WO2021022444A1 - 浮筒基座用双面太阳能模块设置结构 - Google Patents

浮筒基座用双面太阳能模块设置结构 Download PDF

Info

Publication number
WO2021022444A1
WO2021022444A1 PCT/CN2019/099273 CN2019099273W WO2021022444A1 WO 2021022444 A1 WO2021022444 A1 WO 2021022444A1 CN 2019099273 W CN2019099273 W CN 2019099273W WO 2021022444 A1 WO2021022444 A1 WO 2021022444A1
Authority
WO
WIPO (PCT)
Prior art keywords
double
sided solar
pontoon
solar module
solar panel
Prior art date
Application number
PCT/CN2019/099273
Other languages
English (en)
French (fr)
Inventor
陈进雄
林培钦
颜来平
蒋瑞康
林献章
李金颖
Original Assignee
艾思特能源股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 艾思特能源股份有限公司 filed Critical 艾思特能源股份有限公司
Priority to PCT/CN2019/099273 priority Critical patent/WO2021022444A1/zh
Publication of WO2021022444A1 publication Critical patent/WO2021022444A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/20Optical components
    • H02S40/22Light-reflecting or light-concentrating means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the invention relates to a double-sided solar module installation structure for a pontoon base.
  • it is a double-sided solar module arrangement structure for a pontoon base that can exert the best power generation efficiency of the double-sided solar module.
  • Solar energy is the most eye-catching among modern alternative energy sources. Because solar power has the advantages of non-exhaustion and easy integration with buildings, and the rapid progress of semiconductor technology in recent years, the photovoltaic conversion efficiency of solar energy has continued to increase, so solar photovoltaic modules have gradually been widely used.
  • solar modules are often installed on top of buildings, and may also be installed in farmland, fishery and breeding ponds or even lakes.
  • the solar module can be installed on the bracket and used by simply erecting a support on the stable foundation.
  • the solar module in aquaculture ponds or even lakes, since solar modules cannot be simply installed on a stable foundation, it is necessary to use buoys to place them in the aquaculture ponds or lakes before placing them The solar module is installed on it for use.
  • buoys to install solar modules currently, single-sided solar modules are still the mainstay.
  • the traditional solar module structure using a pontoon has: a solar panel 100; a support 101; and a pontoon 102; the arrangement is to directly install one side of the solar panel 100 on the pontoon 102, and The opposite side of one side is supported by the bracket 101 so that the entire solar panel 100 is arranged in an inclined manner.
  • the pontoon 201 itself has a structure of an inclined surface 202, and the solar panel 200 is directly installed on the inclined surface 202.
  • the double-sided solar module cannot effectively exert its power generation advantages compared with the single-sided solar module. Therefore, there is a need for a double-sided solar module that can play the best.
  • the buoy base with good power generation efficiency is equipped with double-sided solar modules.
  • the present inventors are actively engaged in research and development in order to provide a double-sided solar module for float bases that can exert the best power generation efficiency of the double-sided solar module.
  • the module setting structure after continuous experiment and hard work, finally developed the present invention.
  • the double-sided solar module can exert the best power generation efficiency to meet economic benefits.
  • One embodiment of the present invention provides a double-sided solar module installation structure for a pontoon base, which has:
  • the double-sided solar panel has a light-facing surface facing the direction of sunlight and a backlight surface oppositely arranged on the light-facing surface, and is arranged in a manner having an inclination angle relative to the float body;
  • a supporting member which is arranged between the buoy body and the double-sided solar panel for supporting the double-sided solar panel on the buoy body;
  • the minimum distance between the float body and the double-sided solar panel is 8 to 120 cm, and the inclination angle of the double-sided solar panel relative to the float body is not greater than 40 degrees.
  • the material of the pontoon body is plastic, for example, high-density polyethylene (HDPE) or polypropylene (PP) can be used for the plastic.
  • the material of the pontoon body is metal, the metal may be a metal whose surface has been subjected to rust prevention treatment.
  • the light reflection effect surface can be formed by coating or plating.
  • the light reflection effect surface can be formed by a coating, a glass layer or a metal layer with high reflectivity.
  • the light reflection effect surface may have a condensing structure capable of distributing light to a specific position.
  • the double-sided solar module arrangement structure for the pontoon base wherein the supporting member is a telescopic bracket that can be extended up and down.
  • the double-sided solar module arrangement structure for the pontoon base of the above embodiment wherein the area of the double-sided solar panel projected vertically on the horizontal surface is smaller than the area of the pontoon body projected vertically on the horizontal surface.
