WO2022052053A1 - Positioning measurement reporting in unlicensed spectrum - Google Patents

Positioning measurement reporting in unlicensed spectrum Download PDF

Info

Publication number
WO2022052053A1
WO2022052053A1 PCT/CN2020/114845 CN2020114845W WO2022052053A1 WO 2022052053 A1 WO2022052053 A1 WO 2022052053A1 CN 2020114845 W CN2020114845 W CN 2020114845W WO 2022052053 A1 WO2022052053 A1 WO 2022052053A1
Authority
WO
WIPO (PCT)
Prior art keywords
positioning
configuration
uplink resource
reporting
measurement report
Prior art date
Application number
PCT/CN2020/114845
Other languages
French (fr)
Inventor
Ryan Keating
Claudio Rosa
Tao Tao
Timo Erkki Lunttila
Original Assignee
Nokia Shanghai Bell Co., Ltd.
Nokia Solutions And Networks Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nokia Shanghai Bell Co., Ltd., Nokia Solutions And Networks Oy filed Critical Nokia Shanghai Bell Co., Ltd.
Priority to PCT/CN2020/114845 priority Critical patent/WO2022052053A1/en
Priority to CN202111048423.7A priority patent/CN114173371B/en
Publication of WO2022052053A1 publication Critical patent/WO2022052053A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • Embodiments of the present disclosure generally relate to the field of telecommunications, and in particular, to methods, apparatuses and computer readable media for positioning measurement reporting in unlicensed spectrum.
  • DL-TDOA Downlink Time Difference of Arrival
  • DL PRS downlink positioning reference signals
  • RSTD reference signal time difference
  • All the measurements are reported to a location management function (LMF) from the terminal device and thus the LMF can estimate the position of the terminal device.
  • the LMF can be implemented in a core network or alternatively can be implemented in a radio access network in the form of a local location management component (LMC) .
  • the LMF transmits assistance data to the terminal device over LTE Positioning Protocol (LPP) and the terminal device transmits measurement reports to the LMF over LPP.
  • LPP is a protocol terminated by the terminal device and the LMF, which uses a network device as a transparent relay.
  • LBT Listen-Before-Talk
  • SR scheduling request
  • LBT needs to be performed multiple times during the positioning procedure and thus multiple LBT failures may occur.
  • the LMF may not know the occurrence of these LBT failures.
  • the serving network device may not know if the LPP data is time sensitive and may be not aware of the positioning Quality of Service (QoS) required.
  • QoS Quality of Service
  • example embodiments of the present disclosure provide methods, apparatuses and computer readable media for positioning measurement reporting in unlicensed spectrum.
  • a method comprising receiving, at a first device, a configuration from a second device for configuring at least one uplink resource for reporting a message to the second device over a positioning protocol and/or a trigger signal for triggering the reporting of the message; generating a positioning measurement report by measuring positioning reference signals from network devices; and transmitting, based on the configuration and via a third device, the positioning measurement report to the second device over the positioning protocol.
  • a method comprises transmitting, from a second device to a third device, a request for a configuration about reporting of a message over a positioning protocol by a first device; receiving, from the third device, the configuration for configuring at least one uplink resource for reporting the message over the positioning protocol and/or a trigger signal for triggering the reporting of the message; transmitting the configuration to the first device; and receiving, based on the configuration and via the third device, a positioning measurement report from the first device over the positioning protocol.
  • a method comprises receiving, at a third device and from a second device, a request for a configuration about reporting of a message over a positioning protocol by a first device; transmitting, to the second device, the configuration for configuring at least one uplink resource for reporting the message over the positioning protocol and/or a trigger signal for triggering the reporting of the message; and in response to the trigger signal being configured by the configuration, transmitting the trigger signal to the first device based on the configuration, such that the first device transmits a positioning measurement report to the second device via the third device over the positioning protocol.
  • a first device comprises at least one processor and at least one memory including computer program codes.
  • the at least one memory and the computer program codes are configured to, with the at least one processor, cause the first device to receive a configuration from a second device for configuring at least one uplink resource for reporting a message to the second device over a positioning protocol and/or a trigger signal for triggering the reporting of the message; generate a positioning measurement report by measuring positioning reference signals from network devices; and transmit, based on the configuration and via a third device, the positioning measurement report to the second device over the positioning protocol.
  • a second device comprising at least one processor and at least one memory including computer program codes.
  • the at least one memory and the computer program codes are configured to, with the at least one processor, cause the second device to transmit, to a third device, a request for a configuration about reporting of a message over a positioning protocol by a first device; receive, from the third device, the configuration for configuring at least one uplink resource for reporting the message over the positioning protocol and/or a trigger signal for triggering the reporting of the message; transmit the configuration to the first device; and receive, based on the configuration and via the third device, a positioning measurement report from the first device over the positioning protocol.
  • a third device comprises at least one processor and at least one memory including computer program codes.
  • the at least one memory and the computer program codes are configured to, with the at least one processor, cause the third device to receive, from a second device, a request for a configuration about reporting of a message over a positioning protocol by a first device; transmit, to the second device, the configuration for configuring at least one uplink resource for reporting the message over the positioning protocol and/or a trigger signal for triggering the reporting of the message; and in response to the trigger signal being configured by the configuration, transmit the trigger signal to the first device based on the configuration, such that the first device transmits a positioning measurement report to the second device via the third device over the positioning protocol.
  • an apparatus comprising means for receiving a configuration from a second device for configuring at least one uplink resource for reporting a message to the second device over a positioning protocol and/or a trigger signal for triggering the reporting of the message; means for generating a positioning measurement report by measuring positioning reference signals from network devices; and means for transmitting, based on the configuration and via a third device, the positioning measurement report to the second device over the positioning protocol.
  • an apparatus comprising means for transmitting, to a third device, a request for a configuration about reporting of a message over a positioning protocol by a first device; means for receiving, from the third device, the configuration for configuring at least one uplink resource for reporting the message over the positioning protocol and/or a trigger signal for triggering the reporting of the message; means for transmitting the configuration to the first device; and means for receiving, based on the configuration and via the third device, a positioning measurement report from the first device over the positioning protocol.
  • an apparatus comprising means for receiving, from a second device, a request for a configuration about reporting of a message over a positioning protocol by a first device; means for transmitting, to the second device, the configuration for configuring at least one uplink resource for reporting the message over the positioning protocol and/or a trigger signal for triggering the reporting of the message; and means for in response to the trigger signal being configured by the configuration, transmitting the trigger signal to the first device based on the configuration, such that the first device transmits a positioning measurement report to the second device via the third device over the positioning protocol.
  • a computer program product that is stored on a computer readable medium and includes machine-executable instructions.
  • the machine-executable instructions when being executed, cause a machine to perform the method according to the above first, second or third aspect.
  • a computer readable storage medium comprising program instructions stored thereon.
  • the instructions when executed by an apparatus, cause the apparatus to perform the method according to the above first, second or third aspect.
  • Fig. 1 illustrates an example communication network in which example embodiments of the present disclosure can be implemented
  • Fig. 2 illustrates a schematic diagram of interactions between devices according to some example embodiments of the present disclosure
  • Fig. 3 illustrates a schematic diagram of interactions between devices according to some example embodiments of the present disclosure
  • Fig. 4 illustrates a flowchart of an example method according to some example embodiments of the present disclosure
  • Fig. 5 illustrates a flowchart of an example method according to some example embodiments of the present disclosure
  • Fig. 6 illustrates a flowchart of an example method according to some example embodiments of the present disclosure
  • Fig. 7 illustrates a simplified block diagram of an apparatus that is suitable for implementing embodiments of the present disclosure.
  • Fig. 8 illustrates a block diagram of an example computer readable medium in accordance with some example embodiments of the present disclosure.
  • references in the present disclosure to “one embodiment, ” “an embodiment, ” “an example embodiment, ” and the like indicate that the embodiment described may include a particular feature, structure, or characteristic, but it is not necessary that every embodiment includes the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an example embodiment, it is submitted that it is within the knowledge of one skilled in the art to affect such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described.
  • first and second etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first element could be termed a second element, and similarly, a second element could be termed a first element, without departing from the scope of example embodiments.
  • the term “and/or” includes any and all combinations of one or more of the listed terms.
  • circuitry may refer to one or more or all of the following:
  • circuitry also covers an implementation of merely a hardware circuit or processor (or multiple processors) or portion of a hardware circuit or processor and its (or their) accompanying software and/or firmware.
  • circuitry also covers, for example and if applicable to the particular claim element, a baseband integrated circuit or processor integrated circuit for a mobile device or a similar integrated circuit in server, a cellular network device, or other computing or network device.
  • the term “communication network” refers to a network following any suitable communication standards, such as Long Term Evolution (LTE) , LTE-Advanced (LTE-A) , Wideband Code Division Multiple Access (WCDMA) , High-Speed Packet Access (HSPA) , Narrow Band Internet of Things (NB-IoT) , New Radio (NR) and so on.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • WCDMA Wideband Code Division Multiple Access
  • HSPA High-Speed Packet Access
  • NB-IoT Narrow Band Internet of Things
  • NR New Radio
  • the communications between a terminal device and a network device in the communication network may be performed according to any suitable generation communication protocols, including, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth generation (4G) , 4.5G, the future fifth generation (5G) communication protocols, and/or any other protocols either currently known or to be developed in the future.
  • suitable generation communication protocols including, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth generation (4G) , 4.5G, the future fifth generation (5G) communication protocols, and/or any other protocols either currently known or to be developed in the future.
  • Embodiments of the present disclosure may be applied in various communication systems. Given the rapid development in communications, there will of course also be future type communication technologies and systems with which the present disclosure may be embodied. It should not be seen as limiting the scope of the present disclosure to only the a
  • the term “network device” refers to a node in a communication network via which a terminal device accesses the network and receives services therefrom.
  • the network device may refer to a base station (BS) or an access point (AP) , for example, a node B (NodeB or NB) , an evolved NodeB (eNodeB or eNB) , a NR NB (also referred to as a gNB) , a Remote Radio Unit (RRU) , a radio header (RH) , a remote radio head (RRH) , a relay, a low power node such as a femto, a pico, and so forth, depending on the applied terminology and technology.
  • the terms “network device” , “BS” , and “node” may be used interchangeably.
  • terminal device refers to any end device that may be capable of wireless communication.
  • a terminal device may also be referred to as a communication device, user equipment (UE) , a Subscriber Station (SS) , a Portable Subscriber Station, a Mobile Station (MS) , or an Access Terminal (AT) .
  • UE user equipment
  • SS Subscriber Station
  • MS Mobile Station
  • AT Access Terminal
  • the terminal device may include, but not limited to, a mobile phone, a cellular phone, a smart phone, voice over IP (VoIP) phones, wireless local loop phones, a tablet, a wearable terminal device, a personal digital assistant (PDA) , portable computers, desktop computer, image capture terminal devices such as digital cameras, gaming terminal devices, music storage and playback appliances, vehicle-mounted wireless terminal devices, wireless endpoints, mobile stations, laptop-embedded equipment (LEE) , laptop-mounted equipment (LME) , USB dongles, smart devices, wireless customer-premises equipment (CPE) , an Internet of Things (loT) device, a watch or other wearable, a head-mounted display (HMD) , a vehicle, a drone, a medical device and applications (e.g., remote surgery) , an industrial device and applications (e.g., a robot and/or other wireless devices operating in an industrial and/or an automated processing chain contexts) , a consumer electronics device, a device operating on commercial and/
  • a user equipment apparatus such as a cell phone or tablet computer or laptop computer or desktop computer or mobile IOT device or fixed IOT device
  • This user equipment apparatus can, for example, be furnished with corresponding capabilities as described in connection with the fixed and/or the wireless network node (s) , as appropriate.
  • the user equipment apparatus may be the user equipment and/or or a control device, such as a chipset or processor, configured to control the user equipment when installed therein. Examples of such functionalities include the bootstrapping server function and/or the home subscriber server, which may be implemented in the user equipment apparatus by providing the user equipment apparatus with software configured to cause the user equipment apparatus to perform from the point of view of these functions/nodes.
  • DL-TDOA DL positioning techniques
  • DL-TDOA works by having multiple network devices transmit DL PRS at the same time.
  • a terminal device measures a RSTD. All the measurements are reported to a LMF from the terminal device and thus the LMF can estimate the position of the terminal device.
  • the LMF transmits assistance data to the terminal device over LPP and the terminal device transmits measurement reports to the LMF over LPP.
  • LPP is a protocol terminated by the terminal device and the LMF, which uses a network device as a transparent relay.
  • LBT Low-power Bluetooth
  • a transmitting device needs to sense radio resources before commencing a transmission.
  • a LBT failure may cause delays in the transmission of the assistance data and/or the measurement reports.
  • the terminal device has to transmit an SR for requesting resources for uplink data, LBT needs to be performed multiple times during the positioning procedure and thus multiple LBT failures may occur.
  • the LMF may not know the occurrence of these LBT failures.
  • the serving network device may not know if the LPP data is time sensitive and may be not aware of the positioning QoS required.
  • Embodiments of the present disclosure provide a solution for positioning measurement reporting in unlicensed spectrum, which can solve the above problem and one or more of other potential problems.
  • This solution provides a mechanism of preconfiguring a trigger signal and/or UL resources for reporting positioning measurements in unlicensed spectrum. As such, this solution can minimize latency in reporting DL positioning measurements to the LMF and reduce the number of potential LBT failures during the reporting.
  • This solution also enables the LMF to be aware of LBT failures in assistance data transfer, such that the LMF can adapt to delays in assistance data transfer.
  • Fig. 1 illustrates an example communication network 100 in which example embodiments of the present disclosure can be implemented.
  • the communication network 100 includes a terminal device 110, a LMF 120 and one or more network devices 130 (only one network device 130 is shown in Fig. 1) .
  • the network device 130 may provide one or more cells to serve the terminal device 110. It is to be understood that the number of network devices and/or terminal devices is given for the purpose of illustration without suggesting any limitation to the scope of the present disclosure.
  • the communication network 100 may include any suitable number of network devices and/or terminal devices adapted for implementing implementations of the present disclosure.
  • a DL positioning procedure can be performed in the communication network 100.
