WO2021022746A1 - 点对多点通信装置和系统 - Google Patents

点对多点通信装置和系统 Download PDF

Info

Publication number
WO2021022746A1
WO2021022746A1 PCT/CN2019/124671 CN2019124671W WO2021022746A1 WO 2021022746 A1 WO2021022746 A1 WO 2021022746A1 CN 2019124671 W CN2019124671 W CN 2019124671W WO 2021022746 A1 WO2021022746 A1 WO 2021022746A1
Authority
WO
WIPO (PCT)
Prior art keywords
air interface
module
unit
service
flow
Prior art date
Application number
PCT/CN2019/124671
Other languages
English (en)
French (fr)
Inventor
李俊
龚贺
帅福利
Original Assignee
京信通信系统(中国)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京信通信系统(中国)有限公司 filed Critical 京信通信系统(中国)有限公司
Publication of WO2021022746A1 publication Critical patent/WO2021022746A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0205Traffic management, e.g. flow control or congestion control at the air interface
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0268Traffic management, e.g. flow control or congestion control using specific QoS parameters for wireless networks, e.g. QoS class identifier [QCI] or guaranteed bit rate [GBR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria

Definitions

  • This application relates to the field of microwave communication technology, and in particular to a point-to-multipoint communication device and system.
  • Microwave communication technology can be divided into point-to-point networking communication and point-to-multipoint networking communication. Due to the flexible and convenient use of microwave communication, large bandwidth, high speed, and small transmission delay, microwave transmission is widely used in various application scenarios. For example: 4G/5G network backhaul, video surveillance backhaul, broadband access, enterprise private line, operator backbone network erection, rural network backhaul and other scenarios.
  • the entire microwave communication system is a distributed radio system, usually composed of a communication network composed of a central station (near-end machine) and terminal station (remote machine), which can be realized Transmit information from one point to multiple points in space.
  • the near-end unit forms a circular wireless area covering a 360° direction, and the remote unit only needs to set up a small directional antenna facing the direction of the near-end unit to establish a communication line.
  • Each remote machine can be assigned a dozen or dozens of business users, and can be extended to users hundreds of kilometers away through a relay station when necessary. In this way, the wireless frequency is effectively used and the equipment utilization rate is high, and the monitoring system of the near-end machine can efficiently monitor the status and equipment status of each business user's line and perform maintenance for the user.
  • an embodiment of the present application provides a point-to-multipoint communication device, which includes: a complex flow management module, an air interface scheduling module, a physical layer module, and a radio frequency processing module;
  • the complex flow management module is used to manage the QoS attribute data of multiple remote machine services; the management includes dividing different air interface service flows for the service data of the remote machine according to different QoS requirements;
  • the air interface scheduling module is used to determine the data volume of each air interface service flow according to the QoS requirements of each air interface service flow divided by the complex flow management module, and send the service data corresponding to each data volume to the physical layer module;
  • the physical layer module is used to receive the service data sent by the air interface scheduling module, and send the service data to the radio frequency processing module after modulation and coding;
  • the radio frequency processing module is used to receive the modulated and coded service data sent by the physical layer module, and convert the modulated and coded service data into a radio frequency signal for transmission.
  • the aforementioned complex flow management module includes a complex flow classification unit, a soft switch unit, and an air interface flow management unit;
  • the complex flow classification unit is used to perform flow policy control and QoS attribute modification on service data according to user requirements, and send the controlled and modified service data to the soft switch unit;
  • the soft switch unit is used to divide the controlled and modified service data into data streams of different remote machines according to the MAC address, and send the differentiated service data to the air interface stream management unit;
  • the air interface flow management unit is used to divide the service data sent by the softswitch unit into different air interface service flows according to different QoS requirements on the air interface, and perform queue management for each air interface service flow.
  • the above-mentioned complex flow classification unit is also used to perform at least one of port marking, traffic shaping, traffic monitoring, packet filtering, redirection, and undertaking of Ethernet-side QoS attributes.
  • the above-mentioned air interface scheduling module is used to determine the transmission service data size of each air interface service flow through a preset dynamic scheduling algorithm according to the QoS requirements, air interface physical resources and channel conditions of each air interface service flow. And according to the preset physical frame format, the service data is sent to the physical layer module through the channel physical frame resource.
  • the above-mentioned complex flow classification unit is arranged in the switch chip; the soft switch unit, the air interface flow management unit and the air interface scheduling module are arranged in the central processing unit CPU; the physical layer module is arranged in the FPGA.
  • the above-mentioned complex flow classification unit is arranged in the switching chip; the soft switching unit, the air interface flow management unit, the air interface scheduling module, and the physical layer module are arranged in the FPGA.
  • the above-mentioned complex flow classification unit, soft switching unit, air interface flow management unit, air interface scheduling module, and physical layer module are all set in the FPGA.
  • the above-mentioned soft switch unit and air interface flow management unit are implemented through multiple logical queue interfaces, and the multiple logical queue interfaces, the complex flow management module, the air interface scheduling module, and the physical layer are centrally arranged in the F PGA.
  • the radio frequency processing module is also used to receive radio frequency signals, convert and process the radio frequency signals, and transmit them to the physical layer module for analysis.
  • an embodiment of the present application provides a point-to-multipoint communication system, which includes: a near-end machine and a remote machine; the near-end machine includes the point-to-multipoint communication device provided by the embodiment of the first aspect above .
  • an embodiment of the present application provides a point-to-multipoint communication system, the system includes: a near-end machine and a remote machine; the remote machine includes the point-to-multipoint communication device provided by the embodiment of the first aspect .
  • the point-to-multipoint communication device and system provided by the embodiments of the present application divide different air interface service flows according to user requirements according to the QoS attributes (such as priority) of each remote machine service, and then send data according to the different air interface service flows , So as to achieve accurate QoS attribute guarantee and management for different users and different services, more suitable for complex application scenarios and needs, and meet the needs of different users.
  • QoS attributes such as priority
  • FIG. 1 is a structural block diagram of a point-to-multipoint communication device provided by an embodiment
  • FIG. 2 is a structural block diagram of a point-to-multipoint communication device according to an embodiment
  • FIG. 3 is a schematic structural diagram of a point-to-multipoint communication device provided by an embodiment
  • FIG. 4 is a schematic diagram of the architecture of a point-to-multipoint communication device provided by an embodiment
  • FIG. 5 is a schematic diagram of a point-to-multipoint communication device architecture provided by an embodiment
  • FIG. 6 is a schematic diagram of a point-to-multipoint communication device architecture provided by an embodiment
  • FIG. 7 is a schematic diagram of a point-to-multipoint communication device architecture provided by an embodiment
  • Fig. 8 is a schematic diagram of a point-to-multipoint communication system provided by an embodiment.
  • FIG. 2 provides a point-to-multipoint communication device, which includes: a complex flow management module, an air interface scheduling module, a physical layer module, and a radio frequency processing module; a complex flow management module is used to communicate with multiple Manage the QoS attribute data of the service of the remote machine; the management includes dividing different air interface service flows for the service data of the remote machine according to different QoS requirements; the air interface scheduling module is used to divide each air interface service flow according to the complex flow management module QoS requirements of the air interface, determine the data volume of each air interface service flow, and send the service data corresponding to each data volume to the physical layer module; the physical layer module is used to receive the service data sent by the air interface scheduling module and modulate the service data After being encoded, it is sent to the radio frequency processing module; the radio frequency processing module is used to receive the modulated and coded service data sent by the physical layer module, and convert the modulated and coded service data into a radio frequency signal for transmission.