  • the double-sided solar module installation structure for the pontoon base of the present invention various problems encountered when the double-sided solar panel is installed on the traditional pontoon can be improved, so that the double-sided solar module can exert the best power generation performance. To meet economic benefits.
  • Fig. 1 shows a schematic side view of an installation structure of a double-sided solar module for a float base according to an embodiment of the present invention.
  • Fig. 2(a) is a schematic side view of an example of the light-concentrating structure of the light reflection effect surface of the double-sided solar module installation structure for the float base according to one embodiment of the present invention.
  • Fig. 2(b) is a schematic side view of another example of the light-concentrating structure of the light reflection effect surface of the double-sided solar module installation structure for a float base according to an embodiment of the present invention.
  • Figure 3(a) is a graph of power generation efficiency when the minimum distance between the solar panel and the pontoon body is changed.
  • Figure 3(b) is a graph of power generation efficiency when the inclination angle of the solar panel relative to the pontoon body is changed.
  • Fig. 4(a) is a schematic side view showing an example of a solar module structure of a conventional pontoon
  • Fig. 4(b) is a schematic side view showing another example of a solar module structure of a conventional pontoon.
  • Fig. 1 shows a schematic side view of a double-sided solar module installation structure for a pontoon base in a preferred embodiment of the present invention.
  • a double-sided solar module installation structure 10 for a pontoon base of a preferred embodiment of the present invention has:
  • the buoy body 11 can use existing buoys with light reflection effects on the surface, or use special customized buoys as needed;
  • the double-sided solar panel 13 is a plate-shaped, sheet-shaped or layered structure, with a light-facing surface 131 facing the direction of sunlight and a backlight surface 132 arranged opposite to the light-facing surface, and will be opposite to the float body 11 It is set to have an inclination angle ⁇ ; and
  • the supporting member 12 is arranged between the buoy body 11 and the double-sided solar panel 13 to support the double-sided solar panel 13 on the buoy body 11;
  • the minimum distance H between the float body 11 and the double-sided solar panel 13 is 8 to 120 cm, and the inclination angle ⁇ of the double-sided solar panel 13 relative to the float body 11 is not more than 40 degrees.
  • the minimum distance H When the minimum distance H is less than 8 cm, it will be difficult for light to enter between the float body 11 and the double-sided solar panel 13, and it is difficult for the light to be reflected to the backlight surface 132. Lose the advantage of the backside power generation efficiency of the double-sided solar module.
  • the minimum distance H when the minimum distance H is higher than 120 cm, the light will be scattered due to the excessively high distance, resulting in a decrease in the energy of the light reflected to the backlight surface 132 of the double-sided solar panel 13. This will reduce the backside power generation efficiency of the double-sided solar module.
  • the inclination angle of the double-sided solar panel 13 with respect to the pontoon body 11 is greater than 40 degrees, there will be a problem that the double-sided solar panel 13 tends to be too perpendicular to the horizontal plane, which will cause the incidence of sunlight If the angle is too small, even the reflected sunlight cannot be incident on the backlight surface 132, and the overall optical rotation of the double-sided solar panel 13 is reduced. Therefore, the power generation efficiency is also reduced.
  • the buoy body 11 of a preferred embodiment may be a solid structure, but is not limited to this.
  • the buoy body 11 may also be changed in structure according to the manufacturing materials, for example, to a hollow structure.
  • the material of the pontoon body 11 with a solid structure is plastic.
  • plastic for example, high-density polyethylene (HDPE), polypropylene (PP), foamed resin, etc. can be used for the plastic.
  • HDPE high-density polyethylene
  • PP polypropylene
  • foamed resin etc.
  • the material of the pontoon body 11 may be plastic or metal.
  • the plastic may be high-density polyethylene (HDPE), polypropylene (PP), foamed resin, or the like.
  • the metal can be a metal whose surface has been subjected to rust prevention treatment.
  • the float body 11 may be provided with a light reflection effect surface that can uniformly reflect light to the backlight surface 132 of the double-sided solar panel 13 14.
  • the light reflection effect surface 14 can be formed by coating or plating.
  • the light reflection effect surface 14 can be formed by a coating with high reflectivity (for example, a bright paint coating, a bright paint coating), a glass layer or a reflective metal layer.
