WO2021022641A1 - 一种磁传感器的制造方法及磁传感器 - Google Patents

一种磁传感器的制造方法及磁传感器 Download PDF

Info

Publication number
WO2021022641A1
WO2021022641A1 PCT/CN2019/107328 CN2019107328W WO2021022641A1 WO 2021022641 A1 WO2021022641 A1 WO 2021022641A1 CN 2019107328 W CN2019107328 W CN 2019107328W WO 2021022641 A1 WO2021022641 A1 WO 2021022641A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
magnetic field
substrate
manufacturing
template
Prior art date
Application number
PCT/CN2019/107328
Other languages
English (en)
French (fr)
Inventor
邹泉波
Original Assignee
潍坊歌尔微电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 潍坊歌尔微电子有限公司 filed Critical 潍坊歌尔微电子有限公司
Publication of WO2021022641A1 publication Critical patent/WO2021022641A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/093Magnetoresistive devices using multilayer structures, e.g. giant magnetoresistance sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/096Magnetoresistive devices anisotropic magnetoresistance sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/098Magnetoresistive devices comprising tunnel junctions, e.g. tunnel magnetoresistance sensors

Definitions

  • the present invention relates to the field of chips, and more specifically, to a method of manufacturing multiple magnetoresistances on a substrate; the present invention also relates to a magnetic sensor manufactured by the above method.
  • the specific method is to place the same batch of wafers in a magnetic annealing furnace.
  • the magnetic annealing furnace generates a dedicated external magnetic field and heats the wafer.
  • the magnetoresistance is annealed under the special external magnetic field, thereby fixing the pinning direction of the magnetoresistance.
  • the pinning direction of the magnetoresistance is related to the direction of the dedicated external magnetic field.
  • the pinning direction of the magnetoresistance manufactured in batches on this batch of wafers is the same, which makes all the magnetoresistances increase or decrease at the same time under the action of the working magnetic field, and the full bridge cannot be formed.
  • Wheatstone detects the electric bridge.
  • a complete Wheatstone bridge is more inclined to perform two-way changes (differential) within the same chip to optimize detection performance.
  • typical magnetic field sensors require multi-axis sensing (such as X-axis, Y-axis, and Z-axis), which cannot be manufactured on a wafer-level process.
  • the manufactured magnetoresistance can only be mounted on a substrate through an assembly process. , Which reduces the performance of the sensor, and the size is larger, which increases the manufacturing cost.
  • the magnetic annealing furnace needs to provide a uniform dedicated external magnetic field while providing heat, which makes the magnetic annealing furnace expensive.
  • An object of the present invention is to provide a new technical solution for a manufacturing method of a magnetic sensor.
  • a method for manufacturing a magnetic sensor which includes the following steps:
  • the permanent magnet template comprising a first substrate and a permanent magnet pattern array arranged on the first substrate;
  • the magnetoresistive unit comprising a second substrate and a magnetoresistive pattern array arranged on the second substrate; and the magnetoresistive pattern array corresponds to the permanent magnet pattern array;
  • Alignment step match the permanent magnet template with the magnetoresistive unit, and make the magnetoresistance in the magnetoresistance pattern array correspond to the permanent magnets in the permanent magnet pattern array one to one;
  • Annealing step Put the bonded permanent magnet template and magnetoresistance unit into an annealing furnace for heating and annealing to fix the pinning direction of the magnetic resistance; the permanent magnet provides a fixed pinning direction for the corresponding magnetic resistance External magnetic field.
  • a first adhesive layer is provided on the first substrate, and the permanent magnet pattern array is adhered to the first adhesive layer; further comprising a second adhesive layer covering the permanent magnet pattern array; In the quasi step, the permanent magnet template and the magnetoresistive unit are bonded together through a second adhesive layer.
  • the distance between the permanent magnet and the magnetic resistance is controlled by the thickness of the second glue layer.
  • the step of leveling the second adhesive layer on the first substrate is further included.
  • the annealed permanent magnet template after the annealed permanent magnet template is separated from the magnetoresistive unit, it further includes the step of peeling off the second adhesive layer on the first substrate and applying glue to form the second adhesive layer again.
  • the permanent magnet template and the magnetoresistive unit are respectively assembled on a jig.
  • the magnetic field directions of the permanent magnets are the same.
  • the magnetic field directions of the permanent magnets are different.
  • the direction of the magnetic field of the at least one permanent magnet is opposite to the direction of the magnetic field of the at least one permanent magnet.
  • the magnetic field direction of the at least one permanent magnet is perpendicular to the magnetic field direction of the at least one permanent magnet.
  • At least two permanent magnets are distributed in the first axis direction, and at least two permanent magnets are distributed in the second axis direction;
  • the magnetic field direction of the at least two permanent magnets distributed in the first axis direction is different from the magnetic field direction of the at least two permanent magnets distributed in the second axis direction;
  • the magnetic field direction of at least one permanent magnet is opposite to the magnetic field direction of at least another permanent magnet;
  • the magnetic field direction of at least one permanent magnet is opposite to the magnetic field direction of at least another permanent magnet.
  • the step of providing a permanent magnet template includes:
  • the annealing furnace is used for heating, and it is no longer necessary to use an expensive furnace that provides both a magnetic field and heating.
  • magnetoresistances with different pinning directions can be obtained on the same wafer, so that a Wheatstone detection bridge with better performance can be manufactured on the wafer, and a multi-axis detection magnetic can be manufactured. sensor.
  • FIGS 1a to 1i are process flow diagrams of the manufacturing method of the present invention.
  • FIGS. 2a to 2d are schematic diagrams of four different embodiments of the permanent magnet template of the present invention.
  • Figures 3 and 4 are schematic diagrams of the pinning direction being affected by the direction of the magnetic field during two types of magnetoresistive annealing.
  • the invention provides a method for manufacturing a magnetic sensor, which only needs to be heated by an annealing furnace for annealing, and it is no longer necessary to select an expensive furnace that provides both a magnetic field and heating.
  • magnetoresistances with different pinning directions can be manufactured on the same wafer, so that a Wheatstone detection bridge with better performance can be formed on the wafer, and a multi-axis detection magnetic can be manufactured. sensor.
  • the manufacturing method of the present invention includes the following steps:
  • the permanent magnet template including a first substrate and a permanent magnet pattern array arranged on the first substrate;
  • the magnetoresistive unit including a second substrate and a magnetoresistive pattern array arranged on the second substrate; and the magnetoresistive pattern array corresponds to the permanent magnet pattern array;
  • Alignment step match the permanent magnet template with the magnetoresistive unit, and make the magnetoresistance in the magnetoresistance pattern array correspond to the permanent magnets in the permanent magnet pattern array one to one;
  • Annealing step Put the bonded permanent magnet template and magnetoresistive unit into an annealing furnace for heating and annealing to fix the pinning direction of the magnetoresistance; the permanent magnet provides the outer pinning direction of the magnetoresistor corresponding to it. magnetic field.
  • the order of providing the permanent magnet template and providing the magnetoresistive unit to be annealed is not limited.
  • the permanent magnet template can be provided first, and then the magnetoresistive unit to be annealed; or the magnetoresistive unit to be annealed can be provided first, and then the permanent magnet template can be provided.