  • the network devices 130 may transmit DL reference signals to the terminal device 110.
  • the DL reference signals may include DL PRS or any DL signal used for positioning.
  • the terminal device 110 may measure the DL reference signals and generate a positioning measurement report.
  • the terminal device 110 may transmit the positioning measurement report to the LMF 120 and thus the LMF 120 can estimate the position of the terminal device 110 based on the positioning measurement report.
  • the communications between the terminal device 110 and the LMF 120 may be implemented over LPP.
  • the LMF 120 may transmit, via the network device 130 serving the terminal device 110, assistance data about the DL reference signals to the terminal device 110 over LPP.
  • the terminal device 110 may transmit, via the network device 130, the positioning measurement report to the LMF 120 over LPP.
  • data transmitted over LPP is also referred to as “LPP data” or “LPP message” .
  • LPP data is transparent to the network device 130. That is, the network device 130 just forwards the LPP data between the terminal device 110 and the LMF 120.
  • transmissions can be conducted in licensed spectrum or unlicensed spectrum.
  • a transmitting device needs to perform LBT to sense radio resources before commencing a transmission.
  • LBT is typically performed with a granularity of once per clear channel assessment (CCA) slot (e.g., 9us) .
  • CCA clear channel assessment
  • Different types of LBT procedures are defined for New Radio-based access to unlicensed spectrum.
  • the types of LBT procedures may include Type 1, Type 2A/2B, and Type 2C.
  • a transmitting device may commence a transmission immediately after sensing the channel to be idle a certain number of times.
  • a transmitting device may commence a transmission immediately after sensing the channel to be idle for at least 25 us.
  • a transmitting device may commence a transmission immediately after sensing the channel to be idle for at least 16 us.
  • a transmitting device may not need to sense the channel before commencing a transmission, where duration of the transmission is at most 584us.
  • Fig. 2 illustrates a schematic diagram of interactions 200 between devices according to some example embodiments of the present disclosure.
  • the interactions 200 involve the terminal device 110, the network device 130 and the LMF 120 shown in Fig. 1.
  • the LMF 120 may transmit 201 a request to the network device 130, to request a configuration for reporting of a LPP message by the terminal device 110.
  • the LPP message may be used to carry a positioning measurement report to be transmitted from the terminal device 110 to the LMF 120.
  • the request may comprise reporting properties requested by the LMF 120.
  • the reporting properties may be determined based on at least one of UE capabilities of the terminal device 110 (including DL PRS processing capabilities) , positioning QoS (e.g., latency requirements) , and periodicity and properties of DL PRS from neighboring cells.
  • the network device 130 may transmit 202 a configuration to the LMF 120.
  • the configuration may configure a trigger signal for triggering the reporting of the positioning measurements.
  • the trigger signal may be any of the following: a channel state information reference signal (CSI-RS) , a synchronization signal block (SSB) , a PRS, downlink control information (DCI) and so on.
  • CSI-RS channel state information reference signal
  • SSB synchronization signal block
  • DCI downlink control information
  • the trigger signal can be a specific DCI message, which is common to a cell or a group of UEs, such as DCI 2_0 or DCI with a new format. Which trigger signal is configured may depend on the positioning QoS requested by the LMF 120.
  • the configuration may configure timing of the trigger signal.
  • the network device 130 may wait for a predetermined number of PRS occasions if the LBT failure occurs and then transmit the trigger signal.
  • the configuration may configure uplink resources (e.g., physical resource blocks, modulation and coding scheme and/or so on) to be used by the terminal device 110 for reporting the LPP message.
  • the LMF 120 may transmit 203a PRS assistance data to the terminal device 110 for configuring DL PRS.
  • the LMF 120 may transmit the PRS assistance data to the terminal device 110 over LPP. That is, the LMF 120 may transmit the PRS assistance data to the network device 130 and the network device 130 may forward the PRS assistance data to the terminal device 110 after performing LBT.
  • the LMF 120 may transmit 203b the configuration about the reporting of the LPP message to the terminal device 110.
  • the configuration may be transmitted along with the PRS assistance data over LPP. That is, the LMF 120 may transmit the PRS assistance data and the configuration to the network device 130 and the network device 130 may forward the PRS assistance data and the configuration to the terminal device 110 after performing LBT.
  • the network device 130 may transmit 204 DL PRS to the terminal device 110.
  • the terminal device 110 may measure 205 DL PRS from multiple network devices 130 and generate a positioning measurement reported based on the measurements.
  • the network device 130 may transmit 206 the trigger signal to the terminal device 110 based on the configuration about the trigger signal (e.g., the configured timing) .
  • the terminal device 110 may listen for the trigger signal.
  • the terminal device 110 may transmit 208 the positioning measurement report to the LMF 120 after performing 207 LBT.
  • the LBT may be Type 2C LBT. That is, the terminal device 110 may directly transmit the positioning measurement report to the LMF 120 without channel sensing if the gap to the reception of the DL PRS equals to or shorter than a threshold (e.g., 16us) .
  • the positioning measurement report may be transmitted from the terminal device 110 to the LMF 120 over LPP. That is, the network device 130 may forward the positioning measurement report received from the terminal device 110 to the LMF 120 directly.
  • the terminal device 110 may not wait for the trigger signal to trigger the transmission of the positioning measurement report. Instead, the terminal device 110 may transmit 208 the positioning measurement report to the LMF 120 by using any of the available UL resources that comes first. This will further minimize the latency involved in the reporting.
  • available UL resources such as, UL resources configured by the LMF 120, configured grant (CG) UL resources or dynamically schedule UL resources
  • configured grant physical uplink shared channel (CG-PUSCH) resources can be used in place of the trigger signal. That is, instead of waiting for the trigger signal to trigger the transmission of the positioning measurement report, the terminal device 110 may transmit 208 the report by using the first available CG-PUSCH source after performing 207 LBT. In this event, for example, the terminal device 110 may perform Type 1 LBT to avoid need for transmitting an SR.
  • the CG-PUSCH resources to be used for transmission of the positioning measurement reports can be indicated in the configuration transmitted 202 from the network device 130 to the LMF 120.
  • an SR mask for the corresponding SRB can be used to ensure that the terminal device 110 directly uses the CG-PUSCH resources for transmitting the report, instead of issuing an SR.
  • the terminal device 110 may apply a temporary SR mask to the SRB carrying LPP data.
  • the time when the terminal device 110 is to apply the temporary SR mask may be fixed in specifications, or may be indicated in the configuration transmitted 202 from the network device 130 to the LMF 120.
  • the trigger signal can be avoided and the LMF 120 can indicate the terminal device 110 to use the CG-PUSCH resources for transmitting the positioning report during the assistance data transfer.
  • the configuration from the LMF 120 may configure a trigger signal and UL resources for the transmission of the positioning measurement report.
  • the terminal device 110 may start to monitor/receive the trigger signal according to the configuration received from the LMF 120. After successfully detecting the trigger signal, the terminal device 110 may transmit, by using the configured UL resources (that are indicated by the LMF 120) , the positioning measurement report to the LMF 120 after performing LBT.
  • the configuration from the LMF 120 may configure a trigger signal and the terminal device 110 may also be configured with CG UL resources for the transmission of the positioning measurement report.
  • the terminal device 110 may start to monitor/receive the trigger signal according to the configuration received from the LMF 120.
  • the terminal device 110 may transmit, by using the CG UL resources (e.g., the first available CG-PUSCH resource after reception of the trigger signal) , the positioning measurement report to the LMF 120.
  • the configuration from the LMF 120 may configure a trigger signal and the terminal device 110 may also be configured with available UL resources, such as, UL resources configured by the LMF 120, dynamic scheduled UL resources and/or CG UL resources.
  • the terminal device 110 may start to monitor/receive the trigger signal according to the configuration received from the LMF 120. After successfully detecting the trigger signal, the terminal device 110 may transmit, by using any of the available UL resources coming first, the positioning measurement report to the LMF 120.
  • the terminal device 110 may be configured with no trigger signal but CG UL resources for reporting the positioning measurements. In this event, after generating the positioning measure report by measuring the DL PRS, the terminal device 110 may transmit, by using the CG UL resources (e.g., the first available CG-PUSCH resource) , the positioning measurement report to the LMF 120.
  • Fig. 3 illustrates a schematic diagram of interactions 300 between devices according to some example embodiments of the present disclosure.
  • the interactions 300 can be considered as an example implementation of the step 203a shown in Fig. 2.
  • the LMF 120 may transmit 301 LPP data comprising the PRS assistance data to the network device 130.
  • the network device 130 may perform 302 LBT and then forward 303 the LPP data comprising the PRS assistance data to the terminal device 110.
  • a LBT failure may occur at the network device 130.
  • the network device 130 may determine 304 a time difference between the detection of the LBT failure and the forwarding of the LPP data.
  • the network device 130 may transmit 305 an error message comprising an indication of the time difference to the LMF 120.
  • the LMF 120 can be aware of the LBT failure and can adapt to delays in assistance data transfer.
  • the LMF 120 may request a new positioning technique (such as, Global Navigation Satellite System, GNSS) or adapt the current positioning session (e.g., by requesting a new configuration from the network device 130 or updating neighboring cells) .
  • GNSS Global Navigation Satellite System
  • Embodiments of the present disclosure are also applicable to other positioning technique as well, such as, GNSS, Multi-cell round trip time (multi-RTT) positioning, enhanced cell ID (E-CID) positioning, DL Angle of Departure (DL-AoD) positioning, DL angle of arrival positioning, carrier phase positioning and/or any other positioning technique to be developed in the future. For example, if a terminal device is requested to report its location calculated by means of GNSS, resource for that reporting can be preconfigured to the terminal device.
  • multi-RTT Multi-cell round trip time
  • E-CID enhanced cell ID
  • DL-AoD DL Angle of Departure
  • carrier phase positioning carrier phase positioning
  • Fig. 4 shows a flowchart of an example method 400 in accordance with some example embodiments of the present disclosure.
  • the method 400 can be implemented at the terminal device 110 shown in Fig. 1.
  • the terminal device 110 is also referred to as a “first device”
  • the network device 130 is also referred to as a “third device”
  • the LMF 120 is also referred to as a “second device” .
  • the method 400 may include additional blocks not shown and/or may omit some shown blocks, and the scope of the present disclosure is not limited in this regard.
  • the first device receives a configuration from a second device for configuring at least one uplink resource for reporting a message to the second device over a positioning protocol and/or a trigger signal for triggering the reporting of the message.
  • the positioning protocol may include LPP.
  • the first device generates a positioning measurement report by measuring positioning reference signals from network devices.
  • the first device transmits, based on the configuration and via a third device, the positioning measurement report to the second device over the positioning protocol.
  • the first device in response to the trigger signal being configured by the configuration, the first device monitors the trigger signal from the third device based on the configuration. In response to the trigger signal being received from the third device, the first device transmits the positioning measurement report to the second device over the at least one uplink resource configured by the configuration or another available uplink resource.
  • the other available uplink resource comprises a dynamically scheduled uplink resource or configured grant uplink resource.
  • the first device in response to the positioning measurement report being generated, transmits the positioning measurement report to the second device over a configured grant uplink resource.
  • the first device in response to receiving a positive outcome of Listen-Before-Talk, transmits, via the third device, the positioning measurement report to the second device over the positioning protocol.
  • the trigger signal comprises any of the following: a channel state information reference signal, a synchronization signal block, another positioning reference signal, or downlink control information.
  • the first device is a terminal device
  • the second device implements a location management function
  • the third device is a network device serving the terminal device.
  • Fig. 5 shows a flowchart of an example method 500 in accordance with some example embodiments of the present disclosure.
  • the method 500 can be implemented at the LMF 120 shown in Fig. 1.
  • the terminal device 110 is also referred to as a “first device”
  • the network device 130 is also referred to as a “third device”
  • the LMF 120 is also referred to as a “second device” .
  • the method 500 may include additional blocks not shown and/or may omit some shown blocks, and the scope of the present disclosure is not limited in this regard.
  • the second device transmits, to a third device, a request for a configuration about reporting of a message over a positioning protocol by a first device.
  • the positioning protocol may include LPP.
  • the second device receives, from the third device, the configuration for configuring at least one uplink resource for reporting the message over the positioning protocol and/or a trigger signal for triggering the reporting of the message.
  • the second device transmits the configuration to the first device.
  • the second device receives, based on the configuration and via the third device, a positioning measurement report from the first device over the positioning protocol.
  • the request comprises reporting properties requested by the second device.
  • the second device determines the reporting properties based on at least one of the following: capabilities of the first device, positioning Quality of Service, and periodicity and properties of positioning reference signals from neighboring cells.
  • the second device in response to the trigger signal being configured by the configuration, receives the positioning measure report from the first device over the at least one uplink resource configured by the configuration or another available uplink resource.
  • the other available uplink resource comprises a dynamically scheduled uplink resource or configured grant uplink resource.
  • the second device receives the positioning measure report from the first device over a configured grant uplink resource.
  • the positioning measurement report is generated based on positioning reference signals by the first device.
  • the second device transmits assistance data about the positioning reference signals to the third device, such that the third device forwards the assistance data to the first device after performing Listen-Before-Talk.
  • the second device in response to a Listen-Before-Talk failure being detected at the third device, receives an error message from the third device.
  • the error message comprises an indication of a time difference between the detection of the Listen-Before-Talk failure and the forwarding of the assistance data.
  • the trigger signal comprises any of the following: a channel state information reference signal, a synchronization signal block, another positioning reference signal, or downlink control information.
  • the first device is a terminal device
  • the second device implements a location management function
  • the third device is a network device serving the terminal device.
  • Fig. 6 shows a flowchart of an example method 600 in accordance with some example embodiments of the present disclosure.
  • the method 600 can be implemented at the network device 130 shown in Fig. 1.
  • the terminal device 110 is also referred to as a “first device”
  • the network device 130 is also referred to as a “third device”
  • the LMF 120 is also referred to as a “second device” .
  • the method 600 may include additional blocks not shown and/or may omit some shown blocks, and the scope of the present disclosure is not limited in this regard.
  • the third device receives, from a second device, a request for a configuration about reporting of a message over a positioning protocol by a first device.
  • the positioning protocol may include LPP.
  • the third device transmits, to the second device, the configuration for configuring at least one uplink resource for reporting the message over the positioning protocol and/or a trigger signal for triggering the reporting of the message.
  • the third device determines if the trigger signal is configured by the configuration. If it is determined that the trigger signal is configured by the configuration, at block 640, the third device transmits the trigger signal to the first device based on the configuration, such that the first device transmits a positioning measurement report to the second device via the third device over the positioning protocol.