  • FIG. 2(a) is a schematic side view of an example of the light-concentrating structure of the light reflection effect surface of the double-sided solar module installation structure for the float base of one embodiment of the present invention
  • FIG. 2(b) is an embodiment of the present invention
  • the light reflection effect surface 14 can also be made The light is evenly distributed to the light-concentrating structure at a specific position on the backlight surface 132.
  • the concentrating structure can be a geometric structure, shown as a triangular structure in the icon, or as shown in Figure 2(b), a wave-like structure formed by a continuous arc.
  • the reflected light can be evenly distributed to the backlight surface 132 of the double-sided solar panel 13, so that the double-sided solar module arrangement structure 10 for the float base of the present invention can exert better power generation efficiency.
  • the supporting member 12 of this preferred embodiment is a telescopic bracket that can be extended up and down. With the expansion and contraction of the telescopic bracket 12, the installation and disassembly of the double-sided solar module installation structure 10 for the pontoon base of the present invention can be easily performed, or the minimum distance H and the inclination angle ⁇ can be adjusted.
  • the area S'of the double-sided solar panel 13 of a preferred embodiment projected vertically on the horizontal surface is smaller than that of the pontoon body 11.
  • the area S on the horizontal plane If the area S'of the double-sided solar panel 13 projected vertically on the horizontal surface is greater than the area S of the pontoon body 11 projected vertically on the horizontal surface, the double-sided solar module installation structure 10 for the pontoon base will easily be overturned The problem.
  • Fig. 3(a) is a graph of power generation efficiency obtained by changing the minimum pitch when the installation structure of the double-sided solar module for the pontoon base of the present invention fixes the inclination angle at 12 degrees.
  • Fig. 3(b) is a graph of the power generation efficiency obtained by changing the tilt angle of the double-sided solar module installation structure for the pontoon base of the present invention when the minimum distance is fixed at 45 cm.
  • the horizontal axis of Fig. 3(a) is the minimum distance H (unit: cm) between the solar panel and the pontoon body, and the vertical axis is the power generation efficiency percentage of the case of using double-sided solar panels relative to the case of using single-sided solar panels.
  • the horizontal axis of FIG. 3(b) is the tilt angle ⁇ (unit: degree) of the solar panel relative to the pontoon body, and the vertical axis is the power generation efficiency percentage of the case of using double-sided solar panels relative to the case of using single-sided solar panels.
  • the power generation efficiency of the double-sided solar panel 13 is relative to the percentage of the power generation efficiency of the single-sided solar panel, respectively They are 110.0%, 118.2%, 119.3%, and 118.0%, which show better power generation efficiency than single-sided solar panels.
  • the power generation efficiency of the double-sided solar panel 13 is 110.0% relative to the power generation efficiency of the single-sided solar panel, which can still be observed The power generation efficiency of the double-sided solar panel 13 will be better than that of the single-sided solar panel.
  • the minimum spacing is fixed at 45 cm and the inclination angle ⁇ is changed to further discuss the power generation efficiency of the present invention when the inclination angle of the solar panel relative to the pontoon body is changed.
  • the power generation efficiency of the double-sided solar panel 13 is relative to that of the single-sided solar panel.
  • the power generation efficiency percentages of the panels are respectively 119.1%, 119.3%, 118.3%, and 117.1%, and the power generation efficiency is better than single-sided solar panels when the minimum distance H is 45 cm.
  • the power generation efficiency of the double-sided solar panel 13 is 110.0% relative to the power generation efficiency of the single-sided solar panel.
  • the power generation efficiency of the double-sided solar panel 13 can still be observed. It is better than a single-sided solar panel.
  • the power generation efficiency of the double-sided solar panel 13 is 106.0% relative to the power generation efficiency of the single-sided solar panel, which has a tendency to drop significantly. .
  • the double-sided solar panel 13 tends to be too vertical with respect to the horizontal plane, so that the incident angle of sunlight is too small, and even the reflected sunlight cannot be incident on the backlight surface 132. , Thereby reducing the overall optical rotation of the double-sided solar panel 13. From the above, it can be known that when the inclination angle ⁇ is not greater than 40 degrees, the double-sided solar panel 13 can exert excellent performance.
  • the double-sided solar module can exert the best power generation efficiency to meet economic benefits.

