WO2021022942A1 - 天线模组及电子设备 - Google Patents

天线模组及电子设备 Download PDF

Info

Publication number
WO2021022942A1
WO2021022942A1 PCT/CN2020/098858 CN2020098858W WO2021022942A1 WO 2021022942 A1 WO2021022942 A1 WO 2021022942A1 CN 2020098858 W CN2020098858 W CN 2020098858W WO 2021022942 A1 WO2021022942 A1 WO 2021022942A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal body
antenna module
antenna
antenna radiator
feeding point
Prior art date
Application number
PCT/CN2020/098858
Other languages
English (en)
French (fr)
Inventor
蒋锐
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2021022942A1 publication Critical patent/WO2021022942A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/44Details of, or arrangements associated with, antennas using equipment having another main function to serve additionally as an antenna, e.g. means for giving an antenna an aesthetic aspect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/521Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/10Resonant antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/20Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements characterised by the operating wavebands
    • H01Q5/28Arrangements for establishing polarisation or beam width over two or more different wavebands
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • H01Q5/328Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors between a radiating element and ground
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/50Feeding or matching arrangements for broad-band or multi-band operation

Definitions

  • the present disclosure relates to the field of wireless communication technology, and in particular to an antenna module and electronic equipment.
  • MIMO multiple-input multiple-output
  • the current antenna module usually has a fracture on the metal body, so that the metal arms on both sides of the fracture form an antenna radiator, and each antenna radiator provides a resonance mode covering a frequency band.
  • the antenna module when the antenna module is required to generate more resonance modes, it will cause too many breaks in the antenna module, and too many breaks will cause the communication performance of the antenna module of the antenna module to decrease. For example, if there are too many fractures, the distance between the two fractures may become smaller, and the isolation between the formed antenna radiators will deteriorate, and so on.
  • the embodiments of the present disclosure provide an antenna module and an electronic device to solve the problem of reduced communication performance caused by excessive openings when the current antenna module generates more resonance modes.
  • embodiments of the present disclosure provide an antenna module, the antenna module including a first metal body, a second metal body, a third metal body, and a fourth metal body;
  • the first metal body and the second metal body are spaced apart and form an opening, the first metal body has a first feeding point and a first feeding point, and the second metal body has a second feeding point;
  • Part or all of the third metal body is opposite to the second metal body and arranged at intervals, and the fourth metal body is formed by extending the third metal body in a direction away from the second metal body, and The fourth metal body has a second feeding point, wherein:
  • the first metal body forms a first antenna radiator
  • the second metal body forms a second antenna radiator
  • the third metal body is coupled with the second metal body to form a third antenna radiator.
  • an embodiment of the present disclosure also provides an electronic device including the above-mentioned antenna module.
  • the antenna module includes a first metal body, a second metal body, a third metal body, and a fourth metal body; the first metal body and the second metal body are spaced apart and form an opening, and the first metal body has The first feeding point and the first feeding point, the second metal body has a second feeding point; part or all of the third metal body is opposite to and spaced apart from the second metal body, and the fourth metal body is away from the third metal body The direction of the second metal body is extended, and the fourth metal body has a second feeding point, wherein: the first metal body forms a first antenna radiator, the second metal body forms a second antenna radiator, and, The three-metal body is coupled with the second metal body to form a third antenna radiator.
  • the fourth metal body can also increase the isolation between the antenna radiators , To further improve the communication performance of the antenna module.
  • FIG. 1 is a schematic structural diagram of an antenna module provided by an embodiment of the present disclosure
  • FIG. 2 is a schematic structural diagram of an equivalent circuit of an antenna module provided by an embodiment of the present disclosure.
  • FIG. 1 is a schematic structural diagram of an antenna module provided by an embodiment of the present disclosure.
  • the antenna module includes a first metal body 11, a second metal body 12, a third metal body 13, and a fourth metal body 14;
  • the first metal body 11 and the second metal body 12 are spaced apart and form an opening 10, the first metal body 11 has a first feeding point C and a first feeding point F, and the second metal body 12 has a second feeding point D;
  • the fourth metal body 14 is formed by extending the third metal body 13 in a direction away from the second metal body 12, and the fourth metal body 14 has The second feeding point G, where:
  • the first metal body 11 forms a first antenna radiator
  • the second metal body 12 forms a second antenna radiator
  • the third metal body 13 is coupled with the second metal body 12 to form a third antenna radiator.
  • the antenna module is disposed on the third metal body 13 and the fourth metal body 14, and the fourth metal body 14 is electrically connected to the second feed source 22, so that the third metal body 13 and the second metal body 12 are coupled to form a Three antenna radiators, so as to realize a fracture (that is, opening 10). At least three antenna radiators can be arranged, so that when the antenna module generates more resonance modes, the number of openings in the antenna module can be reduced, and the antenna mode can be improved.
  • the communication performance of the group is disposed on the third metal body 13 and the fourth metal body 14, and the fourth metal body 14 is electrically connected to the second feed source 22, so that the third metal body 13 and the second metal body 12 are coupled to form a Three antenna radiators, so as to realize a fracture (that is, opening 10). At least three antenna radiators can be arranged, so that when the antenna module generates more resonance modes, the number of openings in the antenna module can be reduced, and the antenna mode can be improved.
  • the communication performance of the group is disposed on the third metal body 13
  • first feed point F may be electrically connected to the first feed source 21
  • second feed point G is electrically connected to the second feed source 22
  • first feed source 21 and the second feed source 22 Work in different frequency bands.
  • the first metal body 11 has a first feeding point F and a first feeding point C, and the first feeding point C may be provided between the opening 10 and the first feeding point F; or, optionally, so The first feeding point F is located between the opening 10 and the first feeding point C, thereby improving the radiation performance of the first antenna radiator.