  • providing permanent magnet templates and providing magnetoresistive units can be made by yourself to make permanent magnet templates and make magnetoresistive units yourself; or, you can use ready-made permanent magnet templates and provide magnetoresistive units, which will not be described in detail here.
  • the permanent magnet template includes a first substrate 4 and an array of permanent magnet patterns arranged on the first substrate 4.
  • a step of providing a permanent magnet template is listed as follows:
  • the permanent magnet array on the original substrate 1 can be supplied by others or made by yourself.
  • the permanent magnet array is located on the original substrate 1.
  • the original substrate 1 of the present invention may be a wafer.
  • the permanent magnet array can be formed on the wafer through processes such as deposition and patterning well known to those skilled in the art. Due to technological constraints, the direction of the magnetic field inside the permanent magnets in these arrays is consistent, for example, they all face the right side of the figure.
  • the original substrate 1 may be made of light-transmissive materials such as sapphire, glass, quartz, etc., so that selective transfer can be performed by laser lift-off.
  • the permanent magnet array can be directly formed on the original laser transparent substrate 1.
  • the permanent magnet can be made of CoPt, FePt or CoCrPt, and the thickness can be 0.1-10um.
  • FIG. 1a two permanent magnets are shown in FIG. 1a, which are marked as the first permanent magnet 2 and the second permanent magnet 3 respectively.
  • the number of permanent magnet arrays on the original substrate 1 may be tens, hundreds or even thousands, which will not be described in detail here.
  • the first permanent magnet 2 and the second permanent magnet 3 are manufactured on the original substrate 1 at the same time, and their magnetic field directions are the same, for example, the internal magnetic field directions are all toward the right as shown in the figure. That is, the left ends of the first permanent magnet 2 and the second permanent magnet 3 are both S poles, and the right ends are both N poles.
  • the first part of permanent magnets is transferred to the first substrate according to a predetermined pattern; the second part of permanent magnets is transferred and arranged on the first substrate according to a predetermined pattern; and the sequence is repeated to form an array of magnetoresistive patterns on the first substrate.
  • a first adhesive layer 5 is provided on the first substrate 4.
  • the original substrate 1 and the first adhesive layer 5 of the first base 4 are bonded together, so that the first permanent magnet 2 and the second permanent magnet 3 are bonded on the first adhesive layer 5 of the first base 4.
  • the laser is selectively irradiated to separate the permanent magnet at a predetermined position from the original substrate 1.
  • a laser is used to irradiate the position of the first permanent magnet 2 from the outside of the original substrate 1, thereby reducing the bonding force or the bonding force between the first permanent magnet 2 and the original substrate 1, so that the first permanent magnet 2 Peel off from the original substrate 1 and adhere to the first adhesive layer 5. Since the second permanent magnet 3 is not irradiated by the laser, the second permanent magnet 3 will still remain on the original substrate 1 when the original substrate 1 is separated from the first substrate 4.
  • the second permanent magnet 3 can be aligned with the corresponding position of the first base 4.
  • the original substrate 1 is rotated by 180°, the original substrate 1 is moved to the corresponding position and then combined with the first substrate 4, so that the second permanent magnet 3 is bonded to the first substrate 4 ⁇ 5 ⁇ The glue layer 5.
  • the second permanent magnet 3 is selectively irradiated with a laser to reduce the bonding force between the second permanent magnet 3 and the original substrate 1.
  • the second permanent magnet 3 will adhere to the first adhesive layer 5 of the first substrate 4.
  • the direction of the magnetic field inside the second permanent magnet 3 will be perpendicular to the direction of the magnetic field inside the first permanent magnet 2, which will not be listed here.
  • the arrangement of the permanent magnets can be completed by the first adhesive layer 5, or the permanent magnets can be directly bonded to the first substrate 4.
  • the permanent magnets on the original substrate 1 can be directly transferred to the first substrate 4, or temporary transfer can be performed through a temporary substrate or a temporary adapter, which can be selected according to specific needs.
  • the present invention further includes a second adhesive layer 6 covering the permanent magnet pattern array.
  • the second adhesive layer 6 can use PDMS or other high-temperature stable viscous adhesives/polymers, and the thickness can be 1-10um.
  • the second glue layer 6 is coated on the first glue layer 5 and covers the permanent magnet pattern array, and is finally cured or baked. The second glue layer 6 can protect the permanent magnet pattern array. At the same time, the magnetoresistive unit can be easily bonded in the subsequent alignment steps.
  • the patterns of the permanent magnet pattern array on the permanent magnet template are various, which are manufactured according to actual needs.
  • Figures 2a to 2d show schematic diagrams of four pattern arrays.
  • the first permanent magnet 10 and the second permanent magnet 11 are distributed in the first axis direction, such as the X-axis direction; the third permanent magnet 12, the fourth permanent magnet 13 are distributed in the second axis direction, such as the Y-axis direction .
  • the directions of the internal magnetic fields of the first permanent magnet 10 and the second permanent magnet 11 are in the X-axis direction, and opposite, for example, the first permanent magnet 10 faces the right side of the figure, and the second permanent magnet 11 faces the left side of the figure. .
  • the directions of the internal magnetic fields of the third permanent magnet 12 and the fourth permanent magnet 13 are both in the Y-axis direction, and are opposite, for example, the third permanent magnet 12 faces downward as shown in the figure, and the fourth permanent magnet 13 faces upward as shown in the figure.
  • the direction of the internal magnetic field of the first permanent magnet 10 and the second permanent magnet 11 can also be in the Y-axis direction; the direction of the internal magnetic field of the third permanent magnet 12 and the fourth permanent magnet 13 can be in the X-axis direction.
  • the difference from the embodiment of Fig. 2a is that the directions of the internal magnetic fields of the first permanent magnet 10a and the second permanent magnet 11a are both in the X-axis direction and the same, for example, the first permanent magnet 10a, the The two permanent magnets 11a all face to the right in the figure.
  • the directions of the internal magnetic fields of the third permanent magnet 12a and the fourth permanent magnet 13a are both in the Y-axis direction and the same.
  • the third permanent magnet 12a and the fourth permanent magnet 13a all face upward as shown in the figure.
  • first permanent magnet 10c and the second permanent magnet 11c two permanent magnets are provided, which are respectively denoted as the first permanent magnet 10c and the second permanent magnet 11c.
  • the first permanent magnets 10c and the second permanent magnets 11c are arranged in the first axis direction, for example, in the X axis direction.
  • the directions of the magnetic fields inside the first permanent magnet 10c and the second permanent magnet 11c are located in the X-axis direction and are the same, for example, both are directed to the right as shown in the figure.
  • the difference from the embodiment of FIG. 2c is that the directions of the magnetic fields inside the first permanent magnet 10d and the second permanent magnet 11d are in the X-axis direction and opposite.
  • the direction of the magnetic field inside the first permanent magnet 10d is toward the right as shown in the figure; the direction of the magnetic field inside the second permanent magnet 11d is toward the left as shown in the figure.
  • the manufacturing method of the present invention further includes providing a magnetoresistive unit to be annealed.
