WO2021020583A1 - Exterior material for electrical storage device, method for manufacturing same, and electrical storage device - Google Patents

Exterior material for electrical storage device, method for manufacturing same, and electrical storage device Download PDF

Info

Publication number
WO2021020583A1
WO2021020583A1 PCT/JP2020/029576 JP2020029576W WO2021020583A1 WO 2021020583 A1 WO2021020583 A1 WO 2021020583A1 JP 2020029576 W JP2020029576 W JP 2020029576W WO 2021020583 A1 WO2021020583 A1 WO 2021020583A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
storage device
resin
power storage
surface coating
Prior art date
Application number
PCT/JP2020/029576
Other languages
French (fr)
Japanese (ja)
Inventor
立沢 雅博
純 景山
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Priority to CN202080053595.0A priority Critical patent/CN114175369A/en
Priority to JP2020569207A priority patent/JP7055904B2/en
Publication of WO2021020583A1 publication Critical patent/WO2021020583A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/124Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure
    • H01M50/126Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/124Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure
    • H01M50/126Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure comprising three or more layers
    • H01M50/129Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure comprising three or more layers with two or more layers of only organic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This disclosure relates to an exterior material for a power storage device, a manufacturing method thereof, and a power storage device.
  • an exterior material is an indispensable member for sealing the power storage device elements such as electrodes and electrolytes.
  • a metal exterior material has been widely used as an exterior material for a power storage device.
  • a recess is generally formed by cold molding, and a storage device element such as an electrode or an electrolytic solution is arranged in the space formed by the recess to form a thermosetting resin.
  • a storage device element such as an electrode or an electrolytic solution is arranged in the space formed by the recess to form a thermosetting resin.
  • a surface coating layer containing particles may be provided on the outside of the base material layer in order to make the outer surface a matte design (mat).
  • the exterior material for a power storage device is used for molding, excellent moldability is also required for the exterior material for a power storage device provided with a surface coating layer containing particles. Specifically, it is required to suppress the occurrence of cracking and peeling of the surface coating layer by molding the exterior material for the power storage device.
  • the main object of the present disclosure is to provide an exterior material for a power storage device in which the occurrence of cracking or peeling of the surface coating layer due to molding of the exterior material for the power storage device is suppressed.
  • the exterior material for a power storage device is composed of a laminate including at least a surface coating layer, a base material layer, a barrier layer, and a heat-sealing resin layer in order from the outside, and the surface coating layer is a resin. And particles, and the hardness of the resin of the surface coating layer measured by the nanoindentation method is 420.4 MPa or less with respect to the cross section in the thickness direction of the surface coating layer in an environment of 23 ° C. It has been found that the exterior material for use suppresses the occurrence of cracking and peeling of the surface coating layer due to the molding of the exterior material for power storage devices.
  • the present disclosure has been completed by further studies based on these findings. That is, the present disclosure provides the inventions of the following aspects. From the outside, it is composed of a laminate having at least a surface coating layer, a base material layer, a barrier layer, and a thermosetting resin layer.
  • the surface coating layer contains resin and particles, and contains resin and particles.
  • an exterior material for a power storage device that suppresses the occurrence of cracking or peeling of the surface coating layer due to molding of the exterior material for the power storage device. Further, according to the present disclosure, it is also possible to provide a method for manufacturing the exterior material for the power storage device and a power storage device using the exterior material for the power storage device.
  • the exterior material for a power storage device of the present disclosure is composed of a laminate having at least a surface coating layer, a base material layer, a barrier layer, and a thermosetting resin layer in this order from the outside, and the surface coating layer is a resin.
  • the hardness of the resin of the surface coating layer measured by the nanoindentation method is 420.4 MPa or less with respect to the cross section in the thickness direction of the surface coating layer in an environment of 23 ° C. It is a feature. Since the exterior material for a power storage device of the present disclosure has such a configuration, the occurrence of cracking or peeling of the surface coating layer due to molding of the exterior material for a power storage device is suppressed.
  • the exterior material for the power storage device of the present disclosure will be described in detail.
  • the numerical range indicated by “-” means “greater than or equal to” and “less than or equal to”.
  • the notation of 2 to 15 mm means 2 mm or more and 15 mm or less.
  • the exterior material 10 for the power storage device of the present disclosure includes, for example, the surface coating layer 6, the base material layer 1, and the barrier layer 3 in this order from the outside, as shown in FIGS. 1 to 3. It is composed of a laminate including the heat-sealing resin layer 4 and the heat-sealing resin layer 4.
  • the surface coating layer 6 is the outermost layer
  • the thermosetting resin layer 4 is the innermost layer.
  • the power storage device element is housed in the space formed by.
  • the heat-sealing resin layer 4 side is inside the barrier layer 3 and the surface coating layer 6 side is more than the barrier layer 3 with the barrier layer 3 as a reference. It is the outside.
  • the exterior material 10 for a power storage device is used, if necessary, for the purpose of enhancing the adhesiveness between the base material layer 1 and the barrier layer 3 and the like. It may have an adhesive layer 2. Further, although not shown, a colored layer may be provided between the base material layer 1 and the barrier layer 3. Further, for example, as shown in FIG. 3, an adhesive layer 5 is provided between the barrier layer 3 and the thermosetting resin layer 4 as necessary for the purpose of enhancing the adhesiveness between the layers. You may be.
  • the thickness of the laminate constituting the exterior material 10 for the power storage device is not particularly limited, but is preferably about 180 ⁇ m or less, about 160 ⁇ m or less, about 155 ⁇ m or less, about 140 ⁇ m or less from the viewpoint of cost reduction, energy density improvement, and the like. , About 130 ⁇ m or less, about 120 ⁇ m or less, and preferably about 35 ⁇ m or more, about 45 ⁇ m or more, about 60 ⁇ m or more, about 80 ⁇ m or more from the viewpoint of maintaining the function of the exterior material for the power storage device of protecting the power storage device element.
  • the preferred range is, for example, about 35 to 180 ⁇ m, about 35 to 160 ⁇ m, about 35 to 155 ⁇ m, about 35 to 140 ⁇ m, about 35 to 130 ⁇ m, about 35 to 120 ⁇ m, about 45 to 180 ⁇ m, about 45 to 160 ⁇ m. , 45 to 155 ⁇ m, 45 to 140 ⁇ m, 45 to 130 ⁇ m, 45 to 120 ⁇ m, 60 to 180 ⁇ m, 60 to 160 ⁇ m, 60 to 155 ⁇ m, 60 to 140 ⁇ m, 60 to 130 ⁇ m, 60 to 120 ⁇ m.
  • about 80 to 130 ⁇ m is particularly preferable.
  • the hardness of the resin of the surface coating layer measured by the nanoindentation method is 420.4 MPa or less with respect to the cross section of the surface coating layer 6 in the thickness direction in an environment of 23 ° C. Is.
  • the surface coating layer 6 has the above-mentioned hardness in an environment of 23 ° C., so that the surface coating layer is cracked or peeled off by molding the exterior material for a power storage device in a normal temperature environment. Occurrence is suppressed.
  • the exterior material 10 for the power storage device of the present disclosure is the surface coating layer 6 in an environment of 23 ° C.
  • the hardness of the resin of the surface coating layer 6 measured by the nanoindentation method is preferably about 350.4 MPa or less, more preferably about 310.4 MPa or less, and preferably about 20. It is 0.0 MPa or more, more preferably about 22.5 MPa or more, still more preferably about 25.5 MPa or more, still more preferably about 50.0 MPa or more, still more preferably about 100.0 MPa or more, still more preferably about 150.0 MPa or more.
  • the preferred range is about 20.0 to 420.4 MPa, about 20.0 to 350.4 MPa, about 20.0 to 310.4 MPa, about 22.5 to 420.4 MPa, and about 22.5 to 350.4 MPa.
  • excellent moldability means that, more specifically, the matte design of the surface coating layer is impaired by molding the exterior material 10 for a power storage device, and the surface is molded at room temperature. It means that the occurrence of cracks and peeling in the coating layer is suppressed.
  • the hardness measured by the nanoindentation method in a 23 ° C. environment is measured as follows.
  • Hardness measured by nanoindentation method in 23 ° C environment Hardness is measured using a nanoindenter (for example, "TI950 TriboIndenter” manufactured by HYSITRON) as an apparatus.
  • a nanoindenter for example, "TI950 TriboIndenter” manufactured by HYSITRON
  • a Berkovich indenter for example, TI-0039
  • the indenter is applied to the surface of the surface coating layer of the exterior material for a power storage device (the surface on which the surface coating layer is exposed and parallel to the thickness direction of each layer).
  • the indenter is pushed into the surface coating layer from the surface to a load of 50 ⁇ N over 10 seconds, held in that state for 5 seconds, and then unloaded over 10 seconds.
  • the average value of N 5 measured by shifting the measurement points is defined as the hardness.
  • the surface on which the indenter is pushed is a resin portion having an exposed cross section of the surface coating layer obtained by cutting in the thickness direction so as to pass through the central portion of the exterior material for a power storage device. Cutting is performed using a commercially available rotary microtome. Further, when the exterior material for a power storage device is acquired from the power storage device and a test sample is prepared, the exterior material for the power storage device is acquired from a place such as the top surface or the side surface of the power storage device that is less affected by molding.
  • the hardness measured by the nanoindentation method in an environment of 23 ° C. is the composition (resin type, content), curing conditions, molecular weight, number of functional groups, and crosslink density of the resin composition forming the surface coating layer 6. , The bulkiness of the substituent can be adjusted.
  • the exterior material 10 for a power storage device of the present disclosure has a surface coating layer 6 on the outside of the base material layer 1 for the purpose of imparting a matte design to the outer surface of the exterior material 10 for a power storage device. There is.
  • the surface coating layer 6 is a layer located on the outermost layer of the exterior material 10 for a power storage device when the power storage device is assembled using the exterior material 10 for the power storage device.
  • the surface coating layer 6 contains resin and particles.
  • the particles include inorganic particles and organic particles.
  • the particles contained in the surface coating layer 6 may be of one type or two or more types. It is also preferable to use inorganic particles and organic particles in combination.
  • the shape of the particles is also not particularly limited, and examples thereof include spherical, fibrous, plate-like, amorphous, and scaly.
  • the average particle size of the particles is not particularly limited, but from the viewpoint of making the exterior material 10 for a power storage device a matte design, for example, about 0.01 to 5 ⁇ m can be mentioned.
  • the average particle size of the particles is the median size measured by a laser diffraction / scattering type particle size distribution measuring device.
  • the average particle size of the particles is preferably equal to or less than the thickness of the surface coating layer 6.
  • the inorganic particles are not particularly limited as long as the surface coating layer 6 can be made matte, and for example, silica, talc, graphite, kaolin, montmorillonite, mica, hydrotalcite, silica gel, zeolite, aluminum hydroxide, etc.
  • silica talc, graphite, kaolin, montmorillonite, mica, hydrotalcite, silica gel, zeolite, aluminum hydroxide, etc.
  • silica particles are particularly preferable.
  • the organic particles are not particularly limited as long as the surface coating layer 6 can be made matte, such as nylon, polyacrylate, polystyrene, styrene-acrylic copolymer, polyethylene, benzoguanamine, or crosslinked products thereof. Particles can be mentioned.
  • the surface on which the indenter is pushed is cut in the thickness direction so as to pass through the central portion of the exterior material for a power storage device.
  • the hardness of the organic particles contained in the surface coating layer 6 can be measured by setting the cross section of the surface coating layer as a place where the exposed organic particles are present. From the viewpoint of more effectively suppressing the occurrence of cracking and peeling of the surface coating layer due to the molding of the exterior material for the power storage device, the hardness of the organic particles measured in this way is preferably about 300.0 MPa or more.
  • ⁇ 1500.4 MPa, 300.0 ⁇ 1000.4 MPa, 300.0 ⁇ 600.4 MPa, 400.0 ⁇ 1500.4 MPa, 400.0 ⁇ 1000.4 MPa, 400.0 ⁇ 600.4 MPa Among these, about 400.0 to 600.4 MPa is particularly preferable.
  • the content of the particles contained in the surface coating layer 6 is not particularly limited as long as the hardness measured by the nanoindentation method in an environment of 23 ° C. is 420.4 MPa or less, but the surface coating layer is not particularly limited.
  • 100 parts by mass of the resin in the resin composition forming 6, it is preferably about 3 parts by mass or more, more preferably about 10 parts by mass or more, and preferably about 30 parts by mass or less, more preferably about about. It is 20 parts by mass or less, and preferred ranges include about 3 to 30 parts by mass, about 3 to 20 parts by mass, about 10 to 30 parts by mass, and about 10 to 20 parts by mass.
  • the amount of particles present in the surface coating layer 6 is too large, the adhesion between the resin and the particle boundary is weak and cracks are likely to occur from the boundary. Therefore, it is preferable to adjust the particle content to be small.
  • the resin contained in the resin composition forming the surface coating layer 6 is not particularly limited as long as the hardness measured by the nanoindentation method in an environment of 23 ° C. is 420.4 MPa or less.
  • a curable resin is preferable. That is, the surface coating layer 6 is preferably composed of a cured product of a resin composition containing a curable resin and particles.
  • the resin include resins such as polyvinylidene chloride, polyester, polyamide, epoxy resin, acrylic resin, fluororesin, polyurethane, silicon resin, and phenol resin, and modified products of these resins. Further, it may be a copolymer of these resins, or it may be a modified product of the copolymer. Further, it may be a mixture of these resins.
  • the resin is preferably a curable resin.
  • the curable resin may be either a one-component curing type or a two-component curing type, but is preferably a two-component curing type.
  • the two-component curable resin include two-component curable polyurethane, two-component curable polyester, and two-component curable epoxy resin. Of these, two-component curable polyurethane is preferable.
  • Examples of the two-component curable polyurethane include polyurethane containing a main agent containing a polyol compound and a curing agent containing an isocyanate compound.
  • a polyol such as a polyester polyol, a polyether polyol, and an acrylic polyol is used as a main component, and an aromatic or aliphatic polyisocyanate is used as a curing agent.
  • the polyol compound it is preferable to use a polyester polyol having a hydroxyl group in the side chain in addition to the hydroxyl group at the end of the repeating unit.
  • Examples of the curing agent include aliphatic, alicyclic, aromatic, and aromatic aliphatic isocyanate compounds.
  • Examples of isocyanate-based compounds include hexamethylene diisocyanate (HDI), xylylene diisocyanate (XDI), isophorone diisocyanate (IPDI), hydrogenated XDI (H6XDI), hydrogenated MDI (H12MDI), tolylene diisocyanate (TDI), and diphenylmethane diisocyanate. (MDI), naphthalenediocyanate (NDI) and the like.
  • a polyfunctional isocyanate modified product from one kind or two or more kinds of these diisocyanates and the like can be mentioned.
  • a multimer for example, a trimer
  • a multimer can be used as the polyisocyanate compound.
  • examples of such a multimer include an adduct body, a biuret body, a nurate body and the like.
  • the aliphatic isocyanate-based compound refers to an isocyanate having an aliphatic group and no aromatic ring
  • the alicyclic isocyanate-based compound refers to an isocyanate having an alicyclic hydrocarbon group, which is an aromatic isocyanate-based compound. Refers to an isocyanate having an aromatic ring.
  • the ratio of the main agent and the curing agent is adjusted. Therefore, the hardness measured by the nanoindentation method in a 23 ° C. environment can also be adjusted.
  • a lubricant such as flame retardants, antioxidants, tackifiers, antistatic agents, waxes and the like may be further included.
  • the surface coating layer 6 contains a colorant
  • known colorants such as pigments and dyes can be used as the colorant. Further, only one type of colorant may be used, or two or more types may be mixed and used. Specific examples of the colorant contained in the surface coating layer 6 include the same as those exemplified in the column of [Adhesive layer 2]. Further, the preferable content of the colorant contained in the surface coating layer 6 is the same as the content described in the column of [Adhesive layer 2].
  • the method for forming the surface coating layer 6 is not particularly limited, and examples thereof include a method of applying a resin composition for forming the surface coating layer 6.
  • a resin mixed with the additive may be applied.
  • the content of the additive should be adjusted to the minimum necessary. preferable.
  • the thickness of the surface coating layer 6 is preferably 0.5 ⁇ m or more, more preferably 1 ⁇ m or more, from the viewpoint of more effectively suppressing the occurrence of cracking and peeling of the surface coating layer due to molding of the exterior material for the power storage device. Yes, it is preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less, and preferred ranges include about 0.5 to 10 ⁇ m, about 0.5 to 5 ⁇ m, about 1 to 10 ⁇ m, and about 1 to 5 ⁇ m.
  • the lubricant is present on the surface of the surface coating layer 6.
  • the lubricant is not particularly limited, but an amide-based lubricant is preferable.
  • Specific examples of the amide-based lubricant include saturated fatty acid amides, unsaturated fatty acid amides, substituted amides, methylol amides, saturated fatty acid bisamides, unsaturated fatty acid bisamides, fatty acid ester amides, and aromatic bisamides.
  • saturated fatty acid amide examples include lauric acid amide, palmitic acid amide, stearic acid amide, bechenic acid amide, hydroxystearic acid amide and the like.
  • unsaturated fatty acid amide examples include oleic acid amide and erucic acid amide.
  • substituted amide examples include N-oleyl palmitic acid amide, N-stearyl stearic acid amide, N-stearyl oleic acid amide, N-oleyl stearic acid amide, N-stearyl erucate amide and the like.
  • methylolamide examples include methylolstearic acid amide.
  • saturated fatty acid bisamide examples include methylene bisstearic acid amide, ethylene biscapric acid amide, ethylene bislauric acid amide, ethylene bisstearic acid amide, ethylene bishydroxystearic acid amide, ethylene bisbechenic acid amide, and hexamethylene bisstearate.
  • saturated fatty acid bisamide examples include acid amides, hexamethylene bisbechenic acid amides, hexamethylene hydroxystearic acid amides, N, N'-distearyl adipate amides, and N, N'-distealyl sebasic acid amides.
  • unsaturated fatty acid bisamides include ethylene bisoleic acid amide, ethylene biserucic acid amide, hexamethylene bisoleic acid amide, N, N'-diorail adipate amide, and N, N'-diorail sebacic acid amide. And so on.
  • Specific examples of the fatty acid ester amide include stearoamide ethyl stearate and the like.
  • Specific examples of the aromatic bisamide include m-xylylene bisstearic acid amide, m-xylylene bishydroxystearic acid amide, and N, N'-distearyl isophthalic acid amide.
  • One type of lubricant may be used alone, or two or more types may be used in combination.
  • the abundance thereof is not particularly limited, but is preferably about 3 mg / m 2 or more, more preferably about 4 to 15 mg / m 2 , and further preferably 5 to 14 mg. / M 2 is mentioned.
  • the lubricant existing on the surface of the surface coating layer 6 may be one in which the lubricant contained in the surface coating layer 6 is exuded, or may be one in which the lubricant is applied to the surface of the surface coating layer 6.
  • the base material layer 1 is a layer provided for the purpose of exerting a function as a base material of an exterior material for a power storage device.
  • the base material layer 1 is located between the surface coating layer 6 and the barrier layer 3 of the exterior material 10 for a power storage device.
  • the adhesive layer 2 is provided, it is located between the surface coating layer 6 and the adhesive layer 2.
  • the material forming the base material layer 1 is not particularly limited as long as it has a function as a base material, that is, at least an insulating property.
  • the base material layer 1 can be formed using, for example, a resin, and the resin may contain an additive described later.
  • the base material layer 1 may be, for example, a resin film formed of resin or may be formed by applying a resin.
  • the resin film may be an unstretched film or a stretched film.
  • the stretched film include a uniaxially stretched film and a biaxially stretched film, and a biaxially stretched film is preferable.
  • the stretching method for forming the biaxially stretched film include a sequential biaxial stretching method, an inflation method, and a simultaneous biaxial stretching method.
  • the method for applying the resin include a roll coating method, a gravure coating method, and an extrusion coating method.
  • the resin forming the base material layer 1 examples include resins such as polyester, polyamide, polyolefin, epoxy resin, acrylic resin, fluororesin, polyurethane, silicon resin, and phenol resin, and modified products of these resins. Further, the resin forming the base material layer 1 may be a copolymer of these resins, or may be a modified product of the copolymer. Further, it may be a mixture of these resins.
  • the resin forming the base material layer 1 include polyester and polyamide.
  • polyester examples include polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, polyethylene isophthalate, and copolymerized polyester.
