WO2021022555A1 - Method, device and computer readable medium for transmitting prs - Google Patents

Method, device and computer readable medium for transmitting prs Download PDF

Info

Publication number
WO2021022555A1
WO2021022555A1 PCT/CN2019/099802 CN2019099802W WO2021022555A1 WO 2021022555 A1 WO2021022555 A1 WO 2021022555A1 CN 2019099802 W CN2019099802 W CN 2019099802W WO 2021022555 A1 WO2021022555 A1 WO 2021022555A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signals
positioning reference
devices
positioning
configuration information
Prior art date
Application number
PCT/CN2019/099802
Other languages
French (fr)
Inventor
Dawei Wu
Lei SU
Jari Lindholm
Original Assignee
Nokia Shanghai Bell Co., Ltd.
Nokia Solutions And Networks Oy
Nokia Technologies Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nokia Shanghai Bell Co., Ltd., Nokia Solutions And Networks Oy, Nokia Technologies Oy filed Critical Nokia Shanghai Bell Co., Ltd.
Priority to PCT/CN2019/099802 priority Critical patent/WO2021022555A1/en
Priority to CN201980101095.7A priority patent/CN114503704B/en
Publication of WO2021022555A1 publication Critical patent/WO2021022555A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/006Locating users or terminals or network equipment for network management purposes, e.g. mobility management with additional information processing, e.g. for direction or speed determination
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0087Timing of allocation when data requirements change
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation

Definitions

  • Embodiments of the present disclosure generally relate to the field of telecommunication and in particular, to a method, device, apparatus and computer readable medium for transmitting Positioning Reference Signals (PRS) .
  • PRS Positioning Reference Signals
  • Positioning techniques may include Observed Time Difference of Arrival (OTDOA) , Enhanced Cell-ID (E-CID) and Uplink Time Difference of Arrival (UTDOA) .
  • OTDOA is a downlink positioning technology.
  • a device to be positioned measures Time of Arrival (TOA) of PRS transmitted from a serving cell and neighbour cells, and reports reference signal time differences (RSTDs) to a location server so as to determine the location of the target device.
  • TOA Time of Arrival
  • RSTDs reference signal time differences
  • the PRS is scattered in time and frequency in a positioning occasion.
  • the positioning occasion allocates consecutive positioning subframes and resource blocks with a certain periodicity in a pre-defined pattern.
  • NR New Radio
  • the ultra-lean principle aims at minimizing always-on transmissions, thereby enabling higher network energy efficiency and higher achievable data rates.
  • PRS complying with the ultra-lean principle needs to be defined for supporting NR positioning.
  • example embodiments of the present disclosure provide a solution for transmitting PRS.
  • a first device comprising at least one processor; and at least one memory including computer program codes; the at least one memory and the computer program codes are configured to, with the at least one processor, cause the first device to: receive a positioning request from a second device; cause a plurality of third devices at different locations from the first device to transmit positioning reference signals to the second device based on configuration information concerning the positioning reference signals; transmit the configuration information to the second device; and transmit the positioning reference signals to the second device based on the configuration information for positioning the second device.
  • a second device comprising at least one processor; and at least one memory including computer program codes; the at least one memory and the computer program codes are configured to, with the at least one processor, cause the second device to: transmit a positioning request to a first device; receive configuration information concerning positioning reference signals from the first device; and receive, based on the configuration information, the positioning reference signals from the first device and a plurality of third devices at different locations from the first device for positioning the second device.
  • a third device comprises at least one processor; and at least one memory including computer program codes; the at least one memory and the computer program codes are configured to, with the at least one processor, cause the third device to: in response to a positioning request being received by a first device from a second device, receive from the first device an indication that positioning reference signals are to be transmitted to the second device based on configuration information concerning the positioning reference signals; andtransmit, based on the indication and the configuration information, the positioning reference signals to the second device for positioning the second device.
  • a method implemented at a device comprises: receiving, at a first device, a positioning request from a second device; causing a plurality of third devices at different locations from the first device to transmit positioning reference signals to the second device based on configuration information concerning the positioning reference signals; transmitting the configuration information to the second device; and transmitting the positioning reference signals to the second device based on the configuration information for positioning the second device.
  • a method implemented at a device comprises: transmitting a positioning request from a second device to a first device; receiving configuration information concerning positioning reference signals from the first device; and receiving, based on the configuration information, the positioning reference signals from the first device and a plurality of third devices at different locations from the first device for positioning the second device.
  • a method implemented at a device comprises: in response to a positioning request being received by a first device from a second device, receiving, at a third device and from the first device an indication that positioning reference signals are to be transmitted to the second device based on configuration information concerning the positioning reference signals; and transmitting, based on the indication and the configuration information, the positioning reference signals to the second device for positioning the second device.
  • an apparatus comprising: means for receiving, at a first device, a positioning request from a second device; means for causing a plurality of third devices at different locations from the first device to transmit positioning reference signals to the second device based on configuration information concerning the positioning reference signals; means for transmitting the configuration information to the second device; and means for transmitting the positioning reference signals to the second device based on the configuration information for positioning the second device.
  • an apparatus comprising: means for transmitting a positioning request from a second device to a first device; means for receiving configuration information concerning positioning reference signals from the first device; and receiving, based on the configuration information, the positioning reference signals from the first device and a plurality of third devices at different locations from the first device for positioning the second device.
  • an apparatus comprising: in response to a positioning request being received by a first device from a second device, means for receiving, at a third device and from the first device an indication that positioning reference signals are to be transmitted to the second device based on configuration information concerning the positioning reference signals; and means for transmitting, based on the indication and the configuration information, the positioning reference signals to the second device for positioning the second device.
  • a computer readable medium comprising a computer program for causing an apparatus to perform at least the method according to the above fourth aspect.
  • a computer readable medium comprising a computer program for causing an apparatus to perform at least the method according to the above fifth aspect.
  • a computer readable medium comprising a computer program for causing an apparatus to perform at least the method according to the above sixth aspect.
  • Fig. 1 shows an example communication network in which embodiments of the present disclosure may be implemented
  • Fig. 2 shows a signaling chart illustrating a process for transmitting PRS according to some example embodiments of the present disclosure
  • Fig. 3 shows a signaling chart illustrating a process for coordination between devices about allocation of a time domain resource according to some example embodiments of the present disclosure
  • Fig. 4 shows an example of positioning subframes according to some example embodiments of the present disclosure
  • Fig. 5 shows a flowchart of a method implemented at a first device in accordance with some example embodiments of the present disclosure
  • Fig. 6 shows a flowchart of a method implemented at a second device in accordance with some example embodiments of the present disclosure
  • Fig. 7 shows a flowchart of a method implemented at a third device in accordance with some example embodiments of the present disclosure
  • Fig. 8 illustrates a simplified block diagram of an apparatus that is suitable for implementing some other embodiments of the present disclosure.
  • Fig. 9 illustrates a block diagram of an example computer readable medium in accordance with some example embodiments of the present disclosure.
  • references in the present disclosure to “one embodiment, ” “an embodiment, ” “an example embodiment, ” and the like indicate that the embodiment described may include a particular feature, structure, or characteristic, but it is not necessary that every embodiment includes the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an example embodiment, it is submitted that it is within the knowledge of one skilled in the art to affect such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described.
  • first and second etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first element could be termed a second element, and similarly, a second element could be termed a first element, without departing from the scope of example embodiments.
  • the term “and/or” includes any and all combinations of one or more of the listed terms.
  • circuitry may refer to one or more or all of the following:
  • circuitry also covers an implementation of merely a hardware circuit or processor (or multiple processors) or portion of a hardware circuit or processor and its (or their) accompanying software and/or firmware.
  • circuitry also covers, for example and if applicable to the particular claim element, a baseband integrated circuit or processor integrated circuit for a mobile device or a similar integrated circuit in server, a cellular network device, or other computing or network device.
  • the term “communication network” refers to a network following any suitable communication standards, such as fifth generation (5G) systems, Long Term Evolution (LTE) , LTE-Advanced (LTE-A) , Wideband Code Division Multiple Access (WCDMA) , High-Speed Packet Access (HSPA) , Narrow Band Internet of Things (NB-IoT) and so on.
  • 5G fifth generation
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • WCDMA Wideband Code Division Multiple Access
  • HSPA High-Speed Packet Access
  • NB-IoT Narrow Band Internet of Things
  • the communications between a terminal device and a network device in the communication network may be performed according to any suitable generation communication protocols, including, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth generation (4G) , 4.5G, the future fifth generation (5G) new radio (NR) communication protocols, and/or any other protocols either currently known or to be developed in the future.
  • suitable generation communication protocols including, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth generation (4G) , 4.5G, the future fifth generation (5G) new radio (NR) communication protocols, and/or any other protocols either currently known or to be developed in the future.
  • Embodiments of the present disclosure may be applied in various communication systems. Given the rapid development in communications, there will of course also be future type communication technologies and systems with which the present disclosure may be embodied. It should not be seen as limiting the
  • the term “network device” refers to a node in a communication network via which a terminal device accesses the network and receives services therefrom.
  • the network device may refer to a base station (BS) or an access point (AP) , for example, a node B (NodeB or NB) , an evolved NodeB (eNodeB or eNB) , a NR Next Generation NodeB (gNB) , a Remote Radio Unit (RRU) , a radio header (RH) , a remote radio head (RRH) , a relay, a low power node such as a femto, a pico, and so forth, depending on the applied terminology and technology.
  • An RAN split architecture comprises a gNB-CU (Centralized unit, hosting RRC, SDAP and PDCP) controlling a plurality of gNB-DUs (Distributed unit, hosting RLC, MAC and PHY) .
  • gNB-CU Centralized unit, hosting
  • terminal device refers to any end device that may be capable of wireless communication.
  • a terminal device may also be referred to as a communication device, user equipment (UE) , a Subscriber Station (SS) , a Portable Subscriber Station, a Mobile Station (MS) , or an Access Terminal (AT) .
  • UE user equipment
  • SS Subscriber Station
  • MS Mobile Station
  • AT Access Terminal
  • the terminal device may include, but not limited to, a mobile phone, a cellular phone, a smart phone, voice over IP (VoIP) phones, wireless local loop phones, a tablet, a wearable terminal device, a personal digital assistant (PDA) , portable computers, desktop computer, image capture terminal devices such as digital cameras, gaming terminal devices, music storage and playback appliances, vehicle-mounted wireless terminal devices, wireless endpoints, mobile stations, laptop-embedded equipment (LEE) , laptop-mounted equipment (LME) , USB dongles, smart devices, wireless customer-premises equipment (CPE) , an Internet of Things (IoT) device, a watch or other wearable, a head-mounted display (HMD) , a vehicle, a drone, a medical device and applications (e.g., remote surgery) , an industrial device and applications (e.g., a robot and/or other wireless devices operating in an industrial and/or an automated processing chain contexts) , a consumer electronics device, a device operating on commercial and/
  • a user equipment apparatus such as a cell phone or tablet computer or laptop computer or desktop computer or mobile IoT device or fixed IoT device
  • This user equipment apparatus can, for example, be furnished with corresponding capabilities as described in connection with the fixed and/or the wireless network node (s) , as appropriate.
  • the user equipment apparatus may be the user equipment and/or or a control device, such as a chipset or processor, configured to control the user equipment when installed therein. Examples of such functionalities include the bootstrapping server function and/or the home subscriber server, which may be implemented in the user equipment apparatus by providing the user equipment apparatus with software configured to cause the user equipment apparatus to perform from the point of view of these functions/nodes.
  • the PRS is an “always-on” signal, which means that it is transmitted by network devices to a terminal device regardless of the amount of user traffic. To be more specific, the PRS is transmitted regardless whether the terminal device really needs it at the moment.
  • the always-on transmissions of the PRS have many negative impacts. For example, the always-on transmissions may impose an upper limit on the achievable network energy performance. In addition, the always-on transmissions may cause interference to other cells, thereby reducing the achievable data rates.
  • example embodiments of the present disclosure provide a solution for transmitting PRS on-demand.
  • the PRS is transmitted in response to a positioning request from a device to be positioned.
  • the always-on transmissions of the PRS are not needed. Accordingly, the achievable network energy performance is improved and interference to other cells may be reduced.
  • Fig. 1 shows an example communication network 100 in which embodiments of the present disclosure can be implemented.
  • the communication network 100 includes a first device 110 which provides a serving cell 111 to serve a second device 120.
  • the communication network 100 also includes third devices 130-1 and 130-2 at different locations from the first device 110.
  • the third devices 130-1 and 130-2 are collectively referred to as third device (s) 130.
  • the third devices 130-1 and 130-2 provide a neighbor cell 131-1 and a neighbor cell 131-2, respectively.
  • the second device 120 is illustrated as a terminal device
  • the first device 110 and the third devices 130 are illustrated as network devices serving the terminal device.
  • the communication network 100 may include any suitable number of first, second and third devices and/or cells adapted for implementing implementations of the present disclosure.
  • the communication network 100 may also include a location server 140, which is communicatively coupled with the first device 110, the second device 120 and the third devices 130.
  • the location server 140 is responsible for positioning devices in the network 100.
  • the location server 140 may determine positions of the devices based on OTDOA, E-CID or UTDOA technology.
  • the location server 140 may be a physical or logical entity that collects measurements and other location information from the first, second and third devices, and assists these devices in estimating their positions.
  • the location server 140 may be a separate entity in a core network or be resided at a network device or a terminal device.
  • the location server 140 may include Evolved Serving Mobile Location Center (E-SMLC) and Secure User Plane Location (SUPL) .
  • E-SMLC Evolved Serving Mobile Location Center
  • SUPL Secure User Plane Location
  • the location server 140 may be a Location Management Function (LMF) .
