WO2021022637A1 - 一种基于改进遗传算法的无人艇路径规划方法及系统 - Google Patents
一种基于改进遗传算法的无人艇路径规划方法及系统 Download PDFInfo
- Publication number
- WO2021022637A1 WO2021022637A1 PCT/CN2019/107109 CN2019107109W WO2021022637A1 WO 2021022637 A1 WO2021022637 A1 WO 2021022637A1 CN 2019107109 W CN2019107109 W CN 2019107109W WO 2021022637 A1 WO2021022637 A1 WO 2021022637A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- genetic algorithm
- unmanned boat
- path planning
- path
- population
- Prior art date
Links
- 238000004422 calculation algorithm Methods 0.000 title claims abstract description 156
- 230000002068 genetic effect Effects 0.000 title claims abstract description 87
- 238000000034 method Methods 0.000 title claims abstract description 54
- 210000000349 chromosome Anatomy 0.000 claims description 56
- 230000035772 mutation Effects 0.000 claims description 26
- 238000004364 calculation method Methods 0.000 claims description 15
- 230000008569 process Effects 0.000 claims description 11
- 230000009977 dual effect Effects 0.000 claims description 8
- 238000012545 processing Methods 0.000 claims description 7
- 238000004590 computer program Methods 0.000 claims description 6
- 238000012937 correction Methods 0.000 claims description 5
- 239000012634 fragment Substances 0.000 claims description 5
- 230000014759 maintenance of location Effects 0.000 claims description 5
- 238000003860 storage Methods 0.000 claims description 4
- 238000007781 pre-processing Methods 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 25
- 238000009826 distribution Methods 0.000 description 10
- 230000006870 function Effects 0.000 description 7
- 238000005457 optimization Methods 0.000 description 6
- 108090000623 proteins and genes Proteins 0.000 description 6
- 238000000342 Monte Carlo simulation Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 108700003861 Dominant Genes Proteins 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000002028 premature Effects 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 238000013473 artificial intelligence Methods 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008033 biological extinction Effects 0.000 description 1
- 239000004106 carminic acid Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000010429 evolutionary process Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000002922 simulated annealing Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/0206—Control of position or course in two dimensions specially adapted to water vehicles
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B13/00—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
- G05B13/02—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
- G05B13/04—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
- G05B13/042—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T70/00—Maritime or waterways transport
Definitions
- the present disclosure relates to the technical field of unmanned boat control, in particular to an unmanned boat path planning method and system based on an improved genetic algorithm.
- TSP Traveling Salesman Problem
- the research on the methods to solve the TSP problem mainly tends to heuristic algorithms with adaptive control ideas, such as genetic algorithm (GA), simulated annealing algorithm, ant colony algorithm and neural network algorithm.
- GA genetic algorithm
- UAV unmanned aerial vehicles
- USV unmanned boats
- the existing methods are as follows: (1) Apply obstacle-based genetic algorithms to narrow the search area and obtain a path with a shorter length and time cost.
- UAV path planning methods include traditional methods such as free space method, artificial potential field method, and visible method, as well as intelligent optimization algorithms that have emerged with the development of artificial intelligence, such as ant colony algorithm, particle swarm algorithm, genetic algorithm, etc. .
- the free space method is difficult to apply to multi-dimensional path planning problems such as the path planning of unmanned boats; artificial potential field method and particles Swarm algorithms are prone to problems such as unreachable targets, falling into local optima, and low efficiency, which cause self-crossing phenomena in unmanned boats; the view method lacks flexibility and has problems such as combinatorial explosions, while the ant colony algorithm has a large amount of calculation.
- These algorithms are time-consuming and cannot meet the timeliness requirements of UAV path planning.
- the traditional genetic algorithm cannot find the global optimal value due to the premature phenomenon, its good parallelism and efficient search ability meet the needs of unmanned boats in path planning.
- the present disclosure provides a path planning method and system for an unmanned boat based on an improved genetic algorithm, which uses the improved genetic algorithm to plan the path of the unmanned boat.
- a path planning method for unmanned craft based on improved genetic algorithm includes the following steps:
- the improved genetic algorithm is used to plan the path based on the heading data and position data of the unmanned boat to obtain the optimal path ranking;
- the heading and speed of the unmanned boat are corrected according to the constraint factors, and the path planning is completed.
- An unmanned boat path planning system based on improved genetic algorithm includes:
- Navigation data acquisition module used to acquire the heading data and position data of the unmanned boat, and preprocess it;
- the constraint factor determination module is used to collect the ocean wave information of the environment of the unmanned boat and convert it into a constraint factor
- the optimal path planning module is used for path planning based on the heading data and position data of the unmanned boat using an improved genetic algorithm to obtain the optimal path ranking;
- the track correction module is used for sorting based on the optimal path, correcting the heading and speed of the UAV according to the constraint factors, and completing the path planning.
- the improved genetic algorithm is used to plan the path based on the heading data and position data of the unmanned boat to obtain the optimal path ranking;
- the heading and speed of the unmanned boat are corrected according to the constraint factors, and the path planning is completed.
- a processing device includes a memory, a processor, and a computer program stored in the memory and capable of running on the processor, and the processor implements the following steps when the program is executed;
- the improved genetic algorithm is used to plan the path based on the heading data and position data of the unmanned boat to obtain the optimal path ranking;
- the heading and speed of the unmanned boat are corrected according to the constraint factors, and the path planning is completed.
- the present disclosure uses the dual-domain inversion genetic algorithm and the multi-domain inversion genetic algorithm to plan the path of the unmanned boat, and generates a feasible path with short length and no self-intersection, and realizes the control and track correction of the unmanned boat ;
- the genetic algorithm of the dual-domain inversion and the genetic algorithm based on the multi-domain inversion of the present disclosure greatly reduces the calculation time cost, improves the robustness of the algorithm, and obtains more stable, timely, and conforms to the UAV path planning Reasonable path to demand.
- Fig. 1 is a flowchart of a path planning method for an unmanned boat based on an improved genetic algorithm in the first embodiment
- Figure 2 is a flowchart of the genetic algorithm in the first embodiment
- Figure 3 is a schematic diagram of the cross in the first embodiment
- Figure 4 is a schematic diagram of mutations in Example 1.
- Figure 5 is a schematic diagram of single domain inversion in the first embodiment
- Fig. 6 is a schematic diagram of dual-region inversion in the first embodiment
- Fig. 7 is a schematic diagram of multi-domain inversion in the first embodiment
- Figure 10 is the best trajectory diagram of five instances of TSPLIB in the first embodiment
- Figure 11 is a schematic diagram of a genetic algorithm based on dual domain inversion in the first embodiment
- Figure 12 is a schematic diagram of a genetic algorithm based on multi-domain inversion in the first embodiment
- MDIGA an algorithm based on multi-domain inversion.
- This embodiment provides a path planning method for an unmanned boat based on an improved genetic algorithm. Please refer to Figure 1.
- the method includes the following steps:
- the longitude and latitude coordinates of the navigation point required by the unmanned boat are obtained through GPS and an electronic compass, and the longitude and latitude coordinates of the navigation point are transformed into the abscissa and ordinate values in the rectangular coordinate system.
- the ultrasonic weather sensor collects the weather and ocean wave information of the environment of the unmanned boat, including the height of the ocean wave, the velocity of the ocean wave, and the wavelength of the ocean wave; and converts the weather and ocean wave information into constraint factors, which are applied to the unmanned boat’s Track correction.
- the constraint factor is mainly the force of sea waves. Since the force received by the ship in the water is mainly the force of sea waves, the wave force model is used as the constraint factor to correct the track deflection.
- the function of the constraint factor is:
- h is the height of the waves
- V l is the velocity of the waves
- ⁇ 0 is the wavelength of the waves.
- the improved genetic algorithm includes a genetic algorithm based on dual-domain inversion and a genetic algorithm based on multi-domain inversion.
- the algorithm based on dual-domain inversion (DDIGA) is between four randomly ordered inversion points. Perform two inversion operations.
- the permutation and combination of the four reversal point sequences also increases the number of reversal domains.
- the algorithm based on multi-domain inversion (MDIGA), due to the significant increase in offspring, only retains the most suitable reverse chromosome and transfers it to The new generation, improve local search capabilities.
- Figure 2 shows the calculation process of the transmission genetic algorithm CGA.
- Choose the real number encoding method and use a string with the serial number of the visited city to represent each chromosome. Genetic parameters, such as population size, crossover and mutation probability, are usually defined based on experience. After determining the optimization problem, an initial population of candidate solutions with a certain scale is randomly generated. The fitness function is 1/len (len represents the relative path length of each chromosome), which is used to evaluate the fitness of each individual, and more suitable individuals will survive reproduction. Then, the algorithm increases the population size through iterative operations of crossover, mutation, and selection. If a certain standard is met or the maximum number of iterations is reached, the evolutionary process will be terminated.
