WO2021022803A1 - 微位移放大机构及其放大方法 - Google Patents

微位移放大机构及其放大方法 Download PDF

Info

Publication number
WO2021022803A1
WO2021022803A1 PCT/CN2020/076120 CN2020076120W WO2021022803A1 WO 2021022803 A1 WO2021022803 A1 WO 2021022803A1 CN 2020076120 W CN2020076120 W CN 2020076120W WO 2021022803 A1 WO2021022803 A1 WO 2021022803A1
Authority
WO
WIPO (PCT)
Prior art keywords
amplifying
stage
rod
output
displacement
Prior art date
Application number
PCT/CN2020/076120
Other languages
English (en)
French (fr)
Inventor
郝宏波
乔禹
张光睿
梁雨萍
王婷婷
李志强
李金�
田若楠
Original Assignee
包头稀土研究院
瑞科稀土冶金及功能材料国家工程研究中心有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910715678.0A external-priority patent/CN110504862B/zh
Priority claimed from CN201910715676.1A external-priority patent/CN110504863B/zh
Priority claimed from CN201910715681.2A external-priority patent/CN110445414B/zh
Priority claimed from CN201910715679.5A external-priority patent/CN110445413B/zh
Priority claimed from CN201910715687.XA external-priority patent/CN110492782B/zh
Priority claimed from CN201910715691.6A external-priority patent/CN110492783B/zh
Priority claimed from CN201910715674.2A external-priority patent/CN110492781B/zh
Priority claimed from CN201910715677.6A external-priority patent/CN110504861B/zh
Application filed by 包头稀土研究院, 瑞科稀土冶金及功能材料国家工程研究中心有限公司 filed Critical 包头稀土研究院
Priority to JP2021505987A priority Critical patent/JP7090234B2/ja
Priority to US17/159,429 priority patent/US11616456B2/en
Publication of WO2021022803A1 publication Critical patent/WO2021022803A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/02Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors
    • H02N2/04Constructional details
    • H02N2/043Mechanical transmission means, e.g. for stroke amplification
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/0005Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing non-specific motion; Details common to machines covered by H02N2/02 - H02N2/16
    • H02N2/005Mechanical details, e.g. housings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N35/00Magnetostrictive devices