  • a complex flow management module is used to communicate with multiple Manage the
  • connection relationship between the complex flow management module, the air interface scheduling module, the physical layer module, and the radio frequency processing module is that the complex flow management module is connected to the air interface scheduling module, the air interface scheduling module is connected to the physical layer module, and the physical layer module is connected to the physical layer module.
  • the radio frequency processing module is connected, and the corresponding data flow is from the complex flow management module to the air interface scheduling module, from the air interface scheduling module to the physical layer module, and then to the radio frequency processing module.
  • the complex flow management module is used to manage the QoS attribute (such as priority) data of multiple remote machine services; the management includes dividing different air interface service flows for the remote machine service data according to different QoS requirements; examples Ground, after the complex flow management module accepts the QoS attributes of the services of each remote machine on the Ethernet side, it can divide the service data into different data flows according to different remote machines, and then based on the QoS attributes of each service data, The data continues to be classified to divide different air interface service flows, and then the divided service data is sent to the air interface scheduling module according to different air interface service flows.
  • QoS attribute such as priority
  • the air interface scheduling module is used to determine the data volume of each air interface service flow according to the QoS requirements of each air interface service flow divided by the complex flow management module, and send the service data corresponding to each data volume to the physical layer module;
  • the air interface scheduling module is used to determine the transmission service of each air interface service flow through a preset dynamic scheduling algorithm according to the QoS requirements, air interface physical resources and channel conditions of each air interface service flow According to the preset physical frame format, the service data is sent to the physical layer module through the channel physical frame resource.
  • the air interface scheduling module uses each air interface service flow as a unit, obtains the QoS requirements, air interface physical resources, and channel conditions of each air interface service flow, and calls the preset dynamic scheduling algorithm to determine the service flow of each air interface.
  • the service data to be sent is sent through the channel physical frame resource according to the preset physical frame format, that is, it is sent to the physical layer module.
  • the physical layer module is used to receive the service data sent by the air interface scheduling module, modulate and encode the service data and send it to the radio frequency processing module; specifically, after receiving the service data sent by the air interface scheduling module, the physical layer module The service data is modulated and encoded to form a physical frame (service data) and then sent to the radio frequency processing module, or if the receiving end of the physical layer module receives the physical frame sent by the radio frequency processing module, demodulate and decode the physical frame , And compose data packets for transmission to the Ethernet side.
  • service data is modulated and encoded to form a physical frame (service data) and then sent to the radio frequency processing module, or if the receiving end of the physical layer module receives the physical frame sent by the radio frequency processing module, demodulate and decode the physical frame , And compose data packets for transmission to the Ethernet side.
  • the radio frequency processing module is used to receive the modulated and coded service data sent by the physical layer module, and convert the modulated and coded service data into a radio frequency signal for transmission.
  • the radio frequency processing module includes an RF SoC (radio frequency module) and an antenna module.
  • the radio frequency module is used to receive service data (in a preset physical frame format) provided by the physical layer module for signal conversion, such as DA conversion, and then The converted data is up-converted to the radio frequency point to form a radio frequency signal and sent out through the antenna module.
  • the radio frequency processing module is also used to receive radio frequency signals, convert and process the radio frequency signals, and transmit them to the physical layer module for analysis.
  • the antenna module in the radio frequency processing module can also receive external radio frequency signals, and pass the received radio frequency signals through the radio frequency module for signal conversion, such as AD conversion, and then send the converted signals to the physical layer module to make the physical layer module
  • signal conversion such as AD conversion
  • the signal is demodulated and decoded, and the demodulated and decoded data packet is delivered to the Ethernet side.
  • the point-to-multipoint communication device provided in this embodiment divides different air interface service flows according to user requirements according to the QoS attributes (such as priority) of each remote machine service, and then transmits data according to different air interface service flows, thereby achieving Accurately guarantee and manage the QoS attributes of different users and different services, adapt to complex application scenarios and needs, and meet the needs of different users.
  • QoS attributes such as priority
  • the foregoing complex flow management module includes complex Flow classification unit, softswitch unit and air interface flow management unit; the complex flow classification unit is used to perform flow policy control and QoS attribute modification on service data according to user requirements, and send the controlled and modified service data to the softswitch unit ;
  • the soft switch unit is used to divide the controlled and modified service data into data streams of different remote machines according to the media access control address (Media Access Control Addres, MAC) address, and send the differentiated service data to the air interface
  • the air interface flow management unit is used to divide the service data sent by the softswitch unit into different air interface service flows according to different QoS requirements on the air interface, and perform queue management for each air interface service flow.
  • the complex flow classification unit is used to perform flow policy control and QoS attribute modification on the service data according to user needs, and send the controlled and modified service data to the softswitch unit; optionally, in one embodiment, the complex The flow classification unit is also used to perform at least one of port labeling, traffic shaping, traffic monitoring, message filtering, redirection, and undertaking of Ethernet side QoS attributes.
  • the functions implemented by the complex flow classification unit include port labeling, traffic shaping, traffic supervision, packet filtering, redirection, etc., where the complex flow classification unit is based on the outer virtual local area network (Virtual Local Area Network, VLAN) ID, QinQ technology [also called Stacked VLAN or Double VLAN], inner and outer VLAN ID of the message, 802.1p priority of VLAN message, 802.1p priority of the inner VLAN of QinQ message, outer VLAN ID, or based on QinQ message VLAN ID of internal and external tags, double tags of Q inQ message, destination MAC address, source MAC address, protocol type field in the Ethernet frame header, and differentiated services code point (DSCP) of IP message priority Level, IP precedence of IP packets, packet three-layer protocol type, inbound interface, outbound interface, access control list (Access Control List, ACL) rules, ACL matching sequence, etc., to achieve traffic shaping, traffic monitoring, and messages Streaming strategies such as filtering and redirection.
  • VLAN Virtual Local Area Network
  • the function of the complex flow classification unit is equivalent to a complete switch function, which can undertake or modify the QoS attributes of the Ethernet to meet the QoS requirements of users for different types of services.
  • the function of the complex flow module can be implemented in switch hardware, CPU hardware, or FPGA hardware according to actual conditions.
  • the soft switch unit is used to divide the controlled and modified service data into data streams of different remote machines according to the MAC address, and send the differentiated service data to the air interface flow management unit; specifically, the soft switch unit
  • the realization function includes the MAC switching function, that is, the service data is exchanged and distributed to different remote machines according to the MAC address; in actual applications, the soft switching unit function can be placed in the switch hardware or the central processing unit (Central Processing Unit) according to the actual situation. Unit, CPU) hardware, or Field-Prog rammable Gate Array (FPGA) hardware.
  • CPU Central Processing Unit
  • FPGA Field-Prog rammable Gate Array
  • the air interface flow management unit is used to divide the service data sent by the softswitch unit into different air interface service flows according to different QoS requirements on the air interface, and perform queue management for each air interface service flow.
