれの光出射口112Aを除いて設けられる。つまり、光源10に含まれる複数のVCSEL-Aは、それぞれのp側電極112がアノード電極118で並列接続される(図6参照)。このように、アノード電極118は、各VCSEL-Aの光出射口112Aを除く各VCSEL-A間の領域を覆う、連続した電極パターンとして設けられている。このため、VCSEL-A毎に個別に駆動配線を設ける場合と比べ、広い面積のパターンが形成され、駆動電流が流れた場合の電圧降下が抑制される。
 長共振器構造のVCSELでは、共振器長で規定される反射帯域内に複数の縦モードが存在しうるため、縦モード間のスイッチング又はポッピングを抑制する必要がある。ここでは、必要な縦モードの発振波長帯を940nmとし、それ以外の縦モードの発振波長帯へのスイッチングを抑制するべく、共振器延長領域104内に不要な縦モードの定在波に対して光学的損失を与える層120が設けられている。つまり、光学的損失を与える層120は、必要な縦モードの定在波の節の位置に導入されている。光学的損失を与える層120は、共振器延長領域104を構成する半導体層と同じAl組成の半導体材料から構成され、例えば、Al0.3Ga0.7Asから構成されている。光学的損失を与える層120は、好ましくは、共振器延長領域104を構成する半導体層よりも不純物のドーピング濃度が高く、例えば、共振器延長領域104を構成するAlGaAsの不純物濃度が1×1017cm-3であるとき、光学的損失を与える層120は、1×1018cm-3の不純物濃度を有し、他の半導体層よりも1桁程度、不純物濃度が高くなるように構成される。不純物濃度が高くなると、キャリアによる光の吸収が大きくなり、損失が与えられる。光学的損失を与える層120の膜厚は、必要な縦モードへの損失が大きくならないように選択され、好ましくは、定在波の節に位置する電流狭窄層110と同程度の膜厚(10nm~30nm)である。
 光学的損失を与える層120は、必要な縦モードの定在波に対しては節に位置するように挿入される。定在波の節では光強度が弱いので、光学的損失を与える層120が必要な縦モードに与える損失の影響は小さい。他方、不要な縦モードの定在波に対しては、光学的損失を与える層120は、節以外の腹に位置する。定在波の腹は節よりも光強度が大きくなるため、光学的損失を与える層120が不要な縦モードに与える損失は大きくなる。こうして、必要な縦モードへの損失を小さくしつつ、不要な縦モードへの損失を大きくすることで、選択的に不要な縦モードが共振されないようにし、縦モードホッピングが抑制される。
 光学的損失を与える層120は、共振器延長領域104の必要な縦モードの定在波の各節の位置に必ずしも設けることを要せず、単一の層であってもよい。この場合、定在波の強度は、活性領域106に近いほど大きくなるので、活性領域106から近い節の位置に光学的損失を与える層120を形成すればよい。また、縦モード間のスイッチング又はホッピングが許容されるのであれば、光学的損失を与える層120を設けなくてもよい。
(λ共振器構造の多重横モードVCSEL(VCSEL-B))
 次に、比較のために示す光源10′が備えるλ共振器構造のマルチモードVCSELを説明する。なお、比較のために示す光源10′は、VCSELの出射光の拡がり角が裾拡がり量に与える影響を説明するために示すものである。比較のための発光装置4は、図5に示した光源10を、以下に説明する光源10′に置き換えたものである。前述したように、λ共振器構造のマルチモードVCSELは、長共振器構造のシングルモードVCSELに比べて、出射光の拡がり角が大きい。
 図8は、比較のための光源10′が備える1個のλ共振器構造のマルチモードVCSELの断面構造を説明する図である。以下では、λ共振器構造のマルチモードVCSELをVCSEL-Bと表記する。VCSEL-Bは、VCSEL-Aにおける共振器延長領域104を備えない。なお、紙面の上方向がz方向である。
 VCSEL-Bは、n型のGaAs基板200上に、Al組成の異なるAlGaAs層を交互に重ねたn型の下部DBR202、下部DBR202上に形成された、上部スペーサ層及び下部スペーサ層に挟まれた量子井戸層を含む活性領域206、活性領域206上に形成されたAl組成の異なるAlGaAs層を交互に重ねたp型の上部DBR208を積層して構成されている。なお、上部DBR208の最下層もしくはその内部には、p型AlAsの電流狭窄層210が形成される。
 下部DBR202、活性領域206、上部DBR208、電流狭窄層210は、前述したVCSEL-Aの下部DBR102、活性領域106、上部DBR108、電流狭窄層110と同じであるので説明を省略する。
 上部DBR208から下部DBR202に至るまで積層された半導体層をエッチングすることにより、基板200上に円柱状のメサM2が形成され、電流狭窄層210は、メサM2の側面に露出される。電流狭窄層210には、メサM2の側面から選択的に酸化された酸化領域210Aと酸化領域210Aによって囲まれた導電領域210Bが形成される。導電領域210Bが酸化アパーチャである。導電領域210Bの基板と平行な平面形状は、メサM2の外形を反映した形状、すなわち円形状となり、その中心は、一点鎖線で示すメサM2の軸方向とほぼ一致する。
 メサM2の最上層には、Ti/Auなどを積層した金属製の環状のp側電極212が形成され、p側電極212は、上部DBR208のコンタクト層にオーミック接続される。p側電極212には、中心がメサM2の軸方向と一致する円形状の光出射口212Aが形成され、光出射口212Aからレーザ光が外部へ出射される。つまり、メサM2の軸方向が光軸になる。さらに、基板200の裏面には、n側電極としてのカソード電極214が形成される。なお、光出射口212Aを含む上部DBR208の表面が出射面である。
 そして、p側電極212と後述するアノード電極218とが接続される部分及び光出射口212Aを除いて、メサM2の表面を覆うように、絶縁層216が設けられる。そして、光出射口212Aを除いて、アノード電極218がp側電極212とオーミック接触するように設けられる。なお、アノード電極218は、複数のVCSEL-Bのそれぞれの光出射口212Aを除いて設けられる。つまり、光源10′が備える複数のVCSEL-Bは、それぞれのp側電極212がアノード電極218で並列接続される。