  • the third device receives the positioning measurement report from the first device over the at least one uplink resource configured by the configuration or another available uplink resource; and forwards the positioning measurement report to the second device.
  • the other available uplink resource comprises a dynamically scheduled uplink resource or configured grant uplink resource.
  • the positioning measurement report is generated based on positioning reference signals by the first device.
  • the third device receives assistance data about the positioning reference signals from the second device; and forwards the assistance data to the first device after performing Listen-Before-Talk.
  • the third device determines a time difference between the detection of the Listen-Before-Talk failure and the forwarding of the assistance data; and transmits, to the second device, an error message comprising an indication of the time difference.
  • the trigger signal comprises any of the following: a channel state information reference signal, a synchronization signal block, another positioning reference signal, or downlink control information.
  • the first device is a terminal device
  • the second device implements a location management function
  • the third device is a network device serving the terminal device.
  • an apparatus capable of performing the method 400 may comprise means for performing the respective steps of the method 400.
  • the means may be implemented in any suitable form.
  • the means may be implemented in a circuitry or software module.
  • the apparatus capable of performing the method 400 comprises: means for receiving a configuration from a second device for configuring at least one uplink resource for reporting a message to the second device over a positioning protocol and/or a trigger signal for triggering the reporting of the message; means for generating a positioning measurement report by measuring positioning reference signals from network devices; means for transmitting, based on the configuration and via a third device, the positioning measurement report to the second device over the positioning protocol.
  • the means for transmitting the positioning measurement report to the second device comprises: means for in response to the trigger signal being configured by the configuration, monitoring the trigger signal from the third device based on the configuration; and means for in response to the trigger signal being received from the third device, transmitting the positioning measurement report to the second device over the at least one uplink resource configured by the configuration or another available uplink resource.
  • the other available uplink resource comprises a dynamically scheduled uplink resource or configured grant uplink resource.
  • the means for transmitting the positioning measurement report to the second device comprises: means for in response to the positioning measurement report being generated, transmitting the positioning measurement report to the second device over a configured grant uplink resource.
  • the means for transmitting the positioning measurement report to the second device comprises: means for in response to receiving a positive outcome of Listen-Before-Talk, transmitting, via the third device, the positioning measurement report to the second device over the positioning protocol.
  • the trigger signal comprises any of the following: a channel state information reference signal, a synchronization signal block, another positioning reference signal, or downlink control information.
  • the apparatus is a terminal device
  • the second device implements a location management function
  • the third device is a network device serving the terminal device.
  • an apparatus capable of performing the method 500 may comprise means for performing the respective steps of the method 500.
  • the means may be implemented in any suitable form.
  • the means may be implemented in a circuitry or software module.
  • the apparatus capable of performing the method 500 comprises: means for transmitting, to a third device, a request for a configuration about reporting of a message over a positioning protocol by a first device; means for receiving, from the third device, the configuration for configuring at least one uplink resource for reporting the message over the positioning protocol and/or a trigger signal for triggering the reporting of the message; means for transmitting the configuration to the first device; and means for receiving, based on the configuration and via the third device, a positioning measurement report from the first device over the positioning protocol.
  • the request comprises reporting properties requested by the second device
  • the apparatus capable of performing the method 500 further comprises: means for determines the reporting properties based on at least one of the following: capabilities of the first device, positioning Quality of Service, and periodicity and properties of positioning reference signals from neighboring cells.
  • the means for receiving the positioning measure report from the first device comprises: means for in response to the trigger signal being configured by the configuration, receiving the positioning measure report from the first device over the at least one uplink resource configured by the configuration or another available uplink resource.
  • the other available uplink resource comprises a dynamically scheduled uplink resource or configured grant uplink resource.
  • the means for receiving the positioning measure report from the first device comprises: means for receiving the positioning measure report from the first device over a configured grant uplink resource.
  • the positioning measurement report is generated based on positioning reference signals by the first device
  • the apparatus capable of performing the method 500 further comprises: means for transmitting assistance data about the positioning reference signals to the third device, such that the third device forwards the assistance data to the first device after performing Listen-Before-Talk.
  • the apparatus capable of performing the method 500 further comprises: means for in response to a Listen-Before-Talk failure being detected at the third device, receiving an error message from the third device, the error message comprising an indication of a time difference between the detection of the Listen-Before-Talk failure and the forwarding of the assistance data.
  • the trigger signal comprises any of the following: a channel state information reference signal, a synchronization signal block, another positioning reference signal, or downlink control information.
  • the first device is a terminal device
  • the apparatus implements a location management function
  • the third device is a network device serving the terminal device.
  • an apparatus capable of performing the method 600 may comprise means for performing the respective steps of the method 600.
  • the means may be implemented in any suitable form.
  • the means may be implemented in a circuitry or software module.
  • the apparatus capable of performing the method 600 comprises: means for receiving, from a second device, a request for a configuration about reporting of a message over a positioning protocol by a first device; means for transmitting, to the second device, the configuration for configuring at least one uplink resource for reporting the message over the positioning protocol and/or a trigger signal for triggering the reporting of the message; and means for in response to the trigger signal being configured by the configuration, transmitting the trigger signal to the first device based on the configuration, such that the first device transmits a positioning measurement report to the second device via the third device over the positioning protocol.
  • the apparatus capable of performing the method 600 further comprises: means for receiving the positioning measurement report from the first device over the at least one uplink resource configured by the configuration or another available uplink resource; and means for forwarding the positioning measurement report to the second device.
  • the other available uplink resource comprises a dynamically scheduled uplink resource or configured grant uplink resource.
  • the positioning measurement report is generated based on positioning reference signals by the first device
  • the apparatus capable of performing the method 600 further comprises: means for receiving assistance data about the positioning reference signals from the second device; and means for forwarding the assistance data to the first device after performing Listen-Before-Talk.
  • the apparatus capable of performing the method 600 further comprises: means for in response to a Listen-Before-Talk failure being detected, determining a time difference between the detection of the Listen-Before-Talk failure and the forwarding of the assistance data; and means for transmitting, to the second device, an error message comprising an indication of the time difference.
  • the trigger signal comprises any of the following: a channel state information reference signal, a synchronization signal block, another positioning reference signal, or downlink control information.
  • the first device is a terminal device
  • the second device implements a location management function
  • the apparatus is a network device serving the terminal device.
  • Fig. 7 is a simplified block diagram of a device 700 that is suitable for implementing embodiments of the present disclosure.
  • the terminal device 110, the LMF 120 and/or the network device 130 shown in Fig. 1 can be implemented by the device 700.
  • the device 700 includes one or more processors 710, one or more memories 720 coupled to the processor 710, and one or more communication modules 740 coupled to the processor 710.
  • the communication module 740 is for bidirectional communications.
  • the communication module 740 has at least one antenna to facilitate communication.
  • the communication interface may represent any interface that is necessary for communication with other network elements.
  • the processor 710 may be of any type suitable to the local technical network and may include one or more of the following: general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs) and processors based on multicore processor architecture, as non-limiting examples.
  • the device 700 may have multiple processors, such as an application specific integrated circuit chip that is slaved in time to a clock which synchronizes the main processor.
  • the memory 720 may include one or more non-volatile memories and one or more volatile memories.
  • the non-volatile memories include, but are not limited to, a Read Only Memory (ROM) 724, an electrically programmable read only memory (EPROM) , a flash memory, a hard disk, a compact disc (CD) , a digital video disk (DVD) , and other magnetic storage and/or optical storage.
  • the volatile memories include, but are not limited to, a random access memory (RAM) 722 and other volatile memories that will not last in the power-down duration.
  • a computer program 730 includes computer executable instructions that are executed by the associated processor 710.
  • the program 730 may be stored in the ROM 724.
  • the processor 710 may perform any suitable actions and processing by loading the program 730 into the RAM 722.
  • the embodiments of the present disclosure may be implemented by means of the program 730 so that the device 700 may perform any process of the disclosure as discussed with reference to Figs. 2-6.
  • the embodiments of the present disclosure may also be implemented by hardware or by a combination of software and hardware.
  • the program 730 may be tangibly contained in a computer readable medium which may be included in the device 700 (such as in the memory 720) or other storage devices that are accessible by the device 700.
  • the device 700 may load the program 730 from the computer readable medium to the RAM 722 for execution.
  • the computer readable medium may include any types of tangible non-volatile storage, such as ROM, EPROM, a flash memory, a hard disk, CD, DVD, and the like.
  • Fig. 8 shows an example of the computer readable medium 800 in form of CD or DVD.
  • the computer readable medium has the program 730 stored thereon.
  • NFV network functions virtualization
  • a virtualized network function may comprise one or more virtual machines running computer program codes using standard or general type servers instead of customized hardware. Cloud computing or data storage may also be utilized.
  • radio communications this may mean node operations to be carried out, at least partly, in a central/centralized unit, CU, (e.g. server, host or node) operationally coupled to distributed unit, DU, (e.g. a radio head/node) . It is also possible that node operations will be distributed among a plurality of servers, nodes or hosts. It should also be understood that the distribution of labour between core network operations and base station operations may vary depending on implementation.
  • the server may generate a virtual network through which the server communicates with the distributed unit.
  • virtual networking may involve a process of combining hardware and software network resources and network functionality into a single, software-based administrative entity, a virtual network.
  • Such virtual network may provide flexible distribution of operations between the server and the radio head/node.
  • any digital signal processing task may be performed in either the CU or the DU and the boundary where the responsibility is shifted between the CU and the DU may be selected according to implementation.
  • a CU-DU architecture is implemented.
  • the device 700 may be comprised in a central unit (e.g. a control unit, an edge cloud server, a server) operatively coupled (e.g. via a wireless or wired network) to a distributed unit (e.g. a remote radio head/node) .
  • the central unit e.g. an edge cloud server
  • the distributed unit may be stand-alone apparatuses communicating with each other via a radio path or via a wired connection. Alternatively, they may be in a same entity communicating via a wired connection, etc.
  • the edge cloud or edge cloud server may serve a plurality of distributed units or a radio access networks.
  • at least some of the described processes may be performed by the central unit.
  • the device 700 may be instead comprised in the distributed unit, and at least some of the described processes may be performed by the distributed unit.
  • the execution of at least some of the functionalities of the device 700 may be shared between two physically separate devices (DU and CU) forming one operational entity. Therefore, the apparatus may be seen to depict the operational entity comprising one or more physically separate devices for executing at least some of the described processes.
  • CU-DU architecture may provide flexible distribution of operations between the CU and the DU. In practice, any digital signal processing task may be performed in either the CU or the DU and the boundary where the responsibility is shifted between the CU and the DU may be selected according to implementation.
  • the device 700 controls the execution of the processes, regardless of the location of the apparatus and regardless of where the processes/functions are carried out.
  • various embodiments of the present disclosure may be implemented in hardware or special purpose circuits, software, logic or any combination thereof. Some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software which may be executed by a controller, microprocessor or other computing device. While various aspects of embodiments of the present disclosure are illustrated and described as block diagrams, flowcharts, or using some other pictorial representations, it is to be understood that the block, apparatus, system, technique or method described herein may be implemented in, as non-limiting examples, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controller or other computing devices, or some combination thereof.
  • the present disclosure also provides at least one computer program product tangibly stored on a non-transitory computer readable storage medium.
  • the computer program product includes computer-executable instructions, such as those included in program modules, being executed in a device on a target real or virtual processor, to carry out the method 400 as described above with reference to Fig. 4, the method 500 as described above with reference to Fig. 5 and/or the method 600 as described above with reference to Fig. 6.
  • program modules include routines, programs, libraries, objects, classes, components, data structures, or the like that perform particular tasks or implement particular abstract data types.
  • the functionality of the program modules may be combined or split between program modules as desired in various embodiments.
  • Machine-executable instructions for program modules may be executed within a local or distributed device. In a distributed device, program modules may be located in both local and remote storage media.
  • Program code for carrying out methods of the present disclosure may be written in any combination of one or more programming languages. These program codes may be provided to a processor or controller of a general purpose computer, special purpose computer, or other programmable data processing apparatus, such that the program codes, when executed by the processor or controller, cause the functions/operations specified in the flowcharts and/or block diagrams to be implemented.
  • the program code may execute entirely on a machine, partly on the machine, as a stand-alone software package, partly on the machine and partly on a remote machine or entirely on the remote machine or server.
  • the computer program codes or related data may be carried by any suitable carrier to enable the device, apparatus or processor to perform various processes and operations as described above.
  • Examples of the carrier include a signal, computer readable medium, and the like.
  • the computer readable medium may be a computer readable signal medium or a computer readable storage medium.
  • a computer readable medium may include but not limited to an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing. More specific examples of the computer readable storage medium would include an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM) , a read-only memory (ROM) , an erasable programmable read-only memory (EPROM or Flash memory) , an optical fiber, a portable compact disc read-only memory (CD-ROM) , an optical storage device, a magnetic storage device, or any suitable combination of the foregoing.

