WO2021022963A1 - 可达性区域配置方法、设备及装置 - Google Patents

可达性区域配置方法、设备及装置 Download PDF

Info

Publication number
WO2021022963A1
WO2021022963A1 PCT/CN2020/100810 CN2020100810W WO2021022963A1 WO 2021022963 A1 WO2021022963 A1 WO 2021022963A1 CN 2020100810 W CN2020100810 W CN 2020100810W WO 2021022963 A1 WO2021022963 A1 WO 2021022963A1
Authority
WO
WIPO (PCT)
Prior art keywords
user terminal
area
reachability
reachability area
message
Prior art date
Application number
PCT/CN2020/100810
Other languages
English (en)
French (fr)
Inventor
周叶
范江胜
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Publication of WO2021022963A1 publication Critical patent/WO2021022963A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W60/00Affiliation to network, e.g. registration; Terminating affiliation with the network, e.g. de-registration

Definitions

  • the present disclosure relates to the field of wireless communication technology, and in particular to a method, equipment and device for configuring reachability areas.
  • the network can page user terminals that are not currently connected to the network. Its uses include actively transmitting data to the user terminal or instructing the user terminal to access the network. According to related technologies, if the user terminal is registered but not connected to the network, the network does not know where the user terminal is currently located, or even which cell it currently resides in.
  • the network can configure a reachability area for the user terminal when it has already connected to the network.
  • the reachability area may be expressed as a list of tracking areas (Tracking Area, TA), a list of radio access network areas (Radio Access Network Area, RANA), or a list of cells.
  • TA Track Area
  • RANA Radio Access Network Area
  • the network When the network needs to page the user terminal, the network usually page the user terminal on all cells within its reachability area.
  • each time the user terminal performs a cell reselection operation it will detect whether the reselected camping cell belongs to its current reachability area. If it is found that the resident cell after reselection is not within its current reachability area, the user terminal will usually take the initiative to access the network, and then the network will usually reconfigure an reachability area for it.
  • the present disclosure provides a method, equipment, and device for configuring an accessibility zone to reduce signaling overhead.
  • NAS message RRC message, Xn interface message, NG interface message.
  • the registration request message in the RRC message is sent after the user terminal determines that it is located outside the configured reachability area according to its own positioning information.
  • the RRC message is an RRC message sent during the RRC connection restoration process after the user terminal in the RRC inactive state determines that it is located outside the configured reachability area according to its own positioning information.
  • it further includes:
  • the reachability area configuration of the user terminal is returned to the user terminal through the RRC release message.
  • the configuration of the reachability area according to the geographic location is configured by the AMF as required; or, by the NG-RAN node as required.
  • the NG-RAN node configures the reachability area as required, the configured reachability area is notified to the user terminal through an RRC release message.
  • it further includes:
  • the AMF sends a paging message for the user terminal to the NG-RAN node, where the paging message carries the reachability area of the user terminal, and the reachability area is used for the NG-RAN node to initiate paging.
  • it further includes:
  • the NG-RAN node sends to other NG-RAN nodes a paging message for a user terminal in the RRC inactive state, and the paging message carries the reachability area of the user terminal, and the reachability area is used For other NG-RAN nodes to initiate paging.
  • the NG-RAN node configures the reachability area according to the geographic location, it further includes:
  • the NG-RAN node notifies other NG-RAN nodes of the reachability area of the user terminal, and the reachability area is used for other NG-RAN nodes to perform incremental reconfiguration of the reachability area.
  • the reachability area is configured according to the geographic location in one of the following ways or a combination:
  • the reachability area includes several areas, wherein for each area, there is at least one moment in a preset time period, at which the geographic location of the user terminal is located in the area; or,
  • the reachability area includes several areas. For each area, the distance between a certain point in the area and the geographic location of the user terminal is less than or equal to a second preset threshold.
  • the accessibility area is divided by latitude and longitude positions.
  • the embodiment of the present disclosure provides a reachability area configuration method, including:
  • the user terminal receives the message carrying the reachability area information sent by the network side, where the reachability area refers to the paging range for paging the user terminal in the wireless communication system, and the reachability area is
  • the network side is configured according to the geographic location of the user terminal;
  • the user terminal configures the reachability area according to the reachability area information.
  • it further includes:
  • the user terminal reports the geographic location of the user terminal according to instructions from the network side; or,
  • the user terminal reports the geographic location of the user terminal after determining that it is located outside the configured reachability area according to its own positioning information.
  • the user terminal reports the geographic location of the user terminal through one or a combination of the following messages:
  • the embodiment of the present disclosure provides a network side device, including:
  • Transceiver used to receive and send data under the control of the processor.
  • it further includes:
  • the geographic location of the user terminal is obtained through one or a combination of the following messages:
  • NAS message RRC message, Xn interface message, NG interface message.
  • the RRC message is an RRC message sent during the RRC connection restoration process after the user terminal in the RRC inactive state determines that it is located outside the configured reachability area according to its own positioning information.
  • it further includes:
  • the reachability area configuration of the user terminal is returned to the user terminal through the RRC release message.
  • it further includes:
  • the user terminal After the AMF configures the reachability area as required, the user terminal is notified of the configured reachability area through a NAS message; or,
  • the NG-RAN node configures the reachability area as required, the configured reachability area is notified to the user terminal through an RRC release message.
  • the AMF sends a paging message for the user terminal to the NG-RAN node, where the paging message carries the reachability area of the user terminal, and the reachability area is used for the NG-RAN node to initiate paging.
  • it further includes:
  • the NG-RAN node sends to other NG-RAN nodes a paging message for a user terminal in the RRC inactive state, and the paging message carries the reachability area of the user terminal, and the reachability area is used For other NG-RAN nodes to initiate paging.
  • the AMF configures the reachability area according to the geographic location, it further includes:
  • AMF informs the NG-RAN node of the reachability area of the user terminal, and the reachability area is used for the NG-RAN node to configure or maintain reachability for the user terminal when the user terminal is moved into the RRC inactive state Area, and/or use the reachability area for radio access network (Radio Access Network, RAN) paging.
  • radio access network Radio Access Network, RAN
  • the NG-RAN node configures the reachability area according to the geographic location, it further includes:
  • the reachability area is configured according to the geographic location in one of the following ways or a combination:
  • the reachability area includes several areas, wherein for each area, there is at least one moment in a preset time period, at which the geographic location of the user terminal is located in the area; or,
  • An embodiment of the present disclosure provides a user terminal, including:
  • the processor is used to read the program in the memory and execute the following process:
  • the reachability area refers to the paging range for paging the user terminal in the wireless communication system, and the reachability area is the network side Configured according to the geographic location of the user terminal;
  • Transceiver used to receive and send data under the control of the processor.
  • it further includes:
  • the user terminal reports the geographic location of the user terminal according to instructions from the network side; or,
  • the user terminal reports the geographic location of the user terminal through one or a combination of the following messages:
  • the embodiment of the present disclosure provides a reachability area configuration device, including:
  • the obtaining module is used to obtain the geographic location of the user terminal
  • the embodiment of the present disclosure provides a reachability area configuration device, including:
  • the receiving module is configured to receive a message carrying reachability area information sent by the network side, where the reachability area refers to the paging range for paging the user terminal in the wireless communication system, and the reachability area
  • the sexual area is configured on the network side according to the geographic location of the user terminal;
  • the configuration module is used to configure the reachability area according to the reachability area information.
  • An embodiment of the present disclosure provides a computer-readable storage medium, and the computer-readable storage medium stores a computer program that executes the above-mentioned accessibility area configuration method.
  • the reachable area is configured according to the geographic location of the user terminal, so that the wireless communication system can be configured more flexibly and optimally
  • the reachability area avoids the problem of too rough configuration of the reachability area at the cell granularity. Since the paging and access costs are proportional to the number of cells that perform paging and access, it can significantly reduce the paging costs or access Incoming signaling overhead.
  • FIG. 1 is a schematic diagram of a configuration relationship between a terminal and a tracking area in an embodiment of the disclosure
  • FIG. 2 is a schematic diagram of an implementation process of a method for configuring a reachability area on the network side in an embodiment of the disclosure
  • FIG. 4 is a schematic diagram of the implementation process of the reachability area configuration in the first embodiment of the disclosure.
  • FIG. 5 is a schematic diagram of the implementation process of the reachability area configuration in the second embodiment of the disclosure.
  • FIG. 7 is a schematic diagram of the implementation process of the reachability area configuration in the fourth embodiment of the disclosure.
  • FIG. 10 is a schematic diagram of the reachability area in the seventh embodiment of the disclosure.
  • FIG. 11 is a schematic diagram of the reachability area in the eighth embodiment of the disclosure.
  • FIG. 13 is a schematic diagram 2 illustrating the configuration of the reachability area in the ninth embodiment of the disclosure.
  • FIG. 14 is a schematic diagram 1 illustrating the configuration of the reachability area in the tenth embodiment of the disclosure
  • 16 is a schematic diagram illustrating the configuration of the reachability area in the eleventh embodiment of the disclosure.
  • 20 is a schematic diagram of the implementation process of the user terminal triggering the configuration of the reachability area through the RRC message in the fifteenth embodiment of the disclosure
  • FIG. 21 is a schematic diagram of a core network paging implementation process in the sixteenth embodiment of the disclosure.
  • FIG. 22 is a schematic diagram of the implementation flow of RAN paging in Embodiment 17 of the disclosure.
  • FIG. 23 is a schematic diagram of the implementation process of the core network transferring the reachability area to the RAN node in the eighteenth embodiment of the disclosure.
  • 24 is a schematic diagram of the implementation process of transferring reachability areas between RAN nodes in the nineteenth embodiment of the disclosure.
  • 25 is a schematic diagram of the structure of a network side device in an embodiment of the disclosure.
  • FIG. 26 is a schematic diagram of the structure of a user terminal in an embodiment of the disclosure.
  • RRC Radio Resource Control
  • RRC_IDLE Radio Resource Control
  • RRC_INACTIVE Radio Resource Control
  • RNA RAN-based Notification Area
  • the registration area is configured by the Access and Mobility Management Function (AMF), and its configuration format is a TA list.
  • RNA is configured by the Next Generation Radio Access Network (NG-RAN) node.
  • TA list radio access network area
  • RANA radio access network area
  • cell list The cell broadcast contains TA information for user terminals to detect. If the cell belongs to a certain RANA, then the broadcast will also contain RANA information for the user terminal to detect.
  • Non-Terrestrial Network For non-terrestrial networks, in order to achieve global wireless access coverage, the industry has proposed a non-terrestrial network (Non-Terrestrial Network, NTN) architecture.
  • the non-terrestrial network refers to placing at least a part of the radio access network elements in a non-terrestrial carrier (such as a low-orbit satellite), which is called a non-terrestrial load.
  • the user terminal will be connected to the non-ground load, and the non-ground load is then connected to the network element fixed on the ground.
  • the non-ground load is the radio frequency transponder, the non-ground load is the next-generation base station (gNB) Distributed Unit (DU), and the non-ground load is the gNB.
  • gNB next-generation base station
  • DU Distributed Unit
  • the coverage area of a single cell is often large.
  • the movement of user terminals is relatively slow, which means that it is no longer necessary to reduce the need for user terminals to reconnect due to moving out of the reachability area.
  • the reachability area is configured to be larger, so that the linearity of the reachability area is no longer significantly greater than the linearity of the cell coverage. In this case, the failure of the network to grasp the precise geographic location of the user terminal prevents the network from optimally configuring the reachability area for the user terminal.
  • Figure 1 is a schematic diagram of the configuration relationship between the terminal and the tracking area, taking the configuration of the registration area as an example. Assuming that all TAs under the jurisdiction of an operator are rectangles that do not overlap each other, as shown in Figure 1, due to changes in the user terminal itself, or changes in the coverage area of the registration area (for non-terrestrial networks, because of cell coverage The range usually changes rapidly, and the coverage area of the registration area itself usually changes rapidly accordingly), and the user terminal may be in the coverage of different TAs.
  • the user terminal does not report geographic location information when registering, and the AMF will not know the current location of the user terminal, and can only learn through the tracking area identity (TAI) reported by the access layer To the coverage of which TA the user terminal is in when accessing.
  • TAI tracking area identity
  • the AMF will configure the registration area of the user terminal to not only include the reported TA but also All TAs around TA.
  • AMF can only know that these two user terminals are currently under the coverage of TA5, so it will The registration areas of the two user terminals are configured as TA1 to TA9.
  • the AMF When the two user terminals enter the idle state, and the AMF needs to page the two user terminals, the AMF must instruct all cells in TA1 to TA9 to page.
  • the user terminal has very limited mobility, and there is a high probability that it is still near the geographic location at the time of registration.
  • terminal A it is still in the coverage of TA5 under normal circumstances, and the behavior of paging the terminal A in other TAs is almost certainly useless.
  • terminal B since its registration location is close to the boundary of TA5, when AMF initiates a paging, the probability that terminal B is under the coverage of TA5, TA2, TA6, and even TA3 is considerable. Paging terminal B under these TAs It is more useful. Relatively speaking, paging operations in TA1, TA4, TA7, TA8 and TA9 are almost certainly useless.
  • the network side usually does not know the precise geographic location of the user terminal, but only knows which cell or which beam the user terminal is in.
  • the coverage area of a cell is usually not too large, and the user terminal can easily move out of the coverage of the cell.
  • the network In order to prevent user terminals from frequently moving out of the reachability area and reconnect to the network, increasing energy consumption and corresponding signaling overhead, the network usually configures a larger reachability area for user terminals.
  • the cost of this is paging.
  • the applicant has noticed that in actual network applications, the proportion of paging signaling in all signaling is often quite considerable. Since the line of the reachability area is significantly larger than the line of the cell coverage area, the network can compare with the information of which cell the user terminal is currently under without knowing the precise geographic location of the user terminal. Optimal configuration of reachability areas.
  • the coverage area of a single cell is always significantly larger than the cell area in the ground wireless communication system, and each cell moves rapidly at a speed of several kilometers per second. This makes the coverage experience of different geographic locations completely different.
  • the movement of the user terminal appears to be relatively slow, which means that it is no longer necessary to configure the reachability area for the purpose of reducing the frequency at which the user terminal reconnects to the network after moving out of the reachability area. Therefore, it is unnecessary to configure the reachability area to be significantly larger than the cell coverage.
  • the network can directly record the geographic location of the user terminal, and then selectively select beams that currently cover the geographic location or its surroundings for paging.
  • the embodiment of the present disclosure proposes a reachability area configuration scheme to optimize the paging range, so that the wireless communication network can directly configure the reachability area based on the geographic location of the user terminal, avoiding the need for related technologies. Many issues based on cell configuration reachability area.
  • Figure 2 is a schematic diagram of the implementation process of the reachability area configuration method on the network side. As shown in the figure, it can include:
  • Step 201 Obtain the geographic location of the user terminal
  • Step 202 Configure a reachability area according to the geographic location, where the reachability area refers to a paging range for paging the user terminal in a wireless communication system.
  • the reachability area is configured according to the geographic location information of the user terminal, which will be described in detail below.
  • the geographic location of the user terminal can be obtained through one or a combination of the following messages:
  • NAS message RRC message, Xn interface message, NG interface message.
  • the above messages are used in the implementation because these messages are relatively typical messages; however, in theory, other messages or methods are also possible, as long as the geographic location of the user terminal can be communicated to the network side.
  • the above messages are only used to teach those skilled in the art how to implement the present disclosure, but it does not mean that the above messages can only be used.
  • the corresponding method of obtaining the geographic location of the user terminal can be determined according to practical needs.
  • different methods can be used to notify the user terminal of the configured reachability area. Specifically, it can further include:
  • the reachability area configuration of the user terminal is returned to the user terminal through the RRC release message.
  • the user terminal can also be instructed to report location information, so it can further include:
  • an embodiment of the present disclosure provides a reachability area configuration method, which will be described below.
  • Figure 3 is a schematic diagram of the implementation process of the reachability area configuration method on the user terminal side. As shown in the figure, it may include:
  • Step 301 The user terminal receives the message carrying the reachability area information sent by the network side, where the reachability area refers to the paging range for paging the user terminal in the wireless communication system, and the reachability area
  • the sexual area is configured on the network side according to the geographic location of the user terminal;
  • Step 302 The user terminal configures the reachability area according to the reachability area information.
  • it can further include:
  • the user terminal reports the geographic location of the user terminal according to instructions from the network side; or,