Abstract

一种浮筒基座用双面太阳能模块设置结构(10),其具有:浮筒本体(11);双面太阳能面板(13),其具有朝向日照方向的向光面(131)以及反向设置于该向光面(131)的背光面(132),且会相对于该浮筒本体(11)而以具有一倾斜角度θ的方式来加以设置;以及支撑构件(12),其设置在该浮筒本体(11)与该双面太阳能面板(13)之间,用以支撑该双面太阳能面板(13);其中该浮筒本体(11)与该双面太阳能面板(13)之间的最小间距H为8~120公分,该双面太阳能面板(13)相对于该浮筒本体(11)的该倾斜角度θ为不大于40度。该浮筒基座用双面太阳能模块设置结构(10),可使双面太阳能模块发挥最佳发电效能,以符合经济效益。

Description

浮筒基座用双面太阳能模块设置结构 技术领域
本发明是关于一种浮筒基座用双面太阳能模块设置结构。特别是一种能发挥双面太阳能模块最佳发电效能的浮筒基座用双面太阳能模块设置结构。
背景技术
太阳能是现代替代能源中最受瞩目者。由于太阳能发电具有不会枯竭、容易与建物结合等优点,再加上近年来半导体科技的长足进展等,都使得太阳能的光电转换效能持续提升,故使得太阳能光电模块逐渐被广泛应用。
随着太阳能发电的进展,近年来为了提高发电效能,便开发出了一种双面(Bifacial)太阳能模块,相较于传统的单面式(monofacial)太阳能模块,此种双面太阳能模块顾名思义是让模块的正反两面都能因受光而产生电能,进而较单面式太阳能模块有更佳的发电效率。然而,此种双面太阳能模块为了使正反两面都能因受光而产生电能,在设置上便需要考虑各项因素,例如太阳能模块面板的倾斜角度、设置高度等,从而便会使此种双面太阳能模块的设置条件相较单面式太阳能模块的情况要受到许多限制而有持续改进的空间。
另外,太阳能模块经常被设置在建物顶部,也有可能被装设在农田、渔产养殖池甚至是湖泊中。在将太阳能模块设置于建物顶部或农田的情况,由于太阳能模块仍是设置在稳固的地基上,故只要简单地在稳固地基上架设支架,便可将太阳能模块设置于该支架上来加以使用,而在将太阳能模块设置于渔产养殖池甚至湖泊等的情况,由于太阳能模块并无法简单地设置在稳固的地基上,故需先要利用浮筒设施置放于渔产养殖池或湖泊处,再将太阳能模块设置于其上来加以使用。在利用浮筒设置太阳能模块的情况中,目前仍是以设置单面式太阳能模块为主。如图4(a)所示,传统利用浮筒的太阳能模块结构是具有:太阳能面板100;支架101;以及浮 筒102;其设置方式是将太阳能面板100的一边侧直接设置于浮筒102上,将该一边侧的对边侧透过支架101来支撑而使太阳能面板100整体呈倾斜设置。另外,也可如图4(b)所示,使浮筒201本身具有倾斜面202的结构,而将太阳能面板200直接设置于该倾斜面202的部分上。
在将双面太阳能面板如图4(a)所示来加以设置的情况,便会有双面太阳能面板的一边侧是直接设置于浮筒上,导致光线难以进入至浮筒102与太阳能面板100之间,而无法让双面太阳能面板背光面的面板受光的问题,如此一来,将会失去双面太阳能模块的背面发电效能优势。另外,在将双面太阳能面板如图4(b)所示来加以设置的情况,由于双面太阳能面板背光面完全贴合于浮筒201的倾斜面202的部分上,因此将会使得双面太阳面板背光面完全失去发电的效能优势。不论上述何种方式来设置双面太阳能面板的情况,均无法让双面太阳能模块有效地发挥其相较于单面式太阳能模块的发电优势,从而,便需要一种能发挥双面太阳能模块最佳发电效能的浮筒基座用双面太阳能模块设置结构。
本发明人有鉴于上述双面太阳能模块在使用上所遇到的种种问题,乃积极着手从事研究开发,以期可提供一种能发挥双面太阳能模块最佳发电效能的浮筒基座用双面太阳能模块设置结构,经由不断的试验及努力,终于研发出本发明。借助本发明的结构,便能使双面太阳能模块发挥最佳发电效能,以符合经济效益。
发明内容
本发明一实施方式便提供一种浮筒基座用双面太阳能模块设置结构,其具有:
浮筒本体;
双面太阳能面板,其具有朝向日照方向的向光面以及反向设置于该向光面的背光面,且会相对于该浮筒本体而以具有一倾斜角度的方式来加以设置;以及
支撑构件,其设置在该浮筒本体与该双面太阳能面板之间,用以将该双面太阳能面板支撑在该浮筒本体上;
其中该浮筒本体与该双面太阳能面板之间的最小间距为8~120公分,该双面太阳能面板相对于该浮筒本体的该倾斜角度为不大于40度。
如上述实施方式的浮筒基座用双面太阳能模块设置结构,其中该浮筒本体可为中空构造或实心构造。
如上述实施方式的浮筒基座用双面太阳能模块设置结构,其中该中空构造的该浮筒本体的材质可以为塑料或是金属;该实心构造的该浮筒本体的材质为塑料。在该浮筒本体的材质为塑料的情况,该塑料可使用例如高密度聚乙烯(HDPE)、聚丙烯(PP)。在该浮筒本体的材质为金属的情况,该金属可为表面经防锈处理后的金属。