Definitions

  • the invention relates to a micro-nano technology, in particular to a micro-displacement amplifying mechanism and an amplifying method thereof.
  • Micro and nano technology is the abbreviation for microelectromechanical systems (MEMS) technology and nanoscience and technology (nano science and technology, nanoST).
  • the precision platform using magnetostrictive material as the driver can be widely used in the micro-nano field. For some requiring a lower output range, such as below 100 ⁇ m, or some environments where there is no restriction on the size of the driver, the magnetostrictive driver can complete the motion alone No auxiliary equipment is needed. However, in some areas with large output requirements and/or environments where the size of the drive is limited, it is not enough to rely solely on the magnetostrictive drive to complete the work. At this time, a device for amplifying the output displacement of the driver is needed.
  • Flexible hinge is a mechanical transmission and support mechanism developed after 1960. It is a new type of arc-shaped notch hinge with an integrated hinge structure. It belongs to a reversible elastic structure. The flexible hinge produces obvious elastic angular deformation under the action of torque. It can play the role of a hinge in the mechanical structure, has the characteristics of no friction, no gap, and high motion resolution. It can be used as the transmission structure of the micro-displacement amplification mechanism. It can ensure the working accuracy and output rigidity at the same time. Fields such as measurement, microtechnology and nanotechnology are widely used.
  • the working principle of the flexible displacement amplification mechanism is to rely on the elastic deformation of the flexible hinge to move.
  • the configuration of the mechanism mostly adopts an axisymmetric design.
  • problems with this design in the case of a constant volume of the magnifying mechanism, in order to ensure a symmetrical structure, the effective lateral structure for the magnification is only one-half, and when the magnification is guaranteed, the overall lateral structure is Will be doubled, so that the application of flexible displacement magnifying mechanism will be limited under the working conditions of both small volume and large magnification.
  • Chinese patent CN104900573B discloses a symmetrical differential lever micro-displacement amplification device, which includes a base, a substrate fixed on the base, and a piezoelectric block located on the same plane as the substrate.
  • the piezoelectric block has a pressing part and two separate The transmission parts are located at both ends of the top pressure part and are symmetrically placed around the vertical line of the top pressure part.
  • the two transmission parts are respectively connected with a set of lever components located on the same plane as the base plate, and the two sets of lever components are connected to the top
  • the central vertical line of the pressing part is placed symmetrically at the center, and a piezoelectric ceramic driver is placed between the two transmission parts and abutting on the pressing part.
  • the amplifying mechanism is axially symmetrical and has a large volume.
  • the driver needs to be placed inside the amplifying mechanism, which is not suitable for environments where the size of the driver is limited.
  • Chinese patent CN108109671A discloses a secondary displacement amplification mechanism based on a rhombic flexible mechanism, including a primary rhombic flexible mechanism, a fixed frame and a secondary rhombus mechanism.
  • the primary rhombic flexible mechanism is fixedly arranged in the fixed frame, and the two primary rhombic flexible mechanisms
  • Each primary rigid input end is connected to two opposite inner sides of the fixed frame through a guiding mechanism, and the primary rigid output end of the primary rhombic flexible mechanism is connected to the other two inner sides of the fixed frame through a centering mechanism.
  • the two secondary rigid input ends are respectively fixedly connected with the two primary rigid output ends of the primary rhombic flexible mechanism, and the secondary rigid output ends of the secondary flexible mechanism are displacement output ports.
  • the amplifying mechanism is large in size, and the driver needs to be placed inside the amplifying mechanism. It is not suitable for environments where the size of the driver is limited.
  • the direction of output displacement becomes the original drive The vertical direction of the output displacement.
  • Chinese patent CN108297086A discloses an asymmetric two-stage displacement amplification flexible micro-operation mechanism, which includes a base body, a piezoelectric ceramic driver, an SR displacement amplification mechanism, a parallelogram lever amplification mechanism and a pre-tightening bolt.
  • the piezoelectric ceramic driver is installed on the base by pre-tightening bolts.
  • the operating mechanism only controls the movement of one jaw, and the other jaw is connected and fixed with the base.
  • the output end of the piezoelectric ceramic driver is connected to the SR displacement amplifier through the flexible hinge IV.
  • the input terminal is connected.
  • the SR displacement amplification mechanism is connected to the base through a flexible hinge I, and the output end of the SR displacement amplification mechanism is connected to the input end of the parallelogram lever amplification mechanism through a flexible hinge II.
  • the output end of the parallelogram lever amplification mechanism is connected with the jaws through a flexible parallel double-plate mechanism, and a metal strain gauge is pasted on the flexible parallel double-plate mechanism.
  • the amplifying mechanism is an asymmetrical amplifying unit 1 located asymmetrically on the side of the output terminal 3.
  • Chinese patent CN106981316A discloses a micro-displacement positioning platform with a three-stage amplification structure, including a fixed frame, a displacement input platform, a motion input mechanism, two sets of first-level lever mechanisms, two sets of second-level lever mechanisms, and a half bridge Type amplifying mechanism, two sets of first-level lever mechanisms and two sets of second-level lever mechanisms are symmetrical, and the pivots of the first-level lever mechanism and the second-level lever mechanism are both connected to the fixed frame for transmission, and the two ends of the motion input mechanism The fixed frame and the displacement input platform are respectively connected.
  • the input ends of the two groups of first-level lever mechanisms are respectively connected in transmission with the displacement input platform, and the output ends are respectively connected in transmission with the input ends of the corresponding second-level lever mechanisms.
  • Half-bridge type amplifying mechanism Connected between the output ends of the two sets of second-level lever mechanisms.
  • the amplifying mechanism is axially symmetrical and has a large volume. The driver needs to be placed inside the amplifying mechanism, which is not suitable for environments where the size of the driver is limited.
  • the technical problem solved by the present invention is to provide a micro-displacement amplifying mechanism and an amplifying method thereof, so that the micro-displacement amplifying device can realize a greater displacement magnification, eliminate lateral displacement, and greatly reduce the volume of the amplifying mechanism.
  • the micro-displacement amplifying mechanism is characterized in that it comprises two groups of asymmetrical amplifying structures, each group of asymmetrical amplifying structures includes a plurality of asymmetrical amplifying units connected in series by a flexible hinge, and the asymmetrical amplifying units are used to amplify the micro-displacement; two The positions of the group of asymmetrical amplifying structures are opposite and overlapped.
  • the input end and the output end are respectively connected to the asymmetrical amplifying unit through a flexible hinge.
  • the input end is used to input micro displacement to the asymmetrical amplifying structure, and the output end is used to output the amplified displacement;
  • the two contacting input ends are fixedly connected, and the two contacting output ends are fixedly connected.
  • the asymmetrical amplifying structure adopts an asymmetrical two-stage amplifying structure
  • the asymmetrical two-stage amplifying structure includes two asymmetrical amplifying units, namely a first-stage amplifying unit and a second-stage amplifying unit
  • the asymmetrical amplifying unit includes: amplifying output Rod, zoom fixed rod, input end hinge, zoom fixed end hinge; the zoom output rod is arranged horizontally, the zoom fixed rod is connected to the lower part of the zoom output rod through the zoom fixed end hinge, and the zoom fixed end hinge is located near the end of the zoom output rod
  • the input end hinge is arranged at the lower part of the amplifying output rod and is located inside the amplifying fixed end hinge; the input end of the first-stage amplifying unit is hinged to the input end, and the second-stage amplifying unit is connected to the first-stage amplifying unit through the input end hinge
  • the top of the amplified output rod; the top of the amplified output rod of the second-stage amplifier unit
  • the asymmetrical amplifying structure adopts an asymmetrical three-stage amplifying structure
  • the asymmetrical three-stage amplifying structure includes three asymmetrical amplifying units, namely the first-stage amplifying unit, the second-stage amplifying unit, and the third-stage amplifying unit
  • the amplifying unit includes: amplifying output rod, amplifying fixed rod, input end hinge, and amplifying fixed end hinge; the amplifying output rod is arranged horizontally, and the amplifying fixed rod is connected to the lower part of the amplifying output rod through the amplifying fixed end hinge; The position of the rod near the end; the input end hinge is arranged at the lower part of the amplification output rod and is located inside the fixed end hinge of the amplification; the input end of the first-stage amplification unit is hinged to the input end, and the second-stage amplification unit is connected through the input end hinge The top of the amplifying output rod of the first-stage amplifying unit; the third-stage amplifying
  • the amplifying fixing rod of the third-stage amplifying unit is connected with the amplifying fixing rod of the first-stage amplifying unit.
  • the input end is provided with an input rod, and the amplifying fixing rods are located on both sides of the input end.
  • magnification is adjusted by adjusting the position of the input hinge of each asymmetrical amplifying unit on the magnifying output rod.
  • the actuator includes: a non-magnetic shell, a magnetic frame, an excitation coil, a combined body, and an output rod; the excitation coil is sleeved outside the first assembly, the excitation coil is placed in the magnetic frame, the magnetic frame and the combined body A closed magnetic circuit is formed; the magnetic frame is arranged in the non-magnetic shell, and the non-magnetic shell is used to constrain the magnetic frame; one end of the first assembly is connected to the magnetic frame, and the other end is connected to the input rod of the micro-displacement amplifying mechanism.
  • the displacement amplifying mechanism is located in the non-magnetic shell, and the combined body is used to transmit the displacement to the micro-displacement amplifying mechanism; the fixed end of the micro-displacement amplifying mechanism is connected to the magnetic frame, and the output end is connected to the rear end of the output rod and the front end of the output rod It extends from the through hole of the non-magnetic shell; the micro-displacement amplifying mechanism amplifies the displacement of the first assembly and transmits it to the output rod, and the output rod is used to output the displacement.
  • the assembly includes: a magnet, a permanent magnet, and a magnetostrictive rod, the magnet includes a plurality of magnetostrictive monomers, the permanent magnet includes a plurality of permanent magnet monomers, and the magnetostrictive rod includes a plurality of magnetostrictive rod monomers ; Magnetically conductive monomers are respectively connected to both sides of the permanent magnetic monomer to form a magnet unit, which is connected to both sides of the magnetostrictive rod monomer; the magnetically conductive monomer at the back is connected to the magnetic frame, and the magnetically conductive at the front is connected The micro-displacement amplification mechanism, the magnet unit and the magnetostrictive rod are alternately spaced in the axial direction.
  • the actuator includes: a non-magnetic housing, a magnetic frame, an excitation coil, a combination, an output rod, and a non-magnetic upper end cover; one end of the non-magnetic housing has an opening, and the non-magnetic upper end cover is arranged at the opening and is non-conductive.
  • the magnetic upper end cover is provided with an output rod through hole;
  • the magnetic frame is provided with an input rod through hole at the top, and the magnetic frame forms an axial permanent magnetic field;
  • the excitation coil includes a coil shell and a winding, and the winding is arranged outside the coil shell.
  • the assembly includes: a magnetostrictive rod and a magnet, the two magnets are respectively connected to the two ends of the magnetostrictive rod, the assembly is installed in the axial through hole;
  • the micro-displacement amplification mechanism is installed in the Inside the non-magnetic shell and located outside the magnetic frame, the input rod extends into the axial through hole and is connected to the magnetic conductor; one end of the output rod is connected to the output end, and the other end extends from the through hole of the output rod.
  • the actuator includes: an H-shaped non-magnetic housing, an upper end cover, a lower end cover, a solenoid, a combination, and an output rod;
  • the H-type non-magnetic housing has two ends open, and the inner wall is provided with a baffle, and the baffle An input rod through hole is provided;
  • the upper end cover is connected to the front opening, the upper end cover is provided with an output rod through hole, and the lower end cover is connected to the rear opening;
  • the solenoid is installed in the H-shaped non-magnetic housing and is located behind the baffle The front end abuts on the baffle and the rear end abuts on the lower end cover;
  • the solenoid is provided with an axial through hole, the solenoid is provided with a coil, and the outer wall of the axial through hole is provided with a permanent magnet;
  • the axial through hole Connected to the input rod through hole, the assembly is installed in the axial through hole;
  • the solenoid includes: a support end surface, a solenoid body, and a coil; the support end surface is arranged at both ends of the solenoid body, and the coil is arranged on the outer wall of the solenoid body; the solenoid body includes: a magnet and a permanent magnet The magnet, the permeable magnet and the permanent magnet are in a ring structure, and a plurality of permeable magnets and permanent magnets are alternately arranged at intervals and connected at the contact end faces.
  • the axial through hole is provided with a heat insulation layer
  • the solenoid body has a tubular structure, there are at least 2 sets of permanent magnets, and at least 3 sets of conductive magnets.
  • the asymmetric amplification structure adopts an asymmetric two-stage amplification structure or an asymmetric three-stage amplification structure.
  • the amplification method of the micro-displacement amplification mechanism includes:
  • the micro-displacement amplifying mechanism includes two groups of asymmetrical amplifying structures, each group of asymmetrical amplifying structures includes a plurality of asymmetrical amplifying units connected in series by flexible hinges; the positions of the two groups of asymmetrical amplifying structures are opposite and overlapped, input and output
  • the two terminals are connected to the asymmetric amplifying unit through flexible hinges; the two contacting input terminals are fixedly connected, and the two contacting output terminals are fixedly connected; the input terminal is connected to the displacement output terminal of the magnetostrictive driver, and the amplifying fixed rods are respectively located at the input terminal Both sides are connected to the inside of the magnetostrictive drive;
  • the micro-displacement input by the magnetostrictive driver is transmitted to the input terminal, and the input terminal transmits the position micro-shift to the flexible hinge on the input side of the first-stage asymmetric amplification unit; the amplification fixed rod of each stage asymmetric amplification unit is fixed Do not move, the magnifying fixed rod pulls the end of the magnifying output rod through the flexible hinge connected with the magnifying output rod, and the flexible hinge connected with the input end and the magnifying output rod pushes the magnifying output rod and the magnifying output rod.
  • the end of the amplifying unit moves upward, and the amplifying output rods of the overlapping asymmetrical amplifying units are deflected at the same time to complete displacement amplification;
  • the amplified micro-displacement is transmitted to the next-stage asymmetric amplifying unit, or the amplified micro-displacement is output through the output terminal.
  • an asymmetric secondary amplifying structure is selected for the asymmetrical amplifying structure, and the asymmetrical secondary amplifying structure includes two asymmetrical amplifying units, namely the first-stage amplifying unit and the second-stage amplifying unit; the amplification of the first-stage amplifying unit
  • the fixed rod is fixed, and the end of the amplification output rod of the first-stage amplification unit is pulled through the hinge of the amplification fixed end of the first-stage amplification unit;
  • the amplification fixed rod of the second-stage amplification unit is fixed and can pass
  • the amplifying fixed end hinge of the second-stage amplifying unit pulls the end of the amplifying output rod of the second-stage amplifying unit;
  • the input end uses the input-end hinge of the first-stage amplifying unit to amplify the output of the first-stage amplifying unit The rod is pushed up; the amplified output rod of the first-level amplifying unit is pushed up by the second-level
  • the asymmetrical three-stage amplifying structure is selected as the asymmetrical three-stage amplifying structure, and the asymmetrical three-stage amplifying structure includes three asymmetrical amplifying units, which are respectively a first-stage amplifying unit, a second-stage amplifying unit, and a third-stage amplifying unit;
  • the amplification fixing rod of the first-stage amplification unit is fixed, and the end of the amplification output rod of the first-stage amplification unit is pulled through the amplification fixed end hinge of the first-stage amplification unit;
  • the second-stage amplification unit is enlarged and fixed The rod is fixed, and the end of the amplified output rod of the second-stage amplifying unit is pulled through the second-stage amplifying unit's fixed-end hinge;
  • the amplifying fixed end hinge of the three-stage amplifying unit pulls the end of the amplifying output rod of the third-stage amplifying unit; the input end connects to the amplifying output rod of
  • the position of the two asymmetric magnifying structures is reversed and arranged in an overlapping manner, so that the micro-displacement magnifying mechanism can achieve a larger displacement magnification and eliminate the lateral displacement, greatly reducing the volume of the magnifying mechanism.
  • the original symmetrical micro-displacement amplification device generally takes the center of the device as the axis of symmetry, and the two sides are symmetrical structures.
  • the output end of the device will inevitably produce a certain angle with the horizontal plane, resulting in lateral displacement. Therefore, half of the original symmetrical micro-displacement amplification device is effective for the amplification effect, and the other half of the device is pulled to eliminate the lateral displacement.
  • the present invention adopts the method of arranging the positions of the two groups of asymmetric amplification structures in reverse and overlapping, the output ends of the two groups of asymmetric amplification structures can be squeezed to eliminate the lateral displacement, since no axial displacement is adopted.
  • the volume of the amplifying mechanism is greatly reduced while achieving the same magnification effect of the original symmetrical micro-displacement magnifying device.
  • the present invention adopts the method of arranging the two sets of asymmetric magnifying structures in opposite positions and overlapping them, the present invention can achieve greater displacement under the same volume as the original symmetrical micro-displacement magnifying device. gain.
  • the present invention adopts the method of arranging the two groups in the asymmetric magnifying structure in opposite positions and overlapping them, while achieving the same magnification effect of the original symmetrical micro-displacement magnifying device, the magnifying mechanism is greatly reduced. Because of its volume, the amplifying mechanism can be placed inside the magnetostrictive actuator, thus miniaturizing the actuator.
  • the amplifying mechanism Since the amplifying mechanism is placed inside the magnetostrictive drive, it does not take up extra space, so while maintaining a large output displacement of the drive, its application environment is expanded.
  • the driver does not need to design the bias magnetic field, which effectively saves the space of the device and makes the device miniaturized.
  • Figure 1 is a schematic diagram of the structure of an asymmetric amplifying unit in the present invention.
  • FIG. 2 is a schematic diagram of the structure of two asymmetric amplifying units connected in series in the present invention
  • FIG. 3 is a schematic diagram of the front structure of the secondary micro-displacement amplifying mechanism in the present invention.
  • FIG. 4 is a schematic diagram of the three-dimensional structure of the secondary micro-displacement amplifying mechanism in the present invention.
  • FIG. 5 is a schematic diagram of the structure of the first asymmetric secondary amplification structure in the present invention.
  • Fig. 6 is a schematic structural diagram of a second asymmetric secondary amplifying structure in the present invention.
  • FIG. 7 is a schematic structural diagram of an asymmetric three-stage amplification structure in the present invention.
  • FIG. 8 is a schematic diagram of the front structure of the three-stage micro-displacement amplifying mechanism of the present invention.
  • Fig. 9 is a three-dimensional schematic diagram of the three-stage micro-displacement amplifying mechanism of the present invention.
  • FIG. 10 is a schematic structural diagram of the first asymmetric three-stage amplification structure of the present invention.
  • Fig. 11 is a schematic diagram of the second asymmetric three-stage amplification structure of the present invention.
  • Fig. 12 is a structural schematic diagram of a novel actuator with a micro-displacement amplifying mechanism that provides an axial magnetic field with a rod in the present invention.
  • Fig. 13 is a schematic structural view of an actuator with a two-stage micro-displacement amplifying mechanism in which the skeleton provides an axial magnetic field in the present invention.
  • Fig. 14 is a schematic structural view of an actuator with a three-stage micro-displacement amplifying mechanism in which the skeleton provides an axial magnetic field in the present invention.