  • the functions implemented by the air interface flow management unit include classification and establishment of air interface service flows, and queue management of each air interface flow.
  • the air interface management module can be divided into different air interface service flows on the air interface according to the QoS requirements of different services.
  • the point-to-multipoint communication device performs flow policy control and QoS attribute modification according to user requirements through complex flow classification, and forms data packets from the switching chip into different user terminal RT data according to MAC addresses through the switching function ,
  • the classification and establishment of air interface service flows, and the queue management of congestion avoidance and congestion management of each air interface flow, so that according to the QoS attributes (such as priority) of each remote machine service, according to user needs Divide different air interface service flows, and then send data according to different air interface service flows, so as to realize accurate guarantee and management of QoS attributes for different users and different services to meet the needs of different users.
  • this application provides several hardware architecture designs. As shown in Figure 3, this device includes 6 functional modules, a complex flow classification unit, a soft switch unit, an air interface flow management, an air interface scheduling module, a physical layer module, and a radio frequency processing module. In actual applications, the 6 modules can be based on Different hardware selections provide multiple architecture designs.
  • a first architecture is provided: the above-mentioned complex flow classification unit is arranged in a switching chip; the soft switching unit, air interface flow management and air interface scheduling modules are arranged in the central processing unit CPU; the physical layer module is arranged in the FPGA.
  • This architecture adopts the switch chip + main CPU + physical layer FPGA mode to set the above functional modules.
  • the complex flow classification unit is integrated in the switching chip, and its implementation functions include port labeling, complex flow classification, flow shaping, flow monitoring, packet filtering, redirection and other flow strategies, as well as undertaking Ethernet side QoS Attributes, and perform flow policy control and QoS attribute modification according to user needs.
  • the main CPU integrates a soft switch unit, an air interface flow management unit, and an air interface scheduling module.
  • the soft switch unit is used to implement functions including forming data packets from the switching chip into different user terminal RT data according to MAC addresses; the air interface flow management unit is used The functions implemented include the classification and establishment of air interface service flows, as well as queue management such as congestion avoidance and congestion management of each air interface flow; the air interface scheduling module is used to implement each air interface service flow as a unit, according to the air interface service flow. QoS requirements, as well as air interface physical resources and channel conditions, dynamically schedule and adapt the data to the physical frame format, and send it to the physical layer module.
  • the FPGA integrates the physical layer module, which is used to implement the physical layer related work, and receives the scheduled data content through the high-speed serial computer expansion bus standard (peripheral component interconnect express, PC IE) interface, and is encoded and modulated , Compose a data frame according to the physical frame format and send it to the radio frequency processing module.
  • PC IE peripheral component interconnect express
  • the use of a three-level data processing hardware architecture to decompose various functions into different modules can reduce processor pressure, and the hardware specifications (CPU frequency, FPGA resources, etc.) are low, which is equivalent to reducing The cost and power consumption of a single piece of hardware increase the failure repair rate and make the hardware architecture repair cost lower.
  • a second architecture is provided: in one embodiment, the above-mentioned complex flow classification unit is provided in the switch chip; the soft switch unit, air interface flow management unit, air interface scheduling module, and physical layer module are provided in the FPGA.
  • the switch chip + FPGA mode is used to set the above-mentioned functional modules.
  • the switch chip integrates a complex flow classification unit, which implements functions including port labeling, complex flow classification, flow shaping, flow monitoring, packet filtering, redirection and other flow strategies, as well as undertaking Ethernet side QoS attributes , And perform flow policy control and QoS attribute modification according to user needs.
  • the FPGA integrates a soft switch unit, an air interface flow management unit, an air interface scheduling module, and a physical layer module.
  • the function of the soft switch unit includes: the data packets from the switch chip are formed into different user terminal RTs according to the MAC address.
  • the functions used by the air interface flow management unit include the classification and establishment of air interface service flows, and queue management such as congestion avoidance and congestion management for each air interface flow; the functions used by the air interface scheduling module include,
  • the air interface service flow is a unit. According to the QoS requirements of each air interface service flow, as well as the physical resources and channel conditions of the air interface, the data is dynamically scheduled and adapted to the physical frame format and sent to the physical layer module; the physical layer module is used to realize the physical For layer-related work, the scheduled data content is received through the PCIE interface, and after encoding and modulation, the data frame is formed according to the physical frame format and sent to the radio frequency processing module.
  • a third architecture is provided: in one embodiment, the above-mentioned complex flow classification unit, soft switch unit, air interface flow management unit, air interface scheduling module, and physical layer module are all set in the FPGA.
  • a fourth architecture is provided:
  • the above-mentioned soft switch unit and air interface flow management unit are implemented through multiple logical queue interfaces, and the multiple logical queue interfaces are connected to the complex flow management module, the air interface scheduling module, and the The physical layer is centrally arranged in the FPGA.
  • the function of the softswitch unit is replaced by complex flow classification.
  • the function of the softswitch is mainly to distinguish data flows of different RTs.
  • This application uses the particularity of complex flow classification and sets different RT data is divided into different data streams to achieve the purpose of soft switching in complex stream classification.
  • the air interface flow management unit mainly involves the processing of QoS.
  • QoS Quality of Service
  • the strategy is used to achieve the same goal, that is, within the FPGA, multiple logical queue interfaces can be implemented, and the complex flow classification is used to implement multiple RTs. Classification of different QoS attribute data.
  • the architecture uses multiple logical queue interfaces to replace the soft interaction module and the air interface flow management unit, so that the point-to-multipoint communication device reduces processing modules, reduces processor pressure, and improves the operating efficiency of the entire device.
  • the point-to-multipoint communication device provided in this application provides four different hardware architectures according to different functional modules, and the four architectures have different focuses in terms of cost, power consumption, performance, and hardware capabilities. Adapt to different development needs and scene applications. Among them, the switch, CPU, FPGA and other multi-level hardware architectures involved in each architecture can achieve more reasonable data caching capabilities, alleviate data congestion and data packet loss, and make business data transmission more stable and smooth.
  • the point-to-multipoint communication device can be applied in a microwave point-to-multipoint communication system. In actual use, the device is applicable to both the near-end machine and the remote machine in the point-to-multipoint communication system.
  • a point-to-multipoint communication system which includes: a near-end machine and a remote machine;
  • the near-end machine includes the point-to-multipoint communication device provided in the foregoing embodiment.
  • the remote machine includes the point-to-multipoint communication device provided in the foregoing embodiment.
  • the device can be applied to a near-end machine or a remote machine to realize point-to-multipoint communication and guarantee the Q oS attribute of each user in the communication system.
  • the device can be used in environments such as trunk Ethernet, access network, and metropolitan area network, which is not limited in this embodiment.
  • the point-to-multipoint communication device provided by the embodiments of the present application can be installed in various scenarios, which greatly improves the convenience of the application and guarantees the diversified requirements of the application process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本申请涉及一种点对多点通信装置和系统,根据各远端机业务的QoS属性,按照用户需求划分不同空口业务流,然后根据不同空口业务流进行数据发送,从而实现精准对不同用户不同业务的QoS属性保障和管理,更适应复杂的应用场景和需求,满足不同用户的需求。