- crossover is mainly used to connect two parent chromosomes. These chromosomes are separated by a determined breakpoint and produce two offspring with a certain crossover probability (P C ). Mutations are mainly used to exchange gene positions at two randomly selected mutation points on the chromosome, and the occurrence of mutations has a certain mutation probability (P M ). It should be pointed out that crossover makes the chromosomes similar and helps the convergence of the population; while mutation increases the genetic diversity, so that the algorithm can further expand the population number under the condition of local optimization.
- This embodiment proposes a single-domain inversion algorithm (SDIGA), and adds a further inversion operation after the CGA mutation.
- SDIGA single-domain inversion algorithm
- Two different genes on a chromosome are defined as inversion sites, and the segment between these two genes is named inversion domains. Then flip the fragment 180 degrees (reverse) and insert it into the original position of the chromosome.
- the schematic diagrams of crossover, mutation and single domain inversion are shown in Figures 3 to 5, respectively.
- the positions of four different genes are randomly defined as the reversal points of the chromosome coding string. Two domains are generated between the first two points and the last two points. The fragments in the two regions are reversed at the same time to propagate offspring. Compare the fitness of the offspring's chromosome and the parent's chromosome to determine the more suitable for the next generation. chromosome.
- the double-region inversion is shown in Figure 6, where I represents the parent chromosome, and I'is the child chromosome after inversion.
- the genetic algorithm based on the dual-domain inversion designed in this embodiment helps to retain more dominant genes from the parent chromosome and generate more adaptive encoded strings for the child chromosomes through the dual-domain inversion. At the same time, since reasonable fitness can ensure that the offspring evolve to a higher level, the ability of local search may be improved.
- the genetic algorithm MDIGA based on multi-domain inversion is:
- the number of offspring produced is usually the same as the number of parent chromosomes. From the basis of biological theory, the number of offspring needs to be greater than the number of parents to prevent species extinction and maintain species diversity during biological evolution.
- the four randomly sorted points in the genetic algorithm based on dual domain inversion create two domains for DDIGA, and only one child chromosome is generated after two inversions, but in fact, every two of the four inversion points Both can define an inversion domain.
- there are six regions in one inversion Therefore, the 6 additional daughter chromosomes will be replicated through a single inversion of each domain in the parent chromosome; this will increase the possibility of finding more suitable offspring for each generation to a certain extent.
- this embodiment designs a genetic algorithm based on multi-domain inversion to increase the number of inversion domains and sub-chromosomes.
- 7 in the encoded random string defines four turning points, called AD, six daughter chromosomes I '1 -I' 6 respectively region ab, ac, ad, bc, bd, and cd of the A single reversal occurs.
- DDIGA Similarly, I '7 generated by the double inversion in the region of ab and cd. Then, the parent chromosomes and seven daughter chromosomes are classified according to their fitness, and only the most dominant chromosome I'(I' 5 in this example) is reserved for the next generation, while the other chromosomes are completely eliminated.
- the genetic algorithm based on multi-domain inversion proposed in this embodiment can speed up the evolution to a higher degree of fitness, and improve the convergence accuracy and robustness of the algorithm.
- This embodiment adopts the Monte Carlo simulation method to verify the effectiveness of the aforementioned CGA, DDIGA, and MDIGA algorithms from the aspects of the number of planning points, the population size, and the calculation efficiency.
- P M recommended range is 0.001 to 0.05, this value will increase the mutation operation, out of the algorithm so that optimal solution. Therefore, based on the recommendations in the existing literature and practical experience, the crossover probability (P C ) and mutation probability (P M ) in this embodiment are defined as 0.90 and 0.10, respectively, and Monte Carlo simulation is performed on each TSP instance , Use four algorithms to get the data set of the optimal path distance. The comparison results are shown in five box diagrams in Figure 8(a)- Figure 8(e).
- a range bar to indicate the interquartile range (IQR) of the data set, which indicates the degree of dispersion of the data set, and the median and average values are represented by a red line and a bar in the bar chart
- the plus sign indicates that there are borders around the data bar, and the ends of the borders represent the minimum and maximum values.
- the standard deviation is calculated to show the distance between the data set and their average value, which reflects the robustness of the algorithm. Under the same working conditions, the smaller the standard deviation, the better the robustness of the algorithm.
- the path distance of CGA is the longest, the robustness is the worst, and the gap is more obvious.
- MDIGA has excellent performance in reducing path distance and improving robustness.
- the average distance and standard deviation of MDIGA are 1341.81m and 31.41m, which are 49.0% and 79.6% smaller than CGA, respectively.
- eil51 with 51 planning points in TSPLIB is selected as the working condition.
- the five populations are 20, 40, 60, 80 and 100 in size.
- the maximum number of iterations (N max ) of each algorithm is set to 1600.
- the crossover probability (P C ) and mutation probability (P M ) are 0.90 and 0.10, respectively, and 100 Monte Carlo simulations have been performed using four algorithms with different population sizes.
- Figure 9(a)- Figure 9(e) are composed of five box plots, showing the comparison results.
- the calculation efficiency is compared with the results of the TSPLIB instances at five different planning points, and two main criteria are selected to evaluate the calculation efficiency of each algorithm: calculation time and convergence speed.
- the calculation time refers to the time cost required to complete the maximum number of iterations
- the convergence rate refers to the critical number of iterations (N cri ) when the solution reaches the convergence level.
- Figure 10 shows five examples of TSPLIB using MDIGA, where (a) is burma14, (b) is ulysses22, (c) is eil51, (d) is eil76, and (e) is the best trajectory of rat99.
- the abscissa and ordinate respectively represent the latitude and longitude value of each planning point.
- the red numbers are a sequence of randomly generated points, the points enclosed by the red rectangle are the starting points, and the arrows indicate the direction of the planned path.
- the specific method for path planning based on the dual-domain inversion-based genetic algorithm is:
- the first step is to initialize the parameters. Set the population size, maximum number of iterations, initial crossover probability and initial mutation probability.
- the second step is to initialize the population.
- the initial population is randomly generated as the parent in the genetic process.
- the third step is the calculation of fitness value.
- the fitness function is defined as 1/len, where len represents the relative path length of each chromosome. Sort the initial population according to the calculated fitness value.
- the fourth step is to perform selection, crossover and mutation operations on chromosomes.
- the crossover probability and mutation probability are respectively defined as 0.90 and 0.10.
- the fitness value of the newly generated population is calculated, and the new population is reordered according to this value to obtain the new population as the primary offspring.
- the fifth step is to perform a dual-domain inversion operation. Randomly select four serial numbers as the reversal points of chromosome encoding, generate two domains respectively between the first two points and the last two points, and the fragments in the two areas are reversed at the same time to produce new offspring, and compare offspring
- the fitness value of chromosome and parent chromosome keep the chromosome with larger fitness value, and update the population.
- the double-region inversion is shown in Figure 11, where S represents the parent chromosome and S'is the child chromosome after inversion.
- the sixth step is to judge the termination condition of the iteration.
- the iteration termination condition is set to meet the requirements of a certain working condition or the number of iterations reaches the maximum. If the termination condition is not met, the number of iterations is increased by one and go to step four; if it is met, go to step seven.
- the optimal individual is selected from the retention results of each iteration as the optimal solution of the dual-domain inversion genetic algorithm and output, and the whole algorithm ends.
- the first step is to initialize the parameters. Set the population size, maximum number of iterations, initial crossover probability and initial mutation probability.
- the second step is to initialize the population.
- the initial population is randomly generated as the parent in the genetic process.
- the third step is the calculation of fitness value.
- the fitness function is defined as 1/len, where len represents the relative path length of each chromosome. Sort the initial population according to the calculated fitness value.
- the fourth step is to perform selection, crossover and mutation operations on chromosomes.
- the crossover probability and mutation probability are respectively defined as 0.90 and 0.10.
- the fitness value of the newly generated population is calculated, and the new population is reordered according to this value to obtain the new population as the primary offspring.
- the fifth step is to perform multi-domain reversal operation: four reversal points are randomly defined in the encoded string, namely a, b, c, d, and the six child chromosomes S 1 -S 6 pass through the regions ab, ac, A single inversion in ad, bc, bd and cd is produced. Similar to the dual domain inversion, S 7 is generated by the double inversion in the regions ab and cd, as shown in Figure 12. Then, according to their fitness, the parent chromosome and the seven daughter chromosomes are compared, and the best quality chromosomes are retained and passed on to the next generation, while other chromosomes are completely eliminated.
- the sixth step is to judge the termination condition of the iteration.
- the iteration termination condition is set to meet the requirements of a certain working condition or the number of iterations reaches the maximum. If the termination condition is not met, the number of iterations is increased by one and go to step four; if it is met, go to step seven.
- the optimal individual is selected from the retention results of each iteration as the optimal solution of the multi-domain reversal genetic algorithm and output, and the whole algorithm ends.