  • the user terminal reports the geographic location of the user terminal after determining that it is located outside the configured reachability area according to its own positioning information.
  • the user terminal can report the geographic location of the user terminal through one or a combination of the following messages:
  • the registration request message in the RRC message may be sent by the user terminal after determining that it is located outside the configured reachability area according to its own positioning information.
  • the RRC message may be an RRC message sent by a user terminal in an RRC inactive state after determining that it is outside the configured reachability area according to its own positioning information.
  • the user terminal receives the message carrying the reachability area information sent by the network side:
  • the message that the user terminal receives from the network side and carries the reachability area information is a NAS registration acceptance message;
  • the message carrying the reachability area information sent by the user terminal from the network side is a NAS message;
  • the message carrying the reachability area information sent by the user terminal from the network side is a NAS admission message;
  • the message carrying the reachability area information sent by the user terminal from the network side is an RRC release message;
  • the user terminal receiving the message carrying the reachability area information sent by the network side is an RRC release message.
  • it is the AMF or NG-RAN node that configures the reachability area according to the geographic location of the user terminal.
  • the user terminal receives the message carrying the reachability area information sent by the network side:
  • the message carrying the reachability area information sent by the user terminal from the network side is a NAS message; or,
  • the message carrying the reachability area information sent by the user terminal from the network side is an RRC release message.
  • the registration request message includes geographic location information, and AMF configures the registration area accordingly.
  • Figure 4 is a schematic diagram of the implementation process of the reachability area configuration in the first embodiment. As shown in the figure, it mainly includes:
  • Step 401 The user terminal sends a NAS registration request message to the AMF, which contains geographic location information.
  • the geographic location information here is the latitude and longitude location information, or an equivalent parameter that can calculate the latitude and longitude location information.
  • Step 402 The AMF configures a registration area for the user terminal according to the geographic location information.
  • the reachability area may be a registration area or an area with similar functions named in other names.
  • Step 403 The AMF feeds back a NAS registration acceptance message to the user terminal, which contains the configured registration area, which contains the configured reachability area coded by geographic location.
  • the NAS message used for illustration is a general NAS message, that is, the general NAS message contains geographic location information, and the AMF configures the registration area accordingly.
  • Figure 5 is a schematic diagram of the implementation process of the reachability area configuration in the second embodiment. As shown in the figure, it mainly includes:
  • Step 501 The AMF sends a NAS message to the user terminal, which contains an instruction to request the user terminal to report geographic location information.
  • the geographic location information here is the latitude and longitude location information, or an equivalent parameter that can calculate the latitude and longitude location information.
  • This step is optional, that is, it may further include: instructing the user terminal to report the geographic location of the user terminal.
  • Step 502 The user terminal sends a NAS message to the AMF, which contains geographic location information.
  • Step 503 The AMF configures a registration area for the user terminal according to the geographic location information.
  • Step 504 The AMF sends a NAS message to the user terminal, which contains the configured registration area.
  • the uplink RRC message contains geographic location information
  • the NG-RAN node reports the geographic location information to the AMF, and the AMF configures the registration area accordingly.
  • Figure 6 is a schematic diagram of the implementation process of the reachability area configuration in the third embodiment. As shown in the figure, it mainly includes:
  • Step 601 The NG-RAN node sends an RRC message to the user terminal, which contains an instruction to request the user terminal to report geographic location information.
  • the geographic location information here is the latitude and longitude location information, or an equivalent parameter that can calculate the latitude and longitude location information.
  • This step is optional, that is, it may further include: instructing the user terminal to report the geographic location of the user terminal.
  • Step 602 The user terminal sends an RRC message to the NG-RAN node, which contains geographic location information.
  • Step 603 The NG-RAN node immediately or at a later time sends an NGAP message to the AMF, which contains geographic location information.
  • This NGAP message can be an NGAP protocol data unit (Protocol Data Unit, PDU) session resource release response message, NGAP PDU session resource modification response message, NGAP PDU session resource notification message, NGAP UE context release completion message, NGAP UE context modification response message Message, NGAP RRC inactive state transition report message, NGAP switch notification message, NGAP path switch message, NGAP initial UE message, NGAP uplink NAS transmission message, NGAP location report message, etc.
  • PDU Network Data Unit
  • Step 604 The AMF configures a registration area for the user terminal according to the geographic location information.
  • Step 605 The AMF sends a NAS admission message to the user terminal, which contains the configured registration area.
  • the RRC message used for illustration is a general RRC message, that is, the general RRC message contains geographic location information, and the NG-RAN node configures RNA accordingly.
  • Figure 7 is a schematic diagram of the implementation process of the reachability area configuration in the fourth embodiment. As shown in the figure, it mainly includes:
  • Step 701 The NG-RAN node sends an RRC message to the user terminal, which contains an instruction to request the user terminal to report geographic location information.
  • the geographic location information here is the latitude and longitude location information, or an equivalent parameter that can calculate the latitude and longitude location information.
  • This step is optional, that is, it may further include: instructing the user terminal to report the geographic location of the user terminal.
  • Step 702 The user terminal sends an RRC message to the NG-RAN node, which contains geographic location information.
  • Step 703 The NG-RAN node immediately, or at a later time, configures RNA for the user terminal according to the geographic location information.
  • Step 704 The NG-RAN node sends an RRC release message to the user terminal to instruct the user terminal to enter the RRC inactive state, and the message contains the configured RNA.
  • the NG-RAN node obtains the geographic location information of the user terminal through the Xn interface, and configures RNA accordingly.
  • the NG-RAN node that has been configured with the reachability area for the terminal is called the old NG-RAN node, and the NG-RAN node that needs the reachability area of the user terminal to perform various possible services is called the new NG-RAN node.
  • NG-RAN node the NG-RAN node.
  • Figure 8 is a schematic diagram of the implementation process of the reachability area configuration in the fifth embodiment, as shown in the figure, mainly including:
  • Step 801 The old NG-RAN node sends an Xn Application Protocol (XnAP) interface message to the new NG-RAN node, which contains the geographic location information of the user terminal.
  • the geographic location information here is the latitude and longitude location information, or an equivalent parameter that can calculate the latitude and longitude location information.
  • Step 802 The new NG-RAN node immediately, or at a later time, configures RNA for the user terminal according to the geographic location information.
  • Step 803 The new NG-RAN node sends an RRC release message to the user terminal to instruct the user terminal to enter the RRC inactive state, and the message contains the configured RNA.
  • Embodiment 6 is a diagrammatic representation of Embodiment 6
  • the NG-RAN node obtains the geographic location information of the user terminal through the NG interface, and configures RNA accordingly.
  • Figure 9 is a schematic diagram of the implementation process of the reachability area configuration in the sixth embodiment. As shown in the figure, it mainly includes:
  • Step 901 AMF sends a NG Application Process Protocol (NGAP) interface message to the NG-RAN node, which contains the geographic location information of the user terminal.
  • NGAP NG Application Process Protocol
  • Step 902 The NG-RAN node immediately, or at a later time, configures RNA for the user terminal according to the geographic location information.
  • Step 903 The NG-RAN node sends an RRC release message to the user terminal to instruct the user terminal to enter the RRC inactive state, and the message contains the configured RNA.
  • the accessibility area is divided by latitude and longitude positions.
  • Figure 10 is a schematic diagram of the accessibility area in the seventh embodiment. As shown in the figure, the accessibility area is an area within a circle with a certain point as the center and a radius not exceeding a certain value.
  • the accessibility area is indicated by the geographic location of the center of the circle and the radius of the circle.
  • the corresponding signaling includes at least one of the following two items:
  • the geographic location of the center of the circle can be the longitude and latitude position information of the point, or an equivalent parameter that can calculate the longitude and latitude position information, such as its three-dimensional position vector in the geocentric coordinate system.
  • Ringius can be length information in kilometers, meters or other length units, or an equivalent parameter that can calculate the radius and length of the circle, such as the diameter of the circle, the perimeter of the circle, and the radius of the circle relative to the ground.
  • the geographic location of the center of the circle can be defaulted. If the default is the default value.
  • the default value may be the geographic location information reported by the corresponding user terminal that the sender of the signaling received last time.
  • Embodiment 8 is a diagrammatic representation of Embodiment 8
  • Fig. 11 is a schematic diagram of the accessibility area in the eighth embodiment. As shown in the figure, the accessibility area is an area enclosed by several longitude and latitude lines.
  • the accessibility area is indicated by the latitude and longitude of the latitude and longitude lines surrounding the area.
  • the corresponding signaling should include the latitude and longitude information of at least one of the above-mentioned longitude and latitude lines, or the longitude and latitude of at least one of the above longitude and latitude lines can be calculated Information equivalent parameters, such as the center position and east-west length of the rectangle, the center position of the rectangle and the north-south length, or a preset index that can represent latitude and longitude, etc.
  • the reachability area can be configured according to the geographic location in one of the following ways or a combination:
  • the reachability area includes several areas, wherein for each area, there is at least one moment in a preset time period, and the distance between a certain point in the area and the geographic location of the user terminal at that moment Less than or equal to the first preset threshold; or,
  • the reachability area includes several areas, wherein for each area, there is at least one moment in a preset time period, at which the geographic location of the user terminal is located in the area; or,
  • the reachability area includes several areas, and for each area, the distance between a certain point in the area and the geographic location of the user terminal is less than or equal to a second preset threshold.
  • Configuration method one of the registration area.
  • the reachability area includes several areas. For each area, there is at least one moment in a preset time period. At this moment, a certain point in the area is related to the geographic location of the user terminal. The distance between them is less than or equal to the first preset threshold.
  • Figure 12 is a schematic diagram 1 illustrating the configuration of the reachability area in the ninth embodiment.
  • a certain operator plans a certain geographical area as TA'1 and specifies the current And only when the center of a cell is within the range of TA'1, the cell belongs to TA1.
  • the movement of the satellite itself and the rotation of the earth enable the center of the cell to traverse any place of TA'1. Therefore, there is at least one moment in any place within the dashed box in the above figure, and at this moment the point is covered by the cell belonging to TA1.
  • the dashed frame is referred to as TA"1 in the embodiment.
  • Figure 13 is a schematic diagram 2 illustrating the configuration of the reachability area in the ninth embodiment.
  • two user terminals are now connected to the network: terminal A and terminal B.
  • the network presets a threshold for each of the two terminals, as shown by the radius of the small circle in the figure. The network hopes to properly configure the registration area so that when the user terminal moves within the corresponding small circle, the registration process aimed at obtaining a new registration area will not be triggered in any case because the TA to which the camping cell belongs does not belong to its registration area. .
  • the circle only overlaps with TA"5, and does not overlap with other TAs. Therefore, the network configures the registration area of terminal A as TA5.
  • the circle overlaps with TA"2, TA"3, TA"5, TA"6. Therefore, the network configures the registration area of terminal B as TA2+TA3+TA5+TA6.
  • the reachability area includes several areas, wherein for each area, there is at least one moment in a preset time period, at which the geographic location of the user terminal is located in the area.
  • Figure 14 is a schematic diagram 1 illustrating the configuration of the reachability area in the tenth embodiment.
  • a certain operator plans a certain geographic area as TA'1, and specifies the current And only when the center of a cell is within the range of TA'1, the cell belongs to TA1.
  • the movement of the satellite itself and the rotation of the earth enable the center of the cell to traverse any place of TA'1. Therefore, there is at least one moment in any place within the dashed box in the above figure, and at this moment the point is covered by the cell belonging to TA1.
  • the dashed frame is hereinafter referred to as TA"1.
  • 15 is a schematic diagram 2 illustrating the configuration of the reachability area in the tenth embodiment.
  • two user terminals are now connected to the network: terminal A and terminal B.
  • the network hopes to properly configure the registration area so that the user terminal will not be able to trigger the registration process to obtain a new registration area because the TA to which the camping cell belongs does not belong to its registration area under the premise that the user terminal stays still. .
  • Terminal A is located only inside TA"5, and outside other TA". Therefore, the network configures the registration area of terminal A as TA5.
  • the location of terminal B is inside TA"2, TA"3, TA"5, TA"6. Therefore, the network configures the registration area of terminal B as TA2+TA3+TA5+TA6.
  • Embodiment 11 is a diagrammatic representation of Embodiment 11:
  • the reachability area includes several areas, and for each area, the distance between a certain point in the area and the geographic location of the user terminal is less than or equal to a second preset threshold.
  • Figure 16 is a schematic diagram illustrating the configuration of the reachability area in the eleventh embodiment. As shown in the figure, the network has planned several TAs, including TA1 to TA9.
  • terminal A there are two user terminals accessing the network: terminal A and terminal B.
  • the network presets a threshold for each of these two terminals, as shown by the radius of the small circle in the figure.
  • the network hopes to properly configure the registration area so that when the user terminal moves within the corresponding small circle, it will not be because the camping cell does not broadcast the TAI corresponding to any TA in the registration area of the user terminal.
  • the reserved cell does not belong to its registration area, which triggers the registration process aimed at obtaining a new registration area.
  • the circle only overlaps with TA5, and does not overlap with other TAs. Therefore, the network configures the registration area of terminal A as TA5.
  • the circle overlaps both TA2 and TA5. Therefore, the network configures the registration area of terminal B as TA2+TA5.
  • the reachability area that can be configured according to the geographic location is configured by the AMF as required; or, by the NG-RAN node as required.
  • it can further include:
  • the user terminal After the AMF configures the reachability area as required, the user terminal is notified of the configured reachability area through a NAS message; or,
  • the NG-RAN node configures the reachability area as required, the configured reachability area is notified to the user terminal through an RRC release message.
  • Embodiment 12 is a diagrammatic representation of Embodiment 12
  • the AMF actively configures the reachability area.
  • Figure 17 is a schematic diagram of the implementation process of the reachability area configuration in the twelfth embodiment. As shown in the figure, it mainly includes:
  • Step 1701 AMF actively configures the registration area for the user terminal. For example, during the connection process of the user terminal, due to the position of the user terminal moves, it decides to configure a more suitable reachability area for it.
  • the reachability area may be a registered area, or may be an area with similar functions named in other names.
  • Step 1702 The AMF sends a NAS message to the user terminal, which contains the configured reachability area coded by geographic location.
  • the user terminal which contains the configured reachability area coded by geographic location.
  • Embodiment 13 is a diagrammatic representation of Embodiment 13:
  • the NG-RAN node actively configures the reachability area.
  • Figure 18 is a schematic diagram of the implementation process of the reachability area configuration in the thirteenth embodiment. As shown in the figure, it mainly includes:
  • Step 1801 The NG-RAN node decides to move the user terminal into the RRC inactive state and configures the reachability area for it.
  • the accessibility region can be RNA, or regions with similar functions named in other names.
  • Step 1802 The NG-RAN node sends an RRC release message to the user terminal to instruct the user terminal to enter the RRC inactive state.
  • the message contains the configured reachability area coded by geographic location. For specific coding methods, see the embodiment Seven and embodiment eight.
  • the registration request message may be sent by the user terminal after determining that it is located outside the configured reachability area according to its own positioning information.
  • the user terminal finds that it is located outside the configured reachability area according to its own positioning information, and triggers the registration process.
  • Figure 19 is a schematic diagram of the implementation process of the user terminal triggering the reachability area configuration through the registration request message in the fourteenth embodiment. As shown in the figure, it mainly includes:
  • Step 1901 The user terminal obtains its own geographic location information through a certain method (such as the Global Positioning System (Global Positioning System, GPS), Beidou positioning system, etc.).
  • a certain method such as the Global Positioning System (Global Positioning System, GPS), Beidou positioning system, etc.).
  • Step 1902 The user terminal calculates that its geographic location is outside the previously configured reachability area.
  • the reachability area may be a registered area, or may be an area with similar functions named in other names.
  • Step 1903 The user terminal sends a registration request message to the AMF to request the AMF to configure a new reachability area. Normally, the AMF will reconfigure a reachability area for the user terminal immediately after receiving this registration request message.
  • the RRC message may be an RRC message sent by the user terminal in the RRC inactive state during the RRC connection recovery process after determining that it is located outside the configured reachability area according to its own positioning information.
  • Embodiment 15 is a diagrammatic representation of Embodiment 15:
  • the user terminal in the RRC inactive state finds that it is outside the configured reachability area according to its own positioning information, and triggers the RRC connection recovery process.
  • FIG. 20 is a schematic diagram of the implementation process of the user terminal triggering the reachability area configuration through the RRC message in the fifteenth embodiment. As shown in the figure, it mainly includes:
  • Step 2001 The user terminal in the RRC inactive state obtains its own geographic location information through a certain method (such as GPS, Beidou positioning system, etc.).
  • a certain method such as GPS, Beidou positioning system, etc.
  • Step 2002 The user terminal calculates that its geographic location is outside the previously configured reachability area.
  • the accessibility region can be RNA, or regions with similar functions named in other names.
  • Step 2003 The user terminal triggers the RRC recovery process and sends an RRC recovery message to the NG-RAN node. Normally, the NG-RAN node will immediately reconfigure a reachability area for the user terminal after receiving this RRC recovery message.
  • it can further include:
  • the AMF sends a paging message for the user terminal to the NG-RAN node, where the paging message carries the reachability area of the user terminal, and the reachability area is used for the NG-RAN node to initiate paging.
  • Figure 21 is a schematic diagram of the core network paging implementation process in the sixteenth embodiment. As shown in the figure, it mainly includes:
  • Step 2101 Due to the arrival of downlink data, etc., the AMF needs to page a user terminal.
  • Step 2102 AMF sends a paging message to at least one related NG-RAN node, which contains the identity of the user terminal and the reachability area of the user terminal encoded by geographic location.
  • the reachability area may be a registered area, or may be an area with similar functions named in other names.
  • Step 2103 After receiving the paging message, the NG-RAN node calculates which cells need to perform paging according to the reachability area in the message.
  • Step 2104 The NG-RAN node performs paging in the aforementioned cell.
  • it can further include:
  • the NG-RAN node sends to other NG-RAN nodes a paging message for a user terminal in the RRC inactive state, the paging message carries the reachability area of the user terminal, and the reachability area is used for For other NG-RAN nodes to initiate paging.
  • the implementation of the RAN paging process is explained.
  • the RAN node that has configured the reachability area for the terminal is called the old RAN node
  • the RAN node that needs the reachability area of the user terminal to perform various possible services is called the new RAN node.
  • Figure 22 is a schematic diagram of the implementation flow of RAN paging in the seventeenth embodiment. As shown in the figure, it mainly includes:
  • Step 2201 Due to the arrival of downlink data and other reasons, the old NG-RAN node needs to page a user terminal in the RRC inactive state.
  • Step 2202 The old NG-RAN node sends a RAN paging message to at least one related new NG-RAN node, which contains the identity of the user terminal and the reachability area of the user terminal encoded by geographic location.
  • the accessibility region can be RNA, or regions with similar functions named in other names.
  • Step 2203 After receiving the RAN paging message, the new NG-RAN node calculates which cells need to be paging according to the reachability area in the message.
  • Step 2204 The new NG-RAN node performs paging in the aforementioned cell.
  • the AMF configures the reachability area according to the geographic location, it may further include:
  • AMF informs the NG-RAN node of the reachability area of the user terminal, and the reachability area is used for the NG-RAN node to configure or maintain reachability for the user terminal when the user terminal is moved into the RRC inactive state Area, and/or use the reachability area for RAN paging.
  • Embodiment 18 is a diagrammatic representation of Embodiment 18:
  • Figure 23 is a schematic diagram of the implementation process of the core network transferring the reachability area to the RAN node in the eighteenth embodiment. As shown in the figure, it mainly includes:
  • Step 2301 The AMF configures the NAS layer reachability area for the user terminal.
  • the NAS layer reachability area may be a registered area, or may be an area with similar functions named in other names.
  • Step 2302 In order to support the function of the NG-RAN node to automatically move the user terminal into the RRC inactive state, the AMF needs to inform the NG-RAN node of the above-mentioned NAS layer reachability area, so that the NG-RAN node decides to move the user terminal into the RRC non-active state. In the active state, it can correctly configure or maintain the access layer reachability area (see Embodiment 13 for details), and use the access layer reachability area for RAN paging (see Embodiment 17 for details) ).
  • the access layer reachability area may be RNA, or may be an area with similar functions named in other names.
  • the access layer reachability area may be equivalent to the NAS layer reachability area. Therefore, the AMF sends an NGAP message to the NG-RAN node, which contains the NAS layer reachability area of the user terminal encoded by geographic location. For specific encoding methods, refer to Embodiment 7 and Embodiment 8.
  • the NG-RAN node may further include:
  • the NG-RAN node notifies other NG-RAN nodes of the reachability area of the user terminal, and the reachability area is used for other NG-RAN nodes to perform incremental reconfiguration of the reachability area.
  • the implementation of the process of transferring reachability areas between RAN nodes is explained.
  • the NG-RAN node that has been configured with the reachability area for the terminal is called the old NG-RAN node
  • the NG-RAN node that needs the reachability area of the user terminal to perform various possible services is called the new NG-RAN node.
  • NG-RAN node the NG-RAN node.
  • Figure 24 is a schematic diagram of the implementation process of transferring reachability areas between RAN nodes in the nineteenth embodiment. As shown in the figure, it mainly includes:
  • Step 2401 The old NG-RAN node configures the access layer reachability area for the user terminal.
  • the access layer reachability area may be RNA, or may be an area with similar functions named in other names.
  • Step 2402 In order to support the incremental reconfiguration of the access layer reachability area (see Embodiment 13), the old NG-RAN node may inform the new NG-RAN node of the access layer reachability area.
  • the access layer reachability area may be equivalent to the NAS layer reachability area. Therefore, the old NG-RAN node sends an XnAP message to the new NG-RAN node, which contains the access stratum reachability area of the user terminal encoded by geographic location.
  • the embodiments of the present disclosure also provide a network-side device, a user terminal, a reachability area configuration device, and a computer storage medium. Since these devices have similar problem solving principles and reachability area configuration methods, these The implementation of the device can refer to the implementation of the method, and the repetition will not be repeated.
  • FIG. 25 is a schematic diagram of the network side equipment structure. As shown in the figure, the base station includes:
  • the processor 2500 is configured to read a program in the memory 2520 and execute the following process:
  • the transceiver 2510 is used to receive and send data under the control of the processor 2500.
  • it further includes:
  • the geographic location of the user terminal is obtained through one or a combination of the following messages:
  • NAS message RRC message, Xn interface message, NG interface message.
  • the registration request message in the RRC message is sent after the user terminal determines that it is located outside the configured reachability area according to its own positioning information.
  • the RRC message is an RRC message sent during the RRC connection restoration process after the user terminal in the RRC inactive state determines that it is located outside the configured reachability area according to its own positioning information.
  • it further includes:
  • the reachability area configuration of the user terminal is returned to the user terminal through the RRC release message.
  • the configuration of the reachability area based on the geographic location is configured by the AMF as required; or, by the NG-RAN node as required.
  • it further includes:
  • the user terminal After the AMF configures the reachability area as required, the user terminal is notified of the configured reachability area through a NAS message; or,
  • the NG-RAN node configures the reachability area as required, the configured reachability area is notified to the user terminal through an RRC release message.
  • it further includes:
  • the AMF sends a paging message for the user terminal to the NG-RAN node, where the paging message carries the reachability area of the user terminal, and the reachability area is used for the NG-RAN node to initiate paging.
  • it further includes:
  • the NG-RAN node sends to other NG-RAN nodes a paging message for a user terminal in the RRC inactive state, and the paging message carries the reachability area of the user terminal, and the reachability area is used For other NG-RAN nodes to initiate paging.
  • the AMF configures the reachability area according to the geographic location, it further includes:
  • AMF informs the NG-RAN node of the reachability area of the user terminal, and the reachability area is used for the NG-RAN node to configure or maintain reachability for the user terminal when the user terminal is moved into the RRC inactive state Area, and/or use the reachability area for RAN paging.
  • the NG-RAN node configures the reachability area according to the geographic location, it further includes:
  • the NG-RAN node notifies other NG-RAN nodes of the reachability area of the user terminal, and the reachability area is used for other NG-RAN nodes to perform incremental reconfiguration of the reachability area.
  • the reachability area is configured according to the geographic location in one of the following ways or a combination:
  • the reachability area includes several areas, wherein for each area, there is at least one moment in a preset time period, and the distance between a certain point in the area and the geographic location of the user terminal at that moment Less than or equal to the first preset threshold; or,
  • the reachability area includes several areas, wherein for each area, there is at least one moment in a preset time period, at which the geographic location of the user terminal is located in the area; or,
  • the reachability area includes several areas, and for each area, the distance between a certain point in the area and the geographic location of the user terminal is less than or equal to a second preset threshold.
  • the accessibility area is divided by latitude and longitude positions.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 2500 and various circuits of the memory represented by the memory 2520 are linked together.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, no further descriptions are provided herein.
  • the bus interface provides the interface.
  • the transceiver 2510 may be a plurality of elements, including a transmitter and a transceiver, and provide a unit for communicating with various other devices on the transmission medium.
  • the processor 2500 is responsible for managing the bus architecture and general processing, and the memory 2520 can store data used by the processor 2500 when performing operations.
  • Figure 26 is a schematic diagram of the structure of a user terminal. As shown in the figure, the user terminal includes:
  • the processor 2600 is configured to read a program in the memory 2620 and execute the following process:
  • the reachability area refers to the paging range for paging the user terminal in the wireless communication system, and the reachability area is the network side Configured according to the geographic location of the user terminal;
  • the transceiver 2610 is used to receive and send data under the control of the processor 2600.
  • it further includes:
  • the user terminal reports the geographic location of the user terminal according to instructions from the network side; or,
  • the user terminal reports the geographic location of the user terminal after determining that it is located outside the configured reachability area according to its own positioning information.
  • the user terminal reports the geographic location of the user terminal through one or a combination of the following messages:
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 2600 and various circuits of the memory represented by the memory 2620 are linked together.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, will not be further described herein.
  • the bus interface provides the interface.
  • the transceiver 2610 may be a plurality of elements, including a transmitter and a receiver, and provide a unit for communicating with various other devices on the transmission medium.
  • the user interface 2630 may also be an interface capable of connecting externally and internally with required equipment.
  • the connected equipment includes but not limited to a keypad, a display, a speaker, a microphone, a joystick, etc.
  • the processor 2600 is responsible for managing the bus architecture and general processing, and the memory 2620 can store data used by the processor 2600 when performing operations.
  • the embodiment of the present disclosure provides a reachability area configuration device, including:
  • the obtaining module is used to obtain the geographic location of the user terminal
  • the reachability area module is configured to configure the reachability area according to the geographic location, and the reachability area refers to the paging range for paging the user terminal in the wireless communication system.
  • the embodiment of the present disclosure provides a reachability area configuration device, including:
  • the receiving module is configured to receive a message carrying reachability area information sent by the network side, where the reachability area refers to the paging range for paging the user terminal in the wireless communication system, and the reachability area
  • the sexual area is configured on the network side according to the geographic location of the user terminal;
  • the configuration module is used to configure the reachability area according to the reachability area information.
  • each part of the above-mentioned device is divided into various modules or units by function and described separately.
  • the functions of each module or unit can be implemented in the same or multiple software or hardware.
  • An embodiment of the present disclosure provides a computer-readable storage medium, and the computer-readable storage medium stores a computer program that executes the above-mentioned accessibility area configuration method.
  • the configuration is performed according to the precise geographic location information of the user terminal.
  • the reachability area refers to the configuration information used by the wireless communication system to determine the paging range when paging the user terminal, including but not limited to registration area, or notification area based on the radio access network, or other Configuration information with similar functions.
  • the geographic location information is information that satisfies the following conditions: or contains the longitude and latitude coordinate information of the user terminal, or if there is no prior information (except for well-known prior information, such as the radius of the earth, etc.), only the precise geographic information
  • the location information can calculate the longitude and latitude coordinates of the user terminal.
  • the "network element” refers to the AMF.
  • the "reachability area” is the RNA (notification area based on the radio access network) in the 5G system
  • the “network element” refers to the NG-RAN node. specific:
  • the configuration scheme of the reachability area of the user terminal can be applied to the network elements in the wireless communication system. Before configuring the reachability area for the user terminal, it receives a message containing the geographic location information of the user terminal, and then according to the user The precise geographic location information of the terminal can be configured.
  • the reachability area as a list of all preset areas that meet the following conditions: the distance between the geographic area corresponding to the preset area and the geographic location of the terminal represented by the geographic location information does not exceed a preset The threshold.
  • the corresponding geographic area refers to the union of geographic areas covered by the preset area at each moment within a certain time range.
  • the reachability area is configured as a list of all preset areas that meet the following conditions: the geographic area corresponding to the preset area includes the geographic location of the terminal represented by the geographic location information.
  • the corresponding geographic area refers to the union of geographic areas covered by the preset area at each moment within a certain time range.
  • the reachability area is configured as a list of all preset geographic areas that meet the following conditions: the distance between the preset geographic area and the geographic location of the terminal represented by the geographic location information does not exceed a preset threshold.
  • the network element may also send a message containing an indication to instruct the user terminal to report the geographic location information.
  • a non-access stratum NAS message may be sent, which contains the geographic location information of the user terminal.
  • the network element may send an interface message, which includes the geographic location information of the user terminal.
  • the reachability area is determined according to the geographic location of the user terminal.
  • the message sent is a NAS message
  • the reachability area is a registered area.
  • the message sent is an RRC message
  • the reachability area is RNA.
  • the interface message is a paging message or a RAN paging message, which is used to instruct the second radio access network node to calculate according to the first information, which of all the cells controlled by the second radio access network node The cell needs to perform paging.
  • the wireless communication system can configure the reachability area more flexibly and optimally, avoiding the configuration of accessibility at the granularity of cells The area is too rough. Since the paging and access overhead is proportional to the number of cells that perform paging and access, the paging overhead or access signaling overhead can be significantly reduced.
  • the network in order to page a user terminal, the network often needs to perform paging in dozens or even hundreds of cells.
  • the network only needs to be present in the user terminal. Paging is performed in the camping cell and several surrounding cells. Since the paging overhead is proportional to the number of cells performing paging, the paging overhead can be significantly reduced.
  • the method in the related art it is necessary to configure the TA currently belonging to the user terminal and the surrounding TAs into the registration area, and according to the technical solution provided by the embodiments of the present disclosure, For most user terminals, it is only necessary to configure the registration area as one or two TAs that are close to the current location of the user terminal. Since the paging overhead is proportional to the area of the registration area, the paging overhead can be significantly reduced.
  • the embodiments of the present disclosure can be provided as methods, systems, or computer program products. Therefore, the present disclosure may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, the present disclosure may take the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, optical storage, etc.) containing computer-usable program codes.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing functions specified in a flow or multiple flows in the flowchart and/or a block or multiple blocks in the block diagram.
  • the disclosed device and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • the functional units in the various embodiments of the present disclosure may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the computer software product is stored in a storage medium and includes several instructions to make a A computer device (which may be a personal computer, a server, or a network device, etc.) executes all or part of the steps of the methods described in the various embodiments of the present disclosure.
  • the aforementioned storage media include: U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk and other media that can store program codes.
  • the program can be stored in a computer readable storage medium. When executed, it may include the processes of the above-mentioned method embodiments.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (Read-Only Memory, ROM), or a random access memory (Random Access Memory, RAM), etc.
  • modules, units, and sub-units can be implemented in one or more Application Specific Integrated Circuits (ASIC), Digital Signal Processor (DSP), Digital Signal Processing Device (DSP Device, DSPD) ), Programmable Logic Device (PLD), Field-Programmable Gate Array (FPGA), general-purpose processors, controllers, microcontrollers, microprocessors, used to implement Described functions in other electronic units or combinations thereof.
  • ASIC Application Specific Integrated Circuits
  • DSP Digital Signal Processor
  • DSP Device Digital Signal Processing Device
  • DSPD Digital Signal Processing Device
  • PLD Programmable Logic Device
  • FPGA Field-Programmable Gate Array
  • the technology described in the embodiments of the present disclosure can be implemented through modules (for example, procedures, functions, etc.) that perform the functions described in the embodiments of the present disclosure.
  • the software codes can be stored in the memory and executed by the processor.
  • the memory can be implemented in the processor or external to the processor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Telephonic Communication Services (AREA)