  • 16 is a schematic structural view of an actuator with a three-stage micro-displacement amplifying mechanism whose housing provides an axial magnetic field in the present invention
  • Figure 17 is a schematic diagram of the structure of the magnetic permeable frame of the present invention.
  • FIG. 1 it is a schematic diagram of the structure of the asymmetric amplifying unit 1 of the present invention.
  • the asymmetric amplification unit 1 includes: an amplification output rod 11, an amplification fixed rod 12, an input end hinge 13, and an amplification fixed end hinge 14; the amplification output rod 11 is arranged horizontally, and the amplification fixed rod 12 is connected to the amplification output rod through the amplification fixed end hinge 14 At the lower part of 11, the magnifying fixed end hinge 14 is located near the end of the magnifying output rod 11; the input end hinge 13 is arranged at the lower part of the magnifying output rod 11 and located inside the magnifying fixed end hinge 14.
  • the input hinge 13 and the enlarged fixed hinge 14 adopt flexible hinges.
  • the fixed end hinge 14 of the magnification pulls the end of the magnification output rod 11, and the input end hinge 13 plays a supporting role.
  • the magnification can be changed by adjusting the position of the input end hinge 13 on the magnification output rod 11.
  • the asymmetric amplifying unit 1 adopts a non-axially symmetric structure, which effectively avoids the space occupied by the part that is ineffective for the amplification effect in the traditional axisymmetric manner, and reduces the volume of the amplification mechanism.
  • FIG. 2 it is a schematic diagram of the structure of two asymmetric amplifying units 1 connected in series in the present invention.
  • the asymmetrical amplifying unit 1 is located on the side of the output terminal 3, and the asymmetrical amplifying unit 1 located on the side of the output terminal 3 is connected to the asymmetrical amplifying unit on the side of the input terminal 2 through an input hinge 13
  • the top of the amplifying output rod 11 of the unit 1; the input hinge 13 of the asymmetric amplifying unit 1 on the side of the input 2 is connected to the input 2, and the amplifying fixing rods 12 of the two asymmetric amplifying units 1 are respectively located at the input 2 Side; the top of the asymmetric amplifying unit 1 on the side of the output terminal 3 is connected to the output terminal 3 through the output terminal hinge 4, and the output terminal 3 is arranged horizontally.
  • the output hinge 4 adopts a flexible hinge.
  • the magnification can be adjusted by adjusting the position of the input hinge 13 of the asymmetric amplifying unit 1 on the side of the input terminal 2 on the amplifying output rod 11, and further, by adjusting the input of the asymmetric amplifying unit 1 on the side of the output terminal 3
  • the connection position of the end hinge 13 and the amplifying output rod 11 of the asymmetrical amplifying unit 1 on the side of the output terminal 3 changes the magnification.
  • FIG. 3 it is a schematic diagram of the front structure of the secondary micro-displacement amplifying mechanism of the present invention
  • FIG. 4 it is a schematic diagram of the three-dimensional structure of the secondary micro-displacement amplifying mechanism of the present invention.
  • the two-stage micro-displacement amplifying mechanism includes two groups of asymmetrical amplifying structures connected in series, each group of asymmetrical amplifying structures connected in series includes two asymmetrical amplifying units 1 connected in series, and two groups of asymmetrical amplifying units connected in series. The positions of the amplifying structures are opposite and overlapped. After the two sets of asymmetrical amplifying structures connected in series are overlapped, the two contacting input terminals 2 are connected. On both sides of the input terminal 2, two contacting amplifying fixing rods 12 are connected. The two contacting output terminals 3 are connected. Other non-connected parts of the secondary micro-displacement amplifying mechanism can move freely.
  • the positions of the two groups of asymmetric amplifying structures connected in series are opposite, that is, the position of one asymmetric amplifying structure connected in series after being turned 180° horizontally is the position of the other asymmetric amplifying structure connected in series.
  • the amplification method of the secondary micro-displacement amplification mechanism the specific steps include:
  • the input hinge 13 of the asymmetric amplifying unit 1 on the side of the input terminal 2 is connected to the input terminal 2, and the input terminal 2 is connected to the displacement output terminal of the magnetostrictive driver.
  • the two amplifying fixing rods 12 are respectively located on both sides of the input terminal 2 and connected Inside the magnetostrictive drive;
  • the micro-displacement input by the magnetostrictive driver is transmitted to the input terminal 2, and the input terminal 2 transmits the displacement to the input hinge 13 of the asymmetric amplifying unit 1 on the side of the input terminal 2, and the input hinge 13 transmits the displacement to the input terminal
  • the amplifying output rod 11 of the asymmetrical amplifying unit 1 on the side 2; the amplifying output rods 11 of the asymmetrical amplifying unit 1 on the side of the input end 2 are deflected simultaneously, and the ends move upward;
  • the amplifying output rod 11 of the asymmetrical amplifying unit 1 located on the side of the input end 2 transmits the amplified displacement to the input hinge 13 of the two asymmetrical amplifying units 1 on the side of the output end 3, which is located on the side of the output end 3.
  • the input hinge 13 of the asymmetric amplifying unit 1 transmits the displacement to the amplifying output rod 11 of the asymmetric amplifying unit 1 on the side of the output end 3, and the amplifying output rod 11 of the asymmetric amplifying unit 1 on the side of the output 3 is generated. Deflection, the end moves upward;
  • Two amplifying output rods 11 of the asymmetric amplifying unit 1 on the side of the output terminal 3 transmit the amplified displacement to the output hinge 4, and the output hinge 4 drives the output terminal of the asymmetric amplifying unit 1 on the side of the output terminal 3 3 Move upward to realize the amplified output of the micro-displacement of the magnetostrictive actuator.
  • the amplification fixing rod 12 of the asymmetric amplification unit 1 on the input end 2 side is fixed, and the end of the amplification output rod 11 of the asymmetric amplification unit 1 on the input end 2 side is played by the amplification fixed end hinge 14
  • the function of pulling, the input terminal 2 pushes up the amplifying output rod 11 of the asymmetric amplifying unit 1 on the side of the input terminal 2 through the input hinge, and the amplifying output rod 11 of the asymmetric amplifying unit 1 on the side of the input terminal 2 is generated.
  • the amplification fixing rod 12 of the asymmetric amplification unit 1 on the side of the output terminal 3 is fixed, and the amplification fixing rod 12 of the asymmetric amplification unit 1 on the side of the output terminal 3 is located at the output end through the amplification fixed end hinge 14
  • the end of the amplifying output rod 11 of the asymmetrical amplifying unit 1 on the side 3 plays a role of pulling;
  • the asymmetrical amplifying output rod 11 of the asymmetrical amplifying unit 1 on the side of the input end 2 passes through the asymmetrical
  • the input hinge 13 of the amplifying unit 1 pushes up the amplifying output rod 11 of the asymmetrical amplifying unit 1 on the side of the output terminal 3, and the amplifying output rod 11 of the asymmetrical amplifying unit 1 on the side of the output 3 is deflected. ⁇ Move up.
  • the magnification is adjusted by adjusting the position of the input hinge 13 of the asymmetric amplifying unit 1 on the side of the input terminal 2 on the amplifying output rod 11, and further by adjusting the input hinge of the asymmetric amplifying unit 1 on the side of the output terminal 3 13 Change the magnification at the position of the magnification output lever 11.
  • the first preferred embodiment of the present invention includes: a first asymmetric secondary amplifier structure 100 and a second asymmetric secondary amplifier structure 200.
  • FIG. 5 it is a schematic structural diagram of the first asymmetric secondary amplifying structure 100 in the present invention.
  • the first asymmetric two-stage amplification structure 100 adopts two-stage amplification, and its structure includes: a first input rod 101, a first input terminal 102, a first-stage input hinge 103, a first-stage amplification fixed rod 104, a first First-stage amplification fixed-end hinge 105, first-stage amplification output rod 106; first-stage input end hinge 107, first-stage second-stage amplification fixed rod 108, first-stage second-stage amplification fixed-end hinge 109, first-stage amplification
  • the first-stage input hinge 103, the first-stage amplifying fixed-end hinge 105, the first-stage second-stage input hinge 107, the first-stage second-stage amplifying fixed-end hinge 109, and the first-stage second-stage output hinge 111 adopt flexible hinges.
  • the top of the first input terminal 102 is connected to the bottom of the first-stage amplifying output rod 106 by a first-stage input end hinge 103, and the top of the first-stage amplifying fixed rod 104 is connected by a first-stage amplifying fixed end hinge 105
  • the bottom of the first-stage amplifying output rod 106; the first-stage amplifying output rod 106 is arranged horizontally, and the first-stage amplifying fixed rod 104 is located on the left side of the first input terminal 102; the first-stage input terminal hinge 103, the first stage
  • the first-stage amplifying fixed-end hinge 105 is located on the left side of the first-stage amplifying output rod 106; the top of the first-stage amplifying fixed rod 108 is connected to the first-stage amplifying output rod by a first-stage amplifying fixed-end hinge 109 110, the top of the first-stage amplifying output rod 106 is connected to the bottom of the first-stage amplifying output rod 110 through a first-
  • FIG. 6 it is a schematic structural diagram of the second asymmetric secondary amplifying structure 200 in the present invention.
  • the second asymmetric two-stage amplification structure 200 adopts two-stage amplification, and its structure includes: a second input rod 201, a second input end 202, a second-stage input end hinge 203, a second-stage amplification fixing rod 204, and a second One-stage amplification fixed-end hinge 205, second-stage amplification output rod 206; second-stage output end hinge 207, second-stage amplification fixed rod 208, second-stage amplification fixed-end hinge 209, second-stage amplification
  • the output rod 210, the second secondary output end hinge 211, and the second output end 212 includes: a second input rod 201, a second input end 202, a second-stage input end hinge 203, a second-stage amplification fixing rod 204, and a second One-stage amplification fixed-end hinge 205, second-stage amplification output rod 206; second-stage output end hinge 207, second-stage amplification fixed rod 208, second-stage amplification
  • the second-stage input hinge 203, the second-stage amplifying fixed-end hinge 205, the second-stage output-end hinge 207, the second-stage amplifying fixed-end hinge 209, and the second-stage second-stage output hinge 211 adopt flexible hinges.
  • the second asymmetric two-stage amplifying structure 200 is provided with a second input rod 201 at the lower part of the second input terminal 202, and the first asymmetric two-stage amplifying structure 100 is connected to the first input
  • the lower part of the end 102 is provided with a first input rod 101.
  • the top of the second input 202 is connected to the bottom of the second-stage amplifying output rod 206 by a second-stage input hinge 203, and the top of the second-stage amplifying fixed rod 204 is connected by a second-stage amplifying fixed end hinge 205
  • the bottom of the second-stage amplifying output rod 206; the second-stage amplifying output rod 206 is arranged horizontally, and the second-stage amplifying fixed rod 204 is located on the right side of the second input end 202; the second-stage input end hinge 203,
  • the second-stage amplifying fixed-end hinge 205 is located on the right side of the second-stage amplifying output rod 206;
  • the top of the second-stage amplifying fixed rod 208 is connected to the second-stage amplifying output rod by a second-stage amplifying fixed-end hinge 209 210, the top of the second-stage amplifying output rod 206 is connected to the bottom of the second-stage amplifying output rod 210 through a second-stage
  • the first input rod 101 and the second input rod 201 are fixedly connected, the first input terminal 102 and the second input terminal 202 are fixedly connected, An output terminal 112 and a second output terminal 212 are fixedly connected; the first-stage amplifying fixing rod 104 of the first asymmetrical amplifying structure 100 and the second second-stage amplifying fixing rod 208 of the second asymmetrical amplifying structure 200 are fixedly connected, The first two-stage amplification fixing rod 108 of an asymmetric two-stage amplification structure 100 and the second one-stage amplification fixing rod 204 of the second asymmetric two-stage amplification structure 200 are fixedly connected.
  • the amplification method of the secondary micro-displacement amplification mechanism the steps include:
  • Step 1 The first input rod 101 and the second input rod 201 are connected to the displacement output end of the magnetostrictive actuator, the first-stage amplifying fixing rod 104, the second-stage amplifying fixing rod 208, and the first-stage amplifying fixing rod 108
  • the second-stage amplifying fixed rod 204 is connected to the inside of the magnetostrictive actuator; the first input rod 101 transmits the micro-displacement input by the magnetostrictive actuator to the first input terminal 102, and at the same time, the second input rod 201 transfers the magnetostrictive actuator
  • the micro displacement input by the telescopic driver is transmitted to the second input terminal 202;
  • Step 2 The first input 102 transmits the displacement to the first-stage input hinge 103, and the first-stage input hinge 103 transmits the displacement to the first-stage amplifying output rod 106; at the same time, the second input 202 The displacement is transmitted to the second-stage input hinge 203, and the second-stage input hinge 203 transmits the displacement to the second-stage amplifying output rod 206; the first-stage amplifying output rod 106 is deflected, the right end moves upward, and the second The first-stage amplifying output rod 206 is deflected and the left end moves upward;
  • the positions of the first-stage amplification fixing rod 104 and the second-stage amplification fixing rod 204 are fixed, and the first-stage amplification fixing rod 104 and the second-stage amplification fixing rod 204 are fixed.
  • the first stage The magnifying fixed rod 104 pulls the end of the first-stage magnifying output rod 106 through the first-stage magnifying fixed end hinge 105, and the first input end 102 is connected to the first-stage amplifying fixed end hinge 103 through the first-stage input end hinge 103.
  • the first-stage amplifying output rod 106 is lifted up, the first-stage amplifying output rod 106 is deflected, and the right end moves upward; the second-stage amplifying fixed rod 204 connects to the second-stage amplifying output rod 206 through the second-stage amplifying fixed end hinge 205
  • the right end of the second stage plays a role of pulling, the second input end 202 pushes up the left end of the second stage amplifying output rod 206 through the second stage input end hinge 203, the second stage amplifying output rod 206 is deflected, and the left end moves upward .
  • Step 3 The first-stage amplifying output rod 106 transmits the displacement to the first-stage input hinge 107, and the first-stage input hinge 107 transmits the displacement to the first-stage amplifying output rod 110, and the first-stage amplification
  • the output rod 110 is deflected and the left end moves upward
  • the second-stage amplifying output rod 206 transmits the displacement to the second-stage output hinge 207
  • the second-stage output hinge 207 transmits the displacement to the second-stage amplifying output rod 210
  • the second-stage amplifying output rod 210 is deflected and the right end moves upward
  • the first two-stage amplification fixing rod 108 is fixed, the first two-stage amplification fixing rod 108 pulls the end of the first two-stage amplification output rod 110 through the first two-stage amplification fixed end hinge 109, the first The first-stage amplifying output rod 106 is lifted up by the first-stage second-stage amplifying output rod 110 through the first-stage second-stage input hinge 107, the first-stage second-stage amplifying output rod 110 is deflected, and the left end moves upward; the second second-stage amplifying fixed rod 208 Fixed, the second-stage amplifying fixed rod 208 pulls the end of the second-stage amplifying output rod 210 through the second-stage amplifying fixed end hinge 209, and the second-stage amplifying output rod 206 passes through the The second-stage output end hinge 207 pushes up the second-stage second-stage amplification output rod 210, the second-stage second-stage amplification output rod 210 is deflected, and the right end moves upward.
  • Step 4 The first and second amplifier output rod 110 transmits the displacement to the first and second output hinge 111, which drives the first and second output hinge 111 to move upward (not straight up and down), and the first and second output hinge 111 Drive the first output terminal 112 to move upward; the second secondary amplifier output rod 210 transmits the displacement to the second secondary output hinge 211, which drives the second secondary output hinge 211 to move upward, and the second secondary output hinge 211 The second output terminal 212 is driven to move upward.
  • the left arc opening of the first secondary output end hinge 111 becomes smaller and the right arc opening becomes larger, and the left arc opening of the second secondary output end hinge 211 becomes larger and the right arc opening becomes smaller.
  • the first-stage amplification fixing rod 104, the second-stage amplification fixing rod 208, the first-stage amplification fixing rod 108 and the second-stage amplification fixing rod 204 are fixedly connected, and the first output terminal 112 and the second output terminal 212 Fixed connection. Under the action of force, the displacement direction of the first output terminal 112 and the second output terminal 212 after the connection is axially upward, eliminating the first stage amplifying output rod 106 and the second stage amplifying output rod 206. The lateral displacement of the first output terminal 112 and the second output terminal 212 avoids the generation of shear force and effectively improves the accuracy of the axial output.
  • FIG. 7 it is a schematic structural diagram of the asymmetric three-stage amplification structure of the present invention.
  • the asymmetric three-stage amplifying structure includes: three asymmetric amplifying units 1 connected in series, the three asymmetric amplifying units 1 are the first-stage amplifying unit, the second-stage amplifying unit and the third-stage amplifying unit; the first-stage amplifying The input end hinge 13 of the unit is connected to the input end 2, and the input end 2 is connected to the input rod 5; the second stage amplifying unit is connected to the top of the amplification output rod 11 of the first stage amplifying unit through the input end hinge 13; the third stage amplifying unit passes through The input hinge 13 is connected to the top of the amplifying output rod 11 of the second-stage amplifying unit, the amplifying fixing rod 12 of the third-stage amplifying unit is connected with the amplifying fixing rod 12 of the first-stage amplifying unit; The amplification fixing rods 12 are located on both sides of the input terminal 2; the top of the three-stage amplification structure is connected to the output terminal 3 through the output terminal hinge 4, and the output terminal 3
  • the magnification can be adjusted by adjusting the position of the input hinge 13 on the magnification output rod 11.
  • FIG. 8 it is a schematic diagram of the front structure of the three-stage micro-displacement amplifying mechanism in the present invention
  • FIG. 9 is a three-dimensional structure diagram of the three-stage micro-displacement amplifying mechanism in the present invention.
  • the three-stage micro-displacement amplification mechanism includes: two asymmetric three-stage amplification structures.
  • the two asymmetric three-stage amplification structures are arranged in opposite positions and overlapped. After the two asymmetric three-stage amplification structures are overlapped, two touching input terminals Two-phase connection, two contacting input rods 5 are connected, two contacting amplifying fixed rods 12 are connected, and two contacting output ends 3 are connected.
  • the other non-connected parts of the three-stage micro-displacement amplification mechanism can move freely.
  • the input rod 5 can easily introduce micro displacement.
  • the positions of the two asymmetric three-stage amplifying structures are opposite, that is, one asymmetric three-stage amplifying structure is turned 180° horizontally to become another asymmetric three-stage amplifying structure.
  • the amplification method of the three-stage micro-displacement amplification mechanism the specific steps include:
  • the input rod 5 of the first-stage amplifying unit is connected to the displacement output end of the magnetostrictive driver, and the amplifying fixed rod 12 is fixedly connected to the inside of the magnetostrictive driver;
  • the micro-displacement input by the magnetostrictive driver is transmitted to the input terminal 2 through the input rod 5, and the input terminal 2 transmits the displacement to the input hinge 13 of the first-stage amplifying unit, and the input hinge 13 of the first-stage amplifying unit transmits the displacement to The amplifying output rod 11 of the first-stage amplifying unit; the amplifying output rods 11 of the two first-stage amplifying units are deflected at the same time, and the ends move upward;
  • the amplifying output rod 11 of the first-stage amplifying unit transmits the amplified displacement to the input hinge 13 of the two second-stage amplifying units, and the input hinge 13 of the second-stage amplifying unit transmits the displacement to the second-stage amplifying unit.
  • the amplifying output rod 11, the amplifying output rod 11 of the second-stage amplifying unit is deflected and the end moves upward;
  • the amplifying output rod 11 of the second-stage amplifying unit transmits the amplified displacement to the input hinges 13 of the two third-stage amplifying units, and the input hinge 13 of the third-stage amplifying unit transmits the displacement to the third-stage amplifying unit.
  • the output rod 11, the amplifying output rod 11 of the third-stage amplifying unit is deflected and the end moves upward;
  • the amplifying output rods 11 of the two third-stage amplifying units transmit the amplified displacement to the output hinge 4, and the output hinge 4 drives the output 3 to move upwards to realize the amplified output of the micro-displacement of the magnetostrictive actuator.
  • the amplification fixing rod 12 of the first-stage amplification unit is fixed, and the end of the amplification output rod 11 of the first-stage amplification unit is pulled through the amplification fixed end hinge 14 of the first-stage amplification unit, and the input end 2 passes through