  • the frequency band in which the first feed source 21 operates includes at least the frequency band covered by the first antenna radiator
  • the frequency band in which the second feed source 22 operates at least includes the frequency band covered by the second antenna radiator and the third antenna radiator. Covered frequency bands, and the frequency band where the first feed source 21 works and the frequency band where the second feed source 22 works can overlap (that is, part or all of the frequency points are the same) or not (that is, there is no same frequency point).
  • the frequency band in which the first feed 21 works may include at least one of the frequency bands N78 and N79 of the fifth generation mobile communication system (The Fifth Generation Mobile Communication System, 5G); the frequency band in which the second feed 22 works includes At least one of the frequency bands B1, B3, B5, B8, B12, B17, B20, B39, B40, B41, and 5G frequency band N41 of the Fourth Generation Mobile Communication System (4G), thereby
  • the frequency band of the antenna module is flexible.
  • the first metal body 11 forms a first antenna radiator
  • the first feed source 21 may be electrically connected to the first feeding point F of the first metal body 11, so that the opening of the first metal body
  • the (metal body) between the end A and the first feeding point C forms the first antenna radiator.
  • the above-mentioned first antenna radiator can generate a first resonance mode, and the length of the first metal body 11 can be set according to the frequency band covered by the first resonance mode, that is, the length of the first metal body 11 is adapted to a resonance mode The electrical length of the covered frequency band.
  • the frequency band covered by the first resonance mode may be N78 or N79, and the length of the above-mentioned first metal body is adapted to the electrical length of the frequency band N78 or N79. Specifically, it may be the openings 10 to N79 as shown in FIG. The range of the distance of the first feeding point C is 8 mm to 11 mm.
  • the above-mentioned second metal body 12 forms a second antenna radiator, that is, all the metal bodies from the open end B of the second metal body 12 to the second feeding point D can be used as the second antenna radiator; the second antenna radiator can cover The second resonance mode, and the length of the second metal body can be set according to the frequency band covered by the second resonance mode, that is, the length of the second metal body 12 is adapted to the electrical length of the frequency band covered by the second resonance mode.
  • the frequency band covered by the second resonance mode may be B5, B8, B12, B17, B20, or N41, and the length of the second metal body is adapted to the electrical length of the frequency band covered by the second resonance mode. It may be that the range of the distance from the opening 10 to the second feeding point D is 11 mm to 50 mm.
  • the third metal body 13 and the second metal body 12 are spaced apart, and a coupling gap 120 is formed between the third metal body 13 and the second metal body 12, so that the third metal body 13 and the second metal body 12
  • the body 12 forms a capacitive coupling, so that the third metal body 13 and the second metal body 12 form a third antenna radiator.
  • the above-mentioned third antenna radiator mainly plays a role of coupling excitation, and the third antenna radiator can also generate a third resonance mode, and the third resonance mode can cover a certain frequency band.
  • the above-mentioned third resonance mode may cover frequency bands such as B1, B4, B39, and B41.
  • the above-mentioned third metal body 13 can be designed to have different lengths as required.
  • the length of the third metal body 13 can be adapted to the electrical length of the frequency band covered by the third resonant mode; and the above-mentioned third metal body 13 can be made by flexible printed circuit board (FPC) technology or laser direct Metals formed by laser-direct-structuring (LDS) technology are not limited here.
  • FPC flexible printed circuit board
  • LDS laser direct Metals formed by laser-direct-structuring
  • the distance between the positions of the third metal body 13 and the second metal body 12 may be different.
  • the third metal body 13 is a spherical metal body
  • the second metal body 12 is a flat metal body, so that the distance between the third metal body 13 and the positions on the second metal body 12 may be different.
  • the third metal body 13 may be arranged in parallel with the second metal body 12, that is, the distance between the third metal body 13 and the second metal body 12 is the same, so that the third metal body 13 and the second metal body 12 can be strengthened.
  • the coupling performance of the second metal body 12 further improves the communication performance of the antenna module.
  • the distance between the third metal body 13 and the second metal body 12 and the relative position of the two can be set according to actual needs, which is not limited here.
  • the distance between the third metal body 13 and the second metal body 12 ranges from 0.3 mm to 0.8 mm, which further improves the coupling performance of the third metal body 13 and the second metal body 12, thereby improving the antenna The communication performance of the module.
  • the distance between the third metal body 13 and the open end B of the second metal body 12 ranges from 2 mm to 10 mm, which further improves the coupling performance of the third metal body 13 and the second metal body 12 , Thereby improving the communication performance of the antenna module.
  • the fourth metal body 14 is formed by extending the third metal body 13, and the fourth metal body 14 is electrically connected to the second feed source 22. Because the fourth metal body 14 is disposed on the third metal body 13 and the Between the two feed sources 22, the fourth metal body 14 can be equivalent to an inductor 31 as shown in FIG.
  • the coupling gap 120 and the opening 10 between the third metal body 13 and the second metal body 12 form a coupling Body 32, and the inductor 31 and the coupling body 32 are connected in series between the first feed 21 and the second feed 22, so that the isolation between the first feed 21 and the second feed 22 can be improved, that is, the The isolation between one antenna radiator and the second antenna radiator and the third antenna radiator makes it possible to increase the isolation between the antenna radiators when at least three antenna radiators are arranged on the same fracture, thereby improving the antenna mode.
  • the communication performance of the group is not limited to increase the isolation between the antenna radiators when at least three antenna radiators are arranged on the same fracture, thereby improving the antenna mode.
  • the second feed source 22 and the fourth metal body 14 are electrically connected, and the second feed source 22 may be electrically connected to any position of the fourth metal body 14.
  • the second feed source 22 is electrically connected to the center point of the fourth metal body 14, and so on.