Abstract

Embodiments of the present disclosure relate to methods, apparatuses and computer readable storage media for positioning measurement reporting in unlicensed spectrum. According to embodiments of the present disclosure, a terminal device receives a configuration from a location management function (LMF) for configuring at least one uplink resource for reporting a message to the second device over a positioning protocol and a trigger signal for triggering the reporting of the message. The terminal device generates a positioning measurement report by measuring positioning reference signals from network devices and transmits the positioning reference signal to the LMF based on the configuration over LPP. This solution can minimize latency in reporting DL positioning measurements to the LMF.

Description

POSITIONING MEASUREMENT REPORTING IN UNLICENSED SPECTRUM TECHNICAL FIELD
Embodiments of the present disclosure generally relate to the field of telecommunications, and in particular, to methods, apparatuses and computer readable media for positioning measurement reporting in unlicensed spectrum.
BACKGROUND
In Release 16 (Rel-16) of 3GPP specifications, downlink (DL) positioning techniques, such as Downlink Time Difference of Arrival (DL-TDOA) , are specified. DL-TDOA works by having multiple network devices transmit downlink positioning reference signals (DL PRS) at the same time. A terminal device then measures a reference signal time difference (RSTD) . All the measurements are reported to a location management function (LMF) from the terminal device and thus the LMF can estimate the position of the terminal device. The LMF can be implemented in a core network or alternatively can be implemented in a radio access network in the form of a local location management component (LMC) . The LMF transmits assistance data to the terminal device over LTE Positioning Protocol (LPP) and the terminal device transmits measurement reports to the LMF over LPP. LPP is a protocol terminated by the terminal device and the LMF, which uses a network device as a transparent relay.
In unlicensed spectrum, transmissions are subject to Listen-Before-Talk (LBT) . That is, a transmitting device needs to sense radio resources before commencing a transmission. A LBT failure may cause delays in the transmission of the assistance data and/or the measurement reports. In particular, if the terminal device has to transmit a scheduling request (SR) for requesting resources for uplink data, LBT needs to be performed multiple times during the positioning procedure and thus multiple LBT failures may occur. When these LBT failures occur, the LMF may not know the occurrence of these LBT failures. The serving network device may not know if the LPP data is time sensitive and may be not aware of the positioning Quality of Service (QoS) required.
SUMMARY
In general, example embodiments of the present disclosure provide methods, apparatuses and computer readable media for positioning measurement reporting in unlicensed spectrum.
In a first aspect, there is provided a method. The method comprises receiving, at a first device, a configuration from a second device for configuring at least one uplink resource for reporting a message to the second device over a positioning protocol and/or a trigger signal for triggering the reporting of the message; generating a positioning measurement report by measuring positioning reference signals from network devices; and transmitting, based on the configuration and via a third device, the positioning measurement report to the second device over the positioning protocol.
In a second aspect, there is provided a method. The method comprises transmitting, from a second device to a third device, a request for a configuration about reporting of a message over a positioning protocol by a first device; receiving, from the third device, the configuration for configuring at least one uplink resource for reporting the message over the positioning protocol and/or a trigger signal for triggering the reporting of the message; transmitting the configuration to the first device; and receiving, based on the configuration and via the third device, a positioning measurement report from the first device over the positioning protocol.
In a third aspect, there is provided a method. The method comprises receiving, at a third device and from a second device, a request for a configuration about reporting of a message over a positioning protocol by a first device; transmitting, to the second device, the configuration for configuring at least one uplink resource for reporting the message over the positioning protocol and/or a trigger signal for triggering the reporting of the message; and in response to the trigger signal being configured by the configuration, transmitting the trigger signal to the first device based on the configuration, such that the first device transmits a positioning measurement report to the second device via the third device over the positioning protocol.
In a fourth aspect, there is provided a first device. The first device comprises at least one processor and at least one memory including computer program codes. The at least one memory and the computer program codes are configured to, with the at least one processor, cause the first device to receive a configuration from a second device for configuring at least one uplink resource for reporting a message to the second device over a  positioning protocol and/or a trigger signal for triggering the reporting of the message; generate a positioning measurement report by measuring positioning reference signals from network devices; and transmit, based on the configuration and via a third device, the positioning measurement report to the second device over the positioning protocol.
In a fifth aspect, there is provided a second device. The second device comprises at least one processor and at least one memory including computer program codes. The at least one memory and the computer program codes are configured to, with the at least one processor, cause the second device to transmit, to a third device, a request for a configuration about reporting of a message over a positioning protocol by a first device; receive, from the third device, the configuration for configuring at least one uplink resource for reporting the message over the positioning protocol and/or a trigger signal for triggering the reporting of the message; transmit the configuration to the first device; and receive, based on the configuration and via the third device, a positioning measurement report from the first device over the positioning protocol.
In a sixth aspect, there is provided a third device. The third device comprises at least one processor and at least one memory including computer program codes. The at least one memory and the computer program codes are configured to, with the at least one processor, cause the third device to receive, from a second device, a request for a configuration about reporting of a message over a positioning protocol by a first device; transmit, to the second device, the configuration for configuring at least one uplink resource for reporting the message over the positioning protocol and/or a trigger signal for triggering the reporting of the message; and in response to the trigger signal being configured by the configuration, transmit the trigger signal to the first device based on the configuration, such that the first device transmits a positioning measurement report to the second device via the third device over the positioning protocol.
In a seventh aspect, there is provided an apparatus. The apparatus comprises means for receiving a configuration from a second device for configuring at least one uplink resource for reporting a message to the second device over a positioning protocol and/or a trigger signal for triggering the reporting of the message; means for generating a positioning measurement report by measuring positioning reference signals from network devices; and means for transmitting, based on the configuration and via a third device, the positioning measurement report to the second device over the positioning protocol.
In an eighth aspect, there is provided an apparatus. The apparatus comprises means for transmitting, to a third device, a request for a configuration about reporting of a message over a positioning protocol by a first device; means for receiving, from the third device, the configuration for configuring at least one uplink resource for reporting the message over the positioning protocol and/or a trigger signal for triggering the reporting of the message; means for transmitting the configuration to the first device; and means for receiving, based on the configuration and via the third device, a positioning measurement report from the first device over the positioning protocol.
In a ninth aspect, there is provided an apparatus. The apparatus comprises means for receiving, from a second device, a request for a configuration about reporting of a message over a positioning protocol by a first device; means for transmitting, to the second device, the configuration for configuring at least one uplink resource for reporting the message over the positioning protocol and/or a trigger signal for triggering the reporting of the message; and means for in response to the trigger signal being configured by the configuration, transmitting the trigger signal to the first device based on the configuration, such that the first device transmits a positioning measurement report to the second device via the third device over the positioning protocol.
In a tenth aspect, there is provided a computer program product that is stored on a computer readable medium and includes machine-executable instructions. The machine-executable instructions, when being executed, cause a machine to perform the method according to the above first, second or third aspect.
In an eleventh aspect, there is a computer readable storage medium comprising program instructions stored thereon. The instructions, when executed by an apparatus, cause the apparatus to perform the method according to the above first, second or third aspect.
It is to be understood that the summary section is not intended to identify key or essential features of embodiments of the present disclosure, nor is it intended to be used to limit the scope of the present disclosure. Other features of the present disclosure will become easily comprehensible through the following description.
BRIEF DESCRIPTION OF THE DRAWINGS
Through the more detailed description of some example embodiments of the  present disclosure in the accompanying drawings, the above and other objects, features and advantages of the present disclosure will become more apparent, wherein:
Fig. 1 illustrates an example communication network in which example embodiments of the present disclosure can be implemented;
Fig. 2 illustrates a schematic diagram of interactions between devices according to some example embodiments of the present disclosure;
Fig. 3 illustrates a schematic diagram of interactions between devices according to some example embodiments of the present disclosure;
Fig. 4 illustrates a flowchart of an example method according to some example embodiments of the present disclosure;
Fig. 5 illustrates a flowchart of an example method according to some example embodiments of the present disclosure;
Fig. 6 illustrates a flowchart of an example method according to some example embodiments of the present disclosure;
Fig. 7 illustrates a simplified block diagram of an apparatus that is suitable for implementing embodiments of the present disclosure; and
Fig. 8 illustrates a block diagram of an example computer readable medium in accordance with some example embodiments of the present disclosure.
Throughout the drawings, the same or similar reference numerals represent the same or similar element.
DETAILED DESCRIPTION
Principle of the present disclosure will now be described with reference to some example embodiments. It is to be understood that these embodiments are described only for the purpose of illustration and help those skilled in the art to understand and implement the present disclosure, without suggesting any limitation as to the scope of the disclosure. The disclosure described herein can be implemented in various manners other than the ones described below.
In the following description and claims, unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skills in the art to which this disclosure belongs.
References in the present disclosure to “one embodiment, ” “an embodiment, ” “an example embodiment, ” and the like indicate that the embodiment described may include a particular feature, structure, or characteristic, but it is not necessary that every embodiment includes the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an example embodiment, it is submitted that it is within the knowledge of one skilled in the art to affect such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described.
It shall be understood that although the terms “first” and “second” etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first element could be termed a second element, and similarly, a second element could be termed a first element, without departing from the scope of example embodiments. As used herein, the term “and/or” includes any and all combinations of one or more of the listed terms.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of example embodiments. As used herein, the singular forms “a” , “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” , “comprising” , “has” , “having” , “includes” and/or “including” , when used herein, specify the presence of stated features, elements, and/or components etc., but do not preclude the presence or addition of one or more other features, elements, components and/or combinations thereof.
As used in this application, the term “circuitry” may refer to one or more or all of the following:
(a) hardware-only circuit implementations (such as implementations in only analog and/or digital circuitry) and
(b) combinations of hardware circuits and software, such as (as applicable) :
(i) a combination of analog and/or digital hardware circuit (s) with software/firmware and
(ii) any portions of hardware processor (s) with software (including digital  signal processor (s) ) , software, and memory (ies) that work together to cause an apparatus, such as a mobile phone or server, to perform various functions) and
(c) hardware circuit (s) and or processor (s) , such as a microprocessor (s) or a portion of a microprocessor (s) , that requires software (e.g., firmware) for operation, but the software may not be present when it is not needed for operation.
This definition of circuitry applies to all uses of this term in this application, including in any claims. As a further example, as used in this application, the term circuitry also covers an implementation of merely a hardware circuit or processor (or multiple processors) or portion of a hardware circuit or processor and its (or their) accompanying software and/or firmware. The term circuitry also covers, for example and if applicable to the particular claim element, a baseband integrated circuit or processor integrated circuit for a mobile device or a similar integrated circuit in server, a cellular network device, or other computing or network device.
As used herein, the term “communication network” refers to a network following any suitable communication standards, such as Long Term Evolution (LTE) , LTE-Advanced (LTE-A) , Wideband Code Division Multiple Access (WCDMA) , High-Speed Packet Access (HSPA) , Narrow Band Internet of Things (NB-IoT) , New Radio (NR) and so on. Furthermore, the communications between a terminal device and a network device in the communication network may be performed according to any suitable generation communication protocols, including, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth generation (4G) , 4.5G, the future fifth generation (5G) communication protocols, and/or any other protocols either currently known or to be developed in the future. Embodiments of the present disclosure may be applied in various communication systems. Given the rapid development in communications, there will of course also be future type communication technologies and systems with which the present disclosure may be embodied. It should not be seen as limiting the scope of the present disclosure to only the aforementioned system.