  • copolymerized polyester examples include a copolymerized polyester containing ethylene terephthalate as a repeating unit.
  • a copolymer polyester hereinafter abbreviated after polyethylene (terephthalate / isophthalate)
  • polyethylene (terephthalate / adipate) polyethylene (terephthalate / terephthalate /)
  • polyethylene (terephthalate / terephthalate /) which polymerizes with ethylene isophthalate using ethylene terephthalate as a repeating unit as a main component.
  • polyesters (Sodium sulfoisophthalate), polyethylene (terephthalate / sodium isophthalate), polyethylene (terephthalate / phenyl-dicarboxylate), polyethylene (terephthalate / decandicarboxylate) and the like. These polyesters may be used alone or in combination of two or more.
  • polyamide specifically, an aliphatic polyamide such as nylon 6, nylon 66, nylon 610, nylon 12, nylon 46, a copolymer of nylon 6 and nylon 66; terephthalic acid and / or isophthalic acid.
  • Hexamethylenediamine-isophthalic acid-terephthalic acid copolymerized polyamide such as nylon 6I, nylon 6T, nylon 6IT, nylon 6I6T (I stands for isophthalic acid, T stands for terephthalic acid), polyamide MXD6 (polymethaki) containing the derived structural units.
  • Polyamide containing aromatics such as silylene adipamide); Alicyclic polyamide such as polyamide PACM6 (polybis (4-aminocyclohexyl) methaneadipamide); Further, lactam component and isocyanate component such as 4,4'-diphenylmethane-diisocyanate Examples thereof include a copolymerized polyamide, a polyesteramide copolymer or a polyether esteramide copolymer which is a copolymer of a copolymerized polyamide and a polyester or a polyalkylene ether glycol; and a polyamide such as these copolymers. These polyamides may be used alone or in combination of two or more.
  • the base material layer 1 preferably contains at least one of a polyester film, a polyamide film, and a polyolefin film, and preferably contains at least one of a stretched polyester film, a stretched polypropylene film, and a stretched polyolefin film. It is more preferable to contain at least one of a stretched polyethylene terephthalate film, a stretched polybutylene terephthalate film, a stretched nylon film, and a stretched polypropylene film, preferably a biaxially stretched polyethylene terephthalate film, a biaxially stretched polybutylene terephthalate film, and a biaxially stretched nylon film. , It is more preferable to contain at least one of the biaxially stretched polypropylene films.
  • the base material layer 1 may be a single layer or may be composed of two or more layers.
  • the base material layer 1 may be a laminated body in which a resin film is laminated with an adhesive or the like, or the resin is co-extruded to form two or more layers. It may be a laminated body of the resin film. Further, the laminated body of the resin film obtained by co-extruding the resin into two or more layers may be used as the base material layer 1 without being stretched, or may be uniaxially stretched or biaxially stretched as the base material layer 1.
  • the laminate of two or more layers of resin film in the base material layer 1 include a laminate of a polyester film and a nylon film, a laminate of two or more layers of nylon film, and a laminate of two or more layers of polyester film. And the like, preferably, a laminate of a stretched nylon film and a stretched polyester film, a laminate of two or more layers of stretched nylon film, and a laminate of two or more layers of stretched polyester film are preferable.
  • the base material layer 1 is a laminate of two layers of resin film, a laminate of polyester resin film and polyester resin film, a laminate of polyamide resin film and polyamide resin film, or a laminate of polyester resin film and polyamide resin film.
  • a laminate is preferable, and a laminate of a polyethylene terephthalate film and a polyethylene terephthalate film, a laminate of a nylon film and a nylon film, or a laminate of a polyethylene terephthalate film and a nylon film is more preferable.
  • the polyester resin is difficult to discolor when the electrolytic solution adheres to the surface, for example, when the base material layer 1 is a laminate of two or more resin films, the polyester resin film is the base material layer 1. It is preferably located on the outermost side.
  • the two or more layers of resin films may be laminated via an adhesive.
  • Preferred adhesives include those similar to the adhesives exemplified in the adhesive layer 2 described later.
  • the method of laminating two or more layers of resin films is not particularly limited, and known methods can be adopted. Examples thereof include a dry laminating method, a sandwich laminating method, an extrusion laminating method, and a thermal laminating method, and a dry laminating method is preferable.
  • the laminating method can be mentioned.
  • the thickness of the adhesive is, for example, about 2 to 5 ⁇ m.
  • an anchor coat layer may be formed on the resin film and laminated. Examples of the anchor coat layer include the same adhesives as those exemplified in the adhesive layer 2 described later. At this time, the thickness of the anchor coat layer is, for example, about 0.01 to 1.0 ⁇ m.
  • additives such as a lubricant, a flame retardant, an antiblocking agent, an antioxidant, a light stabilizer, a tackifier, and an antistatic agent are present on at least one of the surface and the inside of the base material layer 1. Good. Only one type of additive may be used, or two or more types may be mixed and used.
  • the thickness of the base material layer 1 is not particularly limited as long as it functions as a base material, and examples thereof include about 3 to 50 ⁇ m, about 3 to 35 ⁇ m, and about 3 to 25 ⁇ m.
  • the thickness of the resin films constituting each layer is preferably about 2 to 25 ⁇ m, respectively.
  • the adhesive layer 2 is a layer provided between the base material layer 1 and the barrier layer 3 as necessary for the purpose of enhancing the adhesiveness.
  • the adhesive layer 2 is formed by an adhesive capable of adhering the base material layer 1 and the barrier layer 3.
  • the adhesive used for forming the adhesive layer 2 is not limited, but may be any of a chemical reaction type, a solvent volatile type, a heat melting type, a hot pressure type and the like. Further, it may be a two-component curable adhesive (two-component adhesive), a one-component curable adhesive (one-component adhesive), or a resin that does not involve a curing reaction. Further, the adhesive layer 2 may be a single layer or a multilayer.
  • the adhesive component contained in the adhesive include polyesters such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, polyethylene isophthalate, and copolymerized polyester; polyether; polyurethane; epoxy resin; Phenolic resin; Polyethylene such as nylon 6, nylon 66, nylon 12, copolymerized polyamide; Polyethylene resin such as polyolefin, cyclic polyolefin, acid-modified polyolefin, acid-modified cyclic polyolefin; Polyvinyl acetate; Cellulose; (Meta) acrylic resin; Polyethylene; polycarbonate; amino resin such as urea resin and melamine resin; rubber such as chloroprene rubber, nitrile rubber and styrene-butadiene rubber; silicone resin and the like.
  • polyesters such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene
  • adhesive components may be used alone or in combination of two or more.
  • a polyurethane adhesive is preferable.
  • the resins used as these adhesive components can be used in combination with an appropriate curing agent to increase the adhesive strength.
  • An appropriate curing agent is selected from polyisocyanate, polyfunctional epoxy resin, oxazoline group-containing polymer, polyamine resin, acid anhydride and the like, depending on the functional group of the adhesive component.
  • polyurethane adhesive examples include a polyurethane adhesive containing a main agent containing a polyol compound and a curing agent containing an isocyanate compound.
  • a polyol such as a polyester polyol, a polyether polyol, and an acrylic polyol is used as a main component, and an aromatic or aliphatic polyisocyanate is used as a curing agent.
  • the polyol compound it is preferable to use a polyester polyol having a hydroxyl group in the side chain in addition to the hydroxyl group at the end of the repeating unit.
  • Examples of the curing agent include aliphatic, alicyclic, aromatic, and aromatic aliphatic isocyanate compounds.
  • Examples of isocyanate-based compounds include hexamethylene diisocyanate (HDI), xylylene diisocyanate (XDI), isophorone diisocyanate (IPDI), hydrogenated XDI (H6XDI), hydrogenated MDI (H12MDI), tolylene diisocyanate (TDI), and diphenylmethane diisocyanate. (MDI), naphthalenediocyanate (NDI) and the like.
  • a polyfunctional isocyanate modified product from one kind or two or more kinds of these diisocyanates and the like can be mentioned.
  • a multimer for example, a trimer
  • a multimer include an adduct body, a biuret body, a nurate body and the like. Since the adhesive layer 2 is formed of a polyurethane adhesive, excellent electrolyte resistance is imparted to the exterior material for the power storage device, and even if the electrolyte adheres to the side surface, the base material layer 1 is suppressed from peeling off. ..
  • the adhesive layer 2 may contain a colorant, a thermoplastic elastomer, a tackifier, particles and the like, as long as the adhesiveness is not hindered, the addition of other components is permitted. Since the adhesive layer 2 contains a colorant, the exterior material for the power storage device can be colored. As the colorant, known pigments, dyes and the like can be used. Further, only one type of colorant may be used, or two or more types may be mixed and used.
  • the type of pigment is not particularly limited as long as it does not impair the adhesiveness of the adhesive layer 2.
  • organic pigments include azo-based, phthalocyanine-based, quinacridone-based, anthracinone-based, dioxazine-based, indigothioindigo-based, perinone-perylene-based, isowearnine-based, and benzimidazolone-based pigments, which are inorganic.
  • the pigment include carbon black-based, titanium oxide-based, cadmium-based, lead-based, chromium oxide-based, and iron-based pigments, and other examples include fine powder of mica (mica) and fish scale foil.
  • colorants for example, carbon black is preferable in order to make the appearance of the exterior material for a power storage device black.
  • the average particle size of the pigment is not particularly limited, and examples thereof include about 0.05 to 5 ⁇ m, preferably about 0.08 to 2 ⁇ m.
  • the average particle size of the pigment is the median diameter measured by a laser diffraction / scattering type particle size distribution measuring device.
  • the content of the pigment in the adhesive layer 2 is not particularly limited as long as the exterior material for the power storage device is colored, and examples thereof include about 5 to 60% by mass, preferably 10 to 40% by mass.
  • the thickness of the adhesive layer 2 is not particularly limited as long as the base material layer 1 and the barrier layer 3 can be adhered to each other, and examples thereof include about 1 ⁇ m or more and about 2 ⁇ m or more.
  • the thickness of the adhesive layer 2 is, for example, about 10 ⁇ m or less and about 5 ⁇ m or less.
  • the preferable range of the thickness of the adhesive layer 2 is about 1 to 10 ⁇ m, about 1 to 5 ⁇ m, about 2 to 10 ⁇ m, and about 2 to 5 ⁇ m.
  • the colored layer is a layer provided between the base material layer 1 and the barrier layer 3 as needed (not shown).
  • a colored layer may be provided between the base material layer 1 and the adhesive layer 2 and between the adhesive layer 2 and the barrier layer 3. Further, a colored layer may be provided on the outside of the base material layer 1. By providing the coloring layer, the exterior material for the power storage device can be colored.
  • a colored adhesive layer 2 and a colored layer may be provided between the base material layer 1 and the barrier layer 3.
  • the colored layer can be formed, for example, by applying an ink containing a colorant to the surface of the base material layer 1 or the surface of the barrier layer 3.
  • a colorant known pigments, dyes and the like can be used. Further, only one type of colorant may be used, or two or more types may be mixed and used.
  • colorant contained in the colored layer include the same as those exemplified in the column of [Adhesive layer 2].
  • the barrier layer 3 is at least a layer that suppresses the ingress of moisture.
  • Examples of the barrier layer 3 include a metal foil having a barrier property, a thin-film deposition film, a resin layer, and the like.
  • Examples of the vapor deposition film include a metal vapor deposition film, an inorganic oxide vapor deposition film, a carbon-containing inorganic oxide vapor deposition film, and the like
  • examples of the resin layer include polymers and tetras mainly composed of polyvinylidene chloride and chlorotrifluoroethylene (CTFE). Examples thereof include polymers containing fluoroethylene (TFE) as a main component, polymers having a fluoroalkyl group, fluorine-containing resins such as polymers containing fluoroalkyl units as a main component, and ethylene vinyl alcohol copolymers.
  • examples of the barrier layer 3 include a resin film provided with at least one of these vapor-deposited films and a resin layer.
  • a plurality of barrier layers 3 may be provided.
  • the barrier layer 3 preferably includes a layer made of a metal material.
  • Specific examples of the metal material constituting the barrier layer 3 include an aluminum alloy, stainless steel, titanium steel, and a steel plate.
  • the metal material includes at least one of an aluminum alloy foil and a stainless steel foil. Is preferable.
  • the aluminum alloy foil is more preferably a soft aluminum alloy foil made of, for example, an annealed aluminum alloy from the viewpoint of suppressing the occurrence of pinholes and cracks during molding of the exterior material for a power storage device. From the viewpoint of more effectively suppressing the occurrence of pinholes and cracks during molding, an aluminum alloy foil containing iron is preferable.
  • the iron content is preferably 0.1 to 9.0% by mass, and more preferably 0.5 to 2.0% by mass. When the iron content is 0.1% by mass or more, it is possible to obtain an exterior material for a power storage device in which the occurrence of pinholes and cracks during molding is effectively suppressed.
  • the soft aluminum alloy foil for example, an aluminum alloy having a composition specified by JIS H4160: 1994 A8021HO, JIS H4160: 1994 A8079HO, JIS H4000: 2014 A8021PO, or JIS H4000: 2014 A8077P-O. Foil is mentioned. Further, if necessary, silicon, magnesium, copper, manganese and the like may be added. Further, softening can be performed by annealing or the like.
  • stainless steel foils examples include austenite-based, ferrite-based, austenite-ferritic-based, martensitic-based, and precipitation-hardened stainless steel foils. Further, from the viewpoint of suppressing the generation of pinholes and cracks during molding of the exterior material for the power storage device, the stainless steel foil is preferably made of austenitic stainless steel.
  • austenitic stainless steel constituting the stainless steel foil include SUS304, SUS301, and SUS316L, and among these, SUS301 or SUS304 is particularly preferable.
  • the thickness of the barrier layer 3 may at least exhibit a function as a barrier layer that suppresses the infiltration of water, and is, for example, about 9 to 200 ⁇ m.
  • the thickness of the barrier layer 3 is, for example, preferably about 85 ⁇ m or less, more preferably about 50 ⁇ m or less, still more preferably about 40 ⁇ m or less, and particularly preferably about 35 ⁇ m or less.
  • the thickness of the barrier layer 3 is, for example, preferably about 10 ⁇ m or more, more preferably about 20 ⁇ m or more, and more preferably about 25 ⁇ m or more.
  • the preferred range of the thickness of the barrier layer 3 is about 10 to 85 ⁇ m, about 10 to 50 ⁇ m, about 10 to 40 ⁇ m, about 10 to 35 ⁇ m, about 20 to 85 ⁇ m, about 20 to 50 ⁇ m, and about 20 to 40 ⁇ m. Examples thereof include about 20 to 35 ⁇ m, about 25 to 85 ⁇ m, about 25 to 50 ⁇ m, about 25 to 40 ⁇ m, and about 25 to 35 ⁇ m, and among these, about 25 to 40 ⁇ m is particularly preferable.
  • the barrier layer 3 is made of an aluminum alloy foil, the above range is particularly preferable.
  • the thickness of the stainless steel foil is preferably about 60 ⁇ m or less, more preferably about 50 ⁇ m or less, still more preferably about 40 ⁇ m or less, still more preferably about. 30 ⁇ m or less, particularly preferably about 25 ⁇ m or less.
  • the thickness of the stainless steel foil is preferably about 10 ⁇ m or more, more preferably about 15 ⁇ m or more.
  • the preferred thickness range of the stainless steel foil is about 10 to 60 ⁇ m, about 10 to 50 ⁇ m, about 10 to 40 ⁇ m, about 10 to 30 ⁇ m, about 10 to 25 ⁇ m, about 15 to 60 ⁇ m, about 15 to 50 ⁇ m, and about 15 to. Examples thereof include about 40 ⁇ m, about 15 to 30 ⁇ m, and about 15 to 25 ⁇ m.
  • the barrier layer 3 is a metal foil, it is preferable that a corrosion-resistant film is provided at least on the surface opposite to the base material layer in order to prevent dissolution and corrosion.
  • the barrier layer 3 may be provided with a corrosion-resistant film on both sides.
  • the corrosion-resistant film is, for example, a hot-water transformation treatment such as boehmite treatment, a chemical conversion treatment, an anodization treatment, a plating treatment such as nickel or chromium, and a corrosion prevention treatment for applying a coating agent on the surface of the barrier layer.
  • This is a thin film that makes the barrier layer corrosive.
  • the treatment for forming the corrosion-resistant film one type may be performed, or two or more types may be combined.
  • the hydrothermal modification treatment and the anodizing treatment are treatments in which the surface of the metal foil is dissolved by a treatment agent to form a metal compound having excellent corrosion resistance. Note that these processes may be included in the definition of chemical conversion process.
  • the barrier layer 3 has a corrosion-resistant film, the barrier layer 3 includes the corrosion-resistant film.
  • the corrosion-resistant film is formed by preventing delamination between the barrier layer (for example, aluminum alloy foil) and the base material layer during molding of the exterior material for a power storage device, and by hydrogen fluoride generated by the reaction between the electrolyte and water. , Melting and corrosion of the barrier layer surface, especially when the barrier layer is an aluminum alloy foil, it prevents the aluminum oxide existing on the barrier layer surface from melting and corroding, and the adhesiveness (wetness) of the barrier layer surface. The effect of preventing delamination between the base material layer and the barrier layer during heat sealing and preventing delamination between the base material layer and the barrier layer during molding is shown.
  • the barrier layer for example, aluminum alloy foil
  • Various corrosion-resistant films formed by chemical conversion treatment are known, and mainly, at least one of phosphate, chromate, fluoride, triazinethiol compound, and rare earth oxide. Examples include a corrosion-resistant film containing.
  • Examples of the chemical conversion treatment using a phosphate or a chromate include a chromium acid chromate treatment, a phosphoric acid chromate treatment, a phosphoric acid-chromate treatment, a chromium salt treatment, and the like, and chromium used in these treatments.
  • Examples of the compound include chromium nitrate, chromium fluoride, chromium sulfate, chromium acetate, chromium oxalate, chromium dichromate, acetylacetate chromate, chromium chloride, and chromium potassium sulfate.
  • examples of the phosphorus compound used in these treatments include sodium phosphate, potassium phosphate, ammonium phosphate, polyphosphoric acid and the like.
  • examples of the chromate treatment include etching chromate treatment, electrolytic chromate treatment, and coating type chromate treatment, and coating type chromate treatment is preferable.
  • At least the inner layer side surface of the barrier layer (for example, aluminum alloy foil) is first known as an alkali dipping method, an electrolytic cleaning method, an acid cleaning method, an electrolytic acid cleaning method, an acid activation method and the like. Degreasing is performed by the treatment method, and then metal phosphates such as Cr phosphate (chromium) salt, Ti (titanium) phosphate, Zr (zyroxide) salt, and Zn (zinc) phosphate are applied to the degreased surface.
  • metal phosphates such as Cr phosphate (chromium) salt, Ti (titanium) phosphate, Zr (zyroxide) salt, and Zn (zinc) phosphate are applied to the degreased surface.
  • This is a treatment in which a treatment liquid composed of a mixture is coated by a well-known coating method such as a roll coating method, a gravure printing method, or a dipping method, and dried.
  • a treatment liquid for example, various solvents such as water, alcohol-based solvent, hydrocarbon-based solvent, ketone-based solvent, ester-based solvent, and ether-based solvent can be used, and water is preferable.
  • examples of the resin component used at this time include polymers such as phenolic resin and acrylic resin, and an amination phenol polymer having a repeating unit represented by the following general formulas (1) to (4) can be used. Examples thereof include the chromate treatment used. In the aminated phenol polymer, the repeating units represented by the following general formulas (1) to (4) may be contained alone or in any combination of two or more. May be good.
  • the acrylic resin shall be a polyacrylic acid, an acrylic acid methacrylate copolymer, an acrylic acid maleic acid copolymer, an acrylic acid styrene copolymer, or a derivative of these sodium salts, ammonium salts, amine salts, etc. Is preferable.
  • polyacrylic acid means a polymer of acrylic acid.
  • the acrylic resin is preferably a copolymer of acrylic acid and a dicarboxylic acid or a dicarboxylic acid anhydride, and an ammonium salt, a sodium salt, or a copolymer of an acrylic acid and a dicarboxylic acid or a dicarboxylic acid anhydride.
  • it is preferably an amine salt. Only one type of acrylic resin may be used, or two or more types may be mixed and used.
  • X represents a hydrogen atom, a hydroxy group, an alkyl group, a hydroxyalkyl group, an allyl group or a benzyl group.
  • R 1 and R 2 represent a hydroxy group, an alkyl group, or a hydroxyalkyl group, respectively, which are the same or different.