  • the input hinge 13 of the first-stage amplifying unit pushes up the amplifying output rod 11 of the first-stage amplifying unit, and the amplifying output rod 11 of the first-stage amplifying unit is deflected; the amplifying fixed rod 12 of the second-stage amplifying unit is fixed.
  • the amplification fixing rod 12 of the second stage amplifying unit exerts a pulling effect on the end of the amplification output rod 11 of the second stage amplifying unit through the amplification fixing end hinge 14 of the second stage amplifying unit;
  • the output rod 11 pushes up the amplified output rod 11 of the second-stage amplifying unit through the output end hinge 13 of the second-stage amplifying unit, the amplified output rod 11 of the second-stage amplifying unit is deflected, and the end moves upward;
  • the amplifying fixing rod 12 of the third-stage amplifying unit pulls the end of the amplifying output rod 11 of the third-stage amplifying unit through the amplifying fixed end hinge 14 of the third-stage amplifying unit.
  • the output hinge 13 of the three-stage amplifying unit pushes up the amplifying output rod 11 of the third-stage amplifying unit, the amplifying output rod 11 of the third-stage amplifying unit is deflected, and the end moves upward.
  • the magnification can be changed by adjusting the connection positions of the input hinge 13 of the first stage amplifying unit, the input hinge 13 of the second stage amplifying unit, and the input hinge 13 of the third stage amplifying unit and the amplification output rod 11.
  • FIG. 10 it is a schematic structural diagram of the first asymmetric three-stage amplification structure 300 in the present invention.
  • the second preferred embodiment of the present invention includes: a first asymmetric three-stage amplification structure 300 and a second asymmetric three-stage amplification structure 400.
  • the first asymmetric three-stage amplification mechanism 300 adopts three-stage amplification, and its structure includes: a first input rod 301, a first input terminal 302, a first-stage input hinge 303, a first-stage amplification fixed rod 304, a first First-stage amplification fixed-end hinge 305, first-stage amplification output rod 306; first-stage input end hinge 307, first-stage second-stage amplification fixing rod 308, first-stage second-stage amplification fixed-end hinge 309, first-stage amplification Output rod 310, first three-stage input hinge 311, first three-stage amplifying fixed rod 312, first three-stage amplifying fixed end hinge 313, first three-stage amplifying output rod 314, first output hinge 315, first Output 316.
  • the fixed-end hinge 313 and the first output-end hinge 315 are flexible hinges.
  • the top of the first input terminal 302 is connected to the bottom of the first-stage amplifying output rod 306 by a first-stage input hinge 303, and the top of the first-stage amplifying fixed rod 304 is connected by a first-stage amplifying fixed end hinge 305
  • the bottom of the first-stage amplification output rod 306; the first-stage amplification output rod 306 is arranged horizontally, and the first-stage amplification fixed rod 304 is located on the left side of the first input end 302; the first input end hinge 303, the first one
  • the fixed-end hinge 305 of the first-stage amplification is located on the left side of the first-stage amplification output rod 306; the top of the first-stage amplification fixed-end rod 308 is connected to the first-stage amplification output rod 310 by the first-stage amplification fixed-end hinge 309
  • the top of the first-stage amplifying output rod 306 is connected to the bottom of the first-stage amplifying output rod 310 through
  • FIG. 11 it is a schematic structural diagram of the second asymmetric three-stage amplification structure 400 in the present invention.
  • the second asymmetric three-stage amplification structure 400 adopts three-stage amplification, and its structure includes: a second input rod 401, a second input terminal 402, a second-stage input hinge 403, a second-stage amplification fixed rod 404, and a second One-stage amplification fixed-end hinge 405, second-stage amplification output rod 406; second-stage input end hinge 407, second-stage amplification fixed rod 408, second-stage amplification fixed-end hinge 409, second-stage amplification Output rod 410, second and third-level input hinge 411, second and third-level amplifying fixed rod 412, second and third-level amplifying fixed-end hinge 413, second and third-level amplifying output rod 414, second output hinge 415, second Output 416.
  • the fixed-end hinge 413 and the second output-end hinge 415 are flexible hinges.
  • the top of the second input terminal 402 is connected to the bottom of the second-stage amplifying output rod 406 through a second-stage input end hinge 403, and the top of the second-stage amplifying fixed rod 404 is connected by a second-stage amplifying fixed end hinge 405
  • the bottom of the second-stage amplifying output rod 406; the second-stage amplifying output rod 406 is arranged horizontally, and the second-stage amplifying fixed rod 404 is located on the right side of the second input end 402; the second-stage input end hinge 403, the first
  • the second-stage amplification fixed end hinge 405 is located on the right side of the second-stage amplification output rod 406;
  • the top of the second second-stage amplification fixed rod 408 is connected to the second second-stage amplification output rod by the second second-stage amplification fixed end hinge 409 410, the top of the second-stage amplifying output rod 406 is connected to the bottom of the second-stage amplifying output rod 410 through a second
  • the first input rod 301 and the second input rod 401 are fixedly connected, the first input terminal 302 and the second input terminal 402 are fixedly connected, An output end 316 and a second output end 416 are fixedly connected; the first-stage amplification fixing rod 304, the first third-stage amplification fixing rod 312, and the second second-stage amplification fixing rod 408 are fixedly connected; the first two-stage amplification fixing rod 308 , The second-stage amplification fixing rod 404 and the second and third-stage amplification fixing rod 412 are fixedly connected.
  • the amplification method of the three-stage micro-displacement amplification mechanism the steps include:
  • Step 1 The first input rod 301 and the second input rod 401 are connected to the displacement output end of the magnetostrictive actuator, the first stage amplifying fixing rod 304, the first third stage amplifying fixing rod 312, and the second second stage amplifying fixing rod 408
  • the fixed connection, the first two-stage amplifying fixing rod 308, the second-stage amplifying fixing rod 404, and the second three-stage amplifying fixing rod 412 are fixedly connected and connected to the inside of the magnetostrictive drive;
  • the first input rod 301 magnetostricts
  • the micro displacement input by the driver is transmitted to the first input terminal 302, and at the same time, the second input rod 401 transmits the micro displacement input by the magnetostrictive driver to the second input terminal 402;
  • Step 2 The first input 302 transmits the displacement to the first-stage input hinge 303, and the first-stage input hinge 303 transmits the displacement to the first-stage amplifying output rod 306; at the same time, the second input 402 transmits The displacement is transmitted to the second-stage input hinge 403, and the second-stage input hinge 403 transmits the displacement to the second-stage amplifying output rod 406; the first-stage amplifying output rod 306 is deflected, the right end moves upward, and the second The first-stage amplifying output rod 406 is deflected and the left end moves upward;
  • the positions of the first-stage amplification fixing rod 304 and the second-stage amplification fixing rod 404 are fixed, and the first-stage amplification fixing rod 304 and the second-stage amplification fixing rod 404 are fixed.
  • the first stage The magnifying fixed rod 304 pulls the end of the first-stage magnifying output rod 306 through the first-stage magnifying fixed end hinge 305, and the first input end 302 is connected to the first-stage magnifying hinge 303 through the first-stage input end hinge 303.
  • the first-stage amplifying output rod 306 is lifted up, the first-stage amplifying output rod 306 is deflected, and the right end moves upward; the second-stage amplifying fixed rod 404 is connected to the second-stage amplifying output rod 406 through the second-stage amplifying fixed end hinge 405
  • the right end of the second stage plays a role of pulling, the second input end 402 pushes up the left end of the second stage amplifying output rod 406 through the second stage input end hinge 403, the second stage amplifying output rod 406 deflects, and the left end moves upward .
  • the left arc opening of the first-level magnifying fixed end hinge 305 and the first input end hinge 303 becomes smaller, and the right arc opening becomes larger.
  • the second-level magnifying fixed end hinge 405 and the left side of the second input hinge 403 The arc opening becomes larger and the right arc opening becomes smaller.
  • Step 3 The first-stage amplification output rod 306 transmits the amplified displacement to the first-stage input hinge 307, and the first-stage input hinge 307 transmits the displacement to the first-stage amplification output rod 310.
  • the first-stage amplifier output rod 310 is deflected and the left end moves upward;
  • the second-stage amplifier output rod 406 transfers the displacement to the second-stage input hinge 407, and the second-stage input-end hinge 407 transfers the displacement to the second second-stage amplifier
  • the output rod 410, the second secondary amplifying output rod 410 is deflected and the right end moves upward;
  • the first two-stage magnification fixing rod 308 is fixed, the first two-stage amplifying fixing rod 308 pulls the end of the first two-stage amplifying output rod 310 through the first two-stage amplifying fixed end hinge 309, and the first The first-stage amplifying output rod 306 is pushed up to the first-stage second-stage amplifying output rod 310 through the first-stage second-stage input hinge 307, the first-stage second-stage amplifying output rod 310 is deflected, and the left end moves upward; the second second-stage amplifying fixed rod 408 Fixed, the second second-stage amplifying fixed rod 408 pulls the end of the second second-stage amplifying output rod 410 through the second second-stage amplifying fixed end hinge 409, and the second second-stage amplifying output rod 406 passes through the The second-stage input end hinge 407 pushes up the second-stage second-stage amplification output rod 410, the second-stage second-stage amplification output rod 410 is deflected,
  • Step 4 The first two-stage amplification output rod 310 transmits the amplified displacement to the first three-stage input hinge 311, and the first three-stage input hinge 311 transmits the amplified displacement to the first three-stage amplification output rod 314.
  • a three-stage amplifying output rod 314 transmits the displacement to the first output hinge 315; at the same time, the second two-stage amplifying output rod 410 transmits the displacement to the second three-stage input hinge 411, and the second three-stage input hinge 411 transfers the displacement to the The amplified displacement is transmitted to the second and third-stage amplifying output rod 414, and the second and third-stage amplifying output rod 414 transmits the displacement to the second output hinge 415;
  • the first-stage amplification fixing rod 304, the first-stage amplification fixing rod 312, and the second-stage amplification fixing rod 408 are fixedly connected; the first-stage amplification fixing rod 308, the second-stage amplification fixing rod 404, the second and third stages The first-stage amplifying fixing rod 412 is fixedly connected.
  • the displacement direction of the connected first output end 316 and the second output end 416 is axially upward, which eliminates (the first-stage amplifying output rod 306 and the first A second-stage amplifying output rod 406, a first-stage amplifying output rod 310 and a second-stage amplifying output rod 410, a first third-stage amplifying output rod 314, a second third-stage amplifying output rod 414, a first output end 316, The second output end 416) is laterally displaced to avoid shearing force and effectively improve the accuracy of axial output.
  • Step 5 The first output hinge 315 transmits the displacement to the first output 316, and the first output 316 moves upward; the second output hinge 415 transmits the displacement to the second output 416, and the second output 416 moves upward .
  • FIG. 12 it is a structural diagram of a novel actuator with a two-stage micro-displacement amplifying mechanism that provides an axial magnetic field with a rod in the present invention.
  • the rod provides an axial magnetic field with a new type of actuator with a micro-displacement amplifying mechanism, including: a non-magnetic shell 501, a magnetic frame 502, an excitation coil 503, a magnetostrictive rod and a permanent magnet-permeable combination body Combined body 504, two-stage micro-displacement amplifying mechanism, output rod 505.
  • a micro-displacement amplifying mechanism including: a non-magnetic shell 501, a magnetic frame 502, an excitation coil 503, a magnetostrictive rod and a permanent magnet-permeable combination body Combined body 504, two-stage micro-displacement amplifying mechanism, output rod 505.
  • the excitation coil 503 is sleeved outside the first assembly 504, the excitation coil 503 is placed in the magnetic frame 502, the magnetic frame 502 and the first assembly 504 form a closed magnetic circuit; the magnetic frame 502 is arranged in the non-magnetic shell 501 , The non-magnetic shell 501 is used to constrain the magnetic frame 502; one end of the first assembly 504 is connected to the magnetic frame 502, and the other end is connected to the input rod 5 of the micro-displacement amplifying mechanism through the through hole of the magnetic frame 502, the first assembly
  • the body 504 is used to transmit the displacement to the micro-displacement amplifying mechanism.
  • the amplifying fixed rod 12 of the secondary micro-displacement amplifying mechanism is connected to the magnetic frame 502, the amplifying output rod 11 is connected to the rear end of the output rod 505, and the front end of the output rod 505 is from The through hole of the non-magnetic shell 501 extends; the micro-displacement amplifying mechanism amplifies the displacement of the first assembly 504 and transmits it to the output rod 505, and the output rod 505 outputs the displacement.
  • the structure of the first assembly 504 includes: a permeable magnet, a permanent magnet, and a magnetostrictive rod.
  • the permeable magnet includes a plurality of magnetostrictive monomers
  • the permanent magnet includes a plurality of permanent magnet monomers
  • the magnetostrictive rod includes a plurality of magnetostrictive rods.
  • Stick monomer The magnetic conductive monomers are respectively connected to both sides of the permanent magnet monomer to form a magnet unit, and the magnet unit is connected to both sides of the magnetostrictive rod monomer.
  • the magnetic permeable unit at the back is connected to the permeable frame 502, and the permeable unit at the front is connected to the micro-displacement amplifying mechanism.
  • the magnet unit and the magnetostrictive rod are alternately spaced in the axial direction.
  • FIG. 13 it is a schematic structural diagram of an actuator with a two-stage micro-displacement amplifying mechanism in which the skeleton provides an axial magnetic field in the present invention.
  • the two-stage actuator with micro-displacement amplifying mechanism that the skeleton provides the axial magnetic field includes: H-shaped non-magnetic shell 601, upper end cover 602, lower end cover 603, solenoid 604, second assembly 605, two Level micro-displacement amplifying mechanism, output rod 505.
  • Both ends of the H-shaped non-magnetic shell 601 are open, the inner wall is provided with a baffle 6011, and the baffle 6011 is provided with an input rod through hole.
  • the upper end cover 602 is connected to the front opening, the upper end cover 602 is provided with an output rod through hole, and the lower end cover 603 is connected to the rear opening;
  • the solenoid 604 is installed in the H-shaped non-magnetic housing 601 and located behind the baffle 6011 The front end abuts on the baffle 6011, and the rear end abuts on the lower end cover 603;
  • the solenoid 604 is provided with an axial through hole, the solenoid 604 is wound with a coil 6043, and the outer wall of the axial through hole is provided with a permanent magnet ,
  • the permanent magnet forms an axial permanent magnetic field at the axial through hole;
  • the axial through hole is connected to the input rod through hole, and the second assembly 605 is installed in the axial through hole;
  • the second assembly 605 is a combination of a magnetostrictive rod and a magnet, which transmits the telescopic displacement to the input rod 5 of the secondary micro-displacement amplifying mechanism, and the amplifying fixed rod 12 of the secondary micro-displacement amplifying mechanism is connected to the baffle 6011 Above, the secondary micro-displacement amplification mechanism amplifies the displacement and transmits it to the output rod 505, and the output rod 505 outputs the displacement.
  • FIG. 14 it is a schematic structural diagram of an actuator with a three-stage micro-displacement amplifying mechanism in which the skeleton provides an axial magnetic field in the present invention.
  • the frame provides an actuator with a three-stage micro-displacement amplification mechanism that provides an axial magnetic field, including: H-shaped non-magnetic housing 601, upper end cover 602, lower end cover 603, solenoid 604, second assembly 605, three Level micro-displacement amplifying mechanism, output rod 505.
  • the three-stage micro-displacement amplifying mechanism is installed in the H-shaped non-magnetic housing 601 and located in the front of the baffle 6011.
  • the input rod 5 of the three-stage displacement amplifying mechanism extends into the input rod through hole and connects to the second assembly 605 End; one end of the output rod 505 is connected to the output end of the three-stage micro-displacement amplifying mechanism (amplified output rod 11), and the other end extends from the output rod through hole.
  • the second assembly 605 transfers the telescopic displacement to the input rod 5 of the three-stage micro-displacement amplifying mechanism, the amplification fixed rod 12 of the three-stage micro-displacement amplifying mechanism is connected to the baffle 6011, and the two-stage micro-displacement amplifying mechanism transmits the displacement after amplifying To the output rod 505, the output rod 505 outputs the displacement.
  • FIG. 15 it is a schematic diagram of the structure of the solenoid 604 in the present invention.
  • the solenoid 604 provides an axial permanent magnetic field (the solenoid originally provides an excitation magnetic field, the present invention can provide an axial permanent magnetic field while providing a bias magnetic field), as the excitation of magnetostrictive brakes, actuators and other devices Magnetic field and bias magnetic field.
  • the structure of the solenoid 604 includes: a supporting end surface 6041, a solenoid body 6042, a coil 6043; the supporting end surface 6041 is arranged at both ends of the solenoid body 6042, and the coil 6043 is arranged on the outer wall of the solenoid body 6042.
  • the solenoid body 6042 has a tubular structure.
  • a heat insulation layer 6044 is provided on the inner wall of the solenoid body 6042.
  • the solenoid body 6042 includes a conductive magnet 60421 and a permanent magnet 60422.
  • the conductive magnet 60421 and the permanent magnet 60422 are in a ring structure.
  • a plurality of conductive magnets 60421 and permanent magnets 60422 are alternately arranged at intervals and connected at the contacting end faces.
  • the plurality of conductive magnets 60421 and the permanent magnets 60422 are distributed coaxially and have the same inner diameter.
  • the structure of the solenoid body 6042 takes the axial center as the midpoint, and has a two-sided symmetric structure.
  • the coil 6043 is wound with enameled wire.
  • the magnetic properties of the permanent magnets 60422 symmetrical on both sides of the center point are the same; the magnetic properties of the permanent magnets 60422 distributed from the midpoint to the two ends gradually decrease.
  • the supporting end surface 6041 is connected with the conductive magnet 60421.
  • the material of the heat insulation layer 44 is a non-magnetic material.
  • FIG. 16 it is a schematic structural diagram of an actuator with a two-stage micro-displacement amplifying mechanism whose housing provides an axial magnetic field in the present invention.
  • the housing provides an actuator with a secondary micro-displacement amplifying mechanism with an axial magnetic field, including: a non-magnetic housing 701, a magnetic frame 702, an excitation coil 503, a third assembly 704, a secondary micro-displacement amplifying mechanism, and an output Rod 505, non-magnetic upper end cover 707.
  • the magnetically permeable frame 702 is provided with an input rod through hole 7023 at the top, and the magnetically permeable frame 702 forms an axial permanent magnetic field.
  • the excitation coil 503 includes a coil housing and a winding, the winding is arranged outside the coil housing, and the coil housing is provided with an axial through hole.
  • the third assembly 704 includes a magnetostrictive rod 7041 and a first magnetic conductor 7042, and the two first magnetic conductors 7042 are respectively connected to both ends of the magnetostrictive rod 7041.
  • the third assembly 704 is installed in the axial through hole.
  • the two-stage micro-displacement amplifying mechanism (or the three-stage micro-displacement amplifying mechanism) is installed in the non-magnetic shell 701 and located outside the magnetic frame 702, and the input rod 5 extends into the axial through hole and is connected to the first frame magnetic conductor 7042 on.
  • One end of the output rod 505 is connected to the output end (amplification output rod 11), and the other end extends from the output rod through hole.
  • the magnetic frame 702 with the axial permanent magnetic field and the third assembly 704 form a closed magnetic circuit.
  • the third assembly 704 transfers the displacement to the secondary micro-displacement amplifying mechanism, the fixed end of the secondary micro-displacement amplifying mechanism (amplification fixing rod 12) is connected to the magnetic frame 702, and the secondary micro-displacement amplifying mechanism amplifies the displacement and transmits it To the output rod 505, the output rod 505 outputs the displacement.
  • FIG. 17 it is a schematic diagram of the structure of the magnetic permeable frame 2 in the present invention.
  • the permeable frame 702 includes: a second frame permeable magnet 7021, a frame permanent magnet 7022, a plurality of second frame permeable magnets 7021, frame permanent magnets 7022 are arranged at intervals and connected end to end, at the top end of the second frame permeable magnet 7021 There is an input rod through hole 7023.
  • the number of the second frame magnetizer 7021, the frame permanent magnet 7022 is at least two.
  • the invention enables the micro-displacement amplifying mechanism to achieve a larger displacement magnification, and at the same time effectively avoids the space occupied by the part that is ineffective to the magnification effect in the traditional axisymmetric mode, and eliminates the lateral displacement of the micro-displacement amplifying mechanism while greatly reducing The volume of the micro-displacement amplifying mechanism is reduced, so that the driver is miniaturized.