 次に、光源10のVCSELの出射光の拡がり角と裾拡がり量との関係を説明する。
 図9は、長共振器構造のシングルモードVCSEL(VCSEL-A)からの出射光の拡がり角と光強度分布における裾拡がり量との関係を模式的に説明する図である。図9(a)は、シングルモードVCSEL(VCSEL-A)からの出射光の拡がり角αを説明する図、図9(b)は、光強度分布を示す。なお、図9(a)において、紙面の上方向がz方向である。そして、図9(b)に示す光強度分布は、図3(a)に示すA-A線での光強度分布である。
 図9(a)に示すように、光源10のVCSEL-Aの出射光は、拡がり角αで光を出射する。なお、拡がり角は、光強度の半値全幅(FWHM)又は1/eである。
 ここで、図9(a)によって、拡散板30をさらに説明する。
 拡散板30は、例えば、両面が平行で平坦なガラス基材31と、ガラス基材の一方の表面に光を拡散させるための微小な複数の凹凸が形成された樹脂層32とを備えている。そして、拡散板30は、光源10のVCSEL-Aの出射光の経路(光出射経路と表記する。)上に設けられ、入射した光を樹脂層32の凹凸により拡散させて照射する。樹脂層32の凹凸を構成する複数の凸部および複数の凹部の少なくとも一方は、一例として、10μm以上且つ100μm以下の幅を有し、1μm以上且つ50μm以下の高さ(深さ)を有する。また、凹凸は周期を有するパターンであってもよいし、周期を有さないランダムなパターンであってもよい。拡散板30では、この凹凸のパターンにより、光の屈折方向を制御し、光源10から出射された光を所望の照射パターンに変える。なお、凹凸のパターンは、レンズパターンと呼ばれることがある。
 拡散板30は、全体において一様な拡散角を有するように構成してもよく、位置に応じて拡散角が異なるように構成してもよい。また、拡散板30は、VCSEL-Aの光軸と拡散板30から出射する光の中心軸とが一致するように構成してもよく、VCSEL-Aの光軸に対して拡散板30から出射する光の中心軸を意図的にずらして照射面積が拡大するように構成してもよい。なお、拡散角とは、平行光を入射させた場合における出射光の拡がり角をいう。
 図9(a)に示すように、拡散板30は、VCSEL-Aが出射した拡がり角αの光を拡散して照射面310(図2参照)に照射する。このとき、拡散板30は、各VCSEL-Aが出射する光を重畳して照射する。
 図10は、比較のために示すλ共振器構造のマルチモードVCSEL(VCSEL-B)からの出射光の拡がり角βと光強度分布における裾拡がり量との関係を模式的に説明する図である。図10(a)は、マルチモードVCSEL(VCSEL-B)からの出射光の拡がり角βを説明する図、図10(b)は、光強度分布を示す。図10(a)において、紙面の上方向がz方向である。そして、図10(b)に示す光強度分布は、図3(a)に示すA-A線での光強度分布である。ここで、拡散板30は、図9に示した長共振器構造のシングルモードVCSEL(VCSEL-A)の場合と同じである。
 図10(a)に示すように、VCSEL-Bは、VCSEL-Aの出射光の拡がり角より大きい拡がり角βで光を出射する(α<β)。この場合、図10(b)に示すVCSEL-B(拡がり角β)を備える光源10′を用いた場合の裾拡がり量は、図9(b)に示すVCSEL-A(拡がり角α)を備える光源10を用いた場合の裾拡がり量に比べ、大きくなる。これは、光源から出射される光の拡がり角が大きいと、拡がり角が小さい場合に比べ、様々な入射角の光が拡散板30へ入射することになり、拡散板30のレンズパターンによる屈折角の範囲が広がることになる。つまり、光源から出射される光の拡がり角が大きいほど、屈折角が様々な値を取ることになる。すると、拡散板30から照射される光の照射パターンを所望の照射パターンに変えにくくなり、照射パターンを四角形状とした場合に四角形状がぼやけてしまうことになる。すなわち、光源から出射される光の拡がり角が大きいほど、裾拡がり量が大きくなる。
 図11は、VCSELの出射光の拡がり角と裾拡がり量及び光利用効率との関係を説明する図である。横軸は、出射光の拡がり角、左側の縦軸は、裾拡がり量、右側の縦軸は、光利用効率である。これらの関係は、シミュレーションにより求めた。
 図11に示すように、出射光の拡がり角が小さくなるに従い、照射面310における裾拡がり量が小さくなり、光利用効率が向上することが分かる。
 ここでは、出射光の拡がり角と照射面310における裾拡がり量とが関連することから、光出力が大きい光源10が求められるTOF方式による三次元形状の計測において、あえて大きな光出力が得られるλ共振器構造のマルチモードVCSELを採用せず、出射光の拡がり角が小さいシングルモードVCSELを用いている。これにより、照射面310において予め定められた範囲外に光が照射される、裾引き範囲IIを狭くしている。このように、光の裾の部分を小さくする、つまり裾拡がり量を抑制することで、光利用効率を向上させている。このようにすることで、裾拡がり量を抑制しない場合に比べて、光源の消費電力が低減される。特に、携帯型情報処理装置など、電池で駆動される情報処理装置において長い駆動時間が得られる。
 なお、上記の実施の形態では、複数のVCSELが並列接続される例を示したが、複数のVCSELが直列接続される構成や、直列接続と並列接続とを組み合わせた接続形態であってもよい。
 また、上記の実施の形態では、複数のVCSELがメサ形状で構成される例を示したが、メサ形状以外の形態であってもよい。例えば、各VCSELの出射口の周囲を取り囲むように複数の孔を設け、この孔を利用して電流狭窄層110を酸化することで、酸化狭窄構造を有するVCSELを構成してもよい。
 また、上記の実施の形態では、複数のVCSELが、基板100上のエピタキシャル層が形成された面側(表面側)から光を出射する形態を示したが、エピタキシャル層が形成されていない面側(裏面側)から光を出射する形態であってもよい。
 また、上記の実施の形態では、光の出射面側から見た場合に、光源10と拡散板30とが重なる位置に配置された形態を示したが、重ならない位置に配置された形態であってもよい。例えば、反射ミラー等の反射部材を介することで、拡散板30と光源10とが重ならない位置であっても、光を拡散できる構成であればよい。
 本願は、2019年8月8日付の日本国特許願第2019-146381号に基づき優先権を主張する。
 