  • the fourth metal body 14 has a first end and a second end, the first end of the fourth metal body 14 is connected to the third metal body 13, and the second end of the fourth metal body 14 is provided with the The second feeding point G.
  • both ends of the fourth metal body 14 are respectively connected to the third metal body 13 and the second feed source 22 (ie, the fourth The second end of the metal body 14 is provided with the aforementioned second feeding point G), that is, the fourth metal body 14 is completely located between the third metal body 13 and the coupling gap 120, and the fourth metal body 14 is completely located between the coupling gap 12
  • the coupling body formed with the opening 10 can ensure that the third metal body 13 and the second metal body 12 have an effective decoupling effect when coupling, and effectively improve the first antenna radiator and other antenna radiators (such as the first antenna radiator).
  • the isolation between the two antenna radiators and the third antenna radiator thereby improving the radiation efficiency of each antenna radiator, thereby improving the communication performance of the antenna module.
  • the fourth metal body 14 may be formed to extend in any direction.
  • the above-mentioned fourth metal body 14 can be formed by extending in a direction perpendicular to the third metal body 13, and can also extend in a direction perpendicular to the third metal body 13 for a first section, and then extend parallel to the third metal body 13 for a second section. Paragraph, etc.
  • the fourth metal body 14 includes a first extension 141, a second extension 142, and a third extension 143.
  • the first extension 141 extends in a direction perpendicular to the third metal body 13, and the second extension 142 is perpendicular to the first extension 141 and extends toward the first metal body 11, and the third extension is perpendicular to the second extension and 142 extends toward the third metal body 13, so as to increase the fourth metal body 14
  • the space occupied by the fourth metal body 14 can be reduced, and the volume of the antenna module can be reduced.
  • the antenna module may further include a switch circuit 41.
  • the first end of the switch circuit 41 is electrically connected to the first connection point E of the second metal body 12, and the second end of the switch circuit is grounded.
  • a connection point E is located between the open end B of the second metal body 12 and the second feed point D, where:
  • a second antenna radiator is formed between the open end B of the second metal body 12 and the second feeding point D;
  • a fourth antenna radiator is formed between the open end B of the second metal body 12 and the first connection point E.
  • the second metal body 12 can be controlled to form a second antenna radiator and a fourth antenna radiator, respectively, so that one opening can cover more resonance modes generated by the antenna radiator. In order to further improve the communication performance of the antenna module.
  • the fourth antenna radiator can generate a fourth resonance mode
  • the length of the fourth antenna radiator (that is, the distance between the open end B of the second metal body 12 and the first connection point E) can be based on the Setting of four-resonance mode coverage.
  • the frequency band covered by the fourth resonance mode may be the frequency band B1, B3, or B39, etc.
  • the length of the fourth antenna radiator is adapted to the electrical length of the frequency band B1, B3, or B39, etc.
  • the antenna module further includes a resonant matching circuit 42, the first end of the resonant matching circuit 42 is electrically connected to the first end of the switch circuit 41, and the second end of the resonant matching circuit 42 is grounded, wherein:
  • the resonance matching circuit 42 is used to form a resonance matching with the switch circuit 41, so that the first antenna radiator is equivalent to a ground inductance.
  • the resonant matching circuit 42 matches the conduction parameters of the switch circuit 41 to form a resonance matching with the switch circuit 41, so that the first antenna radiator is equivalent to
  • the ground inductance effectively improves the isolation of the frequency band covered by the first resonance mode.
  • the isolation of N78 can be increased, thereby improving the radiation efficiency of the first radiator, and improving the communication performance of the antenna module in the frequency band where the first antenna radiator works.
  • the aforementioned resonance matching circuit 42 may be any circuit that can achieve resonance matching with the switch circuit, so that the first antenna radiator is equivalent to a ground inductance.
  • the resonant matching circuit 42 may be an LC series resonant circuit or an LC parallel resonant circuit composed of a capacitor and an inductor, etc., which is not limited herein.
  • the inductance value of the first antenna radiator equivalent to the ground inductance can be adjusted according to the matching parameters of the resonance matching circuit 42.
  • the inductance value of the ground inductance ranges from 1 nanohenry.
  • the first antenna radiator is equivalent to a small inductance to the ground, which further improves the radiation efficiency of the first radiator, and improves the communication performance of the antenna module in the frequency band where the first antenna radiator works.
  • the antenna module includes a first metal body, a second metal body, a third metal body, and a fourth metal body; the first metal body and the second metal body are spaced apart and form an opening, and the first metal body has The first feeding point and the first feeding point, the second metal body has a second feeding point; part or all of the third metal body is opposite to and spaced apart from the second metal body, and the fourth metal body is away from the third metal body The direction of the second metal body is extended, and the fourth metal body has a second feeding point, wherein: the first metal body forms a first antenna radiator, the second metal body forms a second antenna radiator, and, The three-metal body is coupled with the second metal body to form a third antenna radiator. In this way, when the antenna module generates more resonance modes, the number of openings in the antenna module can be reduced, and the communication performance of the antenna module can be improved.
  • an embodiment of the present disclosure also provides an electronic device including the above antenna module.
  • the above-mentioned first metal body 11 and the second metal body 12 may be part of the metal body on the metal middle frame of the electronic device, that is, the metal middle frame of the electronic device
  • the frame is provided with the above-mentioned opening 10, and the first metal body 11 and the second metal body 12 are partial metal bodies distributed on both sides of the opening 10.
  • opening an opening 10 in the metal middle frame can realize multiple resonance modes.
  • the antenna module produces more resonant modes
  • the number of openings 10 opened on the metal middle frame can be reduced, thereby improving the integrity of the electronic device; in addition, the opening 10 may be opened in the electronic device Long side or short side.
  • the first metal body 11 and the second metal body 12 may be attached to the middle frame of the electronic device, etc., which are not here. Qualify.