  • LMF Location Management Function
  • the location server 140 is shown as a separate device from the devices 110, 120 and 130, it is to be understood that the location server 140 can also be implemented at one of the devices 110, 120 and 130 in some embodiments.
  • Communications in the communication system 100 may be implemented according to any proper communication protocol (s) , comprising, but not limited to, cellular communication protocols of the first generation (1G) , the second generation (2G) , the third generation (3G) , the fourth generation (4G) and the fifth generation (5G) and on the like, wireless local network communication protocols such as Institute for Electrical and Electronics Engineers (IEEE) 802.11 and the like, and/or any other protocols currently known or to be developed in the future.
  • s cellular communication protocols of the first generation (1G) , the second generation (2G) , the third generation (3G) , the fourth generation (4G) and the fifth generation (5G) and on the like, wireless local network communication protocols such as Institute for Electrical and Electronics Engineers (IEEE) 802.11 and the like, and/or any other protocols currently known or to be developed in the future.
  • IEEE Institute for Electrical and Electronics Engineers
  • the communication may utilize any proper wireless communication technology, comprising but not limited to: Code Divided Multiple Address (CDMA) , Frequency Divided Multiple Address (FDMA) , Time Divided Multiple Address (TDMA) , Frequency Divided Duplexer (FDD) , Time Divided Duplexer (TDD) , Multiple-Input Multiple-Output (MIMO) , Orthogonal Frequency Divided Multiple Access (OFDMA) and/or any other technologies currently known or to be developed in the future.
  • CDMA Code Divided Multiple Address
  • FDMA Frequency Divided Multiple Address
  • TDMA Time Divided Multiple Address
  • FDD Frequency Divided Duplexer
  • TDD Time Divided Duplexer
  • MIMO Multiple-Input Multiple-Output
  • OFDMA Orthogonal Frequency Divided Multiple Access
  • the second device 120 in order to determine the position of the second device 120, transmits a positioning request to the first device 110.
  • the first device 110 causes the third devices 130 to transmit PRS to the second device 120 based on configuration information concerning the PRS.
  • the first device 110 and the third devices 130 transmit PRS to the second device 120 based on the configuration information concerning the PRS.
  • the always-on transmissions of the PRS are not needed.
  • Fig. 2 shows a signaling chart illustrating a process 200 for transmitting PRS according to some example embodiments of the present disclosure.
  • the process 200 may involve the first device 110, the second device 120 and the third devices 130 as illustrated in Fig. 1. It would be appreciated that although the process 200 has been described in the communication system 100 of Fig. 1, this process may be likewise applied to other communication scenarios. It would also be appreciated that although transmitting PRS to the second device is discussed, a similar process can be applied for the first device or the third devices.
  • the second device 120 transmits 205 a positioning request to the first device 110.
  • the second device 120 may transmit the positioning request to the first device 110 via uplink control information (UCI) .
  • UCI uplink control information
  • the positioning request may be an indicator of one bit and transmitted in a preconfigured periodicity via Physical Uplink Control Channel (PUCCH) or Physical Uplink Shared Channel (PUSCH) .
  • the indicator of one bit may be set to be 1 indicating that the second device 120 needs to do positioning, and may be set to be 0 indicating that the second device 120 does not need to do positioning.
  • the positioning request may be configured to be positive or negative. It is also possible that the second device 120 may transmit the positioning request to indicate that the second device 120 needs to do positioning, and transmit nothing to indicate that the second device 120 does not need to do positioning.
  • the first device 110 may configure a positioning request opportunity for the second device 120.
  • the first device 110 may configure the positioning request opportunity via PUCCH set in RRC Configuration.
  • the positioning request opportunity is a periodical and dedicated resource, and is allocated to the second device 120.
  • the positioning request according to some example embodiments of the present disclosure may reduce overhead in air interface.
  • LTE Positioning Protocol LTE Positioning Protocol
  • the second device 120 may transmit the positioning request to the first device 110 via a control element for media access control (which is also referred to as MAC CE) or a radio resource control (RRC) signaling.
  • MAC CE media access control
  • RRC radio resource control
  • the first device 110 may allocate a PUSCH resource to the second device 120 in advance.
  • the second device 120 may handover from a source device to the first device 110.
  • the second device 120 may transmit the positioning request to the first device 110 via the source device.
  • the second device 120 may transmit the positioning request to the source device and then the source device forwards the positioning request to the first device 110.
  • the second device 120 may transmit information concerning neighbour cells to the first device 110.
  • the second device 120 may transmit measurement reports for the neighbour cells to the first device 110.
  • the second device 120 has obtained from the location server 140 positioning assistance data comprising information concerning neighbour cells. Then, the second device 120 may transmit the information concerning neighbour cells in the positioning assistance data to the first device 110.
  • the first device 110 may select at least two devices form a set of candidate devices based on the information so as to transmit the PRS together with the selected two devices.
  • the candidate devices are at different locations from the first device 110.
  • the first device 110 may select the third devices 130-1 and 130-2 from the set of candidate devices. It is to be understood that the first device 110 may select more than two devices from the set so as to increase the accuracy of positioning.
  • the first device 110 may select at least two devices from the set of candidate devices based on locations of the candidate devices relative to the second device 120, or workloads of the candidate devices.
  • the first device 110 causes 210 the third device 130-1 to transmit PRS to the second device 120 based on configuration information concerning the PRS, and causes 215 the third device 130-2 to transmit PRS to the second device 120 based on the configuration information concerning the PRS.
  • the configuration information at least comprises information concerning at least one of the following: a time domain resource for transmission of the PRS, a frequency domain resource for transmission of the PRS, or a pattern of the PRS.
  • the information concerning the time domain resource may comprise information concerning at least one of the following: a start time offset from the last PDCCH to an initial PRS transmission, a duration of the PRS, a periodicity of the PRS.
  • the information concerning the frequency domain resource may comprise information concerning at least one of the following: Bandwidth Parts (BWPs) for the transmission of the PRS from the third devices 130, or allocations of frequency domain resources in the BWPs.
  • BWPs Bandwidth Parts
  • the configuration information may further comprise information concerning at least one of the following: identifiers of cells in which the PRS is to be transmitted, or real time differences (RTDs) among the first device 110 and the third devices 130.
  • RTDs real time differences
  • the first device 110 transmits 220 the configuration information to the second device 120.
  • the first device 110 transmits 220 the configuration information to the second device 120 via Downlink Control Information (DCI) or MAC CE.
  • DCI Downlink Control Information
  • MAC CE MAC CE
  • the first device 110 transmits 225 the PRS to the second device 120 based on the configuration information for positioning the second device 120.
  • the third device 130-1 transmits 230 the PRS to the second device 120 based on the configuration information for positioning the second device.
  • the third device 130-2 transmits 235 the PRS to the second device 120 based on the configuration information for positioning the second device.
  • the second device 120 receives the PRS from the first device 110 and the third devices 130. In turn, the second device 120 performs measurements of the PRS. Then, the second device 120 transmits the measurements of the PRS to the first device 110 and the first device 110 forwards the measurements of the PRS to the location server 140.
  • the location server 140 may determine the position of the second device 120 based on the measurements of the PRS.
  • the time domain resource, the frequency domain resource and the pattern of the PRS are preconfigured.
  • the resources and the pattern of the PRS may be preconfigured when the first device 110 and the third devices 130 are installed.
  • the first device 110 may transmit to the third devices 130 a command indicating the third devices 130 to start the transmission of the PRS at a first time.
  • the third devices 130 transmit the PRS to the second device 120 based on the preconfigured resources and pattern. Because the resources are preconfigured, there is no need of the coordination between the first device 110 and the third devices 130 about allocation of the resources. Thus, the overall position operation of the second device 120 may be speeded up.
  • the first device 110 upon receiving the measurements of the PRS from the second device 120, the first device 110 transmits to the third devices 130 a command, respectively, so as to indicate the third devices 130 to stop the transmission of the PRS. It should be noted that the first device 110 may transmit the command to stop the transmission of the PRS at any appropriate time. For example, the first device 110 may transmit the command when the second device 120 leaves the cell 111 provided by the first device 110.
  • the first device 110 determines 240 the time domain resource for transmission of the PRS via coordination between the first device 110 and the third devices 130 about allocation of the time domain resource, which will be described below with reference to Fig. 3.
  • the first device 110 may transmit to the third devices 130 an indication indicating the determined time domain resource.
  • Fig. 3 shows a signaling chart illustrating a process 300 for coordination between the first device 110 and the third devices 130 about allocation of the time domain resource according to some example embodiments of the present disclosure.
  • the process 300 will be described with reference to Fig. 1.
  • the process 300 may be considered as an example implementation of the action 240 as illustrated in Fig. 2.
  • the process 300 may involve the first device 110, the second device 120 and the third devices 130 as illustrated in Fig. 1. It would be appreciated that although the process 300 has been described in the communication system 100 of Fig. 1, this process may be likewise applied to other communication scenarios.
  • the first device 110 determines 305 a time window for transmission of the PRS.
  • the first device 110 transmits 310 information concerning the time window to the third device 130-1.
  • the first device 110 transmits 320 the information concerning the time window to the third device 130-2.
  • the information concerning the time window may comprise at least one of the following: a starting time of the time window, an ending time of the time window, a duration of the PRS, or a periodicity of the PRS.
  • the third device 130-1 Upon receiving the information concerning the time window, the third device 130-1 selects 315 timeslots in the time window for transmission of the PRS from the third device 130-1 to the second device 120. Similarly, upon receiving the information concerning the time window, the third device 130-2 selects 325 at least one timeslot in the time window for transmission of the PRS from the third device 130-2 to the second device 120.
  • the third device 130-1 transmits 330 an indication of the selected timeslots in the time window to the first device 110.
  • the third device 130-2 transmits 335 an indication of the selected timeslots in the time window to the first device 110.
  • the first device 110 Upon receiving the indications of the timeslots respectively selected by the third devices 130-1 and 130-2, the first device 110 determines 340, based on the indications of the selected timeslots, timeslots in the time window for the transmission of the PRS from the first device 110 and the third devices 130 to the second device 120.
  • the first device 110 Upon determining the timeslots in the time window for the transmission of the PRS from the first device 110 and the third devices 130 to the second device 120, the first device 110 transmits information concerning the determined timeslots to the third device 130-1 and 130-2, respectively.
  • the first device 110 determines the time domain resource for transmission of the PRS via the coordination between the first device 110 and the third devices 130 about the allocation of the time domain resource.
  • the second device 120 because the PRS is only transmitted in the determined timeslots in the time window, the second device 120 only needs to measure the PRS in the determined timeslots instead of measuring the PRS in several PRS periods.
  • the time duration needed by the second device 120 to measure the PRS is reduced, thereby speeding up the positioning operation.
  • the third devices 130 may also determine their respective frequency domain resources associated with the selected timeslots for the transmission of the PRS from the third devices 130 to the second device 120. In turn, the third devices 130 transmit to the first device 110 information concerning the respective frequency domain resources.
  • the pattern of the PRS is determined by the first device 110.
  • the first device 110 may transmit the determined pattern to the third devices 130.
  • Fig. 4 shows an example of positioning subframes 400 according to some example embodiments of the present disclosure.
  • PRS 410 is scattered in the positioning subframes 400 and physical resource blocks (PRBs) associated with the positioning subframes 400.
  • PRBs physical resource blocks
  • the pattern of the PRS as shown in Fig. 4 is given for the purpose of illustration without suggesting any limitations to the present disclosure.
  • Other pre-configured patterns of the PRS may be applied for implementing implementations of the present disclosure.
  • the pattern of the PRS may comprise a muting pattern of the PRS.
  • Fig. 5 shows a flowchart of an example method 500 implemented at a device in accordance with some example embodiments of the present disclosure.
  • the method 500 will be described from the perspective of the first device 110 with reference to Fig. 1. It would be appreciated that the method 500 may also be implemented at the second device 120 or the third devices 130 in Fig. 1.
  • the first device 110 receives a positioning request from the second device 120.
  • the first device 110 causes a plurality of third devices 130 at different locations from the first device 110 to transmit positioning reference signals to the second device 120 based on configuration information concerning the positioning reference signals.
  • the first device 110 transmits the configuration information to the second device.
  • the first device 110 transmits the positioning reference signals to the second device based on the configuration information for positioning the second device.
  • receiving the positioning request comprises receiving one of the following: uplink control information, a control element for media access control, or a radio resource control signalling.
  • the configuration information at least comprises information concerning at least one of the following: a time domain resource for transmission of the positioning reference signals, a frequency domain resource for transmission of the positioning reference signals, or a pattern of the positioning reference signals.
  • the configuration information comprises information concerning at least one of the following: identifiers of cells in which the positioning reference signals are to be transmitted, or real time differences among the first device and the third devices.
  • At least the time domain resource, the frequency domain resource and the pattern are preconfigured.