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
  • Transmission Devices (AREA)
  • Amplifiers (AREA)

Abstract

本发明公开了一种微位移放大机构,包括两组非对称放大结构,每组非对称放大结构包括多个通过柔性铰链相串接的非对称放大单元,非对称放大单元用于将微位移放大;两组非对称放大结构的位置相反并重叠布置;输入端、输出端分别通过柔性铰链连接非对称放大单元,输入端用于给非对称放大结构输入微位移,输出端用于输出放大后的位移;两个相接触的输入端固定连接,两个相接触的输出端固定连接。本发明还公开了一种微位移放大机构的放大方法。本发明使得微位移放大装置能够实现更大的位移放大倍数,并且消除横向位移,大幅度减小了放大机构的体积。

Description

微位移放大机构及其放大方法
本申请基于下列中国专利申请提出:
申请号:201910715677.6,申请日:2019年08月05日;
申请号:201910715674.2,申请日:2019年08月05日;
申请号:201910715687.X,申请日:2019年08月05日;
申请号:201910715681.2,申请日:2019年08月05日;
申请号:201910715678.0,申请日:2019年08月05日;
申请号:201910715676.1,申请日:2019年08月05日;
申请号:201910715691.6,申请日:2019年08月05日;
申请号:201910715679.5,申请日:2019年08月05日。
并要求上述中国专利申请的优先权,上述中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本发明涉及一种微纳米技术,具体说,涉及一种微位移放大机构及其放大方法。
背景技术
微纳米技术(MEMS,nano technology)为微机电系统(MEMS)技术和纳米科学技术(nano science and technology,nano ST)的简称。
以磁致伸缩材料作为驱动器的精密平台可广泛应用于微纳领域,对于一些需要较低的输出范围,如100μm以下,或一些对驱动器体积没有限制的环境下,磁致伸缩驱动器可单独完成运动,不需要借助辅助设备,但在一些输出要求较大的领域和/或对驱动器体积有所限制的环境,单一的依靠磁致伸缩驱动器完成作业是不够的。此时就需要一种对驱动器输出位移进行放大的装置。
柔性铰链是1960年以后发展起来的一种机械传动和支撑机构,是一种铰杆一体化结构的新型弧形切口铰链,属于可逆弹性结构,在力矩作用下柔性铰链产生明显的弹性角变形,能在机械结构中起到铰链的作用,具有无摩擦、无间隙、运动分辨率高的特点,可用来作为微位移放大机构的传动结构,能同时保证工作精度和输出刚度,在精密机械、精密测量、微米技术和纳米技术等领域得到广泛应用。
柔性位移放大机构的工作原理是依靠柔性铰链的弹性变形进行运动,为了避免寄生运动和温载带来的误差,机构的构型大多采用轴对称式设计。但是,此种设计存在一些问题:在放大机构体积不变的情况下,为了保证对称结构,对放大倍数有效的横向结构只有二分之一,而在保证放大倍数的情况下,整体横向结构又会扩大一倍,这样在兼顾小的体积和大的放大倍数的工况条件下,柔性位移放大机构的应用将会受到限制。
中国专利CN104900573B公开了一种对称式差动杠杆微位移放大装置,包括底座、固定在底座上的基板和与基板位于同一平面上的压电块,压电块具有一个顶压部和两个分别位于顶压部两端且以顶压部的中垂线为中心对称放置的传动部,两个传动部分别连接有一组与基板位于同一平面上的杠杆组件,且两组杠杆组件以所述顶压部的中垂线为中心对称放置,两传动部之间放置有抵顶在顶压部上的压电陶瓷驱动器。通过设置杠杆组件,利用差动杠杆放大的原理,实现位移的放大。该放大机构为轴对称,体积较大,需要将驱动器放在放大机构的内部,不适用于对驱动器体积有所限制的环境。
中国专利CN108109671A公开了一种基于菱形柔性机构的二级位移放大机构,包括初级菱形柔性机构、固定框和次级菱形机构,初级菱形柔性机构固定设置在固定框内,且初级菱形柔性机构的两个初级刚性输入端均通过导向机构与固定框的两个相对内侧面连接,初级菱形柔性机构的初级刚性输出端均通过定中机构与固定框的另外两个内侧面连 接,次级柔性机构的两个次级刚性输入端分别与初级菱形柔性机构的两个初级刚性输出端固定连接,次级柔性机构的次级刚性输出端为位移输出端口。该放大机构体积较大,需要将驱动器放在放大机构内部,不适用于对驱动器体积有所限制的环境,且初级菱形柔性机构与次级菱形柔性机构结合后,输出位移的方向变为原驱动器输出位移的垂直方向。
中国专利CN108297086A公开了一种非对称二级位移放大柔性微操作机构,包括基体、压电陶瓷驱动器、SR位移放大机构、平行四边形杠杆放大机构和预紧螺栓。压电陶瓷驱动器通过预紧螺栓安装在基体上,操作机构仅控制一个钳口的运动,另一个钳口与基体连接固定不动,压电陶瓷驱动器的输出端通过柔性铰链Ⅳ与SR位移放大机构的输入端相连。SR位移放大机构通过柔性铰链Ⅰ与基体相连,SR位移放大机构的输出端通过柔性铰链Ⅱ与平行四边形杠杆放大机构的输入端相连。平行四边形杠杆放大机构输出端通过柔性平行双板机构与钳口相连,柔性平行双板机构上粘贴有金属应变片。该放大机构为非对称位于输出端3一侧的非对称放大单元1,通过SR位移放大机构与平行四边形杠杆放大机构的组合,将垂直方向的输出位移改变为水平方向的位移。
中国专利CN106981316A公开了一种具有三级放大结构的微位移定位平台,包括固定机架、位移输入平台、运动输入机构、两组第一级杠杆机构、两组第二级杠杆机构以及一个半桥式放大机构,两组第一级杠杆机构和两组第二级杠杆机构分别对称,并且第一级杠杆机构和第二级杠杆机构的支点均与固定机架传动连接,运动输入机构的两端分别连接固定机架和位移输入平台,两组第一级杠杆机构的输入端分别于位移输入平台传动连接,输出端分别与相应的第二级杠杆机构的输入端传动连接,半桥式放大机构连接在两组第二级杠杆机构的输出端之间。该放大机构为轴对称,体积较大,需要将驱动器放在放大机构的内部,不适用于对驱动器体积有所限制的环境。
随着现在各种精密器件的不断小型化,学术界和工程界一直在寻找具有大的位移放大比同时又具备小体积的位移放大机构,目前公知的位移放大机构使用的方法只是将二者进行折中,或者将位移放大机构做成非对称结构,通过牺牲精度的方式来实现。事实上,位移放大机构的位移放大比、体积小型化和输出精度之间的制约关系仍然是一个有待解决的问题。
发明内容
本发明所解决的技术问题是提供一种微位移放大机构及其放大方法,使得微位移放大装置能够实现更大的位移放大倍数,并且消除横向位移,大幅度减小了放大机构的体积。
技术方案如下:
微位移放大机构,其特征在于,包括两组非对称放大结构,每组非对称放大结构包括多个通过柔性铰链相串接的非对称放大单元,非对称放大单元用于将微位移放大;两组非对称放大结构的位置相反并重叠布置,输入端、输出端分别通过柔性铰链连接非对称放大单元,输入端用于给非对称放大结构输入微位移,输出端用于输出放大后的位移;两个相接触的输入端固定连接,两个相接触的输出端固定连接。
进一步,非对称放大结构采用非对称二级放大结构,非对称二级放大结构包括二个非对称放大单元,分别为第一级放大单元、第二级放大单元;非对称放大单元包括:放大输出杆、放大固定杆、输入端铰链、放大固定端铰链;放大输出杆横向布置,放大固定杆通过放大固定端铰链连接在放大输出杆的下部,放大固定端铰链位于放大输出杆靠近端部的位置;输入端铰链设置在放大输出杆的下部,并位于放大固定端铰链的内侧;第一级放大单元的输入端铰链连接输入端,第二级放大单元通过输入端铰链连接第一级放大单元的放大输出杆的顶部;第二级放大单元的放大输出杆的顶部通过输出端铰链连接输出端,输出端横向布置;输入端铰链、放大固定端铰链、输出端铰链采用柔性铰链;两组非对称二级 放大机构的位置相反并重叠布置,两个相接触的放大固定杆相连接。
进一步,非对称放大结构采用非对称三级放大结构,非对称三级放大结构包括三个非对称放大单元,分别为第一级放大单元、第二级放大单元、第三级放大单元;非对称放大单元包括:放大输出杆、放大固定杆、输入端铰链、放大固定端铰链;放大输出杆横向布置,放大固定杆通过放大固定端铰链连接在放大输出杆的下部,放大固定端铰链位于放大输出杆靠近端部的位置;输入端铰链设置在放大输出杆的下部,并位于放大固定端铰链的内侧;第一级放大单元的输入端铰链连接输入端,第二级放大单元通过输入端铰链连接第一级放大单元的放大输出杆的顶部;第三级放大单元通过输入端铰链连接第二级放大单元的放大输出杆的顶部,第三级放大单元的顶部通过输出端铰链连接输出端,输出端横向布置;输入端铰链、放大固定端铰链、输出端铰链采用柔性铰链;两组非对称三级放大机构的位置相反并重叠布置,两个相接触的放大固定杆相连接。
进一步,第三级放大单元的放大固定杆与第一级放大单元的放大固定杆相连接。
进一步,输入端设置有输入杆,放大固定杆位于输入端两侧。
进一步,通过调节各非对称放大单元的输入端铰链在放大输出杆的位置来调节放大倍数。
进一步,促动器包括:不导磁外壳、导磁框架、励磁线圈、组合体、输出杆;励磁线圈套装在第一组合体外部,励磁线圈放置在导磁框架内,导磁框架与组合体构成闭合磁路;导磁框架设置在不导磁外壳内,不导磁外壳用于约束导磁框架;第一组合体的一端连接导磁框架,另一端连接微位移放大机构的输入杆,微位移放大机构位于不导磁外壳内,组合体用于将位移传递给微位移放大机构;微位移放大机构的固定端连接在导磁框架上,输出端连接输出杆的后端,输出杆的前端从不导磁外壳的通孔伸出;微位移放大机构将第一组合体的位移放大后传递给输出杆,输出杆用于将位移输出。
进一步,组合体包括:导磁体、永磁体、磁致伸缩棒,导磁体包括多个导磁单体,永磁体包括多个永磁单体,磁致伸缩棒包括多个磁致伸缩棒单体;导磁单体分别连接在永磁单体两侧,组成磁体单元,磁体单元连接在磁致伸缩棒单体两侧;后端的导磁单体连接导磁框架,前端的导磁单体连接微位移放大机构,磁体单元和磁致伸缩棒在轴向方向交替间隔分布。
进一步,促动器包括:不导磁外壳、导磁框架、励磁线圈、组合体、输出杆、不导磁上端盖;不导磁外壳一端开口,不导磁上端盖设置在开口处,不导磁上端盖开有输出杆通孔;导磁框架在顶端设置有输入杆通孔,导磁框架形成轴向永磁磁场;励磁线圈包括线圈外壳和绕组,绕组设置在线圈外壳的外部,线圈外壳开有轴向通孔;组合体包括:磁致伸缩棒和导磁体,两个导磁体分别连接在磁致伸缩棒的两端,组合体安装在轴向通孔内;微位移放大机构安装在不导磁外壳内,并位于导磁框架的外侧,输入杆伸入轴向通孔并连接在导磁体上;输出杆一端连接输出端,另一端从输出杆通孔伸出。
进一步,促动器包括:H型不导磁壳体、上端盖、下端盖、螺线管、组合体、输出杆;H型不导磁壳体两端开口,内壁设置有挡板,挡板设置有输入杆通孔;上端盖连接在前端开口,上端盖设置有输出杆通孔,下端盖连接在后端开口;螺线管安装在H型不导磁壳体内,并位于挡板的后部,前端抵在挡板上,后端抵在下端盖上;螺线管设置有轴向通孔,螺线管设置有线圈,在轴向通孔的外壁设置有永磁体;轴向通孔连通输入杆通孔,组合体安装在轴向通孔内;微位移放大机构安装在H型不导磁壳体内,并位于挡板的前部,微位移放大机构的位移输入杆伸入输入杆通孔并连接组合体的端部;输出杆一端连接在二级微位移放大机构的输出端,另一端从输出杆通孔伸出。
进一步,螺线管包括:支撑端面、螺线管本体、线圈;支撑端面设置在螺线管本体的两端,线圈设置在螺线管本体的外壁上;螺线管本体包括:导磁体和永磁体,导磁体和永 磁体为环状结构,多个导磁体和永磁体交替间隔布置,并且在接触的端面相连接。
进一步,轴向通孔设置有隔热层,螺线管本体为管状结构,永磁体至少为2组,导磁体至少为3组。
进一步,非对称放大结构采用非对称二级放大结构或者非对称三级放大结构。
微位移放大机构的放大方法,包括:
微位移放大机构包括两组非对称放大结构,每组非对称放大结构包括多个通过柔性铰链相串接的非对称放大单元;两组非对称放大结构的位置相反并重叠布置,输入端、输出端分别通过柔性铰链连接非对称放大单元;两个相接触的输入端固定连接,两个相接触的输出端固定连接;输入端连接磁致伸缩驱动器的位移输出端,放大固定杆分别位于输入端两侧并连接在磁致伸缩驱动器的内部;
磁致伸缩驱动器输入的微位移传递至输入端,输入端将位微移传递至第一级非对称放大单元的输入端一侧的柔性铰链;每一级非对称放大单元的的放大固定杆固定不动,放大固定杆通过与放大输出杆相连接的柔性铰链对放大输出杆的端部起到拉的作用,与输入端和放大输出杆相连接的柔性铰链顶起放大输出杆,放大输出杆的端部向上移动,相重叠的非对称放大单元的放大输出杆同时发生偏转,完成位移放大;
放大后的微位移传递给下一级非对称放大单元,或者放大后的微位移通过输出端输出。
优选的,非对称放大结构选用非对称二级放大结构,非对称二级放大结构包括二个非对称放大单元,分别为第一级放大单元、第二级放大单元;第一级放大单元的放大固定杆固定不动,通过第一级放大单元的放大固定端铰链对第一级放大单元的放大输出杆的端部起到拉的作用;第二级放大单元的放大固定杆固定不动,通过第二级放大单元的放大固定端铰链对第二级放大单元的放大输出杆的端部起到拉的作用;输入端通过第一级放大单元的输入端铰链对第一级放大单元的放大输出杆顶起;第一级放大单元的放大输出杆通过第二级放大单元的输入端铰链对第二级放大单元的的放大输出杆顶起;放大固定端铰链、输入端铰链采用柔性铰链。
优选的,非对称放大结构选用非对称三级放大结构,非对称三级放大结构包括三个非对称放大单元,分别为第一级放大单元、第二级放大单元、第三级放大单元;第一级放大单元的放大固定杆固定不动,通过第一级放大单元的放大固定端铰链对第一级放大单元的放大输出杆的端部起到拉的作用;第二级放大单元的放大固定杆固定不动,通过第二级放大单元的放大固定端铰链对第二级放大单元的放大输出杆的端部起到拉的作用;第三级放大单元的放大固定杆固定不动,通过第三级放大单元的放大固定端铰链对第三级放大单元的放大输出杆的端部起到拉的作用;输入端通过第一级放大单元的输入端铰链对第一级放大单元的放大输出杆顶起;第一级放大单元的放大输出杆通过第二级放大单元的输入端铰链对第二级放大单元的的放大输出杆顶起;第二级放大单元的放大输出杆通过第三级放大单元的输入端铰链对第三级放大单元的的放大输出杆顶起;放大固定端铰链、输入端铰链采用柔性铰链。
与现有技术相比,本发明技术效果包括:
1、将两个非对称放大结构的位置相反并重叠布置的方式,使得微位移放大机构能够实现更大的位移放大倍数,并且消除横向位移,大幅度减小了放大机构的体积。
(1)、原有的对称式微位移放大装置一般是以装置中心为对称轴,两面为对称结构。在位移放大过程中,由于装置是以杠杆的方式将位移进行放大,所以装置的输出端不可避免的会与水平面产生一定的角度,从而产生横向位移。因此,原有的对称式微位移放大装置的一半对放大效果有效,装置的另一半是通过拉的方式来消除横向位移。
(2)、本发明由于采用了将两组非对称放大结构的位置相反并重叠布置的方式,两 组非对称放大结构的输出端可以通过挤压的方式来消除横向位移,由于没有采取轴向对称的方式,因此在达到原有的对称式微位移放大装置同样放大效果的情况下,大幅度减小了放大机构的体积。
(3)、本发明由于采用了将两组位于非对称放大结构的位置相反并重叠布置的方式,在与原有的对称式微位移放大装置同样的体积情况下,本发明能够实现更大的位移放大倍数。
(4)、本发明由于采用了将两组位于非对称放大结构的位置相反并重叠布置的方式,在达到原有的对称式微位移放大装置同样放大效果的情况下,大幅度缩小了放大机构的体积,因此可以将本放大机构可以放在磁致伸缩驱动器的内部,因此使得驱动器小型化。
2、两个非对称放大单元的输出端固定连接后,在力的作用下,消除了由输出端倾斜导致的横向位移,输出的位移仅为轴向向上的位移,有效提高了轴向输出精度。
3、由于将放大机构置于磁致伸缩式驱动器的内部,并未占用额外的空间,因此在保持驱动器大的输出位移的同时,扩展了其应用环境。
4、由于采用了多组磁致伸缩棒体以及各组磁致伸缩棒体之间加入永磁导磁结合体,形成组合体的方法,有效地提高了偏置磁场的均匀程度,使稀土超磁致伸缩驱动器的工作状态更稳定。
5、由于采用了永磁体结合导磁体代替原有螺线管骨架的方法,驱动器不用再行设计偏置磁场,有效的节省了器件的空间,使器件小型化。
附图概述
图1是本发明中非对称放大单元的结构示意图;
图2是本发明中两个相串接的非对称放大单元的结构示意图;
图3是本发明中二级微位移放大机构的正面结构示意图;
图4是本发明中二级微位移放大机构的立体结构示意图;
图5是本发明中第一非对称二级放大结构的结构示意图;
图6是本发明中第二非对称二级放大结构的结构示意图;
图7是本发明中非对称三级放大结构的结构示意图;
图8是本发明中三级微位移放大机构的正面结构示意图;
图9是本发明中三级微位移放大机构的立体结构示意图;
图10是本发明中第一非对称三级放大结构的结构示意图;
图11是本发明中第二非对称三级放大结构的结构示意图。
图12是本发明中棒材提供轴向磁场的带有微位移放大机构的新型促动器的结构示意图。