As used herein, the term “network device” refers to a node in a communication network via which a terminal device accesses the network and receives services therefrom. The network device may refer to a base station (BS) or an access point (AP) , for example, a node B (NodeB or NB) , an evolved NodeB (eNodeB or eNB) , a NR NB (also referred to as  a gNB) , a Remote Radio Unit (RRU) , a radio header (RH) , a remote radio head (RRH) , a relay, a low power node such as a femto, a pico, and so forth, depending on the applied terminology and technology. In the following description, the terms “network device” , “BS” , and “node” may be used interchangeably.
The term “terminal device” refers to any end device that may be capable of wireless communication. By way of example rather than limitation, a terminal device may also be referred to as a communication device, user equipment (UE) , a Subscriber Station (SS) , a Portable Subscriber Station, a Mobile Station (MS) , or an Access Terminal (AT) . The terminal device may include, but not limited to, a mobile phone, a cellular phone, a smart phone, voice over IP (VoIP) phones, wireless local loop phones, a tablet, a wearable terminal device, a personal digital assistant (PDA) , portable computers, desktop computer, image capture terminal devices such as digital cameras, gaming terminal devices, music storage and playback appliances, vehicle-mounted wireless terminal devices, wireless endpoints, mobile stations, laptop-embedded equipment (LEE) , laptop-mounted equipment (LME) , USB dongles, smart devices, wireless customer-premises equipment (CPE) , an Internet of Things (loT) device, a watch or other wearable, a head-mounted display (HMD) , a vehicle, a drone, a medical device and applications (e.g., remote surgery) , an industrial device and applications (e.g., a robot and/or other wireless devices operating in an industrial and/or an automated processing chain contexts) , a consumer electronics device, a device operating on commercial and/or industrial wireless networks, and the like. In the following description, the terms “terminal device” , “communication device” , “terminal” , “user equipment” and “UE” may be used interchangeably.
Although functionalities described herein can be performed, in various example embodiments, in a fixed and/or a wireless network node may, in other example embodiments, functionalities may be implemented in a user equipment apparatus (such as a cell phone or tablet computer or laptop computer or desktop computer or mobile IOT device or fixed IOT device) . This user equipment apparatus can, for example, be furnished with corresponding capabilities as described in connection with the fixed and/or the wireless network node (s) , as appropriate. The user equipment apparatus may be the user equipment and/or or a control device, such as a chipset or processor, configured to control the user equipment when installed therein. Examples of such functionalities include the bootstrapping server function and/or the home subscriber server, which may be implemented in the user equipment apparatus by providing the user equipment apparatus  with software configured to cause the user equipment apparatus to perform from the point of view of these functions/nodes.
As described above, in Rel-16 of 3GPP specifications, DL positioning techniques, such as DL-TDOA, are specified. DL-TDOA works by having multiple network devices transmit DL PRS at the same time. A terminal device then measures a RSTD. All the measurements are reported to a LMF from the terminal device and thus the LMF can estimate the position of the terminal device. The LMF transmits assistance data to the terminal device over LPP and the terminal device transmits measurement reports to the LMF over LPP. LPP is a protocol terminated by the terminal device and the LMF, which uses a network device as a transparent relay.
In unlicensed spectrum, transmissions are subject to LBT. That is, a transmitting device needs to sense radio resources before commencing a transmission. A LBT failure may cause delays in the transmission of the assistance data and/or the measurement reports. In particular, if the terminal device has to transmit an SR for requesting resources for uplink data, LBT needs to be performed multiple times during the positioning procedure and thus multiple LBT failures may occur. When these LBT failures occur, the LMF may not know the occurrence of these LBT failures. The serving network device may not know if the LPP data is time sensitive and may be not aware of the positioning QoS required.
Embodiments of the present disclosure provide a solution for positioning measurement reporting in unlicensed spectrum, which can solve the above problem and one or more of other potential problems. This solution provides a mechanism of preconfiguring a trigger signal and/or UL resources for reporting positioning measurements in unlicensed spectrum. As such, this solution can minimize latency in reporting DL positioning measurements to the LMF and reduce the number of potential LBT failures during the reporting. This solution also enables the LMF to be aware of LBT failures in assistance data transfer, such that the LMF can adapt to delays in assistance data transfer.
Fig. 1 illustrates an example communication network 100 in which example embodiments of the present disclosure can be implemented. The communication network 100 includes a terminal device 110, a LMF 120 and one or more network devices 130 (only one network device 130 is shown in Fig. 1) . The network device 130 may provide one or more cells to serve the terminal device 110. It is to be understood that the number of  network devices and/or terminal devices is given for the purpose of illustration without suggesting any limitation to the scope of the present disclosure. The communication network 100 may include any suitable number of network devices and/or terminal devices adapted for implementing implementations of the present disclosure.
A DL positioning procedure can be performed in the communication network 100. For example, the network devices 130 may transmit DL reference signals to the terminal device 110. Examples of the DL reference signals may include DL PRS or any DL signal used for positioning. The terminal device 110 may measure the DL reference signals and generate a positioning measurement report. The terminal device 110 may transmit the positioning measurement report to the LMF 120 and thus the LMF 120 can estimate the position of the terminal device 110 based on the positioning measurement report. The communications between the terminal device 110 and the LMF 120 may be implemented over LPP. For example, the LMF 120 may transmit, via the network device 130 serving the terminal device 110, assistance data about the DL reference signals to the terminal device 110 over LPP. The terminal device 110 may transmit, via the network device 130, the positioning measurement report to the LMF 120 over LPP. In this text, data transmitted over LPP is also referred to as “LPP data” or “LPP message” . LPP data is transparent to the network device 130. That is, the network device 130 just forwards the LPP data between the terminal device 110 and the LMF 120.
In the communication network 100, for example, transmissions can be conducted in licensed spectrum or unlicensed spectrum. As described above, in unlicensed spectrum, a transmitting device needs to perform LBT to sense radio resources before commencing a transmission. LBT is typically performed with a granularity of once per clear channel assessment (CCA) slot (e.g., 9us) . Different types of LBT procedures are defined for New Radio-based access to unlicensed spectrum. For example, as specified in TS 37.213, the types of LBT procedures may include Type 1, Type 2A/2B, and Type 2C. In the Type 1 procedure, a transmitting device may commence a transmission immediately after sensing the channel to be idle a certain number of times. In the Type 2A procedure, a transmitting device may commence a transmission immediately after sensing the channel to be idle for at least 25 us. In the Type 2B procedure, a transmitting device may commence a transmission immediately after sensing the channel to be idle for at least 16 us. In the Type 2C procedure, a transmitting device may not need to sense the channel before commencing a transmission, where duration of the transmission is at most 584us.
In the following, embodiments of the present disclosure will be described with reference to DL positioning in unlicensed spectrum. It is to be understood that this is merely for the purpose of illustration, without suggesting any limitation as to the scope of the present disclosure.
Fig. 2 illustrates a schematic diagram of interactions 200 between devices according to some example embodiments of the present disclosure. For example, the interactions 200 involve the terminal device 110, the network device 130 and the LMF 120 shown in Fig. 1.
As shown in Fig. 2, the LMF 120 may transmit 201 a request to the network device 130, to request a configuration for reporting of a LPP message by the terminal device 110. For example, the LPP message may be used to carry a positioning measurement report to be transmitted from the terminal device 110 to the LMF 120. In some example embodiments, the request may comprise reporting properties requested by the LMF 120. For example, the reporting properties may be determined based on at least one of UE capabilities of the terminal device 110 (including DL PRS processing capabilities) , positioning QoS (e.g., latency requirements) , and periodicity and properties of DL PRS from neighboring cells.
In response to receiving the request, the network device 130 may transmit 202 a configuration to the LMF 120. In some example embodiments, the configuration may configure a trigger signal for triggering the reporting of the positioning measurements. For example, the trigger signal may be any of the following: a channel state information reference signal (CSI-RS) , a synchronization signal block (SSB) , a PRS, downlink control information (DCI) and so on. For example, the trigger signal can be a specific DCI message, which is common to a cell or a group of UEs, such as DCI 2_0 or DCI with a new format. Which trigger signal is configured may depend on the positioning QoS requested by the LMF 120. The configuration may configure timing of the trigger signal. For example, in consideration of DL LBT failures that may occur at the network device 130, multiple occasions for the trigger signal can be configured. Alternatively, the exact timing of the trigger signal can be independent on if a LBT failure occurs during DL PRS transmission. For example, the network device 130 may wait for a predetermined number of PRS occasions if the LBT failure occurs and then transmit the trigger signal. Alternatively or in addition, in some example embodiments, the configuration may configure uplink resources (e.g., physical resource blocks, modulation and coding scheme  and/or so on) to be used by the terminal device 110 for reporting the LPP message.
The LMF 120 may transmit 203a PRS assistance data to the terminal device 110 for configuring DL PRS. In some example embodiments, the LMF 120 may transmit the PRS assistance data to the terminal device 110 over LPP. That is, the LMF 120 may transmit the PRS assistance data to the network device 130 and the network device 130 may forward the PRS assistance data to the terminal device 110 after performing LBT. Alternatively or in addition, the LMF 120 may transmit 203b the configuration about the reporting of the LPP message to the terminal device 110. In some example embodiments, the configuration may be transmitted along with the PRS assistance data over LPP. That is, the LMF 120 may transmit the PRS assistance data and the configuration to the network device 130 and the network device 130 may forward the PRS assistance data and the configuration to the terminal device 110 after performing LBT.
As shown in Fig. 2, the network device 130 may transmit 204 DL PRS to the terminal device 110. The terminal device 110 may measure 205 DL PRS from multiple network devices 130 and generate a positioning measurement reported based on the measurements.
In some example embodiments, if the trigger signal is configured, the network device 130 may transmit 206 the trigger signal to the terminal device 110 based on the configuration about the trigger signal (e.g., the configured timing) . The terminal device 110 may listen for the trigger signal. In response to successfully detecting the trigger signal, the terminal device 110 may transmit 208 the positioning measurement report to the LMF 120 after performing 207 LBT. In some example embodiments, the LBT may be Type 2C LBT. That is, the terminal device 110 may directly transmit the positioning measurement report to the LMF 120 without channel sensing if the gap to the reception of the DL PRS equals to or shorter than a threshold (e.g., 16us) . The positioning measurement report may be transmitted from the terminal device 110 to the LMF 120 over LPP. That is, the network device 130 may forward the positioning measurement report received from the terminal device 110 to the LMF 120 directly.
Alternatively, in some example embodiments, if the trigger signal is not configured and/or if the terminal device 110 is configured with available UL resources (such as, UL resources configured by the LMF 120, configured grant (CG) UL resources or dynamically schedule UL resources) for reporting the LPP message, the terminal device  110 may not wait for the trigger signal to trigger the transmission of the positioning measurement report. Instead, the terminal device 110 may transmit 208 the positioning measurement report to the LMF 120 by using any of the available UL resources that comes first. This will further minimize the latency involved in the reporting.
In some example embodiments, configured grant physical uplink shared channel (CG-PUSCH) resources can be used in place of the trigger signal. That is, instead of waiting for the trigger signal to trigger the transmission of the positioning measurement report, the terminal device 110 may transmit 208 the report by using the first available CG-PUSCH source after performing 207 LBT. In this event, for example, the terminal device 110 may perform Type 1 LBT to avoid need for transmitting an SR. In some example embodiments, the CG-PUSCH resources to be used for transmission of the positioning measurement reports can be indicated in the configuration transmitted 202 from the network device 130 to the LMF 120. Assuming a dedicated signaling radio bearer (SRB) is used to carry all LPP data, for example, an SR mask for the corresponding SRB can be used to ensure that the terminal device 110 directly uses the CG-PUSCH resources for transmitting the report, instead of issuing an SR. Upon reception 203b of the configuration from the LMF 120, the terminal device 110 may apply a temporary SR mask to the SRB carrying LPP data. The time when the terminal device 110 is to apply the temporary SR mask may be fixed in specifications, or may be indicated in the configuration transmitted 202 from the network device 130 to the LMF 120. In this case, the trigger signal can be avoided and the LMF 120 can indicate the terminal device 110 to use the CG-PUSCH resources for transmitting the positioning report during the assistance data transfer.