  • causing the third devices to transmit the positioning reference signals comprises: transmitting to the third devices a command indicating the third devices to start the transmission of the positioning reference signals at a first time.
  • the method 500 further comprises: in response to receiving measurements of the positioning reference signals from the second device, transmitting to the third devices a command indicating the third devices to stop the transmission of the positioning reference signals, respectively.
  • the method 500 further comprises determining the time domain resource; and causing the third devices to transmit the positioning reference signals comprises transmitting to the third devices an indication indicating the determined time domain resource.
  • determining the time domain resource comprises: determining a time window for transmission of the positioning reference signals; transmitting information concerning the time window to the third devices; receiving from the third devices indications of timeslots in the time window that are respectively selected by the third devices; and determining, based on the indications of the selected timeslots, at least one timeslot in the time window for the transmission of the positioning reference signals from the first device and the third devices to the second device.
  • the method 500 further comprises determining the pattern; and causing the third devices to transmit the positioning reference signals comprises transmitting the determined pattern to the third devices.
  • the method 500 further comprises selecting the third devices from a set of candidate devices based on at least one of the following: measurements for cells provided by the candidate devices, locations of the candidate devices relative to the second device, or workloads of the candidate devices.
  • Fig. 6 shows a flowchart of an example method 600 implemented at a device in accordance with some example embodiments of the present disclosure.
  • the method 600 will be described from the perspective of the second device 120 with reference to Fig. 1. It would be appreciated that the method 600 may also be implemented at the first device 110 or the third devices 130 in Fig. 1.
  • the second device 120 transmits a positioning request to the first device 110.
  • the second device 120 receives configuration information concerning positioning reference signals from the first device 110.
  • the second device 120 receives, based on the configuration information, the positioning reference signals from the first device 110 and a plurality of third devices 130 at different locations from the first device 110 for positioning the second device 120.
  • transmitting the positioning request comprises transmitting one of the following: uplink control information, a control element for media access control, or a radio resource control signalling.
  • the configuration information at least comprises information concerning at least one of the following: a time domain resource for transmission of the positioning reference signals, a frequency domain resource for transmission of the positioning reference signals, or a pattern of the positioning reference signals.
  • the configuration information comprises information concerning at least one of the following: identifiers of cells in which the positioning reference signals are to be transmitted, or real time differences among the first device and the third devices.
  • At least the time domain resource, the frequency domain resource and the pattern are preconfigured.
  • the time domain resource is determined by the first device 110 via coordination between the first device 110 and the third devices 130.
  • Fig. 7 shows a flowchart of an example method 700 implemented at a device in accordance with some example embodiments of the present disclosure.
  • the method 700 will be described from the perspective of the third device 130 with reference to Fig. 1. It would be appreciated that the method 700 may also be implemented at the first device 110 or the second device 120 in Fig. 1.
  • the third device 130 receives from the first device an indication that positioning reference signals are to be transmitted to the second device based on configuration information concerning the positioning reference signals.
  • the third device 130 transmits, based on the indication and the configuration information, the positioning reference signals to the second device 120 for positioning the second device 120.
  • the configuration information at least comprises information concerning at least one of the following: a time domain resource for transmission of the positioning reference signals, a frequency domain resource for transmission of the positioning reference signals, or a pattern of the positioning reference signals.
  • the configuration information further comprises information concerning at least one of the following: identifiers of cells in which the positioning reference signals are to be transmitted, or a real time difference among the first device and the third device.
  • the time domain resource, the frequency domain resource and the pattern are preconfigured.
  • the indication indicates a first time when the transmission of the positioning reference signals starts.
  • the method 700 further comprises: in response to receiving from the first device a command indicating the third devices to stop the transmission of the positioning reference signals, stopping the transmission of the positioning reference signals.
  • the time domain resource is determined by the first device; and the indication indicates the determined time domain resource.
  • the pattern is determined by the first device; and the indication indicates the determined pattern.
  • the method 700 further comprises: receiving from the first device information concerning a time window for transmission of the positioning reference signals; selecting timeslots in the time window for transmission of the positioning reference signals from the third device to the second device; and transmitting to the first device indications of the selected timeslots.
  • the method 700 further comprises: determining a frequency domain resource associated with the selected timeslots for the transmission of the positioning reference signals from the third device to the second device; and transmitting to the first device information concerning the frequency domain resource.
  • an apparatus capable of performing any of the method 500 may comprise means for performing the respective steps of the method 500.
  • the means may be implemented in any suitable form.
  • the means may be implemented in a circuitry or software module.
  • the apparatus comprises means for means for receiving, at a first device, a positioning request from a second device; means for causing a plurality of third devices at different locations from the first device to transmit positioning reference signals to the second device based on configuration information concerning the positioning reference signals; means for transmitting the configuration information to the second device; and means for transmitting the positioning reference signals to the second device based on the configuration information for positioning the second device.
  • means for receiving the positioning request comprises means for receiving one of the following: uplink control information, a control element for media access control, or a radio resource control signalling.
  • the configuration information at least comprises information concerning at least one of the following: a time domain resource for transmission of the positioning reference signals, a frequency domain resource for transmission of the positioning reference signals, or a pattern of the positioning reference signals.
  • the configuration information comprises information concerning at least one of the following: identifiers of cells in which the positioning reference signals are to be transmitted, or real time differences among the first device and the third devices.
  • At least the time domain resource, the frequency domain resource and the pattern are preconfigured.
  • means for causing the third devices to transmit the positioning reference signals comprises: means for transmitting to the third devices a command indicating the third devices to start the transmission of the positioning reference signals at a first time.
  • the apparatus further comprises: in response to receiving measurements of the positioning reference signals from the second device, means for transmitting to the third devices a command indicating the third devices to stop the transmission of the positioning reference signals, respectively.
  • the apparatus further comprises means for determining the time domain resource; and means for causing the third devices to transmit the positioning reference signals comprises means for transmitting to the third devices an indication indicating the determined time domain resource.
  • means for determining the time domain resource comprises: means for determining a time window for transmission of the positioning reference signals; means for transmitting information concerning the time window to the third devices; means for receiving from the third devices indications of timeslots in the time window that are respectively selected by the third devices; and means for determining, based on the indications of the selected timeslots, at least one timeslot in the time window for the transmission of the positioning reference signals from the first device and the third devices to the second device.
  • the apparatus further comprises means for determining the pattern; and means for causing the third devices to transmit the positioning reference signals comprises means for transmitting the determined pattern to the third devices.
  • the apparatus further comprises means for selecting the third devices from a set of candidate devices based on one or more of the following but not limited to: measurements for cells provided by the candidate devices, locations of the candidate devices relative to the second device, or workloads of the candidate devices.
  • Fig. 8 is a simplified block diagram of a device 800 that is suitable for implementing embodiments of the present disclosure.
  • the device 800 may be provided to implement the communication device, for example the first device 110, the second device 120 or the third devices 130 as shown in Fig. 1.
  • the device 800 includes one or more processors 810, one or more memories 820 coupled to the processor 810, and one or more communication modules 840 coupled to the processor 810.
  • the communication module 840 is for bidirectional communications.
  • the communication module 840 has at least one antenna to facilitate communication.
  • the communication interface may represent any interface that is necessary for communication with other network elements.
  • the processor 810 may be of any type suitable to the local technical network and may include one or more of the following: general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs) and processors based on multicore processor architecture, as non-limiting examples.
  • the device 800 may have multiple processors, such as an application specific integrated circuit chip that is slaved in time to a clock which synchronizes the main processor.
  • the memory 820 may include one or more non-volatile memories and one or more volatile memories.
  • the non-volatile memories include, but are not limited to, a Read Only Memory (ROM) 824, an electrically programmable read only memory (EPROM) , a flash memory, a hard disk, a compact disc (CD) , a digital video disk (DVD) , and other magnetic storage and/or optical storage.
  • the volatile memories include, but are not limited to, a random access memory (RAM) 822 and other volatile memories that will not last in the power-down duration.
  • a computer program 830 includes computer executable instructions that are executed by the associated processor 810.
  • the program 830 may be stored in the ROM 824.
  • the processor 810 may perform any suitable actions and processing by loading the program 830 into the RAM 822.
  • the embodiments of the present disclosure may be implemented by means of the program 830 so that the device 800 may perform any process of the disclosure as discussed with reference to Figs. 2 to 10.
  • the embodiments of the present disclosure may also be implemented by hardware or by a combination of software and hardware.
  • the program 830 may be tangibly contained in a computer readable medium which may be included in the device 800 (such as in the memory 820) or other storage devices that are accessible by the device 800.
  • the device 800 may load the program 830 from the computer readable medium to the RAM 822 for execution.
  • the computer readable medium may include any types of tangible non-volatile storage, such as ROM, EPROM, a flash memory, a hard disk, CD, DVD, and the like.
  • Fig. 9 shows an example of the computer readable medium 900 in form of CD or DVD.
  • the computer readable medium has the program 830 stored thereon.
  • various embodiments of the present disclosure may be implemented in hardware or special purpose circuits, software, logic or any combination thereof. Some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software which may be executed by a controller, microprocessor or other computing device. While various aspects of embodiments of the present disclosure are illustrated and described as block diagrams, flowcharts, or using some other pictorial representations, it is to be understood that the block, apparatus, system, technique or method described herein may be implemented in, as non-limiting examples, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controller or other computing devices, or some combination thereof.
  • the present disclosure also provides at least one computer program product tangibly stored on a non-transitory computer readable storage medium.
  • the computer program product includes computer-executable instructions, such as those included in program modules, being executed in a device on a target real or virtual processor, to carry out the methods 500, 600 and 7000 as described above with reference to Figs. 5, 6 and 7.
  • program modules include routines, programs, libraries, objects, classes, components, data structures, or the like that perform particular tasks or implement particular abstract data types.
  • the functionality of the program modules may be combined or split between program modules as desired in various embodiments.
  • Machine-executable instructions for program modules may be executed within a local or distributed device. In a distributed device, program modules may be located in both local and remote storage media.
  • Program code for carrying out methods of the present disclosure may be written in any combination of one or more programming languages. These program codes may be provided to a processor or controller of a general purpose computer, special purpose computer, or other programmable data processing apparatus, such that the program codes, when executed by the processor or controller, cause the functions/operations specified in the flowcharts and/or block diagrams to be implemented.
  • the program code may execute entirely on a machine, partly on the machine, as a stand-alone software package, partly on the machine and partly on a remote machine or entirely on the remote machine or server.
  • the computer program codes or related data may be carried by any suitable carrier to enable the device, apparatus or processor to perform various processes and operations as described above.
  • Examples of the carrier include a signal, computer readable medium, and the like.
  • the computer readable medium may be a computer readable signal medium or a computer readable storage medium.
  • a computer readable medium may include but not limited to an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing. More specific examples of the computer readable storage medium would include an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM) , a read-only memory (ROM) , an erasable programmable read-only memory (EPROM or Flash memory) , an optical fiber, a portable compact disc read-only memory (CD-ROM) , an optical storage device, a magnetic storage device, or any suitable combination of the foregoing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Embodiments of the present disclosure relate to for transmitting PRS. A first device receives a positioning request from a second device. The first device causes a plurality of third devices at different locations from the first device to transmit positioning reference signals to the second device based on configuration information concerning the positioning reference signals. The first device transmits the configuration information to the second device. The first device transmits the positioning reference signals to the second device based on the configuration information for positioning the second device.