图13是本发明中骨架提供轴向磁场的带有二级微位移放大机构的促动器的结构示意图。
图14是本发明中骨架提供轴向磁场的带有三级微位移放大机构的促动器的结构示意图。
图15是本发明中螺线管的结构示意图;
图16是本发明中外壳提供轴向磁场的带有三级微位移放大机构的促动器的结构示意图;
图17是本发明中导磁框架的结构示意图。
本发明的较佳实施方式
下面参考示例实施方式对本发明技术方案作详细说明。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的实施方式;相反,提供这些实施方式使得本 发明更全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。
如图1所示,是本发明中非对称放大单元1的结构示意图。
非对称放大单元1包括:放大输出杆11、放大固定杆12、输入端铰链13、放大固定端铰链14;放大输出杆11横向布置,放大固定杆12通过放大固定端铰链14连接在放大输出杆11的下部,放大固定端铰链14位于放大输出杆11靠近端部的位置;输入端铰链13设置在放大输出杆11的下部,并位于放大固定端铰链14的内侧。输入端铰链13、放大固定端铰链14采用柔性铰链。
利用杠杆原理,放大固定端铰链14对放大输出杆11的端部起拉的作用,输入端铰链13起支撑作用,可以通过调节输入端铰链13在放大输出杆11的位置来改变放大倍数。
非对称放大单元1采用了非轴向对称结构,有效地避免了传统轴对称方式中对放大效果无效的部分占用的空间,减小了放大机构的体积。
如图2所示,是本发明中两个相串接的非对称放大单元1的结构示意图。
两个相串接的非对称放大单元1中,非对称位于输出端3一侧,位于输出端3一侧的非对称放大单元1通过输入端铰链13连接位于输入端2一侧的非对称放大单元1的放大输出杆11的顶部;位于输入端2一侧的非对称放大单元1的输入端铰链13连接输入端2,两个非对称放大单元1的放大固定杆12分别位于输入端2两侧;位于输出端3一侧的非对称放大单元1的顶部通过输出端铰链4连接输出端3,输出端3横向布置。输出端铰链4采用柔性铰链。
可以通过调节位于输入端2一侧的非对称放大单元1的输入端铰链13在放大输出杆11的位置来调节放大倍数,进一步,通过调节位于输出端3一侧的非对称放大单元1的输入端铰链13与位于输出端3一侧的非对称放大单元1的放大输出杆11的连接位置来改变放大倍数。
如图3所示,是本发明中二级微位移放大机构的正面结构示意图;如图4所示,是本发明中二级微位移放大机构的立体结构示意图。
二级微位移放大机构包括:两组串接后的非对称放大结构,每组串接后的非对称放大结构包括两个相串接的非对称放大单元1,两组串接后的非对称放大结构的位置相反并重叠布置,两组串接的非对称放大结构重叠后,两个相接触的输入端2相连接,输入端2两侧,两个相接触的放大固定杆12相连接,两个相接触的输出端3相连接。二级微位移放大机构其它非连接部分可自由活动。
两组相串接的非对称放大结构位置相反,即一个相串接的非对称放大结构水平翻转180°后的位置为另一个相串接的非对称放大结构的位置。
二级微位移放大机构的放大方法,具体步骤包括:
位于输入端2一侧的非对称放大单元1的输入端铰链13连接输入端2,输入端2连接磁致伸缩驱动器的位移输出端,两个放大固定杆12分别位于输入端2两侧并连接在磁致伸缩驱动器的内部;
磁致伸缩驱动器输入的微位移传递至输入端2,输入端2将位移传递至位于输入端2一侧的非对称放大单元1的输入端铰链13,输入端铰链13将位移传递至位于输入端2一侧的非对称放大单元1的放大输出杆11;两个位于输入端2一侧的非对称放大单元1的放大输出杆11同时发生偏转,端部向上移动;
位于输入端2一侧的非对称放大单元1的放大输出杆11将放大后位移传递给两个位于输出端3一侧的非对称放大单元1的输入端铰链13,位于输出端3一侧的非对称放大单元1的输入端铰链13将位移传递至位于输出端3一侧的非对称放大单元1的放大输出杆11,位于输出端3一侧的非对称放大单元1的放大输出杆11发生偏转,端部向上移动;
两个位于输出端3一侧的非对称放大单元1的放大输出杆11将放大后位移传递给输 出端铰链4,输出端铰链4带动位于输出端3一侧的非对称放大单元1的输出端3向上移动,实现磁致伸缩驱动器的微位移的放大输出。
位于输入端2一侧的非对称放大单元1的放大固定杆12固定不动,通过放大固定端铰链14对位于输入端2一侧的非对称放大单元1的放大输出杆11的端部起到拉的作用,输入端2通过输入端铰链对位于输入端2一侧的非对称放大单元1的放大输出杆11顶起,位于输入端2一侧的非对称放大单元1的放大输出杆11发生偏转;位于输出端3一侧的非对称放大单元1的放大固定杆12固定不动,位于输出端3一侧的非对称放大单元1的放大固定杆12通过放大固定端铰链14对位于输出端3一侧的非对称放大单元1的放大输出杆11的端部起到拉的作用;位于输入端2一侧的非对称放大单元1的放大输出杆11通过位于输出端3一侧的非对称放大单元1的输入端铰链13对位于输出端3一侧的非对称放大单元1的放大输出杆11顶起,位于输出端3一侧的非对称放大单元1的放大输出杆11发生偏转,端部向上移动。
通过调节位于输入端2一侧的非对称放大单元1的输入端铰链13在放大输出杆11的位置来调节放大倍数,进一步通过调节位于输出端3一侧的非对称放大单元1的输入端铰链13在放大输出杆11的位置来改变放大倍数。
本发明优选实施例一包括:第一非对称二级放大结构100和第二非对称二级放大结构200。
如图5所示,是本发明中第一非对称二级放大结构100的结构示意图。
第一非对称二级放大结构100采用二级放大,其结构包括:第一输入杆101、第一输入端102、第一一级输入端铰链103、第一一级放大固定杆104、第一一级放大固定端铰链105、第一一级放大输出杆106;第一二级输入端铰链107、第一二级放大固定杆108、第一二级放大固定端铰链109、第一二级放大输出杆110、第一二级输出端铰链111、第一输出端112。
第一一级输入端铰链103、第一一级放大固定端铰链105、第一二级输入端铰链107、第一二级放大固定端铰链109、第一二级输出端铰链111采用柔性铰链。
第一输入端102的顶部通过第一一级输入端铰链103连接在第一一级放大输出杆106的底部,第一一级放大固定杆104的顶部通过第一一级放大固定端铰链105连接第一一级放大输出杆106的底部;第一一级放大输出杆106横向布置,第一一级放大固定杆104位于第一输入端102的左侧;第一一级输入端铰链103、第一一级放大固定端铰链105位于第一一级放大输出杆106的左侧;第一二级放大固定杆108的顶部通过第一二级放大固定端铰链109连接在第一二级放大输出杆110的底部,第一一级放大输出杆106的顶部通过第一二级输入端铰链107连接在第一二级放大输出杆110的底部;第一二级放大输出杆110横向布置,第一二级放大固定端铰链109位于第一二级输入端铰链107的右侧,第一二级输入端铰链107位于第一一级放大输出杆106的右侧;第一输出端112的底部通过第一二级输出端铰链111连接在第一二级放大输出杆110的顶部,第一二级输出端铰链111位于第一二级放大输出杆110的左侧,第一输出端112横向布置。
如图6所示,是本发明中第二非对称二级放大结构200的结构示意图。
第二非对称二级放大结构200采用二级放大,其结构包括:第二输入杆201、第二输入端202、第二一级输入端铰链203、第二一级放大固定杆204、第二一级放大固定端铰链205、第二一级放大输出杆206;第二一级输出端铰链207、第二二级放大固定杆208、第二二级放大固定端铰链209、第二二级放大输出杆210、第二二级输出端铰链211、第二输出端212。
第二一级输入端铰链203、第二一级放大固定端铰链205、第二一级输出端铰链207、第二二级放大固定端铰链209、第二二级输出端铰链211采用柔性铰链。
为了便于连接磁致伸缩驱动器的位移输出端,第二非对称二级放大结构200在第二输入端202的下部设置有第二输入杆201,第一非对称二级放大结构100在第一输入端102的下部设置有第一输入杆101。
第二输入端202的顶部通过第二一级输入端铰链203连接在第二一级放大输出杆206的底部,第二一级放大固定杆204的顶部通过第二一级放大固定端铰链205连接第二一级放大输出杆206的底部;第二一级放大输出杆206横向布置,第二一级放大固定杆204位于第二输入端202的右侧;第二一级输入端铰链203、第二一级放大固定端铰链205位于第二一级放大输出杆206的右侧;第二二级放大固定杆208的顶部通过第二二级放大固定端铰链209连接在第二二级放大输出杆210的底部,第二一级放大输出杆206的顶部通过第二一级输出端铰链207连接在第二二级放大输出杆210的底部;第二二级放大输出杆210横向布置,第二二级放大固定端铰链209位于第二一级输出端铰链207的左侧,第二一级输出端铰链207位于第二一级放大输出杆206的左侧;第二输出端212的底部通过第二二级输出端铰链211连接在第二二级放大输出杆210的顶部,第二二级输出端铰链211位于第二二级放大输出杆210的右侧,第二输出端212横向布置。
第一非对称二级放大结构100和第二非对称二级放大结构200中,第一输入杆101、第二输入杆201固定连接,第一输入端102和第二输入端202固定连接,第一输出端112和第二输出端212固定连接;第一非对称放大结构100的第一一级放大固定杆104和第二非对称放大结构200的第二二级放大固定杆208固定连接,第一非对称二级放大结构100的第一二级放大固定杆108和第二非对称二级放大结构200的第二一级放大固定杆204固定连接。
二级微位移放大机构的放大方法,步骤包括:
步骤1:第一输入杆101、第二输入杆201连接磁致伸缩驱动器的位移输出端,第一一级放大固定杆104、第二二级放大固定杆208、第一二级放大固定杆108和第二一级放大固定杆204连接在磁致伸缩驱动器的内部;第一输入杆101将磁致伸缩驱动器输入的微位移传递至第一输入端102,同时,第二输入杆201将磁致伸缩驱动器输入的微位移传递至第二输入端202;
步骤2:第一输入端102将位移传递至第一一级输入端铰链103,第一一级输入端铰链103将位移传递至第一一级放大输出杆106;同时,第二输入端202将位移传递至第二一级输入端铰链203,第二一级输入端铰链203将位移传递至第二一级放大输出杆206;第一一级放大输出杆106发生偏转,右端向上移动,第二一级放大输出杆206发生偏转,左端向上移动;
第一一级放大固定杆104、第二一级放大固定杆204的位置固定,第一一级放大固定杆104和第二一级放大固定杆204固定不动,利用杠杆原理,第一一级放大固定杆104通过第一一级放大固定端铰链105对第一一级放大输出杆106的端部起到拉的作用,第一输入端102通过第一一级输入端铰链103对第一一级放大输出杆106顶起,第一一级放大输出杆106发生偏转,右端向上移动;第二一级放大固定杆204通过第二一级放大固定端铰链205对第二一级放大输出杆206的右端起到拉的作用,第二输入端202通过第二一级输入端铰链203对第二一级放大输出杆206的左端顶起,第二一级放大输出杆206发生偏转,左端向上移动。
第一一级放大固定端铰链105、第一一级输入端铰链103的左侧弧口变小,右侧弧口变大,第二一级放大固定端铰链205、第二一级输入端铰链203的左侧弧口变大、右侧弧口变小。
步骤3:第一一级放大输出杆106将位移传递给第一二级输入端铰链107,第一二级输入端铰链107将位移传递至第一二级放大输出杆110,第一二级放大输出杆110发生偏 转,左端向上移动;第二一级放大输出杆206将位移传递给第二一级输出端铰链207,第二一级输出端铰链207将位移传递至第二二级放大输出杆210,第二二级放大输出杆210发生偏转,右端向上移动;
第一二级放大固定杆108固定不动,第一二级放大固定杆108通过第一二级放大固定端铰链109对第一二级放大输出杆110的端部起到拉的作用,第一一级放大输出杆106通过第一二级输入端铰链107对第一二级放大输出杆110顶起,第一二级放大输出杆110发生偏转,左端向上移动;第二二级放大固定杆208固定不动,第二二级放大固定杆208通过第二二级放大固定端铰链209对第二二级放大输出杆210的端部起到拉的作用,第二一级放大输出杆206通过第二一级输出端铰链207对第二二级放大输出杆210顶起,第二二级放大输出杆210发生偏转,右端向上移动。
第一二级输入端铰链107、第一二级放大固定端铰链109左侧弧口变大、右侧弧口变小,从而使第一二级放大输出杆110的左端向上移动;第二一级输出端铰链207、第二二级放大固定端铰链209左侧弧口变小、右侧弧口变大,第二二级放大输出杆210的右端向上移动。
步骤4:第一二级放大输出杆110将位移传递给第一二级输出端铰链111,带动第一二级输出端铰链111向上(不是直上直下的)移动,第一二级输出端铰链111带动第一输出端112向上移动;第二二级放大输出杆210将位移传递给第二二级输出端铰链211,带动第二二级输出端铰链211向上移动,第二二级输出端铰链211带动第二输出端212向上移动。
第一二级输出端铰链111左侧弧口变小、右侧弧口变大,第二二级输出端铰链211的左侧弧口变大、右侧弧口变小。
第一一级放大固定杆104、第二二级放大固定杆208,第一二级放大固定杆108和第二一级放大固定杆204固定连接,以及第一输出端112、第二输出端212固定连接,在力的作用下,连接后的第一输出端112、第二输出端212输出的位移方向为轴向向上,消除了第一一级放大输出杆106与第二一级放大输出杆206,第一输出端112、第二输出端212的横向位移,避免产生剪切力,有效提高了轴向输出精度。
如图7所示,是本发明中非对称三级放大结构的结构示意图。
非对称三级放大结构包括:三个相串接的非对称放大单元1,三个非对称放大单元1分别为第一级放大单元、第二级放大单元第三级放大单元;第一级放大单元的输入端铰链13连接输入端2,输入端2连接有输入杆5;第二级放大单元通过输入端铰链13连接第一级放大单元的放大输出杆11的顶部;第三级放大单元通过输入端铰链13连接第二级放大单元的放大输出杆11的顶部,第三级放大单元的放大固定杆12与第一级放大单元的放大固定杆12相连接;三个非对称放大单元1的放大固定杆12位于输入端2两侧;三级放大结构的顶部通过输出端铰链4连接输出端3,输出端3横向布置。输出端铰链4采用柔性铰链。
可以通过调节输入端铰链13在放大输出杆11的位置来调节放大倍数。
如图8所示,是本发明中是本发明中三级微位移放大机构的正面结构示意图;如图9所示,是本发明中是本发明中三级微位移放大机构的立体结构示意图。
三级微位移放大机构包括:两个非对称三级放大结构,两个非对称三级放大结构的位置相反并重叠布置,两个非对称三级放大结构重叠后,两个相接触的输入端2相连接,两个相接触的输入杆5相连接,两个相接触的放大固定杆12相连接,两个相接触的输出端3相连接。三级微位移放大机构其它非连接部分可自由活动。输入杆5能够方便引入微位移。
两个非对称三级放大结构位置相反,即一个非对称三级放大结构水平翻转180°后为 另一个非对称三级放大结构。
三级微位移放大机构的放大方法,具体步骤包括:
第一级放大单元的输入杆5连接磁致伸缩驱动器的位移输出端,放大固定杆12固定连接在磁致伸缩驱动器的内部;
磁致伸缩驱动器输入的微位移经输入杆5传递至输入端2,输入端2将位移传递至第一级放大单元的输入端铰链13,第一级放大单元的输入端铰链13将位移传递至第一级放大单元的放大输出杆11;两个第一级放大单元的放大输出杆11同时发生偏转,端部向上移动;
第一级放大单元的放大输出杆11将放大后的位移传递给两个第二级放大单元的输入端铰链13,第二级放大单元的输入端铰链13将位移传递至第二级放大单元的放大输出杆11,第二级放大单元的放大输出杆11发生偏转,端部向上移动;
第二级放大单元的放大输出杆11将放大后位移传递给两个第三级放大单元的输入端铰链13,第三级放大单元的输入端铰链13将位移传递至第三级放大单元的放大输出杆11,第三级放大单元的放大输出杆11发生偏转,端部向上移动;
两个第三级放大单元的放大输出杆11将放大后位移传递给输出端铰链4,输出端铰链4带动输出端3向上移动,实现磁致伸缩驱动器的微位移的放大输出。
第一级放大单元的放大固定杆12固定不动,通过第一级放大单元的放大固定端铰链14对第一级放大单元的放大输出杆11的端部起到拉的作用,输入端2通过第一级放大单元的输入端铰链13对第一级放大单元的放大输出杆11顶起,第一级放大单元的放大输出杆11发生偏转;第二级放大单元的放大固定杆12固定不动,第二级放大单元的放大固定杆12通过第二级放大单元的放大固定端铰链14对第二级放大单元的放大输出杆11的端部起到拉的作用;第一级放大单元的放大输出杆11通过第二级放大单元的输出端铰链13对第二级放大单元的放大输出杆11顶起,第二级放大单元的放大输出杆11发生偏转,端部向上移动;第三级放大单元的放大固定杆12通过第三级放大单元的放大固定端铰链14对第三级放大单元的放大输出杆11的端部起到拉的作用,第二级放大单元的放大输出杆11通过第三级放大单元的输出端铰链13对第三级放大单元的放大输出杆11顶起,第三级放大单元的放大输出杆11发生偏转,端部向上移动。