Abstract

本公开实施例提供了一种可达性区域配置方法、设备及装置,所述方法包括:获取用户终端的地理位置;网络侧根据所述地理位置配置可达性区域,所述可达性区域是指在无线通信系统中寻呼所述用户终端的寻呼范围。用户终端接收网络侧发送的携带有可达性区域信息的消息,用户终端根据所述可达性区域信息配置可达性区域。

Description

可达性区域配置方法、设备及装置
相关申请的交叉引用
本申请主张在2019年8月7日在中国提交的中国专利申请号No.201910727418.5的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及无线通信技术领域,特别涉及一种可达性区域配置方法、设备及装置。
背景技术
在无线移动通信系统中,网络可以寻呼当前未与网络连接的用户终端,其用途包括主动向用户终端传输数据,或者指示用户终端接入网络。按照相关技术,如果用户终端已注册但未与网络连接,网络并不清楚用户终端当前所处的位置,甚至也不知道其当前驻留的小区是哪一个。
为了尽量使得网络能够通过寻呼找到未与网络连接的用户终端,网络可以在用户终端业已接入网络之时为其配置一个可达性区域。可达性区域可能表现为跟踪区域(Tracking Area,TA)的列表、无线接入网区域(Radio Access Network Area,RANA)的列表,或者小区的列表。当网络需要寻呼该用户终端之时,网络通常会在其可达性区域之内的所有小区上寻呼该用户终端。相应地,用户终端在每次执行小区重选操作时均会检测重选后的驻留小区是否属于其当前的可达性区域。如果发现重选后的驻留小区不在其当前的可达性区域范围之内,该用户终端通常会主动接入网络,此后网络通常会为其重新配置一个可达性区域。
相关技术的不足在于:相关技术中的可达性区域配置机制下,信令开销较大。
发明内容
本公开提供了一种可达性区域配置方法、设备及装置,用以减少信令开 销。
本公开的实施例中提供了一种可达性区域配置方法,包括:
获取用户终端的地理位置;
根据所述地理位置配置可达性区域,所述可达性区域是指在无线通信系统中寻呼所述用户终端的寻呼范围。
实施中,进一步包括:
指示用户终端上报用户终端的地理位置。
实施中,通过以下消息之一或者其组合获取用户终端的地理位置:
NAS消息、RRC消息、Xn接口消息、NG接口消息。
实施中,RRC消息中的注册请求消息是用户终端在根据自身的定位信息确定自身位于所配置的可达性区域之外后发送的。
实施中,所述RRC消息是处于RRC非活跃态的用户终端在根据自身的定位信息确定自身位于所配置的可达性区域之外后在RRC连接恢复过程发送的RRC消息。
实施中,进一步包括:
在通过RRC消息中的注册请求消息获取用户终端的地理位置时,通过NAS注册接纳消息向用户终端返回该用户终端的可达性区域配置;或,
在通过NAS消息获取用户终端的地理位置时,通过NAS消息向用户终端返回该用户终端的可达性区域配置;或,
在通过上行RRC消息获取用户终端的地理位置时,通过NAS接纳消息向用户终端返回该用户终端的可达性区域配置;或,
在通过RRC消息获取用户终端的地理位置时,通过RRC释放消息向用户终端返回该用户终端的可达性区域配置;或,
在通过Xn接口消息获取用户终端的地理位置时,通过RRC释放消息向用户终端返回该用户终端的可达性区域配置;或,
在通过NG接口消息获取用户终端的地理位置时,通过RRC释放消息向用户终端返回该用户终端的可达性区域配置。
实施中,根据所述地理位置配置可达性区域的是由AMF根据需要进行配置的;或,是由NG-RAN节点根据需要进行配置的。
实施中,进一步包括:
在由AMF根据需要配置可达性区域后,通过NAS消息将配置的可达性区通知用户终端;或,
在由NG-RAN节点根据需要配置可达性区域后,通过RRC释放消息将配置的可达性区通知用户终端。
实施中,进一步包括:
AMF向NG-RAN节点发送针对用户终端的寻呼消息,所述寻呼消息中携带有该用户终端的可达性区域,所述可达性区域用以供NG-RAN节点发起寻呼。
实施中,进一步包括:
该NG-RAN节点向其他NG-RAN节点发送针对处于RRC非激活态的用户终端的寻呼消息,所述寻呼消息中携带有该用户终端的可达性区域,所述可达性区域用以供其他NG-RAN节点发起寻呼。
实施中,在AMF根据所述地理位置配置可达性区域后,进一步包括:
AMF通知NG-RAN节点该用户终端的所述可达性区域,所述可达性区域用以供NG-RAN节点在将用户终端移入RRC非活跃态时为该用户终端配置或维护可达性区域,和/或使用所述可达性区域进行RAN寻呼。
实施中,在NG-RAN节点根据所述地理位置配置可达性区域后,进一步包括:
该NG-RAN节点通知其他NG-RAN节点该用户终端的所述可达性区域,所述可达性区域用以供其他NG-RAN节点进行可达性区域的增量重配。
实施中,按如下方式之一或者其组合根据所述地理位置配置可达性区域:
可达性区域中包括若干区域,其中,对于每一个区域,在预设的时间段内至少存在一个时刻,在该时刻下该区域中的某一点与所述用户终端的地理位置之间的距离小于等于第一预设阈值;或,
可达性区域中包括若干区域,其中,对于每一个区域,在预设的时间段内至少存在一个时刻,在该时刻下所述用户终端的地理位置位于该区域中;或,
可达性区域中包括若干区域,其中,对于每一个区域,在该区域中的某 一点与所述用户终端的地理位置之间的距离小于等于第二预设阈值。
实施中,所述可达性区域是用经纬度位置来划分的。
本公开的实施例中提供了一种可达性区域配置方法,包括:
用户终端接收网络侧发送的携带有可达性区域信息的消息,其中,所述可达性区域是指在无线通信系统中寻呼所述用户终端的寻呼范围,所述可达性区域是网络侧根据用户终端的地理位置配置的;
用户终端根据所述可达性区域信息配置可达性区域。
实施中,进一步包括:
用户终端根据网络侧指示上报用户终端的地理位置;或,
用户终端在根据自身的定位信息确定自身位于所配置的可达性区域之外后上报用户终端的地理位置。
实施中,用户终端通过以下消息之一或者其组合上报用户终端的地理位置:
NAS消息、RRC消息。
本公开的实施例中提供了一种网络侧设备,包括:
处理器,用于读取存储器中的程序,执行下列过程:
获取用户终端的地理位置;根据所述地理位置配置可达性区域,所述可达性区域是指在无线通信系统中寻呼所述用户终端的寻呼范围;
收发机,用于在处理器的控制下接收和发送数据。
实施中,进一步包括:
指示用户终端上报用户终端的地理位置。
实施中,通过以下消息之一或者其组合获取用户终端的地理位置:
NAS消息、RRC消息、Xn接口消息、NG接口消息。
实施中,RRC消息中的注册请求消息是用户终端在根据自身的定位信息确定自身位于所配置的可达性区域之外后发送的。
实施中,所述RRC消息是处于RRC非活跃态的用户终端在根据自身的定位信息确定自身位于所配置的可达性区域之外后在RRC连接恢复过程发送的RRC消息。
实施中,进一步包括:
在通过RRC消息中的注册请求消息获取用户终端的地理位置时,通过NAS注册接纳消息向用户终端返回该用户终端的可达性区域配置;或,
在通过NAS消息获取用户终端的地理位置时,通过NAS消息向用户终端返回该用户终端的可达性区域配置;或,
在通过上行RRC消息获取用户终端的地理位置时,通过NAS接纳消息向用户终端返回该用户终端的可达性区域配置;或,
在通过RRC消息获取用户终端的地理位置时,通过RRC释放消息向用户终端返回该用户终端的可达性区域配置;或,
在通过Xn接口消息获取用户终端的地理位置时,通过RRC释放消息向用户终端返回该用户终端的可达性区域配置;或,
在通过NG接口消息获取用户终端的地理位置时,通过RRC释放消息向用户终端返回该用户终端的可达性区域配置。
实施中,根据所述地理位置配置可达性区域的是由AMF根据需要进行配置的;或,是由NG-RAN节点根据需要进行配置的。
实施中,进一步包括:
在由AMF根据需要配置可达性区域后,通过NAS消息将配置的可达性区通知用户终端;或,
在由NG-RAN节点根据需要配置可达性区域后,通过RRC释放消息将配置的可达性区通知用户终端。
实施中,进一步包括:
AMF向NG-RAN节点发送针对用户终端的寻呼消息,所述寻呼消息中携带有该用户终端的可达性区域,所述可达性区域用以供NG-RAN节点发起寻呼。
实施中,进一步包括:
该NG-RAN节点向其他NG-RAN节点发送针对处于RRC非激活态的用户终端的寻呼消息,所述寻呼消息中携带有该用户终端的可达性区域,所述可达性区域用以供其他NG-RAN节点发起寻呼。
实施中,在AMF根据所述地理位置配置可达性区域后,进一步包括:
AMF通知NG-RAN节点该用户终端的所述可达性区域,所述可达性区 域用以供NG-RAN节点在将用户终端移入RRC非活跃态时为该用户终端配置或维护可达性区域,和/或使用所述可达性区域进行无线接入网(Radio Access Network,RAN)寻呼。
实施中,在NG-RAN节点根据所述地理位置配置可达性区域后,进一步包括:
该NG-RAN节点通知其他NG-RAN节点该用户终端的所述可达性区域,所述可达性区域用以供其他NG-RAN节点进行可达性区域的增量重配。
实施中,按如下方式之一或者其组合根据所述地理位置配置可达性区域:
可达性区域中包括若干区域,其中,对于每一个区域,在预设的时间段内至少存在一个时刻,在该时刻下该区域中的某一点与所述用户终端的地理位置之间的距离小于等于第一预设阈值;或,
可达性区域中包括若干区域,其中,对于每一个区域,在预设的时间段内至少存在一个时刻,在该时刻下所述用户终端的地理位置位于该区域中;或,
可达性区域中包括若干区域,其中,对于每一个区域,在该区域中的某一点与所述用户终端的地理位置之间的距离小于等于第二预设阈值。
实施中,所述可达性区域是用经纬度位置来划分的。
本公开的实施例中提供了一种用户终端,包括:
处理器,用于读取存储器中的程序,执行下列过程:
接收网络侧发送的携带有可达性区域信息的消息,其中,所述可达性区域是指在无线通信系统中寻呼所述用户终端的寻呼范围,所述可达性区域是网络侧根据用户终端的地理位置配置的;
根据所述可达性区域信息配置可达性区域;
收发机,用于在处理器的控制下接收和发送数据。
实施中,进一步包括:
用户终端根据网络侧指示上报用户终端的地理位置;或,
用户终端在根据自身的定位信息确定自身位于所配置的可达性区域之外后上报用户终端的地理位置。
实施中,用户终端通过以下消息之一或者其组合上报用户终端的地理位 置:
NAS消息、RRC消息。
本公开的实施例中提供了一种可达性区域配置装置,包括:
获取模块,用于获取用户终端的地理位置;
可达性区域模块,用于根据所述地理位置配置可达性区域,所述可达性区域是指在无线通信系统中寻呼所述用户终端的寻呼范围。
本公开的实施例中提供了一种可达性区域配置装置,包括:
接收模块,用于接收网络侧发送的携带有可达性区域信息的消息,其中,所述可达性区域是指在无线通信系统中寻呼所述用户终端的寻呼范围,所述可达性区域是网络侧根据用户终端的地理位置配置的;
配置模块,用于根据所述可达性区域信息配置可达性区域。
本公开的实施例中提供了一种计算机可读存储介质,所述计算机可读存储介质存储有执行上述可达性区域配置方法的计算机程序。
本公开有益效果如下:
采用本公开实施例所提供的技术方案,对于非地面网络等单个小区覆盖面积较大的网络,根据用户终端的地理位置来配置可达区域,因此使得无线通信系统可以更灵活、更优化地配置可达性区域,避免了以小区粒度配置可达性区域过于粗糙的问题,由于寻呼、接入开销与执行寻呼、接入的小区数量成正比,因此能够显著降低了寻呼开销或接入信令开销。
附图说明
此处所说明的附图用来提供对本公开的进一步理解,构成本公开的一部分,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1为本公开实施例中终端与跟踪区配置关系示意图;
图2为本公开实施例中网络侧的可达性区域配置方法实施流程示意图;
图3为本公开实施例中用户终端侧的可达性区域配置方法实施流程示意图;
图4为本公开实施例一中可达性区域配置实施流程示意图;
图5为本公开实施例二中可达性区域配置实施流程示意图;
图6为本公开实施例三中可达性区域配置实施流程示意图;
图7为本公开实施例四中可达性区域配置实施流程示意图;
图8为本公开实施例五中可达性区域配置实施流程示意图;
图9为本公开实施例六中可达性区域配置实施流程示意图;
图10为本公开实施例七中可达性区域示意图;
图11为本公开实施例八中可达性区域示意图;
图12为本公开实施例九中可达性区域配置说明示意图1;
图13为本公开实施例九中可达性区域配置说明示意图2;
图14为本公开实施例十中可达性区域配置说明示意图1;
图15为本公开实施例十中可达性区域配置说明示意图2;
图16为本公开实施例十一中可达性区域配置说明示意图;
图17为本公开实施例十二中可达性区域配置实施流程示意图;
图18为本公开实施例十三中可达性区域配置实施流程示意图;
图19为本公开实施例十四中用户终端通过注册请求消息触发可达性区域配置实施流程示意图;
图20为本公开实施例十五中用户终端通过RRC消息触发可达性区域配置实施流程示意图;
图21为本公开实施例十六中核心网寻呼实施流程示意图;
图22为本公开实施例十七中RAN寻呼实施流程示意图;
图23为本公开实施例十八中核心网向RAN节点传递可达性区域实施流程示意图;
图24为本公开实施例十九中RAN节点之间传递可达性区域实施流程示意图;
图25为本公开实施例中网络侧设备结构示意图;
图26为本公开实施例中用户终端结构示意图。
具体实施方式
申请人在开发过程中注意到:
以当前的第五代(5 th generation,5G)系统为例,已注册但未与网络连接的用户终端可能处于以下两种状态之中的一种:无线资源控制(Radio Resource Control,RRC)空闲态(RRC_IDLE)或者RRC非活跃态(RRC_INACTIVE)。通常情况下,当网络需要寻呼处于RRC空闲态的用户终端之时,它会在注册区域(Registration Area)之内发起寻呼;当网络需要寻呼处于RRC非活跃态的用户终端之时,它会在基于无线接入网的通知区域(RAN-based Notification Area,RNA)之内发起寻呼。
相应地,处于RRC空闲态的用户终端在每次执行小区重选操作时均会检测重选后的驻留小区是否属于其当前的注册区域,如果不属于则将在新的驻留小区发起非接入层(Non Access Stratum,NAS)注册过程,使核心网配置一个新的注册区域。处于RRC非活跃态的用户终端在每次执行小区重选操作时均会检测重选后的驻留小区是否属于其当前的RNA,如果不属于则将在新的驻留小区发起RRC连接恢复过程,使无线接入网重新配置一个新的RNA。
在当前的5G系统中,注册区域由接入与移动性管理功能单元(Access and Mobility Management Function,AMF)配置,其配置格式均为TA的列表。而RNA由下一代无线接入网(Next Generation Radio Access Network,NG-RAN)节点配置,其配置格式有三种:TA的列表,无线接入网区域(RAN Area,RANA)的列表,或者小区列表。小区广播中包含TA信息,以供用户终端进行检测。如果该小区属于某一个RANA,那么广播中还会包含RANA信息,以供用户终端进行检测。
对于非地面网络,为了实现全球无线接入覆盖,业界提出了非地面网络(Non-Terrestrial Network,NTN)架构。非地面网络是指将至少一部分无线接入网网元放入非地面载体(例如低轨卫星)之中,称为非地面载荷。用户终端将与非地面载荷连接,而非地面载荷再与固定于地面的网元连接。
在新空口(New Radio,NR)系统中,当前研究较多的非地面载荷分为以下三种:
非地面载荷为射频转发器、非地面载荷为下一代基站(gNB)分布式单元(Distributed Unit,DU)、非地面载荷为gNB。
在非地面网络中,单个小区的覆盖面积往往较大,相比之下用户终端的 移动就显得较为缓慢,这也就意味着不再需要出于降低用户终端由于移出可达性区域而重新接入网络的频率这一目的而将可达性区域配置得较大,进而使得可达性区域的线度不再显著大于小区覆盖范围的线度。在这种情况下,网络未能掌握用户终端的精确地理位置的这一情况就会阻碍网络足够优化地为用户终端配置可达性区域。
图1为终端与跟踪区配置关系示意图,以注册区域的配置为例。假设某运营商所管辖的所有TA均为互不交叠的矩形,如图1所示,由于用户终端自身的变化,或者注册区域本身覆盖范围的变化(对于非地面网络来说,因为小区覆盖范围通常会快速变化,注册区域本身的覆盖范围通常也会随之快速变化),用户终端有可能先后处于不同TA的覆盖中。
按照相关技术中的方法,用户终端在注册时不上报地理位置信息,AMF将不了解用户终端当前所处的位置,只能通过接入层所上报的跟踪区标识(Tracking Area Identity,TAI)了解到该用户终端在接入时处于哪个TA的覆盖中。为了防止用户终端由于先后处于不同的TA覆盖下而频繁触发旨在更新注册区域的注册过程,造成空口资源浪费,AMF会将该用户终端的注册区域配置得不仅包含所上报的TA,而且包含该TA周边的所有TA。
以图1为例,对于A与B这两个终端(接入网络时所处位置如图中黑点所示),AMF只能了解到这两个用户终端当前处于TA5覆盖下,因而会将这两个用户终端的注册区域配置为TA1至TA9。当这两个用户终端进入了空闲态,而AMF需要寻呼这两个用户终端之时,AMF必须指示TA1至TA9之中的所有小区进行寻呼。
但实际上,相比于TA的线度(通常为数百甚至数千千米),用户终端的移动能力非常有限,有极大概率依旧处于注册时的地理位置附近。对于终端A,通常情况下其依旧处于TA5的覆盖内,在其他TA内寻呼该终端A的行为几乎必然是无用的。对于终端B,由于其注册时的位置比较接近TA5的边界,AMF发起寻呼时,终端B处于TA5、TA2、TA6甚至TA3覆盖下的概率均比较可观,在这几个TA下寻呼终端B是比较有用的,相对而言在TA1、TA4、TA7、TA8与TA9的寻呼操作则几乎必然无用。
由上述可知,相关技术中的可达性区域是基于小区进行划分与配置的。 无线通信网络会为用户终端配置一个可达性区域,其编码可能为跟踪区域TA的列表、无线接入网区域RANA的列表,或者小区的列表。当无线通信网络(通常为核心网)需要寻呼用户终端时,会指示所有处于可达性区域内的小区执行寻呼。在非地面网络系统中,小区的覆盖范围可能是快速变化的。例如,在近地轨道组网的卫星通信系统中,小区的覆盖通常会以每秒数公里的速度快速移动。这种变化速度使得无线通信网络难以基于小区划定或配置寻呼范围。
同时,在当前的5G系统中,网络侧通常并不清楚用户终端的精确地理位置,只掌握用户终端处于哪个小区或者哪个波束的覆盖范围内。常见的地面通信系统中,小区的覆盖面积通常不是太大,用户终端很容易移出小区的覆盖范围。
网络为了避免用户终端由于频繁移出可达性区域而重新接入网络,增大能耗与相应信令开销,通常会为用户终端配置一个较大的可达性区域,这样做的代价就是寻呼范围较大,进而寻呼所造成的信令开销较大,同时造成了空口资源的浪费,而不断变化的小区、TA与RANA覆盖情况也使核心网算法更为复杂。