- unmanned craft USV
- USV unmanned craft
- path planning is of great significance to the realization of autonomous navigation and control of unmanned boats.
- the method proposed in this embodiment is applied to the self-developed USV path planning. As a preliminary study, this embodiment ignores factors such as wind, current, and waves.
- the USV model adopted in this embodiment is a pentamaran with a length of 1.8 meters and a width of 0.9 meters.
- a 48V, 45A battery provides power for the motor driving the propeller.
- the navigation, guidance and control (NGC) system is placed inside the hull to ensure a dry working environment.
- the NGC system is composed of three module subsystems: navigation data processing subsystem, path planning subsystem and autopilot subsystem.
- navigation data processing subsystem multiple sensors including electronic compass and GPS are used to obtain heading direction and USV position data.
- DAQ navigation data acquisition
- the autopilot uses a closed-loop controller to determine the heading and speed of the USV.
- GUI programs compiled based on the Spring MVC framework are used to process and record all data in the personal computer.
- the GPRS wireless network is used as the communication unit between the USV and the personal computer, the effective distance is 5 kilometers, and the transmission speed is 1-100Mbps.
- Figure 14-17 shows the optimal trajectory diagram of each algorithm under various working conditions.
- SDIGA and MDIGA are better than CGA around the sequence numbers 3, 12, and 15.
- the trajectory becomes more complicated, and the difference in path shape and distance is more obvious.
- the trajectories generated by CGA and DDIGA have different degrees of path crossing phenomenon, which is why under the same conditions, compared with other algorithms, the reason for generating a longer route distance.
- MDIGA is more obvious in avoiding path crossing and simplifying path shape, especially when more planning points are considered. The main reason may be that a large number of offspring and the retention of the most suitable individuals can help avoid local Optimal and converge to the optimal solution.
- An unmanned boat path planning system based on improved genetic algorithm includes:
- Navigation data acquisition module used to acquire the heading data and position data of the unmanned boat, and preprocess it;
- the constraint factor determination module is used to collect the weather and wind and wave information of the environment of the unmanned boat and convert it into constraint factors
- the optimal path planning module is used for path planning based on the heading data and position data of the unmanned boat using an improved genetic algorithm to obtain the optimal path ranking;
- the track correction module is used for sorting based on the optimal path, correcting the heading and speed of the UAV according to the constraint factors, and completing the path planning.
- the improved genetic algorithm is used to plan the path based on the heading data and position data of the unmanned boat to obtain the optimal path ranking;
- the heading and speed of the unmanned boat are corrected according to the constraint factors, and the path planning is completed.
- a processing device includes a memory, a processor, and a computer program stored in the memory and capable of running on the processor, and the processor implements the following steps when the program is executed;
- the improved genetic algorithm is used to plan the path based on the heading data and position data of the unmanned boat to obtain the optimal path ranking;
- the heading and speed of the unmanned boat are corrected according to the constraint factors, and the path planning is completed.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- General Physics & Mathematics (AREA)
- Remote Sensing (AREA)
- Radar, Positioning & Navigation (AREA)
- Aviation & Aerospace Engineering (AREA)
- Health & Medical Sciences (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Computation (AREA)
- Medical Informatics (AREA)
- Software Systems (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
Claims (10)
- 一种基于改进遗传算法的无人艇路径规划方法,其特征是,该方法包括以下步骤:获取无人艇的航向数据和位置数据,并对其进行预处理;采集无人艇所处环境的海浪信息,并将其转换为约束因子;采用改进遗传算法根据无人艇的航向数据和位置数据进行路径规划,得到最优路径排序;基于最优路径排序,根据约束因子修正无人艇的航向和航速,完成路径规划。
- 根据权利要求1所述的基于改进遗传算法的无人艇路径规划方法,其特征是,所述无人艇的航向数据和位置数据包括无人艇所需航行点的经纬度坐标数据,并将航行点的经纬度坐标变换为直角坐标系下的横纵坐标值。
- 根据权利要求1所述的基于改进遗传算法的无人艇路径规划方法,其特征是,所述改进遗传算法包括基于双域反演的遗传算法和基于多域反演的遗传算法。
- 根据权利要求4所述的基于改进遗传算法的无人艇路径规划方法,其特征是,基于双域反演的遗传算法进行路径规划的具体方法为:(1)参数初始化:设置种群规模,最大迭代次数,初始交叉概率和初始变异概率;(2)初始化种群:随机生成初始种群作为遗传过程中的父代;(3)适应度值的计算:计算每条染色体的适应度值,根据计算所得适应度值对初始种群进行排序;(4)对染色体进行选择,交叉和变异操作,同时计算新产生种群的适应度值,根据该值重新排序,获得新的种群作为初级子代;(5)进行双域反演操作:随机选择四个序号作为染色体编码的反转点,在前两个点和后两个点之间分别生成两个域,两个区域中的片段同时反转以产生新的子代,比较子代染色体和父代染色体的适应度值,保留适应度值更大的染色体,更新种群;(6)判断是否满足迭代终止条件,若不满足终止条件,则迭代次数加一,转步骤(4);若满足则转步骤(7);(7)从各迭代保留结果中选择最优个体作为双域反演遗传算法的最优解并输出。