  • examples of the alkyl group represented by X, R 1 and R 2 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group and an isobutyl group.
  • Examples thereof include straight-chain or branched alkyl groups having 1 to 4 carbon atoms such as tert-butyl groups.
  • Examples of the hydroxyalkyl groups represented by X, R 1 and R 2 include a hydroxymethyl group, a 1-hydroxyethyl group, a 2-hydroxyethyl group, a 1-hydroxypropyl group, a 2-hydroxypropyl group and 3-.
  • Alkyl groups can be mentioned.
  • the alkyl group and the hydroxyalkyl group represented by X, R 1 and R 2 may be the same or different, respectively.
  • X is preferably a hydrogen atom, a hydroxy group or a hydroxyalkyl group.
  • the number average molecular weight of the aminated phenol polymer having the repeating unit represented by the general formulas (1) to (4) is, for example, preferably about 5 to 1,000,000, and preferably about 1,000 to 20,000. More preferred.
  • the amination phenol polymer for example, polycondenses a phenol compound or a naphthol compound with formaldehyde to produce a polymer composed of repeating units represented by the above general formula (1) or general formula (3), and then formsaldehyde. It is produced by introducing a functional group (-CH 2 NR 1 R 2 ) into the polymer obtained above using amine (R 1 R 2 NH).
  • the aminated phenol polymer is used alone or in combination of two or more.
  • the corrosion resistant film it is formed by a coating type corrosion prevention treatment in which a coating agent containing at least one selected from the group consisting of rare earth element oxide sol, anionic polymer, and cationic polymer is applied.
  • the thin film to be used is mentioned.
  • the coating agent may further contain phosphoric acid or phosphate, a cross-linking agent for cross-linking the polymer.
  • fine particles of the rare earth element oxide for example, particles having an average particle size of 100 nm or less
  • the rare earth element oxide examples include cerium oxide, yttrium oxide, neodymium oxide, and lanthanum oxide, and cerium oxide is preferable from the viewpoint of further improving adhesion.
  • the rare earth element oxide contained in the corrosion-resistant film may be used alone or in combination of two or more.
  • As the liquid dispersion medium of the rare earth element oxide sol for example, various solvents such as water, alcohol solvent, hydrocarbon solvent, ketone solvent, ester solvent, ether solvent and the like can be used, and water is preferable.
  • the cationic polymer examples include polyethyleneimine, an ionic polymer complex composed of polyethyleneimine and a polymer having a carboxylic acid, a primary amine graft acrylic resin obtained by graft-polymerizing a primary amine on an acrylic main skeleton, polyallylamine or a derivative thereof. , Amination phenol and the like are preferable.
  • the anionic polymer is preferably a poly (meth) acrylic acid or a salt thereof, or a copolymer containing (meth) acrylic acid or a salt thereof as a main component.
  • the cross-linking agent is at least one selected from the group consisting of a compound having a functional group of any of an isocyanate group, a glycidyl group, a carboxyl group and an oxazoline group and a silane coupling agent.
  • the phosphoric acid or phosphate is condensed phosphoric acid or condensed phosphate.
  • a film in which fine particles of metal oxides such as aluminum oxide, titanium oxide, cerium oxide, and tin oxide and barium sulfate are dispersed in phosphoric acid is applied to the surface of the barrier layer, and 150 Examples thereof include those formed by performing a baking treatment at a temperature of ° C. or higher.
  • the corrosion-resistant film may have a laminated structure in which at least one of a cationic polymer and an anionic polymer is further laminated, if necessary.
  • a cationic polymer and an anionic polymer include those described above.
  • composition of the corrosion-resistant film can be analyzed by using, for example, a time-of-flight secondary ion mass spectrometry method.
  • the amount of the corrosion-resistant film formed on the surface of the barrier layer 3 in the chemical conversion treatment is not particularly limited, but for example, in the case of performing a coating type chromate treatment, a chromic acid compound per 1 m 2 of the surface of the barrier layer 3 Is, for example, about 0.5 to 50 mg, preferably about 1.0 to 40 mg in terms of chromium, and the phosphorus compound is, for example, about 0.5 to 50 mg, preferably about 1.0 to 40 mg in terms of phosphorus, and an amination phenol polymer. Is preferably contained in a proportion of, for example, about 1.0 to 200 mg, preferably about 5.0 to 150 mg.
  • the thickness of the corrosion-resistant film is not particularly limited, but is preferably about 1 nm to 20 ⁇ m, more preferably 1 nm to 100 nm, from the viewpoint of the cohesive force of the film and the adhesion to the barrier layer and the thermosetting resin layer. The degree, more preferably about 1 nm to 50 nm.
  • the thickness of the corrosion-resistant film can be measured by observation with a transmission electron microscope or a combination of observation with a transmission electron microscope and energy dispersion type X-ray spectroscopy or electron beam energy loss spectroscopy.
  • the time-of-flight secondary ion mass spectrometry analysis of the composition of the corrosion resistant coating using, for example, secondary ion consisting Ce and P and O (e.g., Ce 2 PO 4 +, CePO 4 - at least 1, such as species) or, for example, secondary ion of Cr and P and O (e.g., CrPO 2 +, CrPO 4 - peak derived from at least one), such as is detected.
  • secondary ion consisting Ce and P and O e.g., Ce 2 PO 4 +, CePO 4 - at least 1, such as species
  • secondary ion of Cr and P and O e.g., CrPO 2 +, CrPO 4 - peak derived from at least one
  • a solution containing a compound used for forming a corrosion-resistant film is applied to the surface of the barrier layer by a bar coating method, a roll coating method, a gravure coating method, a dipping method, or the like, and then the temperature of the barrier layer is applied. It is carried out by heating so that the temperature is about 70 to 200 ° C.
  • the barrier layer may be subjected to a degreasing treatment by an alkali dipping method, an electrolytic cleaning method, an acid cleaning method, an electrolytic acid cleaning method or the like in advance. By performing the degreasing treatment in this way, it becomes possible to more efficiently perform the chemical conversion treatment on the surface of the barrier layer.
  • an acid degreasing agent in which a fluorine-containing compound is dissolved in an inorganic acid for the degreasing treatment it is possible to form not only the degreasing effect of the metal foil but also the fluoride of the metal which is immobile. In such cases, only degreasing treatment may be performed.
  • thermosetting resin layer 4 In the exterior material for a power storage device of the present disclosure, the thermosetting resin layer 4 corresponds to the innermost layer, and has a function of heat-sealing the heat-sealing resin layers with each other when assembling the power storage device to seal the power storage device element. It is a layer (sealant layer) that exerts.
  • the resin constituting the heat-fusing resin layer 4 is not particularly limited as long as it can be heat-fused, but a resin containing a polyolefin skeleton such as polyolefin or acid-modified polyolefin is preferable.
  • a resin containing a polyolefin skeleton such as polyolefin or acid-modified polyolefin is preferable.
  • the fact that the resin constituting the heat-sealing resin layer 4 contains a polyolefin skeleton can be analyzed by, for example, infrared spectroscopy, gas chromatography-mass spectrometry, or the like. Further, when the resin constituting the thermosetting resin layer 4 is analyzed by infrared spectroscopy, it is preferable that a peak derived from maleic anhydride is detected.
  • thermosetting resin layer 4 is a layer composed of maleic anhydride-modified polyolefin
  • a peak derived from maleic anhydride is detected when measured by infrared spectroscopy.
  • the degree of acid denaturation is low, the peak may become small and may not be detected. In that case, it can be analyzed by nuclear magnetic resonance spectroscopy.
  • polystyrene resin examples include polyethylenes such as low-density polyethylene, medium-density polyethylene, high-density polyethylene, and linear low-density polyethylene; ethylene- ⁇ -olefin copolymers; homopolypropylene and block copolymers of polypropylene (for example, with propylene).
  • Polypropylene such as (block copolymer of ethylene), random copolymer of polypropylene (for example, random copolymer of propylene and ethylene); propylene- ⁇ -olefin copolymer; terpolymer of ethylene-butene-propylene and the like.
  • polypropylene is preferable.
  • the polyolefin resin may be a block copolymer or a random copolymer.
  • One type of these polyolefin resins may be used alone, or two or more types may be used in combination.
  • the polyolefin may be a cyclic polyolefin.
  • the cyclic polyolefin is a copolymer of an olefin and a cyclic monomer, and examples of the olefin which is a constituent monomer of the cyclic polyolefin include ethylene, propylene, 4-methyl-1-pentene, styrene, butadiene, and isoprene. Be done.
  • cyclic monomer which is a constituent monomer of the cyclic polyolefin examples include cyclic alkenes such as norbornene; cyclic diene such as cyclopentadiene, dicyclopentadiene, cyclohexadiene, and norbornadiene. Among these, cyclic alkene is preferable, and norbornene is more preferable.
  • the acid-modified polyolefin is a polymer modified by block-polymerizing or graft-polymerizing a polyolefin with an acid component.
  • the acid-modified polyolefin the above-mentioned polyolefin, a copolymer obtained by copolymerizing the above-mentioned polyolefin with a polar molecule such as acrylic acid or methacrylic acid, or a polymer such as a crosslinked polyolefin can also be used.
  • the acid component used for acid modification include carboxylic acids such as maleic acid, acrylic acid, itaconic acid, crotonic acid, maleic anhydride, and itaconic anhydride, or anhydrides thereof.
  • the acid-modified polyolefin may be an acid-modified cyclic polyolefin.
  • the acid-modified cyclic polyolefin is a polymer obtained by copolymerizing a part of the monomers constituting the cyclic polyolefin in place of the acid component, or by block-polymerizing or graft-polymerizing the acid component with the cyclic polyolefin. is there.
  • the acid component used for the acid modification is the same as the acid component used for the modification of the polyolefin.
  • Preferred acid-modified polyolefins include polyolefins modified with carboxylic acid or its anhydride, polypropylene modified with carboxylic acid or its anhydride, maleic anhydride-modified polyolefin, and maleic anhydride-modified polypropylene.
  • thermosetting resin layer 4 may be formed of one type of resin alone, or may be formed of a blended polymer in which two or more types of resins are combined. Further, the thermosetting resin layer 4 may be formed of only one layer, but may be formed of two or more layers with the same or different resins.
  • thermosetting resin layer 4 may contain a lubricant or the like, if necessary.
  • a lubricant it is possible to suppress the occurrence of pinholes and cracks during molding of the exterior material for the power storage device.
  • the lubricant is not particularly limited, and a known lubricant can be used.
  • the lubricant may be used alone or in combination of two or more.
  • the lubricant is not particularly limited, but an amide-based lubricant is preferable. Specific examples of the lubricant include those exemplified in the base material layer 1. One type of lubricant may be used alone, or two or more types may be used in combination.
  • the amount of the lubricant is not particularly limited, but is preferable from the viewpoint of suppressing the occurrence of pinholes and cracks during molding of the exterior material for the power storage device. Is about 10 to 50 mg / m 2 , more preferably about 15 to 40 mg / m 2 .
  • the lubricant existing on the surface of the thermosetting resin layer 4 may be one in which the lubricant contained in the resin constituting the thermosetting resin layer 4 is exuded, or the lubricant of the thermosetting resin layer 4 may be exuded.
  • the surface may be coated with a lubricant.
  • the thickness of the thermosetting resin layer 4 is not particularly limited as long as the thermosetting resin layers have a function of heat-sealing to seal the power storage device element, but is preferably about 100 ⁇ m or less, preferably. It is about 85 ⁇ m or less, more preferably about 15 to 85 ⁇ m.
  • the thickness of the thermosetting resin layer 4 is preferably about 85 ⁇ m or less, more preferably about 15 to 45 ⁇ m, for example.
  • the thickness of the thermosetting resin layer 4 is preferably about 20 ⁇ m or more, more preferably 35 to 85 ⁇ m. The degree can be mentioned.
  • the adhesive layer 5 is provided between the barrier layer 3 (or the acid-resistant film) and the thermosetting resin layer 4 in order to firmly bond them, if necessary. It is a layer.
  • the adhesive layer 5 is formed of a resin capable of adhering the barrier layer 3 and the thermosetting resin layer 4 to each other.
  • the resin used for forming the adhesive layer 5 for example, the same resin as the adhesive exemplified in the adhesive layer 2 can be used.
  • the resin used for forming the adhesive layer 5 preferably contains a polyolefin skeleton, and examples thereof include the polyolefins exemplified in the above-mentioned heat-sealing resin layer 4 and acid-modified polyolefins.
  • the resin constituting the adhesive layer 5 contains a polyolefin skeleton can be analyzed by, for example, infrared spectroscopy, gas chromatography-mass spectrometry, or the like, and the analysis method is not particularly limited. Further, when the resin constituting the adhesive layer 5 is analyzed by infrared spectroscopy, it is preferable that a peak derived from maleic anhydride is detected. For example, when measuring the infrared spectroscopy at a maleic anhydride-modified polyolefin, a peak derived from maleic acid is detected in the vicinity of the wave number of 1760 cm -1 and near the wave number 1780 cm -1. However, if the degree of acid denaturation is low, the peak may become small and may not be detected. In that case, it can be analyzed by nuclear magnetic resonance spectroscopy.
  • the adhesive layer 5 preferably contains an acid-modified polyolefin.
  • an acid-modified polyolefin a polyolefin modified with a carboxylic acid or an anhydride thereof, a polypropylene modified with a carboxylic acid or an anhydride thereof, a maleic anhydride-modified polyolefin, and a maleic anhydride-modified polypropylene are particularly preferable.
  • the adhesive layer 5 is a resin composition containing an acid-modified polyolefin and a curing agent. It is more preferable that it is a cured product of.
  • the acid-modified polyolefin the above-mentioned ones are preferably exemplified.
  • the adhesive layer 5 is a cured product of a resin composition containing an acid-modified polyolefin and at least one selected from the group consisting of a compound having an isocyanate group, a compound having an oxazoline group, and a compound having an epoxy group. It is particularly preferable that the resin composition is a cured product containing an acid-modified polyolefin and at least one selected from the group consisting of a compound having an isocyanate group and a compound having an epoxy group. Further, the adhesive layer 5 preferably contains at least one selected from the group consisting of polyurethane, polyester, and epoxy resin, and more preferably contains polyurethane and epoxy resin. As the polyester, for example, an amide ester resin is preferable.
  • the amide ester resin is generally produced by the reaction of a carboxyl group and an oxazoline group.
  • the adhesive layer 5 is more preferably a cured product of a resin composition containing at least one of these resins and the acid-modified polyolefin.
  • a curing agent such as a compound having an isocyanate group, a compound having an oxazoline group, or an epoxy resin remains in the adhesive layer 5, the presence of the unreacted substance is determined by, for example, infrared spectroscopy. It can be confirmed by a method selected from Raman spectroscopy, time-of-flight secondary ion mass spectrometry (TOF-SIMS), and the like.
  • the curing agent having a heterocycle include a curing agent having an oxazoline group and a curing agent having an epoxy group.
  • the curing agent having a C—C bond examples include a curing agent having an oxazoline group, a curing agent having an epoxy group, and polyurethane.
  • the fact that the adhesive layer 5 is a cured product of a resin composition containing these curing agents is, for example, gas chromatograph mass spectrometry (GCMS), infrared spectroscopy (IR), time-of-flight secondary ion mass spectrometry (TOF). -SIMS), X-ray photoelectron spectroscopy (XPS) and other methods can be used for confirmation.
  • GCMS gas chromatograph mass spectrometry
  • IR infrared spectroscopy
  • TOF time-of-flight secondary ion mass spectrometry
  • -SIMS X-ray photoelectron spectroscopy
  • XPS X-ray photoelectron spectroscopy
  • the compound having an isocyanate group is not particularly limited, but from the viewpoint of effectively enhancing the adhesion between the barrier layer 3 and the adhesive layer 5, a polyfunctional isocyanate compound is preferable.
  • the polyfunctional isocyanate compound is not particularly limited as long as it is a compound having two or more isocyanate groups.
  • Specific examples of the polyfunctional isocyanate-based curing agent include pentandiisocyanate (PDI), isophorone diisocyanate (IPDI), hexamethylene diisocyanate (HDI), tolylene diisocyanate (TDI), and diphenylmethane diisocyanate (MDI), which are polymerized or nurate. Examples thereof include chemical compounds, mixtures thereof, and copolymers with other polymers.
  • an adduct body, a burette body, an isocyanate body and the like can be mentioned.
  • the content of the compound having an isocyanate group in the adhesive layer 5 is preferably in the range of 0.1 to 50% by mass, and 0.5 to 40% by mass in the resin composition constituting the adhesive layer 5. More preferably in the range. As a result, the adhesion between the barrier layer 3 and the adhesive layer 5 can be effectively enhanced.
  • the compound having an oxazoline group is not particularly limited as long as it is a compound having an oxazoline skeleton.
  • Specific examples of the compound having an oxazoline group include those having a polystyrene main chain and those having an acrylic main chain.
  • examples of commercially available products include the Epocross series manufactured by Nippon Shokubai Co., Ltd.
  • the proportion of the compound having an oxazoline group in the adhesive layer 5 is preferably in the range of 0.1 to 50% by mass, preferably in the range of 0.5 to 40% by mass in the resin composition constituting the adhesive layer 5. It is more preferable to be in. As a result, the adhesion between the barrier layer 3 and the adhesive layer 5 can be effectively enhanced.
  • Examples of the compound having an epoxy group include an epoxy resin.
  • the epoxy resin is not particularly limited as long as it is a resin capable of forming a crosslinked structure by an epoxy group existing in the molecule, and a known epoxy resin can be used.
  • the weight average molecular weight of the epoxy resin is preferably about 50 to 2000, more preferably about 100 to 1000, and even more preferably about 200 to 800.
  • the weight average molecular weight of the epoxy resin is a value measured by gel permeation chromatography (GPC) measured under the condition that polystyrene is used as a standard sample.
  • epoxy resin examples include glycidyl ether derivative of trimethylolpropane, bisphenol A diglycidyl ether, modified bisphenol A diglycidyl ether, novolac glycidyl ether, glycerin polyglycidyl ether, polyglycerin polyglycidyl ether and the like.
  • One type of epoxy resin may be used alone, or two or more types may be used in combination.
  • the proportion of the epoxy resin in the adhesive layer 5 is preferably in the range of 0.1 to 50% by mass, and preferably in the range of 0.5 to 40% by mass in the resin composition constituting the adhesive layer 5. Is more preferable. As a result, the adhesion between the barrier layer 3 and the adhesive layer 5 can be effectively enhanced.
  • the polyurethane is not particularly limited, and known polyurethane can be used.
  • the adhesive layer 5 may be, for example, a cured product of a two-component curable polyurethane.
  • the proportion of polyurethane in the adhesive layer 5 is preferably in the range of 0.1 to 50% by mass, and preferably in the range of 0.5 to 40% by mass in the resin composition constituting the adhesive layer 5. More preferred. As a result, the adhesion between the barrier layer 3 and the adhesive layer 5 can be effectively enhanced in an atmosphere in which a component that induces corrosion of the barrier layer such as an electrolytic solution is present.
  • the adhesive layer 5 is a cured product of a resin composition containing at least one selected from the group consisting of a compound having an isocyanate group, a compound having an oxazoline group, and an epoxy resin, and the acid-modified polyolefin.
  • the acid-modified polyolefin functions as a main agent, and the compound having an isocyanate group, the compound having an oxazoline group, and the compound having an epoxy group each function as a curing agent.
  • the thickness of the adhesive layer 5 is preferably about 50 ⁇ m or less, about 40 ⁇ m or less, about 30 ⁇ m or less, about 20 ⁇ m or less, and about 5 ⁇ m or less.
  • the thickness of the adhesive layer 5 is preferably about 0.1 ⁇ m or more and about 0.5 ⁇ m or more.
  • the thickness range of the adhesive layer 5 is preferably about 0.1 to 50 ⁇ m, about 0.1 to 40 ⁇ m, about 0.1 to 30 ⁇ m, about 0.1 to 20 ⁇ m, and about 0.1 to 5 ⁇ m. , About 0.5 to 50 ⁇ m, about 0.5 to 40 ⁇ m, about 0.5 to 30 ⁇ m, about 0.5 to 20 ⁇ m, and about 0.5 to 5 ⁇ m.
  • the thickness is preferably about 1 to 10 ⁇ m, more preferably about 1 to 5 ⁇ m.
  • the resin exemplified in the thermosetting resin layer 4 it is preferably about 2 to 50 ⁇ m, more preferably about 10 to 40 ⁇ m.