因此,申请人注意到,在实际网络应用中,所有信令中寻呼信令的占比往往相当可观。由于可达性区域的线度显著大于小区覆盖面积的线度,网络在未掌握用户终端的精确地理位置的情况下,仅凭用户终端当前处于哪一小区的覆盖之下这一信息就能比较优化地配置可达性区域。
例如,在典型的低轨卫星组网的非地面网络中,单个小区的覆盖面积总是显著大于地面无线通信系统之中的小区面积,并且每个小区均以每秒数公里的速度快速移动,使得不同地理位置的覆盖经历完全不同。相比之下,用户终端的移动就显得较为缓慢,这也就意味着不再需要出于降低用户终端由于移出可达性区域而重新接入网络的频率这一目的而将可达性区域配置得较大,进而使得可达性区域没必要配置得显著大于小区覆盖范围。在这种情况下,网络完全可以直接记录用户终端的地理位置,然后有针对性地选择当前能够覆盖该地理位置或其周边的波束进行寻呼。
基于此,本公开实施例中提出了一种可达性区域配置方案,以使寻呼范 围的优化,使得无线通信网络可以直接基于用户终端的地理位置配置可达性区域,避免了相关技术中的基于小区配置可达性区域的诸多问题。
下面结合附图对本公开的具体实施方式进行说明,说明过程中,先对方案进行说明,然后以实例进行说明,在以实例说明过程中,主要以AMF、NG-RAN节点、用户终端的实施为主进行说明,此时则有当“可达性区域”为5G系统中的注册区域之时,进行配置的是AMF。当“可达性区域”为5G系统中的RNA之时,进行配置的是NG-RAN节点。
图2为网络侧的可达性区域配置方法实施流程示意图,如图所示,可以包括:
步骤201、获取用户终端的地理位置;
步骤202、根据所述地理位置配置可达性区域,所述可达性区域是指在无线通信系统中寻呼所述用户终端的寻呼范围。
方案实施中,是根据用户终端的地理位置信息配置可达性区域,下面进行具体说明。
实施中,可以通过以下消息之一或者其组合获取用户终端的地理位置:
NAS消息、RRC消息、Xn接口消息、NG接口消息。
在实施中采用上述消息,是因为这些消息是较为典型的消息;但是,从理论上来说,用其它的消息、或者方式也是可以的,只要能够将用户终端的地理位置传达给网络侧即可,上述消息仅用于教导本领域技术人员具体如何实施本公开,但不意味仅能使用上述消息,实施过程中可以结合实践需要来确定相应的获取用户终端的地理位置的方式。
实施中,针对不同的消息,可以采用不同的方式通知用户终端所配置的可达性区域,具体的,可以进一步包括:
在通过RRC消息中的注册请求消息获取用户终端的地理位置时,通过NAS注册接纳消息向用户终端返回该用户终端的可达性区域配置;或,
在通过NAS消息获取用户终端的地理位置时,通过NAS消息向用户终端返回该用户终端的可达性区域配置;或,
在通过上行RRC消息获取用户终端的地理位置时,通过NAS接纳消息向用户终端返回该用户终端的可达性区域配置;或,
在通过RRC消息获取用户终端的地理位置时,通过RRC释放消息向用户终端返回该用户终端的可达性区域配置;或,
在通过Xn接口消息获取用户终端的地理位置时,通过RRC释放消息向用户终端返回该用户终端的可达性区域配置;或,
在通过NG接口消息获取用户终端的地理位置时,通过RRC释放消息向用户终端返回该用户终端的可达性区域配置。
实施中,也可以指示用户终端上报位置信息,因此还可以进一步包括:
指示用户终端上报用户终端的地理位置。
相应的,对于终端侧,本公开实施例中提供了一种可达性区域配置方法,下面进行说明。
图3为用户终端侧的可达性区域配置方法实施流程示意图,如图所示,可以包括:
步骤301、用户终端接收网络侧发送的携带有可达性区域信息的消息,其中,所述可达性区域是指在无线通信系统中寻呼所述用户终端的寻呼范围,所述可达性区域是网络侧根据用户终端的地理位置配置的;
步骤302、用户终端根据所述可达性区域信息配置可达性区域。
实施中,还可以进一步包括:
用户终端根据网络侧指示上报用户终端的地理位置;或,
用户终端在根据自身的定位信息确定自身位于所配置的可达性区域之外后上报用户终端的地理位置。
实施中,用户终端可以通过以下消息之一或者其组合上报用户终端的地理位置:
NAS消息、RRC消息。
实施中,RRC消息中的注册请求消息可以是用户终端在根据自身的定位信息确定自身位于所配置的可达性区域之外后发送的。
实施中,所述RRC消息可以是处于RRC非活跃态的用户终端在根据自身的定位信息确定自身位于所配置的可达性区域之外后在RRC连接恢复过程发送的RRC消息。
实施中,用户终端接收网络侧发送的携带有可达性区域信息的消息:
在通过RRC消息中的注册请求消息上报用户终端的地理位置时,用户终端接收网络侧发送的携带有可达性区域信息的消息是NAS注册接纳消息;或,
在通过NAS消息上报用户终端的地理位置时,用户终端接收网络侧发送的携带有可达性区域信息的消息是NAS消息;或,
在通过上行RRC消息上报用户终端的地理位置时,用户终端接收网络侧发送的携带有可达性区域信息的消息是NAS接纳消息;或,
在通过RRC消息上报用户终端的地理位置时,用户终端接收网络侧发送的携带有可达性区域信息的消息是RRC释放消息;或,
在网络侧通过Xn接口消息获取用户终端的地理位置时,用户终端接收网络侧发送的携带有可达性区域信息的消息是RRC释放消息;或,
在网络侧通过NG接口消息获取用户终端的地理位置时,用户终端接收网络侧发送的携带有可达性区域信息的消息是RRC释放消息。
实施中,根据所述用户终端的地理位置配置可达性区域的是AMF或NG-RAN节点。
实施中,用户终端接收网络侧发送的携带有可达性区域信息的消息:
在由AMF根据需要配置可达性区域时,用户终端接收网络侧发送的携带有可达性区域信息的消息是NAS消息;或,
在由NG-RAN节点根据需要配置可达性区域时,用户终端接收网络侧发送的携带有可达性区域信息的消息是RRC释放消息。
下面以实例进行说明。
实施例一:
本例中,在注册请求消息中包含地理位置信息,AMF据此配置注册区域。
图4为实施例一中可达性区域配置实施流程示意图,如图所示,主要包括:
步骤401:用户终端向AMF发送一条NAS注册请求消息,其中包含地理位置信息。此处地理位置信息为经纬度位置信息,或为能够推算出经纬度位置信息的等价参数。
步骤402:AMF根据该地理位置信息,为该用户终端配置注册区域,所述可达性区域可以为注册区域,也可以是以其他名义命名的具有类似功能的 区域。
步骤403:AMF向用户终端反馈一条NAS注册接纳消息,其中包含所配置的注册区域,其中包含所配置的以地理位置编码的可达性区域。
实施例二:
本例中,用以说明的NAS消息是一般的NAS消息,也即在一般的NAS消息中包含地理位置信息,AMF据此配置注册区域。
图5为实施例二中可达性区域配置实施流程示意图,如图所示,主要包括:
步骤501:AMF向用户终端发送一条NAS消息,其中包含请求用户终端上报地理位置信息的指示。此处地理位置信息为经纬度位置信息,或为能够推算出经纬度位置信息的等价参数。
本步骤可选,也即,还可以进一步包括:指示用户终端上报用户终端的地理位置。
步骤502:用户终端向AMF发送一条NAS消息,其中包含地理位置信息。
步骤503:AMF根据该地理位置信息,为该用户终端配置注册区域。
步骤504:AMF向用户终端发送一条NAS消息,其中包含所配置的注册区域。
实施例三:
本例中,在上行RRC消息中包含地理位置信息,NG-RAN节点将地理位置信息上报至AMF,AMF据此配置注册区域。
图6为实施例三中可达性区域配置实施流程示意图,如图所示,主要包括:
步骤601:NG-RAN节点向用户终端发送一条RRC消息,其中包含请求用户终端上报地理位置信息的指示。此处地理位置信息为经纬度位置信息,或为能够推算出经纬度位置信息的等价参数。
本步骤可选,也即,可以进一步包括:指示用户终端上报用户终端的地理位置。
步骤602:用户终端向NG-RAN节点发送一条RRC消息,其中包含地理 位置信息。
步骤603:NG-RAN节点立即,或在后续的某一时刻向AMF发送一条NGAP消息,其中包含地理位置信息。这条NGAP消息可以是NGAP协议数据单元(Protocol Data Unit,PDU)会话资源释放响应消息、NGAP PDU会话资源修改响应消息、NGAP PDU会话资源通知消息、NGAP UE上下文释放完成消息、NGAP UE上下文修改相应消息、NGAP RRC非活跃态转变报告消息、NGAP切换通知消息、NGAP路径转换消息、NGAP初始UE消息消息、NGAP上行NAS传输消息、NGAP位置报告消息等等。
步骤604:AMF根据该地理位置信息,为该用户终端配置注册区域。
步骤605:AMF向用户终端发送一条NAS接纳消息,其中包含所配置的注册区域。
实施例四:
本例中,用以说明的RRC消息是一般的RRC消息,也即在一般RRC消息中包含地理位置信息,NG-RAN节点据此配置RNA。
图7为实施例四中可达性区域配置实施流程示意图,如图所示,主要包括:
步骤701:NG-RAN节点向用户终端发送一条RRC消息,其中包含请求用户终端上报地理位置信息的指示。此处地理位置信息为经纬度位置信息,或为能够推算出经纬度位置信息的等价参数。
本步骤可选,也即,还可以进一步包括:指示用户终端上报用户终端的地理位置。
步骤702:用户终端向NG-RAN节点发送一条RRC消息,其中包含地理位置信息。
步骤703:NG-RAN节点立即,或在后续的某一时刻,根据该地理位置信息,为该用户终端配置RNA。
步骤704:NG-RAN节点向用户终端发送一条RRC释放消息,用以指示该用户终端进入RRC非活跃态,消息中包含所配置的RNA。
实施例五:
本例中,在NG-RAN节点通过Xn接口获得用户终端的地理位置信息, 并据此配置RNA。本例中,将已为终端配置可达性区域的NG-RAN节点称为旧NG-RAN节点,而将需要用户终端可达性区域用以执行各种可能服务的NG-RAN节点称为新NG-RAN节点。
图8为实施例五中可达性区域配置实施流程示意图,如图所示,主要包括:
步骤801:旧NG-RAN节点向新NG-RAN节点发送一条Xn应用流程协议(Xn Application Protocol,XnAP)接口消息,其中包含该用户终端的地理位置信息。此处地理位置信息为经纬度位置信息,或为能够推算出经纬度位置信息的等价参数。
步骤802:新NG-RAN节点立即,或在后续的某一时刻,根据该地理位置信息,为该用户终端配置RNA。
步骤803:新NG-RAN节点向用户终端发送一条RRC释放消息,用以指示该用户终端进入RRC非活跃态,消息中包含所配置的RNA。
实施例六:
本例中,在NG-RAN节点通过NG接口获得用户终端的地理位置信息,并据此配置RNA。
图9为实施例六中可达性区域配置实施流程示意图,如图所示,主要包括:
步骤901:AMF向NG-RAN节点发送一条NG应用流程协议(NG Application Protocol,NGAP)接口消息,其中包含该用户终端的地理位置信息。
步骤902:NG-RAN节点立即,或在后续的某一时刻,根据该地理位置信息,为该用户终端配置RNA。
步骤903:NG-RAN节点向用户终端发送一条RRC释放消息,用以指示该用户终端进入RRC非活跃态,消息中包含所配置的RNA。
下面对根据所述地理位置配置可达性区域过程中的可达性区域的编码方式的实施进行说明。
实施中,所述可达性区域是用经纬度位置来划分的。
下面以实例进行说明。
实施例七:
图10为实施例七中可达性区域示意图,如图所示,可达性区域为以某一点为圆心,半径不超过某一数值的圆内区域。
可达性区域由圆心的地理位置以及圆的半径所指示。
如果无线通信系统之中的网元之间需要传输某一用户终端的可达性区域信息,相应信令中则包含以下两项之中的至少一项:
圆心的地理位置;
圆的半径。
圆心的地理位置可以是该点的经纬度位置信息,或为能够推算出经纬度位置信息的等价参数,例如其在地心坐标系之中的三维位置矢量。
“半径”可以是以千米、米或其他长度单位为单位的长度信息,或为能够推算出该圆的半径长度的等价参数,例如圆的直径、圆的周长、圆的半径对地心的张角、或者预先设定好的用以代表半径的指数等等。
圆心的地理位置可以缺省。若缺省则取默认值。该默认值可以是信令的发送方最近一次所接收的相应用户终端所上报的地理位置信息。
实施例八:
图11为实施例八中可达性区域示意图,如图所示,可达性区域为若干条经纬线围成的区域。
可达性区域由围成该区域的经纬线的经纬度所指示。
如果无线通信系统之中的网元之间需要传输某一用户终端的可达性区域信息,相应信令中应当包含至少一条上述经纬线的经纬度信息,或者能够推算出至少一条上述经纬线的经纬度信息的等价参数,例如矩形的中心位置以及东西向长度、矩形的中心位置以及南北向长度,或者预先设定好的能够代表经纬度的指数等等。
下面对根据所述地理位置配置可达性区域过程中的可达性区域的配置方式的实施进行说明。
也即,实施中,可以按如下方式之一或者其组合根据所述地理位置配置可达性区域:
可达性区域中包括若干区域,其中,对于每一个区域,在预设的时间段 内至少存在一个时刻,在该时刻下该区域中的某一点与所述用户终端的地理位置之间的距离小于等于第一预设阈值;或,
可达性区域中包括若干区域,其中,对于每一个区域,在预设的时间段内至少存在一个时刻,在该时刻下所述用户终端的地理位置位于该区域中;或,
可达性区域中包括若干区域,其中,对于每一个区域,在该区域中的某一点与所述用户终端的地理位置之间的距离小于等于第二预设阈值。
注册区域的配置方式一。
实施例九:
本例中,可达性区域中包括若干区域,其中,对于每一个区域,在预设的时间段内至少存在一个时刻,在该时刻下该区域中的某一点与所述用户终端的地理位置之间的距离小于等于第一预设阈值。
图12为实施例九中可达性区域配置说明示意图1,如图所示,在某一卫星通信系统的网络规划中,某一运营商将某一地理区域规划为TA′1,并且规定当且仅当一个小区的中心位于TA′1范围内,该小区属于TA1。在该卫星通信系统中,卫星自身的运动以及地球自转使得小区的中心可以遍历TA′1的任何一处。因此,上图的虚线框内的任何一处均存在至少一个时刻,在该时刻该点由属于TA1的小区所覆盖。为了叙述方便,实施例中称该虚线框为TA″1。
对于其他规划的TA′,情况也是类似的。
图13为实施例九中可达性区域配置说明示意图2,如图所示,现在有两个用户终端接入网络:终端A与终端B。考虑到这两个终端自身的移动,网络为这两个终端各自预设了一个阈值,如图中小圆的半径所示。网络希望适当配置注册区域,以使得用户终端在相应的小圆内移动时,无论如何均不会由于驻留小区所属的TA不属于其注册区域而触发旨在获得一个新的注册区域的注册过程。
对于终端A,该圆仅与TA″5有所交叠,与其他TA″均无交叠。因此,网络将终端A的注册区域配置为TA5。
对于终端B,该圆与TA″2、TA″3、TA″5、TA″6均有所交叠。因此,网络将终端B的注册区域配置为TA2+TA3+TA5+TA6。
RNA的配置算法也是类似的,此处不再赘述。
注册区域的配置方式二。
实施例十:
本例中,可达性区域中包括若干区域,其中,对于每一个区域,在预设的时间段内至少存在一个时刻,在该时刻下所述用户终端的地理位置位于该区域中。
图14为实施例十中可达性区域配置说明示意图1,如图所示,在某一卫星通信系统的网络规划中,某一运营商将某一地理区域规划为TA′1,并且规定当且仅当一个小区的中心位于TA′1范围内,该小区属于TA1。在该卫星通信系统中,卫星自身的运动以及地球自转使得小区的中心可以遍历TA′1的任何一处。因此,上图的虚线框内的任何一处均存在至少一个时刻,在该时刻该点由属于TA1的小区所覆盖。为了叙述方便,下文称该虚线框为TA″1。
对于其他规划的TA′,情况也是类似的。
图15为实施例十中可达性区域配置说明示意图2,如图所示,现在有两个用户终端接入网络:终端A与终端B。网络希望适当配置注册区域,以使得用户终端在原地静止不动的前提下,无论如何均不会由于驻留小区所属的TA不属于其注册区域而触发旨在获得一个新的注册区域的注册过程。
终端A所处的位置仅在TA″5内部,并且在其他TA″外部。因此,网络将终端A的注册区域配置为TA5。
终端B所处的位置在TA″2、TA″3、TA″5、TA″6内部。因此,网络将终端B的注册区域配置为TA2+TA3+TA5+TA6。
RNA的配置算法也是类似的,此处不再赘述。
注册区域的配置方式三。
实施例十一:
本例中,可达性区域中包括若干区域,其中,对于每一个区域,在该区域中的某一点与所述用户终端的地理位置之间的距离小于等于第二预设阈值。
图16为实施例十一中可达性区域配置说明示意图,如图所示,网络规划了若干个TA,其中包含TA1至TA9。
现在有两个用户终端接入网络:终端A与终端B。考虑到这两个终端自 身的移动,网络为这两个终端各自预设了一个阈值,如图中小圆的半径所示。网络希望适当配置注册区域,以使得用户终端在相应的小圆内移动时,无论如何均不会由于驻留小区并未广播该用户终端的注册区域之中任何TA所对应的TAI,终端判断驻留小区不属于其注册区域,进而触发旨在获得一个新的注册区域的注册过程。
对于终端A,该圆仅与TA5有所交叠,与其他TA均无交叠。因此,网络将终端A的注册区域配置为TA5。
对于终端B,该圆与TA2和TA5均有所交叠。因此,网络将终端B的注册区域配置为TA2+TA5。
RNA的配置算法也是类似的,此处不再赘述。
下面再用实例对各种可能的实施方式进行说明。
实施中,可以根据所述地理位置配置可达性区域的是由AMF根据需要进行配置的;或,是由NG-RAN节点根据需要进行配置的。
相应的,还可以进一步包括:
在由AMF根据需要配置可达性区域后,通过NAS消息将配置的可达性区通知用户终端;或,
在由NG-RAN节点根据需要配置可达性区域后,通过RRC释放消息将配置的可达性区通知用户终端。
实施例十二:
本例中,由AMF主动配置可达性区域。
图17为实施例十二中可达性区域配置实施流程示意图,如图所示,主要包括:
步骤1701:AMF主动为用户终端配置注册区域,例如在用户终端的连接过程中,由于用户终端的位置移动,决定为其配置一个更合适的可达性区域。所述可达性区域可以为注册区域,也可以是以其他名义命名的具有类似功能的区域。
步骤1702:AMF向用户终端发送一条NAS消息,其中包含所配置的以地理位置编码的可达性区域,具体编码方式参见实施例七与实施例八。
实施例十三:
本例中,由NG-RAN节点主动配置可达性区域。
图18为实施例十三中可达性区域配置实施流程示意图,如图所示,主要包括:
步骤1801:NG-RAN节点决定将用户终端移入RRC非活跃态,并为其配置可达性区域。所述可达性区域可以为RNA,也可以是以其他名义命名的具有类似功能的区域。
步骤1802:NG-RAN节点向用户终端发送一条RRC释放消息,用以指示该用户终端进入RRC非活跃态,消息中包含所配置的以地理位置编码的可达性区域,具体编码方式参见实施例七与实施例八。
实施中,所述注册请求消息可以是用户终端在根据自身的定位信息确定自身位于所配置的可达性区域之外后发送的。
实施例十四:
本例中,用户终端根据自身的定位信息,发现自身位于所配置的可达性区域之外,触发注册过程。