- 根据权利要求3所述的基于改进遗传算法的无人艇路径规划方法,其特征是,基于 多域反演的遗传算法进行路径规划的具体方法为:(1)参数初始化:设置种群规模,最大迭代次数,初始交叉概率和初始变异概率;(2)初始化种群:随机生成初始种群作为遗传过程中的父代;(3)适应度值的计算:计算每条染色体的适应度值,根据计算所得适应度值对初始种群进行排序;(4)对染色体进行选择,交叉和变异操作,同时计算新产生种群的适应度值,根据该值重新排序,获得新的种群作为初级子代;(5)进行多域反转操作:在编码字符串中随机定义了四个反转点,在任意两个反转点之间生成六个区域,六个区域中的片段单个反转产生六个新的子染色,以及在前两个点和后两个点之间分别生成两个域,两个区域中的片段同时反转以产生新的第七个子染色;比较七个子代染色体和父代染色体的适应度值,适应度值更大的染色体,更新种群;(6)判断是否满足迭代终止条件,若不满足终止条件,则迭代次数加一,转步骤(4);若满足则转步骤(7);(7)从各迭代保留结果中选择最优个体作为多域反演遗传算法的最优解并输出。
- 根据权利要求1所述的基于改进遗传算法的无人艇路径规划方法,其特征是,所述基于最优路径排序,根据约束因子修正无人艇的航向和航速的具体方法为:将得到的最优路径排序与无人艇所需航行点的经纬度坐标数据相结合,绘制直角坐标系路径图,并得到无人艇的当前位置与目标点之间的距离及偏转角信息;根据约束因子对无人艇当前位置与目标点之间的距离及偏转角信息进行数据处理,得到无人艇当前位置与目标点的实时偏转角度及相对距离。
- 一种基于改进遗传算法的无人艇路径规划系统,其特征是,该系统包括:航行数据获取模块,用于获取无人艇的航向数据和位置数据,并对其进行预处理;约束因子确定模块,用于采集无人艇所处环境的海浪信息,并将其转换为约束因子;最优路径规划模块,用于采用改进遗传算法根据无人艇的航向数据和位置数据进行路径规划,得到最优路径排序;航迹修正模块,用于基于最优路径排序,根据约束因子修正无人艇的航向和航速,完成路径规划。
- 一种计算机可读存储介质,其上存储有计算机程序,其特征是,该程序被处理器执行时实现如权利要求1-7中任一项所述的基于改进遗传算法的无人艇路径规划方法中的步骤。
- 一种处理装置,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其特征是,所述处理器执行所述程序时实现如权利要求1-7中任一项所述的基于改进遗传算法的无人艇路径规划方法中的步骤。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910721372.6 | 2019-08-06 | ||
CN201910721372.6A CN110442135B (zh) | 2019-08-06 | 2019-08-06 | 一种基于改进遗传算法的无人艇路径规划方法及系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021022637A1 true WO2021022637A1 (zh) | 2021-02-11 |
Family
ID=68433459
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/107109 WO2021022637A1 (zh) | 2019-08-06 | 2019-09-20 | 一种基于改进遗传算法的无人艇路径规划方法及系统 |
Country Status (3)
Country | Link |
---|---|
CN (1) | CN110442135B (zh) |
LU (1) | LU102400B1 (zh) |
WO (1) | WO2021022637A1 (zh) |
Cited By (71)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112818472A (zh) * | 2021-02-25 | 2021-05-18 | 西北工业大学 | 一种民用飞机飞行试验科目安排及优化方法 |
CN112947480A (zh) * | 2021-03-24 | 2021-06-11 | 武汉理工大学 | 一种移动机器人路径规划方法、存储介质及系统 |
CN113095733A (zh) * | 2021-05-10 | 2021-07-09 | 北京化工大学 | 一种基于改进遗传算法求解单机械臂转移作业车间调度方法 |
CN113110424A (zh) * | 2021-03-26 | 2021-07-13 | 大连海事大学 | 一种基于海图信息的无人艇避碰方法 |
CN113128788A (zh) * | 2021-05-17 | 2021-07-16 | 华北电力大学 | 一种电力应急物资输送路径优化方法、装置及存储介质 |
CN113124873A (zh) * | 2021-04-09 | 2021-07-16 | 青岛哈船海智科技有限公司 | 基于海洋环境信息的uuv多指标约束三维航路规划方法 |
CN113159687A (zh) * | 2021-04-29 | 2021-07-23 | 长安大学 | 一种车间agv-uav协同的物料配送路径规划方法和系统 |
CN113175930A (zh) * | 2021-03-22 | 2021-07-27 | 西安理工大学 | 基于mmea的多无人机协同航迹规划方法 |
CN113177762A (zh) * | 2021-05-14 | 2021-07-27 | 大连海事大学 | 一种多中心电动车-无人机配送路径优化方法 |
CN113188547A (zh) * | 2021-05-06 | 2021-07-30 | 国能朔黄铁路发展有限责任公司 | 无人机路径规划方法、装置、控制器及存储介质 |
CN113222272A (zh) * | 2021-05-26 | 2021-08-06 | 合肥工业大学 | 基于双层遗传编码的应急物资运输与装载协同优化方法 |
CN113361753A (zh) * | 2021-05-26 | 2021-09-07 | 中国电子技术标准化研究院 | 基于量子遗传算法的确定最优路径的方法、系统和介质 |
CN113571134A (zh) * | 2021-07-28 | 2021-10-29 | 合肥综合性国家科学中心人工智能研究院(安徽省人工智能实验室) | 基于骨干粒子群算法的基因数据特征选择方法及装置 |
CN113592148A (zh) * | 2021-07-01 | 2021-11-02 | 合肥工业大学 | 改进车辆与无人机配送路线的优化方法及系统 |
CN113624235A (zh) * | 2021-07-31 | 2021-11-09 | 武夷科技信息(北京)有限公司 | 一种无人机实时动态调整导航路径的方法 |
CN113673922A (zh) * | 2021-07-09 | 2021-11-19 | 合肥工业大学 | 基于鱼骨型仓库布局的多车拣选路径问题优化方法及系统 |
CN113687657A (zh) * | 2021-08-26 | 2021-11-23 | 鲁东大学 | 用于多智能体编队动态路径规划的方法和存储介质 |
CN113741477A (zh) * | 2021-09-14 | 2021-12-03 | 中国船舶重工集团公司第七0七研究所九江分部 | 一种欠驱动船舶靠泊路径规划方法 |
CN113779885A (zh) * | 2021-09-16 | 2021-12-10 | 南京航空航天大学 | 一种基于遗传算法的容差优化方法 |
CN113778127A (zh) * | 2021-09-18 | 2021-12-10 | 中国人民解放军国防科技大学 | 基于遗传算法的无人机侦察路径规划方法及装置 |
CN113867358A (zh) * | 2021-10-13 | 2021-12-31 | 中国人民解放军陆军工程大学 | 多无人车协同遍历任务的智能路径规划方法 |
CN113885533A (zh) * | 2021-11-12 | 2022-01-04 | 江苏海洋大学 | 一种无人艇的无人驾驶方法及系统 |
CN113887782A (zh) * | 2021-08-27 | 2022-01-04 | 西安电子科技大学 | 一种面向维修资源配送调度的遗传-烟花混合方法及系统 |
CN113885555A (zh) * | 2021-09-14 | 2022-01-04 | 安徽送变电工程有限公司 | 面向输电线路密集通道巡检的多机任务分配方法和系统 |
CN113945796A (zh) * | 2021-09-29 | 2022-01-18 | 集美大学 | 一种配电网故障定位方法、终端设备及存储介质 |
CN114020022A (zh) * | 2021-11-04 | 2022-02-08 | 中国人民解放军陆军工程大学 | 异构无人机协同打击任务规划方法及装置 |
CN114036749A (zh) * | 2021-11-09 | 2022-02-11 | 上海交通大学 | 一种考虑续航里程的新能源共享汽车的调度方法 |
CN114049243A (zh) * | 2021-10-26 | 2022-02-15 | 中山大学 | 一种浒苔堆积量估算方法、系统及存储介质 |
CN114265355A (zh) * | 2021-12-30 | 2022-04-01 | 上海大学 | 一种具有自主控制无人艇悬停功能的遥控器及其控制方法 |
CN114281104A (zh) * | 2021-12-16 | 2022-04-05 | 成都戎星科技有限公司 | 一种基于改进蚁群算法的多无人机协同调控方法 |
CN114355895A (zh) * | 2021-12-14 | 2022-04-15 | 南京航空航天大学 | 一种车辆主动避撞路径规划方法 |
CN114397896A (zh) * | 2022-01-10 | 2022-04-26 | 贵州大学 | 一种改进粒子群算法的动态路径规划方法 |
CN114399043A (zh) * | 2021-06-16 | 2022-04-26 | 北京理工大学 | 一种基于非支配排序粒子群遗传算法的车辆位置路由方法 |
CN114578772A (zh) * | 2021-04-16 | 2022-06-03 | 西南交通大学 | 一种agv集群控制系统设计框架及方法 |
CN114594788A (zh) * | 2022-02-28 | 2022-06-07 | 西安交通大学 | 一种未知环境下四旋翼无人飞行器航迹规划方法及系统 |
CN114611984A (zh) * | 2022-03-24 | 2022-06-10 | 集美大学 | 海上大规模救助资源调度决策方法、系统及存储介质 |
CN114608596A (zh) * | 2022-03-09 | 2022-06-10 | 大连大学 | 一种基于dssa算法的路径规划方法 |
CN114648162A (zh) * | 2022-03-18 | 2022-06-21 | 山东大学 | 基于混合启发式算法的多色喷涂路径规划方法及系统 |
CN114967764A (zh) * | 2022-04-28 | 2022-08-30 | 农业农村部南京农业机械化研究所 | 多作业区域植保无人机航线规划与任务分配方法 |
CN114995413A (zh) * | 2022-05-26 | 2022-09-02 | 南京航空航天大学 | 基于改进遗传算法的智能小车路径规划方法 |
CN115062936A (zh) * | 2022-06-06 | 2022-09-16 | 同济大学 | 一种考虑区域责任制的汽车装配线动态周期性物料配送调度方法 |
CN115079995A (zh) * | 2022-07-22 | 2022-09-20 | 中南大学 | 一种中子谱仪被测样品测点排序方法和系统 |
CN115119143A (zh) * | 2022-06-29 | 2022-09-27 | 西北工业大学 | 一种无人机辅助地面基站的位置部署方法及系统 |
CN115357021A (zh) * | 2022-08-25 | 2022-11-18 | 齐齐哈尔大学 | 一种基于改进凌日搜索算法的水面无人艇路径规划方法 |