  • the thickness of the adhesive layer 5 is preferably about 2 ⁇ m or more, more preferably 5 ⁇ m or more, and further preferably 8 ⁇ m or more.
  • the thickness of the adhesive layer 5 is preferably about 50 ⁇ m or less, more preferably 40 ⁇ m or less. Further, for example, when the adhesive layer 5 is formed from acid-modified polyolefin, the preferable range of the thickness of the adhesive layer 5 is about 2 to 50 ⁇ m, about 2 to 40 ⁇ m, about 5 to 50 ⁇ m, about 5 to 40 ⁇ m, and 8 to. It is about 50 ⁇ m and about 8 to 40 ⁇ m.
  • the adhesive layer 5 is a cured product of the adhesive exemplified in the adhesive layer 2 or a resin composition containing an acid-modified polyolefin and a curing agent, for example, the resin composition is applied and cured by heating or the like. As a result, the adhesive layer 5 can be formed. Further, when the resin exemplified in the thermosetting resin layer 4 is used, it can be formed by, for example, extrusion molding of the thermosetting resin layer 4 and the adhesive layer 5.
  • the method for manufacturing the exterior material for power storage device is not particularly limited as long as a laminated body in which each layer of the exterior material for power storage device of the present invention is laminated can be obtained, and the method is not particularly limited. At least, there is a method including a step of obtaining a laminate in which the surface coating layer 6, the base material layer 1, the barrier layer 3, and the thermosetting resin layer 4 are laminated. Specifically, in the method for producing an exterior material for a power storage device of the present disclosure, at least a surface coating layer 6, a base material layer 1, a barrier layer 3, and a thermosetting resin layer 4 are provided in this order from the outside.
  • the surface coating layer 6 contains a resin and particles, and the outer surface of the surface coating layer 6 is measured by a nanoindentation method in a 23 ° C. environment. Is 420.4 MPa or less.
  • laminate A a laminate in which the base material layer 1, the adhesive layer 2, and the barrier layer 3 are laminated in this order
  • the laminated body A is formed by applying an adhesive used for forming the adhesive layer 2 on the base material layer 1 or, if necessary, on the barrier layer 3 whose surface has been chemically converted, by a gravure coating method. It can be carried out by a dry laminating method in which the barrier layer 3 or the base material layer 1 is laminated and the adhesive layer 2 is cured after being applied and dried by a coating method such as a roll coating method.
  • thermosetting resin layer 4 is laminated on the barrier layer 3 of the laminated body A.
  • the thermosetting resin layer 4 is laminated on the barrier layer 3 of the laminated body A by a method such as a thermal laminating method or an extrusion laminating method. do it.
  • the adhesive layer 5 is provided between the barrier layer 3 and the heat-sealing resin layer 4, for example, (1) the adhesive layer 5 and the heat-sealing resin layer are placed on the barrier layer 3 of the laminated body A.
  • a method of laminating 4 by extruding (co-extruded laminating method, tandem laminating method), (2) Separately, a laminated body in which the adhesive layer 5 and the heat-sealing resin layer 4 are laminated is formed, and this is laminated.
  • a laminated body in which the adhesive layer 5 is laminated on the barrier layer 3 of the laminated body A is formed by a method of laminating on the barrier layer 3 of the above, and this is formed by a heat-sealing resin layer 4 and a thermal laminating method.
  • Method of Laminating (3) While pouring the melted adhesive layer 5 between the barrier layer 3 of the laminated body A and the heat-sealing resin layer 4 formed into a sheet in advance, the adhesive layer 5 is passed through.
  • a method of laminating the laminate A and the heat-sealing resin layer 4 (sandwich lamination method), (4) a solution coating of an adhesive for forming the adhesive layer 5 on the barrier layer 3 of the laminate A is performed.
  • Examples thereof include a method of laminating by a method of drying, a method of baking, and the like, and a method of laminating a heat-sealing resin layer 4 having a sheet-like film formed in advance on the adhesive layer 5.
  • the surface coating layer 6 is laminated on the surface of the base material layer 1 opposite to the barrier layer 3.
  • the surface coating layer 6 can be formed, for example, by applying the above resin composition for forming the surface coating layer 6 to the surface of the base material layer 1 and curing the surface coating layer 1.
  • the order of the step of laminating the barrier layer 3 on the surface of the base material layer 1 and the step of laminating the surface coating layer 6 on the surface of the base material layer 1 is not particularly limited.
  • the barrier layer 3 may be formed on the surface of the base material layer 1 opposite to the surface coating layer 6.
  • a laminated body including the layer 4 is formed, and may be further subjected to a heat treatment in order to strengthen the adhesiveness of the adhesive layer 2 and the adhesive layer 5 provided as needed.
  • a colored layer may be provided between the base material layer 1 and the barrier layer 3.
  • exterior materials for power storage devices of the present disclosure are used for packaging for sealing and accommodating power storage device elements such as positive electrodes, negative electrodes, and electrolytes. That is, a power storage device element including at least a positive electrode, a negative electrode, and an electrolyte can be housed in a package formed of the exterior material for a power storage device of the present disclosure to form a power storage device.
  • a power storage device element having at least a positive electrode, a negative electrode, and an electrolyte is provided with the exterior material for the power storage device of the present disclosure in a state in which metal terminals connected to each of the positive electrode and the negative electrode are projected outward.
  • the peripheral edge of the power storage device element is covered so that a flange portion (a region where the heat-sealing resin layers come into contact with each other) can be formed, and the heat-sealing resin layers of the flange portion are heat-sealed and sealed.
  • thermosetting resin portion of the exterior material for the power storage device of the present disclosure is inside (the surface in contact with the power storage device element). ) To form a package.
  • the exterior material for a power storage device of the present disclosure can be suitably used for a power storage device such as a battery (including a capacitor, a capacitor, etc.). Further, the exterior material for the power storage device of the present disclosure may be used for either a primary battery or a secondary battery, but is preferably a secondary battery.
  • the type of the secondary battery to which the exterior material for the power storage device of the present disclosure is applied is not particularly limited, and for example, a lithium ion battery, a lithium ion polymer battery, an all-solid-state battery, a lead storage battery, a nickel / hydrogen storage battery, a nickel / hydrogen battery, Examples thereof include cadmium storage batteries, nickel / iron storage batteries, nickel / zinc storage batteries, silver oxide / zinc storage batteries, metal air batteries, polyvalent cation batteries, capacitors, and capacitors.
  • lithium ion batteries and lithium ion polymer batteries are examples of suitable application targets of the exterior materials for power storage devices of the present disclosure.
  • Example 1 A stretched nylon (ONy) film (thickness 15 ⁇ m) was prepared as a base material layer. Further, as a barrier layer, an aluminum foil (JIS H4160: 1994 A8021HO (thickness 35 ⁇ m)) was prepared. Next, the barrier layer and the base material layer are laminated by a dry laminating method using an adhesive (two-component urethane adhesive containing a colorant) described later, and then an aging treatment is performed to carry out the base material layer. A laminate of / adhesive layer / barrier layer was prepared. Both sides of the aluminum foil are subjected to chemical conversion treatment.
  • the chemical conversion treatment of the aluminum foil is performed by applying a treatment liquid consisting of a phenol resin, a chromium fluoride compound, and phosphoric acid to both sides of the aluminum foil by a roll coating method so that the amount of chromium applied is 10 mg / m 2 (dry mass). This was done by coating and baking.
  • a matte surface coating layer is formed by the above method, and the surface coating layer (3 ⁇ m) / base material layer (thickness 15 ⁇ m) / adhesive layer (3 ⁇ m) / barrier layer (35 ⁇ m) / adhesive layer (in order from the outside).
  • An exterior material for a power storage device was obtained, which consisted of a laminated body (total thickness 96 ⁇ m) in which a heat-sealing resin layer (20 ⁇ m) was laminated (20 ⁇ m).
  • Example 2 In the formation of the surface coating layer, the following resin composition 2 was used instead of the resin composition 1, and the exterior material for the power storage device was obtained in the same manner as in Example 1 except that the surface coating layer was formed. ..
  • Example 3 In the formation of the surface coating layer, the following resin composition 3 was used instead of the resin composition 1, and an exterior material for a power storage device was obtained in the same manner as in Example 1 except that the surface coating layer was formed. ..
  • Example 4 In the formation of the surface coating layer, an exterior material for a power storage device was obtained in the same manner as in Example 1 except that the following resin composition 4 was used instead of the resin composition 1 to form the surface coating layer. ..
  • Example 5 In the formation of the surface coating layer, the following resin composition 5 was used instead of the resin composition 1, and an exterior material for a power storage device was obtained in the same manner as in Example 1 except that the surface coating layer was formed. ..
  • Example 6 In the formation of the surface coating layer, an exterior material for a power storage device was obtained in the same manner as in Example 1 except that the following resin composition 6 was used instead of the resin composition 1 to form the surface coating layer. ..
  • Example 7 In the formation of the surface coating layer, the following resin composition 7 was used instead of the resin composition 1, and an exterior material for a power storage device was obtained in the same manner as in Example 1 except that the surface coating layer was formed. ..
  • Example 8 A stretched nylon (ONy) film (thickness 12 ⁇ m) was prepared as a base material layer. Further, as a barrier layer, a stainless steel foil (SUS301 (thickness 20 ⁇ m)) was prepared. Next, the barrier layer and the base material layer are laminated by a dry laminating method using an adhesive (two-component urethane adhesive containing a colorant) described later, and then an aging treatment is performed to carry out the base material layer. A laminate of / adhesive layer / barrier layer was prepared. Both sides of the stainless steel foil are subjected to chemical conversion treatment.
  • the chemical conversion treatment of the stainless steel foil is performed by applying a treatment liquid consisting of a phenol resin, a chromium fluoride compound, and phosphoric acid to the stainless steel foil by a roll coating method so that the amount of chromium applied is 10 mg / m 2 (dry mass). This was done by applying and baking on both sides.
  • the barrier layer and the thermosetting resin layer of each of the above-mentioned laminates are bonded by a dry laminating method using a modified olefin adhesive (the thickness of the adhesive layer after curing is 3 ⁇ m).
  • An adhesive layer and a thermosetting resin layer were laminated on the barrier layer.
  • As the thermosetting resin layer an unstretched polypropylene film (thickness 23 ⁇ m) was used.
  • the surface of the base material layer of the obtained laminate is coated with the following resin composition 2 so as to have a thickness of 3 ⁇ m, and cured in an environment of a temperature of 40 ° C. to 100 ° C. for 3 days.
  • a matte surface coating layer is formed by the above method, and the surface coating layer (3 ⁇ m) / base material layer (thickness 12 ⁇ m) / adhesive layer (3 ⁇ m) / barrier layer (20 ⁇ m) / adhesive layer (in order from the outside).
  • Example 9 In the formation of the surface coating layer, an exterior material for a power storage device was obtained in the same manner as in Example 8 except that the following resin composition 9 was used instead of the resin composition 2 to form the surface coating layer. ..
  • Example 10 In the formation of the surface coating layer, the following resin composition 10 was used instead of the resin composition 1, and an exterior material for a power storage device was obtained in the same manner as in Example 1 except that the surface coating layer was formed. ..
  • Resin composition 1 (used in Example 1)) Resin (polyurethane formed from a mixture of two polyol compounds and aromatic isocyanate compounds), inorganic particles (silica particle average particle size 1 ⁇ m), polystyrene organic particles (average particle size 2 ⁇ m), and olefin type Resin composition containing wax
  • Resin composition 2 (used in Examples 2 and 8)) Resin (polyurethane formed from a mixture of two polyol compounds and an aliphatic isocyanate compound), inorganic particles (silica particle average particle size 1 ⁇ m), polystyrene organic particles (average particle size 2 ⁇ m), and olefin type. Resin composition containing wax
  • Resin composition 3 (used in Example 3)) Resin (polyurethane formed from a mixture of two types of polyol compound and aromatic isocyanate compound (the compounding ratio of the two types of polyol compounds is changed from resin composition 1)) and inorganic particles (silica particle average particle diameter 1 ⁇ m). ), Polystyrene-based organic particles (average particle size 2 ⁇ m), and resin composition containing olefin-based wax.
  • Resin composition 4 100 parts by mass of resin (polyurethane formed from a mixture of one polyol compound and an aliphatic isocyanate compound), 10 parts by mass of inorganic particles (barium sulfate particles average particle diameter 1 ⁇ m), and polystyrene organic particles (average particles) Resin composition containing 2 ⁇ m in diameter) and olefinic wax
  • Resin composition 7 (used in Example 7) A resin composition in which the resin composition of Example 3 does not contain an olefin wax.
  • Resin composition 9 (used in Example 9)
  • Resin polyurethane formed from a mixture of two types of polyol compound and aromatic isocyanate compound (the compounding ratio of the two types of polyol compounds is changed from resin composition 1)
  • inorganic particles siliconca particle average particle diameter 1 ⁇ m.
  • polystyrene-based organic particles average particle size 2 ⁇ m.
  • Resin composition 10 (used in Example 10)) Resin (polyurethane formed from a mixture of two types of polyol compound and aromatic isocyanate compound (the compounding ratio of the two types of polyol compounds is changed from resin composition 1)) and inorganic particles (silica particle average particle diameter 1 ⁇ m). ) And polystyrene-based organic particles (average particle size 2 ⁇ m).
  • the hardness measured by nanoindentation method in 23 ° C environment was measured using a nanoindenter (“TI950 TriboIndenter” manufactured by HYSITRON) as an apparatus.
  • a nanoindenter (“TI950 TriboIndenter” manufactured by HYSITRON) as an apparatus.
  • TI-0039 Berkovich indenter
  • the indenter is applied to the surface of the surface coating layer of the exterior material for a power storage device (the surface on which the surface coating layer is exposed and parallel to the thickness direction of each layer).
  • the indenter was pushed into the surface coating layer from the surface to a load of 50 ⁇ N over 10 seconds, held for 5 seconds in that state, and then unloaded over 10 seconds.
  • the average value of N 5 measured by shifting the measurement points was taken as the hardness.
  • the results are shown in Table 1.
  • the surface on which the indenter is pushed is a resin portion having an exposed cross section of the surface coating layer obtained by cutting in the thickness direction so as to pass through the central portion of the exterior material for a power storage device.
  • the portion where the indenter is pushed is a portion (resin portion) in which particles do not exist on the surface of the surface coating layer. The measurement results were rounded to the first decimal place.
  • the organic particles contained in the surface coating layers of Examples 1-10 and Comparative Example 1 are the same, and the surface coating layers of Examples 2 and 10 are measured by pushing an indenter into a portion where the organic particles are present.
  • the hardness was 496.1 MPa.
  • Cutting was performed using a commercially available rotary microtome. The measurement results were rounded to the first decimal place.
  • the exterior material for each power storage device was cut into a rectangle having a length (MD) of 90 mm and a width (TD) of 150 mm to prepare a test sample.
  • the MD of the exterior material for the power storage device corresponds to the rolling direction (RD) of the aluminum alloy foil
  • the TD of the exterior material for the power storage device corresponds to the TD of the aluminum alloy foil.
  • This test sample is subjected to a rectangular molding mold (female mold, surface is JIS B 0659-1: 2002) having a diameter of 31.6 mm (MD) ⁇ 54.5 mm (TD) in an environment of 25 ° C.
  • the surface coating layer contains a resin and particles, and the hardness of the outer surface of the surface coating layer measured by the nanoindentation method in an environment of 23 ° C. , 420.4 MPa or less.
  • the occurrence of cracking or peeling of the surface coating layer due to molding of the exterior material for the power storage device is suppressed.
  • Examples 5 and 6 in which the amount of wax added to the surface coating layer was small the occurrence of cracking and peeling of the surface coating layer was further suppressed, and Examples 7 and 9 did not contain wax in the surface coating layer.
  • Nos. 10 and 10 the occurrence of cracking and peeling of the surface coating layer was further suppressed.
  • Item 1 From the outside, it is composed of a laminate having at least a surface coating layer, a base material layer, a barrier layer, and a thermosetting resin layer.
  • the surface coating layer contains resin and particles, and contains resin and particles.
  • Item 2. For a power storage device according to Item 1, wherein in a 23 ° C.
  • the hardness of the particles of the surface coating layer measured by the nanoindentation method with respect to the cross section in the thickness direction of the surface coating layer is 300.0 MPa or more.
  • Exterior material Item 3.
  • Item 2. The exterior material for a power storage device according to Item 1 or 2, wherein an adhesive layer is provided between the base material layer and the barrier layer.
  • Item 4. Item 3. The exterior material for a power storage device, wherein the adhesive layer is colored.
  • a step of obtaining a laminate in which at least a surface coating layer, a base material layer, a barrier layer, and a thermosetting resin layer are laminated in order from the outside is provided.
  • the surface coating layer contains resin and particles, and contains resin and particles.
  • Base material layer 2 Adhesive layer 3 Barrier layer 4 Thermosetting resin layer 5 Adhesive layer 6 Surface coating layer 10 Exterior material for power storage devices

Abstract

This exterior material for an electrical storage device is composed of a stack comprising at least, in this order from an outer side, a surface coating layer, a base material layer, a barrier layer, and a thermal adhesive resin layer. The surface coating layer includes a resin and particles, wherein, with respect to a cross section in a thickness direction of the surface coating layer, the hardness of the resin in the surface coating layer as measured by nanoindentation technique in a 23°C environment is not more than 420.4 MPa.

Description

蓄電デバイス用外装材、その製造方法、及び蓄電デバイスExterior materials for power storage devices, their manufacturing methods, and power storage devices
 本開示は、蓄電デバイス用外装材、その製造方法、及び蓄電デバイスに関する。 This disclosure relates to an exterior material for a power storage device, a manufacturing method thereof, and a power storage device.
 従来、様々なタイプの蓄電デバイスが開発されているが、あらゆる蓄電デバイスにおいて、電極や電解質などの蓄電デバイス素子を封止するために外装材が不可欠な部材になっている。従来、蓄電デバイス用外装材として金属製の外装材が多用されていた。 Conventionally, various types of power storage devices have been developed, but in all power storage devices, an exterior material is an indispensable member for sealing the power storage device elements such as electrodes and electrolytes. Conventionally, a metal exterior material has been widely used as an exterior material for a power storage device.
 一方、近年、電気自動車、ハイブリッド電気自動車、パソコン、カメラ、携帯電話などの高性能化に伴い、蓄電デバイスには、多様な形状が要求されると共に、薄型化や軽量化が求められている。しかしながら、従来多用されていた金属製の蓄電デバイス用外装材では、形状の多様化に追従することが困難であり、しかも軽量化にも限界があるという欠点がある。 On the other hand, in recent years, with the improvement of high performance of electric vehicles, hybrid electric vehicles, personal computers, cameras, mobile phones, etc., various shapes are required for power storage devices, and thinning and weight reduction are required. However, the metal exterior material for a power storage device, which has been widely used in the past, has a drawback that it is difficult to keep up with the diversification of shapes and there is a limit to weight reduction.
 そこで、近年、多様な形状に加工が容易で、薄型化や軽量化を実現し得る蓄電デバイス用外装材として、基材層/バリア層/熱融着性樹脂層が順次積層されたフィルム状の積層体が提案されている(例えば、特許文献1を参照)。 Therefore, in recent years, as an exterior material for a power storage device that can be easily processed into various shapes and can be made thinner and lighter, it is in the form of a film in which a base material layer / barrier layer / thermosetting resin layer is sequentially laminated. Laminates have been proposed (see, for example, Patent Document 1).
 このような蓄電デバイス用外装材においては、一般的に、冷間成形により凹部が形成され、当該凹部によって形成された空間に電極や電解液などの蓄電デバイス素子を配し、熱融着性樹脂層を熱融着させる(熱シールする)ことにより、蓄電デバイス用外装材の内部に蓄電デバイス素子が収容された蓄電デバイスが得られる。 In such an exterior material for a power storage device, a recess is generally formed by cold molding, and a storage device element such as an electrode or an electrolytic solution is arranged in the space formed by the recess to form a thermosetting resin. By heat-sealing (heat sealing) the layers, a power storage device in which the power storage device element is housed inside the exterior material for the power storage device can be obtained.
特開2008-287971号公報Japanese Unexamined Patent Publication No. 2008-287971
 フィルム状の積層体から構成された蓄電デバイス用外装材において、外側表面を艶消し調の意匠(マット)とするために、基材層の外側に粒子を含む表面被覆層を設けることがある。 In an exterior material for a power storage device composed of a film-like laminate, a surface coating layer containing particles may be provided on the outside of the base material layer in order to make the outer surface a matte design (mat).