Landscapes

  • Support Of Aerials (AREA)

Abstract

本公开提供一种天线模组及电子设备,天线模组包括第一金属体、第二金属体、第三金属体和第四金属体;第一金属体和第二金属体间隔设置且形成开口,第一金属体具有第一馈地点和第一馈电点,第二金属体具有第二馈地点;第三金属体的部分或者全部与第二金属体相对且间隔设置,第四金属体由第三金属体延伸形成,且第四金属体具有第二馈电点,其中:第一金属体形成第一天线辐射体,第二金属体形成第二天线辐射体,以及,第三金属体与第二金属体耦合形成第三天线辐射体。

Description

天线模组及电子设备
相关申请的交叉引用
本申请主张在2019年8月8日在中国提交的中国专利申请号No.201910731766.X的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及无线通信技术领域,尤其涉及一种天线模组及电子设备。
背景技术
随着电子技术的飞速发展,智能手机以及平板电脑等电子设备已越来越普及,并逐渐成为人们日常生活不可缺少的工具。人们在使用电子设备过程中,对于电子设备的要求也越来高,尤其是电子设备的通信性能,因此多输入多输出(Multiple-Input Multiple-Output,MIMO)技术的被广泛应用于电子设备中,通过电子设备设置多个天线产生多个谐振模态,以提升电子设备在不同频段上的信号收发性能。
在MIMO技术中,为满足不断增加的电子设备的数据的需求量,要求电子设备的天线模组产生的谐振模态也越来越多。其中,目前的天线模组通常是在金属体上开设断口,以使断口两侧的金属臂形成天线辐射体,且每一天线辐射体提供覆盖一个频段的谐振模态。这样,当要求天线模组产生较多的谐振模态时,会导致天线模组中开设的断口过多,而断口过多将会引起天线模组的天线模组的通信性能降低。例如,断口过多时可能会导致两个断口之间的距离变小,从而使得形成的天线辐射体之间的隔离度变差,等等。
发明内容
本公开实施例提供一种天线模组及电子设备,以解决目前的天线模组在产生较多谐振模态时,存在因开设的断口过多而引起其通信性能降低的问题。
为解决上述问题,本公开实施例是这样实现的:
第一方面,本公开实施例提供一种天线模组,所述天线模组包括第一金 属体、第二金属体、第三金属体和第四金属体;
所述第一金属体和所述第二金属体间隔设置且形成开口,所述第一金属体具有第一馈地点和第一馈电点,所述第二金属体具有第二馈地点;
所述第三金属体的部分或者全部与所述第二金属体相对且间隔设置,所述第四金属体由所述第三金属体向远离所述第二金属体的方向延伸形成,且所述第四金属体具有第二馈电点,其中:
所述第一金属体形成第一天线辐射体,所述第二金属体形成第二天线辐射体,以及,所述第三金属体与所述第二金属体耦合形成第三天线辐射体。
第二方面,本公开实施例还提供一种电子设备,包括上述天线模组。
本公开实施例中,天线模组包括第一金属体、第二金属体、第三金属体和第四金属体;第一金属体和第二金属体间隔设置且形成开口,第一金属体具有第一馈地点和第一馈电点,第二金属体具有第二馈地点;第三金属体的部分或者全部与第二金属体相对且间隔设置,第四金属体由第三金属体向远离所述第二金属体的方向延伸形成,且第四金属体具有第二馈电点,其中:第一金属体形成第一天线辐射体,第二金属体形成第二天线辐射体,以及,第三金属体与第二金属体耦合形成第三天线辐射体。这样,在天线模组产生较多的谐振模态时,可以减少天线模组开设断口的数量,提升天线模组的通信性能;另外,第四金属体还可以增加天线辐射体之间的隔离度,进一步提升天线模组的通信性能。
附图说明
图1是本公开实施例提供的天线模组的结构示意图;
图2是本公开实施例提供的天线模组的等效电路的结构示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创 造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
参见图1,图1是本公开实施例提供的一种天线模组的结构示意图,天线模组包括第一金属体11、第二金属体12、第三金属体13和第四金属体14;
第一金属体11和第二金属体12间隔设置且形成开口10,第一金属体11具有第一馈地点C和第一馈电点F,第二金属体12具有第二馈地点D;
第三金属体13的部分或者全部与第二金属体12相对且间隔设置,第四金属体14由第三金属体13向远离第二金属体12的方向延伸形成,且第四金属体14具有第二馈电点G,其中:
第一金属体11形成第一天线辐射体,第二金属体12形成第二天线辐射体,以及,第三金属体13与第二金属体12耦合形成第三天线辐射体。
这里,天线模组通过设置于第三金属体13和第四金属体14,且第四金属体14与第二馈源22电连接,使得第三金属体13与第二金属体12耦合形成第三天线辐射体,从而实现一个断口(即开口10)可以布局至少三个天线辐射体,从而在天线模组产生较多谐振模态时,可以降低天线模组开设断口的数量,进而提升天线模组的通信性能。
需要说明的是,上述第一馈电点F可以是与第一馈源21电连接,第二馈电点G与第二馈源22电连接,且第一馈源21与第二馈源22工作在不同的频段。