CN115421508A (zh) * | 2022-08-01 | 2022-12-02 | 西安工业大学 | 一种适用于多无人机多目标航迹规划的粒子群优化方法 |
CN115438860A (zh) * | 2022-09-06 | 2022-12-06 | 西安电子科技大学广州研究院 | 一种基于进化算法的多智能体路径规划方法 |
CN115451974A (zh) * | 2022-11-09 | 2022-12-09 | 广东电网有限责任公司湛江供电局 | 一种电力设备巡检路径规划方法、系统、设备和介质 |
CN115469671A (zh) * | 2022-10-21 | 2022-12-13 | 江苏海洋大学 | 一种基于聚集-置换策略的机器人路径规划方法 |
CN115495859A (zh) * | 2022-09-19 | 2022-12-20 | 上海交通大学 | 一种基于遗传算法的仓网规划算法 |
CN115562074A (zh) * | 2022-10-29 | 2023-01-03 | 福州大学 | 一种快速生成无人机最优规划路径的仿真系统及方法 |
WO2023029188A1 (zh) * | 2021-08-31 | 2023-03-09 | 南京天溯自动化控制系统有限公司 | 路径规划方法、装置、设备及存储介质 |
CN115857516A (zh) * | 2023-03-02 | 2023-03-28 | 之江实验室 | 结合牛耕式运动与遗传算法的全覆盖路径规划方法和装置 |
CN115879603A (zh) * | 2022-11-17 | 2023-03-31 | 武汉大学 | 一种面向多目标点的多无人机协同数据采集方法及装置 |
CN115952942A (zh) * | 2023-03-13 | 2023-04-11 | 季华实验室 | 多目标巡检调度规划方法、装置、电子设备及存储介质 |
CN116047909A (zh) * | 2023-01-13 | 2023-05-02 | 大连海事大学 | 面向海事平行搜寻的无人机-船协同鲁棒自适应控制方法 |
CN116090357A (zh) * | 2023-04-07 | 2023-05-09 | 中国人民解放军96901部队 | 多目标打击任务可行性快速评估方法 |
CN116243701A (zh) * | 2022-10-28 | 2023-06-09 | 北京航空航天大学杭州创新研究院 | 基于最优推进速度的水下机器人最优能耗路径规划方法 |
CN116519003A (zh) * | 2023-06-28 | 2023-08-01 | 广汽埃安新能源汽车股份有限公司 | 一种路径规划方法、装置、电子设备及存储介质 |
CN116678409A (zh) * | 2023-04-24 | 2023-09-01 | 大连海事大学 | 一种基于改进灰狼算法的北极冰区船舶路径规划方法 |
CN116954239A (zh) * | 2023-06-12 | 2023-10-27 | 成都丰千达科技有限公司 | 一种基于改进粒子群算法的无人机航迹规划方法及系统 |
CN116989797A (zh) * | 2023-09-26 | 2023-11-03 | 北京理工大学 | 无人机航迹优化方法、装置、电子设备及存储介质 |
CN117356546A (zh) * | 2023-12-01 | 2024-01-09 | 南京禄口国际机场空港科技有限公司 | 一种机场草坪用的喷雾车的控制方法、系统及存储介质 |
CN117419731A (zh) * | 2023-12-19 | 2024-01-19 | 青岛哈尔滨工程大学创新发展中心 | 基于多策略人工蜂群算法在海洋环境下的路径规划方法 |
CN117494919A (zh) * | 2023-11-13 | 2024-02-02 | 广州力生机器人技术有限公司 | 一种基于多机器人协同码垛作业的路径规划方法及装置 |
CN117608200A (zh) * | 2024-01-23 | 2024-02-27 | 山东科技大学 | 一种海洋航行器路径规划方法 |
CN117601136A (zh) * | 2024-01-24 | 2024-02-27 | 济宁鲁鑫工程机械有限公司 | 一种自动焊接机器人路径规划方法及系统 |
CN117689677A (zh) * | 2024-02-01 | 2024-03-12 | 山东大学日照研究院 | 一种砂轮磨损状态识别方法、系统、设备及介质 |
CN117742373A (zh) * | 2023-11-13 | 2024-03-22 | 广东工业大学 | 基于改进遗传算法的无人机路径规划方法 |
CN117951851A (zh) * | 2024-02-19 | 2024-04-30 | 重庆大学 | 一种应对极端降雨的道路大排水行泄路径优化设计方法 |
CN118411058A (zh) * | 2024-07-02 | 2024-07-30 | 中国电子科技集团公司信息科学研究院 | 基于区域目标离散化的多星对地观测任务规划方法及装置 |
CN118628074A (zh) * | 2024-08-12 | 2024-09-10 | 中国人民解放军国防科技大学 | 海上协同搜救的任务规划方法、装置、设备及存储介质 |
Families Citing this family (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111145068B (zh) * | 2019-12-09 | 2023-09-26 | 南京航空航天大学 | 一种长距离高时效经济性巡航车速规划方法 |
CN111026135B (zh) * | 2020-01-18 | 2020-11-13 | 上海大学 | 一种无人艇高性能航行前馈控制系统及其控制方法 |
CN113805570B (zh) * | 2020-05-28 | 2024-06-28 | 广州汽车集团股份有限公司 | 车辆行驶路径和行驶速度协同规划方法、系统及存储介质 |
CN111610788B (zh) * | 2020-06-13 | 2023-04-18 | 大连海事大学 | 一种分级模糊-人工势场路径规划的方法 |
CN111664852B (zh) * | 2020-06-15 | 2023-07-04 | 天津大学 | 一种无人机路径规划方法及装置 |
CN112034865B (zh) * | 2020-08-12 | 2021-10-08 | 浙江大学 | 基于优化算法的全驱动水下航行器航迹跟踪控制方法 |
CN112381284B (zh) * | 2020-11-11 | 2023-12-01 | 成都信息工程大学 | 一种无人接驳车多站点路径优化的改进遗传算法 |
CN112529278B (zh) * | 2020-12-02 | 2021-08-31 | 中国人民解放军93209部队 | 基于联结矩阵寻优的航路网规划方法及装置 |
CN113570022B (zh) * | 2021-03-05 | 2023-05-23 | 福建工程学院 | 传感器网络中可充电移动小车路径规划方法及装置 |
CN113029150B (zh) * | 2021-03-10 | 2023-09-08 | 辽宁工程技术大学 | 一种多约束条件下的智能飞行器航迹规划方法 |
CN113595774B (zh) * | 2021-07-19 | 2023-08-01 | 广西大学 | 一种基于iaga算法的高速列车车联网拓扑优化方法 |
CN113762594B (zh) * | 2021-07-23 | 2023-07-07 | 合肥工业大学 | 车机协同配送灾后救援物资的路径规划方法和装置 |
CN113780839B (zh) * | 2021-09-15 | 2023-08-22 | 湖南视比特机器人有限公司 | 基于深度强化学习的演化式分拣作业调度方法及系统 |
CN113778128B (zh) * | 2021-09-18 | 2023-03-31 | 中国人民解放军国防科技大学 | 基于遗传算法的无人机侦察任务规划方法及装置 |
CN113703463B (zh) * | 2021-09-23 | 2023-12-05 | 大连海事大学 | 一种基于精英多种群演化算法的船舶避碰路径规划方法 |
CN113819919B (zh) * | 2021-09-26 | 2022-07-01 | 陕西科技大学 | 一种基于布尔约束的机器人最优路径规划方法 |
CN114169828B (zh) * | 2021-12-08 | 2024-06-04 | 南通大学 | 一种多机型多物资类型无人机应急配送路径规划方法及其规划系统 |
CN114493090A (zh) * | 2021-12-13 | 2022-05-13 | 石河子大学 | 工业园区综合能源智能管控方法及装置 |
CN114281108B (zh) * | 2021-12-28 | 2024-05-03 | 北京神星科技有限公司 | 基于分层改进遗传算法的投送任务规划方法 |
CN114578708B (zh) * | 2022-01-26 | 2024-07-02 | 吉林大学 | 基于Matlab/Simulink飞行汽车工况识别系统 |
CN114610027B (zh) * | 2022-03-07 | 2024-10-18 | 吉林大学 | 一种船舶航海路径规划方法 |
CN114647541B (zh) * | 2022-03-18 | 2024-04-26 | 西安微电子技术研究所 | 一种基于改进演化硬件的电路自修复方法 |
CN114812553B (zh) * | 2022-03-21 | 2024-09-06 | 武汉大学 | 一种顾及dsm模型的多无人机协同三维航迹规划方法 |
CN114781863B (zh) * | 2022-04-21 | 2024-06-07 | 南京航空航天大学 | 多机器人协同加工效率与质量双目标优化任务规划方法 |
CN114897246A (zh) * | 2022-05-16 | 2022-08-12 | 北京航空航天大学 | 基于遗传算法和贪心策略的飞艇多任务点航线规划方法 |
CN114859930A (zh) * | 2022-05-19 | 2022-08-05 | 山东省海洋科学研究院(青岛国家海洋科学研究中心) | 一种路径规划方法、无人艇集群的控制方法及系统 |
CN115167502B (zh) * | 2022-06-10 | 2024-08-20 | 中国人民解放军国防科技大学 | 基于免疫克隆算法的无人机协同航迹规划方法及装置 |
CN115167501B (zh) * | 2022-06-10 | 2024-10-18 | 中国人民解放军国防科技大学 | 基于免疫克隆算法的无人机航迹优化方法、装置和设备 |
CN114924593B (zh) * | 2022-06-16 | 2024-04-26 | 华中科技大学 | 一种车辆与多无人机会合路线快速规划方法 |
CN115113647A (zh) * | 2022-07-11 | 2022-09-27 | 大连海事大学 | 一种基于智能演化算法的集群无人机资源调度方法 |
CN115079704B (zh) * | 2022-08-01 | 2024-02-27 | 中国电信股份有限公司 | 路径规划方法、装置、存储介质及电子设备 |
CN115345549B (zh) * | 2022-08-11 | 2024-01-23 | 上海维祥信息技术有限公司 | 结合装载方案的车辆路径调整方法及系统 |
CN115616907B (zh) * | 2022-09-22 | 2023-08-04 | 上海海事大学 | 一种无人艇航向智能规划方法及控制器 |