通过调节第一级放大单元的输入端铰链13、第二级放大单元的输入端铰链13、第三级放大单元的输入端铰链13与放大输出杆11的连接位置来改变放大倍数。
如图10所示,是本发明中第一非对称三级放大结构300的结构示意图。
本发明优选实施例二包括:第一非对称三级放大结构300和第二非对称三级放大结构400。
第一非对称三级放大机构300采用三级放大,其结构包括:第一输入杆301、第一输入端302、第一一级输入端铰链303、第一一级放大固定杆304、第一一级放大固定端铰链305、第一一级放大输出杆306;第一二级输入端铰链307、第一二级放大固定杆308、第一二级放大固定端铰链309、第一二级放大输出杆310、第一三级输入端铰链311、第一三级放大固定杆312、第一三级放大固定端铰链313、第一三级放大输出杆314、第一输出端铰链315、第一输出端316。
第一一级输入端铰链303、第一一级放大固定端铰链305、第一二级输入端铰链307、第一二级放大固定端铰链309、第一三级输入端铰链311、第一三级放大固定端铰链313、第一输出端铰链315采用柔性铰链。
第一输入端302的顶部通过第一一级输入端铰链303连接在第一一级放大输出杆306的底部,第一一级放大固定杆304的顶部通过第一一级放大固定端铰链305连接第一一级放大输出杆306的底部;第一一级放大输出杆306横向布置,第一一级放大固定杆304 位于第一输入端302的左侧;第一输入端铰链303、第一一级放大固定端铰链305位于第一一级放大输出杆306的左侧;第一二级放大固定杆308的顶部通过第一二级放大固定端铰链309连接在第一二级放大输出杆310的底部,第一一级放大输出杆306的顶部通过第一二级输入端铰链307连接在第一二级放大输出杆310的底部;第一二级放大输出杆310横向布置,第一二级放大固定端铰链309位于第一二级输入端铰链307的右侧,第一二级输入端铰链307位于第一一级放大输出杆306的右侧;第一二级放大输出杆310的顶部通过第一三级输入端铰链311连接在第一三级放大输出杆314的底部,第一三级放大固定杆312连接第一三级放大固定端铰链313,第一三级放大固定端铰链313连接在第一三级放大输出杆314的底部,第一三级放大固定端铰链313位于第一三级输入端铰链311的左侧;第一输出端铰链315连接在第一三级放大输出杆314的顶部,并位于右侧,第一输出端铰链315连接在第一输出端316的底部,第一输出端316横向布置。
如图11所示,是本发明中第二非对称三级放大结构400的结构示意图。
第二非对称三级放大结构400采用三级放大,其结构包括:第二输入杆401、第二输入端402、第二一级输入端铰链403、第二一级放大固定杆404、第二一级放大固定端铰链405、第二一级放大输出杆406;第二二级输入端铰链407、第二二级放大固定杆408、第二二级放大固定端铰链409、第二二级放大输出杆410、第二三级输入端铰链411、第二三级放大固定杆412、第二三级放大固定端铰链413、第二三级放大输出杆414、第二输出端铰链415、第二输出端416。
第二一级输入端铰链403、第二一级放大固定端铰链405、第二二级输入端铰链407、第二二级放大固定端铰链409、第二三级输入端铰链411、第二三级放大固定端铰链413、第二输出端铰链415采用柔性铰链。
第二输入端402的顶部通过第二一级输入端铰链403连接在第二一级放大输出杆406的底部,第二一级放大固定杆404的顶部通过第二一级放大固定端铰链405连接第二一级放大输出杆406的底部;第二一级放大输出杆406横向布置,第二一级放大固定杆404位于第二输入端402的右侧;第二一级输入端铰链403、第二一级放大固定端铰链405位于第二一级放大输出杆406的右侧;第二二级放大固定杆408的顶部通过第二二级放大固定端铰链409连接在第二二级放大输出杆410的底部,第二一级放大输出杆406的顶部通过第二二级输入端铰链407连接在第二二级放大输出杆410的底部;第二二级放大输出杆410横向布置,第二二级放大固定端铰链409位于第二二级输入端铰链407的左侧,第二二级输入端铰链407位于第二一级放大输出杆406的左侧;第二三级输入端铰链411连接在第二二级放大输出杆410的顶部右侧;第二三级放大输出杆414的底部连接第二三级输入端铰链411,第二三级放大固定端铰链413连接在第二三级放大输出杆414的底部,第二三级放大固定端铰链413位于第二三级输入端铰链411的右端;第二三级放大固定端铰链413连接第二三级放大固定杆412,第二三级放大固定杆412连接第二一级放大固定杆404;第二输出端铰链415连接在第二三级放大输出杆414的顶部右侧,第二输出端416的底部连接第二输出端铰链415,第二输出端416横向布置。
第一非对称三级放大机构300和第二非对称三级放大机构400中,第一输入杆301、第二输入杆401固定连接,第一输入端302和第二输入端402固定连接,第一输出端316和第二输出端416固定连接;第一一级放大固定杆304、第一三级放大固定杆312、第二二级放大固定杆408固定连接;第一二级放大固定杆308、第二一级放大固定杆404、第二三级放大固定杆412固定连接。
三级微位移放大机构的放大方法,步骤包括:
步骤1:第一输入杆301、第二输入杆401连接磁致伸缩驱动器的位移输出端,第一一级放大固定杆304、第一三级放大固定杆312、第二二级放大固定杆408固定连接、第 一二级放大固定杆308、第二一级放大固定杆404、第二三级放大固定杆412固定连接,连接在磁致伸缩驱动器的内部;第一输入杆301将磁致伸缩驱动器输入的微位移传递至第一输入端302,同时,第二输入杆401将磁致伸缩驱动器输入的微位移传递至第二输入端402;
步骤2:第一输入端302将位移传递至第一一级输入端铰链303,第一一级输入端铰链303将位移传递至第一一级放大输出杆306;同时,第二输入端402将位移传递至第二一级输入端铰链403,第二一级输入端铰链403将位移传递至第二一级放大输出杆406;第一一级放大输出杆306发生偏转,右端向上移动,第二一级放大输出杆406发生偏转,左端向上移动;
第一一级放大固定杆304、第二一级放大固定杆404的位置固定,第一一级放大固定杆304和第二一级放大固定杆404固定不动,利用杠杆原理,第一一级放大固定杆304通过第一一级放大固定端铰链305对第一一级放大输出杆306的端部起到拉的作用,第一输入端302通过第一一级输入端铰链303对第一一级放大输出杆306顶起,第一一级放大输出杆306发生偏转,右端向上移动;第二一级放大固定杆404通过第二一级放大固定端铰链405对第二一级放大输出杆406的右端起到拉的作用,第二输入端402通过第二一级输入端铰链403对第二一级放大输出杆406的左端顶起,第二一级放大输出杆406发生偏转,左端向上移动。
第一一级放大固定端铰链305、第一输入端铰链303的左侧弧口变小,右侧弧口变大,第二一级放大固定端铰链405、第二输入端铰链403的左侧弧口变大、右侧弧口变小。
步骤3:第一一级放大输出杆306将放大后位移传递给第一二级输入端铰链307,第一二级输入端铰链307将位移传递至第一二级放大输出杆310,第一二级放大输出杆310发生偏转,左端向上移动;第二一级放大输出杆406将位移传递给第二二级输入端铰链407,第二二级输入端铰链407将位移传递至第二二级放大输出杆410,第二二级放大输出杆410发生偏转,右端向上移动;
第一二级放大固定杆308固定不动,第一二级放大固定杆308通过第一二级放大固定端铰链309对第一二级放大输出杆310的端部起到拉的作用,第一一级放大输出杆306通过第一二级输入端铰链307对第一二级放大输出杆310顶起,第一二级放大输出杆310发生偏转,左端向上移动;第二二级放大固定杆408固定不动,第二二级放大固定杆408通过第二二级放大固定端铰链409对第二二级放大输出杆410的端部起到拉的作用,第二一级放大输出杆406通过第二二级输入端铰链407对第二二级放大输出杆410顶起,第二二级放大输出杆410发生偏转,右端向上移动。
第一二级输入端铰链307、第一二级放大固定端铰链309左侧弧口变大、右侧弧口变小,从而使第一二级放大输出杆310的左端向上移动;第二二级输入端铰链407、第二二级放大固定端铰链409左侧弧口变小、右侧弧口变大,第二二级放大输出杆410的右端向上移动。
步骤4:第一二级放大输出杆310将放大后位移传递给第一三级输入端铰链311,第一三级输入端铰链311将放大后位移传递给第一三级放大输出杆314,第一三级放大输出杆314将位移传递给第一输出端铰链315;同时,第二二级放大输出杆410将位移传递给第二三级输入端铰链411,第二三级输入端铰链411将放大后位移传递给第二三级放大输出杆414,第二三级放大输出杆414将位移传递给第二输出端铰链415;
第一三级输入端铰链311、第一三级放大固定端铰链313左侧弧口变小、右侧弧口变大,第二三级输入端铰链411、第二三级放大固定端铰链413的左侧弧口变大、右侧弧口变小。
第一一级放大固定杆304、第一三级放大固定杆312、第二二级放大固定杆408固定 连接;第一二级放大固定杆308、第二一级放大固定杆404、第二三级放大固定杆412固定连接,在力的作用下,连接后的第一输出端316、第二输出端416输出的位移方向为轴向向上,消除了(第一一级放大输出杆306与第二一级放大输出杆406,第一二级放大输出杆310与第二二级放大输出杆410,第一三级放大输出杆314、第二三级放大输出杆414、第一输出端316、第二输出端416)横向位移,避免产生剪切力,有效提高了轴向输出精度。
步骤5:第一输出端铰链315将位移传递给第一输出端316,第一输出端316向上移动;第二输出端铰链415将位移传递给第二输出端416,第二输出端416向上移动。
如图12所示,是本发明中棒材提供轴向磁场的带有二级微位移放大机构的新型促动器的结构示意图。
棒材提供轴向磁场的带有微位移放大机构的新型促动器,包括:不导磁外壳501、导磁框架502、励磁线圈503、磁致伸缩棒与永磁导磁结合体的第一组合体504、二级微位移放大机构、输出杆505。
励磁线圈503套装在第一组合体504外部,励磁线圈503放置在导磁框架502内,导磁框架502与第一组合体504构成闭合磁路;导磁框架502设置在不导磁外壳501内,不导磁外壳501用于约束导磁框架502;第一组合体504的一端连接导磁框架502,另一端通过导磁框架502的通孔连接微位移放大机构的输入杆5,第一组合体504用于将位移传递给微位移放大机构,二级微位移放大机构的放大固定杆12连接在导磁框架502上,放大输出杆11连接输出杆505的后端,输出杆505的前端从不导磁外壳501的通孔伸出;微位移放大机构将第一组合体504的位移放大后传递给输出杆505,输出杆505将位移输出。
第一组合体504的结构包括:导磁体、永磁体、磁致伸缩棒,导磁体包括多个导磁单体,永磁体包括多个永磁单体,磁致伸缩棒包括多个磁致伸缩棒单体。导磁单体分别连接在永磁单体两侧,组成磁体单元,磁体单元连接在磁致伸缩棒单体两侧。后端的导磁单体连接导磁框架502,前端的导磁单体连接微位移放大机构。磁体单元和磁致伸缩棒在轴向方向交替间隔分布。
如图13所示,是本发明中骨架提供轴向磁场的带有二级微位移放大机构的促动器的结构示意图。
骨架提供轴向磁场的二级带有微位移放大机构的促动器,包括:H型不导磁壳体601、上端盖602、下端盖603、螺线管604、第二组合体605、二级微位移放大机构、输出杆505。
H型不导磁壳体601的两端开口,内壁设置有挡板6011,挡板6011设置有输入杆通孔。上端盖602连接在前端开口,上端盖602设置有输出杆通孔,下端盖603连接在后端开口;螺线管604安装在H型不导磁壳体601内,并位于挡板6011的后部,前端抵在挡板6011上,后端抵在下端盖603上;螺线管604设置有轴向通孔,螺线管604缠绕有线圈6043,在轴向通孔的外壁设置有永磁体,永磁体在轴向通孔处形成轴向永磁磁场;轴向通孔连通输入杆通孔,第二组合体605安装在轴向通孔内;二微微位移放大机构安装在H型不导磁壳体601内,并位于挡板6011的前部,二微位移放大机构的输入杆5伸入输入杆通孔并连接第二组合体605的端部;输出杆505一端连接在二级微位移放大机构的输出端(放大输出杆11),另一端从输出杆通孔伸出。
第二组合体605为磁致伸缩棒材与导磁体的结合体,将伸缩位移传递给二级微位移放大机构的输入杆5,二级微位移放大机构的放大固定杆12连接在挡板6011上,二级微位移放大机构将位移放大后传递给输出杆505,输出杆505将位移输出。
如图14所示,是本发明中骨架提供轴向磁场的带有三级微位移放大机构的促动器的 结构示意图。
骨架提供轴向磁场的带有三级微位移放大机构的促动器,包括:H型不导磁壳体601、上端盖602、下端盖603、螺线管604、第二组合体605、三级微位移放大机构、输出杆505。
三级微位移放大机构安装在H型不导磁壳体601内,并位于挡板6011的前部,三级位移放大机构的输入杆5伸入输入杆通孔并连接第二组合体605的端部;输出杆505一端连接在三级微位移放大机构的输出端(放大输出杆11),另一端从输出杆通孔伸出。第二组合体605将伸缩位移传递给三级微位移放大机构的输入杆5,三级微位移放大机构的放大固定杆12连接在挡板6011上,二级微位移放大机构将位移放大后传递给输出杆505,输出杆505将位移输出。
如图15所示,是本发明中螺线管604的结构示意图。
螺线管604提供轴向永磁磁场(螺线管原本提供激励磁场,本发明中的可以提供轴向永磁磁场发同时提供偏置磁场),作为磁致伸缩式制动器、驱动器等器件的激励磁场和偏置磁场。
螺线管604的结构,包括:支撑端面6041、螺线管本体6042、线圈6043;支撑端面6041设置在螺线管本体6042的两端,线圈6043设置在螺线管本体6042的外壁上。螺线管本体6042为管状结构,为了增强隔热效果,在螺线管本体6042的内壁上设置有隔热层6044。
螺线管本体6042包括:导磁体60421和永磁体60422,导磁体60421和永磁体60422为环状结构,多个导磁体60421和永磁体60422交替间隔布置,并且在接触的端面相连接。多个导磁体60421和永磁体60422同轴分布,并且内径相同。
螺线管本体6042的结构以轴向中心为中点,呈两面对称结构。线圈6043采用漆包线缠绕而成。永磁体60422至少为2组,中心点两侧对称的永磁体60422磁性能相同;中点向两端分布的永磁体60422的磁性能逐渐降低。导磁体大于3组,轴向中心点向两端分布的导磁体60421,其长度逐渐增加。支撑端面6041与导磁体60421相连接。隔热层44的材质采用非导磁材料。
如图16所示,是本发明中外壳提供轴向磁场的带有二级微位移放大机构的促动器的结构示意图。
外壳提供轴向磁场的带有二级微位移放大机构的促动器,包括:不导磁外壳701、导磁框架702、励磁线圈503、第三组合体704、二级微位移放大机构、输出杆505、不导磁上端盖707。
不导磁外壳701一端开口,不导磁上端盖707设置在开口处,不导磁上端盖707开有输出杆通孔。导磁框架702在顶端设置有输入杆通孔7023,导磁框架702形成轴向永磁磁场。
励磁线圈503包括:线圈外壳和绕组,绕组设置在线圈外壳的外部,线圈外壳开有轴向通孔。
第三组合体704包括:磁致伸缩棒7041和第一导磁体7042,两个第一导磁体7042分别连接在磁致伸缩棒7041的两端。第三组合体704安装在轴向通孔内。
二级微位移放大机构(或者三级微位移放大机构)安装在不导磁外壳701内,并位于导磁框架702的外侧,输入杆5伸入轴向通孔并连接在第一框架导磁体7042上。输出杆505一端连接输出端(放大输出杆11),另一端从输出杆通孔伸出。
带有轴向永磁磁场的导磁框架702、第三组合体704构成闭合磁路。第三组合体704将位移传递给二级微位移放大机构,二级微位移放大机构的固定端(放大固定杆12)连接在导磁框架702上,二级微位移放大机构将位移放大后传递给输出杆505,输出杆505 将位移输出。
如图17所示,是本发明中导磁框架2的结构示意图。
导磁框架702包括:第二框架导磁体7021、框架永磁体7022,多个第二框架导磁体7021、框架永磁体7022间隔布置并首尾相接,在端部的第二框架导磁体7021的顶端开有输入杆通孔7023。第二框架导磁体7021、框架永磁体7022的数量至少为2个。
本发明所用的术语是说明和示例性、而非限制性的术语。由于本发明能够以多种形式具体实施而不脱离发明的精神或实质,所以应当理解,上述实施例不限于任何前述的细节,而应在随附权利要求所限定的精神和范围内广泛地解释,因此落入权利要求或其等效范围内的全部变化和改型都应为随附权利要求所涵盖。
工业实用性
本发明使得微位移放大机构能够实现更大的位移放大倍数,同时有效地避免了传统轴对称方式中对放大效果无效部分占用的空间,在消除微位移放大机构的横向位移的同时,大幅度减小了微位移放大机构的体积,使得驱动器小型化。