 ところが、前記の通り、蓄電デバイス用外装材は、成形に供されることから、粒子を含む表面被覆層を設けた蓄電デバイス用外装材についても、優れた成形性が求められる。具体的には、蓄電デバイス用外装材の成形による表面被覆層の割れや剥がれの発生の抑制が求められる。 However, as described above, since the exterior material for a power storage device is used for molding, excellent moldability is also required for the exterior material for a power storage device provided with a surface coating layer containing particles. Specifically, it is required to suppress the occurrence of cracking and peeling of the surface coating layer by molding the exterior material for the power storage device.
 このような状況下、本開示は、蓄電デバイス用外装材の成形による表面被覆層の割れや剥がれの発生が抑制されている、蓄電デバイス用外装材を提供することを主な目的とする。 Under such circumstances, the main object of the present disclosure is to provide an exterior material for a power storage device in which the occurrence of cracking or peeling of the surface coating layer due to molding of the exterior material for the power storage device is suppressed.
 本開示の発明者らは、上記のような課題を解決すべく鋭意検討を行った。その結果、外側から順に、少なくとも、表面被覆層、基材層、バリア層、及び熱融着性樹脂層を備える積層体から構成された蓄電デバイス用外装材であって、表面被覆層は、樹脂及び粒子を含んでおり、23℃環境において、前記表面被覆層の厚み方向の断面について、ナノインデンテーション法により測定される前記表面被覆層の樹脂の硬さが、420.4MPa以下である蓄電デバイス用外装材は、蓄電デバイス用外装材の成形による表面被覆層の割れや剥がれの発生が抑制されることを見出した。 The inventors of the present disclosure have made diligent studies to solve the above problems. As a result, the exterior material for a power storage device is composed of a laminate including at least a surface coating layer, a base material layer, a barrier layer, and a heat-sealing resin layer in order from the outside, and the surface coating layer is a resin. And particles, and the hardness of the resin of the surface coating layer measured by the nanoindentation method is 420.4 MPa or less with respect to the cross section in the thickness direction of the surface coating layer in an environment of 23 ° C. It has been found that the exterior material for use suppresses the occurrence of cracking and peeling of the surface coating layer due to the molding of the exterior material for power storage devices.
 本開示は、これらの知見に基づいて、更に検討を重ねることにより完成したものである。即ち、本開示は、下記に掲げる態様の発明を提供する。
 外側から順に、少なくとも、表面被覆層、基材層、バリア層、及び熱融着性樹脂層を備える積層体から構成されており、
 前記表面被覆層は、樹脂及び粒子を含んでおり、
 23℃環境において、前記表面被覆層の厚み方向の断面について、ナノインデンテーション法により測定される前記表面被覆層の樹脂の硬さが、420.4MPa以下である、蓄電デバイス用外装材。
The present disclosure has been completed by further studies based on these findings. That is, the present disclosure provides the inventions of the following aspects.
From the outside, it is composed of a laminate having at least a surface coating layer, a base material layer, a barrier layer, and a thermosetting resin layer.
The surface coating layer contains resin and particles, and contains resin and particles.
An exterior material for a power storage device in which the hardness of the resin of the surface coating layer measured by the nanoindentation method with respect to the cross section in the thickness direction of the surface coating layer in an environment of 23 ° C. is 420.4 MPa or less.
 本開示によれば、蓄電デバイス用外装材の成形による表面被覆層の割れや剥がれの発生が抑制される、蓄電デバイス用外装材を提供することができる。また、本開示によれば、当該蓄電デバイス用外装材の製造方法、及び当該蓄電デバイス用外装材を利用した蓄電デバイスを提供することもできる。 According to the present disclosure, it is possible to provide an exterior material for a power storage device that suppresses the occurrence of cracking or peeling of the surface coating layer due to molding of the exterior material for the power storage device. Further, according to the present disclosure, it is also possible to provide a method for manufacturing the exterior material for the power storage device and a power storage device using the exterior material for the power storage device.
本開示の蓄電デバイス用外装材の断面構造の一例を示す模式図である。It is a schematic diagram which shows an example of the cross-sectional structure of the exterior material for a power storage device of this disclosure. 本開示の蓄電デバイス用外装材の断面構造の一例を示す模式図である。It is a schematic diagram which shows an example of the cross-sectional structure of the exterior material for a power storage device of this disclosure. 本開示の蓄電デバイス用外装材の断面構造の一例を示す模式図である。It is a schematic diagram which shows an example of the cross-sectional structure of the exterior material for a power storage device of this disclosure.
 本開示の蓄電デバイス用外装材は、外側から順に、少なくとも、表面被覆層、基材層、バリア層、及び熱融着性樹脂層を備える積層体から構成されており、表面被覆層は、樹脂及び粒子を含んでおり、23℃環境において、前記表面被覆層の厚み方向の断面について、ナノインデンテーション法により測定される前記表面被覆層の樹脂の硬さが、420.4MPa以下であることを特徴とする。本開示の蓄電デバイス用外装材は、当該構成を備えていることにより、蓄電デバイス用外装材の成形による表面被覆層の割れや剥がれの発生が抑制される。 The exterior material for a power storage device of the present disclosure is composed of a laminate having at least a surface coating layer, a base material layer, a barrier layer, and a thermosetting resin layer in this order from the outside, and the surface coating layer is a resin. The hardness of the resin of the surface coating layer measured by the nanoindentation method is 420.4 MPa or less with respect to the cross section in the thickness direction of the surface coating layer in an environment of 23 ° C. It is a feature. Since the exterior material for a power storage device of the present disclosure has such a configuration, the occurrence of cracking or peeling of the surface coating layer due to molding of the exterior material for a power storage device is suppressed.
 以下、本開示の蓄電デバイス用外装材について詳述する。なお、本明細書において、「~」で示される数値範囲は「以上」、「以下」を意味する。例えば、2~15mmとの表記は、2mm以上15mm以下を意味する。 Hereinafter, the exterior material for the power storage device of the present disclosure will be described in detail. In this specification, the numerical range indicated by "-" means "greater than or equal to" and "less than or equal to". For example, the notation of 2 to 15 mm means 2 mm or more and 15 mm or less.
1.蓄電デバイス用外装材の積層構造と物性
 本開示の蓄電デバイス用外装材10は、例えば図1から図3に示すように、外側から順に、表面被覆層6、基材層1、バリア層3、及び熱融着性樹脂層4を備える積層体から構成されている。蓄電デバイス用外装材10において、表面被覆層6が最外層になり、熱融着性樹脂層4は最内層になる。蓄電デバイス用外装材10と蓄電デバイス素子を用いて蓄電デバイスを組み立てる際に、蓄電デバイス用外装材10の熱融着性樹脂層4同士を対向させた状態で、周縁部を熱融着させることによって形成された空間に、蓄電デバイス素子が収容される。本開示の蓄電デバイス用外装材10を構成する積層体において、バリア層3を基準とし、バリア層3よりも熱融着性樹脂層4側が内側であり、バリア層3よりも表面被覆層6側が外側である。
1. 1. Laminated structure and physical properties of the exterior material for the power storage device The exterior material 10 for the power storage device of the present disclosure includes, for example, the surface coating layer 6, the base material layer 1, and the barrier layer 3 in this order from the outside, as shown in FIGS. 1 to 3. It is composed of a laminate including the heat-sealing resin layer 4 and the heat-sealing resin layer 4. In the exterior material 10 for a power storage device, the surface coating layer 6 is the outermost layer, and the thermosetting resin layer 4 is the innermost layer. When assembling a power storage device using the power storage device exterior material 10 and the power storage device element, the peripheral portion is heat-sealed with the thermosetting resin layers 4 of the power storage device exterior material 10 facing each other. The power storage device element is housed in the space formed by. In the laminate constituting the exterior material 10 for the power storage device of the present disclosure, the heat-sealing resin layer 4 side is inside the barrier layer 3 and the surface coating layer 6 side is more than the barrier layer 3 with the barrier layer 3 as a reference. It is the outside.
 蓄電デバイス用外装材10は、例えば図2から図3に示すように、基材層1とバリア層3との間に、これらの層間の接着性を高めることなどを目的として、必要に応じて接着剤層2を有していてもよい。また、図示を省略するが、基材層1とバリア層3との間には、着色層を有していてもよい。また、例えば図3に示すように、バリア層3と熱融着性樹脂層4との間に、これらの層間の接着性を高めることなどを目的として、必要に応じて接着層5を有していてもよい。 As shown in FIGS. 2 to 3, for example, the exterior material 10 for a power storage device is used, if necessary, for the purpose of enhancing the adhesiveness between the base material layer 1 and the barrier layer 3 and the like. It may have an adhesive layer 2. Further, although not shown, a colored layer may be provided between the base material layer 1 and the barrier layer 3. Further, for example, as shown in FIG. 3, an adhesive layer 5 is provided between the barrier layer 3 and the thermosetting resin layer 4 as necessary for the purpose of enhancing the adhesiveness between the layers. You may be.
 蓄電デバイス用外装材10を構成する積層体の厚みとしては、特に制限されないが、コスト削減、エネルギー密度向上等の観点からは、好ましくは約180μm以下、約160μm以下、約155μm以下、約140μm以下、約130μm以下、約120μm以下が挙げられ、蓄電デバイス素子を保護するという蓄電デバイス用外装材の機能を維持する観点からは、好ましくは約35μm以上、約45μm以上、約60μm以上、約80μm以上が挙げられ、好ましい範囲については、例えば、35~180μm程度、35~160μm程度、35~155μm程度、35~140μm程度、35~130μm程度、35~120μm程度、45~180μm程度、45~160μm程度、45~155μm程度、45~140μm程度、45~130μm程度、45~120μm程度、60~180μm程度、60~160μm程度、60~155μm程度、60~140μm程度、60~130μm程度、60~120μm程度、80~180μm程度、80~160μm程度、80~155μm程度、80~140μm程度、80~130μm程度、80~120μm程度が挙げられる。これらの中でも、80~130μm程度が特に好ましい。 The thickness of the laminate constituting the exterior material 10 for the power storage device is not particularly limited, but is preferably about 180 μm or less, about 160 μm or less, about 155 μm or less, about 140 μm or less from the viewpoint of cost reduction, energy density improvement, and the like. , About 130 μm or less, about 120 μm or less, and preferably about 35 μm or more, about 45 μm or more, about 60 μm or more, about 80 μm or more from the viewpoint of maintaining the function of the exterior material for the power storage device of protecting the power storage device element. The preferred range is, for example, about 35 to 180 μm, about 35 to 160 μm, about 35 to 155 μm, about 35 to 140 μm, about 35 to 130 μm, about 35 to 120 μm, about 45 to 180 μm, about 45 to 160 μm. , 45 to 155 μm, 45 to 140 μm, 45 to 130 μm, 45 to 120 μm, 60 to 180 μm, 60 to 160 μm, 60 to 155 μm, 60 to 140 μm, 60 to 130 μm, 60 to 120 μm. , About 80 to 180 μm, about 80 to 160 μm, about 80 to 155 μm, about 80 to 140 μm, about 80 to 130 μm, about 80 to 120 μm. Among these, about 80 to 130 μm is particularly preferable.
 本開示の蓄電デバイス用外装材10は、23℃環境において、表面被覆層6の厚み方向の断面について、ナノインデンテーション法により測定される前記表面被覆層の樹脂の硬さが、420.4MPa以下である。蓄電デバイス用外装材10においては、23℃環境において、表面被覆層6が前記の硬さを備えていることにより、蓄電デバイス用外装材の常温環境での成形による表面被覆層の割れや剥がれの発生が抑制されている。 In the exterior material 10 for a power storage device of the present disclosure, the hardness of the resin of the surface coating layer measured by the nanoindentation method is 420.4 MPa or less with respect to the cross section of the surface coating layer 6 in the thickness direction in an environment of 23 ° C. Is. In the exterior material 10 for a power storage device, the surface coating layer 6 has the above-mentioned hardness in an environment of 23 ° C., so that the surface coating layer is cracked or peeled off by molding the exterior material for a power storage device in a normal temperature environment. Occurrence is suppressed.
 蓄電デバイス用外装材の成形による表面被覆層の割れや剥がれの発生をより一層効果的に抑制する観点から、本開示の蓄電デバイス用外装材10は、23℃環境において、前記表面被覆層6の厚み方向の断面について、ナノインデンテーション法により測定される表面被覆層6の樹脂の硬さが、好ましくは約350.4MPa以下、さらに好ましくは約310.4MPa以下であり、また、好ましくは約20.0MPa以上、より好ましくは約22.5MPa以上、さらに好ましくは約25.5MPa以上、さらに好ましくは約50.0MPa以上、さらに好ましくは約100.0MPa以上、さらに好ましくは約150.0MPa以上であり、好ましい範囲としては、20.0~420.4MPa程度、20.0~350.4MPa程度、20.0~310.4MPa程度、22.5~420.4MPa程度、22.5~350.4MPa程度、22.5~310.4MPa程度、25.5~420.4MPa程度、25.5~350.4MPa程度、25.5~310.4MPa程度、50.0~420.4MPa程度、50.0~350.4MPa程度、50.0~310.4MPa程度、100.0~420.4MPa程度、100.0~350.4MPa程度、100.0~310.4MPa程度、150.0~420.4MPa程度、150.0~350.4MPa程度、150.0~310.4MPa程度が挙げられる。これらの中でも、150.0~310.4MPa程度が特に好ましい。なお、本発明において、成形性に優れるとは、より具体的には、蓄電デバイス用外装材10が成形されることによって、表面被覆層の艶消し調の意匠が損なわれることや常温成形により表面被覆層に割れや剥がれが発生することが、抑制されることを意味している。23℃環境でのナノインデンテーション法により測定される前記硬さは、以下のようにして測定される。 From the viewpoint of more effectively suppressing the occurrence of cracking and peeling of the surface coating layer due to the molding of the exterior material for the power storage device, the exterior material 10 for the power storage device of the present disclosure is the surface coating layer 6 in an environment of 23 ° C. With respect to the cross section in the thickness direction, the hardness of the resin of the surface coating layer 6 measured by the nanoindentation method is preferably about 350.4 MPa or less, more preferably about 310.4 MPa or less, and preferably about 20. It is 0.0 MPa or more, more preferably about 22.5 MPa or more, still more preferably about 25.5 MPa or more, still more preferably about 50.0 MPa or more, still more preferably about 100.0 MPa or more, still more preferably about 150.0 MPa or more. The preferred range is about 20.0 to 420.4 MPa, about 20.0 to 350.4 MPa, about 20.0 to 310.4 MPa, about 22.5 to 420.4 MPa, and about 22.5 to 350.4 MPa. , 22.5 to 310.4 MPa, 25.5 to 420.4 MPa, 25.5 to 350.4 MPa, 25.5 to 310.4 MPa, 50.0 to 420.4 MPa, 50.0 to About 350.4 MPa, about 50.0 to 310.4 MPa, about 100.0 to 420.4 MPa, about 100.0 to 350.4 MPa, about 100.0 to 310.4 MPa, about 150.0 to 420.4 MPa, Examples thereof include about 150.0 to 350.4 MPa and about 150.0 to 310.4 MPa. Among these, about 150.0 to 310.4 MPa is particularly preferable. In the present invention, excellent moldability means that, more specifically, the matte design of the surface coating layer is impaired by molding the exterior material 10 for a power storage device, and the surface is molded at room temperature. It means that the occurrence of cracks and peeling in the coating layer is suppressed. The hardness measured by the nanoindentation method in a 23 ° C. environment is measured as follows.
[23℃環境でのナノインデンテーション法により測定される硬さ]
 装置として、ナノインデンター(例えばHYSITRON(ハイジトロン)社製の「TI950 TriboIndenter」)を用いて硬さを測定する。ナノインデンターの圧子としては、Berkovich圧子(例えばTI-0039)を用いる。まず、相対湿度50%、23℃環境において、当該圧子を、蓄電デバイス用外装材の表面被覆層の表面(表面被覆層が露出している面であり、各層の厚み方向とは平行な面)に厚み方向とは垂直な方向から当て、10秒間かけて当該表面から荷重50μNまで圧子を表面被覆層に押し込み、その状態で5秒間保持し、次に10秒間かけて除荷する。測定箇所をずらして測定したN=5の平均値を硬さとする。なお、圧子を押し込む表面は、蓄電デバイス用外装材の中心部を通るように厚み方向に切断して得られた、表面被覆層の断面が露出した樹脂部分である。切断は、市販品の回転式ミクロトームを用いて行う。また、蓄電デバイスから蓄電デバイス用外装材を取得して試験サンプルを準備する場合、蓄電デバイスの天面や側面などの成形の影響が少ない箇所から蓄電デバイス用外装材を取得する。
[Hardness measured by nanoindentation method in 23 ° C environment]
Hardness is measured using a nanoindenter (for example, "TI950 TriboIndenter" manufactured by HYSITRON) as an apparatus. As the indenter of the nano indenter, a Berkovich indenter (for example, TI-0039) is used. First, in an environment with a relative humidity of 50% and 23 ° C., the indenter is applied to the surface of the surface coating layer of the exterior material for a power storage device (the surface on which the surface coating layer is exposed and parallel to the thickness direction of each layer). The indenter is pushed into the surface coating layer from the surface to a load of 50 μN over 10 seconds, held in that state for 5 seconds, and then unloaded over 10 seconds. The average value of N = 5 measured by shifting the measurement points is defined as the hardness. The surface on which the indenter is pushed is a resin portion having an exposed cross section of the surface coating layer obtained by cutting in the thickness direction so as to pass through the central portion of the exterior material for a power storage device. Cutting is performed using a commercially available rotary microtome. Further, when the exterior material for a power storage device is acquired from the power storage device and a test sample is prepared, the exterior material for the power storage device is acquired from a place such as the top surface or the side surface of the power storage device that is less affected by molding.
 23℃環境でのナノインデンテーション法により測定される前記硬さは、表面被覆層6を形成する樹脂組成物の組成(樹脂種類、含有量)や硬化条件、分子量、官能基の数、架橋密度、置換基の嵩高さなどによって調整することができる。 The hardness measured by the nanoindentation method in an environment of 23 ° C. is the composition (resin type, content), curing conditions, molecular weight, number of functional groups, and crosslink density of the resin composition forming the surface coating layer 6. , The bulkiness of the substituent can be adjusted.
2.蓄電デバイス用外装材を形成する各層
[表面被覆層6]
 本開示の蓄電デバイス用外装材10は、蓄電デバイス用外装材10の外側表面に艶消し調の意匠を付与することなどを目的として、基材層1の外側に表面被覆層6を有している。表面被覆層6は、蓄電デバイス用外装材10を用いて蓄電デバイスを組み立てた時に、蓄電デバイス用外装材10の最外層に位置する層である。
2. 2. Each layer forming the exterior material for the power storage device [Surface coating layer 6]
The exterior material 10 for a power storage device of the present disclosure has a surface coating layer 6 on the outside of the base material layer 1 for the purpose of imparting a matte design to the outer surface of the exterior material 10 for a power storage device. There is. The surface coating layer 6 is a layer located on the outermost layer of the exterior material 10 for a power storage device when the power storage device is assembled using the exterior material 10 for the power storage device.
 表面被覆層6は、樹脂及び粒子を含んでいる。粒子としては、無機粒子及び有機粒子が挙げられる。表面被覆層6に含まれる粒子は、1種類であってもよいし、2種類以上であってもよい。また、無機粒子と有機粒子を併用することも好ましい。また、粒子の形状についても、特に制限されず、例えば、球状、繊維状、板状、不定形、鱗片状などが挙げられる。 The surface coating layer 6 contains resin and particles. Examples of the particles include inorganic particles and organic particles. The particles contained in the surface coating layer 6 may be of one type or two or more types. It is also preferable to use inorganic particles and organic particles in combination. The shape of the particles is also not particularly limited, and examples thereof include spherical, fibrous, plate-like, amorphous, and scaly.
 粒子の平均粒子径としては、特に制限されないが、蓄電デバイス用外装材10を艶消し調の意匠とする観点から、例えば0.01~5μm程度が挙げられる。粒子の平均粒子径は、レーザ回折/散乱式粒子径分布測定装置で測定されたメジアン径とする。粒子の平均粒子径は、表面被覆層6の厚み以下が好ましい。 The average particle size of the particles is not particularly limited, but from the viewpoint of making the exterior material 10 for a power storage device a matte design, for example, about 0.01 to 5 μm can be mentioned. The average particle size of the particles is the median size measured by a laser diffraction / scattering type particle size distribution measuring device. The average particle size of the particles is preferably equal to or less than the thickness of the surface coating layer 6.