图19为实施例十四中用户终端通过注册请求消息触发可达性区域配置实施流程示意图,如图所示,主要包括:
步骤1901:用户终端通过某种方式(例如全球定位系统(Global Position System,GPS)、北斗定位系统等)获得了自身的地理位置信息。
步骤1902:用户终端推算出自身的地理位置位于先前配置的可达性区域之外。所述可达性区域可以为注册区域,也可以是以其他名义命名的具有类似功能的区域。
步骤1903:用户终端向AMF发送一条注册请求消息,以请求AMF配置一个新的可达性区域。通常情况下,AMF在接收到这条注册请求消息之后会随即为用户终端重新配置一个可达性区域。
实施中,RRC消息可以是处于RRC非活跃态的用户终端在根据自身的定位信息确定自身位于所配置的可达性区域之外后在RRC连接恢复过程发送的RRC消息。
实施例十五:
本例中,处于RRC非活跃态的用户终端根据自身的定位信息,发现自身 位于所配置的可达性区域之外,触发RRC连接恢复过程。
图20为实施例十五中用户终端通过RRC消息触发可达性区域配置实施流程示意图,如图所示,主要包括:
步骤2001:处于RRC非活跃态的用户终端通过某种方式(例如GPS、北斗定位系统等)获得了自身的地理位置信息。
步骤2002:用户终端推算出自身的地理位置位于先前配置的可达性区域之外。所述可达性区域可以为RNA,也可以是以其他名义命名的具有类似功能的区域。
步骤2003:用户终端触发RRC恢复过程,向NG-RAN节点发送一条RRC恢复消息。通常情况下,NG-RAN节点在接收到这条RRC恢复消息之后会随即为用户终端重新配置一个可达性区域。
实施中,还可以进一步包括:
AMF向NG-RAN节点发送针对用户终端的寻呼消息,所述寻呼消息中携带有该用户终端的可达性区域,所述可达性区域用以供NG-RAN节点发起寻呼。
实施例十六:
本例中,说明核心网寻呼过程的实施。
图21为实施例十六中核心网寻呼实施流程示意图,如图所示,主要包括:
步骤2101:由于下行数据到达等原因,AMF需要寻呼一个用户终端。
步骤2102:AMF向至少一个相关的NG-RAN节点发送一条寻呼消息,其中包含该用户终端的身份标识,以及以地理位置编码的该用户终端的可达性区域,具体编码方式参见实施例七与实施例八。所述可达性区域可以为注册区域,也可以是以其他名义命名的具有类似功能的区域。
步骤2103:NG-RAN节点在接收到寻呼消息之后,根据消息中的可达性区域计算需要在哪些小区执行寻呼。
步骤2104:NG-RAN节点在上述小区中执行寻呼。
实施中,还可以进一步包括:
NG-RAN节点向其他NG-RAN节点发送针对处于RRC非激活态的用户终端的寻呼消息,所述寻呼消息中携带有该用户终端的可达性区域,所述可 达性区域用以供其他NG-RAN节点发起寻呼。
实施例十七:
本例中,说明RAN寻呼过程的实施。本例中,将已为终端配置可达性区域的RAN节点称为旧RAN节点,而将需要用户终端可达性区域用以执行各种可能服务的RAN节点称为新RAN节点。
图22为实施例十七中RAN寻呼实施流程示意图,如图所示,主要包括:
步骤2201:由于下行数据到达等原因,旧NG-RAN节点需要寻呼一个处于RRC非激活态的用户终端。
步骤2202:旧NG-RAN节点向至少一个相关的新NG-RAN节点发送一条RAN寻呼消息,其中包含该用户终端的身份标识,以及以地理位置编码的该用户终端的可达性区域,具体编码方式参见实施例七与实施例八。所述可达性区域可以为RNA,也可以是以其他名义命名的具有类似功能的区域。
步骤2203:新NG-RAN节点在接收到RAN寻呼消息之后,根据消息中的可达性区域计算需要在哪些小区执行寻呼。
步骤2204:新NG-RAN节点在上述小区中执行寻呼。
实施中,在AMF根据所述地理位置配置可达性区域后,还可以进一步包括:
AMF通知NG-RAN节点该用户终端的所述可达性区域,所述可达性区域用以供NG-RAN节点在将用户终端移入RRC非活跃态时为该用户终端配置或维护可达性区域,和/或使用所述可达性区域进行RAN寻呼。
实施例十八:
本例中,说明核心网向RAN节点传递可达性区域过程的实施。
图23为实施例十八中核心网向RAN节点传递可达性区域实施流程示意图,如图所示,主要包括:
步骤2301:AMF为用户终端配置了NAS层可达性区域。所述NAS层可达性区域可以为注册区域,也可以是以其他名义命名的具有类似功能的区域。
步骤2302:为了支持NG-RAN节点自主将用户终端移入RRC非活跃态的功能,AMF需要告知NG-RAN节点上述NAS层可达性区域,以使NG-RAN节点在决定将用户终端移入RRC非活跃态时能够为其正确配置或维护接入 层可达性区域(具体可以参见实施例十三),以及使用所述接入层可达性区域进行RAN寻呼(具体可以参见实施例十七)。所述接入层可达性区域可以为RNA,也可以是以其他名义命名的具有类似功能的区域。所述接入层可达性区域可以等同于NAS层可达性区域。因此,AMF向NG-RAN节点发送了一条NGAP消息,其中包含以地理位置编码的该用户终端的NAS层可达性区域,具体编码方式参见实施例七与实施例八。
实施中,在NG-RAN节点根据所述地理位置配置可达性区域后,可以进一步包括:
NG-RAN节点通知其他NG-RAN节点该用户终端的所述可达性区域,所述可达性区域用以供其他NG-RAN节点进行可达性区域的增量重配。
实施例十九:
本例中,说明RAN节点之间传递可达性区域过程的实施。本例中,将已为终端配置可达性区域的NG-RAN节点称为旧NG-RAN节点,而将需要用户终端可达性区域用以执行各种可能服务的NG-RAN节点称为新NG-RAN节点。
图24为实施例十九中RAN节点之间传递可达性区域实施流程示意图,如图所示,主要包括:
步骤2401:旧NG-RAN节点为用户终端配置了接入层可达性区域。所述接入层可达性区域可以为RNA,也可以是以其他名义命名的具有类似功能的区域。
步骤2402:为了支持接入层可达性区域的增量重配(见于实施例十三),旧NG-RAN节点可以告知新NG-RAN节点上述接入层可达性区域。所述接入层可达性区域可以等同于NAS层可达性区域。因此,旧NG-RAN节点向新NG-RAN节点发送了一条XnAP消息,其中包含以地理位置编码的该用户终端的接入层可达性区域,具体编码方式参见实施例七与实施例八。
基于同一构思,本公开实施例中还提供了一种网络侧设备、用户终端、可达性区域配置装置、计算机存储介质,由于这些设备解决问题的原理与可达性区域配置方法相似,因此这些设备的实施可以参见方法的实施,重复之处不再赘述。
在实施本公开实施例提供的技术方案时,可以按如下方式实施。
图25为网络侧设备结构示意图,如图所示,基站中包括:
处理器2500,用于读取存储器2520中的程序,执行下列过程:
获取用户终端的地理位置;根据所述地理位置配置可达性区域,所述可达性区域是指在无线通信系统中寻呼所述用户终端的寻呼范围;
收发机2510,用于在处理器2500的控制下接收和发送数据。
实施中,进一步包括:
指示用户终端上报用户终端的地理位置。
实施中,通过以下消息之一或者其组合获取用户终端的地理位置:
NAS消息、RRC消息、Xn接口消息、NG接口消息。
实施中,RRC消息中的注册请求消息是用户终端在根据自身的定位信息确定自身位于所配置的可达性区域之外后发送的。
实施中,所述RRC消息是处于RRC非活跃态的用户终端在根据自身的定位信息确定自身位于所配置的可达性区域之外后在RRC连接恢复过程发送的RRC消息。
实施中,进一步包括:
在通过RRC消息中的注册请求消息获取用户终端的地理位置时,通过NAS注册接纳消息向用户终端返回该用户终端的可达性区域配置;或,
在通过NAS消息获取用户终端的地理位置时,通过NAS消息向用户终端返回该用户终端的可达性区域配置;或,
在通过上行RRC消息获取用户终端的地理位置时,通过NAS接纳消息向用户终端返回该用户终端的可达性区域配置;或,
在通过RRC消息获取用户终端的地理位置时,通过RRC释放消息向用户终端返回该用户终端的可达性区域配置;或,
在通过Xn接口消息获取用户终端的地理位置时,通过RRC释放消息向用户终端返回该用户终端的可达性区域配置;或,
在通过NG接口消息获取用户终端的地理位置时,通过RRC释放消息向用户终端返回该用户终端的可达性区域配置。
实施中,根据所述地理位置配置可达性区域的是由AMF根据需要进行配 置的;或,是由NG-RAN节点根据需要进行配置的。
实施中,进一步包括:
在由AMF根据需要配置可达性区域后,通过NAS消息将配置的可达性区通知用户终端;或,
在由NG-RAN节点根据需要配置可达性区域后,通过RRC释放消息将配置的可达性区通知用户终端。
实施中,进一步包括:
AMF向NG-RAN节点发送针对用户终端的寻呼消息,所述寻呼消息中携带有该用户终端的可达性区域,所述可达性区域用以供NG-RAN节点发起寻呼。
实施中,进一步包括:
该NG-RAN节点向其他NG-RAN节点发送针对处于RRC非激活态的用户终端的寻呼消息,所述寻呼消息中携带有该用户终端的可达性区域,所述可达性区域用以供其他NG-RAN节点发起寻呼。
实施中,在AMF根据所述地理位置配置可达性区域后,进一步包括:
AMF通知NG-RAN节点该用户终端的所述可达性区域,所述可达性区域用以供NG-RAN节点在将用户终端移入RRC非活跃态时为该用户终端配置或维护可达性区域,和/或使用所述可达性区域进行RAN寻呼。
实施中,在NG-RAN节点根据所述地理位置配置可达性区域后,进一步包括:
该NG-RAN节点通知其他NG-RAN节点该用户终端的所述可达性区域,所述可达性区域用以供其他NG-RAN节点进行可达性区域的增量重配。
实施中,按如下方式之一或者其组合根据所述地理位置配置可达性区域:
可达性区域中包括若干区域,其中,对于每一个区域,在预设的时间段内至少存在一个时刻,在该时刻下该区域中的某一点与所述用户终端的地理位置之间的距离小于等于第一预设阈值;或,
可达性区域中包括若干区域,其中,对于每一个区域,在预设的时间段内至少存在一个时刻,在该时刻下所述用户终端的地理位置位于该区域中;或,
可达性区域中包括若干区域,其中,对于每一个区域,在该区域中的某一点与所述用户终端的地理位置之间的距离小于等于第二预设阈值。
实施中,所述可达性区域是用经纬度位置来划分的。
其中,在图25中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器2500代表的一个或多个处理器和存储器2520代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机2510可以是多个元件,即包括发送机和收发机,提供用于在传输介质上与各种其他装置通信的单元。处理器2500负责管理总线架构和通常的处理,存储器2520可以存储处理器2500在执行操作时所使用的数据。
图26为用户终端结构示意图,如图所示,用户终端包括:
处理器2600,用于读取存储器2620中的程序,执行下列过程:
接收网络侧发送的携带有可达性区域信息的消息,其中,所述可达性区域是指在无线通信系统中寻呼所述用户终端的寻呼范围,所述可达性区域是网络侧根据用户终端的地理位置配置的;
根据所述可达性区域信息配置可达性区域;
收发机2610,用于在处理器2600的控制下接收和发送数据。
实施中,进一步包括:
用户终端根据网络侧指示上报用户终端的地理位置;或,
用户终端在根据自身的定位信息确定自身位于所配置的可达性区域之外后上报用户终端的地理位置。
实施中,用户终端通过以下消息之一或者其组合上报用户终端的地理位置:
NAS消息、RRC消息。
其中,在图26中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器2600代表的一个或多个处理器和存储器2620代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文 不再对其进行进一步描述。总线接口提供接口。收发机2610可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户终端,用户接口2630还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器2600负责管理总线架构和通常的处理,存储器2620可以存储处理器2600在执行操作时所使用的数据。
本公开的实施例中提供了一种可达性区域配置装置,包括:
获取模块,用于获取用户终端的地理位置;
可达性区域模块,用于根据所述地理位置配置可达性区域,所述可达性区域是指在无线通信系统中寻呼所述用户终端的寻呼范围。
具体实施可以参见上述网络侧可达性区域配置方法的实施。
本公开的实施例中提供了一种可达性区域配置装置,包括:
接收模块,用于接收网络侧发送的携带有可达性区域信息的消息,其中,所述可达性区域是指在无线通信系统中寻呼所述用户终端的寻呼范围,所述可达性区域是网络侧根据用户终端的地理位置配置的;
配置模块,用于根据所述可达性区域信息配置可达性区域。
具体实施可以参见上述用户终端侧可达性区域配置方法的实施。
为了描述的方便,以上所述装置的各部分以功能分为各种模块或单元分别描述。当然,在实施本公开时可以把各模块或单元的功能在同一个或多个软件或硬件中实现。
本公开的实施例中提供了一种计算机可读存储介质,所述计算机可读存储介质存储有执行上述可达性区域配置方法的计算机程序。
具体实施可以参见上述网络侧和/或用户终端侧可达性区域配置方法的实施。
综上所述,本公开实施例提供的技术方案中,在某一网元为某一用户终端配置可达性区域之前,根据该用户终端的精确地理位置信息来进行配置。所述可达性区域是指无线通信系统在寻呼所述用户终端之时,用以确定寻呼范围的配置信息,包括但不限于注册区域,或者基于无线接入网的通知区域,或者其他具有类似功能的配置信息。所述地理位置信息为满足如下条件的信 息:或者包含用户终端的经纬度坐标信息,或者在没有先验信息的情况下(众所周知的先验信息除外,例如地球半径等),仅凭所述精确地理位置信息即可推算出用户终端的经纬度坐标。当“可达性区域”为5G系统中的注册区域之时,“网元”是指AMF。当“可达性区域”为5G系统中的RNA(基于无线接入网的通知区域)之时,“网元”是指NG-RAN节点。具体的:
用户终端可达性区域的配置方案,可以应用于无线通信系统之中的网元,在为用户终端配置可达性区域之前,接收包含所述用户终端的地理位置信息的消息,然后根据该用户终端的精确地理位置信息来进行配置。
将可达性区域配置为所有满足以下条件的预设区域的列表:所述预设区域所对应的地理区域与所述地理位置信息所代表的终端的地理位置之间的距离不超过一个预设的阈值。所述所对应的地理区域是指所述预设区域在一定时间范围内的每一时刻所覆盖的地理区域的并集。
将可达性区域配置为所有满足以下条件的预设区域的列表:所述预设区域所对应的地理区域包含所述地理位置信息所代表的终端的地理位置。所述所对应的地理区域是指所述预设区域在一定时间范围内的每一时刻所覆盖的地理区域的并集。
将可达性区域配置为所有满足以下条件的预设地理区域的列表:所述预设地理区域与所述地理位置信息所代表的终端的地理位置之间的距离不超过一个预设的阈值。
网元还可以发送一条消息,其中包含一个指示,用以指示所述用户终端上报所述地理位置信息。
对于用户终端,可以发送一条非接入层NAS消息,其中包含所述用户终端的地理位置信息。
也可以在接收到指示所述用户终端上报所述地理位置信息的指示后,发送包含所述用户终端的地理位置信息的消息。
对于无线通信系统之中的其他网元,在获知用户终端的地理位置信息之后,可以网元发送一条接口消息,其中包含所述用户终端的地理位置信息。
可达性区域是根据用户终端的地理位置确定的。
在网元为AMF时,发送的消息为NAS消息,可达性区域为注册区域。
在网元为NG-RAN节点时,发送的消息为RRC消息,可达性区域为RNA。
还可以其他网元发送接口消息,用于告知用户终端的可达性区域。接口消息为寻呼消息,或者RAN寻呼消息,用于指示所述第二无线接入网节点根据所述第一信息计算所述第二无线接入网节点所控制的所有小区之中,哪些小区需要执行寻呼。
采用本公开实施例所提供的技术方案,对于非地面网络等单个小区覆盖面积较大的网络,无线通信系统可以更灵活、更优化地配置可达性区域,避免了以小区粒度配置可达性区域过于粗糙的问题,由于寻呼、接入开销与执行寻呼、接入的小区数量成正比,因此能够显著降低了寻呼开销或接入信令开销。
例如,在典型场景中,为了寻呼一个用户终端,网络往往需要在数十个甚至上百个小区中执行寻呼,而按照本公开实施例所提供的技术方案,网络仅需在用户终端当前驻留小区以及周边的几个小区之中执行寻呼。由于寻呼开销与执行寻呼的小区数量成正比,因此能够显著降低了寻呼开销。
例如,在典型场景中,为了避免出现乒乓注册的情况,按相关技术中的方法需要将用户终端当前所属的TA以及周边TA都配入注册区域,而根据本公开实施例所提供的技术方案,对于大多数用户终端仅需要将注册区域配置为一两个与用户终端当前位置相距较近的TA。由于寻呼开销与注册区域的面积成正比,因此能够显著降低了寻呼开销。
本领域内的技术人员应明白,本公开的实施例可提供为方法、系统、或计算机程序产品。因此,本公开可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本公开是参照根据本公开实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通 过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或 者全部单元来实现本实施例方案的目的。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来控制相关的硬件来完成,所述的程序可存储于计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储器(Read-Only Memory,ROM)或随机存取存储器(Random Access Memory,RAM)等。
可以理解的是,本公开实施例描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,模块、单元、子单元可以实现在一个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processor,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本公开所述功能的其它电子单元或其组合中。
对于软件实现,可通过执行本公开实施例所述功能的模块(例如过程、函数等)来实现本公开实施例所述的技术。软件代码可存储在存储器中并通过处理器执行。存储器可以在处理器中或在处理器外部实现。
显然,本领域的技术人员可以对本公开进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要 求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (37)