Claims (16)

  1. 微位移放大机构,其特征在于,包括两组非对称放大结构,每组非对称放大结构包括多个通过柔性铰链相串接的非对称放大单元,非对称放大单元用于将微位移放大;两组非对称放大结构的位置相反并重叠布置,输入端、输出端分别通过柔性铰链连接非对称放大单元,输入端用于给非对称放大结构输入微位移,输出端用于输出放大后的位移;两个相接触的输入端固定连接,两个相接触的输出端固定连接。
  2. 如权利要求1所述的微位移放大机构,其特征在于,非对称放大结构采用非对称二级放大结构,非对称二级放大结构包括二个非对称放大单元,分别为第一级放大单元、第二级放大单元;非对称放大单元包括:放大输出杆、放大固定杆、输入端铰链、放大固定端铰链;放大输出杆横向布置,放大固定杆通过放大固定端铰链连接在放大输出杆的下部,放大固定端铰链位于放大输出杆靠近端部的位置;输入端铰链设置在放大输出杆的下部,并位于放大固定端铰链的内侧;第一级放大单元的输入端铰链连接输入端,第二级放大单元通过输入端铰链连接第一级放大单元的放大输出杆的顶部;第二级放大单元的放大输出杆的顶部通过输出端铰链连接输出端,输出端横向布置;输入端铰链、放大固定端铰链、输出端铰链采用柔性铰链;两组非对称二级放大机构的位置相反并重叠布置,两个相接触的放大固定杆相连接。
  3. 如权利要求1所述的微位移放大机构,其特征在于,非对称放大结构采用非对称三级放大结构,非对称三级放大结构包括三个非对称放大单元,分别为第一级放大单元、第二级放大单元、第三级放大单元;非对称放大单元包括:放大输出杆、放大固定杆、输入端铰链、放大固定端铰链;放大输出杆横向布置,放大固定杆通过放大固定端铰链连接在放大输出杆的下部,放大固定端铰链位于放大输出杆靠近端部的位置;输入端铰链设置在放大输出杆的下部,并位于放大固定端铰链的内侧;第一级放大单元的输入端铰链连接输入端,第二级放大单元通过输入端铰链连接第一级放大单元的放大输出杆的顶部;第三级放大单元通过输入端铰链连接第二级放大单元的放大输出杆的顶部,第三级放大单元的顶部通过输出端铰链连接输出端,输出端横向布置;输入端铰链、放大固定端铰链、输出端铰链采用柔性铰链;两组非对称三级放大机构的位置相反并重叠布置,两个相接触的放大固定杆相连接。
  4. 如权利要求3所述的微位移放大机构,其特征在于,第三级放大单元的放大固定杆与第一级放大单元的放大固定杆相连接。
  5. 如权利要求1~4任一项所述的微位移放大机构,其特征在于,输入端设置有输入杆,放大固定杆位于输入端两侧。
  6. 如权利要求2或者3所述的微位移放大机构,其特征在于,通过调节各非对称放大单元的输入端铰链在放大输出杆的位置来调节放大倍数。
  7. 如权利要求1所述的微位移放大机构,其特征在于,促动器包括:不导磁外壳、导磁框架、励磁线圈、组合体、输出杆;励磁线圈套装在第一组合体外部,励磁线圈放置在导磁框架内,导磁框架与组合体构成闭合磁路;导磁框架设置在不导磁外壳内,不导磁外壳用于约束导磁框架;第一组合体的一端连接导磁框架,另一端连接微位移放大机构的输入杆,微位移放大机构位于不导磁外壳内,组合体用于将位移传递给微位移放大机构;微位移放大机构的固定端连接在导磁框架上,输出端连接输出杆的后端,输出杆的前端从不导磁外壳的通孔伸出;微位移放大机构将第一组合体的位移放大后传递给输出杆,输出杆用于将位移输出。
  8. 如权利要求7所述的微位移放大机构,其特征在于,组合体包括:导磁体、永磁体、磁致伸缩棒,导磁体包括多个导磁单体,永磁体包括多个永磁单体,磁致伸缩棒包括多个磁致伸缩棒单体;导磁单体分别连接在永磁单体两侧,组成磁体单元,磁体单元连 接在磁致伸缩棒单体两侧;后端的导磁单体连接导磁框架,前端的导磁单体连接微位移放大机构,磁体单元和磁致伸缩棒在轴向方向交替间隔分布。
  9. 如权利要求1所述的微位移放大机构,其特征在于,促动器包括:不导磁外壳、导磁框架、励磁线圈、组合体、输出杆、不导磁上端盖;不导磁外壳一端开口,不导磁上端盖设置在开口处,不导磁上端盖开有输出杆通孔;导磁框架在顶端设置有输入杆通孔,导磁框架形成轴向永磁磁场;励磁线圈包括线圈外壳和绕组,绕组设置在线圈外壳的外部,线圈外壳开有轴向通孔;组合体包括:磁致伸缩棒和导磁体,两个导磁体分别连接在磁致伸缩棒的两端,组合体安装在轴向通孔内;微位移放大机构安装在不导磁外壳内,并位于导磁框架的外侧,输入杆伸入轴向通孔并连接在导磁体上;输出杆一端连接输出端,另一端从输出杆通孔伸出。
  10. 如权利要求1所述的微位移放大机构,其特征在于,促动器包括:H型不导磁壳体、上端盖、下端盖、螺线管、组合体、输出杆;H型不导磁壳体两端开口,内壁设置有挡板,挡板设置有输入杆通孔;上端盖连接在前端开口,上端盖设置有输出杆通孔,下端盖连接在后端开口;螺线管安装在H型不导磁壳体内,并位于挡板的后部,前端抵在挡板上,后端抵在下端盖上;螺线管设置有轴向通孔,螺线管设置有线圈,在轴向通孔的外壁设置有永磁体;轴向通孔连通输入杆通孔,组合体安装在轴向通孔内;微位移放大机构安装在H型不导磁壳体内,并位于挡板的前部,微位移放大机构的位移输入杆伸入输入杆通孔并连接组合体的端部;输出杆一端连接在二级微位移放大机构的输出端,另一端从输出杆通孔伸出。
  11. 如权利要求10所述的微位移放大机构,其特征在于,螺线管包括:支撑端面、螺线管本体、线圈;支撑端面设置在螺线管本体的两端,线圈设置在螺线管本体的外壁上;螺线管本体包括:导磁体和永磁体,导磁体和永磁体为环状结构,多个导磁体和永磁体交替间隔布置,并且在接触的端面相连接。
  12. 如权利要求10所述的微位移放大机构,其特征在于,轴向通孔设置有隔热层,螺线管本体为管状结构,永磁体至少为2组,导磁体至少为3组。
  13. 如权利要求7~12任一项所述的微位移放大机构,其特征在于,非对称放大结构采用非对称二级放大结构或者非对称三级放大结构。
  14. 微位移放大机构的放大方法,包括:
    微位移放大机构包括两组非对称放大结构,每组非对称放大结构包括多个通过柔性铰链相串接的非对称放大单元;两组非对称放大结构的位置相反并重叠布置,输入端、输出端分别通过柔性铰链连接非对称放大单元;两个相接触的输入端固定连接,两个相接触的输出端固定连接;输入端连接磁致伸缩驱动器的位移输出端,放大固定杆分别位于输入端两侧并连接在磁致伸缩驱动器的内部;
    磁致伸缩驱动器输入的微位移传递至输入端,输入端将位微移传递至第一级非对称放大单元的输入端一侧的柔性铰链;每一级非对称放大单元的的放大固定杆固定不动,放大固定杆通过与放大输出杆相连接的柔性铰链对放大输出杆的端部起到拉的作用,与输入端和放大输出杆相连接的柔性铰链顶起放大输出杆,放大输出杆的端部向上移动,相重叠的非对称放大单元的放大输出杆同时发生偏转,完成位移放大;
    放大后的微位移传递给下一级非对称放大单元,或者放大后的微位移通过输出端输出。
  15. 如权利要求14所述的微位移放大机构的放大方法,其特征在于,非对称放大结构选用非对称二级放大结构,非对称二级放大结构包括二个非对称放大单元,分别为第一级放大单元、第二级放大单元;第一级放大单元的放大固定杆固定不动,通过第一级放大单元的放大固定端铰链对第一级放大单元的放大输出杆的端部起到拉的作用;第二级放大 单元的放大固定杆固定不动,通过第二级放大单元的放大固定端铰链对第二级放大单元的放大输出杆的端部起到拉的作用;输入端通过第一级放大单元的输入端铰链对第一级放大单元的放大输出杆顶起;第一级放大单元的放大输出杆通过第二级放大单元的输入端铰链对第二级放大单元的的放大输出杆顶起;放大固定端铰链、输入端铰链采用柔性铰链。
  16. 如权利要求14所述的微位移放大机构的放大方法,其特征在于,非对称放大结构选用非对称三级放大结构,非对称三级放大结构包括三个非对称放大单元,分别为第一级放大单元、第二级放大单元、第三级放大单元;第一级放大单元的放大固定杆固定不动,通过第一级放大单元的放大固定端铰链对第一级放大单元的放大输出杆的端部起到拉的作用;第二级放大单元的放大固定杆固定不动,通过第二级放大单元的放大固定端铰链对第二级放大单元的放大输出杆的端部起到拉的作用;第三级放大单元的放大固定杆固定不动,通过第三级放大单元的放大固定端铰链对第三级放大单元的放大输出杆的端部起到拉的作用;输入端通过第一级放大单元的输入端铰链对第一级放大单元的放大输出杆顶起;第一级放大单元的放大输出杆通过第二级放大单元的输入端铰链对第二级放大单元的的放大输出杆顶起;第二级放大单元的放大输出杆通过第三级放大单元的输入端铰链对第三级放大单元的的放大输出杆顶起;放大固定端铰链、输入端铰链采用柔性铰链。
PCT/CN2020/076120 2019-08-05 2020-02-21 微位移放大机构及其放大方法 WO2021022803A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021505987A JP7090234B2 (ja) 2019-08-05 2020-02-21 マイクロ変位拡大機構及びその拡大方法
US17/159,429 US11616456B2 (en) 2019-08-05 2021-01-27 Micro-displacement amplifying apparatus and amplification method thereof

Applications Claiming Priority (16)

Application Number Priority Date Filing Date Title
CN201910715678.0A CN110504862B (zh) 2019-08-05 2019-08-05 骨架提供轴向磁场的带有二级微位移放大机构的促动器
CN201910715678.0 2019-08-05
CN201910715691.6 2019-08-05
CN201910715676.1A CN110504863B (zh) 2019-08-05 2019-08-05 骨架提供轴向磁场的带有三级微位移放大机构的促动器
CN201910715681.2A CN110445414B (zh) 2019-08-05 2019-08-05 棒材提供轴向磁场的带有三级放大机构的促动器
CN201910715674.2 2019-08-05
CN201910715679.5A CN110445413B (zh) 2019-08-05 2019-08-05 外壳提供轴向磁场的带有三级微位移放大机构的促动器
CN201910715687.X 2019-08-05
CN201910715687.XA CN110492782B (zh) 2019-08-05 2019-08-05 棒材提供轴向磁场的带有二级放大机构的促动器
CN201910715681.2 2019-08-05
CN201910715691.6A CN110492783B (zh) 2019-08-05 2019-08-05 外壳提供轴向磁场的带有二级微位移放大机构的促动器
CN201910715679.5 2019-08-05
CN201910715676.1 2019-08-05
CN201910715674.2A CN110492781B (zh) 2019-08-05 2019-08-05 三级微位移放大机构及其放大方法
CN201910715677.6A CN110504861B (zh) 2019-08-05 2019-08-05 二级微位移放大机构及其放大方法
CN201910715677.6 2019-08-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/159,429 Continuation US11616456B2 (en) 2019-08-05 2021-01-27 Micro-displacement amplifying apparatus and amplification method thereof

Publications (1)

Publication Number Publication Date
WO2021022803A1 true WO2021022803A1 (zh) 2021-02-11

Family

ID=74502652

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/076120 WO2021022803A1 (zh) 2019-08-05 2020-02-21 微位移放大机构及其放大方法

Country Status (3)

Country Link
US (1) US11616456B2 (zh)
JP (1) JP7090234B2 (zh)
WO (1) WO2021022803A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114198481A (zh) * 2021-12-16 2022-03-18 北京航空航天大学 一种基于柔性铰链的并联两自由度精密运动执行机构
CN114421806A (zh) * 2022-01-09 2022-04-29 西北工业大学 一种基于压电叠堆的精密二维稳像装置
CN117555106A (zh) * 2024-01-11 2024-02-13 中国科学院长春光学精密机械与物理研究所 大行程高精度的微位移促动装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113659867A (zh) * 2021-08-17 2021-11-16 中国民航大学 一种含三级位移放大机构的探针微进给平台及工作方法
CN113726217B (zh) * 2021-09-07 2024-04-19 河南理工大学 一种二维大行程高负载解耦偏摆装置
CN117260646B (zh) * 2023-11-20 2024-01-30 上海隐冠半导体技术有限公司 一种调平定位装置

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6346710B1 (en) * 1998-08-31 2002-02-12 Olympus Optical Co., Ltd. Stage apparatus including displacement amplifying mechanism
CN201153129Y (zh) * 2008-01-04 2008-11-19 华南农业大学 微位移放大装置
CN109909996A (zh) * 2019-04-15 2019-06-21 华侨大学 一种层叠式复合材料的柔性铰链多级位移放大结构
CN110445414A (zh) * 2019-08-05 2019-11-12 包头稀土研究院 棒材提供轴向磁场的带有三级放大机构的新型促动器
CN110445413A (zh) * 2019-08-05 2019-11-12 包头稀土研究院 外壳提供轴向磁场的带有三级微位移放大机构的促动器
CN110492782A (zh) * 2019-08-05 2019-11-22 包头稀土研究院 棒材提供轴向磁场的带有二级放大机构的新型促动器
CN110492781A (zh) * 2019-08-05 2019-11-22 包头稀土研究院 三级微位移放大机构及其放大方法
CN110492783A (zh) * 2019-08-05 2019-11-22 包头稀土研究院 外壳提供轴向磁场的带有二级微位移放大机构的促动器
CN110504862A (zh) * 2019-08-05 2019-11-26 包头稀土研究院 骨架提供轴向磁场的带有二级微位移放大机构的促动器
CN110504863A (zh) * 2019-08-05 2019-11-26 包头稀土研究院 骨架提供轴向磁场的带有三级微位移放大机构的促动器
CN110504861A (zh) * 2019-08-05 2019-11-26 包头稀土研究院 二级微位移放大机构及其放大方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6237835A (ja) * 1985-08-09 1987-02-18 株式会社日本自動車部品総合研究所 機械的増幅機構
JPH01250017A (ja) * 1988-03-30 1989-10-05 Toshiba Corp 変位拡大装置
JPH04218981A (ja) * 1990-06-21 1992-08-10 Fuji Electric Co Ltd 圧電アクチュエータの変位拡大機構
JP2500128B2 (ja) * 1991-09-27 1996-05-29 日立金属株式会社 微小伸長装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6346710B1 (en) * 1998-08-31 2002-02-12 Olympus Optical Co., Ltd. Stage apparatus including displacement amplifying mechanism
CN201153129Y (zh) * 2008-01-04 2008-11-19 华南农业大学 微位移放大装置
CN109909996A (zh) * 2019-04-15 2019-06-21 华侨大学 一种层叠式复合材料的柔性铰链多级位移放大结构
CN110445414A (zh) * 2019-08-05 2019-11-12 包头稀土研究院 棒材提供轴向磁场的带有三级放大机构的新型促动器
CN110445413A (zh) * 2019-08-05 2019-11-12 包头稀土研究院 外壳提供轴向磁场的带有三级微位移放大机构的促动器
CN110492782A (zh) * 2019-08-05 2019-11-22 包头稀土研究院 棒材提供轴向磁场的带有二级放大机构的新型促动器
CN110492781A (zh) * 2019-08-05 2019-11-22 包头稀土研究院 三级微位移放大机构及其放大方法
CN110492783A (zh) * 2019-08-05 2019-11-22 包头稀土研究院 外壳提供轴向磁场的带有二级微位移放大机构的促动器
CN110504862A (zh) * 2019-08-05 2019-11-26 包头稀土研究院 骨架提供轴向磁场的带有二级微位移放大机构的促动器
CN110504863A (zh) * 2019-08-05 2019-11-26 包头稀土研究院 骨架提供轴向磁场的带有三级微位移放大机构的促动器
CN110504861A (zh) * 2019-08-05 2019-11-26 包头稀土研究院 二级微位移放大机构及其放大方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114198481A (zh) * 2021-12-16 2022-03-18 北京航空航天大学 一种基于柔性铰链的并联两自由度精密运动执行机构
CN114198481B (zh) * 2021-12-16 2023-11-10 北京航空航天大学 一种基于柔性铰链的并联两自由度精密运动执行机构
CN114421806A (zh) * 2022-01-09 2022-04-29 西北工业大学 一种基于压电叠堆的精密二维稳像装置
CN114421806B (zh) * 2022-01-09 2024-03-08 西北工业大学 一种基于压电叠堆的精密二维稳像装置
CN117555106A (zh) * 2024-01-11 2024-02-13 中国科学院长春光学精密机械与物理研究所 大行程高精度的微位移促动装置
CN117555106B (zh) * 2024-01-11 2024-04-02 中国科学院长春光学精密机械与物理研究所 大行程高精度的微位移促动装置

Also Published As

Publication number Publication date
US20210152103A1 (en) 2021-05-20
JP2022502986A (ja) 2022-01-11
US11616456B2 (en) 2023-03-28
JP7090234B2 (ja) 2022-06-24

Similar Documents

Publication Publication Date Title
WO2021022803A1 (zh) 微位移放大机构及其放大方法
CN201153129Y (zh) 微位移放大装置
JP3184254B2 (ja) 機械的撓み素子
CN110492781B (zh) 三级微位移放大机构及其放大方法
CN106921309A (zh) 一种基于菱形环和杠杆原理的平面三级放大机构及方法
CN110492782B (zh) 棒材提供轴向磁场的带有二级放大机构的促动器
CN203339985U (zh) 新型尺蠖式仿生爬行压电精密驱动平台
CN109650327B (zh) 一种平板式三维大行程纳米操作平台
CN210807109U (zh) 基于柔性铰链的二级微位移放大机构
CN205376486U (zh) 一种实现高精度旋转运动的微位移放大装置
CN109079766A (zh) 一种基于柔性放大机构的三自由度运动平台
CN110504863B (zh) 骨架提供轴向磁场的带有三级微位移放大机构的促动器
CN110504861B (zh) 二级微位移放大机构及其放大方法
CN210839389U (zh) 基于柔性铰链的三级微位移放大机构
CN110504862B (zh) 骨架提供轴向磁场的带有二级微位移放大机构的促动器
CN110445414B (zh) 棒材提供轴向磁场的带有三级放大机构的促动器
CN109654333A (zh) 一种空间立体式三维大行程纳米操作平台
CN110445413B (zh) 外壳提供轴向磁场的带有三级微位移放大机构的促动器
CN110492783B (zh) 外壳提供轴向磁场的带有二级微位移放大机构的促动器
Su et al. A three-dimensional piezoelectric nanopositioner using a sandwich transducer
CN2586290Y (zh) 垂直方向微位移驱动装置
CN210867537U (zh) 外壳提供轴向磁场的带有三级微位移放大机构的促动器
CN109079750B (zh) 一种面向单向输入力的全柔顺正交位移放大机构
CN210898977U (zh) 外壳提供轴向磁场的带有二级微位移放大机构的促动器
CN109889088B (zh) 基于全压电陶瓷驱动的线性驱动装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021505987

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20849805

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20849805

Country of ref document: EP

Kind code of ref document: A1