  • the magnetoresistive unit includes a second substrate 7 and a magnetoresistive pattern array arranged on the second substrate 7; and the magnetoresistive pattern array and permanent magnets The pattern array corresponds.
  • the second base 7 may be a wafer, such as a silicon substrate or the like.
  • the pattern array of magnetoresistance is formed on the silicon substrate through layer-by-layer deposition and patterning processes well known to those skilled in the art.
  • the magnetoresistance of the present invention may be a giant magnetoresistive sensor (GMR), a tunnel magnetoresistive sensor (TMR), an anisotropic magnetoresistive sensor (AMR), or other magnetoresistance well known to those skilled in the art.
  • GMR giant magnetoresistive sensor
  • TMR tunnel magnetoresistive sensor
  • AMR anisotropic magnetoresistive sensors
  • the magnetoresistive pattern array on the second substrate 7 corresponds to the permanent magnet pattern array.
  • FIG. 1h there are two magnetoresistors, denoted as the first magnetoresistor 8 and the second magnetoresistor 9, respectively.
  • the first magnetic resistance 8 and the second magnetic resistance 9 have not been annealed yet, so the pinning directions of the two magnetic resistances have not been fixed yet.
  • the manufacturing method of the present invention includes an alignment step: matching the permanent magnet template with the magnetoresistive unit, and making the magnetoresistance in the magnetoresistance pattern array correspond to the permanent magnets in the permanent magnet pattern array one by one.
  • the permanent magnet template and the magnetoresistive unit on the fixture by assembling the fixture, and make the permanent magnet on the permanent magnet template correspond to the magnetoresistance in the magnetoresistive unit one by one.
  • the distance between the permanent magnet and the magnetic resistance can also be controlled, which will not be described in detail here.
  • the permanent magnet template and the magnetoresistive unit are bonded together through the second adhesive layer 6.
  • the first magnetic resistor 8 and the second magnetic resistor 9 on the second substrate 7 are bonded to the second adhesive layer 6.
  • the first magnetic resistance 8 corresponds to the first permanent magnet 2, so that the first permanent magnet 2 can provide an external magnetic field for the first magnetic resistance 8
  • the second magnetic resistance 9 corresponds to the second permanent magnet 3, so that the second permanent magnet The magnet 3 can provide an external magnetic field for the second magnetic resistance 9.
  • first magnetic resistance 8 is located above the center of the first permanent magnet 2 so that the first magnetic resistance 8 can be located in the uniform magnetic field provided by the first permanent magnet 2.
  • the second magnetic resistance 9 is located above the center of the second permanent magnet 3 so that the second magnetic resistance 9 can be located in the uniform magnetic field provided by the second permanent magnet 3.
  • the size of the magnetic resistance is much smaller than the size of the permanent magnet, so it can further ensure that the magnetic resistance is located in the uniform magnetic field of the permanent magnet.
  • the size and spacing of the components need to be controlled.
  • the distance between two permanent magnets is greater than the size of the two, and the total magnetic field at the magnetoresistive position is only affected by the local magnets, and will not be affected by the adjacent permanent magnets, it will not be described in detail here.
  • the distance between the magnetoresistance and the permanent magnet can be controlled by the second adhesive layer 6, and the detection range of the magnetoresistance formed after annealing is different according to the magnetic resistance and the permanent magnet. The design requirements of the resistance are adjusted.
  • the manufacturing method of the present invention includes an annealing step: putting the bonded permanent magnet template and the magnetoresistive unit into an annealing furnace to fix the pinning direction of the magnetoresistance; the permanent magnet provides a fixed pinning direction for the magnetoresistance corresponding to it The external magnetic field.
  • the direction of the magnetic field inside the first permanent magnet 2 faces the right side of the figure, and the pinning direction after annealing of the first magnetic resistor 8 corresponding to it faces the left side of the figure; correspondingly, the second permanent magnet 3
  • the direction of the internal magnetic field is toward the left in the figure, and the pinning direction after annealing of the second magnetoresistor 9 corresponding to it is toward the right in the figure.
  • Figures 3 and 4 illustrate the principle diagrams of two magnetoresistive pinning directions affected by the direction of the permanent magnet's magnetic field.
  • the direction of the magnetic field in the first permanent magnet 2 faces downward as shown in the figure, that is, the upper end of the first permanent magnet 2 is the S pole and the lower end is the N pole.
  • the direction of the magnetic field in the second permanent magnet 3 faces upward as shown in the figure, that is, the upper end of the second permanent magnet 3 is the N pole and the lower end is the S pole.
  • the direction of the external magnetic field provided by the first permanent magnet 2 is from the N pole to the S pole.
  • the pinning direction of the first magnetic resistor 8 is from top to bottom.
  • the pinning direction of the second magnetic resistance 9 is from bottom to top.
  • the direction of the magnetic field in the first permanent magnet 2 is toward the left as shown in the figure, that is, the right end of the first permanent magnet 2 is the S pole, and the left end is the N pole.
  • the direction of the magnetic field in the second permanent magnet 3 is toward the right as shown in the figure, that is, the right end of the second permanent magnet 3 is N pole, and the left end is S pole.
  • the direction of the external magnetic field provided by the first permanent magnet 2 is from the N pole to the S pole.
  • the pinning direction of the first magnetic resistor 8 faces the right side of the figure.
  • the pinning direction of the second magnetic resistor 9 is toward the left as shown in the figure.
  • the permanent magnet template is used to provide an external magnetic field for the annealing of the magnetoresistance, so only an ordinary annealing furnace is needed.
  • various styles of magnetoresistive units can be customized, such as magnetoresistive units with opposite, vertical or identical magnetoresistive pinning directions, which guarantees various requirements such as differential detection and multi-axis detection.
  • the magnetic sensor manufactured by this method can have a smaller size.
  • the magnetoresistance is manufactured in the same batch on the same wafer, the magnetoresistance has a good external response consistency, and the initial resistance value is the same.
  • the permanent magnet template of the present invention can be used repeatedly. After the annealed permanent magnet template is separated from the magnetoresistance unit, the permanent magnet template can be used for annealing the next batch of magnetoresistance units. In a preferred embodiment of the present invention, after separating the annealed permanent magnet template from the magnetoresistive unit, it further includes the step of leveling the second adhesive layer 6 on the first substrate 4. After the permanent magnet template is used several times or after long time use, the surface of the second adhesive layer 6 may be uneven, which will affect the consistency of the magnetoresistance, so the surface of the second adhesive layer 6 can be flattened Processing. For example, steps such as cleaning and gluing can improve the flatness of the surface of the second adhesive layer 6 and increase the viscosity of the second adhesive layer 6.
  • the method further includes peeling off the second adhesive layer 6 on the first substrate 4 and applying glue to form the second adhesive layer 6 again. A step of.
  • the flatness of the surface of the second adhesive layer 6 can no longer meet the requirements of use, and the flattening process can no longer be performed.
  • the second glue layer 6 can be peeled off, glued and cured to form the second glue layer 6, which prolongs the service life of the permanent magnet template and reduces the cost.
  • the present invention also provides a magnetic sensor prepared by the above method.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Magnetic Variables (AREA)
  • Hall/Mr Elements (AREA)