另外,上述第一金属体11具有第一馈电点F和第一馈地点C,可以是第一馈地点C设置于开口10和第一馈电点F之间;或者,可选的,所述第一馈电点F位于所述开口10与所述第一馈地点C之间,从而提升第一天线辐射体的辐射性能。
本实施例中,上述第一馈源21工作的频段至少包括第一天线辐射体覆盖的频段,以及第二馈源22工作的频段至少包括第二天线辐射体覆盖的频段和第三天线辐射体覆盖的频段,且第一馈源21工作的频段和第二馈源22工作的频段可以重叠(即部分或者全部频点相同)或者不重叠(即不存在相同的频点)。
具体地,第一馈源21工作的频段可以包括第五代移动通信系统(The Fifth Generation Mobile Communication System,5G)的频段N78和N79等中的至 少一项;第二馈源22工作的频段包括第四代移动通信系统(The Fourth Generation Mobile Communication System,4G)的频段B1、B3、B5、B8、B12、B17、B20、B39、B40、B41以及5G的频段N41等中的至少一项,从而使天线模组工作的频段可选性灵活。
本实施例中,上述第一金属体11形成第一天线辐射体,可以是上述第一馈源21与上述第一金属体11的第一馈电点F电连接,使得第一金属体的开口端A至第一馈地点C之间(的金属体)形成上述第一天线辐射体。
其中,上述第一天线辐射体可以产生第一谐振模态,且第一金属体11的长度可以根据第一谐振模态覆盖的频段设置,即第一金属体11的长度适配一谐振模态覆盖的频段的电长度。
示例性地,第一谐振模态覆盖的频段可以为N78或者N79,且上述第一金属体的长度适配频段N78或者N79的电长度,具体地,可以是如图2所示的开口10至第一馈地点C的距离的取值范围为8毫米至11毫米。
另外,上述第二金属体12形成第二天线辐射体,即第二金属体12的开口端B至第二馈地点D的全部金属体可以作为第二天线辐射体;第二天线辐射体可以覆盖第二谐振模态,且第二金属体的长度可以根据第二谐振模态覆盖的频段设置,即第二金属体12的长度适配第二谐振模态覆盖的频段的电长度。
示例性地,上述第二谐振模态覆盖的频段可以为B5、B8、B12、B17、B20或者N41,且上述第二金属体的长度适配第二谐振模态覆盖的频段的电长度,具体地,可以是开口10至第二馈地点D的距离的取值范围为11毫米至50毫米。
本实施例中,上述第三金属体13与上述第二金属体12间隔设置,且第三金属体13与第二金属体12之间形成耦合缝隙120,使得第三金属体13与第二金属体12形成电容耦合,从而第三金属体13和第二金属体12形成第三天线辐射体。
其中,上述第三天线辐射体主要起耦合激励作用,且第三天线辐射体也可以产生第三谐振模态,且第三谐振模态可以覆盖一定的频段。例如,上述第三谐振模态可以覆盖B1、B4、B39以及B41等频段。
另外,上述第三金属体13可以根据需要设计成不同的长度。例如,第三金属体13的长度可以适配第三谐振模态所覆盖的频段的电长度;且上述第三金属体13可以是通过柔性电路板(Flexible Printed Circuit Board,FPC)技术或者激光直接成型(Laser-Direct-structuring,LDS)技术等形成的金属,在此并不进行限定。
需要说明的是,上述第三金属体13与上述第二金属体12之间各位置的距离可以是不同。例如,上述第三金属体13为球面型的金属体,而第二金属体12为平面型的金属体,从而使得第三金属体13与第二金属体12上各位置的距离可能存在不同。
在一些实施方式中,第三金属体13可以与第二金属体12平行设置,即第三金属体13与第二金属体12之间各位置的距离相同,从而可以增强第三金属体13与第二金属体12的耦合性能,进而提升天线模组的通信性能。
另外,上述第三金属体13与第二金属体12的距离以及两者的相对位置可以根据实际需要进行设定,在此并不进行限定。
在一些实施方式中,第三金属体13与第二金属体12的距离的取值范围为0.3毫米至0.8毫米,进一步提升第三金属体13与第二金属体12的耦合性能,进而提升天线模组的通信性能。
在一些实施方式中,第三金属体13与第二金属体12的开口端B的距离的取值范围为2毫米至10毫米,进一步提升第三金属体13与第二金属体12的耦合性能,进而提升天线模组的通信性能。
本实施例中,上述第四金属体14由第三金属13体延伸形成,且第四金属体14与第二馈源22电连接,由于第四金属体14设置于第三金属体13与第二馈源22之间,因而第四金属体14可以等效为如图2所示的一个电感31,且第三金属体13和第二金属体12之间的耦合缝隙120、开口10形成耦合体32,且电感31与耦合体32串联连接于第一馈源21和第二馈源22之间,从而可以提升第一馈源21与第二馈源22之间的隔离度,即增加第一天线辐射体与第二天线辐射体、第三天线辐射体之间的隔离度,使得在同一断口布局至少三个天线辐射体时,可以增加天线辐射体之间的隔离度,从而提升天线模组的通信性能。
其中,上述第二馈源22与第四金属体14电连接,可以是第二馈源22与第四金属体14的任意位置电连接。例如,第二馈源22与第四金属体14的中心点电连接,等等。
在一些实施方式中,上述第四金属体14具有第一端和第二端,第四金属体14的第一端与第三金属体13连接,第四金属体14的第二端设置有上述第二馈电点G。