In view of the above, it can be seen that there are several implementations regarding the transmission of the positioning measurement report. In some example embodiments, the configuration from the LMF 120 may configure a trigger signal and UL resources for the transmission of the positioning measurement report. In this event, after generating the positioning measure report by measuring the DL PRS, the terminal device 110 may start to monitor/receive the trigger signal according to the configuration received from the LMF 120. After successfully detecting the trigger signal, the terminal device 110 may transmit, by using the configured UL resources (that are indicated by the LMF 120) , the positioning measurement report to the LMF 120 after performing LBT. Alternatively, in some example embodiments, the configuration from the LMF 120 may  configure a trigger signal and the terminal device 110 may also be configured with CG UL resources for the transmission of the positioning measurement report. In this event, after generating the positioning measure report by measuring the DL PRS, the terminal device 110 may start to monitor/receive the trigger signal according to the configuration received from the LMF 120. After successfully detecting the trigger signal, the terminal device 110 may transmit, by using the CG UL resources (e.g., the first available CG-PUSCH resource after reception of the trigger signal) , the positioning measurement report to the LMF 120. Alternatively, in some example embodiments, the configuration from the LMF 120 may configure a trigger signal and the terminal device 110 may also be configured with available UL resources, such as, UL resources configured by the LMF 120, dynamic scheduled UL resources and/or CG UL resources. In this event, after generating the positioning measure report by measuring the DL PRS, the terminal device 110 may start to monitor/receive the trigger signal according to the configuration received from the LMF 120. After successfully detecting the trigger signal, the terminal device 110 may transmit, by using any of the available UL resources coming first, the positioning measurement report to the LMF 120. Alternatively, in some example embodiments, the terminal device 110 may be configured with no trigger signal but CG UL resources for reporting the positioning measurements. In this event, after generating the positioning measure report by measuring the DL PRS, the terminal device 110 may transmit, by using the CG UL resources (e.g., the first available CG-PUSCH resource) , the positioning measurement report to the LMF 120.
Fig. 3 illustrates a schematic diagram of interactions 300 between devices according to some example embodiments of the present disclosure. For example, the interactions 300 can be considered as an example implementation of the step 203a shown in Fig. 2.
As shown in Fig. 3, the LMF 120 may transmit 301 LPP data comprising the PRS assistance data to the network device 130. The network device 130 may perform 302 LBT and then forward 303 the LPP data comprising the PRS assistance data to the terminal device 110. In some cases, a LBT failure may occur at the network device 130. In response to detecting the LBT failure, the network device 130 may determine 304 a time difference between the detection of the LBT failure and the forwarding of the LPP data. The network device 130 may transmit 305 an error message comprising an indication of the time difference to the LMF 120. As such, the LMF 120 can be aware of the LBT failure  and can adapt to delays in assistance data transfer. For example, the LMF 120 may request a new positioning technique (such as, Global Navigation Satellite System, GNSS) or adapt the current positioning session (e.g., by requesting a new configuration from the network device 130 or updating neighboring cells) .
Although embodiments of the present disclosure are described above with reference to DL-TDOA, it is to be understood that this is merely for the purpose of illustration, without suggesting any limitation as to the scope of the present disclosure. Embodiments of the present disclosure are also applicable to other positioning technique as well, such as, GNSS, Multi-cell round trip time (multi-RTT) positioning, enhanced cell ID (E-CID) positioning, DL Angle of Departure (DL-AoD) positioning, DL angle of arrival positioning, carrier phase positioning and/or any other positioning technique to be developed in the future. For example, if a terminal device is requested to report its location calculated by means of GNSS, resource for that reporting can be preconfigured to the terminal device.
Fig. 4 shows a flowchart of an example method 400 in accordance with some example embodiments of the present disclosure. For example, the method 400 can be implemented at the terminal device 110 shown in Fig. 1. In the following, the terminal device 110 is also referred to as a “first device” , the network device 130 is also referred to as a “third device” and the LMF 120 is also referred to as a “second device” . It is to be understood that the method 400 may include additional blocks not shown and/or may omit some shown blocks, and the scope of the present disclosure is not limited in this regard.
At block 410, the first device receives a configuration from a second device for configuring at least one uplink resource for reporting a message to the second device over a positioning protocol and/or a trigger signal for triggering the reporting of the message. For example, the positioning protocol may include LPP.
At block 420, the first device generates a positioning measurement report by measuring positioning reference signals from network devices.
At block 430, the first device transmits, based on the configuration and via a third device, the positioning measurement report to the second device over the positioning protocol.
In some example embodiments, in response to the trigger signal being configured by the configuration, the first device monitors the trigger signal from the third device based  on the configuration. In response to the trigger signal being received from the third device, the first device transmits the positioning measurement report to the second device over the at least one uplink resource configured by the configuration or another available uplink resource.
In some example embodiments, the other available uplink resource comprises a dynamically scheduled uplink resource or configured grant uplink resource.
In some example embodiments, in response to the positioning measurement report being generated, the first device transmits the positioning measurement report to the second device over a configured grant uplink resource.
In some example embodiments, in response to receiving a positive outcome of Listen-Before-Talk, the first device transmits, via the third device, the positioning measurement report to the second device over the positioning protocol.
In some example embodiments, the trigger signal comprises any of the following: a channel state information reference signal, a synchronization signal block, another positioning reference signal, or downlink control information.
In some example embodiments, the first device is a terminal device, the second device implements a location management function, and the third device is a network device serving the terminal device.
Fig. 5 shows a flowchart of an example method 500 in accordance with some example embodiments of the present disclosure. For example, the method 500 can be implemented at the LMF 120 shown in Fig. 1. In the following, the terminal device 110 is also referred to as a “first device” , the network device 130 is also referred to as a “third device” and the LMF 120 is also referred to as a “second device” . It is to be understood that the method 500 may include additional blocks not shown and/or may omit some shown blocks, and the scope of the present disclosure is not limited in this regard.
At block 510, the second device transmits, to a third device, a request for a configuration about reporting of a message over a positioning protocol by a first device. For example, the positioning protocol may include LPP.
At block 520, the second device receives, from the third device, the configuration for configuring at least one uplink resource for reporting the message over the positioning protocol and/or a trigger signal for triggering the reporting of the message.
At block 530, the second device transmits the configuration to the first device.
At block 540, the second device receives, based on the configuration and via the third device, a positioning measurement report from the first device over the positioning protocol.
In some example embodiments, the request comprises reporting properties requested by the second device. The second device determines the reporting properties based on at least one of the following: capabilities of the first device, positioning Quality of Service, and periodicity and properties of positioning reference signals from neighboring cells.
In some example embodiments, in response to the trigger signal being configured by the configuration, the second device receives the positioning measure report from the first device over the at least one uplink resource configured by the configuration or another available uplink resource.
In some example embodiments, the other available uplink resource comprises a dynamically scheduled uplink resource or configured grant uplink resource.
In some example embodiments, the second device receives the positioning measure report from the first device over a configured grant uplink resource.
In some example embodiments, the positioning measurement report is generated based on positioning reference signals by the first device. The second device transmits assistance data about the positioning reference signals to the third device, such that the third device forwards the assistance data to the first device after performing Listen-Before-Talk.
In some example embodiments, in response to a Listen-Before-Talk failure being detected at the third device, the second device receives an error message from the third device. The error message comprises an indication of a time difference between the detection of the Listen-Before-Talk failure and the forwarding of the assistance data.
In some example embodiments, the trigger signal comprises any of the following: a channel state information reference signal, a synchronization signal block, another positioning reference signal, or downlink control information.
In some example embodiments, the first device is a terminal device, the second device implements a location management function, and the third device is a network  device serving the terminal device.
Fig. 6 shows a flowchart of an example method 600 in accordance with some example embodiments of the present disclosure. For example, the method 600 can be implemented at the network device 130 shown in Fig. 1. In the following, the terminal device 110 is also referred to as a “first device” , the network device 130 is also referred to as a “third device” and the LMF 120 is also referred to as a “second device” . It is to be understood that the method 600 may include additional blocks not shown and/or may omit some shown blocks, and the scope of the present disclosure is not limited in this regard.
At block 610, the third device receives, from a second device, a request for a configuration about reporting of a message over a positioning protocol by a first device. For example, the positioning protocol may include LPP.
At block 620, the third device transmits, to the second device, the configuration for configuring at least one uplink resource for reporting the message over the positioning protocol and/or a trigger signal for triggering the reporting of the message.
At block 630, the third device determines if the trigger signal is configured by the configuration. If it is determined that the trigger signal is configured by the configuration, at block 640, the third device transmits the trigger signal to the first device based on the configuration, such that the first device transmits a positioning measurement report to the second device via the third device over the positioning protocol.
In some example embodiments, the third device receives the positioning measurement report from the first device over the at least one uplink resource configured by the configuration or another available uplink resource; and forwards the positioning measurement report to the second device.
In some example embodiments, the other available uplink resource comprises a dynamically scheduled uplink resource or configured grant uplink resource.
In some example embodiments, the positioning measurement report is generated based on positioning reference signals by the first device. The third device receives assistance data about the positioning reference signals from the second device; and forwards the assistance data to the first device after performing Listen-Before-Talk.
In some example embodiments, in response to a Listen-Before-Talk failure being detected, the third device determines a time difference between the detection of the  Listen-Before-Talk failure and the forwarding of the assistance data; and transmits, to the second device, an error message comprising an indication of the time difference.
In some example embodiments, the trigger signal comprises any of the following: a channel state information reference signal, a synchronization signal block, another positioning reference signal, or downlink control information.
In some example embodiments, the first device is a terminal device, the second device implements a location management function, and the third device is a network device serving the terminal device.
In some example embodiments, an apparatus capable of performing the method 400 may comprise means for performing the respective steps of the method 400. The means may be implemented in any suitable form. For example, the means may be implemented in a circuitry or software module.
In some example embodiments, the apparatus capable of performing the method 400 (for example, the terminal device 110) comprises: means for receiving a configuration from a second device for configuring at least one uplink resource for reporting a message to the second device over a positioning protocol and/or a trigger signal for triggering the reporting of the message; means for generating a positioning measurement report by measuring positioning reference signals from network devices; means for transmitting, based on the configuration and via a third device, the positioning measurement report to the second device over the positioning protocol.
In some example embodiments, the means for transmitting the positioning measurement report to the second device comprises: means for in response to the trigger signal being configured by the configuration, monitoring the trigger signal from the third device based on the configuration; and means for in response to the trigger signal being received from the third device, transmitting the positioning measurement report to the second device over the at least one uplink resource configured by the configuration or another available uplink resource.
In some example embodiments, the other available uplink resource comprises a dynamically scheduled uplink resource or configured grant uplink resource.
In some example embodiments, the means for transmitting the positioning measurement report to the second device comprises: means for in response to the positioning measurement report being generated, transmitting the positioning measurement  report to the second device over a configured grant uplink resource.
In some example embodiments, the means for transmitting the positioning measurement report to the second device comprises: means for in response to receiving a positive outcome of Listen-Before-Talk, transmitting, via the third device, the positioning measurement report to the second device over the positioning protocol.
In some example embodiments, the trigger signal comprises any of the following: a channel state information reference signal, a synchronization signal block, another positioning reference signal, or downlink control information.
In some example embodiments, the apparatus is a terminal device, the second device implements a location management function, and the third device is a network device serving the terminal device.
In some example embodiments, an apparatus capable of performing the method 500 may comprise means for performing the respective steps of the method 500. The means may be implemented in any suitable form. For example, the means may be implemented in a circuitry or software module.
In some example embodiments, the apparatus capable of performing the method 500 (for example, the LMF 120) comprises: means for transmitting, to a third device, a request for a configuration about reporting of a message over a positioning protocol by a first device; means for receiving, from the third device, the configuration for configuring at least one uplink resource for reporting the message over the positioning protocol and/or a trigger signal for triggering the reporting of the message; means for transmitting the configuration to the first device; and means for receiving, based on the configuration and via the third device, a positioning measurement report from the first device over the positioning protocol.