 無機粒子としては、表面被覆層6を艶消し調とすることができれば、特に制限されず、例えば、シリカ、タルク、グラファイト、カオリン、モンモリロナイト、マイカ、ハイドロタルサイト、シリカゲル、ゼオライト、水酸化アルミニウム、水酸化マグネシウム、酸化亜鉛、酸化マグネシウム、酸化アルミニウム、酸化ネオジウム、酸化アンチモン、酸化チタン、酸化セリウム、硫酸カルシウム、硫酸バリウム、炭酸カルシウム、ケイ酸カルシウム、炭酸リチウム、安息香酸カルシウム、シュウ酸カルシウム、ステアリン酸マグネシウム、アルミナ、カーボンブラック、カーボンナノチューブ、金、アルミニウム、銅、ニッケルなどの粒子が挙げられる。これらの中でも、シリカ粒子が特に好ましい。 The inorganic particles are not particularly limited as long as the surface coating layer 6 can be made matte, and for example, silica, talc, graphite, kaolin, montmorillonite, mica, hydrotalcite, silica gel, zeolite, aluminum hydroxide, etc. Magnesium hydroxide, zinc oxide, magnesium oxide, aluminum oxide, neodium oxide, antimony oxide, titanium oxide, cerium oxide, calcium sulfate, barium sulfate, calcium carbonate, calcium silicate, lithium carbonate, calcium benzoate, calcium oxalate, stearer Particles such as magnesium acid, alumina, carbon black, carbon nanotubes, gold, aluminum, copper and nickel can be mentioned. Among these, silica particles are particularly preferable.
 また、有機粒子としては、表面被覆層6を艶消し調とすることができれば、特に制限されず、ナイロン、ポリアクリレート、ポリスチレン、スチレン-アクリル共重合体、ポリエチレン、ベンゾグアナミン、またはこれらの架橋物などの粒子が挙げられる。 The organic particles are not particularly limited as long as the surface coating layer 6 can be made matte, such as nylon, polyacrylate, polystyrene, styrene-acrylic copolymer, polyethylene, benzoguanamine, or crosslinked products thereof. Particles can be mentioned.
 前記の[23℃環境でのナノインデンテーション法により測定される硬さ]の測定において、圧子を押し込む表面を、蓄電デバイス用外装材の中心部を通るようにして厚み方向に切断して得られた、表面被覆層の断面が露出した有機粒子が存在している箇所とすることにより、表面被覆層6に含まれる有機粒子の硬さを測定することもできる。蓄電デバイス用外装材の成形による表面被覆層の割れや剥がれの発生をより一層効果的に抑制する観点から、このようにして測定される有機粒子の硬さとしては、好ましくは約300.0MPa以上、より好ましくは約400.0MPa以上であり、また、好ましくは約1500.4MPa以下、より好ましくは約1000.4MPa以下、さらに好ましくは約600.4MPa以下であり、好ましい範囲としては、300.0~1500.4MPa程度、300.0~1000.4MPa程度、300.0~600.4MPa程度、400.0~1500.4MPa程度、400.0~1000.4MPa程度、400.0~600.4MPa程度が挙げられ、これらの中でも、400.0~600.4MPa程度が特に好ましい。 In the above-mentioned measurement of [hardness measured by the nanoindentation method in a 23 ° C. environment], the surface on which the indenter is pushed is cut in the thickness direction so as to pass through the central portion of the exterior material for a power storage device. Further, the hardness of the organic particles contained in the surface coating layer 6 can be measured by setting the cross section of the surface coating layer as a place where the exposed organic particles are present. From the viewpoint of more effectively suppressing the occurrence of cracking and peeling of the surface coating layer due to the molding of the exterior material for the power storage device, the hardness of the organic particles measured in this way is preferably about 300.0 MPa or more. , More preferably about 400.0 MPa or more, preferably about 1500.4 MPa or less, more preferably about 1000.4 MPa or less, still more preferably about 600.4 MPa or less, and the preferred range is 300.0 MPa or less. ~ 1500.4 MPa, 300.0 ~ 1000.4 MPa, 300.0 ~ 600.4 MPa, 400.0 ~ 1500.4 MPa, 400.0 ~ 1000.4 MPa, 400.0 ~ 600.4 MPa Among these, about 400.0 to 600.4 MPa is particularly preferable.
 表面被覆層6に含まれる粒子の含有量としては、23℃環境でのナノインデンテーション法により測定される前記硬さが420.4MPa以下となることを限度として、特に制限されないが、表面被覆層6を形成する樹脂組成物中の樹脂100質量部に対して、好ましくは約3質量部以上、より好ましくは約10質量部以上であり、また、好ましくは約30質量部以下、より好ましくは約20質量部以下であり、好ましい範囲としては、3~30質量部程度、3~20質量部程度、10~30質量部程度、10~20質量部程度が挙げられる。 The content of the particles contained in the surface coating layer 6 is not particularly limited as long as the hardness measured by the nanoindentation method in an environment of 23 ° C. is 420.4 MPa or less, but the surface coating layer is not particularly limited. With respect to 100 parts by mass of the resin in the resin composition forming 6, it is preferably about 3 parts by mass or more, more preferably about 10 parts by mass or more, and preferably about 30 parts by mass or less, more preferably about about. It is 20 parts by mass or less, and preferred ranges include about 3 to 30 parts by mass, about 3 to 20 parts by mass, about 10 to 30 parts by mass, and about 10 to 20 parts by mass.
 表面被覆層6に存在する粒子の量が多すぎると、樹脂と粒子の境界の密着が弱く、境界からクラックが生じやすくなるため、粒子の含有量は少量となるように調整することが好ましい。 If the amount of particles present in the surface coating layer 6 is too large, the adhesion between the resin and the particle boundary is weak and cracks are likely to occur from the boundary. Therefore, it is preferable to adjust the particle content to be small.
 表面被覆層6を形成する樹脂組成物に含まれる樹脂としては、23℃環境でのナノインデンテーション法により測定される前記硬さが420.4MPa以下となることを限度として、特に制限されないが、好ましくは硬化性樹脂である。すなわち、表面被覆層6は、硬化性樹脂と粒子を含む樹脂組成物の硬化物から構成されていることが好ましい。樹脂の具体例としては、例えば、ポリ塩化ビニリデン、ポリエステル、ポリアミド、エポキシ樹脂、アクリル樹脂、フッ素樹脂、ポリウレタン、珪素樹脂、フェノール樹脂などの樹脂や、これらの樹脂の変性物が挙げられる。また、これらの樹脂の共重合物であってもよいし、共重合物の変性物であってもよい。さらに、これらの樹脂の混合物であってもよい。樹脂は、好ましくは硬化性樹脂である。 The resin contained in the resin composition forming the surface coating layer 6 is not particularly limited as long as the hardness measured by the nanoindentation method in an environment of 23 ° C. is 420.4 MPa or less. A curable resin is preferable. That is, the surface coating layer 6 is preferably composed of a cured product of a resin composition containing a curable resin and particles. Specific examples of the resin include resins such as polyvinylidene chloride, polyester, polyamide, epoxy resin, acrylic resin, fluororesin, polyurethane, silicon resin, and phenol resin, and modified products of these resins. Further, it may be a copolymer of these resins, or it may be a modified product of the copolymer. Further, it may be a mixture of these resins. The resin is preferably a curable resin.
 硬化性樹脂は、1液硬化型及び2液硬化型のいずれであってもよいが、好ましくは2液硬化型である。2液硬化型樹脂としては、例えば、2液硬化型ポリウレタン、2液硬化型ポリエステル、2液硬化型エポキシ樹脂などが挙げられる。これらの中でも2液硬化型ポリウレタンが好ましい。 The curable resin may be either a one-component curing type or a two-component curing type, but is preferably a two-component curing type. Examples of the two-component curable resin include two-component curable polyurethane, two-component curable polyester, and two-component curable epoxy resin. Of these, two-component curable polyurethane is preferable.
 2液硬化型ポリウレタンとしては、例えば、ポリオール化合物を含有する主剤と、イソシアネート化合物を含有する硬化剤とを含むポリウレタンが挙げられる。好ましくはポリエステルポリオール、ポリエーテルポリオール、およびアクリルポリオール等のポリオールを主剤として、芳香族系又は脂肪族系のポリイソシアネートを硬化剤とした二液硬化型のポリウレタンが挙げられる。また、ポリオール化合物としては、繰り返し単位の末端の水酸基に加えて、側鎖にも水酸基を有するポリエステルポリオールを用いることが好ましい。硬化剤としては、脂肪族、脂環式、芳香族、芳香脂肪族のイソシアネート系化合物が挙げられる。イソシアネート系化合物としては、例えばヘキサメチレンジイソシアネート(HDI)、キシリレンジイソシアネート(XDI)、イソホロンジイソシアネート(IPDI)、水素化XDI(H6XDI)、水素化MDI(H12MDI)、トリレンジイソシアネート(TDI)、ジフェニルメタンジイソシアネート(MDI)、ナフタレンジイソシアネート(NDI)等が挙げられる。また、これらのジイソシアネートの1種類又は2種類以上からの多官能イソシアネート変性体等が挙げられる。また、ポリイソシアネート化合物として多量体(例えば三量体)を使用することもできる。このような多量体には、アダクト体、ビウレット体、ヌレート体等が挙げられる。なお、脂肪族イソシアネート系化合物とは脂肪族基を有し芳香環を有さないイソシアネートを指し、脂環式イソシアネート系化合物とは脂環式炭化水素基を有するイソシアネートを指し、芳香族イソシアネート系化合物とは芳香環を有するイソシアネートを指す。 Examples of the two-component curable polyurethane include polyurethane containing a main agent containing a polyol compound and a curing agent containing an isocyanate compound. Preferred are two-component curable polyurethanes in which a polyol such as a polyester polyol, a polyether polyol, and an acrylic polyol is used as a main component, and an aromatic or aliphatic polyisocyanate is used as a curing agent. Further, as the polyol compound, it is preferable to use a polyester polyol having a hydroxyl group in the side chain in addition to the hydroxyl group at the end of the repeating unit. Examples of the curing agent include aliphatic, alicyclic, aromatic, and aromatic aliphatic isocyanate compounds. Examples of isocyanate-based compounds include hexamethylene diisocyanate (HDI), xylylene diisocyanate (XDI), isophorone diisocyanate (IPDI), hydrogenated XDI (H6XDI), hydrogenated MDI (H12MDI), tolylene diisocyanate (TDI), and diphenylmethane diisocyanate. (MDI), naphthalenediocyanate (NDI) and the like. Moreover, a polyfunctional isocyanate modified product from one kind or two or more kinds of these diisocyanates and the like can be mentioned. Further, a multimer (for example, a trimer) can be used as the polyisocyanate compound. Examples of such a multimer include an adduct body, a biuret body, a nurate body and the like. The aliphatic isocyanate-based compound refers to an isocyanate having an aliphatic group and no aromatic ring, and the alicyclic isocyanate-based compound refers to an isocyanate having an alicyclic hydrocarbon group, which is an aromatic isocyanate-based compound. Refers to an isocyanate having an aromatic ring.
 表面被覆層6を形成する樹脂組成物において、樹脂がポリオール化合物を含有する主剤と、イソシアネート化合物を含有する硬化剤とを含むポリウレタンである場合、例えば、主剤と硬化剤との比率を調整することで、23℃環境でのナノインデンテーション法により測定される前記硬さを調整することもできる。 In the resin composition forming the surface coating layer 6, when the resin is a polyurethane containing a main agent containing a polyol compound and a curing agent containing an isocyanate compound, for example, the ratio of the main agent and the curing agent is adjusted. Therefore, the hardness measured by the nanoindentation method in a 23 ° C. environment can also be adjusted.
 表面被覆層6の表面及び内部の少なくとも一方には、該表面被覆層6やその表面に備えさせるべき機能性等に応じて、必要に応じて、後述する滑剤や着色剤、アンチブロッキング剤、難燃剤、酸化防止剤、粘着付与剤、耐電防止剤、ワックス等の添加剤をさらに含んでいてもよい。 On at least one of the surface and the inside of the surface coating layer 6, depending on the functionality and the like to be provided on the surface coating layer 6 and the surface thereof, if necessary, a lubricant, a colorant, an antiblocking agent, and a difficulty described later will be provided. Additives such as flame retardants, antioxidants, tackifiers, antistatic agents, waxes and the like may be further included.
 表面被覆層6が着色剤を含む場合、着色剤としては、顔料、染料などの公知のものが使用できる。また、着色剤は、1種類のみを用いてもよいし、2種類以上を混合して用いてもよい。表面被覆層6に含まれる着色剤の具体例としては、[接着剤層2]の欄で例示するものと同じものが例示される。また、表面被覆層6に含まれる着色剤の好ましい含有量についても、[接着剤層2]の欄で記載する含有量と同じである。 When the surface coating layer 6 contains a colorant, known colorants such as pigments and dyes can be used as the colorant. Further, only one type of colorant may be used, or two or more types may be mixed and used. Specific examples of the colorant contained in the surface coating layer 6 include the same as those exemplified in the column of [Adhesive layer 2]. Further, the preferable content of the colorant contained in the surface coating layer 6 is the same as the content described in the column of [Adhesive layer 2].
 表面被覆層6を形成する方法としては、特に制限されず、例えば、表面被覆層6を形成する樹脂組成物を塗布する方法が挙げられる。表面被覆層6に添加剤を配合する場合には、添加剤を混合した樹脂を塗布すればよい。 The method for forming the surface coating layer 6 is not particularly limited, and examples thereof include a method of applying a resin composition for forming the surface coating layer 6. When an additive is blended in the surface coating layer 6, a resin mixed with the additive may be applied.
 表面被覆層6に存在する添加剤の量が多すぎると、樹脂と添付剤の境界の密着が弱く、境界からクラックが生じやすくなるため、添加剤の含有量は必要最低限に調整することが好ましい。 If the amount of the additive present in the surface coating layer 6 is too large, the adhesion between the resin and the attachment is weak and cracks are likely to occur from the boundary. Therefore, the content of the additive should be adjusted to the minimum necessary. preferable.
 表面被覆層6の厚みとしては、蓄電デバイス用外装材の成形による表面被覆層の割れや剥がれの発生をより一層効果的に抑制する観点から、好ましくは0.5μm以上、より好ましくは1μm以上であり、また、好ましくは10μm以下、より好ましくは5μm以下であり、好ましい範囲としては、0.5~10μm程度、0.5~5μm程度、1~10μm程度、1~5μm程度が挙げられる。 The thickness of the surface coating layer 6 is preferably 0.5 μm or more, more preferably 1 μm or more, from the viewpoint of more effectively suppressing the occurrence of cracking and peeling of the surface coating layer due to molding of the exterior material for the power storage device. Yes, it is preferably 10 μm or less, more preferably 5 μm or less, and preferred ranges include about 0.5 to 10 μm, about 0.5 to 5 μm, about 1 to 10 μm, and about 1 to 5 μm.
 本開示において、蓄電デバイス用外装材の成形性を高める観点からは、表面被覆層6の表面には、滑剤が存在していることが好ましい。滑剤としては、特に制限されないが、好ましくはアミド系滑剤が挙げられる。アミド系滑剤の具体例としては、例えば、飽和脂肪酸アミド、不飽和脂肪酸アミド、置換アミド、メチロールアミド、飽和脂肪酸ビスアミド、不飽和脂肪酸ビスアミド、脂肪酸エステルアミド、芳香族ビスアミドなどが挙げられる。飽和脂肪酸アミドの具体例としては、ラウリン酸アミド、パルミチン酸アミド、ステアリン酸アミド、ベヘン酸アミド、ヒドロキシステアリン酸アミドなどが挙げられる。不飽和脂肪酸アミドの具体例としては、オレイン酸アミド、エルカ酸アミドなどが挙げられる。置換アミドの具体例としては、N-オレイルパルミチン酸アミド、N-ステアリルステアリン酸アミド、N-ステアリルオレイン酸アミド、N-オレイルステアリン酸アミド、N-ステアリルエルカ酸アミドなどが挙げられる。また、メチロールアミドの具体例としては、メチロールステアリン酸アミドなどが挙げられる。飽和脂肪酸ビスアミドの具体例としては、メチレンビスステアリン酸アミド、エチレンビスカプリン酸アミド、エチレンビスラウリン酸アミド、エチレンビスステアリン酸アミド、エチレンビスヒドロキシステアリン酸アミド、エチレンビスベヘン酸アミド、ヘキサメチレンビスステアリン酸アミド、ヘキサメチレンビスベヘン酸アミド、ヘキサメチレンヒドロキシステアリン酸アミド、N,N’-ジステアリルアジピン酸アミド、N,N’-ジステアリルセバシン酸アミドなどが挙げられる。不飽和脂肪酸ビスアミドの具体例としては、エチレンビスオレイン酸アミド、エチレンビスエルカ酸アミド、ヘキサメチレンビスオレイン酸アミド、N,N’-ジオレイルアジピン酸アミド、N,N’-ジオレイルセバシン酸アミドなどが挙げられる。脂肪酸エステルアミドの具体例としては、ステアロアミドエチルステアレートなどが挙げられる。また、芳香族ビスアミドの具体例としては、m-キシリレンビスステアリン酸アミド、m-キシリレンビスヒドロキシステアリン酸アミド、N,N’-ジステアリルイソフタル酸アミドなどが挙げられる。滑剤は、1種類単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。 In the present disclosure, from the viewpoint of enhancing the moldability of the exterior material for the power storage device, it is preferable that the lubricant is present on the surface of the surface coating layer 6. The lubricant is not particularly limited, but an amide-based lubricant is preferable. Specific examples of the amide-based lubricant include saturated fatty acid amides, unsaturated fatty acid amides, substituted amides, methylol amides, saturated fatty acid bisamides, unsaturated fatty acid bisamides, fatty acid ester amides, and aromatic bisamides. Specific examples of the saturated fatty acid amide include lauric acid amide, palmitic acid amide, stearic acid amide, bechenic acid amide, hydroxystearic acid amide and the like. Specific examples of the unsaturated fatty acid amide include oleic acid amide and erucic acid amide. Specific examples of the substituted amide include N-oleyl palmitic acid amide, N-stearyl stearic acid amide, N-stearyl oleic acid amide, N-oleyl stearic acid amide, N-stearyl erucate amide and the like. Further, specific examples of methylolamide include methylolstearic acid amide. Specific examples of the saturated fatty acid bisamide include methylene bisstearic acid amide, ethylene biscapric acid amide, ethylene bislauric acid amide, ethylene bisstearic acid amide, ethylene bishydroxystearic acid amide, ethylene bisbechenic acid amide, and hexamethylene bisstearate. Examples thereof include acid amides, hexamethylene bisbechenic acid amides, hexamethylene hydroxystearic acid amides, N, N'-distearyl adipate amides, and N, N'-distealyl sebasic acid amides. Specific examples of unsaturated fatty acid bisamides include ethylene bisoleic acid amide, ethylene biserucic acid amide, hexamethylene bisoleic acid amide, N, N'-diorail adipate amide, and N, N'-diorail sebacic acid amide. And so on. Specific examples of the fatty acid ester amide include stearoamide ethyl stearate and the like. Specific examples of the aromatic bisamide include m-xylylene bisstearic acid amide, m-xylylene bishydroxystearic acid amide, and N, N'-distearyl isophthalic acid amide. One type of lubricant may be used alone, or two or more types may be used in combination.
 表面被覆層6の表面に滑剤が存在する場合、その存在量としては、特に制限されないが、好ましくは約3mg/m2以上、より好ましくは4~15mg/m2程度、さらに好ましくは5~14mg/m2程度が挙げられる。 When the lubricant is present on the surface of the surface coating layer 6, the abundance thereof is not particularly limited, but is preferably about 3 mg / m 2 or more, more preferably about 4 to 15 mg / m 2 , and further preferably 5 to 14 mg. / M 2 is mentioned.
 表面被覆層6の表面に存在する滑剤は、表面被覆層6に含まれる滑剤を滲出させたものであってもよいし、表面被覆層6の表面に滑剤を塗布したものであってもよい。 The lubricant existing on the surface of the surface coating layer 6 may be one in which the lubricant contained in the surface coating layer 6 is exuded, or may be one in which the lubricant is applied to the surface of the surface coating layer 6.
