WO2021023124A1 - 一种提升终端设备测量能力的方法、芯片以及终端设备 - Google Patents

一种提升终端设备测量能力的方法、芯片以及终端设备 Download PDF

Info

Publication number
WO2021023124A1
WO2021023124A1 PCT/CN2020/106379 CN2020106379W WO2021023124A1 WO 2021023124 A1 WO2021023124 A1 WO 2021023124A1 CN 2020106379 W CN2020106379 W CN 2020106379W WO 2021023124 A1 WO2021023124 A1 WO 2021023124A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
terminal device
network
measurement
message
Prior art date
Application number
PCT/CN2020/106379
Other languages
English (en)
French (fr)
Inventor
郑德来
杨建华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to US17/632,079 priority Critical patent/US20220279402A1/en
Priority to EP20850036.3A priority patent/EP4007354A4/en
Publication of WO2021023124A1 publication Critical patent/WO2021023124A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • H04W36/0088Scheduling hand-off measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0069Transmission or use of information for re-establishing the radio link in case of dual connectivity, e.g. decoupled uplink/downlink
    • H04W36/00692Transmission or use of information for re-establishing the radio link in case of dual connectivity, e.g. decoupled uplink/downlink using simultaneous multiple data streams, e.g. cooperative multipoint [CoMP], carrier aggregation [CA] or multiple input multiple output [MIMO]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • H04W8/24Transfer of terminal data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals

Definitions

  • This application relates to a method, a chip, and a terminal device for improving the measurement capability of a terminal device, especially the measurement capability of the terminal device to measure different frequencies or systems.
  • 3GPP The 3rd Generation Partnership Project proposes that if terminal equipment needs to perform inter-frequency or inter-system measurement, a simple way is to install two radio frequency receivers in the terminal equipment and measure separately The frequency of the local cell and the frequency of the target cell, but this will bring about cost increase and mutual interference between different frequencies. Therefore, 3GPP has proposed a measurement gap (Gap) method, that is, to reserve a part of the time (that is, to measure the Gap duration). During this time, the terminal device will not send or receive any data, but will adjust the receiver. To the target cell frequency point, perform inter-frequency measurement, and then switch to the current cell when the Gap time ends.
  • Gap measurement gap
  • the terminal device Since the terminal device will not send or receive any data within the time measured by Gap, the user's data service will be interrupted, suspended, etc., resulting in poor user experience.
  • the present invention provides a terminal device and a method for improving the measurement capability of the terminal device, and the measurement interval allocated by the network is not used as much as possible to reduce the interruption and suspension of the user's data service.
  • an embodiment of the present application provides a method for improving the measurement capability of a terminal device, which includes: the terminal device sends first information to a network device, where the first information is used to instruct the terminal device to perform inter-frequency or inter-system measurement. Whether a measurement interval is required, the first information is also used to indicate the multiple-input multiple-output capability of the terminal device.
  • the terminal device resides in the first cell and the second cell through the carrier aggregation CA technology, where the first cell and The second cell is an LTE cell, and the first cell is the primary cell.
  • the network side The information allocates measurement interval information to the terminal device, the first information is also used to indicate the multiple input multiple output capabilities of the terminal device, the terminal device reports auxiliary information, and the auxiliary information is used to instruct the change of the terminal.
  • the network device does not allocate the measurement interval information to the terminal device according to the auxiliary information and the first information. In this way, the terminal device does not use the measurement interval allocated by the network side to perform neighbor cell measurement, and the measurement capability of the terminal device is improved.
  • the network device sends measurement control information to the terminal device according to the auxiliary information and the first information, and the measurement control information is used to measure network parameters of the third cell;
  • the terminal device measures the network parameters of the third cell according to the measurement control information;
  • the terminal device sends a measurement report of the third cell to the network device.
  • the auxiliary information is AssistanceInformation
  • the first information includes at least any one of InterFreqNeedForGaps and interRAT-NeedForGaps.
  • the preset first condition is that the network parameter of the first cell is lower than a preset value
  • the preset second condition is that the network device needs to measure the network parameter of the neighboring cell.
  • an embodiment of the present application also provides a method for improving the measurement capability of a terminal device, including: the terminal device sends first information to a network device, where the first information is used to instruct the terminal device to perform inter-frequency measurement Whether a measurement interval is required; the terminal equipment resides in the first cell and the second cell through the carrier aggregation CA technology, where the first cell and the second cell are LTE cells, and the first cell is the primary cell
  • the network device sends a second message to the terminal device according to the first information, the second message Used to measure network parameters of the third cell, the second message includes measurement interval information;
  • the terminal device reports the A2 event of the second cell, and the A2 event is used to cause the network device to configure the second cell
  • the network device sends a third message to the terminal device, the third message is used to measure network parameters of the third cell, and the third message includes non-measurement interval information
  • the method further includes: the terminal device measures the network parameters of the third cell according to the third message; and the terminal device sends a measurement report of the third cell to the Internet equipment. In this way, the terminal equipment does not use measurement detection to measure the network parameters of the neighboring cells.
  • the preset first condition is that the network parameter of the first cell is lower than a preset value
  • the preset second condition is that the network device needs to measure the network parameter of the neighboring cell.
  • the method further includes: the network device sends a fourth message to the terminal device, and the first The fourth message is used to configure the second cell; the terminal configures the second cell according to the fourth message; the terminal device sends a fifth message to the network device, and the fifth message is used Instruct the terminal device to finish configuring the second cell.
  • the terminal equipment does not use measurement detection to measure the network parameters of the neighboring cells.
  • the channel of the secondary cell is used to measure neighboring cells, and the interruption and suspension of the user's data service are reduced.
  • the first information includes at least any one of InterFreqNeedForGaps and interRAT-NeedForGaps. Use the commands in the existing protocol to improve the measurement capability of the terminal device.
  • an embodiment of the present application also provides a communication system, including: wherein a terminal device resides in a first cell and a second cell through a carrier aggregation CA technology, wherein the first cell and the second cell are An LTE cell, where the first cell is the primary cell; the terminal device is used to send first information to a network device, and the first information is used to indicate whether the terminal device needs a measurement interval during inter-frequency measurement When the terminal device meets the preset first condition or the network device meets the preset second condition, the A2 event of the second cell is reported, and the A2 event is used to cause the network device to configure the The second cell; the network device is configured to send a second message to the terminal device according to the first information, the second message is used to measure network parameters of the third cell, and the second message includes measurement Interval information; send a third message to the terminal device, the third message is used to measure network parameters of the third cell, and the third message includes non-measurement interval information. Reduce the interruption and suspension of users' data services.
  • the terminal device is further configured to: measure the network parameter of the third cell according to the third message; and send a measurement report of the third cell to the network device.
  • the preset first condition is that the network parameter of the first cell is lower than a preset value
  • the preset second condition is that the network device needs to measure the network parameter of the neighboring cell .
  • the network device is further configured to send a fourth message to the terminal device, where the fourth message is used to configure the second cell; and the terminal device is further configured to: Configure the second cell according to the fourth message; send a fifth message to the network device, where the fifth message is used to instruct the terminal device to complete the configuration of the second cell.
  • the first information includes at least any one of InterFreqNeedForGaps and interRAT-NeedForGaps. Use the commands in the existing protocol to improve the measurement capability of the terminal device.
  • an embodiment of the present application provides a chip system, including: a chip system, including: a memory, storing instructions; a processor, and an interface for transmitting received code instructions to the processor, and the processing
  • the device is used to run the code instructions to execute the method: the terminal device sends first information to the network device, the first information is used to indicate whether the terminal device needs a measurement interval during inter-frequency measurement; the terminal device uses carrier aggregation
  • the CA technology resides in the first cell and the second cell, where the first cell and the second cell are LTE cells, and the first cell is the primary cell;
  • the network device sends second information to the Terminal equipment, the second information is used to measure network parameters of a third cell, the third cell is an NR cell, and the second information includes a measurement interval; when the terminal equipment does not search within the measurement interval In the third cell, the terminal equipment suspends data transmission and reception of the second cell; the terminal equipment measures the network parameters of the third cell. Reduce the interruption and suspension of users' data services.
  • the code further includes sending a measurement report to the network device according to the network parameter of the third cell.
  • the code further includes that the terminal device suspends data transmission and reception of the second cell includes: the terminal device reduces the capability of multiple input multiple output.
  • the embodiments of the present application also provide a method and device that impair the measurement capability of the reporting terminal device.
  • the method includes: when the terminal device has a first measurement capability, the first capability is used to indicate whether the terminal device needs a measurement interval during inter-frequency measurement; the terminal device determines a second measurement capability, and the second capability uses To indicate whether the terminal device needs a measurement interval during inter-frequency measurement; the second measurement capability is obtained based on the first measurement capability based on at least one of the following methods: reducing the number of receiving channels of the terminal device, and deactivating the secondary cell , Changing the receiving antenna to deactivate the auxiliary cell; the terminal device reports the second measurement capability to the network device.
  • the network device sends a first message to the terminal device when a trigger condition is met according to the second measurement capability, the first message does not include measurement detection, and the first message A message is used to measure the network parameters of the neighboring cell. Reduce the interruption and suspension of users' data services.
  • the terminal device reports the first measurement capability to a network device, and the network device sends a second message to the terminal device when a trigger condition is met according to the first measurement capability,
  • the first message includes measurement detection, and the first message is used to measure network parameters of the neighboring cell.
  • an embodiment of the present invention provides a storage medium for storing computer software instructions for implementing the foregoing implementation manner.
  • an embodiment of the present invention provides a device that has the measurement capability that can realize the above-mentioned improvement of terminal equipment.
  • the functions can be implemented by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the aforementioned functions, and the modules can be hardware and/or software through the aforementioned solutions.
  • FIG. 1 is a schematic diagram of a network system provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a terminal device reporting measurement capability according to an embodiment of the present application
  • FIG. 3 is a first schematic diagram of a measurement interval provided by an embodiment of the present application.
  • FIG. 4 is a first schematic diagram of a terminal device provided by an embodiment of the present application.
  • FIG. 5 is a second schematic diagram of a terminal device provided by an embodiment of the present application.
  • FIG. 6 is a first schematic diagram of improving the Gap measurement capability of a terminal device according to an embodiment of the present application.
  • FIG. 7 is a second schematic diagram of improving the Gap measurement capability of a terminal device according to an embodiment of the present application.
  • FIG. 8 is a third schematic diagram of improving the Gap measurement capability of a terminal device according to an embodiment of the present application.
  • FIG. 9 is a fourth schematic diagram of improving the Gap measurement capability of a terminal device according to an embodiment of the present application.
  • FIG. 10 is a first schematic diagram of a dual link system provided by an embodiment of the present application.
  • FIG. 11 is a fifth schematic diagram of improving the Gap measurement capability of a terminal device according to an embodiment of the present application.
  • FIG. 12 is a second schematic diagram of a dual link system provided by an embodiment of the present application.
  • FIG. 13 is a second schematic diagram of a measurement interval provided by an embodiment of the present application.
  • FIG. 14 is a schematic diagram of a chip system provided by an embodiment of the present application.
  • the terminal device when the terminal device is in the connection state (connection), the terminal device will periodically or incidentally report the measured service cell and neighboring cell information to the network side. Measurement report. According to the measurement report, actions such as cell selection, reselection and handover can be completed; when the terminal device is in an idle state, the terminal device will reside in the cell with the highest priority.
  • the priority of the cell’s stay can be determined by the cell’s signal quality, time delay, packet loss rate, reference signal receiving power (PSRP), received signal strength indicator (RSSI), and reference signal Receiving quality (Reference Signal Received Quality, RSRQ) and other parameters are set.
  • PSRP reference signal receiving power
  • RSSI received signal strength indicator
  • RSRQ Reference Signal Received Quality
  • a network system which includes at least one terminal device 100 and at least one network device 1.
  • the terminal device 100 may be a mobile phone, a tablet computer, a handheld computer, a notebook computer, or a super Mobile personal computers (Ultra-mobile Personal Computer, UMPC), netbooks, cellular phones, and personal digital assistants (Personal Digital Assistant, PDA), wearable devices (such as smart watches), augmented reality (AR) ⁇ virtual For devices such as virtual reality (VR) equipment, this embodiment does not impose special restrictions on the specific form of the equipment; the network equipment may be a base station (for example, a GSM base station, an NB base station, an eNB base station, an NR base station, etc.), a server, and a network. Yuan, etc., this embodiment takes an LTE (Long Term Evolution Advanced, "LTE”) network system as an example, that is, network devices and user equipment are devices that support LTE functions, and this embodiment can be extended to other network systems.
  • LTE Long Term Evolution Advanced, "
  • Network equipment 1 is a 4G base station that supports LTE function, namely eNB. According to the radio coverage of eNB, it can usually include at least one serving cell (cell), namely serving cell 1.
  • a cell is an area that provides users with wireless communication services.
  • the basic unit of a wireless network, an eNB can also be divided into multiple cells, each cell can use a different wireless carrier, and each wireless carrier uses a certain carrier frequency. This application is not convenient for description.
  • Each cell corresponds to one network device, but it is not limited.
  • One network device may also correspond to multiple different cells, including one primary cell and multiple secondary cells.
  • CA Carrier Aggregation
  • Each carrier unit CC corresponds to an independent cell, which can be divided into the following types of cells in the CA scenario:
  • Primary cell (Primary Cell, Pcell): The primary cell is a cell that works on the primary frequency band.
  • the terminal equipment performs the initial connection establishment process in the cell, or starts the connection re-establishment process.
  • the cell is indicated as the primary cell during the handover process;
  • Secondary Cell (Secondary Cell, Scell): A secondary cell is a cell working on a secondary frequency band. Once the RRC connection is established, the secondary cell may be configured to provide additional radio resources;
  • Serving Cell terminal equipment in the RRC_CONNECTED connection state. If CA is not configured, there is only one Serving Cell, namely PCell; if CA is configured, the Serving Cell set is composed of PCell and SCell;
  • the Pcell and secondary cell Scell are user-level concepts for CA users.
  • the carrier that the user initially accesses is the Pcell of the CA user, and the primary cell is a cell that works on the main frequency band.
  • the terminal equipment performs the initial connection establishment process in the cell, or starts the connection re-establishment process.
  • the cell is indicated as the primary cell; the secondary cell is the cell working on the secondary frequency band.
  • RRC Radio Resource Control
  • Measurement Report is an important function of the LTE system.
  • the measurement results reported by the physical layer can be used for the radio resource control sublayer in the system to trigger events such as cell selection/reselection and handover, and can also be used for network neighbor cell maintenance, SCG addition and other functions.
  • the LTE MR report can also include Reference signal received power, reference signal received quality, eNB received interference power, eNB antenna angle of arrival, terminal equipment transmit power margin, uplink packet loss rate, downlink packet loss rate, uplink signal-to-noise ratio, PRB granular eNB received interference power, etc.
  • MR Based on MR, it can perform network-wide coverage, interference, uplink high transmit power, and terminal device location analysis. For example, MR can use eNB received interference power RIP statistics to analyze network-wide interference and locate high-interference cells. In the connected state, network measurement usually has the following purposes:
  • Pcell handover When the network quality of the Pcell where the terminal device resides meets the preset conditions, for example, the signal quality of the current cell is lower than the threshold, that is, event A2 is triggered, and the network allocates different frequency points for measuring neighbors. The network quality of the cell. The measurement network of the same frequency and neighboring cells does not need instructions, and the terminal equipment can measure at any time in the connected state.
  • the trigger condition of the A4 event can be understood as when the measured cell is greater than a certain threshold configured by the network, the network can configure the Scell for the user, and the user can use the Pcell and
  • the Scell cell exchanges data with the core network. For example, as shown in Figure 1, when a terminal device resides in serving cell 1, at this time serving cell 1 is Pcell. After CA technology is adopted, the terminal device also needs to measure neighboring cells (such as serving cell 2 or serving cell). 3) Network parameters. When the measured network parameters of neighboring cells meet a certain threshold configured by the network side, that is, when the trigger condition of the A4 event is met, the network side can configure the Scell cell for the terminal device to achieve high Bandwidth data transmission.
  • the terminal device also needs to measure the target cell during dual link, such as measuring NR (5G cell or LTE cell.
  • the network will allocate the following two measurement types of Gap (before 3GPP release 14).
  • Table 1 shows two different types of gaps specified in the agreement, as shown in the table:
  • the length of Gap is 6ms, and the period is 40ms or 80ms, which is used to measure the network parameters of different frequency or different system cells.
  • the terminal device cannot send and receive data at this time, that is, when the terminal device measures the network quality of the neighboring cell according to the Gap allocated by the network side, the terminal device usually cannot send and receive data.
  • the system shown in Figure 1 As an example, when the current network side allocates Gap to measure neighboring cells (serving cell 2 or serving cell 3), data cannot be sent and received through serving cell 1; or the system shown in Figure 1 as an example, the current terminal device supports CA capability, for example, serving cell 1 is Pcell, frequency band is A1, serving cell 2 is secondary cell, frequency band is A3, terminal equipment can obtain the ability of A1+A3 frequency band through CA, if current Gap measures neighboring cells (for example, serving cell 3 ), data cannot be sent and received through serving cell 1 or serving cell 2.
  • CA capability for example, serving cell 1 is Pcell, frequency band is A1, serving cell 2 is secondary cell, frequency band is A3, terminal equipment can obtain the ability of A1+A3 frequency band through CA, if current Gap measures neighboring cells (for example, serving cell 3 ), data cannot be sent and received through serving cell 1 or serving cell 2.
  • Terminal equipment usually includes antennas, radio frequency front end (Front End Module, FEM), radio frequency processing unit (Radio-Freqncy Integrated Circuits, RFIC), baseband (Baseband Integrated Circuits, BBIC), etc., where RFIC represents the radio frequency channel of the terminal equipment Capabilities, such as Rx1, Rx2.... RxN represents the receiving channel of a certain frequency band (for example, the main receiving channel or the diversity receiving channel).
  • a typical terminal equipment 100 is provided, which includes a baseband processor 103, a radio frequency circuit 102, and an antenna 101.
  • the terminal device 100 includes a baseband processor, a radio frequency processing unit (RFIC), a power amplifier (PA), a filter, a duplexer, an antenna, and the like.
  • the chip platform, radio frequency front end and antenna constitute the wireless communication module of the terminal.
  • the chip platform includes baseband chips, radio frequency chips, and power management chips.
  • the baseband chip is responsible for the processing of physical layer algorithms, high-level protocols and the realization of multi-mode interoperability; the radio frequency chip is responsible for the mutual conversion between radio frequency signals and baseband signals; radio frequency
  • the front-end module is the necessary path connecting the radio frequency processing unit and the antenna, as shown in Figure 1.
  • PA power amplifier
  • Filter filter
  • Duplexer or Multiplexer duplexer or Multiplexer
  • LNA low noise amplifier
  • switch switch
  • ASM antenna tuning module
  • BBIC can simultaneously support serving cell data transmission and reception and inter-frequency measurement. Assuming that the frequency of the different system and the frequency of the serving cell also support CA combination, BBIC also supports the simultaneous sending and receiving of data of the serving cell and measurement of the different system.
  • Table 2 shows the inter-frequency measurement capability of the terminal device (for example, through the command InterFreq Need for Gaps), hereinafter referred to as “measurement capability” or “need to allocate Gap capability” or “Gap capability”, “Gap measurement capability”, etc. :
  • 1A, 3A, and 7A identify the carrier units of different frequency bands (band1, band2, band3 respectively), and each frequency band occupies two receiving channels of the terminal equipment, and [1A] means that the identification occupies four In the receiving channel, T represents the need to allocate Gap; it can be seen that when the terminal device is a CA combination or 4Rx, the inter-frequency measurement requires the network to allocate Gap.
  • the specific description is as follows: The current terminal device is sending and receiving data on the 1A frequency band (for example, the terminal device resides in the first cell), and the 1A frequency band occupies two receiving channels (for example, Rx1, Rx2).
  • the network allocates Gap measurement and only needs To measure adjacent cells through Rx3 and Rx4 channels, the network side does not need to allocate Gap, but when the terminal device is in the [1A] frequency band, four channels of Rx1, Rx2, Rx3, and Rx4 are occupied. At this time, the network side needs to allocate Gap To measure the network quality of the neighboring cell, when all four channels of the terminal device are occupied, only the data transmission and reception of the terminal device of the serving cell is suspended, and any two channels (such as Rx1, Rx2) are allocated to the terminal device to measure the neighboring cell.
  • a terminal device uses the CA capability to send and receive data, for example, in a 1A+3A scenario, a total of 4 channels are occupied for neighbor cell measurement. Since the channel resources of the current terminal device are already full, the network needs to allocate Gap to measure neighboring cells. The network instruction caused the current business interruption.
  • Inter-frequency can be frequency bands with different central frequency points, which can be understood as different frequency points.
  • Different systems refer to systems with different network standards, which can be understood as different systems, such as 3G and 4G.
  • this application also provides another embodiment. If the terminal device has the ability to receive at the same time as the frequency of the different frequency or the frequency of the different system and the frequency of the serving cell, the network does not need to allocate Gap. At this time, the terminal device can not interrupt the communication with the serving cell, and simultaneously perform inter-frequency or inter-system measurement.
  • a method for allocating gaps according to the measurement capabilities of terminal devices is provided.
  • the network allocates gaps for inter-frequency measurement, it is determined whether the gaps need to be allocated based on the measurement capabilities of the terminal devices.
  • the reception channel of the terminal device is limited.
  • Step 601 The terminal device registers with the first cell and reports the Gap measurement capability.
  • the terminal device can report the measurement capability of the terminal device during the attach process.
  • the parameters that identify the measurement capabilities of the current terminal device can be interFreqNeedForGaps and interRAT-NeedForGaps, and the descriptions in the agreement are "Indicates need for measurement Gaps when operating on the E UTRA band given by the entry in bandListEUTRA or on the E -UTRA band combination given by the entry in bandCombinationListEUTRA and measuring on the E UTRA band given by the entry in interFreqBandList. and Indicates needed for DL measurement Gaps when EUoperating in theEbandU -UTRA band combination given by the entry in bandCombinationList EUTRA and measuring on the inter-RAT band given by the entry in the interRAT-BandList".
  • Table 2 can be understood as the measurement capability of the current terminal device. It is worth noting that Table 2 only provides a form of expression of the measurement capability of the terminal device.
  • the content reported by the terminal equipment includes but is not limited to the CA capabilities of the terminal equipment, for example, it supports the following CA combinations: CA_1A-3A; CA_1A-7A; CA_1A-1A; CA_3A-1A; CA_3A-3A; CA_3A- 7A; CA_7A-3A.
  • CA combinations of multiple frequency bands can also be supported, for example, CA_1A-3A-5A.
  • the capabilities reported by the terminal equipment to the network side also include the CA combinations supported by all terminal equipment or whether Gap capabilities need to be allocated in the supported frequency bands, etc.
  • InterFreqNeedForGaps is used to identify a CA combination or serving cell as a single-band measurement error Frequency point measurement needs Gap
  • interRAT-NeedForGaps is used to identify whether a CA or a serving cell is a single-band measurement system that needs Gap
  • the content reported by the terminal device also includes the multiple input multiple output capabilities of each cell or CA. For example, in the cell corresponding to the A1 frequency band, the number of receiving channels of the terminal device is 2. In the implementation, you can Is the following way:
  • bandEUTRA-r10 3,0x26;
  • supportedMOMO-CapabilityDL-r10 twoLayers(0,0x0) indicates that in band 3
  • the number of layers that support multiple input and multiple output is 2
  • supportedMOMO-CapabilityDL-r10 fourLayers(0,0x0) indicates that multiple inputs are supported in the current frequency band
  • the number of multi-output layers is 4.
  • the number of layers is the number of receiving channels of the corresponding terminal device.
  • Table 2 shows the measurement capabilities of 11 CA combinations or frequency bands, that is, whether Gap needs to be allocated. For example, in the case of 1A+3A, the CA combination needs to occupy 4 receiving channels, while the current terminal device has 4 channels , That is, there is no redundant channel to measure neighboring cells, so the network side needs to allocate Gap. However, Table 2 only shows whether the Gap needs to be allocated to different frequency bands. To measure whether Gap needs to be allocated to different frequency systems, you can also refer to the capabilities reported by the terminal equipment, as shown in Table 3:
  • Table 3 shows a schematic diagram of whether the terminal device needs to allocate Gap capabilities when measuring inter-frequency systems, that is, shows whether the Gap capabilities need to be allocated if the cells belong to different network systems under the CA combination.
  • the trigger condition can be A4 event or network initiated.
  • the network needs to allocate Gap to the terminal device for inter-frequency measurement.
  • the terminal device also needs to report the supported CA capabilities and the multiple input and multiple output capabilities (number of layers) of each cell or CC and the corresponding measurement capabilities.
  • the network side can configure the corresponding number of layers according to the receiving channel capabilities of the terminal device in each cell or CC. , The network side determines whether Gap needs to be allocated according to the measurement capability reported by the terminal device, and determines various CA combinations according to the CA capability uploaded by the terminal device.
  • Step 602 The network side decides whether Gap needs to be allocated according to the trigger condition and the measurement capability reported by the terminal device. If the Gap is not required to be allocated according to the measurement capability reported by the terminal device, proceed to step 603; if it is determined based on the measurement capability reported by the terminal device If Gap needs to be allocated, step 604 is executed.
  • the establishment process of the secondary cell SCell mainly includes: the terminal equipment initiates the radio resource control layer (Radio Resource Control, RRC) connection process in the primary cell PCell, and the network side determines whether to configure the measurement gap according to the measurement capability reported by the terminal equipment . If the terminal device needs Gap to perform inter-frequency measurement, the network side issues measurement control information (frequency point information, measurement bandwidth, measurement parameters, measurement report parameters, etc.) and configures the measurement gap period and subframe offset parameters; if the terminal device does not need to start Gap performs measurement, and the network side skips the configuration of the measurement gap and directly issues measurement control information.
  • RRC Radio Resource Control
  • Step 603 When the network side determines that Gap is not needed for the terminal device according to the measurement capability reported by the terminal device, the network side configures the frequency point, measurement threshold, measurement bandwidth, and measurement parameter in the RRC Connection Reconfiguration message , Measurement control messages such as measurement report parameters, do not allocate Gap related information.
  • the terminal equipment When the terminal equipment measures the inter-frequency point that meets the threshold of the A4 event (A4Event), the A4 event is reported, and the network side detects the cell that meets the A4 measurement condition reported by the terminal equipment. If there are in the same cell set, it sends an RRC reconfiguration request The message RRC Reconfiguration Req is sent to the terminal device and configured as the Scell of the CA terminal device.