CN115801665B (zh) * | 2022-11-22 | 2024-05-24 | 山西大学 | 一种基于转发图的域内路由保护方法 |
CN116088542B (zh) * | 2023-04-12 | 2023-08-18 | 中国水产科学研究院南海水产研究所 | 一种基于遥感技术的渔船作业安全预警方法及系统 |
CN116542468B (zh) * | 2023-05-06 | 2023-10-20 | 中国人民解放军32370部队 | 一种无人机集群任务规划方法 |
CN117213484B (zh) * | 2023-06-21 | 2024-06-18 | 深圳大学 | 一种基于遗传算法的航点连线方法、装置及智能终端 |
CN117196271B (zh) * | 2023-11-08 | 2024-02-13 | 北京理工大学 | 一种柔性车间异构机器人双效调度方法 |
CN117968689A (zh) * | 2023-12-25 | 2024-05-03 | 荆楚理工学院 | 基于遗传粒子混合算法的无人机路径规划方法和系统 |
CN118168602A (zh) * | 2024-03-11 | 2024-06-11 | 自然资源部第一海洋研究所 | 一种海洋环境数据采集方法及系统 |
CN118244054B (zh) * | 2024-04-01 | 2024-09-10 | 国网安徽省电力有限公司六安市叶集供电公司 | 一种基于量子遗传算法的智能终端监测方法及装置 |
CN118195277B (zh) * | 2024-05-16 | 2024-07-23 | 中国人民解放军海军航空大学 | 直升机群海上平台出动作业一体化调度方法 |
CN118348810B (zh) * | 2024-05-28 | 2024-10-15 | 安华海洋智能装备(深圳)有限公司 | 用于海洋探测设备的优化方法、系统及探测设备 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1441913A (zh) * | 2000-06-26 | 2003-09-10 | 维斯特恩格科地震控股有限公司 | 海洋数据收集的最佳路线 |
US9340270B2 (en) * | 2013-02-27 | 2016-05-17 | Furuno Electric Company Limited | Nautical automatic steering device, automatic steering method, and non-transitory computer-readable medium storing automatic steering program |
CN105867383A (zh) * | 2016-05-16 | 2016-08-17 | 哈尔滨工程大学 | 一种usv自主避碰控制的方法 |
CN107741744A (zh) * | 2017-11-15 | 2018-02-27 | 哈尔滨工程大学 | 一种海洋观测平台的最优艏向控制方法 |
EP3287862A1 (en) * | 2016-08-25 | 2018-02-28 | Imotec Holding B.V. | Method for steering an underactuated ship |
CN109062058A (zh) * | 2018-09-26 | 2018-12-21 | 大连海事大学 | 基于自适应模糊最优控制的船舶航向轨迹跟踪设计方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102323820A (zh) * | 2011-04-19 | 2012-01-18 | 江苏科技大学 | 一种智能舵系统及其控制方法 |
CN102830707A (zh) * | 2012-09-21 | 2012-12-19 | 中国航空无线电电子研究所 | 航行器起降俯仰姿态控制系统 |
CN108983774B (zh) * | 2018-07-16 | 2021-06-01 | 哈尔滨工程大学 | 一种基于模糊状态观测器的单喷泵推进无人水面艇自适应航向控制方法 |
CN108919675B (zh) * | 2018-09-10 | 2021-03-19 | 上海阜有海洋科技有限公司 | 一种多点系泊系统控制模型优化算法 |
CN109828570B (zh) * | 2019-02-18 | 2021-10-01 | 哈尔滨工程大学 | 一种自适应边界层水面无人艇控制导引方法 |
-
2019
- 2019-08-06 CN CN201910721372.6A patent/CN110442135B/zh active Active
- 2019-09-20 WO PCT/CN2019/107109 patent/WO2021022637A1/zh active Application Filing
- 2019-09-20 LU LU102400A patent/LU102400B1/en active IP Right Grant
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1441913A (zh) * | 2000-06-26 | 2003-09-10 | 维斯特恩格科地震控股有限公司 | 海洋数据收集的最佳路线 |
US9340270B2 (en) * | 2013-02-27 | 2016-05-17 | Furuno Electric Company Limited | Nautical automatic steering device, automatic steering method, and non-transitory computer-readable medium storing automatic steering program |
CN105867383A (zh) * | 2016-05-16 | 2016-08-17 | 哈尔滨工程大学 | 一种usv自主避碰控制的方法 |
EP3287862A1 (en) * | 2016-08-25 | 2018-02-28 | Imotec Holding B.V. | Method for steering an underactuated ship |
CN107741744A (zh) * | 2017-11-15 | 2018-02-27 | 哈尔滨工程大学 | 一种海洋观测平台的最优艏向控制方法 |
CN109062058A (zh) * | 2018-09-26 | 2018-12-21 | 大连海事大学 | 基于自适应模糊最优控制的船舶航向轨迹跟踪设计方法 |
Non-Patent Citations (2)
Title |
---|
FU, YANG: "Research on the Path Planning and Collision Avoidance Methods of the USV", ENGINEERING SCIENCE AND TECHNOLOGY II, CHINA MASTER'S THESES FULL-TEXT DATABASE, 15 January 2019 (2019-01-15), XP055777403 * |
WU, BIN: "The Research of Solving TSP Based On Genetic Algorithm", JOURNAL OF SHENGLI COLLEGE CHINA UNIVERSITY OF PETROLEUM, vol. 28, no. 3, 30 September 2014 (2014-09-30), pages 24, XP009525782, ISSN: 1673-5935 * |
Cited By (108)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112818472A (zh) * | 2021-02-25 | 2021-05-18 | 西北工业大学 | 一种民用飞机飞行试验科目安排及优化方法 |
CN113175930B (zh) * | 2021-03-22 | 2024-04-30 | 西安理工大学 | 基于mmea的多无人机协同航迹规划方法 |
CN113175930A (zh) * | 2021-03-22 | 2021-07-27 | 西安理工大学 | 基于mmea的多无人机协同航迹规划方法 |
CN112947480A (zh) * | 2021-03-24 | 2021-06-11 | 武汉理工大学 | 一种移动机器人路径规划方法、存储介质及系统 |
CN113110424A (zh) * | 2021-03-26 | 2021-07-13 | 大连海事大学 | 一种基于海图信息的无人艇避碰方法 |
CN113124873B (zh) * | 2021-04-09 | 2022-08-16 | 青岛哈船海智科技有限公司 | 基于海洋环境信息的uuv多指标约束三维航路规划方法 |
CN113124873A (zh) * | 2021-04-09 | 2021-07-16 | 青岛哈船海智科技有限公司 | 基于海洋环境信息的uuv多指标约束三维航路规划方法 |
CN114578772B (zh) * | 2021-04-16 | 2023-08-11 | 青岛中车四方车辆物流有限公司 | 一种agv集群控制系统设计框架及方法 |
CN114578772A (zh) * | 2021-04-16 | 2022-06-03 | 西南交通大学 | 一种agv集群控制系统设计框架及方法 |
CN113159687A (zh) * | 2021-04-29 | 2021-07-23 | 长安大学 | 一种车间agv-uav协同的物料配送路径规划方法和系统 |
CN113159687B (zh) * | 2021-04-29 | 2023-08-29 | 长安大学 | 一种车间agv-uav协同的物料配送路径规划方法和系统 |
CN113188547A (zh) * | 2021-05-06 | 2021-07-30 | 国能朔黄铁路发展有限责任公司 | 无人机路径规划方法、装置、控制器及存储介质 |
CN113095733A (zh) * | 2021-05-10 | 2021-07-09 | 北京化工大学 | 一种基于改进遗传算法求解单机械臂转移作业车间调度方法 |
CN113177762A (zh) * | 2021-05-14 | 2021-07-27 | 大连海事大学 | 一种多中心电动车-无人机配送路径优化方法 |
CN113177762B (zh) * | 2021-05-14 | 2024-01-05 | 大连海事大学 | 一种多中心电动车-无人机配送路径优化方法 |
CN113128788B (zh) * | 2021-05-17 | 2024-03-08 | 华北电力大学 | 一种电力应急物资输送路径优化方法、装置及存储介质 |
CN113128788A (zh) * | 2021-05-17 | 2021-07-16 | 华北电力大学 | 一种电力应急物资输送路径优化方法、装置及存储介质 |
CN113361753A (zh) * | 2021-05-26 | 2021-09-07 | 中国电子技术标准化研究院 | 基于量子遗传算法的确定最优路径的方法、系统和介质 |
CN113361753B (zh) * | 2021-05-26 | 2023-07-04 | 中国电子技术标准化研究院 | 基于量子遗传算法的确定最优路径的方法、系统和介质 |
CN113222272B (zh) * | 2021-05-26 | 2022-09-20 | 合肥工业大学 | 基于双层遗传编码的应急物资运输与装载协同优化方法 |