Description

点对多点通信装置和系统 技术领域
本申请涉及微波通信技术领域,特别是涉及一种点对多点通信装置和系统。
背景技术
微波通信技术可分为点对点组网通信和点对多点组网通信,由于微波通信使用方式的灵活方便、带宽大速率高、传输时延小等特性,使得微波传送广泛应用于各种应用场景中,例如:4G/5G网络回传、视频监控回传、宽带接入、企业专线、运营商骨干网架设、农网回传等场景。
在点对多点的组网通信方式中,整个微波通信系统为一种分布式的无线电系统,通常由中心站(近端机)和终端站(远端机)组成的通信网络构成,能实现空间上从一点到多点传输信息。近端机构成覆盖360°方向的圆形无线区域,而远端机一侧只要设置一个面对近端机方向的小型定向天线就可以建立起通信线路。每个远端机可以分配十几或数十个业务用户,在必要时还可通过中继站延伸至数百公里外的用户使用。这样使得无线频率得到有效利用且设备利用率较高,且近端机的监控系统能够高效地监控每个业务用户线路的状态和设备状态,为用户进行维修。
但是,在当前的点对多点通信系统中,通常针对不同远端机在划分不同的时频资源时,对每种业务的服务质量(Quality of Service,QoS)属性保障和管理并不准确。
发明内容
基于此,有必要针对上述当前的点对多点通信系统中,通常针对不同远端机在划分不同的时频资源时,对每种业务的QoS属性保障和管理并不准确的技术问题,提供一种点对多点通信装置和系统。
第一方面,本申请实施例提供一种点对多点通信装置,该装置包括:复杂流管理模块、空口调度模块、物理层模块和射频处理模块;
复杂流管理模块,用于对多个远端机业务的QoS属性数据进行管理;其中管理包 括根据不同QoS要求为远端机的业务数据划分不同的空口业务流;
空口调度模块,用于根据复杂流管理模块划分的每个空口业务流的QoS要求,确定每个空口业务流的数据量,并将各数据量对应的业务数据发送给至物理层模块;
物理层模块,用于接收空口调度模块发送的业务数据,将业务数据进行调制编码后发送至射频处理模块;
射频处理模块,用于接收物理层模块发送的调制编码后的业务数据,并将调制编码后的业务数据转换为射频信号进行发送。
在其中一个实施例中,上述复杂流管理模块包括复杂流分类单元、软交换单元和空口流管理单元;
则复杂流分类单元,用于根据用户需求对业务数据进行流策略控制和QoS属性修改,并将控制和修改后的业务数据发送至软交换单元;
软交换单元,用于按照MAC地址将控制和修改后的业务数据区分为不同远端机的数据流,并将区分后的业务数据发送至空口流管理单元;
空口流管理单元,用于在空中接口上根据不同QoS要求,将软交换单元发送的业务数据划分成不同的空口业务流,并对每个空口业务流进行队列管理。
在其中一个实施例中,上述复杂流分类单元还用于进行端口标记、流量整形、流量监管、报文过滤、重定向、承接以太网侧QoS属性中至少一种。
在其中一个实施例中,上述空口调度模块用于根据每个空口业务流的QoS要求、空口物理资源和信道状况,通过预设的动态调度算法,确定每个空口业务流的发送业务数据大小,并根据预设的物理帧格式,将业务数据通过信道物理帧资源发送给物理层模块。
在其中一个实施例中,上述复杂流分类单元设置在交换芯片中;软交换单元、空口流管理单元和空口调度模块设置在中央处理器CPU中;物理层模块设置在FPGA中。
在其中一个实施例中,上述复杂流分类单元设置在交换芯片中;软交换单元、空口流管理单元、空口调度模块、物理层模块设置在FPGA中。
在其中一个实施例中,上述复杂流分类单元、软交换单元、空口流管理单元、空口调度模块、物理层模块均设置在FPGA中。
在其中一个实施例中,上述软交换单元和空口流管理单元通过多个逻辑队列接口 实现,该多个逻辑队列接口与复杂流管理模块与空口调度模块、物理层在集中设置在F PGA中。
在其中一个实施例中,射频处理模块还用于接收射频信号,并将射频信号转换进行处理后传输至物理层模块进行解析。
第二方面,本申请实施例提供一种点对多点通信系统,该系统包括:近端机和远端机;该近端机中包括上述第一方面实施例提供的点对多点通信装置。
第三方面,本申请实施例提供一种点对多点通信系统,该系统包括:近端机和远端机;该远端机中包括上述第一方面实施例提供的点对多点通信装置。
本申请实施例提供的一种点对多点通信装置和系统,根据各远端机业务的QoS属性(如优先级),按照用户需求划分不同空口业务流,然后根据不同空口业务流进行数据发送,从而实现精准对不同用户不同业务的QoS属性保障和管理,更适应复杂的应用场景和需求,满足不同用户的需求。
附图说明
图1为一个实施例提供的一种点对多点通信装置结构框图;
图2为一个实施例提供的一种点对多点通信装置结构框图;
图3为一个实施例提供的一种点对多点通信装置结构示意图;
图4为一个实施例提供的一种点对多点通信装置架构示意图;
图5为一个实施例提供的一种点对多点通信装置架构示意图;
图6为一个实施例提供的一种点对多点通信装置架构示意图;
图7为一个实施例提供的一种点对多点通信装置架构示意图;
图8为一个实施例提供的一种点对多点通信系统示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中 的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。
本申请的说明书和权利要求书及所述附图中的术语“第一”、“第二”、“第三”和“第四”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在一个实施例中,图2提供了一种点对多点通信装置,该装置包括:复杂流管理模块、空口调度模块、物理层模块和射频处理模块;复杂流管理模块,用于对多个远端机业务的QoS属性数据进行管理;其中管理包括根据不同QoS要求为远端机的业务数据划分不同的空口业务流;空口调度模块,用于根据复杂流管理模块划分的每个空口业务流的QoS要求,确定每个空口业务流的数据量,并将各数据量对应的业务数据发送给至物理层模块;物理层模块,用于接收空口调度模块发送的业务数据,将业务数据进行调制编码后发送至射频处理模块;射频处理模块,用于接收物理层模块发送的调制编码后的业务数据,并将调制编码后的业务数据转换为射频信号进行发送。
本实施例中,复杂流管理模块、空口调度模块、物理层模块和射频处理模块之间的连接关系为复杂流管理模块与空口调度模块连接,空口调度模块与物理层模块连接,物理层模块与射频处理模块连接,相应的数据流向为复杂流管理模块到空口调度模块,从空口调度模块又到物理层模块,继而到射频处理模块。