  1. 一种可达性区域配置方法,应用于网络侧设备,包括:
    获取用户终端的地理位置;
    根据所述地理位置配置可达性区域,所述可达性区域是指在无线通信系统中寻呼所述用户终端的寻呼范围。
  2. 如权利要求1所述的方法,进一步包括:
    指示用户终端上报用户终端的地理位置。
  3. 如权利要求1所述的方法,其中,通过以下消息之一或者其组合获取用户终端的地理位置:
    非接入层NAS消息、无线资源控制RRC消息、Xn接口消息、NG接口消息。
  4. 如权利要求3所述的方法,其中,RRC消息中的注册请求消息是用户终端在根据自身的定位信息确定自身位于所配置的可达性区域之外后发送的。
  5. 如权利要求3所述的方法,其中,所述RRC消息是处于RRC非活跃态的用户终端在根据自身的定位信息确定自身位于所配置的可达性区域之外后在RRC连接恢复过程发送的RRC消息。
  6. 如权利要求3所述的方法,进一步包括:
    在通过RRC消息中的注册请求消息获取用户终端的地理位置时,通过NAS注册接纳消息向用户终端返回该用户终端的可达性区域配置;或,
    在通过NAS消息获取用户终端的地理位置时,通过NAS消息向用户终端返回该用户终端的可达性区域配置;或,
    在通过上行RRC消息获取用户终端的地理位置时,通过NAS接纳消息向用户终端返回该用户终端的可达性区域配置;或,
    在通过RRC消息获取用户终端的地理位置时,通过RRC释放消息向用户终端返回该用户终端的可达性区域配置;或,
    在通过Xn接口消息获取用户终端的地理位置时,通过RRC释放消息向用户终端返回该用户终端的可达性区域配置;或,
    在通过NG接口消息获取用户终端的地理位置时,通过RRC释放消息向用户终端返回该用户终端的可达性区域配置。
  7. 如权利要求1所述的方法,其中,根据所述地理位置配置可达性区域的是由接入与移动性管理功能单元AMF根据需要进行配置的;或,是由下一代无线接入网NG-RAN节点根据需要进行配置的。
  8. 如权利要求7所述的方法,进一步包括:
    在由AMF根据需要配置可达性区域后,通过NAS消息将配置的可达性区通知用户终端;或,
    在由NG-RAN节点根据需要配置可达性区域后,通过RRC释放消息将配置的可达性区通知用户终端。
  9. 如权利要求7所述的方法,进一步包括:
    AMF向NG-RAN节点发送针对用户终端的寻呼消息,所述寻呼消息中携带有该用户终端的可达性区域,所述可达性区域用以供NG-RAN节点发起寻呼。
  10. 如权利要求7所述的方法,进一步包括:
    该NG-RAN节点向其他NG-RAN节点发送针对处于RRC非激活态的用户终端的寻呼消息,所述寻呼消息中携带有该用户终端的可达性区域,所述可达性区域用以供其他NG-RAN节点发起寻呼。
  11. 如权利要求7所述的方法,其中,在AMF根据所述地理位置配置可达性区域后,所述方法进一步包括:
    AMF通知NG-RAN节点该用户终端的所述可达性区域,所述可达性区域用以供NG-RAN节点在将用户终端移入RRC非活跃态时为该用户终端配置或维护可达性区域,和/或使用所述可达性区域进行RAN寻呼。
  12. 如权利要求7所述的方法,其中,在NG-RAN节点根据所述地理位置配置可达性区域后,所述方法进一步包括:
    该NG-RAN节点通知其他NG-RAN节点该用户终端的所述可达性区域,所述可达性区域用以供其他NG-RAN节点进行可达性区域的增量重配。
  13. 如权利要求1所述的方法,其中,按如下方式之一或者其组合根据所述地理位置配置可达性区域:
    可达性区域中包括若干区域,其中,对于每一个区域,在预设的时间段内至少存在一个时刻,在该时刻下该区域中的某一点与所述用户终端的地理位置之间的距离小于等于第一预设阈值;或,
    可达性区域中包括若干区域,其中,对于每一个区域,在预设的时间段内至少存在一个时刻,在该时刻下所述用户终端的地理位置位于该区域中;或,
    可达性区域中包括若干区域,其中,对于每一个区域,在该区域中的某一点与所述用户终端的地理位置之间的距离小于等于第二预设阈值。
  14. 如权利要求1所述的方法,其中,所述可达性区域是用经纬度位置来划分的。
  15. 一种可达性区域配置方法,应用于用户终端,包括:
    用户终端接收网络侧发送的携带有可达性区域信息的消息,其中,所述可达性区域是指在无线通信系统中寻呼所述用户终端的寻呼范围,所述可达性区域是网络侧根据用户终端的地理位置配置的;
    用户终端根据所述可达性区域信息配置可达性区域。
  16. 如权利要求15所述的方法,进一步包括:
    用户终端根据网络侧指示上报用户终端的地理位置;或,
    用户终端在根据自身的定位信息确定自身位于所配置的可达性区域之外后上报用户终端的地理位置。
  17. 如权利要求16所述的方法,其中,用户终端通过以下消息之一或者其组合上报用户终端的地理位置:
    非接入层NAS消息、无线资源控制RRC消息。
  18. 一种网络侧设备,包括处理器、存储器和收发机,其中,
    所述处理器用于读取所述存储器中的程序以执行下列过程:
    获取用户终端的地理位置;根据所述地理位置配置可达性区域,所述可达性区域是指在无线通信系统中寻呼所述用户终端的寻呼范围;
    所述收发机用于在所述处理器的控制下接收和发送数据。
  19. 如权利要求18所述的设备,其中,所述处理器进一步执行下列过程:
    指示用户终端上报用户终端的地理位置。
  20. 如权利要求18所述的设备,其中,通过以下消息之一或者其组合获取用户终端的地理位置:
    非接入层NAS消息、无线资源控制RRC消息、Xn接口消息、NG接口消息。
  21. 如权利要求20所述的设备,其中,RRC消息中的注册请求消息是用户终端在根据自身的定位信息确定自身位于所配置的可达性区域之外后发送的。
  22. 如权利要求20所述的设备,其中,所述RRC消息是处于RRC非活跃态的用户终端在根据自身的定位信息确定自身位于所配置的可达性区域之外后在RRC连接恢复过程发送的RRC消息。
  23. 如权利要求20所述的设备,其中,所述处理器进一步执行下列过程:
    在通过RRC消息中的注册请求消息获取用户终端的地理位置时,通过NAS注册接纳消息向用户终端返回该用户终端的可达性区域配置;或,
    在通过NAS消息获取用户终端的地理位置时,通过NAS消息向用户终端返回该用户终端的可达性区域配置;或,
    在通过上行RRC消息获取用户终端的地理位置时,通过NAS接纳消息向用户终端返回该用户终端的可达性区域配置;或,
    在通过RRC消息获取用户终端的地理位置时,通过RRC释放消息向用户终端返回该用户终端的可达性区域配置;或,
    在通过Xn接口消息获取用户终端的地理位置时,通过RRC释放消息向用户终端返回该用户终端的可达性区域配置;或,
    在通过NG接口消息获取用户终端的地理位置时,通过RRC释放消息向用户终端返回该用户终端的可达性区域配置。
  24. 如权利要求18所述的设备,其中,根据所述地理位置配置可达性区域的是由接入与移动性管理功能单元AMF根据需要进行配置的;或,是由下一代无线接入网NG-RAN节点根据需要进行配置的。
  25. 如权利要求24所述的设备,其中,所述处理器进一步执行下列过程:
    在由AMF根据需要配置可达性区域后,通过NAS消息将配置的可达性区通知用户终端;或,
    在由NG-RAN节点根据需要配置可达性区域后,通过RRC释放消息将配置的可达性区通知用户终端。
  26. 如权利要求24所述的设备,其中,所述处理器进一步执行下列过程:
    AMF向NG-RAN节点发送针对用户终端的寻呼消息,所述寻呼消息中携带有该用户终端的可达性区域,所述可达性区域用以供NG-RAN节点发起寻呼。
  27. 如权利要求24所述的设备,其中,所述处理器进一步执行下列过程:
    该NG-RAN节点向其他NG-RAN节点发送针对处于RRC非激活态的用户终端的寻呼消息,所述寻呼消息中携带有该用户终端的可达性区域,所述可达性区域用以供其他NG-RAN节点发起寻呼。
  28. 如权利要求24所述的设备,其中,在AMF根据所述地理位置配置可达性区域后,所述处理器进一步执行下列过程:
    AMF通知NG-RAN节点该用户终端的所述可达性区域,所述可达性区域用以供NG-RAN节点在将用户终端移入RRC非活跃态时为该用户终端配置或维护可达性区域,和/或使用所述可达性区域进行RAN寻呼。
  29. 如权利要求24所述的设备,其中,在NG-RAN节点根据所述地理位置配置可达性区域后,所述处理器进一步执行下列过程:
    该NG-RAN节点通知其他NG-RAN节点该用户终端的所述可达性区域,所述可达性区域用以供其他NG-RAN节点进行可达性区域的增量重配。
  30. 如权利要求18所述的设备,其中,按如下方式之一或者其组合根据所述地理位置配置可达性区域:
    可达性区域中包括若干区域,其中,对于每一个区域,在预设的时间段内至少存在一个时刻,在该时刻下该区域中的某一点与所述用户终端的地理位置之间的距离小于等于第一预设阈值;或,
    可达性区域中包括若干区域,其中,对于每一个区域,在预设的时间段内至少存在一个时刻,在该时刻下所述用户终端的地理位置位于该区域中;或,
    可达性区域中包括若干区域,其中,对于每一个区域,在该区域中的某一点与所述用户终端的地理位置之间的距离小于等于第二预设阈值。
  31. 如权利要求18所述的设备,其中,所述可达性区域是用经纬度位置来划分的。
  32. 一种用户终端,包括处理器、存储器和收发机,其中,
    所述处理器用于读取所述存储器中的程序以执行下列过程:
    接收网络侧发送的携带有可达性区域信息的消息,其中,所述可达性区域是指在无线通信系统中寻呼所述用户终端的寻呼范围,所述可达性区域是网络侧根据用户终端的地理位置配置的;
    根据所述可达性区域信息配置可达性区域;
    所述收发机用于在所述处理器的控制下接收和发送数据。
  33. 如权利要求32所述的终端,其中,所述处理器进一步执行下列过程:
    用户终端根据网络侧指示上报用户终端的地理位置;或,
    用户终端在根据自身的定位信息确定自身位于所配置的可达性区域之外后上报用户终端的地理位置。
  34. 如权利要求33所述的终端,其中,用户终端通过以下消息之一或者其组合上报用户终端的地理位置:
    非接入层NAS消息、无线资源控制RRC消息。
  35. 一种可达性区域配置装置,应用于网络侧设备,包括:
    获取模块,用于获取用户终端的地理位置;
    可达性区域模块,用于根据所述地理位置配置可达性区域,所述可达性区域是指在无线通信系统中寻呼所述用户终端的寻呼范围。
  36. 一种可达性区域配置装置,应用于用户终端,包括:
    接收模块,用于接收网络侧发送的携带有可达性区域信息的消息,其中,所述可达性区域是指在无线通信系统中寻呼用户终端的寻呼范围,所述可达性区域是网络侧根据用户终端的地理位置配置的;
    配置模块,用于根据所述可达性区域信息配置可达性区域。
  37. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,其中,所述计算机程序在由处理器执行时实现权利要求1至17中任一项所述的方法。
PCT/CN2020/100810 2019-08-07 2020-07-08 可达性区域配置方法、设备及装置 WO2021022963A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910727418.5A CN112437393B (zh) 2019-08-07 2019-08-07 一种可达性区域配置方法、设备及装置
CN201910727418.5 2019-08-07