这里,第四金属体14的两端(即上述第四金属体14的第一端和第四金属体14的第二端)分别连接第三金属体13和第二馈源22(即第四金属体14的第二端设置有上述第二馈电点G),即第四金属体14完全处于第三金属体13和耦合缝隙120之间,以及,第四金属体14完全处于耦合缝隙12与开口10形成的偶合体之间,可以保证第三金属体13与第二金属体12产生耦合时起到有效的解耦作用,并有效提高第一天线辐射体与其他天线辐射体(如第二天线辐射体和第三天线辐射体)之间的隔离度,从而提高各天线辐射体的辐射效率,进而提升天线模组的通信性能。
另外,上述第四金属体14可以是朝向任意方向延伸形成。例如,上述第四金属体14可以是沿垂直于第三金属体13的方向延伸形成,还可以垂直于第三金属体13的方向延伸第一段,再平行于第三金属体13延伸第二段,等等。
可选的,第四金属体14包括第一延伸部141、第二延伸部142以及第三延伸部143,第一延伸部141沿垂直于第三金属体13的方向延伸形成,第二延伸部142垂直于第一延伸部141且朝向第一金属体11延伸形成,以及,第三延伸部垂直于第二延伸部且142朝向第三金属体13延伸形成,从而在增加第四金属体14的长度的情况下,可以缩小第四金属体14占用的空间,缩小天线模组的体积。
在一些实施方式中,天线模组还可以包括开关电路41,开关电路41的第一端与第二金属体12的第一连接点E电连接,且开关电路的第二端接地,所述第一连接点E位于所述第二金属体12的开口端B和所述第二馈地点D之间,其中:
在开关电路41断开的情况下,第二金属体12的开口端B与第二馈地点 D之间形成第二天线辐射体;
在开关电路41导通的情况下,第二金属体12的开口端B与第一连接点E之间形成第四天线辐射体。
这里,通过开关电路41的导通和断开,可以控制第二金属体12分别形成第二天线辐射体和第四天线辐射体,从而使一个开口可以覆盖更多的天线辐射体产生的谐振模态,进一步提升天线模块的通信性能。
需要说明的是,上述第四天线辐射体可以产生第四谐振模态,且第四天线辐射体的长度(即第二金属体12的开口端B与第一连接点E的距离)可以根据第四谐振模态覆盖的设置。例如,第四谐振模态覆盖的频段可以是频段B1、B3或者B39等,且第四天线辐射体的长度适配频段B1、B3或者B39等的电长度。
在一些实施方式中,天线模组还包括谐振匹配电路42,谐振匹配电路42的第一端与开关电路41的第一端电连接,且谐振匹配电路42的第二端接地,其中:
谐振匹配电路42用于与开关电路41形成谐振匹配,使得第一天线辐射体等效为到地电感。
这里,通过在开关电路41的第一端电连接谐振匹配电路42,谐振匹配电路42通过匹配开关电路41的导通参数,从而与开关电路41形成谐振匹配,使得第一天线辐射体等效为到地电感,有效提高第一谐振模态覆盖的频段的隔离度。例如,在上述第一谐振模态覆盖的频段为N78时,可以提高N78的隔离度,从而提高第一辐射体的辐射效率,提升天线模组在第一天线辐射体工作的频段的通信性能。
其中,上述谐振匹配电路42可以是任何能够实现与开关电路形成谐振匹配,使得第一天线辐射体等效为到地电感的电路。例如,上述谐振匹配电路42可以是由电容和电感组成的LC串联谐振电路或者LC并联谐振电路,等等,在此并不进行限定。
另外,上述第一天线辐射体等效为到地电感的电感值可以根据谐振匹配电路42的匹配参数调整,在一些实施方式中,所述到地电感的电感值的取值范围为1纳亨至3纳亨,使得第一天线辐射体等效为到地小电感,进一步提 高第一辐射体的辐射效率,提升天线模组在第一天线辐射体工作的频段的通信性能。
本公开实施例中,天线模组包括第一金属体、第二金属体、第三金属体和第四金属体;第一金属体和第二金属体间隔设置且形成开口,第一金属体具有第一馈地点和第一馈电点,第二金属体具有第二馈地点;第三金属体的部分或者全部与第二金属体相对且间隔设置,第四金属体由第三金属体向远离所述第二金属体的方向延伸形成,且第四金属体具有第二馈电点,其中:第一金属体形成第一天线辐射体,第二金属体形成第二天线辐射体,以及,第三金属体与第二金属体耦合形成第三天线辐射体。这样,在天线模组产生较多的谐振模态时,可以减少天线模组开设断口的数量,提升天线模组的通信性能。
基于上述天线模组,本公开实施例还提供一种电子设备,包括上述天线模组。
需要说明的是,在上述电子设备还包括金属中框的情况下,上述第一金属体11和第二金属体12可以是电子设备的金属中框上的部分金属体,即电子设备的金属中框上开设有上述开口10,且第一金属体11和第二金属体12为分布于开口10两侧的部分金属体,这样,在金属中框上开设一个开口10即可实现多个谐振模态,在天线模组产生较多的谐振模态时,可以减少金属中框上开设的开口10的数量,从而提升电子设备的整机一体性;另外,上述开口10可以是开设于电子设备的长边或者短边。
当然,在上述电子设备的中框为塑胶材料的结构的情况下,上述第一金属体11和第二金属体12可以是贴设于该电子设备的中框上,等等,在此并不进行限定。
由于电子设备本体的结构是相关技术,天线模组在上述实施例中已进行详细说明,因此,本实施例中对于具体的电子设备的结构不再赘述。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以权利要求的保护范围为准。