  • the A4 event is defined as the quality of the inter-frequency adjacent cell is higher than a certain threshold, and the trigger condition is Mn+Ofn+Ocn-Hys>Thresh, where Mn: the measurement result of the cell at the inter-frequency frequency; Ofn: the frequency offset, the adjacent cell Frequency specific frequency offset; Ocn: cell offset, cell specific cell offset; Hys: inter-frequency handover amplitude hysteresis, event A4 hysteresis parameter, determined by the parameter InterFreqHoA4Hyst; Thresh: added as the trigger threshold of Scell, based on RSRP It is usually set to -94dbm, -100dbm, -105dbm.
  • the RSRP of the current primary serving cell is -92bdm
  • the RSRP of the inter-frequency cell is -88bdm. If the threshold of A4 is set to -91dbm, then cell 2 can be configured as Scell.
  • Step 604 When the network side issues measurement control information (frequency point information, measurement bandwidth, measurement parameters, measurement report parameters, etc.) according to the measurement capability reported by the terminal device, and configures the measurement gap period and subframe offset;
  • measurement control information frequency point information, measurement bandwidth, measurement parameters, measurement report parameters, etc.
  • the network side periodically sends measurement control information and configures the Gap period to the terminal device to measure the information of inter-frequency or inter-system cells.
  • Step 605 Further, in this embodiment, when the terminal device receives the measurement control information and Gap period and other parameters sent by the network side, the terminal device evaluates whether it can reduce the receiving channel of the current cell (for example, reduce the number of layers), It can be achieved that there is no need to allocate Gap to achieve the ability to measure neighboring cells.
  • the terminal device evaluates whether the Pcell receiving channel can be reduced to achieve the measurement capability that does not require Gap allocation, that is, the receiving capability of 4 layers in the Pcell frequency band becomes 2 With the receiving capability of layers, the terminal can modify the Pcell's occupancy of 4 receiving channels to occupy 2 receiving channels, and use the released 2 channels to measure the network quality of neighboring cells, that is, it can achieve the measurement of neighboring cells without allocating gaps. purpose.
  • Step 606 When the terminal device evaluates that the number of layers of certain CCs can be reduced to achieve the ability to measure neighboring cells without the need to allocate gaps, auxiliary information can be reported for reconfiguration on the network side without gap allocation.
  • the UE shall submit the UE Assistance Inforamation message to lower layers for transmission.
  • the network side After receiving the auxiliary information reported by the terminal device, the network side reconfigures the number of layers of the primary cell Pcell. The network side determines not to allocate gaps to the terminal device according to the configured number of layers and the measurement capability of the terminal device.
  • Step 607 According to the measurement capability reported by the terminal device, the network side determines that even if the number of layers of certain CCs is reduced, the Gap cannot be achieved.
  • the network side can issue measurement control (frequency point) according to the existing process. Information, measurement bandwidth, measurement parameters, measurement report parameters, etc.) and configure the measurement gap period and subframe offset.
  • Step 608 The terminal device performs measurement according to the measurement control sent by the network, and reports the measurement result.
  • Step 609 The network side configures the secondary cell according to the measurement result reported by the terminal device.
  • FIG. 7 another method for allocating gaps according to the capabilities of the terminal device is provided.
  • the network allocates inter-frequency measurement, it is determined whether a gap is needed according to the measurement capabilities of the terminal device. In order to solve the problem of the ability to measure neighboring cells without allocating gaps when the receiving channel of the terminal device is limited in the connected state.
  • Step 701 The current terminal device serving cell is a CA combination, and it camps on the primary cell Pcell and the secondary cell Scell.
  • the terminal device 100 obtains wireless resources through the serving cell 1 and the serving cell 2.
  • terminal equipment can obtain unlimited resources through the following CA combinations, such as the following CA combinations: CA_1A-3A; CA_1A-7A; CA_1A-1A; CA_3A-1A; CA_3A-3A; CA_3A-7A; CA_7A-3A ;
  • Step 702 The current system meets the trigger condition
  • the trigger condition in this embodiment may be the A2 event specified in the protocol, that is, the signal quality of the current serving cell (for example, serving cell 1 or serving cell 2) is lower than a predetermined threshold, that is, Ms+Hys ⁇ Thresh, where , Ms is the measurement result of the serving cell; Hys is the amplitude hysteresis of the inter-frequency A1 or A2; Thresh is the A2 inter-frequency threshold based on an event, and A2 is used to start the measurement of the inter-frequency or different system; in a possible embodiment, The network side needs to actively initiate the need to measure neighboring cells, which can also be trigger conditions such as the mobility measurement of the terminal device.
  • Step 703 The network side determines whether to allocate the corresponding gap according to the trigger condition and the capability reported by the terminal device. If there is no need to allocate the gap, go to step 704, if need to allocate the gap, go to step 705;
  • this application further determines whether the terminal device evaluation is possible By whether to release some Scells, it is possible to measure without Gap. As shown in Table 4, after the network side receives the measurement capability reported by the terminal device, it also needs to consider whether to release the Scell to achieve the purpose of not requiring Gap allocation, so that the terminal device will not be interrupted or delayed.
  • the current terminal device is in the CA_1A+3A combination.
  • the network side needs to measure the information of the inter-frequency neighboring cell, the network side needs to allocate Gap, but when Terminal equipment evaluation can be achieved by configuring secondary cells.
  • the network side can prompt the network side to configure secondary cells, recombine CA so that the network does not allocate Gap, and determine that the terminal is measuring the same target frequency
  • the measurement configuration does not include gap-related configuration information.
  • the network side needs to measure the frequency of the inter-frequency cell of band 7, and by prompting the network to configure Scell (3A), the terminal device only sends and receives data on band 1. At this time, the terminal equipment has the inter-frequency cell on band 7 without Gap measurement.
  • Step 704 When the network side reports according to the capabilities of the terminal device and determines that Gap is not required, the network side configures measurement control messages (frequency point information, measurement bandwidth, measurement parameters, measurement report parameters, etc.) in the RRC connection reconfiguration message, and does not allocate Gap related information.
  • measurement control messages frequency point information, measurement bandwidth, measurement parameters, measurement report parameters, etc.
  • Step 705 If the terminal device needs to start Gap, the network side issues measurement control information (frequency point information, measurement bandwidth, measurement parameters, measurement report parameters, etc.), measurement gap period, and subframe offset in an RRC connection reconfiguration message;
  • measurement control information frequency point information, measurement bandwidth, measurement parameters, measurement report parameters, etc.
  • Step 706 The terminal device further determines whether it is possible to configure or deactivate the CA to achieve the purpose of not needing to allocate Gap measurement, if it is determined that it is possible, perform step 707, otherwise perform step 708;
  • Step 707 The terminal device can prompt the network to configure the secondary cell cc, so that the network does not need to allocate Gap. Specifically, the terminal device can actively report the A2 event of the secondary cell Scell, and the network side completes the Scell de-configuration action. After the network side configures the Scell, the network side reconfigures a new CA combination to determine whether the measurement inter-frequency point has the capability of not requiring Gap allocation. The network side reconfigures the CA and measurement configuration information according to the A2 event reported by the terminal device and the measurement capability reported by the terminal device. Under the new CA combination, it is determined that the terminal does not need a measurement gap when measuring the same target frequency. The measurement configuration does not include Gap-related configuration information, where the measurement configuration information does not include Gap-related configuration information.
  • the network side issues an RRC reconfiguration message to configure the secondary cell
  • the terminal device releases the receiving channel of the secondary cell, and sends a response message to the network device to indicate The second cell has been released, and further, the network side resends the measurement control information, where no Gap information is configured.
  • Step 708 The unavailability of the terminal equipment evaluation prompts the network to configure the auxiliary cc, so that the network test does not need to allocate Gap, and the terminal device has the ability to measure different frequency points without the need to allocate Gap.
  • the terminal equipment performs measurements on different frequency cells or different systems allocated by the network according to the Gap allocated by the network.
  • Step 709 The terminal device performs measurement according to the measurement control sent by the network, and reports the measurement result.
  • Step 710 The network side performs cell handover according to the measurement result reported by the terminal device.
  • a method for allocating gaps according to the capabilities of terminal devices is provided, which actively reduces the layer specifications of certain carrier units in the CA combination, so that the terminal devices have the ability to measure inter-frequency and inter-system without Gap measurement network allocation.
  • Step 801 The terminal device resides in at least two cells through the CA combination, and a certain cell requires the network side to configure the capabilities of 4 layers;
  • the current terminal equipment serving cell is a CA combination, and it camps on the primary cell Pcell and the secondary cell Scell.
  • the terminal device 100 obtains wireless resources through serving cell 1 and serving cell 2, where any cell has a 2Rx receiving capability. For example, when the terminal device reports on the 1A frequency band, it needs to occupy 2 receiving channels
  • the network side allocates the corresponding number of layers according to the capacity of the receiving channel during configuration.
  • Step 802 The system satisfies the trigger conditions, such as the A2 event reported by the terminal device or the network allows the terminal device to monitor other cells with different frequency points;
  • Step 803 According to the Gap measurement capability reported by the terminal device, the network side determines whether Gap is needed for the terminal device to measure neighboring cell information. If it is determined that Gap is not required to be allocated, step 804 is executed. If it is determined that Gap needs to be allocated, step 805 ;
  • Step 804 When the network side determines that Gap is not required according to the capability of the terminal device, the network side configures measurement control messages such as frequency points in the radio frequency control reconfiguration RRC re-configuration message, and does not allocate related information such as the gap period.
  • Step 805 If the terminal device needs to start Gap, the network side issues measurement control information (frequency point information, measurement bandwidth, measurement parameters, measurement report parameters, etc.) and configures the measurement gap period and subframe offset;
  • measurement control information frequency point information, measurement bandwidth, measurement parameters, measurement report parameters, etc.
  • Step 806 When the terminal device evaluates that the number of layers of CCs in certain cells can be reduced, and the gap is not required to be allocated to achieve the ability to measure neighboring cells, step 807 is performed; otherwise, step 808 is performed.
  • Step 807 The network side allocates Gap to measure these different frequency points, and the terminal device evaluates whether it can release some cc 1layers to achieve the Gap measurement capability without being allocated. If 1layers can be released, the Gap measurement capability can be achieved.
  • the UE shall submit the UE Assistance Inforamation message to lower layers for transmission.
  • the network side After receiving the auxiliary information reported by the terminal device, the network side reconfigures the measurement information, such as reconfiguring the number of layers in the primary cell Pcell.
  • the network side determines not to allocate gaps to the terminal device according to the configured number of layers and the measurement capability of the terminal device. Specifically: any cell of Pcell or Scell only occupies one receiving channel, and the measurement frequency point also occupies only one channel.
  • any cell of Pcell or Scell only occupies one receiving channel, and the measurement frequency point also occupies only one channel.
  • Measure the different frequency points allocated by the network by releasing the channel and a receiving antenna at the front end. Another antenna is used for sending and receiving data of this carrier unit.
  • the channel quality indicator Channel Quality Indicator, CQI
  • Step 808 According to the measurement capabilities reported by the terminal equipment, the network side determines that even if the number of layers of some CCs is reduced, the Gap cannot be achieved.
  • the network side can issue measurement control (frequency point) according to the existing process. Information, measurement bandwidth, measurement parameters, measurement report parameters, etc.) and configure the measurement gap period and subframe offset.
  • Step 809 The terminal device performs measurement according to the measurement control sent by the network, and reports the measurement result.
  • Step 810 The network side configures the secondary cell according to the measurement result reported by the terminal device.
  • the terminal device can achieve the measurement capability of measuring different frequencies or different systems by actively reducing the receiving specifications, and actively report the update when the terminal device registers. Gap measurement capability afterwards.
  • the network allocates inter-frequency and inter-system measurements, it reports whether Gap measurement is allocated according to the capabilities of the terminal equipment.
  • the network side allocates measurement frequency points regardless of the measurement interval Gap, and the terminal equipment determines whether the frequency point allocated by the network and the frequency point of the serving cell have simultaneous reception capability. If there is no simultaneous reception capability, the terminal equipment actively reduces it through the PHY and MAC layer methods.
  • Receiving specifications may be as follows:
  • the terminal device actively reduces the reception specifications of certain carriers, for example, from 4Rx to 2Rx, and at the same time reports the measured value according to the 2Rx receiving capability; or 3) Short-term preemption, etc., to reach the terminal
  • the device can measure the different frequencies or different systems allocated by the network without Gap measurement.
  • the terminal device actively changes some carrier units from 2Rx to 1Rx, and at the same time reports the measured value according to the receiving capability of 1Rx, and releases the channel to perform the corresponding inter-frequency or inter-system measurement.
  • BBIC can simultaneously support the transmission and reception of the serving cell and inter-frequency measurement. Assuming that the frequency of the different system and the frequency of the serving cell also support the CA combination, BBIC also supports simultaneous transmission and reception of the serving cell and measurement of the different system. For simplicity, the following table only lists the inter-frequency measurement of LTE. At the same time, the following CA combinations are supported (1A represents band1 with 20MHz bandwidth, which is 2Rx); [1A] represents band1 with 4Rx.
  • T represents that Gaps is required
  • F represents that Gaps is not required.
  • the terminal device After the terminal device reports the capability, when the network allocates inter-frequency measurement, it is judged whether Gap is needed according to the measurement capability of the terminal device. It can be seen from the above table that when the terminal equipment is a CA combination or 4Rx, inter-frequency measurement requires Gap due to the limitation of the terminal equipment's capabilities. If the terminal equipment can reduce the reception specifications or configure the secondary cell CC so that the terminal equipment does not need to allocate Gap. Then the terminal device actively reports the updated measurement capability. As shown in Table 6, the corresponding reported Gap measurement capabilities are:
  • Gap-free measurement can be achieved by reducing the number of channels for receiving data and removing secondary cells.
  • the serving cell of the terminal device can lower the receiving antenna to achieve no Gap measurement capability.
  • B7 and B1 do not have CA capabilities.
  • B7 can only use the main channel, not the diversity channel.
  • the terminal equipment uses the diversity channel to measure the frequency point capability of B3.
  • the measurement of other frequency points of B7 by serving cell B7 As shown in Table 7:
  • Step 901 The terminal device reports the updated capability
  • the terminal device determines whether the receiving specification of the terminal device can be reduced to the ability to not allocate Gap. For example, in Table 5, the original terminal device Gap measurement capability.
  • inter-frequency measurement requires the network side to allocate Gap.
  • the terminal device is at [1A] frequency and currently needs to send and receive data through 4Rx, the network needs to allocate Gap to measure inter-frequency cells. ; Further evaluation of terminal equipment can be achieved by reducing the receiving specifications, which can achieve the purpose of not requiring Gap allocation.
  • the ability of terminal equipment to report updated capabilities does not require the network to allocate Gap to measure inter-frequency cells; for example, As shown in Table 5, in the scenario of CA_1A+3A, the terminal equipment currently needs to send and receive data through 4Rx, and the network needs to allocate Gap to measure inter-frequency cells. Further evaluation of the terminal equipment can be achieved by reducing the receiving specifications to achieve the goal of not requiring Gap allocation. Purpose, as shown in Table 6, the terminal equipment reports the updated capabilities without the need for the network to allocate Gap to measure inter-frequency cells. On the other hand, the terminal device can also perform confinement measurement by de-configuring or deactivating the secondary cell.
  • the network needs to allocate Gap to measure inter-frequency cells.
  • the terminal device can further evaluate that by deactivating the cc of the secondary cell, it can achieve the purpose of not needing to allocate Gap. As shown in Table 6, the terminal device reports the updated capability and does not require the network to allocate Gap to measure inter-frequency cells.
  • B7 and B1 do not have CA capabilities.
  • B7 can only use the main channel, not the diversity channel. Then the terminal equipment uses the diversity channel to measure the frequency point capability of B3. Similarly, the measurement of other frequency points of B7 by serving cell B7.
  • Step 902 The system satisfies the trigger condition, such as the A2 event reported by the terminal device or the network allows the terminal device to monitor other cells with different frequency points;
  • Step 903 According to the Gap measurement capability reported by the terminal device, the network side determines whether a Gap is needed for the terminal device to measure neighboring cell information. If it is determined that the Gap is not required to be allocated, step 907 is executed. If it is determined that the Gap needs to be allocated, then the step is executed. 904 or step 906;
  • Step 904 The terminal device reduces the current data receiving channel specification.
  • the terminal device reduces the MIMO capability of the terminal device, and can reconfigure the layer data by configuring the Assistant Information message to the network side; in a possible design, the terminal device can close its own receiving channel number The ability to reduce multiple input and multiple output has been achieved. It can be understood that in this case, the network side still periodically allocates Gap-related information to the terminal.
  • Step 905 The terminal device reports the updated CQI and rank indication (rank indication) parameters.
  • the corresponding measurement reports can be reduced.
  • the terminal equipment uses the released receiving capability to measure different frequencies or systems.
  • Step 906 The terminal equipment area suspends the data transmission and reception of the secondary cell
  • the neighbor cell measurement can be performed by de-configuring or deactivating the secondary cell. Specifically, using Rx2 and Rx3 for neighboring Area measurement.
  • the terminal device can temporarily stop sending and receiving data in the secondary cell by deactivating or de-configuring the secondary cell in the terminal device RRC reconfiguration message; in a possible design, the terminal device can pause the data in the secondary cell. Sending and receiving, it can be understood that in this case, the network side still periodically allocates Gap related information to the terminal.
  • Step 907 There is no need to allocate Gap for cell measurement.
  • the network side When the network side reports according to the capabilities of the terminal device and determines that Gap is not required, the network side configures measurement control messages such as frequency points in the RRC connection reconfiguration message, and does not allocate Gap related information.
  • Step 908 The terminal device performs measurement according to the measurement control sent by the network, and reports the measurement result.
  • Step 909 The network side configures the secondary cell according to the measurement result reported by the terminal device.
  • the LTE standard currently does not have the corresponding NR measurement no Gap capability.
  • the network allocates Gap by default, and the Gap length is 6 ms as specified in the LTE standard.
  • NSA refers to the LTE system as the master cell group (MCG).
  • MCG master cell group
  • SA standalone
  • NSA refers to the LTE system as the master cell group (MCG).
  • MCG master cell group
  • SCG secondary cell group
  • the following data transmission is taken as an example.
  • the data stream is separated and merged at the PDCP (Packet Data Convergence Protocol) layer, and then the data stream is simultaneously transmitted to the user through multiple base stations .
  • one PDCP entity can be associated with two RLC (Radio Link Control, Radio Link Layer Control Protocol) entities.
  • the PDCP layer transmits the data stream to the RLC layer through the RLC1 and RLC2 links.
  • the RLC1 link can be understood as an LTE link
  • the RLC2 link can be understood as an NR link
  • each RLC entity corresponds to an LTE air interface and an NR air interface respectively.
  • the PDCP data stream will send PDCP packets on the LTE and NR air interfaces according to the obtained authorization.
  • This method can be called MCG Split bearer mode.
  • the terminal equipment Before the Dual Connectivity (Dual Connectivity) EN-DC, terminal equipment needs to measure 5G NR signals. Generally speaking, the synchronization signal cycle of NR is 20ms, while the Gap allocated by the LTE system is 6ms. If the LTE allocated by the network is not synchronized with the NR, the NR cannot be measured with the LTE Gap at this time. At this time, the no Gap method must be used to measure NR. If LTE occupies the radio frequency channel, the terminal device cannot measure the NR signal, resulting in unable to camp on the NR.
  • Figure 11 provides a method for different systems to measure network parameters, as follows:
  • Step 1101 The terminal equipment resides in the first cell and the second cell, where the first cell and the second cell may be cells in the LTE system; generally speaking, the terminal equipment has already turned to the network side (base station or core network, etc.) Reported the Gap measurement capabilities supported by the terminal device, such as InterFreqNeedForGaps mentioned in this application, and also includes the multiple input and multiple output capabilities supported by the terminal device;
  • the terminal device may also reside in a third cell that needs to occupy 4 receiving channels.
  • Step 1102 The network system meets the trigger condition
  • the trigger condition may be that the network side needs to measure the network parameters of the neighboring cells, or the signal quality of the current serving cell is poorer than a preset threshold, etc., which triggers the network side to need to measure the network parameters of the neighboring cells.
  • Step 1103 the network side allocates NR measurement and Gap related information
  • the network side will configure the frequency of NR through configuration messages, and report the B1 event threshold and the corresponding Gap configuration accordingly.
  • the B1 event that is, the signal in the neighboring cell of the different system is stronger than the absolute threshold.
  • the terminal equipment uses Gap to perform NR frequency cell measurement.
  • Step 1104 If the terminal device receives the Gap information allocated by the network side, step 1110 is executed; if the terminal device does not receive the Gap information allocated by the network side, the next step is to determine whether the receiving channel of the terminal device is full.
  • the reason why the terminal device does not receive the Gap-related information sent by the network side may be caused by the inconsistent signal cycle of the LTE system and the NR system.
  • the dual-link EN-DC method is shown.
  • LTE and NR are required to be synchronized.
  • the NR synchronization signal is allocated in the network.
  • the Gap the NR synchronization signal cycle is 20ms, and the Gap length allocated by the LTE system is 6ms, which cannot guarantee that the NR synchronization signal must be contained within 6ms. That is, if the LTE allocated by the network is not synchronized with the NR, the Gap allocated by the LTE at this time does not contain NR information, and the terminal device cannot detect the NR in the Gap.
  • Step 1105 If the terminal device has redundant receiving channels, directly use the idle channels to measure the network parameters of the NR cell.
  • the terminal device uses the remaining receiving channel to measure and measure the network parameters of the NR cell, and the network side allocates control information for NR measurement without allocating Gap related information.
  • Step 1106 If the receiving connection of the terminal device is full, the terminal device can perform neighbor cell measurement in two ways, step 1107 or step 1108.
  • Step 1107 If the receiving channel of the current terminal device is already full, the terminal device evaluates and reduces the corresponding receiving specification to perform neighbor cell measurement.
  • the network needs to allocate Gap to measure inter-frequency cells. Further evaluation of the terminal equipment can reduce the current receiving specifications to achieve the goal that does not require Gap allocation. Purpose, for example, to reconfigure the layer data through the aforementioned AssistanceInformation message.
  • the terminal device reduces the MIMO capability of the terminal device, and can reconfigure the layer data by configuring the Assistant Information message to the network side; in a possible design, the terminal device can close its own receiving channel number The ability to reduce multiple input and multiple output has been achieved. It can be understood that in this case, the network side still periodically allocates Gap-related information to the terminal.
  • Step 1108 When the number of receiving channels of the terminal device decreases, report the updated CQI and RANK parameters.
  • Step 1109 If the receiving channel of the current terminal device is already full, the terminal device evaluates that the secondary cell can be deactivated to measure the leading cell.
  • the network needs to allocate Gap to measure inter-frequency cells. Further evaluation of the terminal equipment can be achieved by configuring or configuring the secondary cell CC. The purpose of allocating Gap, such as reporting the A2 event mentioned above.
  • the terminal device can temporarily stop sending and receiving data in the secondary cell by deactivating or de-configuring the secondary cell in the terminal device RRC reconfiguration message; in a possible design, the terminal device can pause the data in the secondary cell. Sending and receiving, it can be understood that in this case, the network side still periodically allocates Gap related information to the terminal.
  • Step 1110 The terminal device suspends the sending and receiving of data in the secondary cell.
  • the terminal device performs cell measurement on the receiving channel occupied by the secondary cell, and suspends the data transmission and reception of the secondary cell.
  • the secondary cell can be de-configured or deactivated by the above method, which is not limited in this application.
  • Step 1111 The terminal device reports a measurement report.
  • the terminal equipment measures the network parameters of the NR cell, and uploads a measurement report to the network equipment according to the method shown in Figure 2.
  • Step 1112 If the NR measurement meets the B1 threshold of the network configuration, report the NR measurement and start the SCG adding process.
  • the chip system 1400 includes a baseband processor 1401, a transceiver or interface 1402, a memory 1403, etc., where the interface 1402 is used to receive code instructions and The code instruction of the terminal device is sent to the processor 1401, and the processor 810 runs the received code instruction sent by the interface to execute the method and action of the embodiment of the present application to improve the measurement capability of the terminal device.
  • the specific method of the measurement capability of the terminal device may be Refer to the embodiments of the present application, which will not be repeated here.
  • RFIC is 4 receiving channels (Rx1, Rx2, Rx3, Rx4), and each cell occupies two receiving channels.
  • the embodiment of this application can also be extended to assume that RFIC is 8 receiving channels Etc., the embodiment of the present application does not limit it.
  • the embodiments of the present application can be implemented by hardware, firmware, or a combination of them.
  • the above functions can be stored in a computer-readable medium or transmitted as one or more instructions or codes on the computer-readable medium.
  • the computer-readable medium includes a computer storage medium and a communication medium, where the communication medium includes any medium that facilitates the transfer of a computer program from one place to another.
  • the storage medium may be any available medium that can be accessed by a computer.
  • computer-readable media may include RAM, ROM, electrically erasable programmable read-only memory (EEPROM), compact disc read-only memory, CD- ROM) or other optical disk storage, magnetic disk storage media or other magnetic storage devices, or any other media that can be used to carry or store desired program codes in the form of instructions or data structures and that can be accessed by a computer.
  • EEPROM electrically erasable programmable read-only memory
  • CD- ROM compact disc read-only memory
  • Any connection can suitably become a computer-readable medium.
  • disks and discs include compact discs (CDs), laser discs, optical discs, digital video discs (digital video discs, DVDs), floppy discs, and Blu-ray discs. Disks usually copy data magnetically, while disks use lasers to copy data optically. The above combination should also be included in the protection scope of the computer-readable medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种提升终端设备的测量能力的方法、终端设备、芯片以及系统。其中,方法包括:终端设备上报测量能力至网络侧,网络侧根据终端设备的能力以及触发条件,确定是否需要分配测量间隔(Gap)给终端设备,所述测量间隔用于终端设备测量异频或者异系统的小区,进一步地,当网络侧分配测量间隔给终端设备时,当终端设备确定可以通过去配置辅小区或者降低当前驻留小区的数据接收规则达到不需要分配Gap的目的时,通过去配置辅小区或者降低当前驻留小区的数据接收规则的方法,进行异频或者异系统的小区测量,从而完成小区测量任务。