Description

METHOD, DEVICE AND COMPUTER READABLE MEDIUM FOR TRANSMITTING PRS FIELD
Embodiments of the present disclosure generally relate to the field of telecommunication and in particular, to a method, device, apparatus and computer readable medium for transmitting Positioning Reference Signals (PRS) .
BACKGROUND
Positioning techniques may include Observed Time Difference of Arrival (OTDOA) , Enhanced Cell-ID (E-CID) and Uplink Time Difference of Arrival (UTDOA) . The OTDOA is a downlink positioning technology. In this positioning technology, a device to be positioned measures Time of Arrival (TOA) of PRS transmitted from a serving cell and neighbour cells, and reports reference signal time differences (RSTDs) to a location server so as to determine the location of the target device.
Conventionally, the PRS is scattered in time and frequency in a positioning occasion. The positioning occasion allocates consecutive positioning subframes and resource blocks with a certain periodicity in a pre-defined pattern. In the New Radio (NR) design, there is a principle called ultra-lean. The ultra-lean principle aims at minimizing always-on transmissions, thereby enabling higher network energy efficiency and higher achievable data rates. PRS complying with the ultra-lean principle needs to be defined for supporting NR positioning.
SUMMARY
In general, example embodiments of the present disclosure provide a solution for transmitting PRS.
In a first aspect, there is provided a first device. The first device comprises at least one processor; and at least one memory including computer program codes; the at least one memory and the computer program codes are configured to, with the at least one processor, cause the first device to: receive a positioning request from a second device; cause a plurality of third devices at different locations from the first device to transmit positioning reference signals to the second device based on configuration information concerning the  positioning reference signals; transmit the configuration information to the second device; and transmit the positioning reference signals to the second device based on the configuration information for positioning the second device.
In a second aspect, there is provided a second device. The second device comprises at least one processor; and at least one memory including computer program codes; the at least one memory and the computer program codes are configured to, with the at least one processor, cause the second device to: transmit a positioning request to a first device; receive configuration information concerning positioning reference signals from the first device; and receive, based on the configuration information, the positioning reference signals from the first device and a plurality of third devices at different locations from the first device for positioning the second device.
In a third aspect, there is provided a third device. The third device comprises at least one processor; and at least one memory including computer program codes; the at least one memory and the computer program codes are configured to, with the at least one processor, cause the third device to: in response to a positioning request being received by a first device from a second device, receive from the first device an indication that positioning reference signals are to be transmitted to the second device based on configuration information concerning the positioning reference signals; andtransmit, based on the indication and the configuration information, the positioning reference signals to the second device for positioning the second device.
In a fourth aspect, there is provided a method implemented at a device. The method comprises: receiving, at a first device, a positioning request from a second device; causing a plurality of third devices at different locations from the first device to transmit positioning reference signals to the second device based on configuration information concerning the positioning reference signals; transmitting the configuration information to the second device; and transmitting the positioning reference signals to the second device based on the configuration information for positioning the second device.
In a fifth aspect, there is provided a method implemented at a device. The method comprises: transmitting a positioning request from a second device to a first device; receiving configuration information concerning positioning reference signals from the first device; and receiving, based on the configuration information, the positioning reference signals from the first device and a plurality of third devices at different locations from the  first device for positioning the second device.
In a sixth aspect, there is provided a method implemented at a device. The method comprises: in response to a positioning request being received by a first device from a second device, receiving, at a third device and from the first device an indication that positioning reference signals are to be transmitted to the second device based on configuration information concerning the positioning reference signals; and transmitting, based on the indication and the configuration information, the positioning reference signals to the second device for positioning the second device.
In a seventh aspect, there is provided an apparatus comprising: means for receiving, at a first device, a positioning request from a second device; means for causing a plurality of third devices at different locations from the first device to transmit positioning reference signals to the second device based on configuration information concerning the positioning reference signals; means for transmitting the configuration information to the second device; and means for transmitting the positioning reference signals to the second device based on the configuration information for positioning the second device.
In an eighth aspect, there is provided an apparatus comprising: means for transmitting a positioning request from a second device to a first device; means for receiving configuration information concerning positioning reference signals from the first device; and receiving, based on the configuration information, the positioning reference signals from the first device and a plurality of third devices at different locations from the first device for positioning the second device.
In a ninth aspect, there is provided an apparatus comprising: in response to a positioning request being received by a first device from a second device, means for receiving, at a third device and from the first device an indication that positioning reference signals are to be transmitted to the second device based on configuration information concerning the positioning reference signals; and means for transmitting, based on the indication and the configuration information, the positioning reference signals to the second device for positioning the second device.
In a tenth aspect, there is provided a computer readable medium comprising a computer program for causing an apparatus to perform at least the method according to the above fourth aspect.
In an eleventh aspect, there is provided a computer readable medium comprising a  computer program for causing an apparatus to perform at least the method according to the above fifth aspect.
In a twelfth aspect, there is provided a computer readable medium comprising a computer program for causing an apparatus to perform at least the method according to the above sixth aspect.
It is to be understood that the summary section is not intended to identify key or essential features of embodiments of the present disclosure, nor is it intended to be used to limit the scope of the present disclosure. Other features of the present disclosure will become easily comprehensible through the following description.
BRIEF DESCRIPTION OF THE DRAWINGS
Some example embodiments will now be described with reference to the accompanying drawings, where:
Fig. 1 shows an example communication network in which embodiments of the present disclosure may be implemented;
Fig. 2 shows a signaling chart illustrating a process for transmitting PRS according to some example embodiments of the present disclosure;
Fig. 3 shows a signaling chart illustrating a process for coordination between devices about allocation of a time domain resource according to some example embodiments of the present disclosure;
Fig. 4 shows an example of positioning subframes according to some example embodiments of the present disclosure;
Fig. 5 shows a flowchart of a method implemented at a first device in accordance with some example embodiments of the present disclosure;
Fig. 6 shows a flowchart of a method implemented at a second device in accordance with some example embodiments of the present disclosure;
Fig. 7 shows a flowchart of a method implemented at a third device in accordance with some example embodiments of the present disclosure;
Fig. 8 illustrates a simplified block diagram of an apparatus that is suitable for implementing some other embodiments of the present disclosure; and
Fig. 9 illustrates a block diagram of an example computer readable medium in accordance with some example embodiments of the present disclosure.
Throughout the drawings, the same or similar reference numerals represent the same or similar element.
DETAILED DESCRIPTION
Principle of the present disclosure will now be described with reference to some example embodiments. It is to be understood that these embodiments are described only for the purpose of illustration and help those skilled in the art to understand and implement the present disclosure, without suggesting any limitation as to the scope of the disclosure. The disclosure described herein can be implemented in various manners other than the ones described below.
In the following description and claims, unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skills in the art to which this disclosure belongs.
References in the present disclosure to “one embodiment, ” “an embodiment, ” “an example embodiment, ” and the like indicate that the embodiment described may include a particular feature, structure, or characteristic, but it is not necessary that every embodiment includes the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an example embodiment, it is submitted that it is within the knowledge of one skilled in the art to affect such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described.
It shall be understood that although the terms “first” and “second” etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first element could be termed a second element, and similarly, a second element could be termed a first element, without departing from the scope of example embodiments. As used herein, the term “and/or” includes any and all combinations of one or more of the listed terms.
The terminology used herein is for the purpose of describing particular  embodiments only and is not intended to be limiting of example embodiments. As used herein, the singular forms “a” , “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” , “comprising” , “has” , “having” , “includes” and/or “including” , when used herein, specify the presence of stated features, elements, and/or components etc., but do not preclude the presence or addition of one or more other features, elements, components and/or combinations thereof.
As used in this application, the term “circuitry” may refer to one or more or all of the following:
(a) hardware-only circuit implementations (such as implementations in only analog and/or digital circuitry) and
(b) combinations of hardware circuits and software, such as (as applicable) :
(i) a combination of analog and/or digital hardware circuit (s) with software/firmware and
(ii) any portions of hardware processor (s) with software (including digital signal processor (s) ) , software, and memory (ies) that work together to cause an apparatus, such as a mobile phone or server, to perform various functions) and
(c) hardware circuit (s) and or processor (s) , such as a microprocessor (s) or a portion of a microprocessor (s) , that requires software (e.g., firmware) for operation, but the software may not be present when it is not needed for operation.
This definition of circuitry applies to all uses of this term in this application, including in any claims. As a further example, as used in this application, the term circuitry also covers an implementation of merely a hardware circuit or processor (or multiple processors) or portion of a hardware circuit or processor and its (or their) accompanying software and/or firmware. The term circuitry also covers, for example and if applicable to the particular claim element, a baseband integrated circuit or processor integrated circuit for a mobile device or a similar integrated circuit in server, a cellular network device, or other computing or network device.
As used herein, the term “communication network” refers to a network following any suitable communication standards, such as fifth generation (5G) systems, Long Term Evolution (LTE) , LTE-Advanced (LTE-A) , Wideband Code Division Multiple Access  (WCDMA) , High-Speed Packet Access (HSPA) , Narrow Band Internet of Things (NB-IoT) and so on. Furthermore, the communications between a terminal device and a network device in the communication network may be performed according to any suitable generation communication protocols, including, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth generation (4G) , 4.5G, the future fifth generation (5G) new radio (NR) communication protocols, and/or any other protocols either currently known or to be developed in the future. Embodiments of the present disclosure may be applied in various communication systems. Given the rapid development in communications, there will of course also be future type communication technologies and systems with which the present disclosure may be embodied. It should not be seen as limiting the scope of the present disclosure to only the aforementioned system.
As used herein, the term “network device” refers to a node in a communication network via which a terminal device accesses the network and receives services therefrom. The network device may refer to a base station (BS) or an access point (AP) , for example, a node B (NodeB or NB) , an evolved NodeB (eNodeB or eNB) , a NR Next Generation NodeB (gNB) , a Remote Radio Unit (RRU) , a radio header (RH) , a remote radio head (RRH) , a relay, a low power node such as a femto, a pico, and so forth, depending on the applied terminology and technology. An RAN split architecture comprises a gNB-CU (Centralized unit, hosting RRC, SDAP and PDCP) controlling a plurality of gNB-DUs (Distributed unit, hosting RLC, MAC and PHY) .
The term “terminal device” refers to any end device that may be capable of wireless communication. By way of example rather than limitation, a terminal device may also be referred to as a communication device, user equipment (UE) , a Subscriber Station (SS) , a Portable Subscriber Station, a Mobile Station (MS) , or an Access Terminal (AT) . The terminal device may include, but not limited to, a mobile phone, a cellular phone, a smart phone, voice over IP (VoIP) phones, wireless local loop phones, a tablet, a wearable terminal device, a personal digital assistant (PDA) , portable computers, desktop computer, image capture terminal devices such as digital cameras, gaming terminal devices, music storage and playback appliances, vehicle-mounted wireless terminal devices, wireless endpoints, mobile stations, laptop-embedded equipment (LEE) , laptop-mounted equipment (LME) , USB dongles, smart devices, wireless customer-premises equipment (CPE) , an Internet of Things (IoT) device, a watch or other wearable, a head-mounted display (HMD) ,  a vehicle, a drone, a medical device and applications (e.g., remote surgery) , an industrial device and applications (e.g., a robot and/or other wireless devices operating in an industrial and/or an automated processing chain contexts) , a consumer electronics device, a device operating on commercial and/or industrial wireless networks, and the like. In the following description, the terms “terminal device” , “communication device” , “terminal” , “user equipment” and “UE” may be used interchangeably.
Although functionalities described herein can be performed, in various example embodiments, in a fixed and/or a wireless network node may, in other example embodiments, functionalities may be implemented in a user equipment apparatus (such as a cell phone or tablet computer or laptop computer or desktop computer or mobile IoT device or fixed IoT device) . This user equipment apparatus can, for example, be furnished with corresponding capabilities as described in connection with the fixed and/or the wireless network node (s) , as appropriate. The user equipment apparatus may be the user equipment and/or or a control device, such as a chipset or processor, configured to control the user equipment when installed therein. Examples of such functionalities include the bootstrapping server function and/or the home subscriber server, which may be implemented in the user equipment apparatus by providing the user equipment apparatus with software configured to cause the user equipment apparatus to perform from the point of view of these functions/nodes.
Conventionally, the PRS is an “always-on” signal, which means that it is transmitted by network devices to a terminal device regardless of the amount of user traffic. To be more specific, the PRS is transmitted regardless whether the terminal device really needs it at the moment. The always-on transmissions of the PRS have many negative impacts. For example, the always-on transmissions may impose an upper limit on the achievable network energy performance. In addition, the always-on transmissions may cause interference to other cells, thereby reducing the achievable data rates.
In order to at least in part solve above and other potential problems, example embodiments of the present disclosure provide a solution for transmitting PRS on-demand. In the solution, the PRS is transmitted in response to a positioning request from a device to be positioned. Thus, the always-on transmissions of the PRS are not needed. Accordingly, the achievable network energy performance is improved and interference to other cells may be reduced.