如上述实施方式的浮筒基座用双面太阳能模块设置结构,其中该浮筒本体设置有能使光线反射至该双面太阳能面板的背光面的光线反射效果面。该光线反射效果面可由涂覆或镀覆来加以形成。该光线反射效果面可为具有高反射性的涂层、玻璃层或金属层来加以构成。该光线反射效果面可为具有能将光线分配至特定位置的聚光构造。
如上述实施方式的浮筒基座用双面太阳能模块设置结构,其中该支撑构件为可上下伸缩的伸缩支架。
如上述实施方式的浮筒基座用双面太阳能模块设置结构,其中该双面太阳能面板垂直投射于水平面上的面积会小于该浮筒本体垂直投射于水平面上的面积。
根据本发明的浮筒基座用的双面太阳能模块设置结构,便可改善将双面太阳能面板设置于传统浮筒上所遭遇的种种问题,借此便可使双面太阳能模块发挥最佳发电效能,以符合经济效益。
附图说明
图1显示本发明一实施方式的浮筒基座用双面太阳能模块设置结构的概略侧视图。
图2(a)是本发明一实施方式的浮筒基座用双面太阳能模块设置结构的光线反射效果面的聚光构造一实例的概略侧视图。图2(b)是本发明一实施方式的浮筒基座用双面太阳能模块设置结构的光线反射效果面的聚光构造另一 实例的概略侧视图。
图3(a)是改变太阳能面板相对于浮筒本体的最小间距时的发电效能图。图3(b)是改变太阳能面板相对于浮筒本体的倾斜角度时的发电效能图。
图4(a)是显示传统浮筒的太阳能模块结构一实例的概略侧视图,图4(b)是显示传统浮筒的太阳能模块结构另一实例的概略侧视图。
符号说明:
10…双面太阳能模块设置结构
11…浮筒本体
12…支撑构件
13…双面太阳能面板
131…向光面
132…背光面
14…光线反射效果面
100…太阳能面板
101…支架
102…浮筒
200…太阳能面板
201…浮筒
202…倾斜面
H…最小间距
S、S’…面积
θ…倾斜角度
具体实施方式
以下,便参照说明书附图来说明本发明一优选实施方式的浮筒基座用双面太阳能模块设置结构。图1显示本发明一优选实施方式的浮筒基座用双面太阳能模块设置结构的概略侧视图。
如图1所示,本发明一优选实施方式的浮筒基座用双面太阳能模块设置结构10,其具有:
浮筒本体11,可使用表面具光线反射效果的既有浮筒,或依需要使用特制的订制浮筒;
双面太阳能面板13,是一板状、片状或层状构造物,具有朝向日照方向的向光面131以及背向设置于该向光面的背光面132,且会相对于该浮筒本体11而以具有一倾斜角度θ的方式来加以设置;以及
支撑构件12,是设置在该浮筒本体11与该双面太阳能面板13之间,用以将该双面太阳能面板13支撑在该浮筒本体11上;
其中该浮筒本体11与该双面太阳能面板13之间的最小间距H为8~120公分,该双面太阳能面板13相对于该浮筒本体11的倾斜角度θ为不大于40度。
在该最小间距H低于8公分的情况,便会有难以使光线进入到该浮筒本体11与该双面太阳能面板13之间,而使得光线便难以反射至该背光面132的问题,故会失去双面太阳能模块的背面发电效能的优势。另一方面,在该最小间距H高于120公分的情况,则会有因间距过高而使光线分散,导致反射到该双面太阳能面板13的该背光面132的光线能量降低的问题,同样会使得双面太阳能模块的背面发电效能降低。
在该双面太阳能面板13相对于该浮筒本体11的倾斜角度比40度要大的情况,会有使得该双面太阳能面板13相对于水平面过于倾向于垂直的问题,故会使得太阳光的入射角度过小,甚至让反射后的太阳光线无法入射至该背光面132,进而让双面太阳能面板13整体受旋光性降低,因此同样会有让发电效能变低的问题。
一优选实施方式的浮筒本体11可为实心构造,但不限于此,浮筒本体11也可根据制造原料来改变该浮筒本体11的构造,例如改变为中空构造。
一优选实施方式中,为实心构造的该浮筒本体11的材质是塑料。在该浮筒本体11的材质为塑料的情况,该塑料可使用例如高密度聚乙烯(HDPE)、聚丙烯(PP)、发泡树脂等。
另外,在该浮筒本体11为中空构造的情况,该浮筒本体11的材质可以为塑料或是金属。在该浮筒本体11为中空构造且材质为塑料的情况,该塑料可使用如高密度聚乙烯(HDPE)、聚丙烯(PP)、发泡树脂等。在该浮筒本体11为中空构造且材质为金属的情况,则该金属可为表面经防锈处理后的金属。
为了增加本优选实施方式的双面太阳能面板13的该背光面132的受光量,该浮筒本体11可设置有能使光线均匀反射至该双面太阳能面板13的该背光面132的光线反射效果面14。
该光线反射效果面14可由涂覆或镀覆来加以形成。该光线反射效果面14可为具有高反射性的涂层(例如,亮色漆涂层、亮光漆涂层)、玻璃层或反光金属层来加以构成。
另外,图2(a)是本发明一实施方式的浮筒基座用双面太阳能模块设置结构的光线反射效果面的聚光构造一实例的概略侧视图,图2(b)是本发明一实施方式的浮筒基座用双面太阳能模块设置结构的光线反射效果面的聚光构造另一实例的概略侧视图。为了进一步地增加本优选实施方式的双面太阳能面板13的该背光面132的受光量,便可如图2(a)、(b)所示,也使该光线反射效果面14成为具有能将光线均匀分配至该背光面132特定位置的聚光构造。参照图2(a),此聚光构造可为一几何构造,图标中显示为三角构造,或是如图2(b)所示,为一连续弧面所构成的类似波浪构造。借助构造,便可让反射后的光线均匀地被分配至该双面太阳能面板13的该背光面132,而使本发明的浮筒基座用双面太阳能模块设置结构10发挥更佳地发电效能。