In some example embodiments, the request comprises reporting properties requested by the second device, and the apparatus capable of performing the method 500 further comprises: means for determines the reporting properties based on at least one of the following: capabilities of the first device, positioning Quality of Service, and periodicity and properties of positioning reference signals from neighboring cells.
In some example embodiments, the means for receiving the positioning measure report from the first device comprises: means for in response to the trigger signal being configured by the configuration, receiving the positioning measure report from the first  device over the at least one uplink resource configured by the configuration or another available uplink resource.
In some example embodiments, the other available uplink resource comprises a dynamically scheduled uplink resource or configured grant uplink resource.
In some example embodiments, the means for receiving the positioning measure report from the first device comprises: means for receiving the positioning measure report from the first device over a configured grant uplink resource.
In some example embodiments, the positioning measurement report is generated based on positioning reference signals by the first device, and the apparatus capable of performing the method 500 further comprises: means for transmitting assistance data about the positioning reference signals to the third device, such that the third device forwards the assistance data to the first device after performing Listen-Before-Talk.
In some example embodiments, the apparatus capable of performing the method 500 further comprises: means for in response to a Listen-Before-Talk failure being detected at the third device, receiving an error message from the third device, the error message comprising an indication of a time difference between the detection of the Listen-Before-Talk failure and the forwarding of the assistance data.
In some example embodiments, the trigger signal comprises any of the following: a channel state information reference signal, a synchronization signal block, another positioning reference signal, or downlink control information.
In some example embodiments, the first device is a terminal device, the apparatus implements a location management function, and the third device is a network device serving the terminal device.
In some example embodiments, an apparatus capable of performing the method 600 may comprise means for performing the respective steps of the method 600. The means may be implemented in any suitable form. For example, the means may be implemented in a circuitry or software module.
In some example embodiments, the apparatus capable of performing the method 600 (for example, the network device 130) comprises: means for receiving, from a second device, a request for a configuration about reporting of a message over a positioning protocol by a first device; means for transmitting, to the second device, the configuration  for configuring at least one uplink resource for reporting the message over the positioning protocol and/or a trigger signal for triggering the reporting of the message; and means for in response to the trigger signal being configured by the configuration, transmitting the trigger signal to the first device based on the configuration, such that the first device transmits a positioning measurement report to the second device via the third device over the positioning protocol.
In some example embodiments, the apparatus capable of performing the method 600 further comprises: means for receiving the positioning measurement report from the first device over the at least one uplink resource configured by the configuration or another available uplink resource; and means for forwarding the positioning measurement report to the second device.
In some example embodiments, the other available uplink resource comprises a dynamically scheduled uplink resource or configured grant uplink resource.
In some example embodiments, the positioning measurement report is generated based on positioning reference signals by the first device, and the apparatus capable of performing the method 600 further comprises: means for receiving assistance data about the positioning reference signals from the second device; and means for forwarding the assistance data to the first device after performing Listen-Before-Talk.
In some example embodiments, the apparatus capable of performing the method 600 further comprises: means for in response to a Listen-Before-Talk failure being detected, determining a time difference between the detection of the Listen-Before-Talk failure and the forwarding of the assistance data; and means for transmitting, to the second device, an error message comprising an indication of the time difference.
In some example embodiments, the trigger signal comprises any of the following: a channel state information reference signal, a synchronization signal block, another positioning reference signal, or downlink control information.
In some example embodiments, the first device is a terminal device, the second device implements a location management function, and the apparatus is a network device serving the terminal device.
Fig. 7 is a simplified block diagram of a device 700 that is suitable for implementing embodiments of the present disclosure. For example, the terminal device 110, the LMF 120 and/or the network device 130 shown in Fig. 1 can be implemented by  the device 700. As shown, the device 700 includes one or more processors 710, one or more memories 720 coupled to the processor 710, and one or more communication modules 740 coupled to the processor 710.
The communication module 740 is for bidirectional communications. The communication module 740 has at least one antenna to facilitate communication. The communication interface may represent any interface that is necessary for communication with other network elements.
The processor 710 may be of any type suitable to the local technical network and may include one or more of the following: general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs) and processors based on multicore processor architecture, as non-limiting examples. The device 700 may have multiple processors, such as an application specific integrated circuit chip that is slaved in time to a clock which synchronizes the main processor.
The memory 720 may include one or more non-volatile memories and one or more volatile memories. Examples of the non-volatile memories include, but are not limited to, a Read Only Memory (ROM) 724, an electrically programmable read only memory (EPROM) , a flash memory, a hard disk, a compact disc (CD) , a digital video disk (DVD) , and other magnetic storage and/or optical storage. Examples of the volatile memories include, but are not limited to, a random access memory (RAM) 722 and other volatile memories that will not last in the power-down duration.
computer program 730 includes computer executable instructions that are executed by the associated processor 710. The program 730 may be stored in the ROM 724. The processor 710 may perform any suitable actions and processing by loading the program 730 into the RAM 722.
The embodiments of the present disclosure may be implemented by means of the program 730 so that the device 700 may perform any process of the disclosure as discussed with reference to Figs. 2-6. The embodiments of the present disclosure may also be implemented by hardware or by a combination of software and hardware.
In some example embodiments, the program 730 may be tangibly contained in a computer readable medium which may be included in the device 700 (such as in the memory 720) or other storage devices that are accessible by the device 700. The device 700 may load the program 730 from the computer readable medium to the RAM 722 for  execution. The computer readable medium may include any types of tangible non-volatile storage, such as ROM, EPROM, a flash memory, a hard disk, CD, DVD, and the like. Fig. 8 shows an example of the computer readable medium 800 in form of CD or DVD. The computer readable medium has the program 730 stored thereon.
It should be appreciated that future networks may utilize network functions virtualization (NFV) which is a network architecture concept that proposes virtualizing network node functions into “building blocks” or entities that may be operationally connected or linked together to provide services. A virtualized network function (VNF) may comprise one or more virtual machines running computer program codes using standard or general type servers instead of customized hardware. Cloud computing or data storage may also be utilized. In radio communications, this may mean node operations to be carried out, at least partly, in a central/centralized unit, CU, (e.g. server, host or node) operationally coupled to distributed unit, DU, (e.g. a radio head/node) . It is also possible that node operations will be distributed among a plurality of servers, nodes or hosts. It should also be understood that the distribution of labour between core network operations and base station operations may vary depending on implementation.
In an embodiment, the server may generate a virtual network through which the server communicates with the distributed unit. In general, virtual networking may involve a process of combining hardware and software network resources and network functionality into a single, software-based administrative entity, a virtual network. Such virtual network may provide flexible distribution of operations between the server and the radio head/node. In practice, any digital signal processing task may be performed in either the CU or the DU and the boundary where the responsibility is shifted between the CU and the DU may be selected according to implementation.
Therefore, in an embodiment, a CU-DU architecture is implemented. In such case the device 700 may be comprised in a central unit (e.g. a control unit, an edge cloud server, a server) operatively coupled (e.g. via a wireless or wired network) to a distributed unit (e.g. a remote radio head/node) . That is, the central unit (e.g. an edge cloud server) and the distributed unit may be stand-alone apparatuses communicating with each other via a radio path or via a wired connection. Alternatively, they may be in a same entity communicating via a wired connection, etc. The edge cloud or edge cloud server may serve a plurality of distributed units or a radio access networks. In an embodiment, at least some of the described processes may be performed by the central unit. In another  embodiment, the device 700 may be instead comprised in the distributed unit, and at least some of the described processes may be performed by the distributed unit.
In an embodiment, the execution of at least some of the functionalities of the device 700 may be shared between two physically separate devices (DU and CU) forming one operational entity. Therefore, the apparatus may be seen to depict the operational entity comprising one or more physically separate devices for executing at least some of the described processes. In an embodiment, such CU-DU architecture may provide flexible distribution of operations between the CU and the DU. In practice, any digital signal processing task may be performed in either the CU or the DU and the boundary where the responsibility is shifted between the CU and the DU may be selected according to implementation. In an embodiment, the device 700 controls the execution of the processes, regardless of the location of the apparatus and regardless of where the processes/functions are carried out.
Generally, various embodiments of the present disclosure may be implemented in hardware or special purpose circuits, software, logic or any combination thereof. Some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software which may be executed by a controller, microprocessor or other computing device. While various aspects of embodiments of the present disclosure are illustrated and described as block diagrams, flowcharts, or using some other pictorial representations, it is to be understood that the block, apparatus, system, technique or method described herein may be implemented in, as non-limiting examples, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controller or other computing devices, or some combination thereof.
The present disclosure also provides at least one computer program product tangibly stored on a non-transitory computer readable storage medium. The computer program product includes computer-executable instructions, such as those included in program modules, being executed in a device on a target real or virtual processor, to carry out the method 400 as described above with reference to Fig. 4, the method 500 as described above with reference to Fig. 5 and/or the method 600 as described above with reference to Fig. 6. Generally, program modules include routines, programs, libraries, objects, classes, components, data structures, or the like that perform particular tasks or implement particular abstract data types. The functionality of the program modules may be combined or split between program modules as desired in various embodiments.  Machine-executable instructions for program modules may be executed within a local or distributed device. In a distributed device, program modules may be located in both local and remote storage media.
Program code for carrying out methods of the present disclosure may be written in any combination of one or more programming languages. These program codes may be provided to a processor or controller of a general purpose computer, special purpose computer, or other programmable data processing apparatus, such that the program codes, when executed by the processor or controller, cause the functions/operations specified in the flowcharts and/or block diagrams to be implemented. The program code may execute entirely on a machine, partly on the machine, as a stand-alone software package, partly on the machine and partly on a remote machine or entirely on the remote machine or server.
In the context of the present disclosure, the computer program codes or related data may be carried by any suitable carrier to enable the device, apparatus or processor to perform various processes and operations as described above. Examples of the carrier include a signal, computer readable medium, and the like.
The computer readable medium may be a computer readable signal medium or a computer readable storage medium. A computer readable medium may include but not limited to an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing. More specific examples of the computer readable storage medium would include an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM) , a read-only memory (ROM) , an erasable programmable read-only memory (EPROM or Flash memory) , an optical fiber, a portable compact disc read-only memory (CD-ROM) , an optical storage device, a magnetic storage device, or any suitable combination of the foregoing.
Further, while operations are depicted in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. In certain circumstances, multitasking and parallel processing may be advantageous. Likewise, while several specific implementation details are contained in the above discussions, these should not be construed as limitations on the scope of the present disclosure, but rather as descriptions of features that may be specific to particular  embodiments. Certain features that are described in the context of separate embodiments may also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment may also be implemented in multiple embodiments separately or in any suitable sub-combination.
Although the present disclosure has been described in languages specific to structural features and/or methodological acts, it is to be understood that the present disclosure defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claims.