Claims (10)

  1. 一种天线模组,包括第一金属体、第二金属体、第三金属体和第四金属体;
    所述第一金属体和所述第二金属体间隔设置且形成开口,所述第一金属体具有第一馈地点和第一馈电点,所述第二金属体具有第二馈地点;
    所述第三金属体的部分或者全部与所述第二金属体相对且间隔设置,所述第四金属体由所述第三金属体向远离所述第二金属体的方向延伸形成,且所述第四金属体具有第二馈电点,其中:
    所述第一金属体形成第一天线辐射体,所述第二金属体形成第二天线辐射体,以及,所述第三金属体与所述第二金属体耦合形成第三天线辐射体。
  2. 根据权利要求1所述的天线模组,其中,所述第四金属体具有第一端和第二端,且所述第四金属体的第一端与所述第三金属体连接,所述第四金属体的第二端设置有所述第二馈电点。
  3. 根据权利要求1所述的天线模组,其中,所述第四金属体包括第一延伸部、第二延伸部以及第三延伸部,所述第一延伸部沿垂直于所述第三金属体的方向延伸形成,所述第二延伸部垂直于所述第一延伸部且朝向所述第一金属体延伸形成,以及,所述第三延伸部垂直于所述第二延伸部且朝向所述第三金属体延伸形成。
  4. 根据权利要求1所述的天线模组,还包括开关电路,所述开关电路的第一端与所述第二金属体的第一连接点电连接,且所述开关电路的第二端接地,所述第一连接点位于所述第二金属体的开口端和所述第二馈地点之间,其中:
    在所述开关电路断开的情况下,所述第二金属体的开口端与所述第二馈地点之间形成所述第二天线辐射体;
    在所述开关电路导通的情况下,所述第二金属体的开口端与所述第一连接点之间形成第四天线辐射体。
  5. 根据权利要求4所述的天线模组,还包括谐振匹配电路,所述谐振匹配电路的第一端与所述开关电路的第一端电连接,且所述谐振匹配电路的第 二端接地,其中:
    所述谐振匹配电路用于与所述开关电路形成谐振匹配,使得所述第一天线辐射体等效为到地电感。
  6. 根据权利要求5所述的天线模组,其中,所述到地电感的电感值的取值范围为1纳亨至3纳亨。
  7. 根据权利要求1至6中任一项所述的天线模组,其中,所述第三金属体与所述第二金属体平行设置。
  8. 根据权利要求1至6中任一项所述的天线模组,其中,所述第三金属体与所述第二金属体的开口端的距离的取值范围为2毫米至10毫米。
  9. 根据权利要求1至6中任一项所述的天线模组,其中,所述第三金属体与所述第二金属体的距离的取值范围为0.3毫米至0.8毫米。
  10. 一种电子设备,包括如权利要求1至9中任一项所述的天线模组。
PCT/CN2020/098858 2019-08-08 2020-06-29 天线模组及电子设备 WO2021022942A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910731766.XA CN110380190B (zh) 2019-08-08 2019-08-08 一种天线模组及电子设备
CN201910731766.X 2019-08-08