Abstract

一种磁传感器的制造方法及磁传感器,方法包括以下步骤:提供永磁体模板,提供待退火的磁阻单元,将永磁铁模板与磁阻单元配合在一起,并使磁阻图案阵列中的磁阻与永磁体图案阵列中的永磁体一一对应;退火步骤:将贴合后的永磁铁模板与磁阻单元放入退火炉中进行加热、退火,以固定磁阻的钉扎方向。该磁传感器的制造方法既可以降低制造成本,又可以在晶圆上制作多类型的磁传感器。

Description

一种磁传感器的制造方法及磁传感器 技术领域
本发明涉及芯片领域,更具体地,涉及一种在衬底上制造多个磁阻的方法;本发明还涉及通过上述方法制得的磁传感器。
背景技术
在通过晶圆级的工艺制造磁传感器时,只能在膜片上形成方向单一的磁阻。这是由于在制造磁传感器的工序中,需要固定磁阻的钉扎方向。具体做法是将同一批次的晶圆放置在磁性退火炉中。磁性退火炉产生专用的外部磁场,并且对晶圆进行加热。磁阻在该专用的外部磁场作用下退火,从而将磁阻的钉扎方向进行固定。磁阻的钉扎方向根据专用外部磁场的方向有关。因此,该批次晶圆上批量制造的磁阻的钉扎方向都是相同的,这使得所有的磁阻均会在工作磁场的作用下同时增大或者同时减小,而无法形成全桥的惠斯通检测电桥。
但是,完整的惠斯通电桥更倾向于在同一芯片内进行双向的变化(差分),以优化检测的性能。另外,典型的磁场传感器需要多轴感测(例如X轴、Y轴和Z轴),这无法通过晶圆级的工艺上制造,只能通过装配的工艺将制作好的磁阻安装在基板上,这降低了传感器性能,而且尺寸较大,增加了制造成本。
另外磁性退火炉在提供热量的同时,还需要提供均匀的专用外部磁场,这使得磁性退火炉的价格昂贵。另外在进行高温退火的时候,很难保证置于退火炉中众多晶圆上不同的磁阻都可以处于均匀的磁场中,这会导致同批次高温退火后的磁阻的一致性较差。
发明内容
本发明的一个目的是提供一种磁传感器的制造方法的新技术方案。
根据本发明的第一方面,提供了一种磁传感器的制造方法,包括以下步骤:
提供永磁体模板,所述永磁体模板包括第一基底以及布置在第一基底上的永磁体图案阵列;
提供待退火的磁阻单元,所述磁阻单元包括第二基底以及布置在第二基底上的磁阻图案阵列;且所述磁阻图案阵列与永磁体图案阵列相对应;
对准步骤:将永磁铁模板与磁阻单元配合在一起,并使磁阻图案阵列中的磁阻与永磁体图案阵列中的永磁体一一对应;
退火步骤:将贴合后的永磁铁模板与磁阻单元放入退火炉中进行加热、退火,以固定磁阻的钉扎方向;所述永磁体为与其对应的磁阻提供固定钉扎方向的外磁场。
可选地,所述第一基底上设置有第一胶层,所述永磁体图案阵列粘接在第一胶层上;还包括将永磁体图案阵列覆盖起来的第二胶层;所述对准步骤中,所述永磁铁模板与磁阻单元通过第二胶层贴合在一起。
可选地,所述永磁体与磁阻之间的间距通过第二胶层的厚度来控制。
可选地,退火后的永磁铁模板与磁阻单元分离后,还包括对第一基底上的第二胶层进行平整的步骤。
可选地,退火后的永磁铁模板与磁阻单元分离后,还包括对第一基底上的第二胶层进行剥离并上胶重新形成第二胶层的步骤。
可选地,所述对准步骤中,所述永磁铁模板与磁阻单元分别装配在治具上。
可选地,所述永磁体模板的永磁体图案阵列中,永磁体的磁场方向是相同的。
可选地,所述永磁体模板的永磁体图案阵列中,永磁体的磁场方向是不同的。
可选地,至少一个永磁体的磁场方向与至少一个永磁体的磁场方向相反。
可选地,至少一个永磁体的磁场方向与至少一个永磁体的磁场方向垂直。
可选地,至少两个永磁体分布在第一轴线方向上,至少两个永磁体分布在第二轴线方向上;
分布在第一轴线方向上的至少两个永磁体的磁场方向,与分布在第二轴线方向上的至少两个永磁体的磁场方向不同;
其中,
分布在第一轴线方向上的至少两个永磁体中,至少一个永磁体的磁场方向与至少另一个永磁体的磁场方向相反;
分布在第二轴线方向上的至少两个永磁体中,至少一个永磁体的磁场方向与至少另一个永磁体的磁场方向相反。
可选地,所述提供永磁体模板的步骤包括:
提供位于原始衬底上的永磁体阵列;
按照预定的图案将第一部分永磁体转移到第一基底上;
按照预定的图案将第二部分永磁体转移并排布到第一基底上;
依次重复,形成位于第一基底上的磁阻图案阵列。
根据本发明的另一方面,还提供了一种磁传感器,通过上述的制造方法制得。
根据本公开的一个实施例,只使用退火炉加热进行退火即可,而不再需要选用价格昂贵的既提供磁场又提供加热的炉子。另外,采用本发明的制造方法,可以在同一晶圆上得到钉扎方向不同的磁阻,使得可以在晶圆上制造性能较好的惠斯通检测电桥,还可以制造多轴检测的磁传感器。
通过以下参照附图对本发明的示例性实施例的详细描述,本发明的其它特征及其优点将会变得清楚。
附图说明
被结合在说明书中并构成说明书的一部分的附图示出了本发明的实施例,并且连同其说明一起用于解释本发明的原理。
图1a至图1i是本发明制造方法的工艺流程图。
图2a至图2d是本发明永磁体模板四种不同实施方式的结构示意图。
图3、图4是两种磁阻退火时钉扎方向受磁场方向影响的原理图。
具体实施方式
现在将参照附图来详细描述本发明的各种示例性实施例。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本发明的范围。
以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。
在这里示出和讨论的所有例子中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它例子可以具有不同的值。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
本发明提供了一种磁传感器的制造方法,只使用退火炉加热进行退火即可,而不再需要选用价格昂贵的既提供磁场又提供加热的炉子。另外,采用本发明的制造方法,可以在同一晶圆上制造钉扎方向不同的磁阻,使得可以在晶圆上形成性能较好的惠斯通检测电桥,还可以制造多轴检测的磁传感器。
本发明的制造方法,包括以下步骤:
提供永磁体模板,永磁体模板包括第一基底以及布置在第一基底上的永磁体图案阵列;
提供待退火的磁阻单元,磁阻单元包括第二基底以及布置在第二基底上的磁阻图案阵列;且磁阻图案阵列与永磁体图案阵列相对应;