再度参看图1所示,本优选实施方式的支撑构件12为可上下伸缩的伸缩支架。借助此伸缩支架12的伸缩,便可易于进行本发明的浮筒基座用双面太阳能模块设置结构10的装卸,或是进行该最小间距H与该倾斜角度θ的调整。
为了使本发明的浮筒基座用双面太阳能模块设置结构10能够平稳地浮在水面上,一优选实施方式的双面太阳能面板13垂直投射于水平面上的面积S’会小于浮筒本体11垂直投射于水平面上的面积S。若是该双面太阳能面板13垂直投射于水平面上的面积S’大于该浮筒本体11垂直投射于水平面 上的面积S的话,便会有容易使该浮筒基座用双面太阳能模块设置结构10倾倒翻覆的问题。
〔发电效能评比〕
接下来,列举几种实施方式,来说明本发明的浮筒基座用双面太阳能模块设置结构10的发电效能。图3(a)是本发明的浮筒基座用双面太阳能模块设置结构在将倾斜角度固定在12度时,改变最小间距所取得的发电效能图。图3(b)是本发明的浮筒基座用双面太阳能模块设置结构在将最小间距固定在45公分时,改变倾斜角度所取得的发电效能图。
图3(a)的横轴是太阳能面板相对于浮筒本体的最小间距H(单位:公分),纵轴是使用双面太阳能面板的情况相对于使用单面式太阳能面板的情况的发电效能百分比。图3(b)的横轴是太阳能面板相对于浮筒本体的倾斜角度θ(单位:度),纵轴是使用双面太阳能面板的情况相对于使用单面式太阳能面板的情况的发电效能百分比。
如图3(a)所示,该倾斜角度θ固定为12度时,在该最小间距H为0公分的情况下,双面太阳能面板的发电效能相对于单面式太阳能面板的发电效能的百分比为100.8%,而可以说是几乎没有发电效能上的差异。这是因为在该最小间距H为0公分的情况下,光线会无法进入到该浮筒本体11与该双面太阳能面板13之间,使得该背光面132无法充分地受光,导致该双面太阳能面板13无法发挥背面发电效能的优势。该倾斜角度θ固定为12度时,在该最小间距H为8、15、45、75公分的情况下,该双面太阳能面板13的发电效能相对于单面式太阳能面板的发电效能的百分比分别为110.0%、118.2%、119.3%、118.0%,而呈现出较单面式太阳能面板要为良好的发电效能。倾斜角度θ固定为12度时,在该最小间距H为120公分的情况下,该双面太阳能面板13的发电效能相对于单面式太阳能面板的发电效能的百分比为110.0%,仍可观察到该双面太阳能面板13的发电效能会较单面式太阳能面板要佳,虽其发电效能已低于该最小间距H为75公分时的118.0%,而有开始呈现下降的趋势,但仍为有效的实施方式。推测这是因为在该最小间距H超过120公分的情况,便有因间距过高而使光线分散,导致反射到该双面太阳能面板13的该背光面132的光线能量降低之故。由上述,便可得知 该最小间距H为8~120公分的范围时,便可使该双面太阳能面板13发挥优良的效能。
进一步地,再参照图3(b),将该最小间距固定在45公分并改变该倾斜角度θ,来进一步地探讨本发明在改变太阳能面板相对于浮筒本体的倾斜角度时的发电效能。
如图3(b)所示,在该最小间距H为45公分,该倾斜角度θ为0、12、22、32度的情况下,该双面太阳能面板13的发电效能相对于单面式太阳能面板的发电效能的百分比分别为119.1%、119.3%、118.3%、117.1%,而呈现出较单面式太阳能面板要良好的发电效能在该最小间距H为45公分。该倾斜角度θ为40度的情况下,该双面太阳能面板13的发电效能相对于单面式太阳能面板的发电效能的百分比分别为110.0%,仍可观察到该双面太阳能面板13的发电效能会较单面式太阳能面板要佳,虽其发电效能已低于该倾斜角度θ为32度时的117.1%,而有开始呈现下降的趋势,但仍为有效的实施方式。最小间距H为45公分时,在倾斜角度θ为42度的情况下,该双面太阳能面板13的发电效能相对于单面式太阳能面板的发电效能的百分比为106.0%,而有大幅下降的趋势。这是因为在倾斜角度过大的情况,会使得该双面太阳能面板13相对于水平面过于倾向于垂直,使得太阳光的入射角度过小,甚至让反射后的太阳光线无法入射至该背光面132,进而让双面太阳能面板13整体受旋光性降低。由上述,便可得知该倾斜角度θ在不大于40度时,便能使该双面太阳能面板13发挥优良的效能。
以上虽已参照附图来详细说明本发明各优选实施方式,但本发明不限于上述实施方式。本发明所属技术领域的技术人员应当可在本发明的权利要求所记载的范围内做各种变化、改良或组合,且可明了这些当然也属于本发明的权利范围。
根据本发明的浮筒基座用双面太阳能模块设置结构,便可使双面太阳能模块发挥最佳发电效能,以符合经济效益。