Fig. 1 shows an example communication network 100 in which embodiments of the present disclosure can be implemented. The communication network 100 includes a first device 110 which provides a serving cell 111 to serve a second device 120. The communication network 100 also includes third devices 130-1 and 130-2 at different locations from the first device 110. The third devices 130-1 and 130-2 are collectively referred to as third device (s) 130. The third devices 130-1 and 130-2 provide a neighbor cell 131-1 and a neighbor cell 131-2, respectively. In this example, the second device 120 is illustrated as a terminal device, and the first device 110 and the third devices 130 are illustrated as network devices serving the terminal device. It is to be understood that the number of the first device, second device and the third devices and/or cells is given for the purpose of illustration without suggesting any limitations to the present disclosure. The communication network 100 may include any suitable number of first, second and third devices and/or cells adapted for implementing implementations of the present disclosure.
As shown in Fig. 1, the communication network 100 may also include a location server 140, which is communicatively coupled with the first device 110, the second device 120 and the third devices 130. The location server 140 is responsible for positioning devices in the network 100. For example, the location server 140 may determine positions of the devices based on OTDOA, E-CID or UTDOA technology. The location server 140 may be a physical or logical entity that collects measurements and other location information from the first, second and third devices, and assists these devices in estimating their positions. The location server 140 may be a separate entity in a core network or be resided at a network device or a terminal device. In a LTE system, the location server 140 may include Evolved Serving Mobile Location Center (E-SMLC) and Secure User Plane Location (SUPL) . In an NR system, the location server 140 may be a Location Management Function (LMF) . Although the location server 140 is shown as a separate device from the  devices  110, 120 and 130, it is to be understood that the location server 140 can also be implemented at one of the  devices  110, 120 and 130 in some embodiments.
Communications in the communication system 100 may be implemented according to any proper communication protocol (s) , comprising, but not limited to, cellular communication protocols of the first generation (1G) , the second generation (2G) , the third generation (3G) , the fourth generation (4G) and the fifth generation (5G) and on the like, wireless local network communication protocols such as Institute for Electrical and Electronics Engineers (IEEE) 802.11 and the like, and/or any other protocols currently  known or to be developed in the future. Moreover, the communication may utilize any proper wireless communication technology, comprising but not limited to: Code Divided Multiple Address (CDMA) , Frequency Divided Multiple Address (FDMA) , Time Divided Multiple Address (TDMA) , Frequency Divided Duplexer (FDD) , Time Divided Duplexer (TDD) , Multiple-Input Multiple-Output (MIMO) , Orthogonal Frequency Divided Multiple Access (OFDMA) and/or any other technologies currently known or to be developed in the future.
According to embodiments of the present disclosure, in order to determine the position of the second device 120, the second device 120 transmits a positioning request to the first device 110. In response to receiving the positioning request, the first device 110 causes the third devices 130 to transmit PRS to the second device 120 based on configuration information concerning the PRS. In turn, the first device 110 and the third devices 130 transmit PRS to the second device 120 based on the configuration information concerning the PRS. Thus, the always-on transmissions of the PRS are not needed.
Principle and implementations of the present disclosure will be described in detail below with reference to Figs. 2 to 7. Fig. 2 shows a signaling chart illustrating a process 200 for transmitting PRS according to some example embodiments of the present disclosure. For the purpose of discussion, the process 200 will be described with reference to Fig. 1. The process 200 may involve the first device 110, the second device 120 and the third devices 130 as illustrated in Fig. 1. It would be appreciated that although the process 200 has been described in the communication system 100 of Fig. 1, this process may be likewise applied to other communication scenarios. It would also be appreciated that although transmitting PRS to the second device is discussed, a similar process can be applied for the first device or the third devices.
As shown in Fig. 2, the second device 120 transmits 205 a positioning request to the first device 110. In some embodiments, the second device 120 may transmit the positioning request to the first device 110 via uplink control information (UCI) . In the case of UCI, the positioning request may be an indicator of one bit and transmitted in a preconfigured periodicity via Physical Uplink Control Channel (PUCCH) or Physical Uplink Shared Channel (PUSCH) . For example, the indicator of one bit may be set to be 1 indicating that the second device 120 needs to do positioning, and may be set to be 0 indicating that the second device 120 does not need to do positioning. Alternatively, the positioning request may be configured to be positive or negative. It is also possible that  the second device 120 may transmit the positioning request to indicate that the second device 120 needs to do positioning, and transmit nothing to indicate that the second device 120 does not need to do positioning.
In some embodiments, in order to enable the transmission of the positioning request via UCI, the first device 110 may configure a positioning request opportunity for the second device 120. In some embodiments, the first device 110 may configure the positioning request opportunity via PUCCH set in RRC Configuration. The positioning request opportunity is a periodical and dedicated resource, and is allocated to the second device 120.
Compared with the conventional location request according to LTE Positioning Protocol (LPP) , the positioning request according to some example embodiments of the present disclosure may reduce overhead in air interface.
In other embodiments, the second device 120 may transmit the positioning request to the first device 110 via a control element for media access control (which is also referred to as MAC CE) or a radio resource control (RRC) signaling. In order to enable the transmission of the positioning request via MAC CE or RRC signaling, the first device 110 may allocate a PUSCH resource to the second device 120 in advance.
In some embodiments, the second device 120 may handover from a source device to the first device 110. In such embodiments, the second device 120 may transmit the positioning request to the first device 110 via the source device. In other words, the second device 120 may transmit the positioning request to the source device and then the source device forwards the positioning request to the first device 110.
In some embodiments, before transmitting the positioning request to the first device 110, the second device 120 may transmit information concerning neighbour cells to the first device 110. For example, the second device 120 may transmit measurement reports for the neighbour cells to the first device 110. For another example, the second device 120 has obtained from the location server 140 positioning assistance data comprising information concerning neighbour cells. Then, the second device 120 may transmit the information concerning neighbour cells in the positioning assistance data to the first device 110.
Upon receiving the information concerning neighbour cells, the first device 110 may select at least two devices form a set of candidate devices based on the information so  as to transmit the PRS together with the selected two devices. The candidate devices are at different locations from the first device 110. For example, the first device 110 may select the third devices 130-1 and 130-2 from the set of candidate devices. It is to be understood that the first device 110 may select more than two devices from the set so as to increase the accuracy of positioning.
In other embodiments, the first device 110 may select at least two devices from the set of candidate devices based on locations of the candidate devices relative to the second device 120, or workloads of the candidate devices.
With continued reference to Fig. 2, the first device 110 causes 210 the third device 130-1 to transmit PRS to the second device 120 based on configuration information concerning the PRS, and causes 215 the third device 130-2 to transmit PRS to the second device 120 based on the configuration information concerning the PRS.
In some embodiments, the configuration information at least comprises information concerning at least one of the following: a time domain resource for transmission of the PRS, a frequency domain resource for transmission of the PRS, or a pattern of the PRS.
In some embodiments, the information concerning the time domain resource may comprise information concerning at least one of the following: a start time offset from the last PDCCH to an initial PRS transmission, a duration of the PRS, a periodicity of the PRS.
In some embodiments, the information concerning the frequency domain resource may comprise information concerning at least one of the following: Bandwidth Parts (BWPs) for the transmission of the PRS from the third devices 130, or allocations of frequency domain resources in the BWPs.
In other embodiments, the configuration information may further comprise information concerning at least one of the following: identifiers of cells in which the PRS is to be transmitted, or real time differences (RTDs) among the first device 110 and the third devices 130.
The first device 110 transmits 220 the configuration information to the second device 120. In some embodiments, the first device 110 transmits 220 the configuration information to the second device 120 via Downlink Control Information (DCI) or MAC CE.  Compared with the conventional LPP assistance data, a size of the configuration information is much less. Thus, overhead in the air interface is reduced.
The first device 110 transmits 225 the PRS to the second device 120 based on the configuration information for positioning the second device 120. The third device 130-1 transmits 230 the PRS to the second device 120 based on the configuration information for positioning the second device. The third device 130-2 transmits 235 the PRS to the second device 120 based on the configuration information for positioning the second device.
Correspondingly, the second device 120 receives the PRS from the first device 110 and the third devices 130. In turn, the second device 120 performs measurements of the PRS. Then, the second device 120 transmits the measurements of the PRS to the first device 110 and the first device 110 forwards the measurements of the PRS to the location server 140. The location server 140 may determine the position of the second device 120 based on the measurements of the PRS.
In some embodiments, the time domain resource, the frequency domain resource and the pattern of the PRS are preconfigured. For example, the resources and the pattern of the PRS may be preconfigured when the first device 110 and the third devices 130 are installed. In such embodiments, in order to cause the third devices 130 to transmit the PRS to the second device 120, the first device 110 may transmit to the third devices 130 a command indicating the third devices 130 to start the transmission of the PRS at a first time. Upon receiving the command, the third devices 130 transmit the PRS to the second device 120 based on the preconfigured resources and pattern. Because the resources are preconfigured, there is no need of the coordination between the first device 110 and the third devices 130 about allocation of the resources. Thus, the overall position operation of the second device 120 may be speeded up.
In the embodiments where the time domain resource, the frequency domain resource and the pattern of the PRS are preconfigured, upon receiving the measurements of the PRS from the second device 120, the first device 110 transmits to the third devices 130 a command, respectively, so as to indicate the third devices 130 to stop the transmission of the PRS. It should be noted that the first device 110 may transmit the command to stop the transmission of the PRS at any appropriate time. For example, the first device 110  may transmit the command when the second device 120 leaves the cell 111 provided by the first device 110.
In other embodiments, optionally, the first device 110 determines 240 the time domain resource for transmission of the PRS via coordination between the first device 110 and the third devices 130 about allocation of the time domain resource, which will be described below with reference to Fig. 3. In such embodiments, in order to cause the third devices 130 to transmit the PRS to the second device 120, the first device 110 may transmit to the third devices 130 an indication indicating the determined time domain resource.
Fig. 3 shows a signaling chart illustrating a process 300 for coordination between the first device 110 and the third devices 130 about allocation of the time domain resource according to some example embodiments of the present disclosure. For the purpose of discussion, the process 300 will be described with reference to Fig. 1. The process 300 may be considered as an example implementation of the action 240 as illustrated in Fig. 2. The process 300 may involve the first device 110, the second device 120 and the third devices 130 as illustrated in Fig. 1. It would be appreciated that although the process 300 has been described in the communication system 100 of Fig. 1, this process may be likewise applied to other communication scenarios.
As shown in Fig. 3, the first device 110 determines 305 a time window for transmission of the PRS. The first device 110 transmits 310 information concerning the time window to the third device 130-1. The first device 110 transmits 320 the information concerning the time window to the third device 130-2.
In some embodiments, the information concerning the time window may comprise at least one of the following: a starting time of the time window, an ending time of the time window, a duration of the PRS, or a periodicity of the PRS.
Upon receiving the information concerning the time window, the third device 130-1 selects 315 timeslots in the time window for transmission of the PRS from the third device 130-1 to the second device 120. Similarly, upon receiving the information concerning the time window, the third device 130-2 selects 325 at least one timeslot in the time window for transmission of the PRS from the third device 130-2 to the second device 120.
The third device 130-1 transmits 330 an indication of the selected timeslots in the time window to the first device 110. Similarly, the third device 130-2 transmits 335 an indication of the selected timeslots in the time window to the first device 110.
Upon receiving the indications of the timeslots respectively selected by the third devices 130-1 and 130-2, the first device 110 determines 340, based on the indications of the selected timeslots, timeslots in the time window for the transmission of the PRS from the first device 110 and the third devices 130 to the second device 120.
Upon determining the timeslots in the time window for the transmission of the PRS from the first device 110 and the third devices 130 to the second device 120, the first device 110 transmits information concerning the determined timeslots to the third device 130-1 and 130-2, respectively.
In the process 300, the first device 110 determines the time domain resource for transmission of the PRS via the coordination between the first device 110 and the third devices 130 about the allocation of the time domain resource. Thus, it is more flexible for allocating the resource dynamically. Moreover, because the PRS is only transmitted in the determined timeslots in the time window, the second device 120 only needs to measure the PRS in the determined timeslots instead of measuring the PRS in several PRS periods. Thus, the time duration needed by the second device 120 to measure the PRS is reduced, thereby speeding up the positioning operation.
In some embodiments, upon receiving the information concerning the time window from the first device 110, in addition to selection of the timeslots in the time window, the third devices 130 may also determine their respective frequency domain resources associated with the selected timeslots for the transmission of the PRS from the third devices 130 to the second device 120. In turn, the third devices 130 transmit to the first device 110 information concerning the respective frequency domain resources.
In some embodiments, the pattern of the PRS is determined by the first device 110. In such embodiments, in order to cause the third devices 130 to transmit the PRS to the second device 120, the first device 110 may transmit the determined pattern to the third devices 130.
Fig. 4 shows an example of positioning subframes 400 according to some example  embodiments of the present disclosure. As shown, PRS 410 is scattered in the positioning subframes 400 and physical resource blocks (PRBs) associated with the positioning subframes 400.
It is to be appreciated that the pattern of the PRS as shown in Fig. 4 is given for the purpose of illustration without suggesting any limitations to the present disclosure. Other pre-configured patterns of the PRS may be applied for implementing implementations of the present disclosure. In some embodiments, the pattern of the PRS may comprise a muting pattern of the PRS.
Fig. 5 shows a flowchart of an example method 500 implemented at a device in accordance with some example embodiments of the present disclosure. For the purpose of discussion, the method 500 will be described from the perspective of the first device 110 with reference to Fig. 1. It would be appreciated that the method 500 may also be implemented at the second device 120 or the third devices 130 in Fig. 1.
At block 510, the first device 110 receives a positioning request from the second device 120.
At block 520, the first device 110 causes a plurality of third devices 130 at different locations from the first device 110 to transmit positioning reference signals to the second device 120 based on configuration information concerning the positioning reference signals.
At block 530, the first device 110 transmits the configuration information to the second device.
At block 540, the first device 110 transmits the positioning reference signals to the second device based on the configuration information for positioning the second device.
In some embodiments, receiving the positioning request comprises receiving one of the following: uplink control information, a control element for media access control, or a radio resource control signalling.
In some embodiments, the configuration information at least comprises information concerning at least one of the following: a time domain resource for transmission of the positioning reference signals, a frequency domain resource for transmission of the positioning reference signals, or a pattern of the positioning reference signals.