[基材層1]
 本開示において、基材層1は、蓄電デバイス用外装材の基材としての機能を発揮させることなどを目的として設けられる層である。基材層1は、蓄電デバイス用外装材10の表面被覆層6とバリア層3との間に位置する。また、接着剤層2を有する場合には、表面被覆層6と接着剤層2との間に位置する。
[Base material layer 1]
In the present disclosure, the base material layer 1 is a layer provided for the purpose of exerting a function as a base material of an exterior material for a power storage device. The base material layer 1 is located between the surface coating layer 6 and the barrier layer 3 of the exterior material 10 for a power storage device. When the adhesive layer 2 is provided, it is located between the surface coating layer 6 and the adhesive layer 2.
 基材層1を形成する素材については、基材としての機能、すなわち少なくとも絶縁性を備えるものであることを限度として特に制限されない。基材層1は、例えば樹脂を用いて形成することができ、樹脂には後述の添加剤が含まれていてもよい。 The material forming the base material layer 1 is not particularly limited as long as it has a function as a base material, that is, at least an insulating property. The base material layer 1 can be formed using, for example, a resin, and the resin may contain an additive described later.
 基材層1が樹脂により形成されている場合、基材層1は、例えば、樹脂により形成された樹脂フィルムであってもよいし、樹脂を塗布して形成したものであってもよい。樹脂フィルムは、未延伸フィルムであってもよいし、延伸フィルムであってもよい。延伸フィルムとしては、一軸延伸フィルム、二軸延伸フィルムが挙げられ、二軸延伸フィルムが好ましい。二軸延伸フィルムを形成する延伸方法としては、例えば、逐次二軸延伸法、インフレーション法、同時二軸延伸法等が挙げられる。樹脂を塗布する方法としては、ロールコーティング法、グラビアコーティング法、押出コーティング法などが挙げられる。 When the base material layer 1 is made of resin, the base material layer 1 may be, for example, a resin film formed of resin or may be formed by applying a resin. The resin film may be an unstretched film or a stretched film. Examples of the stretched film include a uniaxially stretched film and a biaxially stretched film, and a biaxially stretched film is preferable. Examples of the stretching method for forming the biaxially stretched film include a sequential biaxial stretching method, an inflation method, and a simultaneous biaxial stretching method. Examples of the method for applying the resin include a roll coating method, a gravure coating method, and an extrusion coating method.
 基材層1を形成する樹脂としては、例えば、ポリエステル、ポリアミド、ポリオレフィン、エポキシ樹脂、アクリル樹脂、フッ素樹脂、ポリウレタン、珪素樹脂、フェノール樹脂などの樹脂や、これらの樹脂の変性物が挙げられる。また、基材層1を形成する樹脂は、これらの樹脂の共重合物であってもよいし、共重合物の変性物であってもよい。さらに、これらの樹脂の混合物であってもよい。 Examples of the resin forming the base material layer 1 include resins such as polyester, polyamide, polyolefin, epoxy resin, acrylic resin, fluororesin, polyurethane, silicon resin, and phenol resin, and modified products of these resins. Further, the resin forming the base material layer 1 may be a copolymer of these resins, or may be a modified product of the copolymer. Further, it may be a mixture of these resins.
 基材層1を形成する樹脂としては、これらの中でも、好ましくはポリエステル、ポリアミドが挙げられる。 Among these, preferable examples of the resin forming the base material layer 1 include polyester and polyamide.
 ポリエステルとしては、具体的には、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリエチレンイソフタレート、共重合ポリエステル等が挙げられる。また、共重合ポリエステルとしては、エチレンテレフタレートを繰り返し単位の主体とした共重合ポリエステル等が挙げられる。具体的には、エチレンテレフタレートを繰り返し単位の主体としてエチレンイソフタレートと重合する共重合体ポリエステル(以下、ポリエチレン(テレフタレート/イソフタレート)にならって略す)、ポリエチレン(テレフタレート/アジペート)、ポリエチレン(テレフタレート/ナトリウムスルホイソフタレート)、ポリエチレン(テレフタレート/ナトリウムイソフタレート)、ポリエチレン(テレフタレート/フェニル-ジカルボキシレート)、ポリエチレン(テレフタレート/デカンジカルボキシレート)等が挙げられる。これらのポリエステルは、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。 Specific examples of the polyester include polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, polyethylene isophthalate, and copolymerized polyester. Further, examples of the copolymerized polyester include a copolymerized polyester containing ethylene terephthalate as a repeating unit. Specifically, a copolymer polyester (hereinafter abbreviated after polyethylene (terephthalate / isophthalate)), polyethylene (terephthalate / adipate), polyethylene (terephthalate / terephthalate /), which polymerizes with ethylene isophthalate using ethylene terephthalate as a repeating unit as a main component. (Sodium sulfoisophthalate), polyethylene (terephthalate / sodium isophthalate), polyethylene (terephthalate / phenyl-dicarboxylate), polyethylene (terephthalate / decandicarboxylate) and the like. These polyesters may be used alone or in combination of two or more.
 また、ポリアミドとしては、具体的には、ナイロン6、ナイロン66、ナイロン610、ナイロン12、ナイロン46、ナイロン6とナイロン66との共重合体等の脂肪族ポリアミド;テレフタル酸及び/又はイソフタル酸に由来する構成単位を含むナイロン6I、ナイロン6T、ナイロン6IT、ナイロン6I6T(Iはイソフタル酸、Tはテレフタル酸を表す)等のヘキサメチレンジアミン-イソフタル酸-テレフタル酸共重合ポリアミド、ポリアミドMXD6(ポリメタキシリレンアジパミド)等の芳香族を含むポリアミド;ポリアミドPACM6(ポリビス(4-アミノシクロヘキシル)メタンアジパミド)等の脂環式ポリアミド;さらにラクタム成分や、4,4’-ジフェニルメタン-ジイソシアネート等のイソシアネート成分を共重合させたポリアミド、共重合ポリアミドとポリエステルやポリアルキレンエーテルグリコールとの共重合体であるポリエステルアミド共重合体やポリエーテルエステルアミド共重合体;これらの共重合体等のポリアミドが挙げられる。これらのポリアミドは、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。 Further, as the polyamide, specifically, an aliphatic polyamide such as nylon 6, nylon 66, nylon 610, nylon 12, nylon 46, a copolymer of nylon 6 and nylon 66; terephthalic acid and / or isophthalic acid. Hexamethylenediamine-isophthalic acid-terephthalic acid copolymerized polyamide such as nylon 6I, nylon 6T, nylon 6IT, nylon 6I6T (I stands for isophthalic acid, T stands for terephthalic acid), polyamide MXD6 (polymethaki) containing the derived structural units. Polyamide containing aromatics such as silylene adipamide); Alicyclic polyamide such as polyamide PACM6 (polybis (4-aminocyclohexyl) methaneadipamide); Further, lactam component and isocyanate component such as 4,4'-diphenylmethane-diisocyanate Examples thereof include a copolymerized polyamide, a polyesteramide copolymer or a polyether esteramide copolymer which is a copolymer of a copolymerized polyamide and a polyester or a polyalkylene ether glycol; and a polyamide such as these copolymers. These polyamides may be used alone or in combination of two or more.
 基材層1は、ポリエステルフィルム、ポリアミドフィルム、及びポリオレフィンフィルムのうち少なくとも1つを含むことが好ましく、延伸ポリエステルフィルム、及び延伸ポリアミドフィルム、及び延伸ポリオレフィンフィルムのうち少なくとも1つを含むことが好ましく、延伸ポリエチレンテレフタレートフィルム、延伸ポリブチレンテレフタレートフィルム、延伸ナイロンフィルム、延伸ポリプロピレンフィルムのうち少なくとも1つを含むことがさらに好ましく、二軸延伸ポリエチレンテレフタレートフィルム、二軸延伸ポリブチレンテレフタレートフィルム、二軸延伸ナイロンフィルム、二軸延伸ポリプロピレンフィルムのうち少なくとも1つを含むことがさらに好ましい。 The base material layer 1 preferably contains at least one of a polyester film, a polyamide film, and a polyolefin film, and preferably contains at least one of a stretched polyester film, a stretched polypropylene film, and a stretched polyolefin film. It is more preferable to contain at least one of a stretched polyethylene terephthalate film, a stretched polybutylene terephthalate film, a stretched nylon film, and a stretched polypropylene film, preferably a biaxially stretched polyethylene terephthalate film, a biaxially stretched polybutylene terephthalate film, and a biaxially stretched nylon film. , It is more preferable to contain at least one of the biaxially stretched polypropylene films.
 基材層1は、単層であってもよいし、2層以上により構成されていてもよい。基材層1が2層以上により構成されている場合、基材層1は、樹脂フィルムを接着剤などで積層させた積層体であってもよいし、樹脂を共押出しして2層以上とした樹脂フィルムの積層体であってもよい。また、樹脂を共押出しして2層以上とした樹脂フィルムの積層体を、未延伸のまま基材層1としてもよいし、一軸延伸または二軸延伸して基材層1としてもよい。 The base material layer 1 may be a single layer or may be composed of two or more layers. When the base material layer 1 is composed of two or more layers, the base material layer 1 may be a laminated body in which a resin film is laminated with an adhesive or the like, or the resin is co-extruded to form two or more layers. It may be a laminated body of the resin film. Further, the laminated body of the resin film obtained by co-extruding the resin into two or more layers may be used as the base material layer 1 without being stretched, or may be uniaxially stretched or biaxially stretched as the base material layer 1.
 基材層1において、2層以上の樹脂フィルムの積層体の具体例としては、ポリエステルフィルムとナイロンフィルムとの積層体、2層以上のナイロンフィルムの積層体、2層以上のポリエステルフィルムの積層体などが挙げられ、好ましくは、延伸ナイロンフィルムと延伸ポリエステルフィルムとの積層体、2層以上の延伸ナイロンフィルムの積層体、2層以上の延伸ポリエステルフィルムの積層体が好ましい。例えば、基材層1が2層の樹脂フィルムの積層体である場合、ポリエステル樹脂フィルムとポリエステル樹脂フィルムの積層体、ポリアミド樹脂フィルムとポリアミド樹脂フィルムの積層体、またはポリエステル樹脂フィルムとポリアミド樹脂フィルムの積層体が好ましく、ポリエチレンテレフタレートフィルムとポリエチレンテレフタレートフィルムの積層体、ナイロンフィルムとナイロンフィルムの積層体、またはポリエチレンテレフタレートフィルムとナイロンフィルムの積層体がより好ましい。また、ポリエステル樹脂は、例えば電解液が表面に付着した際に変色し難いことなどから、基材層1が2層以上の樹脂フィルムの積層体である場合、ポリエステル樹脂フィルムが基材層1の最も外側に位置することが好ましい。 Specific examples of the laminate of two or more layers of resin film in the base material layer 1 include a laminate of a polyester film and a nylon film, a laminate of two or more layers of nylon film, and a laminate of two or more layers of polyester film. And the like, preferably, a laminate of a stretched nylon film and a stretched polyester film, a laminate of two or more layers of stretched nylon film, and a laminate of two or more layers of stretched polyester film are preferable. For example, when the base material layer 1 is a laminate of two layers of resin film, a laminate of polyester resin film and polyester resin film, a laminate of polyamide resin film and polyamide resin film, or a laminate of polyester resin film and polyamide resin film. A laminate is preferable, and a laminate of a polyethylene terephthalate film and a polyethylene terephthalate film, a laminate of a nylon film and a nylon film, or a laminate of a polyethylene terephthalate film and a nylon film is more preferable. Further, since the polyester resin is difficult to discolor when the electrolytic solution adheres to the surface, for example, when the base material layer 1 is a laminate of two or more resin films, the polyester resin film is the base material layer 1. It is preferably located on the outermost side.
 基材層1が、2層以上の樹脂フィルムの積層体である場合、2層以上の樹脂フィルムは、接着剤を介して積層させてもよい。好ましい接着剤については、後述の接着剤層2で例示する接着剤と同様のものが挙げられる。なお、2層以上の樹脂フィルムを積層させる方法としては、特に制限されず、公知方法が採用でき、例えばドライラミネート法、サンドイッチラミネート法、押出ラミネート法、サーマルラミネート法などが挙げられ、好ましくはドライラミネート法が挙げられる。ドライラミネート法により積層させる場合には、接着剤としてポリウレタン接着剤を用いることが好ましい。このとき、接着剤の厚みとしては、例えば2~5μm程度が挙げられる。また、樹脂フィルムにアンカーコート層を形成し積層させても良い。アンカーコート層は、後述の接着剤層2で例示する接着剤と同様のものが挙げられる。このとき、アンカーコート層の厚みとしては、例えば0.01から1.0μm程度が挙げられる。 When the base material layer 1 is a laminated body of two or more layers of resin films, the two or more layers of resin films may be laminated via an adhesive. Preferred adhesives include those similar to the adhesives exemplified in the adhesive layer 2 described later. The method of laminating two or more layers of resin films is not particularly limited, and known methods can be adopted. Examples thereof include a dry laminating method, a sandwich laminating method, an extrusion laminating method, and a thermal laminating method, and a dry laminating method is preferable. The laminating method can be mentioned. When laminating by the dry laminating method, it is preferable to use a polyurethane adhesive as the adhesive. At this time, the thickness of the adhesive is, for example, about 2 to 5 μm. Further, an anchor coat layer may be formed on the resin film and laminated. Examples of the anchor coat layer include the same adhesives as those exemplified in the adhesive layer 2 described later. At this time, the thickness of the anchor coat layer is, for example, about 0.01 to 1.0 μm.
 また、基材層1の表面及び内部の少なくとも一方には、滑剤、難燃剤、アンチブロッキング剤、酸化防止剤、光安定剤、粘着付与剤、耐電防止剤等の添加剤が存在していてもよい。添加剤は、1種類のみを用いてもよいし、2種類以上を混合して用いてもよい。 Further, even if additives such as a lubricant, a flame retardant, an antiblocking agent, an antioxidant, a light stabilizer, a tackifier, and an antistatic agent are present on at least one of the surface and the inside of the base material layer 1. Good. Only one type of additive may be used, or two or more types may be mixed and used.
 基材層1の厚みについては、基材としての機能を発揮すれば特に制限されないが、例えば、3~50μm程度、3~35μm程度、3~25μm程度が挙げられる。基材層1が、2層以上の樹脂フィルムの積層体である場合、各層を構成している樹脂フィルムの厚みとしては、それぞれ、好ましくは2~25μm程度が挙げられる。 The thickness of the base material layer 1 is not particularly limited as long as it functions as a base material, and examples thereof include about 3 to 50 μm, about 3 to 35 μm, and about 3 to 25 μm. When the base material layer 1 is a laminate of two or more resin films, the thickness of the resin films constituting each layer is preferably about 2 to 25 μm, respectively.
[接着剤層2]
 本開示の蓄電デバイス用外装材において、接着剤層2は、基材層1とバリア層3との接着性を高めることを目的として、必要に応じて、これらの間に設けられる層である。
[Adhesive layer 2]
In the exterior material for a power storage device of the present disclosure, the adhesive layer 2 is a layer provided between the base material layer 1 and the barrier layer 3 as necessary for the purpose of enhancing the adhesiveness.
 接着剤層2は、基材層1とバリア層3とを接着可能である接着剤によって形成される。接着剤層2の形成に使用される接着剤は限定されないが、化学反応型、溶剤揮発型、熱溶融型、熱圧型等のいずれであってもよい。また、2液硬化型接着剤(2液性接着剤)であってもよく、1液硬化型接着剤(1液性接着剤)であってもよく、硬化反応を伴わない樹脂でもよい。また、接着剤層2は単層であってもよいし、多層であってもよい。 The adhesive layer 2 is formed by an adhesive capable of adhering the base material layer 1 and the barrier layer 3. The adhesive used for forming the adhesive layer 2 is not limited, but may be any of a chemical reaction type, a solvent volatile type, a heat melting type, a hot pressure type and the like. Further, it may be a two-component curable adhesive (two-component adhesive), a one-component curable adhesive (one-component adhesive), or a resin that does not involve a curing reaction. Further, the adhesive layer 2 may be a single layer or a multilayer.
 接着剤に含まれる接着成分としては、具体的には、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリエチレンイソフタレート、共重合ポリエステル等のポリエステル;ポリエーテル;ポリウレタン;エポキシ樹脂;フェノール樹脂;ナイロン6、ナイロン66、ナイロン12、共重合ポリアミド等のポリアミド;ポリオレフィン、環状ポリオレフィン、酸変性ポリオレフィン、酸変性環状ポリオレフィンなどのポリオレフィン系樹脂;ポリ酢酸ビニル;セルロース;(メタ)アクリル樹脂;ポリイミド;ポリカーボネート;尿素樹脂、メラミン樹脂等のアミノ樹脂;クロロプレンゴム、ニトリルゴム、スチレン-ブタジエンゴム等のゴム;シリコーン樹脂等が挙げられる。これらの接着成分は1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。これらの接着成分の中でも、好ましくはポリウレタン接着剤が挙げられる。また、これらの接着成分となる樹脂は適切な硬化剤を併用して接着強度を高めることができる。前記硬化剤は、接着成分の持つ官能基に応じて、ポリイソシアネート、多官能エポキシ樹脂、オキサゾリン基含有ポリマー、ポリアミン樹脂、酸無水物などから適切なものを選択する。 Specific examples of the adhesive component contained in the adhesive include polyesters such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, polyethylene isophthalate, and copolymerized polyester; polyether; polyurethane; epoxy resin; Phenolic resin; Polyethylene such as nylon 6, nylon 66, nylon 12, copolymerized polyamide; Polyethylene resin such as polyolefin, cyclic polyolefin, acid-modified polyolefin, acid-modified cyclic polyolefin; Polyvinyl acetate; Cellulose; (Meta) acrylic resin; Polyethylene; polycarbonate; amino resin such as urea resin and melamine resin; rubber such as chloroprene rubber, nitrile rubber and styrene-butadiene rubber; silicone resin and the like. These adhesive components may be used alone or in combination of two or more. Among these adhesive components, a polyurethane adhesive is preferable. In addition, the resins used as these adhesive components can be used in combination with an appropriate curing agent to increase the adhesive strength. An appropriate curing agent is selected from polyisocyanate, polyfunctional epoxy resin, oxazoline group-containing polymer, polyamine resin, acid anhydride and the like, depending on the functional group of the adhesive component.
 ポリウレタン接着剤としては、例えば、ポリオール化合物を含有する主剤と、イソシアネート化合物を含有する硬化剤とを含むポリウレタン接着剤が挙げられる。好ましくはポリエステルポリオール、ポリエーテルポリオール、およびアクリルポリオール等のポリオールを主剤として、芳香族系又は脂肪族系のポリイソシアネートを硬化剤とした二液硬化型のポリウレタン接着剤が挙げられる。また、ポリオール化合物としては、繰り返し単位の末端の水酸基に加えて、側鎖にも水酸基を有するポリエステルポリオールを用いることが好ましい。硬化剤としては、脂肪族、脂環式、芳香族、芳香脂肪族のイソシアネート系化合物が挙げられる。イソシアネート系化合物としては、例えばヘキサメチレンジイソシアネート(HDI)、キシリレンジイソシアネート(XDI)、イソホロンジイソシアネート(IPDI)、水素化XDI(H6XDI)、水素化MDI(H12MDI)、トリレンジイソシアネート(TDI)、ジフェニルメタンジイソシアネート(MDI)、ナフタレンジイソシアネート(NDI)等が挙げられる。また、これらのジイソシアネートの1種類又は2種類以上からの多官能イソシアネート変性体等が挙げられる。また、ポリイソシアネート化合物として多量体(例えば三量体)を使用することもできる。このような多量体には、アダクト体、ビウレット体、ヌレート体等が挙げられる。接着剤層2がポリウレタン接着剤により形成されていることで蓄電デバイス用外装材に優れた電解液耐性が付与され、側面に電解液が付着しても基材層1が剥がれることが抑制される。 Examples of the polyurethane adhesive include a polyurethane adhesive containing a main agent containing a polyol compound and a curing agent containing an isocyanate compound. Preferred are two-component curable polyurethane adhesives in which a polyol such as a polyester polyol, a polyether polyol, and an acrylic polyol is used as a main component, and an aromatic or aliphatic polyisocyanate is used as a curing agent. Further, as the polyol compound, it is preferable to use a polyester polyol having a hydroxyl group in the side chain in addition to the hydroxyl group at the end of the repeating unit. Examples of the curing agent include aliphatic, alicyclic, aromatic, and aromatic aliphatic isocyanate compounds. Examples of isocyanate-based compounds include hexamethylene diisocyanate (HDI), xylylene diisocyanate (XDI), isophorone diisocyanate (IPDI), hydrogenated XDI (H6XDI), hydrogenated MDI (H12MDI), tolylene diisocyanate (TDI), and diphenylmethane diisocyanate. (MDI), naphthalenediocyanate (NDI) and the like. Moreover, a polyfunctional isocyanate modified product from one kind or two or more kinds of these diisocyanates and the like can be mentioned. Further, a multimer (for example, a trimer) can be used as the polyisocyanate compound. Examples of such a multimer include an adduct body, a biuret body, a nurate body and the like. Since the adhesive layer 2 is formed of a polyurethane adhesive, excellent electrolyte resistance is imparted to the exterior material for the power storage device, and even if the electrolyte adheres to the side surface, the base material layer 1 is suppressed from peeling off. ..