 

Claims (12)

  1.  単一横モードで発振する発光素子を複数配列した光源と、
     前記光源の光出射経路に設けられ、当該光源が出射する光を拡散して照射する光学部材と、を備える発光装置。
  2.  前記発光素子は、垂直共振型面発光レーザ素子である請求項1に記載の発光装置。
  3.  前記垂直共振型面発光レーザ素子は、長共振器構造である請求項2に記載の発光装置。
  4.  複数の前記発光素子は、電極パターンにより互いに並列に接続されるとともに、当該電極パターンは、各発光素子の出射口を除く領域を、連続したパターンで覆っている請求項1ないし3のいずれか1項に記載の発光装置。
  5.  前記光学部材は、前記光源から出射される光の指向性を変えて照射する請求項1ないし4のいずれか1項に記載の発光装置。
  6.  前記光学部材は、板状の部材であって、少なくとも一方の面に光の指向性を変える構造が設けられている請求項5に記載の発光装置。
  7.  前記光学部材は、タイムオブフライト方式による三次元形状の計測に用いる光を照射する請求項1ないし6のいずれか1項に記載の発光装置。
  8.  前記光源及び前記光学部材が携帯型情報処理端末に搭載され、当該光源は電池によって駆動される請求項1ないし7のいずれか1項に記載の発光装置。
  9.  長共振器構造の垂直共振型面発光レーザ素子を複数配列した光源と、
     前記光源の光出射経路に設けられ、当該光源が出射する光を拡散して照射する光学部材と、を備える発光装置。
  10.  請求項1ないし9のいずれか1項に記載の発光装置と、
     前記発光装置が備える光源から出射され計測対象で反射された反射光を受光する受光部と、を備え、
     前記受光部は、前記光源から光が出射されてから当該受光部で受光されるまでの時間に相当する信号を出力する光学装置。
  11.  請求項10に記載の光学装置と、
     前記光学装置が備える光源から出射され計測対象で反射され、当該光学装置が備える受光部が受光した反射光に基づき、当該計測対象の三次元形状を特定する形状特定部と、を備える情報処理装置。
  12.  前記形状特定部での特定結果に基づき、自装置の使用に関する認証処理を行う認証処理部と、を備える請求項11に記載の情報処理装置。
     