In some embodiments, the configuration information comprises information concerning at least one of the following: identifiers of cells in which the positioning reference signals are to be transmitted, or real time differences among the first device and the third devices.
In some embodiments, at least the time domain resource, the frequency domain resource and the pattern are preconfigured.
In some embodiments, causing the third devices to transmit the positioning reference signals comprises: transmitting to the third devices a command indicating the third devices to start the transmission of the positioning reference signals at a first time.
In some embodiments, the method 500 further comprises: in response to receiving measurements of the positioning reference signals from the second device, transmitting to the third devices a command indicating the third devices to stop the transmission of the positioning reference signals, respectively.
In some embodiments, the method 500 further comprises determining the time domain resource; and causing the third devices to transmit the positioning reference signals comprises transmitting to the third devices an indication indicating the determined time domain resource.
In some embodiments, determining the time domain resource comprises: determining a time window for transmission of the positioning reference signals; transmitting information concerning the time window to the third devices; receiving from the third devices indications of timeslots in the time window that are respectively selected by the third devices; and determining, based on the indications of the selected timeslots, at least one timeslot in the time window for the transmission of the positioning reference signals from the first device and the third devices to the second device.
In some embodiments, the method 500 further comprises determining the pattern; and causing the third devices to transmit the positioning reference signals comprises transmitting the determined pattern to the third devices.
In some embodiments, the method 500 further comprises selecting the third devices from a set of candidate devices based on at least one of the following: measurements for cells provided by the candidate devices, locations of the candidate devices relative to the second device, or workloads of the candidate devices.
Fig. 6 shows a flowchart of an example method 600 implemented at a device in accordance with some example embodiments of the present disclosure. For the purpose of discussion, the method 600 will be described from the perspective of the second device 120 with reference to Fig. 1. It would be appreciated that the method 600 may also be implemented at the first device 110 or the third devices 130 in Fig. 1.
At block 610, the second device 120 transmits a positioning request to the first device 110.
At block 620, the second device 120 receives configuration information concerning positioning reference signals from the first device 110.
At block 610, the second device 120 receives, based on the configuration information, the positioning reference signals from the first device 110 and a plurality of third devices 130 at different locations from the first device 110 for positioning the second device 120.
In some embodiments, transmitting the positioning request comprises transmitting one of the following: uplink control information, a control element for media access control, or a radio resource control signalling.
In some embodiments, the configuration information at least comprises information concerning at least one of the following: a time domain resource for transmission of the positioning reference signals, a frequency domain resource for transmission of the positioning reference signals, or a pattern of the positioning reference signals.
In some embodiments, the configuration information comprises information concerning at least one of the following: identifiers of cells in which the positioning reference signals are to be transmitted, or real time differences among the first device and the third devices.
In some embodiments, at least the time domain resource, the frequency domain resource and the pattern are preconfigured.
In some embodiments, the time domain resource is determined by the first device 110 via coordination between the first device 110 and the third devices 130.
Fig. 7 shows a flowchart of an example method 700 implemented at a device in accordance with some example embodiments of the present disclosure. For the purpose of discussion, the method 700 will be described from the perspective of the third device 130 with reference to Fig. 1. It would be appreciated that the method 700 may also be implemented at the first device 110 or the second device 120 in Fig. 1.
At block 710, in response to a positioning request being received by a first device from a second device, the third device 130 receives from the first device an indication that positioning reference signals are to be transmitted to the second device based on configuration information concerning the positioning reference signals.
At block 720, the third device 130 transmits, based on the indication and the configuration information, the positioning reference signals to the second device 120 for positioning the second device 120.
In some embodiments, the configuration information at least comprises information concerning at least one of the following: a time domain resource for transmission of the positioning reference signals, a frequency domain resource for transmission of the positioning reference signals, or a pattern of the positioning reference signals.
In some embodiments, the configuration information further comprises information concerning at least one of the following: identifiers of cells in which the positioning reference signals are to be transmitted, or a real time difference among the first device and the third device.
In some embodiments, the time domain resource, the frequency domain resource and the pattern are preconfigured.
In some embodiments, the indication indicates a first time when the transmission of the positioning reference signals starts.
In some embodiments, the method 700 further comprises: in response to receiving from the first device a command indicating the third devices to stop the transmission of the positioning reference signals, stopping the transmission of the positioning reference signals.
In some embodiments, the time domain resource is determined by the first device; and the indication indicates the determined time domain resource.
In some embodiments, the pattern is determined by the first device; and the  indication indicates the determined pattern.
In some embodiments, the method 700 further comprises: receiving from the first device information concerning a time window for transmission of the positioning reference signals; selecting timeslots in the time window for transmission of the positioning reference signals from the third device to the second device; and transmitting to the first device indications of the selected timeslots.
In some embodiments, the method 700 further comprises: determining a frequency domain resource associated with the selected timeslots for the transmission of the positioning reference signals from the third device to the second device; and transmitting to the first device information concerning the frequency domain resource.
It shall be appreciated that descriptions of features with reference to Figs. 1 to 4 also apply to the  methods  500, 600 and 700, and have the same effects. Thus, the details of the features are omitted.
In some example embodiments, an apparatus capable of performing any of the method 500 (for example, the first device 110) may comprise means for performing the respective steps of the method 500. The means may be implemented in any suitable form. For example, the means may be implemented in a circuitry or software module.
In some example embodiments, the apparatus comprises means for means for receiving, at a first device, a positioning request from a second device; means for causing a plurality of third devices at different locations from the first device to transmit positioning reference signals to the second device based on configuration information concerning the positioning reference signals; means for transmitting the configuration information to the second device; and means for transmitting the positioning reference signals to the second device based on the configuration information for positioning the second device.
In some embodiments, means for receiving the positioning request comprises means for receiving one of the following: uplink control information, a control element for media access control, or a radio resource control signalling.
In some embodiments, the configuration information at least comprises information concerning at least one of the following: a time domain resource for transmission of the positioning reference signals, a frequency domain resource for transmission of the positioning reference signals, or a pattern of the positioning reference signals.
In some embodiments, the configuration information comprises information concerning at least one of the following: identifiers of cells in which the positioning reference signals are to be transmitted, or real time differences among the first device and the third devices.
In some embodiments, at least the time domain resource, the frequency domain resource and the pattern are preconfigured.
In some embodiments, means for causing the third devices to transmit the positioning reference signals comprises: means for transmitting to the third devices a command indicating the third devices to start the transmission of the positioning reference signals at a first time.
In some embodiments, the apparatus further comprises: in response to receiving measurements of the positioning reference signals from the second device, means for transmitting to the third devices a command indicating the third devices to stop the transmission of the positioning reference signals, respectively.
In some embodiments, the apparatus further comprises means for determining the time domain resource; and means for causing the third devices to transmit the positioning reference signals comprises means for transmitting to the third devices an indication indicating the determined time domain resource.
In some embodiments, means for determining the time domain resource comprises: means for determining a time window for transmission of the positioning reference signals; means for transmitting information concerning the time window to the third devices; means for receiving from the third devices indications of timeslots in the time window that are respectively selected by the third devices; and means for determining, based on the indications of the selected timeslots, at least one timeslot in the time window for the transmission of the positioning reference signals from the first device and the third devices to the second device.
In some embodiments, the apparatus further comprises means for determining the pattern; and means for causing the third devices to transmit the positioning reference signals comprises means for transmitting the determined pattern to the third devices.
In some embodiments, the apparatus further comprises means for selecting the third devices from a set of candidate devices based on one or more of the following but not limited to: measurements for cells provided by the candidate devices, locations of the  candidate devices relative to the second device, or workloads of the candidate devices.
Fig. 8 is a simplified block diagram of a device 800 that is suitable for implementing embodiments of the present disclosure. The device 800 may be provided to implement the communication device, for example the first device 110, the second device 120 or the third devices 130 as shown in Fig. 1. As shown, the device 800 includes one or more processors 810, one or more memories 820 coupled to the processor 810, and one or more communication modules 840 coupled to the processor 810.
The communication module 840 is for bidirectional communications. The communication module 840 has at least one antenna to facilitate communication. The communication interface may represent any interface that is necessary for communication with other network elements.
The processor 810 may be of any type suitable to the local technical network and may include one or more of the following: general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs) and processors based on multicore processor architecture, as non-limiting examples. The device 800 may have multiple processors, such as an application specific integrated circuit chip that is slaved in time to a clock which synchronizes the main processor.
The memory 820 may include one or more non-volatile memories and one or more volatile memories. Examples of the non-volatile memories include, but are not limited to, a Read Only Memory (ROM) 824, an electrically programmable read only memory (EPROM) , a flash memory, a hard disk, a compact disc (CD) , a digital video disk (DVD) , and other magnetic storage and/or optical storage. Examples of the volatile memories include, but are not limited to, a random access memory (RAM) 822 and other volatile memories that will not last in the power-down duration.
computer program 830 includes computer executable instructions that are executed by the associated processor 810. The program 830 may be stored in the ROM 824. The processor 810 may perform any suitable actions and processing by loading the program 830 into the RAM 822.
The embodiments of the present disclosure may be implemented by means of the program 830 so that the device 800 may perform any process of the disclosure as discussed with reference to Figs. 2 to 10. The embodiments of the present disclosure may also be implemented by hardware or by a combination of software and hardware.
In some example embodiments, the program 830 may be tangibly contained in a computer readable medium which may be included in the device 800 (such as in the memory 820) or other storage devices that are accessible by the device 800. The device 800 may load the program 830 from the computer readable medium to the RAM 822 for execution. The computer readable medium may include any types of tangible non-volatile storage, such as ROM, EPROM, a flash memory, a hard disk, CD, DVD, and the like. Fig. 9 shows an example of the computer readable medium 900 in form of CD or DVD. The computer readable medium has the program 830 stored thereon.
Generally, various embodiments of the present disclosure may be implemented in hardware or special purpose circuits, software, logic or any combination thereof. Some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software which may be executed by a controller, microprocessor or other computing device. While various aspects of embodiments of the present disclosure are illustrated and described as block diagrams, flowcharts, or using some other pictorial representations, it is to be understood that the block, apparatus, system, technique or method described herein may be implemented in, as non-limiting examples, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controller or other computing devices, or some combination thereof.
The present disclosure also provides at least one computer program product tangibly stored on a non-transitory computer readable storage medium. The computer program product includes computer-executable instructions, such as those included in program modules, being executed in a device on a target real or virtual processor, to carry out the  methods  500, 600 and 7000 as described above with reference to Figs. 5, 6 and 7. Generally, program modules include routines, programs, libraries, objects, classes, components, data structures, or the like that perform particular tasks or implement particular abstract data types. The functionality of the program modules may be combined or split between program modules as desired in various embodiments. Machine-executable instructions for program modules may be executed within a local or distributed device. In a distributed device, program modules may be located in both local and remote storage media.
Program code for carrying out methods of the present disclosure may be written in any combination of one or more programming languages. These program codes may be provided to a processor or controller of a general purpose computer, special purpose  computer, or other programmable data processing apparatus, such that the program codes, when executed by the processor or controller, cause the functions/operations specified in the flowcharts and/or block diagrams to be implemented. The program code may execute entirely on a machine, partly on the machine, as a stand-alone software package, partly on the machine and partly on a remote machine or entirely on the remote machine or server.
In the context of the present disclosure, the computer program codes or related data may be carried by any suitable carrier to enable the device, apparatus or processor to perform various processes and operations as described above. Examples of the carrier include a signal, computer readable medium, and the like.
The computer readable medium may be a computer readable signal medium or a computer readable storage medium. A computer readable medium may include but not limited to an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing. More specific examples of the computer readable storage medium would include an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM) , a read-only memory (ROM) , an erasable programmable read-only memory (EPROM or Flash memory) , an optical fiber, a portable compact disc read-only memory (CD-ROM) , an optical storage device, a magnetic storage device, or any suitable combination of the foregoing.
Further, while operations are depicted in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. In certain circumstances, multitasking and parallel processing may be advantageous. Likewise, while several specific implementation details are contained in the above discussions, these should not be construed as limitations on the scope of the present disclosure, but rather as descriptions of features that may be specific to particular embodiments. Certain features that are described in the context of separate embodiments may also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment may also be implemented in multiple embodiments separately or in any suitable sub-combination.
Although the present disclosure has been described in languages specific to structural features and/or methodological acts, it is to be understood that the present  disclosure defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claims.