其中,复杂流管理模块,用于对多个远端机业务的QoS属性(如优先级)数据进行管理;其中管理包括根据不同QoS要求为远端机的业务数据划分不同的空口业务流;示例地,复杂流管理模块对以太网侧的各远端机业务的QoS属性承接后,可根据不同的远端机将业务数据分为不同的数据流,然后基于各业务数据的QoS属性,对业务数 据继续进行分类,划分不同的空口业务流,然后将划分后的业务数据按照不同的空口业务流发送空口调度模块。
其中,空口调度模块,用于根据复杂流管理模块划分的每个空口业务流的QoS要求,确定每个空口业务流的数据量,并将各数据量对应的业务数据发送给至物理层模块;可选地,在一个实施例中,该空口调度模块用于根据每个空口业务流的QoS要求、空口物理资源和信道状况,通过预设的动态调度算法,确定每个空口业务流的发送业务数据大小,并根据预设的物理帧格式,将业务数据通过信道物理帧资源发送给物理层模块。具体地,空口调度模块以每个空口业务流为单位,获取每个空口业务流的QoS要求、空口物理资源以及信道状况等影响因素,调用预设的动态调度算法确定出每个空口业务流的发送数据大小,基于确定的每个空口业务流数据量的大小,将待发送业务数据根据预设的物理帧格式通过信道物理帧资源进行发送,即将其发送给物理层模块。
其中,物理层模块,用于接收空口调度模块发送的业务数据,将业务数据进行调制编码后发送至射频处理模块;具体地,物理层模块在接收到空口调度模块发送的业务数据后,对该业务数据进行调制编码后组成物理帧(业务数据)然后发送至射频处理模块,或者,若该物理层模块的接收端接收到射频处理模块发送的物理帧后,对该物理帧进行解调译码,并组成数据包以传送给以太网侧。
其中,射频处理模块,用于接收物理层模块发送的调制编码后的业务数据,并将调制编码后的业务数据转换为射频信号进行发送。具体地,该射频处理模块包括RF SoC(射频模块)及天线模块,其中,射频模块用于接收物理层模块提供的业务数据(以预设的物理帧格式)进行信号转换,例如DA转换,然后将转换后的数据上变频至发射频点,形成射频信号通过天线模块发送出去。可选地,在一个实施例中,射频处理模块还用于接收射频信号,并将射频信号转换进行处理后传输至物理层模块进行解析。具体地,射频处理模块中天线模块还可以接收外来射频信号,并将接收的射频信号经过射频模块进行信号转换,例如AD转换,然后将转换后的信号发送给物理层模块,以使物理层模块对该信号进行解调译码,并将解调译码后的数据包传递给以太网侧。
本实施例提供的一种点对多点通信装置,根据各远端机业务的QoS属性(如优先级),按照用户需求划分不同空口业务流,然后根据不同空口业务流进行数据发送,从而实现精准对不同用户不同业务的QoS属性保障和管理,更适应复杂的应用场景和需 求,满足不同用户的需求。
基于上述实施例中所提及的复杂流管理模块、空口调度模块、物理层模块和射频处理模块的功能和数据流向,在一个实施例中,如图2所示,上述复杂流管理模块包括复杂流分类单元、软交换单元和空口流管理单元;则复杂流分类单元,用于根据用户需求对业务数据进行流策略控制和QoS属性修改,并将控制和修改后的业务数据发送至软交换单元;软交换单元,用于按照媒体访问控制地址(Media Access Control Addres s,MAC)地址将控制和修改后的业务数据区分为不同远端机的数据流,并将区分后的业务数据发送至空口流管理单元;空口流管理单元,用于在空中接口上根据不同QoS要求,将软交换单元发送的业务数据划分成不同的空口业务流,并对每个空口业务流进行队列管理。
其中,复杂流分类单元用于根据用户需求对业务数据进行流策略控制和QoS属性修改,并将控制和修改后的业务数据发送至软交换单元;可选地,在一个实施例中,该复杂流分类单元还用于进行端口标记、流量整形、流量监管、报文过滤、重定向、承接以太网侧QoS属性中至少一种。具体地,该复杂流分类单元实现的功能包括端口标记、流量整形、流量监管、报文过滤、重定向等,其中,复杂流分类单元基于外层虚拟局域网(Virtual Local Area Network,VLAN)ID、QinQ技术〔也称Stacked VLAN或Double VLAN〕、报文内外层VLAN ID、VLAN报文802.1p优先级、QinQ报文内层VLAN的802.1p优先级、外层VLAN ID,或者,基于QinQ报文内外两层Tag的VLAN ID、Q inQ报文双层Tag、目的MAC地址、源MAC地址、以太网帧头中协议类型字段、IP报文的差分服务代码点(Differentiated Services Code Point,DSCP)优先级、IP报文的IP优先级、报文三层协议类型、入接口、出接口、访问控制列表(Access Cont rol List,ACL)规则、ACL匹配顺序等,实现流量整形、流量监管、报文过滤、重定向等流策略。在实际应用中,该复杂流分类单元的功能相当于一个完整的交换机功能,能够对以太网的QoS属性进行承接或者修改,以满足用户对不同类型业务的QoS需求。可选地,该复杂流模块的功能可根据实际情况,放在交换机硬件,或者CPU硬件,或者FPGA硬件中实现。
其中,软交换单元,用于按照MAC地址将控制和修改后的业务数据区分为不同远端机的数据流,并将区分后的业务数据发送至空口流管理单元;具体地,该软交换单元 实现功能包括MAC交换功能,即将业务数据按照MAC地址进行交换分发至不同的远端机;在实际应用中,该软交换单元功能可根据实际情况,放在交换机硬件,或者中央处理器(Central Processing Unit,CPU)硬件,或者现场可编程门阵列(Field-Prog rammable Gate Array,FPGA)硬件中实现。
其中,空口流管理单元,用于在空中接口上根据不同QoS要求,将软交换单元发送的业务数据划分成不同的空口业务流,并对每个空口业务流进行队列管理。具体地,该空口流管理单元实现功能包括空口业务流的分类,建立,以及每个空口流的队列管理。在实际使用中,由于需要进行空口传输,则基于此,该空口管理模块可在空中接口上根据不同业务的QoS需求,划分成不同的空口业务流。