Claims (13)

  1. 一种浮筒基座用双面太阳能模块设置结构,其具有:
    浮筒本体;
    双面太阳能面板,其具有朝向日照方向的向光面以及反向设置于该向光面的背光面,且会相对于该浮筒本体而以具有一倾斜角度的方式来加以设置;以及
    支撑构件,其设置在该浮筒本体与该双面太阳能面板之间,用以将该双面太阳能面板支撑在该浮筒本体上;
    其中该浮筒本体与该双面太阳能面板之间的最小间距为8~120公分,该双面太阳能面板相对于该浮筒本体的该倾斜角度不大于40度。
  2. 根据权利要求1所述的浮筒基座用双面太阳能模块设置结构,其中该浮筒本体是中空构造。
  3. 根据权利要求1所述的浮筒基座用双面太阳能模块设置结构,其中该浮筒本体是实心构造。
  4. 根据权利要求1至3任一项所述的浮筒基座用双面太阳能模块设置结构,其中该浮筒本体是设置有能使光线分配至该双面太阳能面板的该背光面的光线反射效果面。
  5. 根据权利要求2所述的浮筒基座用双面太阳能模块设置结构,其中该中空构造的该浮筒本体的材质是塑料或是金属。
  6. 根据权利要求3所述的浮筒基座用双面太阳能模块设置结构,其中该实心构造的该浮筒本体的材质为塑料。
  7. 根据权利要求5或6所述的浮筒基座用双面太阳能模块设置结构,其中在该浮筒本体的材质为塑料的情况,该塑料是使用高密度聚乙烯(HDPE)、聚丙烯(PP)、发泡树脂。
  8. 根据权利要求5所述的浮筒基座用双面太阳能模块设置结构,其中在该浮筒本体的材质为金属的情况,该金属是表面经防锈处理后的金属。
  9. 根据权利要求4所述的双面太阳能模块设置结构,其中该光线反射效 果面是由涂覆或镀覆来加以形成。
  10. 根据权利要求4所述的浮筒基座用双面太阳能模块设置结构,其中该光线反射效果面是以具有高反射性的涂层、玻璃层或金属层来加以构成。
  11. 根据权利要求4所述的浮筒基座用双面太阳能模块设置结构,其中该光线反射效果面是具有能将光线反射至特定位置的聚光构造。
  12. 根据权利要求1至3任一项所述的浮筒基座用双面太阳能模块设置结构,其中该支撑构件为可上下伸缩的伸缩支架。
  13. 根据权利要求1至3任一项所述的浮筒基座用双面太阳能模块设置结构,其中该双面太阳能面板垂直投射于水平面上的面积会小于该浮筒本体垂直投射于水平面上的面积。
PCT/CN2019/099273 2019-08-05 2019-08-05 浮筒基座用双面太阳能模块设置结构 WO2021022444A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/099273 WO2021022444A1 (zh) 2019-08-05 2019-08-05 浮筒基座用双面太阳能模块设置结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/099273 WO2021022444A1 (zh) 2019-08-05 2019-08-05 浮筒基座用双面太阳能模块设置结构