Claims (38)

  1. A first device, comprising:
    at least one processor; and
    at least one memory including computer program code;
    the at least one memory and the computer program code configured to, with the at least one processor, cause the first device to:
    receive a positioning request from a second device;
    cause a plurality of third devices at different locations from the first device to transmit positioning reference signals to the second device based on configuration information concerning the positioning reference signals;
    transmit the configuration information to the second device; and
    transmit the positioning reference signals to the second device based on the configuration information for positioning the second device.
  2. The first device of Claim 1, wherein the first device is caused to receive the positioning request by receiving one of the following:
    uplink control information,
    a control element for media access control, or
    a radio resource control signalling.
  3. The first device of Claim 1, wherein the configuration information at least comprises information concerning at least one of the following:
    a time domain resource for transmission of the positioning reference signals,
    a frequency domain resource for transmission of the positioning reference signals, or
    a pattern of the positioning reference signals.
  4. The first device of Claim 1, wherein the configuration information comprises information concerning at least one of the following:
    identifiers of cells in which the positioning reference signals are to be transmitted, or
    real time differences among the first device and the third devices.
  5. The first device of Claim 3, wherein the time domain resource, the frequency domain resource and the pattern are preconfigured.
  6. The first device of Claim 5, wherein the first device is caused to cause the third devices to transmit the positioning reference signals by:
    transmitting to the third devices a command indicating the third devices to start the transmission of the positioning reference signals at a first time.
  7. The first device of Claim 6, wherein the first device is further caused to:
    in response to receiving measurements of the positioning reference signals from the second device, transmit to the third devices a command indicating the third devices to stop the transmission of the positioning reference signals, respectively.
  8. The first device of Claim 3, wherein:
    the first device is further caused to determine the time domain resource; and
    the first device is caused to cause the third devices to transmit the positioning reference signals by:
    transmitting to the third devices an indication indicating the determined time domain resource.
  9. The first device of Claim 8, wherein the first device is caused to determine the time domain resource by:
    determining a time window for transmission of the positioning reference signals;
    transmitting information concerning the time window to the third devices;
    receiving from the third devices indications of timeslots in the time window that are respectively selected by the third devices; and
    determining, based on the indications of the selected timeslots, at least one timeslot in the time window for the transmission of the positioning reference signals from the first device and the third devices to the second device.
  10. The first device of Claim 3, wherein:
    the first device is further caused to determine the pattern; and
    the first device is caused to cause the third devices to transmit the positioning reference signals by transmitting the determined pattern to the third devices.
  11. The first device of Claim 1, wherein the first device is further caused to select the third devices from a set of candidate devices based on at least one of the following:
    measurements for cells provided by the candidate devices,
    locations of the candidate devices relative to the second device, or
    workloads of the candidate devices.
  12. The first device of Claim 1, wherein the first device is a target device for handover; and
    wherein the first device is caused to receive the positioning request by:
    receiving the positioning request forwarded by a source device for the handover, the source device receiving the positioning request from the second device.
  13. The first device of Claim 1, wherein the first device is a network device serving the second device, the second device is a terminal device, and the third devices are neighbouring network device of the first device.
  14. A second device, comprising:
    at least one processor; and
    at least one memory including computer program code;
    the at least one memory and the computer program code configured to, with the at least one processor, cause the second device to:
    transmit a positioning request to a first device;
    receive configuration information concerning positioning reference signals from the first device; and
    receive, based on the configuration information, the positioning reference signals from the first device and a plurality of third devices at different locations from the first device for positioning the second device.
  15. The second device of Claim 14, wherein the second device is caused to transmit the positioning request by transmitting one of the following:
    uplink control information,
    a control element for media access control, or
    a radio resource control signalling.
  16. The second device of Claim 14, wherein the configuration information at least comprises information concerning at least one of the following:
    a time domain resource for transmission of the positioning reference signals,
    a frequency domain resource for transmission of the positioning reference signals, or
    a pattern of the positioning reference signals.
  17. The second device of Claim 14, wherein the configuration information comprises information concerning at least one of the following:
    identifiers of cells in which the positioning reference signals are to be transmitted, or
    real time differences among the first device and the third devices.
  18. The second device of Claim 16, wherein the time domain resource, the frequency domain resource and the pattern are preconfigured.
  19. The second device of Claim 16, wherein the time domain resource is determined by the first device.
  20. The second device of Claim 14, wherein the first device is a network device serving the second device, the second device is a terminal device, and the third devices are neighbouring network device of the first device.
  21. A third device, comprising:
    at least one processor; and
    at least one memory including computer program code;
    the at least one memory and the computer program code configured to, with the at least one processor, cause the third device to:
    in response to a positioning request being received by a first device from a second device, receive from the first device an indication that positioning reference signals are to be transmitted to the second device based on configuration information concerning the positioning reference signals; and
    transmit, based on the indication and the configuration information, the  positioning reference signals to the second device for positioning the second device.
  22. The third device of Claim 21, wherein the configuration information at least comprises information concerning at least one of the following:
    a time domain resource for transmission of the positioning reference signals,
    a frequency domain resource for transmission of the positioning reference signals, or
    a pattern of the positioning reference signals.
  23. The third device of Claim 22, wherein the configuration information further comprises information concerning at least one of the following:
    identifiers of cells in which the positioning reference signals are to be transmitted, or
    a real time difference among the first device and the third device.
  24. The third device of Claim 22, wherein the time domain resource, the frequency domain resource and the pattern are preconfigured.
  25. The third device of Claim 24, wherein the indication indicates a first time when the transmission of the positioning reference signals starts.
  26. The third device of Claim 24, wherein the third device is further caused to:
    in response to receiving from the first device a command indicating the third devices to stop the transmission of the positioning reference signals, stops the transmission of the positioning reference signals.
  27. The third device of Claim 22, wherein:
    the time domain resource is determined by the first device; and
    the indication indicates the determined time domain resource.
  28. The third device of Claim 22, wherein:
    the pattern is determined by the first device; and
    the indication indicates the determined pattern.
  29. The third device of Claim 27, wherein the third device is further caused to:
    receive from the first device information concerning a time window for transmission of the positioning reference signals;
    select timeslots in the time window for transmission of the positioning reference signals from the third device to the second device; and
    transmit to the first device indications of the selected timeslots.
  30. The third device of Claim 27, wherein the third device is further caused to:
    determine a frequency domain resource associated with the selected timeslots for the transmission of the positioning reference signals from the third device to the second device; and
    transmit to the first device information concerning the frequency domain resource.
  31. The third device of Claim 21, wherein the first device is a network device serving the second device, the second device is a terminal device, and the third devices are neighbouring network device of the first device.
  32. A method, comprising:
    receiving, at a first device, a positioning request from a second device;
    causing a plurality of third devices at different locations from the first device to transmit positioning reference signals to the second device based on configuration information concerning the positioning reference signals;
    transmitting the configuration information to the second device; and
    transmitting the positioning reference signals to the second device based on the configuration information for positioning the second device.
  33. A method, comprising:
    transmitting a positioning request from a second device to a first device;
    receiving configuration information concerning positioning reference signals from the first device; and
    receiving, based on the configuration information, the positioning reference signals from the first device and a plurality of third devices at different locations from the first device for positioning the second device.
  34. A method, comprising:
    in response to a positioning request being received by a first device from a second device, receiving, at a third device and from the first device an indication that positioning reference signals are to be transmitted to the second device based on configuration information concerning the positioning reference signals; and
    transmitting, based on the indication and the configuration information, the positioning reference signals to the second device for positioning the second device.
  35. An apparatus, comprising:
    means for receiving, at a first device, a positioning request from a second device;
    means for causing a plurality of third devices at different locations from the first device to transmit positioning reference signals to the second device based on configuration information concerning the positioning reference signals;
    means for transmitting the configuration information to the second device; and
    means for transmitting the positioning reference signals to the second device based on the configuration information for positioning the second device.
  36. An apparatus, comprising:
    means for transmitting a positioning request from a second device to a first device;
    means for receiving configuration information concerning positioning reference signals from the first device; and
    receiving, based on the configuration information, the positioning reference signals from the first device and a plurality of third devices at different locations from the first device for positioning the second device.
  37. An apparatus, comprising:
    in response to a positioning request being received by a first device from a second device, means for receiving, at a third device and from the first device an indication that positioning reference signals are to be transmitted to the second device based on configuration information concerning the positioning reference signals; and
    means for transmitting, based on the indication and the configuration information, the positioning reference signals to the second device for positioning the second device.
  38. A computer readable medium comprising a computer program for causing an  apparatus to perform at least the method of any of Claims 32 to 34.
PCT/CN2019/099802 2019-08-08 2019-08-08 Method, device and computer readable medium for transmitting prs WO2021022555A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/099802 WO2021022555A1 (en) 2019-08-08 2019-08-08 Method, device and computer readable medium for transmitting prs
CN201980101095.7A CN114503704B (en) 2019-08-08 2019-08-08 Method, apparatus and computer readable medium for transmitting PRS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/099802 WO2021022555A1 (en) 2019-08-08 2019-08-08 Method, device and computer readable medium for transmitting prs

Publications (1)

Publication Number Publication Date
WO2021022555A1 true WO2021022555A1 (en) 2021-02-11

Family

ID=74503306

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/099802 WO2021022555A1 (en) 2019-08-08 2019-08-08 Method, device and computer readable medium for transmitting prs

Country Status (2)

Country Link
CN (1) CN114503704B (en)
WO (1) WO2021022555A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115413016A (en) * 2021-05-11 2022-11-29 大唐移动通信设备有限公司 Reference equipment determining method and device and network side equipment
WO2023030379A1 (en) * 2021-09-03 2023-03-09 中兴通讯股份有限公司 Positioning reference signal transmission method and apparatus for communication node, node, and medium
WO2023147699A1 (en) * 2022-02-07 2023-08-10 Nokia Shanghai Bell Co., Ltd. Positioning reference signal configuration and measurement update

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105637953A (en) * 2014-05-30 2016-06-01 华为技术有限公司 Positioning method, network side device, positioning node, and positioning system
CN107750437A (en) * 2015-04-10 2018-03-02 瑞典爱立信有限公司 Location reference signals pattern for positioning
WO2018144667A1 (en) * 2017-02-02 2018-08-09 Qualcomm Incorporated Methods and apparatus for on-demand user equipment positioning
CN110062457A (en) * 2018-01-19 2019-07-26 电信科学技术研究院有限公司 A kind of localization method and relevant device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105637953A (en) * 2014-05-30 2016-06-01 华为技术有限公司 Positioning method, network side device, positioning node, and positioning system
CN107750437A (en) * 2015-04-10 2018-03-02 瑞典爱立信有限公司 Location reference signals pattern for positioning
WO2018144667A1 (en) * 2017-02-02 2018-08-09 Qualcomm Incorporated Methods and apparatus for on-demand user equipment positioning
CN110062457A (en) * 2018-01-19 2019-07-26 电信科学技术研究院有限公司 A kind of localization method and relevant device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
QUALCOMM INCORPORATED: "Considerations on NR Positioning using PRS", 3GPP DRAFT; R1-1811287_(OTDOA-RTT-PRS), vol. RAN WG1, 29 September 2018 (2018-09-29), Chengdu, CN, pages 1 - 8, XP051518690 *
QUALCOMM INCORPORATED: "On Demand Transmission of PRS for NR", 3GPP DRAFT; R2-1817902, vol. RAN WG2, 16 November 2018 (2018-11-16), Spokane USA, pages 1 - 27, XP051481788 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115413016A (en) * 2021-05-11 2022-11-29 大唐移动通信设备有限公司 Reference equipment determining method and device and network side equipment
WO2023030379A1 (en) * 2021-09-03 2023-03-09 中兴通讯股份有限公司 Positioning reference signal transmission method and apparatus for communication node, node, and medium
WO2023147699A1 (en) * 2022-02-07 2023-08-10 Nokia Shanghai Bell Co., Ltd. Positioning reference signal configuration and measurement update

Also Published As

Publication number Publication date
CN114503704B (en) 2024-02-13
CN114503704A (en) 2022-05-13

Similar Documents

Publication Publication Date Title
WO2021092813A1 (en) Accurate sidelink positioning reference signal transmission timing
US11070337B2 (en) Methods and apparatuses for reference signal configuration
WO2022052053A1 (en) Positioning measurement reporting in unlicensed spectrum
WO2021022555A1 (en) Method, device and computer readable medium for transmitting prs
WO2022027186A1 (en) Positioning reference signal design for low power tracking
CN113271656B (en) Power control of positioning reference signals
WO2021168603A1 (en) Event triggered measurement for channel state information
US20220232663A1 (en) Mechanism for Handling PDCCH Skipping and Wake Up Signal
WO2021253165A1 (en) Time sensitive communication
CN115053464A (en) Beam selection at multiple transmission points
WO2024026753A1 (en) Positioning measurement across frequency hops
WO2022032671A1 (en) Methods for communication, terminal device, and computer readable media
WO2023060492A1 (en) Enhanced scheme of resource selection
WO2024065577A1 (en) Positioning enhancements
WO2023108377A1 (en) Antenna configuration for positioning
WO2023231034A1 (en) Adaptive positioning measurement
WO2022241657A1 (en) Enhancements on satellite positioning measurement
US20230097223A1 (en) Method, device and computer readable medium of communication
WO2024087122A1 (en) Positioning
WO2023024114A1 (en) Mitigation of performance degradation
WO2021142841A1 (en) Fallback reference signal configuration
WO2024077603A1 (en) Positioning reference signal transmission indication
US20230107338A1 (en) Dynamic signaling for measurement gap
WO2023206046A1 (en) Mechanism for single beam reception inside prs processing window
WO2024065322A1 (en) Positioning

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19940427

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19940427

Country of ref document: EP

Kind code of ref document: A1