对准步骤:将永磁铁模板与磁阻单元配合在一起,并使磁阻图案阵列中的磁阻与永磁体图案阵列中的永磁体一一对应;
退火步骤:将贴合后的永磁铁模板与磁阻单元放入退火炉中进行加热退火,以固定磁阻的钉扎方向;所述永磁体为与其对应的磁阻提供固定钉扎方向的外磁场。
其中,上述的步骤中,不限制提供永磁体模板、提供待退火的磁阻单元的顺序。例如可以首先提供永磁体模板,再提供待退火的磁阻单元;也可以是先提供待退火的磁阻单元,再提供永磁体模板。
再有,提供永磁体模板、提供磁阻单元,可以是自行制作永磁体模板,自行制作磁阻单元;也可以是,使用现成的永磁体模板、提供磁阻单元,在此不再具体说明。
下面结合附图对本发明提供的制造方法进行详尽的描述。
参考图1g,提供永磁体模板,永磁体模板包括第一基底4以及布置在第一基底4上的永磁体图案阵列。
在本发明一个具体的实施方式中,列举了一种提供永磁体模板的步骤,如下:
提供位于原始衬底上的永磁体阵列;位于原始衬底1上的永磁体阵列可以是由他人供应的,也可以自行制作。
参考图1a,永磁体阵列位于原始衬底1上。本发明的原始衬底1可以是晶圆。例如可以通过本领域技术人员所熟知的沉积、图案化等工艺在晶圆上形成永磁体阵列。由于受到工艺的限制,这些阵列中永磁体内部的磁场方向是一致的,例如均朝向图示的右方。
在本发明一个具体的实施方式中,为了便于后续永磁体的转移,原始衬底1可以采用蓝宝石、玻璃、石英等透光的材质,使得可以采用激光剥离的方式进行选择性的转移。
永磁体阵列可以直接形成在透激光的原始衬底1上。永磁体可以采用CoPt、FePt或CoCrPt等材质,厚度可以做到0.1-10um。为了便于描述,在图1a中示出了两个永磁体,分别记为第一永磁体2、第二永磁体3。对于本领域的技术人员而言,原始衬底1上的永磁体阵列可以是几十、几百甚至上千个,在此不再具体说明。
第一永磁体2、第二永磁体3是同时在原始衬底1上制作出来的,其磁场方向相同,例如其内部磁场方向均朝向图示的右方。即第一永磁体2、第二永磁体3的左端均为S极,右端均为N极。
按照预定的图案将第一部分永磁体转移到第一基底上;按照预定的图 案将第二部分永磁体转移并排布到第一基底上;依次重复,形成位于第一基底上的磁阻图案阵列。
由于原始衬底1上的永磁体阵列是固定的,为了形成设计的永磁体图案阵列,需要逐次将永磁体转移到另一衬底上,形成永磁体模板。
具体地,参考图1b,例如在第一基底4上设置第一胶层5。将原始衬底1与第一基底4的第一胶层5贴合在一起,使第一永磁体2、第二永磁体3粘接在第一基底4的第一胶层5上。
利用激光选择性照射,以将预定位置的永磁体与原始衬底1脱离。参考图1c,利用激光从原始衬底1的外侧照射第一永磁体2的位置,从而降低第一永磁体2与原始衬底1之间的结合力或者粘结力,以将第一永磁体2从原始衬底1上剥离下来,并被粘接在第一胶层5上。第二永磁体3由于没有被激光照射,在原始衬底1与第一基底4分开的时候,第二永磁体3依然会保留在原始衬底1上。
通过调整原始衬底1的位置,使得可以将第二永磁体3与第一基底4的相应位置对应。
参考图1d,将原始衬底1旋转180°,将原始衬底1移动至相应的位置后与第一基底4结合在一起,以使第二永磁体3粘接在第一基底4的第一胶层5上。之后通过激光进行选择性照射第二永磁体3,以降低第二永磁体3与原始衬底1的结合力。当原始衬底1与第一基底4脱离时,第二永磁体3会粘接在第一基底4的第一胶层5上。
由于第二永磁体3随着原始衬底1旋转了180°,此时排布在第一基底4上的第二永磁体3内部的磁场方向朝向图示的左方,这与第一永磁体2内部的磁场方向是相反的,参考图1f。
对于本领域的技术人员而言,例如当选择旋转90°或者270°时,第二永磁体3内部的磁场方向会与第一永磁体2内部的磁场方向垂直,在此不再一一列举。
按照上述的方法,依次重复,从而可以形成预定的永磁体模板,即在第一基底4上形成预定的永磁体图案阵列。
上述这种转移的方法属于本领域技术人员的公知常识。对于本领域的 技术人员而言,可以通过第一胶层5来完成永磁体的排布,也可以直接将永磁体键合在第一基底4上。另外,可以直接将原始衬底1上的永磁体转移到第一基底4上,也可以通过临时衬底、临时转接头来进行临时转接,这根据具体需要进行选择。
例如当永磁体内部的磁场方向位于竖直方向时,为了得到磁场方向相反的永磁体,需要通过临时衬底、临时转接头将部分永磁体转接一下,这种转接的方法属于本领域技术人员的公知常识,在此不再具体说明。
在本发明一个优选的实施方式中,参考图1g,还包括将永磁体图案阵列覆盖起来的第二胶层6。该第二胶层6可以采用PDMS,或其它高温稳定的粘性粘合剂/聚合物,厚度可以为1-10um。第二胶层6涂覆在第一胶层5上,并将永磁体图案阵列覆盖起来,最后进行固化或烘烤。该第二胶层6可以起到保护永磁体图案阵列的作用。同时在后续对准步骤中,还可以便于粘接磁阻单元。
永磁体模板上永磁体图案阵列的样式是多种多样的,这根据实际需要进行制造。图2a至图2d列举了四种图案阵列的示意图。
在图2a的实施例中,设置有四个永磁体,分别记为第一永磁体10、第二永磁体11、第三永磁体12、第四永磁体13。其中,第一永磁体10、第二永磁体11分布在第一轴线方向上,例如X轴方向;第三永磁体12、第四永磁体13分布在第二轴线方向上,例如Y轴方向上。
其中第一永磁体10、第二永磁体11内部磁场的方向均在X轴方向上,且相反,例如第一永磁体10朝向图示的右方,第二永磁体11朝向图示的左方。
第三永磁体12、第四永磁体13内部磁场的方向均在Y轴方向上,且相反,例如第三永磁体12朝向图示的下方,第四永磁体13朝向图示的上方。
当然,第一永磁体10、第二永磁体11内部磁场的方向也可以位于Y轴方向上;第三永磁体12、第四永磁体13内部磁场的方向可以在X轴方向上,在此不再具体说明。
在图2b的实施例中,与图2a实施例不同的是:第一永磁体10a、第 二永磁体11a内部磁场的方向均在X轴方向上,且相同,例如第一永磁体10a、第二永磁体11a均朝向图示的右方。第三永磁体12a、第四永磁体13a内部磁场的方向均在Y轴方向上,且相同,例如第三永磁体12a、第四永磁体13a均朝向图示的上方。