本实施例提供的一种点对多点通信装置,通过复杂流分类根据用户需求进行流策略控制和QoS属性修改,通过交换功能将交换芯片过来的数据包按照MAC地址形成不同用户终端RT的数据,通过空口流管理功能将空口业务流的分类,建立,以及每个空口流的拥塞避免、拥塞管理等队列管理,这样,根据各远端机业务的QoS属性(如优先级),按照用户需求划分不同空口业务流,然后根据不同空口业务流进行数据发送,从而实现精准对不同用户不同业务的QoS属性保障和管理,满足不同用户的需求。
另外,需要说明的是,上述复杂流分类单元、软交换单元、空口流管理、空口调度模块、物理层模块和射频处理模块均为软件程序划分的模块,为了解决上述技术问题根据功能对其进行了划分,但在实际应用中,这些软件模块需要承载于硬件上实现,因此,基于上述实施例中提供的各功能模块,本申请提供几种硬件架构设计。如图3所示,本装置包括6个功能模块,复杂流分类单元、软交换单元、空口流管理、空口调度模块、物理层模块和射频处理模块,该6个模块在实际应用中,可以根据不同的硬件选型,提供多种架构设计。
可选地,提供第一种架构:上述复杂流分类单元设置在交换芯片中;软交换单元、空口流管理和空口调度模块设置在中央处理器CPU中;物理层模块设置在FPGA中。
本架构采用交换机芯片+主CPU+物理层FPGA方式对上述各功能模块进行设置。如图4所示,其中,交换芯片中集成复杂流分类单元,其实现功能包括端口标记、复杂流分类、流量整形、流量监管、报文过滤、重定向等流策略,以及承接以太网侧QoS属性,并根据用户需求进行流策略控制和QoS属性修改。其中,主CPU集成软交换单元、 空口流管理单元和空口调度模块,其中软交换单元用于实现功能包括将交换芯片过来的数据包按照MAC地址形成不同用户终端RT的数据;空口流管理单元用于实现的功能包括空口业务流的分类、建立,以及每个空口流的拥塞避免、拥塞管理等队列管理;空口调度模块用于实现以每个空口业务流为单位,按照每个空口业务流的QoS要求,以及空口物理资源和信道状况,对数据进行动态调度适配至物理帧格式,并发送给物理层模块。其中,FPGA中集成了物理层模块,该物理层模块用于实现物理层相关工作,经过高速串行计算机扩展总线标准(peripheral component interconnect express,PC IE)接口接收调度的数据内容,并经过编码调制,按照物理帧格式组成数据帧进行发送至射频处理模块。
在本架构中,使用3级数据处理的硬件架构,将各项功能分解到不同模块中,可以减少处理器压力,且各硬件规格(CPU主频,FPGA资源等)较低,相当于降低了单个硬件的成本和功耗,提高了故障修复率,使得硬件架构修复成本更低。
可选地,提供第二种架构:在一个实施例中,上述复杂流分类单元设置在交换芯片中;软交换单元、空口流管理单元、空口调度模块、物理层模块设置在FPGA中。
本架构中采用交换机芯片+FPGA方式对上述各功能模块进行设置。如图5所示,其中,交换芯片集成复杂流分类单元,其实现功能包括端口标记、复杂流分类、流量整形、流量监管、报文过滤、重定向等流策略,以及承接以太网侧QoS属性,并根据用户需求进行流策略控制和QoS属性修改。其中,FPGA中集成了软交换单元、空口流管理单元、空口调度模块、物理层模块,其中,软交换单元用于实现的功能包括,将交换芯片过来的数据包按照MAC地址形成不同用户终端RT的数据;空口流管理单元用于实现的功能包括,空口业务流的分类、建立,以及每个空口流的拥塞避免、拥塞管理等队列管理;空口调度模块用于实现的功能包括,以每个空口业务流为单位,按照每个空口业务流的QoS要求,以及空口物理资源和信道状况,对数据进行动态调度适配至物理帧格式,并发送给物理层模块;物理层模块用于实现物理层相关工作,经过PCIE接口接收调度的数据内容,并经过编码调制,按照物理帧格式组成数据帧进行发送至射频处理模块。
在本架构中,将部分功能进行整合(将CPU相关功能放入FPGA中),减少了硬件成本和功耗,使得整个架构集成度较高。
可选地,提供第三种架构:在一个实施例中,上述复杂流分类单元、软交换单元、 空口流管理单元、空口调度模块、物理层模块均设置在FPGA中。
本架构中仅采用FPGA方式对上述各功能模块进行设置。如图6所示,在FPGA中集中实现所有功能模块,即全部整合在一块FPGA芯片中实现,此种架构下,在流分类时可以直接按照空口流进行分类,即将复杂流分类、软交换以及空口流管理合成复杂流分类进行处理。本架构的集成度很高,且数据链路处理交互较少,处理时延最低,性能最优,整体硬件成本降低,功耗降低。
可选地,提供第四种架构:在一个实施例中,上述软交换单元和空口流管理单元通过多个逻辑队列接口实现,该多个逻辑队列接口与复杂流管理模块、空口调度模块、所述物理层集中设置在FPGA中。
该种架构下,如图7所示,将软交换单元的功能利用复杂流分类进行替代,软交换的功能主要是区分不同RT的数据流,本申请利用复杂流分类的特殊性,通过设置不同RT的数据分为不同的数据流的方式,在复杂流分类时实现软交换的目的。另外空口流管理单元,主要涉及QoS的处理,在复杂流分类进行出口操作时,使用策略达到相同目标,即在FPGA内部,利用可实现多个逻辑队列接口,整体使用复杂流分类实现多个RT不同QoS属性数据的分类。该架构采用多个逻辑队列接口代替软交互模块和空口流管理单元,使得该点对多点通信装置减少处理模块,减少处理器压力,提高了整个装置的运行效率。
本申请提供的点对多点通信装置,根据不同的功能模块,提供了四种不同的硬件架构,且该四种架构在成本、功耗、性能、硬件能力上有不同的侧重点,可以更适应不同的开发需求和场景应用。其中,各架构中涉及的交换机、CPU、FPGA等多级硬件架构,可实现更合理的数据缓存能力,对于数据拥塞和数据丢包情况均可得到缓解,使得业务数据发送更加平稳流畅。
该点对多点通信装置可以应用在微波点对多点通信系统中,在实际使用时,该装置对于点对多点通信系统中的近端机和远端机均适用。基于本申请实施例提供的点对多点通信装置,可选地,如图8所示,本申请实施例提供一种点对多点通信系统,该系统包括:近端机和远端机;该近端机中包括上述实施例提供的点对多点通信装置。可选地,在一个实施例中,该远端机中包括上述实施例提供的点对多点通信装置。示例地,该装置可应用于近端机或者远端机中,实现点对多点的通信,并保障通信系统中各用户的Q oS属性。另外本装置可运用在干线以太网、接入网、城域网等环境中,本实施例对此不做限定。这样,在各种场景中均可安装本申请实施例提供的点对多点通信装置,大大提高了应用便利性,保障了应用过程的多样化需求。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (11)