PCT/JP2019/048787 2019-08-08 2019-12-12 発光装置、光学装置及び情報処理装置 WO2021024507A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/559,293 US20220115836A1 (en) 2019-08-08 2021-12-22 Light-emitting device, optical device, and information processing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019146381A JP2021025964A (ja) 2019-08-08 2019-08-08 発光装置、光学装置及び情報処理装置
JP2019-146381 2019-08-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/559,293 Continuation US20220115836A1 (en) 2019-08-08 2021-12-22 Light-emitting device, optical device, and information processing device

Publications (1)

Publication Number Publication Date
WO2021024507A1 true WO2021024507A1 (ja) 2021-02-11

Family

ID=74502892

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/048787 WO2021024507A1 (ja) 2019-08-08 2019-12-12 発光装置、光学装置及び情報処理装置

Country Status (3)

Country Link
US (1) US20220115836A1 (ja)
JP (1) JP2021025964A (ja)
WO (1) WO2021024507A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113410752A (zh) * 2020-03-17 2021-09-17 富士胶片商业创新有限公司 激光元件阵列、发光及光学装置、测量及信息处理装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008078612A (ja) * 2006-08-23 2008-04-03 Ricoh Co Ltd 面発光レーザアレイ、それを備えた光走査装置および画像形成装置
JP2013191784A (ja) * 2012-03-15 2013-09-26 Fuji Xerox Co Ltd 面発光型半導体レーザ、面発光型半導体レーザ装置、光伝送装置および情報処理装置
US20180129866A1 (en) * 2016-11-10 2018-05-10 Intel Corporation Meta illuminator
JP2019096642A (ja) * 2017-11-17 2019-06-20 シャープ株式会社 発光素子駆動回路、および携帯型電子機器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140240469A1 (en) * 2013-02-28 2014-08-28 Motorola Mobility Llc Electronic Device with Multiview Image Capture and Depth Sensing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008078612A (ja) * 2006-08-23 2008-04-03 Ricoh Co Ltd 面発光レーザアレイ、それを備えた光走査装置および画像形成装置
JP2013191784A (ja) * 2012-03-15 2013-09-26 Fuji Xerox Co Ltd 面発光型半導体レーザ、面発光型半導体レーザ装置、光伝送装置および情報処理装置
US20180129866A1 (en) * 2016-11-10 2018-05-10 Intel Corporation Meta illuminator
JP2019096642A (ja) * 2017-11-17 2019-06-20 シャープ株式会社 発光素子駆動回路、および携帯型電子機器

Also Published As

Publication number Publication date
JP2021025964A (ja) 2021-02-22
US20220115836A1 (en) 2022-04-14

Similar Documents

Publication Publication Date Title
US20220114835A1 (en) Light-emitting device, optical device, and information processing device
KR20190040832A (ko) 광원 일체형 광 센싱 시스템 및 이를 포함하는 전자 기기
JP2020155622A (ja) 発光装置、光学装置および情報処理装置
US11539191B2 (en) Light-emitting device, optical device, and information processing apparatus
US20220006268A1 (en) Light-emitting device, optical device, and information processing device
WO2021024507A1 (ja) 発光装置、光学装置及び情報処理装置
US20220123524A1 (en) Light-emitting device, optical device, and information processing device
US20220003874A1 (en) Light-emitting device, optical device, and information processing device
JP7363053B2 (ja) 発光装置、発光デバイス、光学装置及び情報処理装置
JP7413657B2 (ja) 光学装置及び情報処理装置
US11605936B2 (en) Light-emitting device, optical device, and information processing apparatus
US11599610B2 (en) Light-emitting device, optical device, and information processing apparatus
WO2020194773A1 (ja) 発光素子アレイチップ、発光装置、光学装置および情報処理装置
WO2020194774A1 (ja) 発光装置、光学装置及び情報処理装置
JP7413655B2 (ja) 発光装置及び情報処理装置
JP6763452B1 (ja) 発光装置、光学装置および情報処理装置
US20210265811A1 (en) Light-emitting device, optical device, and information processing apparatus
WO2020188837A1 (ja) 発光装置、光学装置および情報処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19940950

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19940950

Country of ref document: EP

Kind code of ref document: A1