CN113222272A (zh) * | 2021-05-26 | 2021-08-06 | 合肥工业大学 | 基于双层遗传编码的应急物资运输与装载协同优化方法 |
CN114399043A (zh) * | 2021-06-16 | 2022-04-26 | 北京理工大学 | 一种基于非支配排序粒子群遗传算法的车辆位置路由方法 |
CN114399043B (zh) * | 2021-06-16 | 2024-06-04 | 北京理工大学 | 一种基于非支配排序粒子群遗传算法的车辆位置路由方法 |
CN113592148A (zh) * | 2021-07-01 | 2021-11-02 | 合肥工业大学 | 改进车辆与无人机配送路线的优化方法及系统 |
CN113592148B (zh) * | 2021-07-01 | 2024-03-15 | 合肥工业大学 | 改进车辆与无人机配送路线的优化方法及系统 |
CN113673922A (zh) * | 2021-07-09 | 2021-11-19 | 合肥工业大学 | 基于鱼骨型仓库布局的多车拣选路径问题优化方法及系统 |
CN113571134B (zh) * | 2021-07-28 | 2024-07-02 | 合肥综合性国家科学中心人工智能研究院(安徽省人工智能实验室) | 基于骨干粒子群算法的基因数据特征选择方法及装置 |
CN113571134A (zh) * | 2021-07-28 | 2021-10-29 | 合肥综合性国家科学中心人工智能研究院(安徽省人工智能实验室) | 基于骨干粒子群算法的基因数据特征选择方法及装置 |
CN113624235A (zh) * | 2021-07-31 | 2021-11-09 | 武夷科技信息(北京)有限公司 | 一种无人机实时动态调整导航路径的方法 |
CN113687657A (zh) * | 2021-08-26 | 2021-11-23 | 鲁东大学 | 用于多智能体编队动态路径规划的方法和存储介质 |
CN113887782A (zh) * | 2021-08-27 | 2022-01-04 | 西安电子科技大学 | 一种面向维修资源配送调度的遗传-烟花混合方法及系统 |
WO2023029188A1 (zh) * | 2021-08-31 | 2023-03-09 | 南京天溯自动化控制系统有限公司 | 路径规划方法、装置、设备及存储介质 |
CN113741477A (zh) * | 2021-09-14 | 2021-12-03 | 中国船舶重工集团公司第七0七研究所九江分部 | 一种欠驱动船舶靠泊路径规划方法 |
CN113885555A (zh) * | 2021-09-14 | 2022-01-04 | 安徽送变电工程有限公司 | 面向输电线路密集通道巡检的多机任务分配方法和系统 |
CN113779885B (zh) * | 2021-09-16 | 2024-04-30 | 南京航空航天大学 | 一种基于遗传算法的容差优化方法 |
CN113779885A (zh) * | 2021-09-16 | 2021-12-10 | 南京航空航天大学 | 一种基于遗传算法的容差优化方法 |
CN113778127B (zh) * | 2021-09-18 | 2023-02-28 | 中国人民解放军国防科技大学 | 基于遗传算法的无人机侦察路径规划方法及装置 |
CN113778127A (zh) * | 2021-09-18 | 2021-12-10 | 中国人民解放军国防科技大学 | 基于遗传算法的无人机侦察路径规划方法及装置 |
CN113945796B (zh) * | 2021-09-29 | 2023-10-24 | 集美大学 | 一种配电网故障定位方法、终端设备及存储介质 |
CN113945796A (zh) * | 2021-09-29 | 2022-01-18 | 集美大学 | 一种配电网故障定位方法、终端设备及存储介质 |
CN113867358B (zh) * | 2021-10-13 | 2023-08-29 | 中国人民解放军陆军工程大学 | 多无人车协同遍历任务的智能路径规划方法 |
CN113867358A (zh) * | 2021-10-13 | 2021-12-31 | 中国人民解放军陆军工程大学 | 多无人车协同遍历任务的智能路径规划方法 |
CN114049243B (zh) * | 2021-10-26 | 2023-09-29 | 中山大学 | 一种浒苔堆积量估算方法、系统及存储介质 |
CN114049243A (zh) * | 2021-10-26 | 2022-02-15 | 中山大学 | 一种浒苔堆积量估算方法、系统及存储介质 |
CN114020022B (zh) * | 2021-11-04 | 2023-08-18 | 中国人民解放军陆军工程大学 | 异构无人机协同打击任务规划方法及装置 |
CN114020022A (zh) * | 2021-11-04 | 2022-02-08 | 中国人民解放军陆军工程大学 | 异构无人机协同打击任务规划方法及装置 |
CN114036749A (zh) * | 2021-11-09 | 2022-02-11 | 上海交通大学 | 一种考虑续航里程的新能源共享汽车的调度方法 |
CN113885533A (zh) * | 2021-11-12 | 2022-01-04 | 江苏海洋大学 | 一种无人艇的无人驾驶方法及系统 |
CN114355895A (zh) * | 2021-12-14 | 2022-04-15 | 南京航空航天大学 | 一种车辆主动避撞路径规划方法 |
CN114355895B (zh) * | 2021-12-14 | 2023-11-07 | 南京航空航天大学 | 一种车辆主动避撞路径规划方法 |
CN114281104B (zh) * | 2021-12-16 | 2024-02-20 | 成都戎星科技有限公司 | 一种基于改进蚁群算法的多无人机协同调控方法 |
CN114281104A (zh) * | 2021-12-16 | 2022-04-05 | 成都戎星科技有限公司 | 一种基于改进蚁群算法的多无人机协同调控方法 |
CN114265355A (zh) * | 2021-12-30 | 2022-04-01 | 上海大学 | 一种具有自主控制无人艇悬停功能的遥控器及其控制方法 |
CN114265355B (zh) * | 2021-12-30 | 2024-02-20 | 上海大学 | 一种具有自主控制无人艇悬停功能的遥控器及其控制方法 |
CN114397896A (zh) * | 2022-01-10 | 2022-04-26 | 贵州大学 | 一种改进粒子群算法的动态路径规划方法 |
CN114594788A (zh) * | 2022-02-28 | 2022-06-07 | 西安交通大学 | 一种未知环境下四旋翼无人飞行器航迹规划方法及系统 |
CN114608596B (zh) * | 2022-03-09 | 2024-04-12 | 大连大学 | 一种基于dssa算法的路径规划方法 |
CN114608596A (zh) * | 2022-03-09 | 2022-06-10 | 大连大学 | 一种基于dssa算法的路径规划方法 |
CN114648162A (zh) * | 2022-03-18 | 2022-06-21 | 山东大学 | 基于混合启发式算法的多色喷涂路径规划方法及系统 |
CN114611984A (zh) * | 2022-03-24 | 2022-06-10 | 集美大学 | 海上大规模救助资源调度决策方法、系统及存储介质 |
CN114967764A (zh) * | 2022-04-28 | 2022-08-30 | 农业农村部南京农业机械化研究所 | 多作业区域植保无人机航线规划与任务分配方法 |
CN114995413A (zh) * | 2022-05-26 | 2022-09-02 | 南京航空航天大学 | 基于改进遗传算法的智能小车路径规划方法 |
CN115062936A (zh) * | 2022-06-06 | 2022-09-16 | 同济大学 | 一种考虑区域责任制的汽车装配线动态周期性物料配送调度方法 |
CN115119143A (zh) * | 2022-06-29 | 2022-09-27 | 西北工业大学 | 一种无人机辅助地面基站的位置部署方法及系统 |
CN115079995A (zh) * | 2022-07-22 | 2022-09-20 | 中南大学 | 一种中子谱仪被测样品测点排序方法和系统 |
CN115079995B (zh) * | 2022-07-22 | 2022-11-11 | 中南大学 | 一种中子谱仪被测样品测点排序方法和系统 |
CN115421508A (zh) * | 2022-08-01 | 2022-12-02 | 西安工业大学 | 一种适用于多无人机多目标航迹规划的粒子群优化方法 |
CN115357021B (zh) * | 2022-08-25 | 2023-10-10 | 齐齐哈尔大学 | 一种基于改进凌日搜索算法的水面无人艇路径规划方法 |
CN115357021A (zh) * | 2022-08-25 | 2022-11-18 | 齐齐哈尔大学 | 一种基于改进凌日搜索算法的水面无人艇路径规划方法 |
CN115438860A (zh) * | 2022-09-06 | 2022-12-06 | 西安电子科技大学广州研究院 | 一种基于进化算法的多智能体路径规划方法 |
CN115495859B (zh) * | 2022-09-19 | 2023-11-03 | 上海交通大学 | 一种基于遗传算法的仓网规划方法 |
CN115495859A (zh) * | 2022-09-19 | 2022-12-20 | 上海交通大学 | 一种基于遗传算法的仓网规划算法 |
CN115469671B (zh) * | 2022-10-21 | 2024-05-28 | 江苏海洋大学 | 一种基于聚集-置换策略的机器人路径规划方法 |
CN115469671A (zh) * | 2022-10-21 | 2022-12-13 | 江苏海洋大学 | 一种基于聚集-置换策略的机器人路径规划方法 |
CN116243701A (zh) * | 2022-10-28 | 2023-06-09 | 北京航空航天大学杭州创新研究院 | 基于最优推进速度的水下机器人最优能耗路径规划方法 |
CN115562074A (zh) * | 2022-10-29 | 2023-01-03 | 福州大学 | 一种快速生成无人机最优规划路径的仿真系统及方法 |
CN115451974A (zh) * | 2022-11-09 | 2022-12-09 | 广东电网有限责任公司湛江供电局 | 一种电力设备巡检路径规划方法、系统、设备和介质 |
CN115879603B (zh) * | 2022-11-17 | 2024-05-14 | 武汉大学 | 一种面向多目标点的多无人机协同数据采集方法及装置 |
CN115879603A (zh) * | 2022-11-17 | 2023-03-31 | 武汉大学 | 一种面向多目标点的多无人机协同数据采集方法及装置 |
CN116047909B (zh) * | 2023-01-13 | 2023-09-05 | 大连海事大学 | 面向海事平行搜寻的无人机-船协同鲁棒自适应控制方法 |
CN116047909A (zh) * | 2023-01-13 | 2023-05-02 | 大连海事大学 | 面向海事平行搜寻的无人机-船协同鲁棒自适应控制方法 |
CN115857516A (zh) * | 2023-03-02 | 2023-03-28 | 之江实验室 | 结合牛耕式运动与遗传算法的全覆盖路径规划方法和装置 |