  1. 一种点对多点通信装置,包括:复杂流管理模块、空口调度模块、物理层模块和射频处理模块;
    所述复杂流管理模块,用于对多个远端机业务的服务质量QoS属性数据进行管理;所述管理包括根据不同QoS要求为远端机的业务数据划分不同的空口业务流;
    所述空口调度模块,用于根据所述复杂流管理模块划分的每个所述空口业务流的QoS要求,确定每个所述空口业务流的数据量,并将各所述数据量对应的业务数据发送给至所述物理层模块;
    所述物理层模块,用于接收所述空口调度模块发送的业务数据,将所述业务数据进行调制编码后发送至所述射频处理模块;
    所述射频处理模块,用于接收所述物理层模块发送的调制编码后的业务数据,并将所述调制编码后的业务数据转换为射频信号进行发送。
  2. 根据权利要求1所述的装置,所述复杂流管理模块包括复杂流分类单元、软交换单元和空口流管理单元;
    所述复杂流分类单元,用于根据用户需求对所述业务数据进行流策略控制和QoS属性修改,并将控制和修改后的业务数据发送至所述软交换单元;
    所述软交换单元,用于按照介质访问控制MAC地址将所述控制和修改后的业务数据区分为不同远端机的数据流,并将区分后的业务数据发送至所述空口流管理单元;
    所述空口流管理单元,用于在空中接口上根据不同QoS要求,将所述软交换单元发送的业务数据划分成不同的空口业务流,并对每个空口业务流进行队列管理。
  3. 根据权利要求2所述的装置,所述复杂流分类单元还用于端口标记、流量整形、流量监管、报文过滤、重定向、承接以太网侧QoS属性中至少一种。
  4. 根据权利要求3所述的装置,所述空口调度模块,用于根据每个空口业务流的QoS要求、空口物理资源和信道状况,通过预设的动态调度算法,确定每个空口业务流的发送业务数据大小,并根据预设的物理帧格式,将所述业务数据通过信道物理帧资源发送给所述物理层。
  5. 根据权利要求4所述的装置,所述复杂流分类单元设置在交换芯片中;所述软交换单元、所述空口流管理单元和所述空口调度模块设置在中央处理器CPU中;所述 物理层模块设置在现场可编程门阵列FPGA中。
  6. 根据权利要求4所述的装置,所述复杂流分类单元设置在交换芯片中;所述软交换单元、所述空口流管理单元、所述空口调度模块、所述物理层设置在FPGA中。
  7. 根据权利要求4所述的装置,所述复杂流分类单元、所述软交换单元、所述空口流管理单元、所述空口调度模块、所述物理层均设置在FPGA中。
  8. 根据权利要求4所述的装置,所述软交换单元和所述空口流管理单元通过多个逻辑队列接口实现,所述多个逻辑队列接口与所述空口调度模块、所述物理层模块集中设置在FPGA中。
  9. 根据权利要求1所述的装置,所述射频处理模块还用于接收射频信号,并将所述射频信号转换进行处理后传输至所述物理层模块进行解析。
  10. 一种点对多点通信系统,所述系统包括:近端机和远端机;所述近端机包括所述权利要求1-9任一项所述的点对多点通信装置。
  11. 一种点对多点通信系统,所述系统包括:近端机和远端机;所述远端机包括所述权利要求1-9任一项所述的点对多点通信装置。
PCT/CN2019/124671 2019-08-06 2019-12-11 点对多点通信装置和系统 WO2021022746A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910721373.0 2019-08-06
CN201910721373.0A CN110493822B (zh) 2019-08-06 2019-08-06 点对多点通信装置和系统