Description

一种提升终端设备测量能力的方法、芯片以及终端设备
本申请要求在2019年8月2日提交中国国家知识产权局、申请号为201910712953.3的中国专利申请的优先权,发明名称为“一种提升终端设备测量能力的方法、芯片以及终端设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及一种提升终端设备设备测量能力的方法、芯片以及终端设备,尤其终端设备测量异频或者异系统的测量能力。
背景技术
第三代合作伙伴计划(3rd Generation Partnership Project,即3GPP)提出,如果终端设备需要进行异频或者异系统的测量,一种简单的方式是在终端设备设备中安装两种射频接收机,分别测量本小区的频点和目标小区的频点,但这样会带来成本提升和不同频点之间相互间扰的问题。因此,3GPP提出了测量间隔(measurement gap,Gap)这种方式,即预留一部分时间(即测量Gap时长),在这段时间内,终端设备不会发送和接收任何数据,而将接收机调向目标小区频点,进行异频的测量,Gap时间结束时再转到当前小区。
由于Gap测量的时长内,终端设备不会发送和接收任何数据,导致用户的数据业务会造成中断、暂停等,造成用户体验差。
发明内容
基于此,本发明提供一种提升终端设备以及方法,用于提升终端设备的测量能力,尽可能的不使用网络分配的测量间隔,减少用户的数据业务的中断、暂停等机会。
一方面,本申请实施例提供一种提升终端设备测量能力的方法,包括:终端设备发送第一信息至网络设备,所述第一信息用于指示所述终端设备在异频或者异系统测量时是否需要测量间隔,所述第一信息还用于指示所述终端设备的多输入多输出能力,终端设备通过载波聚合CA技术驻留在第一小区与第二小区,其中所述第一小区与所述第二小区为LTE小区,其中所述第一小区为主小区,当所述终端设备满足预设第一条件或者网络侧满足预设第二条件时,所述网络侧根据所述第一信息分配测量间隔信息至所述终端设备,所述第一信息还用于指示所述终端设备的多输入多输出能力,终端设备上报辅助信息,所述辅助信息用于指示所述改变所述终端设备的多输入多输出能力,所述网络设备根据所述辅助信息以及所述第一信息,不分配所述测量间隔信息至所述终端设备。从而实现终端设备不使用网络侧分配的测量间隔来进行邻区测量,提升终端设备的测量能力。
在一种可能的设计中,所述网络设备根据所述辅助信息以及所述第一信息,发送测量控制信息至所述终端设备,所述测量控制信息用于测量第三小区的网络参数;所述终端设备根据所述测量控制信息测量所述第三小区的网络参数;所述终端设备向所述网络设备发送所述第三小区的测量报告。
在一种可能的设计中,所述辅助信息为AssistanceInformation,所述第一信息至少包括InterFreqNeedForGaps以及interRAT-NeedForGaps中的任一项。利用现有协议中的命令实现提升终端设备测量能力的。
在另一种可能的设计中,所述预设第一条件为所述第一小区的网络参数低于预设值,所述预设第二条件为网络设备需要测量邻小区的网络参数。
第二方面,本申请实施例还提供一种提升终端设备的测量能力的方法,包括:终端设备 发送第一信息至网络设备,所述第一信息用于指示所述终端设备在异频测量时是否需要测量间隔;所述终端设备通过载波聚合CA技术驻留在第一小区与第二小区,其中所述第一小区与所述第二小区为LTE小区,其中所述第一小区为主小区;当所述终端设备满足预设第一条件或者所述网络设备满足预设第二条件时,所述网络设备根据所述第一信息发送第二消息至所述终端设备,所述第二消息用于测量第三小区的网络参数,所述第二消息包括测量间隔信息;所述终端设备上报所述第二小区的A2事件,所述A2事件用于使得所述网络设备去配置所述第二小区;所述网络设备发送第三消息至所述终端设备,所述第三消息用于测量所述第三小区的网络参数,所述第三消息包括不测量间隔信息。从而实现终端设备不使用测量间隔测量邻区的网络参数。
在一种可能的设计中,所述方法进一步包括:所述终端设备根据所述第三消息测量所述第三小区的网络参数;所述终端设备发送所述第三小区的测量报告至所述网络设备。从而实现终端设备不使用测量检测测量邻区的网络参数。
在另一种可能的设计中,所述预设第一条件为所述第一小区的网络参数低于预设值,所述预设第二条件为网络设备需要测量邻小区的网络参数。
在另一种可能的设计中,在所述所述终端设备上报所述第二小区的A2事件之后,所述方法还包括:所述网络设备发送第四消息至所述终端设备,所述第四消息用于去配置所述第二小区;所述终端根据所述第四消息去配置所述第二小区;所述终端设备发送第五消息至所述网络设备,所述第五消息用于指示所述终端设备完成去配置所述第二小区。从而实现终端设备不使用测量检测测量邻区的网络参数。从而实现利用辅小区的通道测量邻小区,减少用户的数据业务的中断、暂停等机会。
在另一种可能的设计中,所述第一信息至少包括InterFreqNeedForGaps以及interRAT-NeedForGaps中的任一项。利用现有协议中的命令实现提升终端设备测量能力的。
第三方面,本申请实施例还提供一种通信系统,包括:其中,终端设备通过载波聚合CA技术驻留在第一小区与第二小区,其中所述第一小区与所述第二小区为LTE小区,其中所述第一小区为主小区;所述终端设备,用于:发送第一信息至网络设备,所述第一信息用于指示所述终端设备在异频测量时是否需要测量间隔;当所述终端设备满足预设第一条件或者所述网络设备满足预设第二条件时,上报所述第二小区的A2事件,所述A2事件用于使得所述网络设备去配置所述第二小区;所述网络设备,用于:根据所述第一信息发送第二消息至所述终端设备,所述第二消息用于测量第三小区的网络参数,所述第二消息包括测量间隔信息;发送第三消息至所述终端设备,所述第三消息用于测量所述第三小区的网络参数,所述第三消息包括不测量间隔信息。减少用户的数据业务的中断、暂停等机会。
在一种可能的设计中,所述终端设备还用于:根据所述第三消息测量所述第三小区的网络参数;发送所述第三小区的测量报告至所述网络设备。
在另一种可能的设计中,所述预设第一条件为所述第一小区的网络参数低于预设值,所述预设第二条件为所述网络设备需要测量邻小区的网络参数。
在另一种可能的设计中,所述网络设备还用于:发送第四消息至所述终端设备,所述第四消息用于去配置所述第二小区;所述终端设备还用于:根据所述第四消息去配置所述第二小区;发送第五消息至所述网络设备,所述第五消息用于指示所述终端设备完成去配置所述第二小区。
在另一种可能的水中,所述第一信息至少包括InterFreqNeedForGaps以及interRAT-NeedForGaps中的任一项。利用现有协议中的命令实现提升终端设备测量能力的。
第四方面,本申请实施例提供一种芯片系统,包括:种芯片系统,包括:存储器,存储有指令;处理器,接口,用于将接收代码指令并传输至所述处理器,所述处理器用于运行所述代码指令以执行方法:终端设备发送第一信息至网络设备,所述第一信息用于指示所述终端设备在异频测量时是否需要测量间隔;所述终端设备通过载波聚合CA技术驻留在第一小区与第二小区,其中所述第一小区与所述第二小区为LTE小区,其中所述第一小区为主小区;所述网络设备发送第二信息至所述终端设备,所述第二信息用于测量第三小区的网络参数,所述第三小区为NR小区,所述第二信息包括测量间隔;当所述终端设备在所述测量间隔内没有搜索到所述第三小区,所述终端设备暂停所述第二小区的数据收发;所述终端设备测量所述第三小区的网络参数。减少用户的数据业务的中断、暂停等机会。
在一种可能的设计中,所述代码还包括,根据所述第三小区的网络参数发送测量报告至所述网络设备。
在一种可能的设计中,所述代码还包括所述终端设备暂停所述第二小区的数据收发包括:所述终端设备降低多输入多输出的能力。
第五方面,本申请实施例还提供一种有损上报终端设备的测量能力的方法和设备。所述方法包括:当终端设备具有第一测量能力,所述第一能力用于指示所述终端设备在异频测量时是否需要测量间隔;终端设备确定第二测量能力,所述第二能力用于指示所述终端设备在异频测量时是否需要测量间隔;所述第二测量能力是基于所述第一测量能力基于以下至少一种方式得到:降低终端设备的接收通道数量,去激活辅小区,改变接收天线,去激活辅助小区;所述终端设备上报所述第二测量能力至网络设备。
在一种可能的设计中,所述网络设备根据所述第二测量能力,当满足触发条件时,发送第一消息至所述终端设备,所述第一消息中不包括测量检测,所述第一消息用于测量所述邻小区的网络参数。减少用户的数据业务的中断、暂停等机会。
在一种可能的设计,所述终端设备向网络设备上报所述第一测量能力,所述网络设备根据所述第一测量能力,当满足触发条件时,发送第二消息至所述终端设备,所述第一消息中包括测量检测,所述第一消息用于测量所述邻小区的网络参数。
第六方面,本发明的实施例提供一种存储介质,用于存储实现上述实现方式的计算机软件指令。
第七方面,本发明的实施例提供一种设备,该设备具有能够实现上述提升终端设备的测量能力。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现,所述硬件或软件包括一个或多个与上述功能对应的模块,所述模块可以是硬件和/或软件通过上述方案。
附图说明
图1是本申请实施例提供的一种网络系统的示意图;
图2是本申请实施例提供的一种终端设备上报测量能力的示意图;
图3是本申请实施例提供的一种测量间隔的第一示意图;
图4是本申请实施例提供的一种终端设备的第一示意图;
图5是本申请实施例提供的一种终端设备的第二示意图;
图6是本申请实施例提供的提升终端设备Gap测量能力的第一示意图;
图7是本申请实施例提供的提升终端设备Gap测量能力的第二示意图;
图8是本申请实施例提供的提升终端设备Gap测量能力的第三示意图;
图9是本申请实施例提供的提升终端设备Gap测量能力的第四示意图;
图10是本申请实施例提供的双链接系统的第一示意图;
图11是本申请实施例提供的提升终端设备Gap测量能力的第五示意图;
图12是本申请实施例提供的双链接系统的第二示意图;
图13是本申请实施例提供的一种测量间隔的第二示意图;
图14是本申请实施例提供的一种芯片系统的示意图;
具体实施方式
一般来讲,根据3GPP协议(例如3GPP TS36.214)的规定,当终端设备处于在连接状态(connection)下,终端设备会周期性或事件性向网络侧上报所测量到的服务小区和邻区的测量报告,根据测量报告,可以完成小区选择、重选及切换等动作;当终端设备处在空闲状态(idle)时,终端设备会驻留在优先级最高的小区,在一些可能的实施例中,小区的驻留的优先级可以通过小区的信号质量、时延、丢包率、参考信号接收功率(Reference Signal Receiving Power,PSRP)、接收信号强度指示(Received Signal Strength Indicator,RSSI)、参考信号接收质量(Reference Signal Received Quality,RSRQ)等参数来设定。
如图1所示,提供一种网络系统,至少包括一个终端设备100,以及至少包括一个网络设备1,在一些实施例中,终端设备100可以为手机、平板电脑、手持计算机、笔记本电脑、超级移动个人计算机(Ultra-mobile Personal Computer,UMPC)、上网本、蜂窝电话、以及个人数字助理(Personal Digital Assistant,PDA)、可穿戴式设备(如智能手表)、增强现实(augmented reality,AR)\虚拟现实(virtual reality,VR)设备等设备,本实施例对该设备的具体形式不做特殊限制;网络设备可以为基站(例如,GSM基站,NB基站,eNB基站、NR基站等)、服务器、网元等,本实施例以LTE(Long Term Evolution Advanced,“LTE”)网络系统为例,即网络设备以及用户设备为支持LTE功能的设备,本实施例可以扩展到到其他的网络系统。
网络设备1为支持LTE功能的4G基站,即eNB,根据eNB的无线电覆盖范围,通常可以包括至少一个服务小区(cell),即服务小区1,小区是为用户提供无线通信业务的一片区域,是无线网络的基本组成单位,eNB也分为可以为多个小区,每个小区可以用不同的无线载波,每个无线载波使用某一载波频点。本申请未便于描述,每一个小区对应一个网络设备,但并不限定,一个网络设备也可以对应多个不同的小区,包括一个主小区和多个辅小区。
在无线技术中,引入了CA(Carrier Aggregation,载波聚合)的概念,简单地说,它可以将多个载波聚合成一个更宽的频谱,同时也可以把一些不连续的频谱碎片聚合到一起,可以理解为载波聚合(Carrier Aggregation,CA)是将2个或更多的载波单元(Component Carrier,CC)聚合在一起以支持更大的传输带宽,为了高效地利用零碎的频谱,CA支持多种方式的聚合:相同或不同带宽的CC;同一频带内,邻接或非邻接的CCs;不同频带内的CCs。
每一个载波单元CC对应一个独立的小区cell,在CA的场景中可以分为以下几种类型的cell:
主小区(Primary Cell,Pcell):主小区是工作在主频带上的小区。终端设备在该小区进行初始连接建立过程,或开始连接重建立过程。在切换过程中该小区被指示为主小区;
辅小区(Secondary Cell,Scell):辅小区是工作在辅频带上的小区。一旦RRC连接建立,辅小区就可能被配置以提供额外的无线资源;
Serving Cell:处于RRC_CONNECTED连接态的终端设备,如果没有配置CA,则只有一个Serving Cell,即PCell;如果配置了CA,则Serving Cell集合是由PCell和SCell组成;
Pcell和辅小区Scell是针对CA用户的用户级概念,用户初始接入的载波就是该CA用 户的Pcell,主小区是工作在主频带上的小区。终端设备在该小区进行初始连接建立过程,或开始连接重建立过程。在切换过程中该小区被指示为主小区;辅小区是工作在辅频带上的小区。一旦RRC(Radio Resource Control,RRC)连接建立,辅小区就可能被配置以提供额外的无线资源(见36.331的3.1节)。
如图2所示,提供一种终端设备上报测量网络质量的示意图,测量报告(MR,Measurement Report)是LTE系统的一项重要功能。物理层上报的测量结果可以用于系统中无线资源控制子层完成诸如小区选择/重选及切换等事件的触发,也可以用于网络邻区维护,SCG添加等功能,LTE MR报告还可以包括参考信号接收功率、参考信号接收质量、eNB接收干扰功率、eNB天线到达角、终端设备发射功率余量、上行丢包率、下行丢包率、上行信噪比、PRB粒度eNB接收干扰功率等。基于MR可以进行全网覆盖情况、干扰情况、上行高发射功率、终端设备位置定位分析,例如可利用MR中eNB接收干扰功率RIP统计分析全网干扰情况,定位高干扰小区。在连接态下,网络测量通常有如下几个目的:
1、Pcell的切换,当终端设备驻留的Pcell的网络质量满足预设条件时,例如当前小区的信号质量低于阈值,即触发A2事件(Event A2),网络分配异频点用于测量邻小区的网络质量。同频邻区测量网络不需要指示,终端设备可以在连接态下随时测量。
2、Scell的添加,如果测量的小区满足A4事件,即EvenA4,A4事件的触发条件可以理解为当测量小区大于网络配的某个门限时,网络则可以为用户配置Scell,用户可以通过Pcell和Scell小区与核心网进行数据交换。例如,如图1所示,当终端设备驻留在服务小区1时,此时服务小区1为Pcell,在采用了CA技术之后,终端设备还需要去测量邻小区(例如服务小区2或者服务小区3)的网络参数,当测量的邻小区的网络参数满足网络侧配置的某个门限值,即满足了A4事件的触发条件的时候,网络侧可以根据为终端设备配置Scell小区,从而实现高带宽的数据传输。
3、通过测量报告来进行网络系统操作维护,异频邻区自动配置等操作。
4、在一些特殊的场景下,例如LTE双连接Eutran–dual connetion(EE-DC)以及EN-DC双链接的时候,终端设备也需要测量双链接时的目标小区,例如测量NR(5G小区或者LTE小区。
如果终端设备没有相关频点的no Gap测量能力(可以理解为终端设备必须需要网络分配Gap来进行测量)时,网络会分配如下两种测量类型的Gap(3GPP release 14之前)。表1示出了协议中规定的两种不同类型Gap,如表所示:
Figure PCTCN2020106379-appb-000001
可以看出Gap的长度为6ms,周期为40ms或者80ms,用于测量异频或者异系统小区的网络参数。一般来讲,由于Gap的存在,此时终端设备不能收发数据,即终端设备根据网络侧分配的Gap去测量邻小区的网络质量的时候,终端设备通常不能收发数据,以图1所示的系统为例,即当前网络侧分配Gap去测量邻小区(服务小区2或者服务小区3)的时候,不能通 过服务小区1进行数据收发;或者如图1所示的系统为例,当前终端设备通过支持CA能力,例如服务小区1为Pcell,频段为A1,服务小区2为辅小区,频段为A3,终端设备通过CA可以获得A1+A3频段的能力,如果当前Gap去测量邻小区(例如服务小区3)的时候,不能通过服务小区1或者服务小区2进行数据收发。
如图3所示,提供一种典型的Gap示意图,例如,Gap需要分配因为LTE调度/反馈时长至少是4ms,Gap的测量时长的前后至少4ms内不能收发数据,即对与上下行数据分别有10ms不能传输数据。如果测量周期为40ms,则至少损失10/40=25%调度机会,即损失25%性能。
终端设备通常包括有天线、射频前端(Front End Module,FEM)、射频处理单元(Radio-Freqncy Integrated Circuits,RFIC)、基带(Baseband Integrated Circuits,BBIC)等组成,其中,RFIC代表终端设备的射频通道能力,例如Rx1,Rx2….RxN代表某个频段的接收通道(例如主集接收通道或分集接收通道)。如图4所示,提供一种典型的终端设备设备100,包括基带处理器103,射频电路102,天线101。