Claims (31)

  1. A method comprising:
    receiving, at a first device, a configuration from a second device for configuring at least one uplink resource for reporting a message to the second device over a positioning protocol and/or a trigger signal for triggering the reporting of the message;
    generating a positioning measurement report by measuring positioning reference signals from network devices; and
    transmitting, based on the configuration and via a third device, the positioning measurement report to the second device over the positioning protocol.
  2. The method of claim 1, wherein transmitting the positioning measurement report to the second device comprises:
    in response to the trigger signal being configured by the configuration, monitoring the trigger signal from the third device based on the configuration; and
    in response to the trigger signal being received from the third device, transmitting the positioning measurement report to the second device over the at least one uplink resource configured by the configuration or another available uplink resource.
  3. The method of claim 2, wherein the other available uplink resource comprises a dynamically scheduled uplink resource or configured grant uplink resource.
  4. The method of claim 1, wherein transmitting the positioning measurement report to the second device comprises:
    in response to the positioning measurement report being generated, transmitting the positioning measurement report to the second device over a configured grant uplink resource.
  5. The method of any of claims 2-4, wherein transmitting the positioning measurement report to the second device comprises:
    in response to receiving a positive outcome of Listen-Before-Talk, transmitting, via the third device, the positioning measurement report to the second device over the positioning protocol.
  6. The method of claim 1, wherein the trigger signal comprises any of the following:
    a channel state information reference signal,
    a synchronization signal block,
    another positioning reference signal, or
    downlink control information.
  7. The method of claim 1, wherein the first device is a terminal device, the second device implements a location management function, and the third device is a network device serving the terminal device.
  8. A method comprising:
    transmitting, from a second device to a third device, a request for a configuration about reporting of a message over a positioning protocol by a first device;
    receiving, from the third device, the configuration for configuring at least one uplink resource for reporting the message over the positioning protocol and/or a trigger signal for triggering the reporting of the message;
    transmitting the configuration to the first device; and
    receiving, based on the configuration and via the third device, a positioning measurement report from the first device over the positioning protocol.
  9. The method of claim 8, wherein the request comprises reporting properties requested by the second device, and the method further comprises:
    determining the reporting properties based on at least one of the following:
    capabilities of the first device,
    positioning Quality of Service, and
    periodicity and properties of positioning reference signals from neighboring cells.
  10. The method of claim 8, wherein receiving the positioning measure report from the first device comprises:
    in response to the trigger signal being configured by the configuration, receiving the positioning measure report from the first device over the at least one uplink resource configured by the configuration or another available uplink resource.
  11. The method of claim 10, wherein the other available uplink resource comprises a dynamically scheduled uplink resource or configured grant uplink resource.
  12. The method of claim 8, wherein receiving the positioning measure report from the first device comprises:
    receiving the positioning measure report from the first device over a configured grant uplink resource.
  13. The method of claim 8, wherein the positioning measurement report is generated based on positioning reference signals by the first device, and the method further comprises:
    transmitting assistance data about the positioning reference signals to the third device, such that the third device forwards the assistance data to the first device after performing Listen-Before-Talk.
  14. The method of claim 13, further comprising:
    in response to a Listen-Before-Talk failure being detected at the third device, receiving an error message from the third device, the error message comprising an indication of a time difference between the detection of the Listen-Before-Talk failure and the forwarding of the assistance data.
  15. The method of claim 8, wherein the trigger signal comprises any of the following:
    a channel state information reference signal,
    a synchronization signal block,
    another positioning reference signal, or
    downlink control information.
  16. The method of any of claims 8-15, wherein the first device is a terminal device, the second device implements a location management function, and the third device is a network device serving the terminal device.
  17. A method comprising:
    receiving, at a third device and from a second device, a request for a configuration about reporting of a message over a positioning protocol by a first device;
    transmitting, to the second device, the configuration for configuring at least one uplink resource for reporting the message over the positioning protocol and/or a trigger signal for triggering the reporting of the message; and
    in response to the trigger signal being configured by the configuration, transmitting the trigger signal to the first device based on the configuration, such that the first device transmits a positioning measurement report to the second device via the third device over the positioning protocol.
  18. The method of claim 17, further comprising:
    receiving the positioning measurement report from the first device over the at least one uplink resource configured by the configuration or another available uplink resource; and
    forwarding the positioning measurement report to the second device.
  19. The method of claim 18, wherein the other available uplink resource comprises a dynamically scheduled uplink resource or configured grant uplink resource.
  20. The method of claim 17, wherein the positioning measurement report is generated based on positioning reference signals by the first device, and the method further comprises:
    receiving assistance data about the positioning reference signals from the second device; and
    forwarding the assistance data to the first device after performing Listen-Before-Talk.
  21. The method of claim 20, further comprising:
    in response to a Listen-Before-Talk failure being detected, determining a time difference between the detection of the Listen-Before-Talk failure and the forwarding of the assistance data; and
    transmitting, to the second device, an error message comprising an indication of the time difference.
  22. The method of claim 17, wherein the trigger signal comprises any of the following:
    a channel state information reference signal,
    a synchronization signal block,
    another positioning reference signal, or
    downlink control information.
  23. The method of any of claims 17-22, wherein the first device is a terminal device, the second device implements a location management function, and the third device is a network device serving the terminal device.
  24. A first device comprising:
    at least one processor; and
    at least one memory including computer program codes;
    the at least one memory and the computer program codes are configured to, with the at least one processor, cause the first device to perform the method of any of claims 1-7.
  25. A second device comprising:
    at least one processor; and
    at least one memory including computer program codes;
    the at least one memory and the computer program codes are configured to, with the at least one processor, cause the second device to perform the method of any of claims 8-16.
  26. A third device comprising:
    at least one processor; and
    at least one memory including computer program codes;
    the at least one memory and the computer program codes are configured to, with the at least one processor, cause the third device to perform the method of any of claims 17-23.
  27. An apparatus comprising means for performing the method of any of claims 1-7.
  28. An apparatus comprising means for performing the method of any of claims  8-16.
  29. An apparatus comprising means for performing the method of any of claims 17-23.
  30. A computer program product that is stored on a computer readable medium and includes machine-executable instructions, wherein the machine-executable instructions, when being executed, cause a machine to perform the method of any of claims 1-23.
  31. A computer readable storage medium comprising program instructions stored thereon, the instructions, when executed by an apparatus, causing the apparatus to perform the method of any of claims 1-23.
PCT/CN2020/114845 2020-09-11 2020-09-11 Positioning measurement reporting in unlicensed spectrum WO2022052053A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/114845 WO2022052053A1 (en) 2020-09-11 2020-09-11 Positioning measurement reporting in unlicensed spectrum
CN202111048423.7A CN114173371B (en) 2020-09-11 2021-09-08 Positioning measurement reporting in unlicensed spectrum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/114845 WO2022052053A1 (en) 2020-09-11 2020-09-11 Positioning measurement reporting in unlicensed spectrum

Publications (1)

Publication Number Publication Date
WO2022052053A1 true WO2022052053A1 (en) 2022-03-17

Family

ID=80476643

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/114845 WO2022052053A1 (en) 2020-09-11 2020-09-11 Positioning measurement reporting in unlicensed spectrum

Country Status (2)

Country Link
CN (1) CN114173371B (en)
WO (1) WO2022052053A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023241476A1 (en) * 2022-06-15 2023-12-21 大唐移动通信设备有限公司 Positioning integrity determination method and apparatus, and storage medium

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023231034A1 (en) * 2022-06-02 2023-12-07 Nokia Shanghai Bell Co., Ltd. Adaptive positioning measurement
WO2023245428A1 (en) * 2022-06-21 2023-12-28 Nec Corporation Method, device and computer storage medium of communication
CN115604820B (en) * 2022-11-30 2023-03-21 合肥移瑞通信技术有限公司 Method and device for positioning

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019135105A1 (en) * 2018-01-05 2019-07-11 Telefonaktiebolaget L M Ericsson (Publ) Methods and devices for configuration of signaling associated with multiple aoa positioning
US20200107286A1 (en) * 2018-09-28 2020-04-02 Qualcomm Incorporated Systems and methods for network procedures for on-demand random access channel (rach)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010052496A1 (en) * 2008-11-04 2010-05-14 The University Court Of The University Of Edinburgh Improvements to assisted positioning systems
US10129782B2 (en) * 2015-01-30 2018-11-13 Samsung Electronics Co., Ltd. Methods and apparatus for CSI measurement configuration and reporting on unlicensed spectrum
US10178668B2 (en) * 2016-08-08 2019-01-08 Qualcomm Incorporated Periodic and aperiodic CSI reporting procedures for enhanced licensed assisted access
CN111096030B (en) * 2017-08-18 2023-10-31 上海诺基亚贝尔股份有限公司 Method, apparatus and computer readable storage medium for unlicensed band communication
US10952178B2 (en) * 2018-06-25 2021-03-16 Qualcomm Incorporated Low power periodic and triggered location of a mobile device using control plane optimization
WO2020030983A1 (en) * 2018-08-10 2020-02-13 Lenovo (Singapore) Pte. Ltd. Identifying synchronization signal/physical broadcast channel block occasions
US11412400B2 (en) * 2018-10-01 2022-08-09 Nokia Technologies Oy Method for positioning reference design
CN112823541A (en) * 2018-11-09 2021-05-18 上海诺基亚贝尔股份有限公司 Method and apparatus for sending positioning measurement report
US20220022229A1 (en) * 2019-02-14 2022-01-20 Sony Group Corporation Telecommunications apparatus and methods

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019135105A1 (en) * 2018-01-05 2019-07-11 Telefonaktiebolaget L M Ericsson (Publ) Methods and devices for configuration of signaling associated with multiple aoa positioning
US20200107286A1 (en) * 2018-09-28 2020-04-02 Qualcomm Incorporated Systems and methods for network procedures for on-demand random access channel (rach)

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "[AT111-e][612][POS] Assumptions for analysis of commercial use cases (Ericsson)", 3GPP DRAFT; R2-2008261, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Electronic Meeting; 20200817 - 20200828, 1 September 2020 (2020-09-01), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051926263 *
NOKIA, NOKIA SHANGHAI BELL: "Email057-Pos_NRPPa_ext: Summary of offline", 3GPP DRAFT; R3-201188, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG3, no. 20200224 - 20200306, 8 March 2020 (2020-03-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051861519 *
NOKIA, NOKIA SHANGHAI BELL: "On-demand and dynamic PRS configuration for DL-TDOA", 3GPP DRAFT; R2-1916106, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Reno, USA; 20191118 - 20191122, 8 November 2019 (2019-11-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051817655 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023241476A1 (en) * 2022-06-15 2023-12-21 大唐移动通信设备有限公司 Positioning integrity determination method and apparatus, and storage medium

Also Published As

Publication number Publication date
CN114173371B (en) 2023-11-28
CN114173371A (en) 2022-03-11

Similar Documents

Publication Publication Date Title
US20220393820A1 (en) Accurate Sidelink Positioning Reference Signal Transmission Timing
WO2022052053A1 (en) Positioning measurement reporting in unlicensed spectrum
US20220225251A1 (en) Secondary cell activation
WO2022073214A1 (en) Harq feedback for nr sidelink communication in unlicensed spectrum
WO2022061617A1 (en) Positioning reference signal transmission triggered by sounding reference signal
WO2022178837A1 (en) Positioning assistance data delivery for ue positioning in radio resource control inactive state
WO2021168603A1 (en) Event triggered measurement for channel state information
CN114503704B (en) Method, apparatus and computer readable medium for transmitting PRS
US20230275727A1 (en) Positioning reference signal design for low power tracking
WO2021159416A1 (en) Reporting preconfigured uplink transmission failures
WO2022204842A1 (en) Transmit beaforming for positioning
WO2023108377A1 (en) Antenna configuration for positioning
WO2021142841A1 (en) Fallback reference signal configuration
WO2024026753A1 (en) Positioning measurement across frequency hops
WO2022198362A1 (en) Positioning beam management
WO2024065577A1 (en) Positioning enhancements
WO2023044827A1 (en) Transceiver point beam failure recovery
US20240080114A1 (en) Positioning accuracy enhancements
WO2022032671A1 (en) Methods for communication, terminal device, and computer readable media
WO2023000279A1 (en) Acknowledgement feedback for positioning in radio resource control inactive state
WO2023060492A1 (en) Enhanced scheme of resource selection
WO2023024114A1 (en) Mitigation of performance degradation
WO2022040887A1 (en) Method, device and computer readable medium of communication for beam failure recovery
WO2023135101A1 (en) Beam selection for user equipment
TW202406372A (en) Transmission of control information associated with sidelink positioning reference signal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20952841

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20952841

Country of ref document: EP

Kind code of ref document: A1