在图2c的实施例中,设置有两个永磁体,分别记为第一永磁体10c、第二永磁体11c。第一永磁体10c、第二永磁体11c排布在第一轴线方向上,例如分布在X轴方向上。第一永磁体10c、第二永磁体11c内部的磁场方向位于X轴方向且相同,例如均朝向图示的右方。
在图2d的实施例中,与图2c实施例不同的是:第一永磁体10d、第二永磁体11d内部的磁场方向位于X轴方向且相反。例如第一永磁体10d内部的磁场方向朝向图示的右方;第二永磁体11d内部的磁场方向朝向图示的左方。
本发明的制造方法,还包括提供待退火的磁阻单元,参考图1h,磁阻单元包括第二基底7以及布置在第二基底7上的磁阻图案阵列;且磁阻图案阵列与永磁体图案阵列相对应。
第二基底7可以是晶圆,例如硅衬底等。通过本领域技术人员所熟知的逐层沉积、图案化等工艺在硅衬底上形成磁阻的图案阵列。本发明的磁阻可以是巨磁阻传感器(GMR)、隧道磁阻传感器(TMR)、各向异性磁阻传感器(AMR)或者本领域技术人员所熟知的其它磁阻等。通过采用高灵敏度的巨磁阻传感器(GMR)、隧道磁阻传感器(TMR)或各向异性磁阻传感器(AMR)来获得检测的电信号,可以保证检测机构的电学性能。
当然,磁阻类型的不同,在硅衬底上形成的各层结构也不同,在此不再具体说明。
第二基底7上磁阻图案阵列与永磁体图案阵列相对应,在图1h中,磁阻设置有两个,分别记为第一磁阻8、第二磁阻9。第一磁阻8、第二磁阻9还未经过退火,因此两个磁阻的钉扎方向还未固定。
本发明的制造方法,包括对准步骤:将永磁铁模板与磁阻单元配合在一起,并使磁阻图案阵列中的磁阻与永磁体图案阵列中的永磁体一一对应起来。
例如可以通过治具装配,将永磁铁模板与磁阻单元分别装配在治具上,并使永磁体模板上的永磁体和磁阻单元中的磁阻一一对应起来。另外通过治具装配的时候,还可以控制永磁体与磁阻之间的间距,在此不再具体说明。
在本发明一个优选的实施方式中,永磁铁模板与磁阻单元通过第二胶层6贴合起来。参考图1h,第二基底7上的第一磁阻8、第二磁阻9粘接在第二胶层6上。且第一磁阻8与第一永磁体2对应起来,使得第一永磁体2可以为第一磁阻8提供外磁场;第二磁阻9与第二永磁体3对应起来,使得第二永磁体3可以为第二磁阻9提供外磁场。
进一步优选的是,第一磁阻8位于第一永磁体2中心位置的上方,使得第一磁阻8可以位于第一永磁体2提供的均匀磁场中。第二磁阻9位于第二永磁体3中心位置的上方,使得第二磁阻9可以位于第二永磁体3提供的均匀磁场中。另外,在实际应用的时候,磁阻的尺寸远远小于永磁体的尺寸,因此可进一步保证磁阻位于永磁体的均匀磁场中。
优选的是,为了避免第二永磁体3影响第一磁阻8,以及避免第一永磁体2影响第二磁阻9,需要控制各部件的尺寸及间距。试验证明,如果两个永磁体之间的间距大于二者的尺寸,且磁阻位置的总磁场仅受局部磁体影响,而不会受到相邻永磁体的影响,在此不再具体说明。
优选的是,可以通过第二胶层6控制磁阻与永磁体之间的距离,磁阻与永磁体之间距离的不同,退火后形成的磁阻的检测范围也是不同的,这可以根据磁阻的设计要求进行调整。
本发明的制造方法,包括退火步骤:将贴合后的永磁铁模板与磁阻单元放入退火炉中,以固定磁阻的钉扎方向;永磁体为与其对应的磁阻提供固定钉扎方向的外磁场。
参考图1h,第一永磁体2内部的磁场方向朝向图示的右方,则与其对应的第一磁阻8退火后的钉扎方向朝向图示的左方;相应的,第二永磁体3内部的磁场方向朝向图示的左方,则与其对应的第二磁阻9退火后的钉扎方向朝向图示的右方。
最后将永磁铁模板与磁阻单元分离后,得到钉扎方向相反的磁阻单 元,参考图1i。
图3、图4示意出了两种磁阻钉扎方向受永磁体磁场方向影响的原理图。
在图3的实施例中,第一永磁体2内的磁场方向朝向图示的下方,即第一永磁体2的上端为S极,下端为N极。第二永磁体3内的磁场方向朝向图示的上方,即第二永磁体3的上端为N极,下端为S极。
因此,第一永磁体2提供的外磁场的方向是由N极回到S极,在该外磁场的作用下,第一磁阻8的钉扎方向由上至下。基于相似的原理,在第二永磁体3的作用下,第二磁阻9的钉扎方向由下至上。
在图4的实施例中,第一永磁体2内的磁场方向朝向图示的左方,即第一永磁体2的右端为S极,左端为N极。第二永磁体3内的磁场方向朝向图示的右方,即第二永磁体3的右端为N极,左端为S极。
因此,第一永磁体2提供的外磁场的方向是由N极回到S极,在该外磁场的作用下,第一磁阻8的钉扎方向朝向图示的右方。基于相似的原理,在第二永磁体3的作用下,第二磁阻9的钉扎方向朝向图示的左方。
本发明的制造方法,通过永磁体模板为磁阻的退火提供外部磁场,因此只需要普通的退火炉即可。另外根据永磁体模板,可以定制各种样式的磁阻单元,例如磁阻钉扎方向相反、垂直或相同的磁阻单元,保证了差分检测、多轴检测等各种不同的需求。
通过该方法制得的磁传感器,可以具有较小的尺寸,另外磁阻是在同一晶圆上的同批次制得的,磁阻对外响应的一致性好,且初始阻值相同。
本发明的永磁体模板可以重复使用,将退火后的永磁铁模板与磁阻单元分离后,永磁体模板可以用于下一批次的磁阻单元的退火。在本发明一个优选的实施方式中,将退火后的永磁铁模板与磁阻单元分离后,还包括对第一基底4上的第二胶层6进行平整的步骤。永磁铁模板在使用数次后或者长时间使用后,第二胶层6的表面可能会出现不平整的问题,这会影响磁阻的一致性,因此可对第二胶层6的表面进行平整的处理。例如清洗、上胶等步骤,提高第二胶层6表面的平整度,增加第二胶层6的粘性。
在本发明另一个优选的实施方式中,退火后的永磁铁模板与磁阻单元 分离后,还包括对第一基底4上的第二胶层6进行剥离并上胶重新形成第二胶层6的步骤。
永磁铁模板在使用多次后,其第二胶层6表面的平整度已经不能再满足使用要求,也无法再进行平整处理步骤。此时可以将第二胶层6剥离,并上胶固化重新形成第二胶层6,这延长了永磁体模板的使用寿命,降低了成本。
本发明还提供了一种通过上述方法制得的磁传感器。
虽然已经通过例子对本发明的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上例子仅是为了进行说明,而不是为了限制本发明的范围。本领域的技术人员应该理解,可在不脱离本发明的范围和精神的情况下,对以上实施例进行修改。本发明的范围由所附权利要求来限定。