如图5所示,提供一种典型的终端设备设备示意图;终端设备100包括基带处理器、射频处理单元(RFIC)、功率放大器(PA)、滤波器、双工器和天线等。芯片平台、射频前端和天线构成了终端的无线通信模块。其中,芯片平台包括基带芯片、射频芯片和电源管理芯片等,基带芯片负责物理层算法、高层协议的处理和多模互操作的实现;射频芯片负责射频信号和基带信号之间的相互转换;射频前端模块是连接射频处理单元和天线的必经通路,如图1所示。它主要包括:功率放大器(PA),滤波器(Filter)、双工器或多工器(Duplexer或Multiplexer)、低噪声放大器(LNA)和开关(Switch)或天线调谐模块(ASM)等。一些终端的射频前端架构中,会在天线开关后增设双通器(Diplexer)、连接器(Coupler)等器件。
但通常来讲异频或异系统测量是否需要Gap的测量能力常常由射频处理单元RFIC的接收通道数量决定的。本实施例中假设以终端设备的射频前端FEM(包括功率放大器、滤波器、双工器等)支持3个频段(B1、B3、B7),RFIC为4个接收通道(Rx1,Rx2,Rx3,Rx4),BBIC可以同时支持服务小区数据收发和异频测量。假设异系统的频点与服务小区频点也支持CA组合,BBIC也支持同时服务小区数据收发和异系统测量。如表2所示,示出了终端设备的异频测量能力(例如通过命令InterFreq NeedforGaps),以下简称“测量能力”或者“是否需要分配Gap能力”或者“Gap能力”、“Gap测量能力”等:
Figure PCTCN2020106379-appb-000002
如表2所示,1A,3A,7A标识不同的频段的载波单元(频段分别为band1,band2,band3),每个频段占用终端设备的两个接收通道,其中[1A]为标识占用四个接收通道,其中T代表需要分配Gap;可以看出,当终端设备为CA组合时或4Rx时,异频测量都需要网络分配Gap。具体描述如下:当前终端设备在1A频段(例如,终端设备驻留在第一小区)上收发数据,其中1A频段占用两个接收通道(例如Rx1,Rx2),此时网络分配Gap测量,只需要通过Rx3,Rx4通道进行邻小区测量,网络侧不需要分配Gap,但是,当终端设备为[1A]频段时,即占用了Rx1,Rx2,Rx3,Rx4四个通道,此时网络侧需要分配Gap去测量邻小区的网络质量,当终端设 备的四个通道均已经占用,只有暂停服务小区终端设备的数据收发,将任意两个通道(例如Rx1,Rx2)分配给终端设备去测量邻小区。同样,当终端设备利用CA能力进行数据收发,例如1A+3A的场景下,共占用4个通道进行邻小区测量,由于当前终端设备的通道资源已经占满,则需要网络分配Gap去测量邻小区的网络指令,造成当前的业务中断。
上述实施例中,当网络会分配异频或异系统让终端设备进行监控测量。在这种情况下,由于终端设备在测量邻小区的时候,终端设备不能进行数据的收发,会带来用户收发数据的暂停、时延等问题,用户体验不好,值得说明的是,本申请中异频可以是中心频点不同的频段,可以理解为异频点,异系统是指网络制式不同的系统,可以理解为异系统,例如3G与4G。
基于此,本申请还提供另一种实施例,终端设备具备异频或异系统所在频点与服务小区频点具有同时接收的能力,则网络不需要分配Gap。此时终端设备可以不中断与服务小区通信,同时进行异频或异系统的测量。
如图6所示,提供一种根据终端设备的测量能力来分配Gap的方法,本实施例中,在网络分配Gap进行异频测量时,根据终端设备的测量能力,判断是否需要分配Gap。以解决终端设备处于连接态时,如何在终端设备通接收道受限情况下,不需要通过分配Gap来进行邻小区测量的问题。
步骤601:终端设备注册到第一小区,上报Gap测量能力。
一般来讲,终端设备想要获取服务,需要向网络注册,这个注册过程被称为Attach(以LTE系统为例),终端设备在上Attach过程中可以上报终端设备的测量能力。根据协议规定,例如标识当前终端设备测量能力的参数可以为interFreqNeedForGaps以及interRAT-NeedForGaps,协议中的描述分别为“Indicates need for measurement Gaps when operating on the E UTRA band given by the entry in bandListEUTRA or on the E-UTRA band combination given by the entry in bandCombinationListEUTRA and measuring on the E UTRA band given by the entry in interFreqBandList.”以及“Indicates need for DL measurement Gaps when operating on the E UTRA band given by the entry in bandListEUTRA or on the E-UTRA band combination given by the entry in bandCombinationListEUTRA and measuring on the inter-RAT band given by the entry in the interRAT-BandList”。
为了便于描述,可以将表2理解为当前终端设备的测量能力,值得说明的是,表2只是提供一种终端设备测量能力的一种表现形式。如表2所示,终端设备上报的内容包括但不限于终端设备的CA能力,例如支持以下CA的组合:CA_1A-3A;CA_1A-7A;CA_1A-1A;CA_3A-1A;CA_3A-3A;CA_3A-7A;CA_7A-3A。在一些可能的设计中,还可以支持多个频段的CA组合,例如,CA_1A-3A-5A。终端设备上报给网络侧的能力还包括所有终端设备所支持的CA组合或者所支持的频段下是否需要分配Gap能力等,具体为:InterFreqNeedForGaps用于标识某一CA组合或者服务小区为单band测量异频点测量是否需要Gap,interRAT-NeedForGaps用于标识标识某一CA或者服务小区为单band测量异系统是否需要Gap,可以用O,1位来标识是否需要Gap,还可以用布尔函数BOOLEAN还标识。在一些实施例中,终端设备上报的的内容还包括各小区或者CA下的多输入多输出能力,例如在A1频段对应的小区下,终端设备的接收通道数量为2,在实现的时候,可以是以下的方式:
bandEUTRA-r10:3,0x26;
supportedMOMO-CapabilityDL-r10:twoLayers(0,0x0)标识在band 3的时候,支持多输入多输出的layer数量为2,supportedMOMO-CapabilityDL-r10:fourLayers(0,0x0)标识在 当前频段下支持多输入多输出的layer数量为4,在一些实施例中,layer数量为对应的终端设备的接收通道数量。
表2中示出了11种CA组合或者频段的测量能力,即是否需要分配Gap,例如在1A+3A的情况下,由于CA组合需要占用4个接收通道,而当前终端设备的通道为4个,即没有多余的通道去测量邻小区,因此需要网络侧来分配Gap。但表2仅示出了异频段是否需要分配Gap的能力,测量异频系统的是否需要分配Gap也可以参考终端设备上报的能力,如表3所示:
Figure PCTCN2020106379-appb-000003
表3示出了终端设备在测量异频系统时是否需要分配Gap能力的示意图,即示出了如果在CA组合下小区属于不同的网络系统时,是否需要分配Gap的能力。例如,以CA_1A+3A为例,当需要进行异系统测量时,例如触发条件可以是A4事件或者网络发起的,根据终端设备的异频测量能力,网络需要分配Gap给终端设备进行异频测量。
终端设备还需要上报支持的CA能力以及各个小区或者CC的多输入多输出能力(layer数)以及相应的测量能力,网络侧可以根据终端设备在各小区或者CC的接收通道能力配置相应的layer数量,网络侧根据终端设备上报的测量能力上报确定是否需要分配Gap,根据终端设备上传的CA能力确定各种不同的CA组合。
步骤602:网络侧根据触发条件以及终端设备上报的测量能力决定是否需要分配Gap,如果根据终端设备上报的测量能力,不需要分配Gap,则执行步骤603;如果根据终端设备上报的测量能力,确定需要分配Gap,则执行步骤604。
一般来讲,辅小区SCell的建立流程主要包括:终端设备在主小区PCell发起无线资源控制层(Radio Resource Control,RRC)连接流程,网络侧根据终端设备上报的测量能力来确定是否要配置测量Gap。如果终端设备需要Gap进行异频测量,网络侧下发测量控制信息(频点信息、测量带宽、测量参数、测量报告参数等)并配置测量Gap周期和子帧偏置参数;如果终端设备不需要启动Gap进行测量,则网络侧跳过测量Gap的配置,直接下发测量控制信息。
步骤603:当网络侧根据终端设备上报的测量能力,确定不需要Gap给终端设备,则网络侧在无线资源控制层重配消息(RRC Connection Reconfiguration)配置频点、测量门限、测量带宽、测量参数、测量报告参数等测量控制消息,不分配Gap相关信息。
当终端设备测量异频点满足A4事件(A4Event)的门限,则上报A4事件,网络侧检测终端设备上报的满足A4测量条件的小区,如果有同一小区集内的,就下发RRC重配请求消息RRC Reconfiguration Req给终端设备,将其配置为该CA终端设备的Scell。根据协议,A4事件的定义为异频邻区质量高于一定门限,触发条件为Mn+Ofn+Ocn-Hys>Thresh,其中,Mn:异频频点小区测量结果;Ofn:频率偏置,邻区频率的特定频率偏置;Ocn:小区偏移量,小区的特定小区偏置;Hys:异频切换幅度迟滞,事件A4迟滞参数,由参数InterFreqHoA4Hyst决定;Thresh:添加为Scell的触发门限,基于RSRP时通常设置为-94dbm,-100dbm,-105dbm。以图1所示的系统为例,当前主服务小区的RSRP为-92bdm,异频小区的RSRP为-88bdm,如果设置A4的门限值为-91dbm时,则可以配置小区2为Scell。
步骤604:当网络侧根据终端设备上报的测量能力,网络侧下发测量控制信息(频点信息、测量带宽、测量参数、测量报告参数等)并配置测量Gap周期和子帧偏置;
通常来讲,网络侧会周期性地发送测量控制信息,以及配置Gap周期至终端设备,用于测量异频或者异系统小区的信息。
步骤605:进一步地,本实施例,当终端设备接收到网络侧下发的测量控制信息以及Gap周期等参数,终端设备评估是否可以通过是否减少当前小区的接收通道(例如减少layers的数量),可以达到不需要分配Gap以达到测量邻区的能力。例如,如果当前Pcell的小区频段为网络配置4 layers,当前Pcell的CC占用4个通道,网络侧为了增加Scell时而需要异频测量时,根据终端设备上报的是否需要分配Gap能力,确认当前需要分配Gap,本实施例中,为了避免数据的时延、中断等业务性能,终端设备评估是否可以通过减少Pcell接收通道达到不需要分配Gap的测量能力,即将Pcell频段的4 layers的接收能力变为2 layers的接收能力,则终端则可以把Pcell占用4个接收通道修改为占用2个接收通道,并用释放的2个通道去测量邻小区的网络质量,即可以实现不用分配Gap达到测量的邻小区的目的。
步骤606:当终端设备评估可以通过减少某些CC的layers数,可以达到不需要分配Gap以达到测量邻区的能力时,可以上报辅助信息,用于网络侧重新配置不分配Gap。
例如通过终端设备AssistanceInformation消息减少layer。协议中关于终端设备AssistanceInformation message的描述如下:
1.if the UE prefers a configuration primarily optimized for power saving:
2>set powerPrefindication to lowPowerConsumption;
2.else
2>start or restart T340 with the timer val UE set to the PowerprefindicationTimer
2>set PowerprefindicationTimer to normal;
The UE shall submit the UE AssistanceInforamation message to lower layers for transmission.
网络侧接收到终端设备上报的辅助信息之后,重新配置主小区Pcell的layer数量,网络侧根据配置后的layer数量以及终端设备的测量能力,确定不分配Gap给终端设备。
步骤607:根据终端设备上报的测量能力,网络侧确定即使通过减少某些CC的layers数也不能达到不用分配Gap的情况下,则可以按照现有的流程,网络侧下发测量控制(频点信息、测量带宽、测量参数、测量报告参数等)并配置测量Gap周期和子帧偏置。
步骤608:终端设备根据网络发送的测量控制进行测量,并上报测量结果。
步骤609:网络侧根据终端设备上报的测量结果,进行辅小区配置。
如图7所示,提供另一种根据终端设备能力来分配Gap的方法,本实施例中,在网络分配异频测量时,根据终端设备的测量能力,判断是否需要Gap。以解决在连接态时,如何在终端设备接收通道受限情况下,不需要通过分配Gap来进行邻小区测量的能力。
步骤701:当前终端设备服务小区为CA组合,驻留在主小区Pcell以及辅小区Scell上。如图1所示的系统,终端设备100通过服务小区1和服务小区2获得无线资源。如表3所示,终端设备可以通过以下CA组合获得无限资源,例如以下CA的组合:CA_1A-3A;CA_1A-7A;CA_1A-1A;CA_3A-1A;CA_3A-3A;CA_3A-7A;CA_7A-3A;
步骤702:当前系统满足触发条件;
本实施例中触发条件,例如可以是协议中规定的A2事件,即当前的服务小区(例如服务 小区1或者服务小区2)的信号质量低于预定门限值,即Ms+Hys<Thresh,其中,Ms为服务小区测量结果;Hys为异频A1或者A2幅度迟滞;Thresh为基于某事件的A2异频门限,A2用于启动异频或者异系统的测量;在一种可能的实施例中,网络侧需要主动发起测量邻小区的需求,还可以是终端设备的移动性测量等触发条件。
步骤703:网络侧根据触发条件以及根据终端设备上报的能力,确定是否分配相应的Gap,如果不需要分配Gap,则进行步骤704,如果需要分配Gap,则进行步骤705;
网络侧根据终端设备上报的事件(例如A2事件)或者网络侧需要主动测量邻小区的网络的时候,需要根据终端设备上报的能力来确定是否需要分配Gap测量,本申请进一步判断终端设备评估是否可以通过是否释放某些Scells,可以达到不用Gap来进行测量。如表4所示,网络侧接收到终端设备上报测量能力之后,还需要考虑是否通过释放Scell来达到不需要分配Gap的目的,以使得终端设备不会出现中断或者延时。
Figure PCTCN2020106379-appb-000004
具体地,如表4所示,例如,当前终端设备处于CA_1A+3A组合下,按照终端设备上报的测量能力,如果网络侧需要测量异频邻区的信息时,网络侧需要分配Gap,但是当终端设备评估可以通过去配置辅小区,可以实现测量异频邻区的情况下,则可以去促使网络侧去配置辅小区,重新组合CA从而使网络不分配Gap,确定终端在测同样目标频点时不需要测量间隙,测量配置不包含gap相关配置信息,例如网络侧需要测量band 7的异频小区频点,通过促使网络去配置Scell(3A),此时终端设备仅在band 1上收发数据,则这时候终端设备具有不用Gap测量band 7上异频小区。
步骤704:当网络侧根据终端设备的能力上报,确定不需要Gap,则网络侧在RRC connection reconfiguration消息中配置测量控制消息(频点信息、测量带宽、测量参数、测量报告参数等),不分配Gap相关信息。
步骤705:如果终端设备需要启动Gap,网络侧在RRC connection reconfiguration消息下发测量控制信息(频点信息、测量带宽、测量参数、测量报告参数等)、测量Gap周期和子帧偏置;
步骤706:终端设备进一步确定是否可以通过去配置CA或者去激活CA以达到不需要分配Gap测量的目的,如果确定可以,则执行步骤707,否则执行步骤708;
步骤707:终端设备可以促使网络去配置辅小区cc,达到网络测不需要分配Gap,具体地,终端设备可以通过主动上报辅小区Scell的A2事件,网络侧完成Scell的去配置动作。网络侧去配置Scell后,网络侧重新配置新的CA组合,确定测量异频点是否具有不需要分配Gap能力。网络侧根据终端设备上报的A2事件以及终端设备上报的测量能力,重新配置CA以及测量配置信息,在新的CA组合下,确定终端在测同样目标频点时不需要测量间隙,测量配置不包含gap相关配置信息,其中,测量配置信息中不包括Gap相关配置信息。
具体地,网络侧接收到终端设备主动上报的A2事件之后,网络侧通过下发RRC重配置消息去配置辅小区,终端设备释放辅小区的接收通道,并且发送响应消息至网络设备,用于 指示所述第二小区已经完成释放,进一步,网络侧重新发送测量控制信息,其中不配置Gap信息。
步骤708:终端设备评估不可用促使网络去配置辅cc,达到网络测不需要分配Gap,终端设备具有不需要分配Gap测量异频频点的能力。终端设备则按网络分配的Gap进行网络分配的异频小区或异系统进行测量。
步骤709:终端设备根据网络发送的测量控制进行测量,并上报测量结果。
步骤710:网络侧根据终端设备上报的测量结果,进行小区切换。
如图8所示,提供一种根据终端设备能力来分配Gap的方法,主动减少CA组合中某些载波单元的layer规格,达到终端设备具备不分配Gap测量网络分配的异频异系统测量能力。
步骤801:终端设备通过CA组合驻留在至少两个小区,其中某一小区需要网络侧配置4个layers能力;
当前终端设备服务小区为CA组合,驻留在主小区Pcell以及辅小区Scell上。如图1所示的系统,终端设备100通过服务小区1和服务小区2获得无线资源,其中任一小区是具有2Rx的接收能力,例如,当终端设备上报在1A频段上需要占用2个接收通道的能力,网络侧在配置时根据占用接收通道的能力分配对应的layer数量。
步骤802:系统满足触发条件,例如终端设备上报的A2事件或网络让终端设备监控其他异频点小区;