CN115952942A (zh) * | 2023-03-13 | 2023-04-11 | 季华实验室 | 多目标巡检调度规划方法、装置、电子设备及存储介质 |
CN116090357A (zh) * | 2023-04-07 | 2023-05-09 | 中国人民解放军96901部队 | 多目标打击任务可行性快速评估方法 |
CN116678409B (zh) * | 2023-04-24 | 2024-03-12 | 大连海事大学 | 一种基于改进灰狼算法的北极冰区船舶路径规划方法 |
CN116678409A (zh) * | 2023-04-24 | 2023-09-01 | 大连海事大学 | 一种基于改进灰狼算法的北极冰区船舶路径规划方法 |
CN116954239B (zh) * | 2023-06-12 | 2024-03-19 | 成都丰千达科技有限公司 | 一种基于改进粒子群算法的无人机航迹规划方法及系统 |
CN116954239A (zh) * | 2023-06-12 | 2023-10-27 | 成都丰千达科技有限公司 | 一种基于改进粒子群算法的无人机航迹规划方法及系统 |
CN116519003A (zh) * | 2023-06-28 | 2023-08-01 | 广汽埃安新能源汽车股份有限公司 | 一种路径规划方法、装置、电子设备及存储介质 |
CN116519003B (zh) * | 2023-06-28 | 2023-09-01 | 广汽埃安新能源汽车股份有限公司 | 一种路径规划方法、装置、电子设备及存储介质 |
CN116989797B (zh) * | 2023-09-26 | 2023-12-15 | 北京理工大学 | 无人机航迹优化方法、装置、电子设备及存储介质 |
CN116989797A (zh) * | 2023-09-26 | 2023-11-03 | 北京理工大学 | 无人机航迹优化方法、装置、电子设备及存储介质 |
CN117494919B (zh) * | 2023-11-13 | 2024-04-19 | 广州力生机器人技术有限公司 | 一种基于多机器人协同码垛作业的路径规划方法及装置 |
CN117742373A (zh) * | 2023-11-13 | 2024-03-22 | 广东工业大学 | 基于改进遗传算法的无人机路径规划方法 |
CN117494919A (zh) * | 2023-11-13 | 2024-02-02 | 广州力生机器人技术有限公司 | 一种基于多机器人协同码垛作业的路径规划方法及装置 |
CN117356546A (zh) * | 2023-12-01 | 2024-01-09 | 南京禄口国际机场空港科技有限公司 | 一种机场草坪用的喷雾车的控制方法、系统及存储介质 |
CN117356546B (zh) * | 2023-12-01 | 2024-02-13 | 南京禄口国际机场空港科技有限公司 | 一种机场草坪用的喷雾车的控制方法、系统及存储介质 |
CN117419731A (zh) * | 2023-12-19 | 2024-01-19 | 青岛哈尔滨工程大学创新发展中心 | 基于多策略人工蜂群算法在海洋环境下的路径规划方法 |
CN117419731B (zh) * | 2023-12-19 | 2024-03-12 | 青岛哈尔滨工程大学创新发展中心 | 基于多策略人工蜂群算法在海洋环境下的路径规划方法 |
CN117608200B (zh) * | 2024-01-23 | 2024-05-10 | 山东科技大学 | 一种海洋航行器路径规划方法 |
CN117608200A (zh) * | 2024-01-23 | 2024-02-27 | 山东科技大学 | 一种海洋航行器路径规划方法 |
CN117601136B (zh) * | 2024-01-24 | 2024-04-02 | 济宁鲁鑫工程机械有限公司 | 一种自动焊接机器人路径规划方法及系统 |
CN117601136A (zh) * | 2024-01-24 | 2024-02-27 | 济宁鲁鑫工程机械有限公司 | 一种自动焊接机器人路径规划方法及系统 |
CN117689677B (zh) * | 2024-02-01 | 2024-04-16 | 山东大学日照研究院 | 一种砂轮磨损状态识别方法、系统、设备及介质 |
CN117689677A (zh) * | 2024-02-01 | 2024-03-12 | 山东大学日照研究院 | 一种砂轮磨损状态识别方法、系统、设备及介质 |
CN117951851A (zh) * | 2024-02-19 | 2024-04-30 | 重庆大学 | 一种应对极端降雨的道路大排水行泄路径优化设计方法 |
CN118411058A (zh) * | 2024-07-02 | 2024-07-30 | 中国电子科技集团公司信息科学研究院 | 基于区域目标离散化的多星对地观测任务规划方法及装置 |
CN118628074A (zh) * | 2024-08-12 | 2024-09-10 | 中国人民解放军国防科技大学 | 海上协同搜救的任务规划方法、装置、设备及存储介质 |
Also Published As
Publication number | Publication date |
---|---|
LU102400B1 (en) | 2021-04-27 |
CN110442135A (zh) | 2019-11-12 |
CN110442135B (zh) | 2020-08-21 |
LU102400A1 (en) | 2021-02-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021022637A1 (zh) | 一种基于改进遗传算法的无人艇路径规划方法及系统 | |
CN111780777B (zh) | 一种基于改进a*算法和深度强化学习的无人车路径规划方法 | |
CN110160526B (zh) | 基于遗传算法的航线规划方法 | |
CN108459503B (zh) | 一种基于量子蚁群算法的无人水面艇航迹规划方法 | |
Liu et al. | An improved heuristic mechanism ant colony optimization algorithm for solving path planning | |
CN102788581B (zh) | 一种基于改进的微分进化算法的船舶航路规划方法 | |
CN102768536A (zh) | 一种基于多目标萤火虫算法的路径规划方法 | |
CN115202394B (zh) | 一种基于改进遗传算法的无人机全覆盖路径规划方法 | |
Zheng et al. | A Decision‐Making Method for Ship Collision Avoidance Based on Improved Cultural Particle Swarm | |
Li et al. | A mixing algorithm of ACO and ABC for solving path planning of mobile robot | |
Cui et al. | Multi-strategy adaptable ant colony optimization algorithm and its application in robot path planning | |
Chen et al. | Path planning of AUV during diving process based on behavioral decision-making | |
Zeng et al. | Robotic global path-planning based modified genetic algorithm and A* algorithm | |
Dong et al. | Double ant colony algorithm based on dynamic feedback for energy-saving route planning for ships | |
Zhang et al. | A multi-strategy improved differential evolution algorithm for UAV 3D trajectory planning in complex mountainous environments | |
Ma et al. | Solving heterogeneous USV scheduling problems by problem-specific knowledge based meta-heuristics with Q-learning | |
Li et al. | Dynamic route planning for a USV-UAV multi-robot system in the rendezvous task with obstacles | |
Wei et al. | A hyperheuristic algorithm based on evolutionary strategy for complex mission planning of AUVs in marine environment | |
Song et al. | A novel path planning algorithm for ships in dynamic current environments | |
Gao et al. | An optimized path planning method for container ships in Bohai bay based on improved deep Q-learning | |
CN114943168B (zh) | 一种水上浮桥组合方法及系统 | |
Xi et al. | Power-aware path planning for vehicle-assisted multi-UAVs in mobile crowd sensing | |
Wu et al. | Complete Coverage Path Planning Based on Improved Genetic Algorithm for Unmanned Surface Vehicle | |
Zhang et al. | Research on complete coverage path planning for unmanned surface vessel | |
Ren et al. | A multi-objective optimization model of robot path planning under different scenarios |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19940185 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19940185 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19940185 Country of ref document: EP Kind code of ref document: A1 |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 11.08.2022) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19940185 Country of ref document: EP Kind code of ref document: A1 |