Claims (13)

  1. 一种磁传感器的制造方法,其特征在于,包括以下步骤:
    提供永磁体模板,所述永磁体模板包括第一基底以及布置在第一基底上的永磁体图案阵列;
    提供待退火的磁阻单元,所述磁阻单元包括第二基底以及布置在第二基底上的磁阻图案阵列;且所述磁阻图案阵列与永磁体图案阵列相对应;
    对准步骤:将永磁铁模板与磁阻单元配合在一起,并使磁阻图案阵列中的磁阻与永磁体图案阵列中的永磁体一一对应;
    退火步骤:将贴合后的永磁铁模板与磁阻单元放入退火炉中进行加热、退火,以固定磁阻的钉扎方向;所述永磁体为与其对应的磁阻提供固定钉扎方向的外磁场。
  2. 根据权利要求1所述的制造方法,其特征在于,所述第一基底上设置有第一胶层,所述永磁体图案阵列粘接在第一胶层上;还包括将永磁体图案阵列覆盖起来的第二胶层;所述对准步骤中,所述永磁铁模板与磁阻单元通过第二胶层贴合在一起。
  3. 根据权利要求2所述的制造方法,其特征在于,所述永磁体与磁阻之间的间距通过第二胶层的厚度来控制。
  4. 根据权利要求2所述的制造方法,其特征在于,退火后的永磁铁模板与磁阻单元分离后,还包括对第一基底上的第二胶层进行平整的步骤。
  5. 根据权利要求2所述的制造方法,其特征在于,退火后的永磁铁模板与磁阻单元分离后,还包括对第一基底上的第二胶层进行剥离并上胶重新形成第二胶层的步骤。
  6. 根据权利要求1所述的制造方法,其特征在于,所述对准步骤中,所述永磁铁模板与磁阻单元分别装配在治具上。
  7. 根据权利要求1所述的制造方法,其特征在于,所述永磁体模板的永磁体图案阵列中,永磁体的磁场方向是相同的。
  8. 根据权利要求1所述的制造方法,其特征在于,所述永磁体模板的永磁体图案阵列中,永磁体的磁场方向是不同的。
  9. 根据权利要求8所述的制造方法,其特征在于,至少一个永磁体的磁场方向与至少一个永磁体的磁场方向相反。
  10. 根据权利要求8所述的制造方法,其特征在于,至少一个永磁体的磁场方向与至少一个永磁体的磁场方向垂直。
  11. 根据权利要求8所述的制造方法,其特征在于,至少两个永磁体分布在第一轴线方向上,至少两个永磁体分布在第二轴线方向上;
    分布在第一轴线方向上的至少两个永磁体的磁场方向,与分布在第二轴线方向上的至少两个永磁体的磁场方向不同;
    其中,
    分布在第一轴线方向上的至少两个永磁体中,至少一个永磁体的磁场方向与至少另一个永磁体的磁场方向相反;
    分布在第二轴线方向上的至少两个永磁体中,至少一个永磁体的磁场方向与至少另一个永磁体的磁场方向相反。
  12. 根据权利要求1所述的制造方法,其特征在于,所述提供永磁体模板的步骤包括:
    提供位于原始衬底上的永磁体阵列;
    按照预定的图案将第一部分永磁体转移到第一基底上;
    按照预定的图案将第二部分永磁体转移并排布到第一基底上;
    依次重复,形成位于第一基底上的磁阻图案阵列。
  13. 一种磁传感器,其特征在于,根据权利要求1至12所述的制造方法制得。
PCT/CN2019/107328 2019-08-02 2019-09-23 一种磁传感器的制造方法及磁传感器 WO2021022641A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910713225.4A CN110568385B (zh) 2019-08-02 2019-08-02 一种磁传感器的制造方法及磁传感器
CN201910713225.4 2019-08-02