步骤803:网络侧根据终端设备上报Gap测量能力,确定是否需要Gap给终端设备,用于测量邻小区信息,如果确定不需要分配Gap,则执行步骤804,如果确定需要分配Gap,则执行步骤805;
步骤804:当网络侧根据终端设备的能力上报,确定不需要Gap,则网络侧在无线射频控制重配RRC re-configuration消息中配置频点等测量控制消息,不分配Gap周期等相关信息。
步骤805:如果终端设备需要启动Gap,网络侧下发测量控制信息(频点信息、测量带宽、测量参数、测量报告参数等)并配置测量Gap周期和子帧偏置;
步骤806:当终端设备评估可以通过减少某些小区CC的layers数,可以达到不需要分配Gap以达到测量邻区的能力时,执行步骤807,否则,执行步骤808。
步骤807:网络侧分配了Gap测量这些异频点,终端设备评估是否可以通过是否释放某些cc的1layers,可以达到不分配Gap测量能力。如果可以通过释放1layers,达到Gap测量能力。当终端设备评估可以通过减少某些CC的layers数,可以达到不需要分配Gap以达到测量邻区的能力时,可以上报辅助信息,用于网络侧停止分配Gap。
例如通过终端设备AssistanceInformation消息来重新配置layer的数据。协议中关于终端设备AssistanceInformation message的描述如下:
1.if the UE prefers a configuration primarily optimized for power saving:
2>set powerPrefindication to lowPowerConsumption;
2.else
2>start or restart T340 with the timer val UE set to the PowerprefindicationTimer
2>set PowerprefindicationTimer to normal;
The UE shall submit the UE AssistanceInforamation message to lower layers for transmission.
网络侧接收到终端设备上报的辅助信息之后,重新配置测量信息,例如重新配置主小区 Pcell的layer数量,网络侧根据配置后的layer数量以及终端设备的测量能力,确定不分配Gap给终端设备,具体地:Pcell或者Scell其中任一小区只占一个接收通道,测量频点也只占一个通道。通过在某个载波单元内释放出一个通道。通过释放通道以及前端一根接收天线测量网络分配的异频频点。另外一根天线用于此载波单元的收发数据。此时Pcell因为只有一个接收通道接收,相应接收能力会下降,根据实际的接收能力反馈通道质量指示(Channel Quality Indicator,CQI)。
步骤808:根据终端设备上报的测量能力,网络侧确定即使通过减少某些CC的layers数也不能达到不用分配Gap的情况下,则可以按照现有的流程,网络侧下发测量控制(频点信息、测量带宽、测量参数、测量报告参数等)并配置测量Gap周期和子帧偏置。
步骤809:终端设备根据网络发送的测量控制进行测量,并上报测量结果。
步骤810:网络侧根据终端设备上报的测量结果,进行辅小区配置。
如图9所示,还提供一种根据终端设备能力来分配Gap的方法,终端设备通过主动减少接收规格,就可以达到测量异频或者异系统的测量能力,在终端设备注册时就主动上报更新后的Gap测量能力。网络分配异频异系统测量时根据终端设备能力上报是否分配Gap测量。
网络侧分配测量频点且不分测量间隔Gap,终端设备判断网络分配的频点与服务小区频点是否具有同时接收能力,如果没有同时接收能力时,终端设备通过PHY和MAC层方式,主动降低接收规格,可能采用如下方式:
1)去激活辅小区scc;2)终端设备主动减少某些载波的接收规格,例如从4Rx变为2Rx,同时根据2Rx的接收能力上报测量值;或3)短时抢占的等方式,达到终端设备可以采用不通过Gap测量的方式测量网络分配的异频或异系统。4)终端设备主动在某些载波单元从2Rx变为1Rx,同时根据1Rx的接收能力上报测量值,释放通道进行相应异频或异系统进行测量。
假设终端设备前端FEM支持3个band,RFIC为4个通道,BBIC可以同时支持服务小区收发和异频测量。假设异系统的频点与服务小区频点也支持CA组合,BBIC也支持同时服务小区收发和异系统测量。下表为简单起见,仅列LTE的异频测量。同时支持如下CA组合(1A代表band1频点20MHz带宽,为2Rx);[1A]代表band1为4Rx。
假设可以支持CA组合:CA_1A-3A;CA_1A-7A;CA_1A-1A;CA_3A-1A;CA_3A-3A;CA_3A-7A;CA_7A-3A。假设终端设备的异频测量能力完全取决于CA能力。则异频测量能力上报如下:其中T代表需要Gaps;F代表不需要Gaps。如表5所示:
Figure PCTCN2020106379-appb-000005
当终端设备上报能力之后,在网络分配异频测量时,根据终端设备的测量能力,判断是否需要Gap。从上表可以看出,当终端设备为CA组合时或4Rx时,异频测量因为终端设备的能力限制都需要Gap。如果终端设备可以通过降低接收规格或者去配置辅小区CC以使得具备终端设备的不需要分配Gap。则终端设备主动上报更新后的测量能力。如表6所示,则相应上报Gap测量能力为:
Figure PCTCN2020106379-appb-000006
Figure PCTCN2020106379-appb-000007
从表中可以看出终端设备的Gap测量能力大大增强。在多种CA组合下通过降低接收数据的通道数以及去辅小区的方式可以实现无Gap的测量。
更进一步,终端设备的服务小区可以再降低接收天线,达到不分配Gap测量能力。如假设B7与B1无具备CA能力。B7可以只用主集通道,不用分集通道。然后终端设备采用分集通道测量B3的频点能力。同理服务小区B7对B7其他频点的测量。如表7所示:
Figure PCTCN2020106379-appb-000008
具体方法如下:
步骤901:终端设备上报更新后的能力;
在本申请中,如表5所示,终端设备在驻留小区的时候,会上报终端设备支持的CA能力以及各个小区或者CC的多输入多输出能力(layer数)以及在不同的小区是否需要Gap的测量能力;
在表6中,对表中是否需要分配Gap的测量能力进行了更新,一方面,终端设备确定是否可以降低终端设备的接收规格是否达到不分配Gap的能力,例如,表5中为终端设备原本的Gap测量能力,在多数场景下的异频测量是需要网络侧来分配Gap的,例如终端设备在[1A]频点时,当前需要通过4Rx来收发数据,则需要网络分配Gap测量异频小区;终端设备进一步评估可以通过降低接收规格,可以达到不需要分配Gap的目的,如表6中所示,终端设备上报能力更新后的能力,不需要网络分配Gap测量异频小区;还比如,如表5所示,终端设备在CA_1A+3A的场景下,当前需要通过4Rx来收发数据,则需要网络分配Gap测量异频小区,终端设备进一步评估可以通过降低接收规格,可以达到不需要分配Gap的目的,如表6中所示,终端设备上报能力更新后的能力,不需要网络分配Gap测量异频小区。另一方面,终端设备还可以通过去配置或者去激活辅小区进行领区测量,如果当前终端在CA_1A+3A的场景下,当前需要通过4Rx来收发数据,则需要网络分配Gap测量异频小区,终端设备进一步评估可以通过去激活辅小区的cc,可以达到不需要分配Gap的目的,如表6中所示,终端设备上报能力更新后的能力,不需要网络分配Gap测量异频小区。
在一些实施例中,如表7所示,假设B7与B1无具备CA能力。B7可以只用主集通道,不用分集通道。然后终端设备采用分集通道测量B3的频点能力。同理服务小区B7对B7其他频点的测量。
步骤902:系统满足触发条件,例如终端设备上报的A2事件或网络让终端设备监控其他异频点小区;
步骤903:网络侧根据终端设备上报Gap测量能力,确定是否需要Gap给终端设备,用于测量邻小区信息,如果确定不需要分配Gap,则执行步骤907,如果确定需要部分配Gap,则 执行步骤904或者步骤906;
步骤904:终端设备降低当前的数据接收通道规格。
例如,当前在CA_1A+3A的场景下,其中,1A占用接收通道Rx1和Rx2,3A占用Rx3和Rx4,则可以通过降低当前的数据接收通道规格来进行邻区测量,具体地,利用Rx2以及Rx3进行邻区测量。
本实施例实施中,终端设备降低终端设备的多输入多输出能力,可以通过向网络侧配置AssistanceInformation消息来重新配置layer的数据;在一种可能的设计,终端设备可以通过关闭自身的接收通道数量已达到降低多输入多输出能力,可以理解,在这种情况下,网络侧仍然周期性地向终端分配Gap相关信息。
步骤905:终端设备上报更新后的CQI和秩指示(rank indication)参数。
由于通过降低终端设备的接收通道规则,相应地,为了避免接收业务能力下降,可下降相应的测报,如rank、CQI等,终端设备用释放出来的接收能力,测量异频或异系统。
步骤906:终端设备区暂停辅小区的数据收发;
当前在CA_1A+3A的场景下,其中,1A占用接收通道Rx1和Rx2,3A占用Rx3和Rx4,则可以通过去配置或者去激活辅小区来进行邻区测量,具体地,利用Rx2、Rx3进行邻区测量。
本实施例实施中,终端设备降低通过暂停辅小区数据的收发,可以在终端设备RRC重配置消息进行去激活或者去配置辅小区;在一种可能的设计,终端设备可以通过暂停辅小区的数据收发,可以理解,在这种情况下,网络侧仍然周期性地向终端分配Gap相关信息。
步骤907:不需要分配Gap进行小区测量。
当网络侧根据终端设备的能力上报,确定不需要Gap,则网络侧在RRC connection reconfiguration消息中配置频点等测量控制消息,不分配Gap相关信息。
步骤908:终端设备根据网络发送的测量控制进行测量,并上报测量结果。
步骤909:网络侧根据终端设备上报的测量结果,进行辅小区配置。
在NSA场景下,LTE标准目前并没有相应的NR测量no Gap能力,网络默认是分配Gap,Gap长度为LTE标准中规定的6ms。背景,随着5G标准规范制定,非独立组网(Non-standalone,NSA)和独立组网(standalone,SA)场景正在部署中,其中NSA是指LTE系统作为主小区组(Master Cell group,MCG),NR系统作为辅小区组(Secondary Cell group,SCG),如图9所示提供一种典型的双连接的示意图;
如图10所示,在双连接下,以下行数据传输为例,数据流在PDCP(Packet Data Convergence Protocol,分组数据汇聚)层上分离和合并,随后将数据流通过多个基站同时传送给用户。在这种情况下,一个PDCP实体可以关联两个RLC(Radio Link Control,无线链路层控制协议)实体,可以理解为PDCP层将数据流通过RLC1、RLC2链路传输至RLC层,具体地,RLC1链路可以理解为LTE链路,RLC2链路可以理解为NR链路,每个RLC实体分别对应LTE空口和NR空口。在这种场景下,PDCP的数据流会根据获取的授权,将PDCP报文分别在LTE和NR的空口上进行发送。此种方式可以称之为MCG Split承载模式。
在双链接(Dual Connectivity)EN-DC之前,终端设备需要测量5G NR的信号。一般来讲,NR的同步信号周期为20ms,而LTE系统所分配的Gap为6ms,如果网络分配的LTE与NR不同步,此时LTE用Gap是无法测到NR的。这时候必须用no Gap方式测量NR。如果LTE占满射频通道,则终端设备无法测量NR信号,导致无法驻留NR。
如图11提供一种不同系统测量网络参数的方法,具体如下:
步骤1101:终端设备驻留在第一小区和第二小区,其中,第一小区和第二小区可以是LTE 系统中的小区;通常来讲,终端设备已经向网络侧(基站或者核心网等)上报了终端设备所支持的Gap测量能力,例如本申请中提到的InterFreqNeedForGaps,还包括终端设备所支持的多输入多输出能力;
在一些实施例中,终端设备也可以是驻留在需要占用4个接收通道的第三小区。
步骤1102:网络系统满足触发条件;
通常触发条件可以是网络侧需要测量邻小区的网络参数,还可以是当前的服务小区的信号质量较差低于预设的阈值等,触发网络侧需要测量邻小区的网络参数。
步骤1103:网络侧分配NR测量以及Gap相关信息;
网络侧会通过配置消息,配置NR的频点,已经相应的上报B1事件门限以及相应Gap配置,其中,根据协议的TS36.331定义,B1事件,也就是异系统邻区信号强于绝对门限。终端设备利用Gap进行NR频点小区测量。
步骤1104:如果终端设备收到网络侧分配的Gap信息,则执行步骤1110;如果终端设备没有收网络侧分配的Gap信息,则下一步判断终端设备的接收通道是否占满。
通常来讲,终端设备没有收到网络侧发送的Gap相关信息的原因可能是LTE系统与NR系统的信号周期不一致导致的。如图12的系统中,示出了双链接EN-DC的方法,例如,步骤“RRC连接重配置消息”之前,要求LTE与NR同步,如图13所示,即NR的同步信号在网络分配的Gap内,NR的同步信号周期为20ms,而LTE系统所分配的Gap长度为6ms,无法保证6ms内一定含有NR的同步信号。即如果网络分配的LTE与NR不同步,此时LTE分配的Gap不包含NR信息,终端设备在Gap内是无法测到NR的。
步骤1105:如果终端设备具有多余的接收通道,直接利用空闲通道测量NR小区的网络参数。
在此种情况下,终端设备利用剩余的接收通道测量测量NR小区的网络参数,网络侧分配NR测量的控制信息,不需要分配Gap相关信息。
步骤1106:如果终端设备的接收接通已经占满,则终端设备可以通过两种方式来进行邻区测量,步骤1107或者步骤1108。
步骤1107:如果当前终端设备的接收通道已经占满,终端设备评估降低相应的接收规格来进行邻区测量。
例如,如果当前终端在CA_1A+3A的场景下,当前需要通过4Rx来收发数据,则需要网络分配Gap测量异频小区,终端设备进一步评估可以通过降低当前的接收规格,可以达到不需要分配Gap的目的,例如通过上述AssistanceInformation消息来重新配置layer的数据。
本实施例实施中,终端设备降低终端设备的多输入多输出能力,可以通过向网络侧配置AssistanceInformation消息来重新配置layer的数据;在一种可能的设计,终端设备可以通过关闭自身的接收通道数量已达到降低多输入多输出能力,可以理解,在这种情况下,网络侧仍然周期性地向终端分配Gap相关信息。
步骤1108:当终端设备的接收通道的数量减少时,上报更新后的CQI和RANK参数。
步骤1109:如果当前终端设备的接收通道已经占满,终端设备评估可以通过去激活辅小区进行领小区的测量。
例如,如果当前终端在CA_1A+3A的场景下,当前需要通过4Rx来收发数据,则需要网络分配Gap测量异频小区,终端设备进一步评估可以通过去配置或者去配置辅小区CC,可以达到不需要分配Gap的目的,例如通过上述上报A2事件。
本实施例实施中,终端设备降低通过暂停辅小区数据的收发,可以在终端设备RRC重配 置消息进行去激活或者去配置辅小区;在一种可能的设计,终端设备可以通过暂停辅小区的数据收发,可以理解,在这种情况下,网络侧仍然周期性地向终端分配Gap相关信息。
步骤1110:终端设备暂停辅小区数据的收发。
终端设备将辅小区占用的接收通道进行小区测量,暂停辅小区的数据收发,可以通过上述去配置或者去激活辅小区的方式,本申请不做限制。
步骤1111:终端设备上报测量报告。
终端设备测量NR小区的网络参数,根据如图2所示的方式,向网络设备上传测量报告。
步骤1112:如果NR测量满足网络配置B1门限,上报NR测量,启动SCG添加流程。
本申请还提供一种芯片或者芯片系统1400,如图14所述,芯片系统1400包括基带处理器1401,收发器或者接口1402,存储器1403等,其中,接口1402用于接收代码指令,并将接收的代码指令发送至处理器1401,处理器810运行接收到的所述接口发送的所述代码指令,执行本申请实施例提升终端设备测量能力的方法和动作,具体的终端设备测量能力的方式可以参见本申请的实施例,在此不再赘述。
值得说明的是,本申请中,假设RFIC为4个接收通道(Rx1,Rx2,Rx3,Rx4),每个小区占用两个接收通道,本申请实施例还可以扩展到假设RFIC为8个接收通道等,本申请的实施例不作出限定。
所属领域的技术人员可以清楚地了解到本申请实施例可以用硬件实现,或固件实现,或它们的组合方式来实现。当使用软件实现时,可以将上述功能存储在计算机可读介质中或作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是计算机能够存取的任何可用介质。以此为例但不限于:计算机可读介质可以包括RAM、ROM、电可擦可编程只读存储器(electrically erasable programmable read only memory,EEPROM)、只读光盘(compact disc read-Only memory,CD-ROM)或其他光盘存储、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质。此外。任何连接可以适当的成为计算机可读介质。例如,如果软件是使用同轴电缆、光纤光缆、双绞线、数字用户线(digital subscriber line,DSL)或者诸如红外线、无线电和微波之类的无线技术从网站、服务器或者其他远程源传输的,那么同轴电缆、光纤光缆、双绞线、DSL或者诸如红外线、无线和微波之类的无线技术包括在所属介质的定影中。如本申请实施例所使用的,盘(disk)和碟(disc)包括压缩光碟(compact disc,CD)、激光碟、光碟、数字通用光碟(digital video disc,DVD)、软盘和蓝光光碟,其中盘通常磁性的复制数据,而碟则用激光来光学的复制数据。上面的组合也应当包括在计算机可读介质的保护范围之内。
总之,以上所述仅为本申请的实施例而已,并非用于限定本申请的保护范围。凡根据本申请的揭露,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (19)