Publications (1)

Publication Number Publication Date
WO2021022444A1 true WO2021022444A1 (zh) 2021-02-11

Family

ID=74502447

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/099273 WO2021022444A1 (zh) 2019-08-05 2019-08-05 浮筒基座用双面太阳能模块设置结构

Country Status (1)

Country Link
WO (1) WO2021022444A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015226413A (ja) * 2014-05-29 2015-12-14 株式会社 エヌティーアイ 太陽光発電用の反射装置、太陽光発電設備、太陽光発電設備の改良方法、太陽光発電方法
CN106301195A (zh) * 2016-08-19 2017-01-04 天津英利新能源有限公司 一种提升水面光伏发电系统发电量的方法
CN106921341A (zh) * 2017-03-03 2017-07-04 广东爱康太阳能科技有限公司 一种水上双面太阳能电池发电系统
CN107196594A (zh) * 2017-06-30 2017-09-22 韩华新能源(启东)有限公司 一种光伏组件单元及水上光伏发电系统
CN107346955A (zh) * 2017-06-30 2017-11-14 韩华新能源(启东)有限公司 一种光伏组件单元及水上光伏发电系统
CN107465388A (zh) * 2017-08-03 2017-12-12 连云港神舟新能源有限公司 一种提升水面双面发电光伏组件发电量的装置及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015226413A (ja) * 2014-05-29 2015-12-14 株式会社 エヌティーアイ 太陽光発電用の反射装置、太陽光発電設備、太陽光発電設備の改良方法、太陽光発電方法
CN106301195A (zh) * 2016-08-19 2017-01-04 天津英利新能源有限公司 一种提升水面光伏发电系统发电量的方法
CN106921341A (zh) * 2017-03-03 2017-07-04 广东爱康太阳能科技有限公司 一种水上双面太阳能电池发电系统
CN107196594A (zh) * 2017-06-30 2017-09-22 韩华新能源(启东)有限公司 一种光伏组件单元及水上光伏发电系统
CN107346955A (zh) * 2017-06-30 2017-11-14 韩华新能源(启东)有限公司 一种光伏组件单元及水上光伏发电系统
CN107465388A (zh) * 2017-08-03 2017-12-12 连云港神舟新能源有限公司 一种提升水面双面发电光伏组件发电量的装置及方法

Similar Documents

Publication Publication Date Title
CN112262479A (zh) 用于优化两面太阳能模块的性能的光管理系统
CN107196594B (zh) 一种光伏组件单元及水上光伏发电系统
KR20170011572A (ko) 양면 태양전지 패널을 이용한 태양전지
US20200119686A1 (en) Method and Apparatus for Reflecting Solar Energy to Bifacial Photovoltaic Modules
TWI707111B (zh) 太陽光發電面板的水上設置用架台
US20070256732A1 (en) Photovoltaic module
JP2009231315A (ja) 太陽光発電装置
WO2021103410A1 (zh) 一种折板形光伏组件与其使用的正面玻璃以及光伏系统
AU2007100370A4 (en) Electricity generation device using solar power
CN105042890A (zh) 相对排的线性集中器构造
CN108550645A (zh) 反射膜、光伏玻璃面板、光伏组件及光伏组件的制造方法
WO2021022444A1 (zh) 浮筒基座用双面太阳能模块设置结构
WO2021103411A1 (zh) 一种组装式角度可调的折板形光伏组件及其光伏系统
JP2010074053A (ja) 太陽電池モジュール
TWI753270B (zh) 浮筒基座用雙面太陽能模組設置結構
JP2020112765A (ja) 太陽光反射板
CN112332759A (zh) 浮筒基座用双面太阳能模块设置结构
CN210093170U (zh) 一种光伏发电系统
KR20190096732A (ko) 3차원입체곡면의 볼록거울로 된 확산반사 판이 구비되는 태양광발전장치
CN108022997A (zh) 一种光伏组件用的光全反射膜
CN210167366U (zh) 一种防眩光网箱式花型太阳能玻璃
KR102479704B1 (ko) 양면 태양광 모듈 장치
US10951160B2 (en) Apparatus for increasing energy yield in bifacial photovoltaic modules
CN210073872U (zh) 太阳能电池
CN208596683U (zh) 一种光伏组件用平面紧密堆积型反光膜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19940401

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19940401

Country of ref document: EP

Kind code of ref document: A1