Publications (1)

Publication Number Publication Date
WO2021022746A1 true WO2021022746A1 (zh) 2021-02-11

Family

ID=68549989

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/124671 WO2021022746A1 (zh) 2019-08-06 2019-12-11 点对多点通信装置和系统

Country Status (2)

Country Link
CN (1) CN110493822B (zh)
WO (1) WO2021022746A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110493822B (zh) * 2019-08-06 2021-08-24 京信网络系统股份有限公司 点对多点通信装置和系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040160971A1 (en) * 2002-11-27 2004-08-19 Edward Krause Apparatus and method for dynamic channel mapping and optimized scheduling of data packets
CN101047640A (zh) * 2006-06-23 2007-10-03 华为技术有限公司 无线接入承载数据传输方法
CN106685495A (zh) * 2015-11-05 2017-05-17 索尼公司 无线通信方法和无线通信设备
CN107872403A (zh) * 2017-11-10 2018-04-03 西安电子科技大学 一种实现层次化QoS的五级队列调度装置及方法
CN110493822A (zh) * 2019-08-06 2019-11-22 京信通信系统(中国)有限公司 点对多点通信装置和系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101801008A (zh) * 2010-01-04 2010-08-11 泉州泽仕通科技有限公司 一种高速移动体场强覆盖方法
CN102638852B (zh) * 2011-02-12 2016-06-22 电信科学技术研究院 一种基于服务质量的调度方法、设备及系统
CN107295564B (zh) * 2016-04-11 2023-12-05 中兴通讯股份有限公司 一种基于流的承载管理方法、数据传输方法及装置
EP3462623B1 (en) * 2016-06-28 2020-04-29 Huawei Technologies Co., Ltd. Method and device for transmitting and receiving data

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040160971A1 (en) * 2002-11-27 2004-08-19 Edward Krause Apparatus and method for dynamic channel mapping and optimized scheduling of data packets
CN101047640A (zh) * 2006-06-23 2007-10-03 华为技术有限公司 无线接入承载数据传输方法
CN106685495A (zh) * 2015-11-05 2017-05-17 索尼公司 无线通信方法和无线通信设备
CN107872403A (zh) * 2017-11-10 2018-04-03 西安电子科技大学 一种实现层次化QoS的五级队列调度装置及方法
CN110493822A (zh) * 2019-08-06 2019-11-22 京信通信系统(中国)有限公司 点对多点通信装置和系统

Also Published As

Publication number Publication date
CN110493822A (zh) 2019-11-22
CN110493822B (zh) 2021-08-24

Similar Documents

Publication Publication Date Title
US11343192B2 (en) Packet processing method, and device
CN109194660B (zh) 移动终端的入网方法和装置
US7843817B2 (en) Congestion control in wireless mesh networks
US7903553B2 (en) Method, apparatus, edge router and system for providing QoS guarantee
US8619728B2 (en) Method and system for providing an intelligent switch for bandwidth management in a hybrid wired/wireless local area network
US20140098666A1 (en) Method and system for optimal load balancing in a hybrid wired/wireless network
US11323790B2 (en) Dynamic bandwidth allocation method and related device
US20130219063A1 (en) Method and system for network management in a hybrid wired/wireless network
WO2021232568A1 (zh) 无线局域网收发数据的方法、终端和系统及网络接入设备
EP1748606A1 (en) Method for automatically providing quality of service
WO2018126692A1 (zh) 数据传输的控制方法和设备
JP2004260832A (ja) Ipアクセスネットワークにおいて保証サービス品質を伴うサービスを提供する方法
CN113302885A (zh) 车载网络的以太网和控制器区域网络协议转换
CN109450982B (zh) 一种网络通讯方法和系统
CN102546118A (zh) 一种c-docsis系统中的业务转发和优先级映射方法
WO2022111329A1 (zh) 报文处理方法及设备
EP3506573B1 (en) Method and system for traffic management, packet switching device and user device
JP5485543B2 (ja) プライマリネットワーク及びセカンダリネットワークを含むネットワークにおける通信方法
WO2021022746A1 (zh) 点对多点通信装置和系统
US20150163691A1 (en) Method and System for distribution of high data throughput over multiple wireless connections
CN113133023B (zh) 通信方法、无线接入点、无线站点及无线局域网系统
CN110392018B (zh) 一种对讲机的通信方法和系统
CN112714072B (zh) 一种调整发送速率的方法及装置
CN102710501B (zh) 一种移动终端及其在隧道通信模式下的带宽动态调整方法
CN114666651B (zh) 一种新型智能无线系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19940875

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19940875

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 10/10/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19940875

Country of ref document: EP

Kind code of ref document: A1