  1. 一种提升终端设备测量能力的方法,其特征在于,包括:
    终端设备发送第一信息至网络设备,所述第一信息用于指示所述终端设备在异频测量时是否需要测量间隔;
    所述终端设备通过载波聚合CA技术驻留在第一小区与第二小区,其中所述第一小区与所述第二小区为LTE小区,其中所述第一小区为主小区;
    当所述终端设备满足预设第一条件或者所述网络设备满足预设第二条件时,所述网络设备根据所述第一信息发送第二消息至所述终端设备,所述第二消息用于测量第三小区的网络参数,所述第二消息包括测量间隔信息;
    所述终端设备上报所述第二小区的A2事件,所述A2事件用于使得所述网络设备去配置所述第二小区;
    所述网络设备发送第三消息至所述终端设备,所述第三消息用于测量所述第三小区的网络参数,所述第三消息包括不测量间隔信息。
  2. 如权利要求1所述的方法,其特征在于,所述方法进一步包括:
    所述终端设备根据所述第三消息测量所述第三小区的网络参数;
    所述终端设备发送所述第三小区的测量报告至所述网络设备。
  3. 如权利要求2所述的方法,其特征在于,所述预设第一条件为所述第一小区的网络参数低于预设值,所述预设第二条件为网络设备需要测量邻小区的网络参数。
  4. 如权利要求1所述的方法,其特征在于,在所述所述终端设备上报所述第二小区的A2事件之后,所述方法还包括:
    所述网络设备发送第四消息至所述终端设备,所述第四消息用于去配置所述第二小区;
    所述终端根据所述第四消息去配置所述第二小区;
    所述终端设备发送第五消息至所述网络设备,所述第五消息用于指示所述终端设备完成去配置所述第二小区。
  5. 如权利要求1-4任一项所述的方法,其特征在于,
    所述第一信息至少包括InterFreqNeedForGaps以及interRAT-NeedForGaps中的任一项。
  6. 一种网络通信系统,其特征在于,包括:
    其中,终端设备通过载波聚合CA技术驻留在第一小区与第二小区,其中所述第一小区与所述第二小区为LTE小区,其中所述第一小区为主小区;
    所述终端设备,用于:
    发送第一信息至网络设备,所述第一信息用于指示所述终端设备在异频测量时是否需要测量间隔;
    当所述终端设备满足预设第一条件或者所述网络设备满足预设第二条件时,上报所述第二小区的A2事件,所述A2事件用于使得所述网络设备去配置所述第二小区;
    所述网络设备,用于:
    根据所述第一信息发送第二消息至所述终端设备,所述第二消息用于测量第三小区的网络参数,所述第二消息包括测量间隔信息;
    发送第三消息至所述终端设备,所述第三消息用于测量所述第三小区的网络参数,所述第三消息包括不测量间隔信息。
  7. 如权利要求6所述的系统,其特征在于,所述终端设备还用于:
    根据所述第三消息测量所述第三小区的网络参数;
    发送所述第三小区的测量报告至所述网络设备。
  8. 如权利要求7所述的系统,其特征在于,所述预设第一条件为所述第一小区的网络参数低于预设值,所述预设第二条件为所述网络设备需要测量邻小区的网络参数。
  9. 如权利要求6所述的系统,其特征在于,所述网络设备还用于:
    发送第四消息至所述终端设备,所述第四消息用于去配置所述第二小区;
    所述终端设备还用于:
    根据所述第四消息去配置所述第二小区;
    发送第五消息至所述网络设备,所述第五消息用于指示所述终端设备完成去配置所述第二小区。
  10. 如权利要求6-9任一项所述的系统,其特征在于,
    所述第一信息至少包括InterFreqNeedForGaps以及interRAT-NeedForGaps中的任一项。
  11. 一种提升终端设备测量能力的方法,其特征在于,包括:
    终端设备发送第一信息至网络设备,所述第一信息用于指示所述终端设备在异频测量时是否需要测量间隔;
    所述终端设备通过载波聚合CA技术驻留在第一小区与第二小区,其中所述第一小区与所述第二小区为LTE小区,其中所述第一小区为主小区;
    所述网络设备发送第二信息至所述终端设备,所述第二信息用于测量第三小区的网络参数,所述第三小区为NR小区,所述第二信息包括测量间隔;
    当所述终端设备在所述测量间隔内没有搜索到所述第三小区,所述终端设备暂停所述第二小区的数据收发;
    所述终端设备测量所述第三小区的网络参数。
  12. 如权利要求11所述的方法,其特征在于,所述方法进一步包括:
    所述终端设备根据所述第三小区的网络参数发送测量报告至所述网络设备。
  13. 如权利要求12所述的方法,其特征在于,所述终端设备暂停所述第二小区的数据收发包括:
    所述终端设备降低多输入多输出的能力。
  14. 如权利要求12所述的方法,其特征在于,所述终端设备在所述测量间隔内没有搜索到所述第三小区具体包括:
    所述测量间隔不包括所述第三小区的同步信号。
  15. 如权利要求12所述的方法,其特征在于,所述第二消息为RRC connection reconfigured消息。
  16. 如权利要求11所述的方法,其特征在于,所述终端设备测量所述第三小区的网络参数具体包括:
    所述终端设备通过所述第二小区占用的接收通道进行测量所述第三小区的网络参数。
  17. 一种芯片系统,包括:
    存储器,存储有指令;
    处理器,
    接口,用于将接收代码指令并传输至所述处理器,所述处理器用于运行所述代码指令以执行方法:
    终端设备发送第一信息至网络设备,所述第一信息用于指示所述终端设备在异频测量时是否需要测量间隔;
    所述终端设备通过载波聚合CA技术驻留在第一小区与第二小区,其中所述第一小区与所述第二小区为LTE小区,其中所述第一小区为主小区;
    所述网络设备发送第二信息至所述终端设备,所述第二信息用于测量第三小区的网络参数,所述第三小区为NR小区,所述第二信息包括测量间隔;
    当所述终端设备在所述测量间隔内没有搜索到所述第三小区,所述终端设备暂停所述第二小区的数据收发;
    所述终端设备测量所述第三小区的网络参数。
  18. 如权利要求17所述的芯片系统,其特征在于,所述代码指令还包括:
    根据所述第三小区的网络参数发送测量报告至所述网络设备。
  19. 如权利要求17所述的芯片系统,其特征在于,所述终端设备暂停所述第二小区的数据收发包括:
    所述终端设备降低多输入多输出的能力。
PCT/CN2020/106379 2019-08-02 2020-07-31 一种提升终端设备测量能力的方法、芯片以及终端设备 WO2021023124A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/632,079 US20220279402A1 (en) 2019-08-02 2020-07-31 Method for Enhancing Measurement Capability of Terminal Device, Chip, and Terminal Device
EP20850036.3A EP4007354A4 (en) 2019-08-02 2020-07-31 METHOD FOR IMPROVING THE MEASUREMENT CAPABILITY OF A TERMINAL DEVICE, AND CHIP AND TERMINAL DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910712953.3 2019-08-02
CN201910712953.3A CN112312429B (zh) 2019-08-02 2019-08-02 一种提升终端设备测量能力的方法、芯片以及终端设备