Publications (1)

Publication Number Publication Date
WO2021022942A1 true WO2021022942A1 (zh) 2021-02-11

Family

ID=68258527

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/098858 WO2021022942A1 (zh) 2019-08-08 2020-06-29 天线模组及电子设备

Country Status (2)

Country Link
CN (1) CN110380190B (zh)
WO (1) WO2021022942A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110380190B (zh) * 2019-08-08 2021-07-30 维沃移动通信有限公司 一种天线模组及电子设备
CN110994158B (zh) * 2019-12-26 2022-04-15 西安易朴通讯技术有限公司 天线组件及电子设备
CN111740218B (zh) * 2020-06-29 2021-08-06 维沃移动通信有限公司 电子设备
CN213520332U (zh) * 2020-12-04 2021-06-22 瑞声科技(新加坡)有限公司 天线模组及移动终端
CN112751204B (zh) * 2020-12-29 2023-04-28 Oppo广东移动通信有限公司 天线组件及电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106450658A (zh) * 2015-08-07 2017-02-22 微软技术许可有限责任公司 用于电子设备的天线装置
US20180331416A1 (en) * 2017-05-15 2018-11-15 Speed Wireless Technology Inc. Near field communication antenna modules for devices with metal frame
CN109149072A (zh) * 2018-08-20 2019-01-04 瑞声科技(新加坡)有限公司 天线模组及移动终端
CN209169370U (zh) * 2018-11-30 2019-07-26 维沃移动通信有限公司 一种终端设备
CN110380190A (zh) * 2019-08-08 2019-10-25 维沃移动通信有限公司 一种天线模组及电子设备

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107113348B (zh) * 2015-12-17 2019-11-01 华为技术有限公司 一种移动通讯终端
CN205488543U (zh) * 2016-02-03 2016-08-17 珠海市魅族科技有限公司 一种天线结构及终端
US10340581B2 (en) * 2016-07-19 2019-07-02 Chiun Mai Communication Systems, Inc. Antenna structure and wireless communication device using same
CN106099332A (zh) * 2016-07-30 2016-11-09 上海华章信息科技有限公司 一种利用耦合金属线段改善效能的天线
US11069955B2 (en) * 2017-03-20 2021-07-20 Huawei Technologies Co., Ltd. Antenna of mobile terminal and mobile terminal
CN106921021B (zh) * 2017-03-31 2019-05-17 维沃移动通信有限公司 一种天线结构及电子设备
CN108270071B (zh) * 2018-01-19 2020-09-22 Oppo广东移动通信有限公司 天线组件、中框组件及电子设备
CN109687115A (zh) * 2019-01-28 2019-04-26 广州三星通信技术研究有限公司 用于电子终端的gps天线结构以及电子终端

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106450658A (zh) * 2015-08-07 2017-02-22 微软技术许可有限责任公司 用于电子设备的天线装置
US20180331416A1 (en) * 2017-05-15 2018-11-15 Speed Wireless Technology Inc. Near field communication antenna modules for devices with metal frame
CN109149072A (zh) * 2018-08-20 2019-01-04 瑞声科技(新加坡)有限公司 天线模组及移动终端
CN209169370U (zh) * 2018-11-30 2019-07-26 维沃移动通信有限公司 一种终端设备
CN110380190A (zh) * 2019-08-08 2019-10-25 维沃移动通信有限公司 一种天线模组及电子设备

Also Published As

Publication number Publication date
CN110380190A (zh) 2019-10-25
CN110380190B (zh) 2021-07-30

Similar Documents

Publication Publication Date Title
WO2021022942A1 (zh) 天线模组及电子设备
WO2021023182A1 (zh) 天线模组及电子设备
US20120274532A1 (en) Antenna device and electronic device
AU2018423290B2 (en) Antenna system and terminal device
US8890763B2 (en) Multiantenna unit and communication apparatus
WO2021023180A1 (zh) 天线模组及电子设备
JP6351760B2 (ja) 切り替え可能なπ字形アンテナ
US10230155B2 (en) Antenna structure and wireless communication device using same
US10236556B2 (en) Antenna structure and wireless communication device using same
WO2017197975A1 (zh) 一种天线和终端设备
US8259021B2 (en) Electromagnetic radiation apparatus and method for forming the same
US20190148817A1 (en) Antenna device
CN114447583B (zh) 天线及电子设备
TW201513466A (zh) 天線結構及具有該天線結構的無線通訊裝置
TW201939816A (zh) 智慧型天線裝置
CN114122712A (zh) 一种天线结构及电子设备
KR20230011993A (ko) 전자기기
CN112952362B (zh) 集成天线和电子设备
US10873123B2 (en) Antenna structure and wireless communication device using the same
JP4372325B2 (ja) アンテナ
US9385417B2 (en) Broadband antenna and wireless communication device employing same
CN102800948B (zh) 天线及无线通讯装置
WO2021135389A1 (zh) 天线系统及电子设备
JP7001232B2 (ja) アンテナ及び無線通信装置
TW202025555A (zh) 多天線系統及其電子裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20849165

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20849165

Country of ref document: EP

Kind code of ref document: A1