Publications (1)

Publication Number Publication Date
WO2021022963A1 true WO2021022963A1 (zh) 2021-02-11

Family

ID=74503710

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/100810 WO2021022963A1 (zh) 2019-08-07 2020-07-08 可达性区域配置方法、设备及装置

Country Status (2)

Country Link
CN (1) CN112437393B (zh)
WO (1) WO2021022963A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023071721A1 (zh) * 2021-10-26 2023-05-04 大唐移动通信设备有限公司 一种随机接入的方法、卫星基站、地面终端及存储介质

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115336322A (zh) * 2021-03-11 2022-11-11 北京小米移动软件有限公司 重选小区的方法、装置、通信设备及存储介质
CN115967911A (zh) * 2021-10-08 2023-04-14 华为技术有限公司 定位方法、装置及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107645753A (zh) * 2017-09-15 2018-01-30 武汉虹信通信技术有限责任公司 一种ue小区重选时的位置上报方法
CN107852228A (zh) * 2015-07-24 2018-03-27 高通股份有限公司 卫星通信位置报告和寻呼
CN107948915A (zh) * 2016-10-13 2018-04-20 中兴通讯股份有限公司 寻呼区域的确定方法和装置
CN109699051A (zh) * 2017-10-21 2019-04-30 上海朗帛通信技术有限公司 一种无线通信的用户设备、网络设备中的方法和装置
EP3482590A1 (en) * 2016-08-03 2019-05-15 Huawei Technologies Co., Ltd. Location tracking in wireless networks

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102036375B (zh) * 2010-12-17 2013-07-24 大唐移动通信设备有限公司 一种获取终端位置信息的方法、系统和设备
CN103428853B (zh) * 2012-05-23 2017-05-03 电信科学技术研究院 一种寻呼方法和设备
KR102029041B1 (ko) * 2013-03-26 2019-10-08 삼성전자주식회사 무선 통신 시스템에서 아이들 모드 동작 방법 및 장치
EP3297346B1 (en) * 2015-06-18 2023-02-15 Huawei Technologies Co., Ltd. Paging devices
CN108377516B (zh) * 2016-10-11 2019-12-10 电信科学技术研究院 一种确定寻呼区域的方法、接入网节点及核心网节点
CN108024332A (zh) * 2016-11-02 2018-05-11 中兴通讯股份有限公司 一种寻呼优化的方法和装置
EP3579626A4 (en) * 2017-03-20 2020-01-29 Huawei Technologies Co., Ltd. PAGING METHOD AND CORRESPONDING DEVICE
CN109429174B (zh) * 2017-07-17 2021-05-25 维沃移动通信有限公司 一种寻呼方法、终端、基站及网络控制节点

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107852228A (zh) * 2015-07-24 2018-03-27 高通股份有限公司 卫星通信位置报告和寻呼
EP3482590A1 (en) * 2016-08-03 2019-05-15 Huawei Technologies Co., Ltd. Location tracking in wireless networks
CN107948915A (zh) * 2016-10-13 2018-04-20 中兴通讯股份有限公司 寻呼区域的确定方法和装置
CN107645753A (zh) * 2017-09-15 2018-01-30 武汉虹信通信技术有限责任公司 一种ue小区重选时的位置上报方法
CN109699051A (zh) * 2017-10-21 2019-04-30 上海朗帛通信技术有限公司 一种无线通信的用户设备、网络设备中的方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
THALES, NOKIA, NOKIA SHANGHAI BELL, HNS: "NR-NTN: Preliminary solutions for NR to support non-terrestrial networks", 3GPP DRAFT; RP-180664 NR-NTN - SOLUTION PRINCIPLES FOR NR TO SUPPORT NTN_V12, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. TSG RAN, no. La Jolla, USA; 20180611 - 20180614, 4 June 2018 (2018-06-04), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051509974 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023071721A1 (zh) * 2021-10-26 2023-05-04 大唐移动通信设备有限公司 一种随机接入的方法、卫星基站、地面终端及存储介质

Also Published As

Publication number Publication date
CN112437393B (zh) 2022-05-31
CN112437393A (zh) 2021-03-02

Similar Documents

Publication Publication Date Title
WO2021022963A1 (zh) 可达性区域配置方法、设备及装置
US10542515B2 (en) Location tracking in wireless networks
US20200192348A1 (en) Information exchange for an unmanned aerial vehicle
CN110913472B (zh) 定位管理方法、装置、5g无线接入网节点及核心网节点
EP3780495A1 (en) Model updating method, device, and system
EP3437428B1 (en) A base station for a communication network and a core network apparatus
JPWO2020144917A1 (ja) 分散ユニット、中央ユニット、及びこれらのための方法
WO2021063397A1 (zh) 一种参考信号配置的确定方法及装置
AU2020208514A1 (en) Label management method and apparatus for terminal device
US11711708B2 (en) Communication method and communications apparatus
WO2020088291A1 (zh) 一种进行寻呼的方法、设备及对应关系更新的方法、设备
TWI748422B (zh) 小區選擇方法、網路設備及終端
CN109691195B (zh) 终端装置、网络装置、控制方法以及计算机可读存储介质
US20190380109A1 (en) Radio access network paging procedure based on network slice
CN101998229A (zh) 终止定位进程的方法与装置
EP3902312A1 (en) Methods for managing neighbor relations and coordinating physical cell identifiers for moving high altitude platform systems
WO2016163112A1 (ja) ページング最適化のための装置及び方法
US10932162B2 (en) Handover method and apparatus
US20180213546A1 (en) Method of interworking between networks and device
US20190253993A1 (en) System And Methods Relating To Two Layer Area Registration
CN107295546B (zh) 一种移动性集合配置方法、基站、ue和系统
US11723117B2 (en) Mobility level control device and mobility level control method
CN112423230A (zh) 一种寻呼方法、装置、设备及计算机可读存储介质
CN116567539A (zh) 一种信息更新方法以及通信装置
WO2024047430A1 (en) Energy resource level based paging response

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20850675

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20850675

Country of ref document: EP

Kind code of ref document: A1