Publications (1)

Publication Number Publication Date
WO2021022641A1 true WO2021022641A1 (zh) 2021-02-11

Family

ID=68774500

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/107328 WO2021022641A1 (zh) 2019-08-02 2019-09-23 一种磁传感器的制造方法及磁传感器

Country Status (2)

Country Link
CN (1) CN110568385B (zh)
WO (1) WO2021022641A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1510686A (zh) * 2002-12-10 2004-07-07 ���ǵ�����ʽ���� 具有不平行的主磁阻和参考磁阻的磁随机存取存储器器件
CN1694277A (zh) * 2004-03-12 2005-11-09 雅马哈株式会社 磁传感器制造方法、磁体阵列及其制造方法
US20060044700A1 (en) * 2004-08-31 2006-03-02 Johannes Paul Reorientation of magnetic layers and structures having reoriented magnetic layers
CN106066460A (zh) * 2015-04-24 2016-11-02 阿尔卑斯电气株式会社 磁传感器、磁传感器的制造方法以及磁传感器的设计方法
CN106154189A (zh) * 2015-03-30 2016-11-23 财团法人工业技术研究院 用于磁场感测的穿隧磁阻装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1740804A (zh) * 2001-01-24 2006-03-01 雅马哈株式会社 磁传感器的制造方法
GB0101982D0 (en) * 2001-01-25 2001-03-14 Fast Technology Ag Magnetisation of magnetic transducer
CN1363987A (zh) * 2002-01-29 2002-08-14 汤志强 磁能动力机
JP3835447B2 (ja) * 2002-10-23 2006-10-18 ヤマハ株式会社 磁気センサ、同磁気センサの製造方法及び同製造方法に適したマグネットアレイ
CN101936749A (zh) * 2006-03-06 2011-01-05 日本电产三协株式会社 磁编码器装置
CN102043083B (zh) * 2010-11-23 2012-07-04 中国科学院电工研究所 一种巨磁阻阵列电流传感器
CN102565727B (zh) * 2012-02-20 2016-01-20 江苏多维科技有限公司 用于测量磁场的磁电阻传感器
CN103076577B (zh) * 2012-08-03 2016-12-21 陈磊 一种检测磁场和加速度的磁阻传感器芯片
CN107040109B (zh) * 2017-06-15 2019-10-18 北京航空航天大学 基于Halbach阵列的永磁式力矩马达

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1510686A (zh) * 2002-12-10 2004-07-07 ���ǵ�����ʽ���� 具有不平行的主磁阻和参考磁阻的磁随机存取存储器器件
CN1694277A (zh) * 2004-03-12 2005-11-09 雅马哈株式会社 磁传感器制造方法、磁体阵列及其制造方法
US20060044700A1 (en) * 2004-08-31 2006-03-02 Johannes Paul Reorientation of magnetic layers and structures having reoriented magnetic layers
CN106154189A (zh) * 2015-03-30 2016-11-23 财团法人工业技术研究院 用于磁场感测的穿隧磁阻装置
CN106066460A (zh) * 2015-04-24 2016-11-02 阿尔卑斯电气株式会社 磁传感器、磁传感器的制造方法以及磁传感器的设计方法

Also Published As

Publication number Publication date
CN110568385A (zh) 2019-12-13
CN110568385B (zh) 2021-03-30

Similar Documents

Publication Publication Date Title
Becker et al. Self-assembly of highly sensitive 3D magnetic field vector angular encoders
Freitas et al. Spintronic sensors
JP6426178B2 (ja) シングルチップ・プッシュプルブリッジ型磁界センサ
EP2696211B1 (en) Single chip bridge magnetic field sensor and preparation method thereof
CN1755387B (zh) 利用巨磁致电阻元件的磁传感器及其制造方法
US7589528B2 (en) Magnetic sensor formed of magnetoresistance effect elements
WO2021253600A1 (zh) 一种单片集成三轴隧穿磁电阻的磁传感器及其制备方法
CN103913709A (zh) 一种单芯片三轴磁场传感器及其制备方法
US20130229175A1 (en) Magnetic field sensing methods and megnetic field sensing apparatuses using tunneling magneto-resistor devices
JP2017534855A (ja) シングルチップ型差動自由層プッシュプル磁界センサブリッジおよび製造方法
JP2020510823A (ja) シングル・チップ二軸磁気抵抗角度センサ
JP6868963B2 (ja) 磁気センサおよびその製造方法
EP3091364A1 (en) Magnetic sensor, method of manufacturing magnetic sensor, and method of designing magnetic sensor
CN203811786U (zh) 一种单芯片三轴磁场传感器
EP3620807B1 (en) Monolithic-chip and high-sensitivity type magneto-resistor linear transducer
WO2022183826A1 (zh) 磁传感器、磁传感器的制备方法及电子设备
WO2021022641A1 (zh) 一种磁传感器的制造方法及磁传感器
JP2011033601A (ja) 磁気式エンコーダにおいて磁石固定方法およびこの方法を用いた磁気式エンコーダ
KR100445817B1 (ko) 지엠알브리지센서의제조방법
US11536784B2 (en) Magnetic sensor and method of manufacturing such
CN116718963A (zh) 基于电流退火的线性gmr磁传感器制造方法及系统
CN110581216B (zh) 一种磁传感器的制造方法、磁传感器及电子设备
Belski et al. Development, micro fabrication, and test of flexible magnetic write head for gentelligent applications
JP2004117367A (ja) 磁気センサ及び同磁気センサの製造方法
CN205157753U (zh) 一种半翻转两轴磁电阻传感器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19940787

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19940787

Country of ref document: EP

Kind code of ref document: A1