Publications (1)

Publication Number Publication Date
WO2021023124A1 true WO2021023124A1 (zh) 2021-02-11

Family

ID=74486544

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/106379 WO2021023124A1 (zh) 2019-08-02 2020-07-31 一种提升终端设备测量能力的方法、芯片以及终端设备

Country Status (4)

Country Link
US (1) US20220279402A1 (zh)
EP (1) EP4007354A4 (zh)
CN (2) CN112312429B (zh)
WO (1) WO2021023124A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114375020A (zh) * 2021-12-29 2022-04-19 中国电信股份有限公司 一种终端行为检测方法、装置、电子设备及存储介质

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11799710B2 (en) * 2020-12-10 2023-10-24 Qualcomm Incorporated Techniques for signaling a source of dominant noise at a user equipment
CN113329421B (zh) * 2021-05-18 2022-09-06 Oppo广东移动通信有限公司 频点测量方法及装置、芯片、设备、存储介质
CN113329482B (zh) * 2021-05-21 2022-07-29 Oppo广东移动通信有限公司 一种功耗控制方法、装置、设备及计算机存储介质
CN116074887A (zh) * 2021-11-04 2023-05-05 维沃移动通信有限公司 上报方法、装置及终端
WO2023184254A1 (zh) * 2022-03-30 2023-10-05 北京小米移动软件有限公司 一种传输测量配置信息的方法、装置及可读存储介质
WO2024007344A1 (zh) * 2022-07-08 2024-01-11 北京小米移动软件有限公司 测量间隔配置方法及装置
CN117676688A (zh) * 2022-08-26 2024-03-08 大唐移动通信设备有限公司 测量上报方法、装置、终端及网络设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101873646A (zh) * 2009-04-27 2010-10-27 大唐移动通信设备有限公司 一种多载波聚合系统的测量间隙的配置方法及装置
CN102595475A (zh) * 2011-01-06 2012-07-18 中兴通讯股份有限公司 一种上报测量能力的方法及ue
CN103270787A (zh) * 2010-11-08 2013-08-28 高通股份有限公司 多载波系统中的频率间测量控制
WO2015016177A1 (ja) * 2013-07-30 2015-02-05 株式会社Nttドコモ 移動局及び無線基地局
CN106304128A (zh) * 2015-05-18 2017-01-04 中兴通讯股份有限公司 一种多载波异频测量间隙配置方法、系统、基站和终端
CN106535215A (zh) * 2015-09-11 2017-03-22 中国移动通信集团公司 一种载波聚合下的增强测量方法和装置
CN109803304A (zh) * 2017-11-16 2019-05-24 维沃移动通信有限公司 测量间隔的指示方法和设备

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101784075B (zh) * 2009-01-21 2012-09-19 电信科学技术研究院 一种配置测量间隙的方法、基站和终端
CN101932045B (zh) * 2009-06-24 2014-11-05 中兴通讯股份有限公司 载波聚合中测量结果的上报方法及用户设备
EP2395785B8 (en) * 2010-06-11 2014-02-26 Intel Mobile Communications GmbH Method for controlling measurements in a wireless telecommunications terminal
US9775063B2 (en) * 2011-02-15 2017-09-26 Telefonaktiebolaget Lm Ericsson (Publ) Bandwidth-based initiation of handover for reference signal measurements
EP3240326B1 (en) * 2011-08-15 2019-11-27 Telefonaktiebolaget LM Ericsson (publ) Methods and nodes for handling measurements in a wireless communication system
US9848340B2 (en) * 2012-05-18 2017-12-19 Telefonaktiebolaget Lm Ericsson (Publ) Technique for performing cell measurement on at least two cells
WO2014184602A1 (en) * 2013-05-15 2014-11-20 Blackberry Limited Method and system for the allocation of measurement gaps in a carrier aggregation environment
US9894547B2 (en) * 2014-04-29 2018-02-13 Qualcomm Incorporated Dynamic update of UE capability for inter-frequency and inter-RAT measurements
KR102365123B1 (ko) * 2014-04-30 2022-02-21 엘지전자 주식회사 무선 통신 시스템에서 측정 갭을 구성하는 방법 및 장치
WO2015170579A1 (ja) * 2014-05-09 2015-11-12 株式会社Nttドコモ ユーザ装置、基地局及び方法
US10349371B2 (en) * 2014-06-23 2019-07-09 Lg Electronics Inc. Method for performing positioning in wireless communication system, and apparatus therefor
US10028279B2 (en) * 2014-12-19 2018-07-17 Futurewei Technologies, Inc. Communications in a wireless network for carrier selection and switching
CN105307190B (zh) * 2015-11-06 2019-01-15 东莞酷派软件技术有限公司 一种基于非授权频谱的rssi配置方法、测量方法和相关设备
CN107770824B (zh) * 2016-08-19 2020-03-10 华为技术有限公司 用于小区切换的方法、用户设备及网络设备
CN108282799B (zh) * 2017-01-06 2022-04-05 中兴通讯股份有限公司 一种测量配置方法、装置、网元及系统
CN110915252B (zh) * 2017-11-27 2021-11-19 华为技术有限公司 异频小区测量方法、设备、芯片及存储介质

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101873646A (zh) * 2009-04-27 2010-10-27 大唐移动通信设备有限公司 一种多载波聚合系统的测量间隙的配置方法及装置
CN103270787A (zh) * 2010-11-08 2013-08-28 高通股份有限公司 多载波系统中的频率间测量控制
CN102595475A (zh) * 2011-01-06 2012-07-18 中兴通讯股份有限公司 一种上报测量能力的方法及ue
WO2015016177A1 (ja) * 2013-07-30 2015-02-05 株式会社Nttドコモ 移動局及び無線基地局
CN106304128A (zh) * 2015-05-18 2017-01-04 中兴通讯股份有限公司 一种多载波异频测量间隙配置方法、系统、基站和终端
CN106535215A (zh) * 2015-09-11 2017-03-22 中国移动通信集团公司 一种载波聚合下的增强测量方法和装置
CN109803304A (zh) * 2017-11-16 2019-05-24 维沃移动通信有限公司 测量间隔的指示方法和设备

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
3GPP TS36.214
ERICSSON: "On UE capability for s-Measure per reporting configuration", 3GPP DRAFT; R2-1817647 - CR1668 TO 36.306 ON S-MEASURE CONFIGURATION AND UE BEHAVIOR, vol. RAN WG2, 2 November 2018 (2018-11-02), Spokane, US, pages 1 - 5, XP051481545 *
See also references of EP4007354A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114375020A (zh) * 2021-12-29 2022-04-19 中国电信股份有限公司 一种终端行为检测方法、装置、电子设备及存储介质
CN114375020B (zh) * 2021-12-29 2024-03-26 中国电信股份有限公司 一种终端行为检测方法、装置、电子设备及存储介质

Also Published As

Publication number Publication date
US20220279402A1 (en) 2022-09-01
EP4007354A4 (en) 2022-09-14
CN114844614A (zh) 2022-08-02
CN112312429B (zh) 2022-05-10
EP4007354A1 (en) 2022-06-01
CN112312429A (zh) 2021-02-02

Similar Documents

Publication Publication Date Title
WO2021023124A1 (zh) 一种提升终端设备测量能力的方法、芯片以及终端设备
CN112584425B (zh) 一种测量能力上报的网络系统、电子设备及芯片系统
KR102645505B1 (ko) 정보 전송 방법 및 장치
US9119211B2 (en) RF chain management in a carrier aggregation capable wireless communication device
US9125240B2 (en) Method for simultaneously receiving LTE and 1X in SRLTE device
KR101443993B1 (ko) 다수의 캐리어를 사용하는 무선 통신에서의 측정 수행
US9544835B2 (en) Method and apparatus for connection management
KR20220062453A (ko) 액세스 제어 방법, 단말 기기, 기지국 및 저장 매체
JP7221959B2 (ja) 高速セルアクセスのための測定
WO2011150842A1 (zh) 测量间隙配置方法、终端及网络设备
US20190159097A1 (en) Method and apparatus for transmitting data
KR20180052607A (ko) 채널 측정과 측정 결과 리포팅 방법 및 장치
JP2013516903A (ja) 結合されたバックグラウンドおよび20/40共存スキャン
WO2022002016A1 (zh) 一种邻区测量方法及其装置
US9838898B2 (en) Method, apparatus and computer program for measurment report messages transmission in a wireless device
WO2020061899A1 (zh) 小区切换的方法和装置
US20240147564A1 (en) Communication apparatus, base station, and communication method
WO2023282353A1 (ja) 通信装置、基地局及び通信方法
WO2021143283A1 (zh) 在测量时隙内收发信号的方法、网元设备及可读存储介质
US20240236711A9 (en) Communication apparatus, base station, and communication method
WO2024032594A1 (zh) 一种通信方法及通信装置
WO2023282303A1 (ja) 通信装置、基地局及び通信方法
CN113543192B (zh) 一种测量配置方法及装置
WO2023282304A1 (ja) 通信装置、基地局及び通信方法
WO2023282352A1 (ja) 通信装置、基地局及び通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20850036

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020850036

Country of ref document: EP

Effective date: 20220224