 また、接着剤層2は、接着性を阻害しない限り他成分の添加が許容され、着色剤や熱可塑性エラストマー、粘着付与剤、粒子などを含有してもよい。接着剤層2が着色剤を含んでいることにより、蓄電デバイス用外装材を着色することができる。着色剤としては、顔料、染料などの公知のものが使用できる。また、着色剤は、1種類のみを用いてもよいし、2種類以上を混合して用いてもよい。 Further, the adhesive layer 2 may contain a colorant, a thermoplastic elastomer, a tackifier, particles and the like, as long as the adhesiveness is not hindered, the addition of other components is permitted. Since the adhesive layer 2 contains a colorant, the exterior material for the power storage device can be colored. As the colorant, known pigments, dyes and the like can be used. Further, only one type of colorant may be used, or two or more types may be mixed and used.
 顔料の種類は、接着剤層2の接着性を損なわない範囲であれば、特に限定されない。有機顔料としては、例えば、アゾ系、フタロシアニン系、キナクリドン系、アンスラキノン系、ジオキサジン系、インジゴチオインジゴ系、ペリノン-ペリレン系、イソインドレニン系、ベンズイミダゾロン系等の顔料が挙げられ、無機顔料としては、カーボンブラック系、酸化チタン系、カドミウム系、鉛系、酸化クロム系、鉄系等の顔料が挙げられ、その他に、マイカ(雲母)の微粉末、魚鱗箔等が挙げられる。 The type of pigment is not particularly limited as long as it does not impair the adhesiveness of the adhesive layer 2. Examples of organic pigments include azo-based, phthalocyanine-based, quinacridone-based, anthracinone-based, dioxazine-based, indigothioindigo-based, perinone-perylene-based, isoindrenine-based, and benzimidazolone-based pigments, which are inorganic. Examples of the pigment include carbon black-based, titanium oxide-based, cadmium-based, lead-based, chromium oxide-based, and iron-based pigments, and other examples include fine powder of mica (mica) and fish scale foil.
 着色剤の中でも、例えば蓄電デバイス用外装材の外観を黒色とするためには、カーボンブラックが好ましい。 Among the colorants, for example, carbon black is preferable in order to make the appearance of the exterior material for a power storage device black.
 顔料の平均粒子径としては、特に制限されず、例えば、0.05~5μm程度、好ましくは0.08~2μm程度が挙げられる。なお、顔料の平均粒子径は、レーザ回折/散乱式粒子径分布測定装置で測定されたメジアン径とする。 The average particle size of the pigment is not particularly limited, and examples thereof include about 0.05 to 5 μm, preferably about 0.08 to 2 μm. The average particle size of the pigment is the median diameter measured by a laser diffraction / scattering type particle size distribution measuring device.
 接着剤層2における顔料の含有量としては、蓄電デバイス用外装材が着色されれば特に制限されず、例えば5~60質量%程度、好ましくは10~40質量%が挙げられる。 The content of the pigment in the adhesive layer 2 is not particularly limited as long as the exterior material for the power storage device is colored, and examples thereof include about 5 to 60% by mass, preferably 10 to 40% by mass.
 接着剤層2の厚みは、基材層1とバリア層3とを接着できれば、特に制限されないが、例えば、約1μm以上、約2μm以上が挙げられる。また、接着剤層2の厚みは、例えば、約10μm以下、約5μm以下が挙げられる。また、接着剤層2の厚みの好ましい範囲については、1~10μm程度、1~5μm程度、2~10μm程度、2~5μm程度が挙げられる。 The thickness of the adhesive layer 2 is not particularly limited as long as the base material layer 1 and the barrier layer 3 can be adhered to each other, and examples thereof include about 1 μm or more and about 2 μm or more. The thickness of the adhesive layer 2 is, for example, about 10 μm or less and about 5 μm or less. The preferable range of the thickness of the adhesive layer 2 is about 1 to 10 μm, about 1 to 5 μm, about 2 to 10 μm, and about 2 to 5 μm.
[着色層]
 着色層は、基材層1とバリア層3との間に必要に応じて設けられる層である(図示を省略する)。接着剤層2を有する場合には、基材層1と接着剤層2との間、接着剤層2とバリア層3との間に着色層を設けてもよい。また、基材層1の外側に着色層を設けてもよい。着色層を設けることにより、蓄電デバイス用外装材を着色することができる。基材層1とバリア層3との間に、着色された接着層2と着色層を設けてもよい。
[Colored layer]
The colored layer is a layer provided between the base material layer 1 and the barrier layer 3 as needed (not shown). When the adhesive layer 2 is provided, a colored layer may be provided between the base material layer 1 and the adhesive layer 2 and between the adhesive layer 2 and the barrier layer 3. Further, a colored layer may be provided on the outside of the base material layer 1. By providing the coloring layer, the exterior material for the power storage device can be colored. A colored adhesive layer 2 and a colored layer may be provided between the base material layer 1 and the barrier layer 3.
 着色層は、例えば、着色剤を含むインキを基材層1の表面、またはバリア層3の表面に塗布することにより形成することができる。着色剤としては、顔料、染料などの公知のものが使用できる。また、着色剤は、1種類のみを用いてもよいし、2種類以上を混合して用いてもよい。 The colored layer can be formed, for example, by applying an ink containing a colorant to the surface of the base material layer 1 or the surface of the barrier layer 3. As the colorant, known pigments, dyes and the like can be used. Further, only one type of colorant may be used, or two or more types may be mixed and used.
 着色層に含まれる着色剤の具体例としては、[接着剤層2]の欄で例示したものと同じものが例示される。 Specific examples of the colorant contained in the colored layer include the same as those exemplified in the column of [Adhesive layer 2].
[バリア層3]
 蓄電デバイス用外装材において、バリア層3は、少なくとも水分の浸入を抑止する層である。
[Barrier layer 3]
In the exterior material for a power storage device, the barrier layer 3 is at least a layer that suppresses the ingress of moisture.
 バリア層3としては、例えば、バリア性を有する金属箔、蒸着膜、樹脂層などが挙げられる。蒸着膜としては金属蒸着膜、無機酸化物蒸着膜、炭素含有無機酸化物蒸着膜などが挙げられ、樹脂層としてはポリ塩化ビニリデン、クロロトリフルオロエチレン(CTFE)を主成分としたポリマー類やテトラフルオロエチレン(TFE)を主成分としたポリマー類やフルオロアルキル基を有するポリマー、およびフルオロアルキル単位を主成分としたポリマー類などのフッ素含有樹脂、エチレンビニルアルコール共重合体などが挙げられる。また、バリア層3としては、これらの蒸着膜及び樹脂層の少なくとも1層を設けた樹脂フィルムなども挙げられる。バリア層3は、複数層設けてもよい。バリア層3は、金属材料により構成された層を含むことが好ましい。バリア層3を構成する金属材料としては、具体的には、アルミニウム合金、ステンレス鋼、チタン鋼、鋼板などが挙げられ、金属箔として用いる場合は、アルミニウム合金箔及びステンレス鋼箔の少なくとも一方を含むことが好ましい。 Examples of the barrier layer 3 include a metal foil having a barrier property, a thin-film deposition film, a resin layer, and the like. Examples of the vapor deposition film include a metal vapor deposition film, an inorganic oxide vapor deposition film, a carbon-containing inorganic oxide vapor deposition film, and the like, and examples of the resin layer include polymers and tetras mainly composed of polyvinylidene chloride and chlorotrifluoroethylene (CTFE). Examples thereof include polymers containing fluoroethylene (TFE) as a main component, polymers having a fluoroalkyl group, fluorine-containing resins such as polymers containing fluoroalkyl units as a main component, and ethylene vinyl alcohol copolymers. Further, examples of the barrier layer 3 include a resin film provided with at least one of these vapor-deposited films and a resin layer. A plurality of barrier layers 3 may be provided. The barrier layer 3 preferably includes a layer made of a metal material. Specific examples of the metal material constituting the barrier layer 3 include an aluminum alloy, stainless steel, titanium steel, and a steel plate. When used as a metal foil, the metal material includes at least one of an aluminum alloy foil and a stainless steel foil. Is preferable.
 アルミニウム合金箔は、蓄電デバイス用外装材の成形時のピンホールやクラックの発生を抑制する観点から、例えば、焼きなまし処理済みのアルミニウム合金などにより構成された軟質アルミニウム合金箔であることがより好ましく、成形時のピンホールやクラックの発生をより効果的に抑制する観点から、鉄を含むアルミニウム合金箔であることが好ましい。鉄を含むアルミニウム合金箔(100質量%)において、鉄の含有量は、0.1~9.0質量%であることが好ましく、0.5~2.0質量%であることがより好ましい。鉄の含有量が0.1質量%以上であることにより、成形時のピンホールやクラックの発生が効果的に抑制された蓄電デバイス用外装材を得ることができる。鉄の含有量が9.0質量%以下であることにより、より柔軟性に優れた蓄電デバイス用外装材を得ることができる。軟質アルミニウム合金箔としては、例えば、JIS H4160:1994 A8021H-O、JIS H4160:1994 A8079H-O、JIS H4000:2014 A8021P-O、又はJIS H4000:2014 A8079P-Oで規定される組成を備えるアルミニウム合金箔が挙げられる。また必要に応じて、ケイ素、マグネシウム、銅、マンガンなどが添加されていてもよい。また軟質化は焼鈍処理などで行うことができる。 The aluminum alloy foil is more preferably a soft aluminum alloy foil made of, for example, an annealed aluminum alloy from the viewpoint of suppressing the occurrence of pinholes and cracks during molding of the exterior material for a power storage device. From the viewpoint of more effectively suppressing the occurrence of pinholes and cracks during molding, an aluminum alloy foil containing iron is preferable. In the aluminum alloy foil containing iron (100% by mass), the iron content is preferably 0.1 to 9.0% by mass, and more preferably 0.5 to 2.0% by mass. When the iron content is 0.1% by mass or more, it is possible to obtain an exterior material for a power storage device in which the occurrence of pinholes and cracks during molding is effectively suppressed. When the iron content is 9.0% by mass or less, a more flexible exterior material for a power storage device can be obtained. As the soft aluminum alloy foil, for example, an aluminum alloy having a composition specified by JIS H4160: 1994 A8021HO, JIS H4160: 1994 A8079HO, JIS H4000: 2014 A8021PO, or JIS H4000: 2014 A8077P-O. Foil is mentioned. Further, if necessary, silicon, magnesium, copper, manganese and the like may be added. Further, softening can be performed by annealing or the like.
 また、ステンレス鋼箔としては、オーステナイト系、フェライト系、オーステナイト・フェライト系、マルテンサイト系、析出硬化系のステンレス鋼箔などが挙げられる。さらに、蓄電デバイス用外装材の成形時のピンホールやクラックの発生を抑制する観点から、ステンレス鋼箔は、オーステナイト系のステンレス鋼により構成されていることが好ましい。 Examples of stainless steel foils include austenite-based, ferrite-based, austenite-ferritic-based, martensitic-based, and precipitation-hardened stainless steel foils. Further, from the viewpoint of suppressing the generation of pinholes and cracks during molding of the exterior material for the power storage device, the stainless steel foil is preferably made of austenitic stainless steel.
 ステンレス鋼箔を構成するオーステナイト系のステンレス鋼の具体例としては、SUS304、SUS301、SUS316Lなどが挙げられ、これらの中でも、SUS301又はSUS304が特に好ましい。 Specific examples of the austenitic stainless steel constituting the stainless steel foil include SUS304, SUS301, and SUS316L, and among these, SUS301 or SUS304 is particularly preferable.
 バリア層3の厚みは、金属箔の場合、少なくとも水分の浸入を抑止するバリア層としての機能を発揮すればよく、例えば9~200μm程度が挙げられる。バリア層3の厚みは、例えば、好ましくは約85μm以下、より好ましくは約50μm以下、さらに好ましくは約40μm以下、特に好ましくは約35μm以下である。また、バリア層3の厚みは、例えば、好ましくは約10μm以上、さらに好ましくは約20μm以上、より好ましくは約25μm以上が挙げられる。また、バリア層3の厚みの厚みの好ましい範囲としては、10~85μm程度、10~50μm程度、10~40μm程度、10~35μm程度、20~85μm程度、20~50μm程度、20~40μm程度、20~35μm程度、25~85μm程度、25~50μm程度、25~40μm程度、25~35μm程度が挙げられ、これらの中でも特に25~40μm程度が好ましい。バリア層3がアルミニウム合金箔により構成されている場合、上述した範囲が特に好ましい。また、特に、バリア層3がステンレス鋼箔により構成されている場合、ステンレス鋼箔の厚みとしては、好ましくは約60μm以下、より好ましくは約50μm以下、さらに好ましくは約40μm以下、さらに好ましくは約30μm以下、特に好ましくは約25μm以下が挙げられる。また、ステンレス鋼箔の厚みとしては、好ましくは約10μm以上、より好ましくは約15μm以上が挙げられる。また、ステンレス鋼箔の好ましい厚みの範囲としては、10~60μm程度、10~50μm程度、10~40μm程度、10~30μm程度、10~25μm程度、15~60μm程度、15~50μm程度、15~40μm程度、15~30μm程度、15~25μm程度が挙げられる。 In the case of a metal foil, the thickness of the barrier layer 3 may at least exhibit a function as a barrier layer that suppresses the infiltration of water, and is, for example, about 9 to 200 μm. The thickness of the barrier layer 3 is, for example, preferably about 85 μm or less, more preferably about 50 μm or less, still more preferably about 40 μm or less, and particularly preferably about 35 μm or less. The thickness of the barrier layer 3 is, for example, preferably about 10 μm or more, more preferably about 20 μm or more, and more preferably about 25 μm or more. The preferred range of the thickness of the barrier layer 3 is about 10 to 85 μm, about 10 to 50 μm, about 10 to 40 μm, about 10 to 35 μm, about 20 to 85 μm, about 20 to 50 μm, and about 20 to 40 μm. Examples thereof include about 20 to 35 μm, about 25 to 85 μm, about 25 to 50 μm, about 25 to 40 μm, and about 25 to 35 μm, and among these, about 25 to 40 μm is particularly preferable. When the barrier layer 3 is made of an aluminum alloy foil, the above range is particularly preferable. Further, in particular, when the barrier layer 3 is made of stainless steel foil, the thickness of the stainless steel foil is preferably about 60 μm or less, more preferably about 50 μm or less, still more preferably about 40 μm or less, still more preferably about. 30 μm or less, particularly preferably about 25 μm or less. The thickness of the stainless steel foil is preferably about 10 μm or more, more preferably about 15 μm or more. The preferred thickness range of the stainless steel foil is about 10 to 60 μm, about 10 to 50 μm, about 10 to 40 μm, about 10 to 30 μm, about 10 to 25 μm, about 15 to 60 μm, about 15 to 50 μm, and about 15 to. Examples thereof include about 40 μm, about 15 to 30 μm, and about 15 to 25 μm.
 また、バリア層3が金属箔の場合は、溶解や腐食の防止などのために、少なくとも基材層と反対側の面に耐腐食性皮膜を備えていることが好ましい。バリア層3は、耐腐食性皮膜を両面に備えていてもよい。ここで、耐腐食性皮膜とは、例えば、ベーマイト処理などの熱水変成処理、化成処理、陽極酸化処理、ニッケルやクロムなどのメッキ処理、コーティング剤を塗工する腐食防止処理をバリア層の表面に行い、バリア層に耐腐食性を備えさせる薄膜をいう。耐腐食性皮膜を形成する処理としては、1種類を行ってもよいし、2種類以上を組み合わせて行ってもよい。また、1層だけではなく多層化することもできる。さらに、これらの処理のうち、熱水変成処理及び陽極酸化処理は、処理剤によって金属箔表面を溶解させ、耐腐食性に優れる金属化合物を形成させる処理である。なお、これらの処理は、化成処理の定義に包含される場合もある。また、バリア層3が耐腐食性皮膜を備えている場合、耐腐食性皮膜を含めてバリア層3とする。 When the barrier layer 3 is a metal foil, it is preferable that a corrosion-resistant film is provided at least on the surface opposite to the base material layer in order to prevent dissolution and corrosion. The barrier layer 3 may be provided with a corrosion-resistant film on both sides. Here, the corrosion-resistant film is, for example, a hot-water transformation treatment such as boehmite treatment, a chemical conversion treatment, an anodization treatment, a plating treatment such as nickel or chromium, and a corrosion prevention treatment for applying a coating agent on the surface of the barrier layer. This is a thin film that makes the barrier layer corrosive. As the treatment for forming the corrosion-resistant film, one type may be performed, or two or more types may be combined. Moreover, not only one layer but also multiple layers can be used. Further, among these treatments, the hydrothermal modification treatment and the anodizing treatment are treatments in which the surface of the metal foil is dissolved by a treatment agent to form a metal compound having excellent corrosion resistance. Note that these processes may be included in the definition of chemical conversion process. When the barrier layer 3 has a corrosion-resistant film, the barrier layer 3 includes the corrosion-resistant film.
 耐腐食性皮膜は、蓄電デバイス用外装材の成形時において、バリア層(例えば、アルミニウム合金箔)と基材層との間のデラミネーション防止、電解質と水分とによる反応で生成するフッ化水素により、バリア層表面の溶解、腐食、特にバリア層がアルミニウム合金箔である場合にバリア層表面に存在する酸化アルミニウムが溶解、腐食することを防止し、かつ、バリア層表面の接着性(濡れ性)を向上させ、ヒートシール時の基材層とバリア層とのデラミネーション防止、成形時の基材層とバリア層とのデラミネーション防止の効果を示す。 The corrosion-resistant film is formed by preventing delamination between the barrier layer (for example, aluminum alloy foil) and the base material layer during molding of the exterior material for a power storage device, and by hydrogen fluoride generated by the reaction between the electrolyte and water. , Melting and corrosion of the barrier layer surface, especially when the barrier layer is an aluminum alloy foil, it prevents the aluminum oxide existing on the barrier layer surface from melting and corroding, and the adhesiveness (wetness) of the barrier layer surface. The effect of preventing delamination between the base material layer and the barrier layer during heat sealing and preventing delamination between the base material layer and the barrier layer during molding is shown.
 化成処理によって形成される耐腐食性皮膜としては、種々のものが知られており、主には、リン酸塩、クロム酸塩、フッ化物、トリアジンチオール化合物、及び希土類酸化物のうち少なくとも1種を含む耐腐食性皮膜などが挙げられる。リン酸塩、クロム酸塩を用いた化成処理としては、例えば、クロム酸クロメート処理、リン酸クロメート処理、リン酸-クロム酸塩処理、クロム酸塩処理などが挙げられ、これらの処理に用いるクロム化合物としては、例えば、硝酸クロム、フッ化クロム、硫酸クロム、酢酸クロム、蓚酸クロム、重リン酸クロム、クロム酸アセチルアセテート、塩化クロム、硫酸カリウムクロムなどが挙げられる。また、これらの処理に用いるリン化合物としては、リン酸ナトリウム、リン酸カリウム、リン酸アンモニウム、ポリリン酸などが挙げられる。また、クロメート処理としてはエッチングクロメート処理、電解クロメート処理、塗布型クロメート処理などが挙げられ、塗布型クロメート処理が好ましい。この塗布型クロメート処理は、バリア層(例えばアルミニウム合金箔)の少なくとも内層側の面を、まず、アルカリ浸漬法、電解洗浄法、酸洗浄法、電解酸洗浄法、酸活性化法等の周知の処理方法で脱脂処理を行い、その後、脱脂処理面にリン酸Cr(クロム)塩、リン酸Ti(チタン)塩、リン酸Zr(ジルコニウム)塩、リン酸Zn(亜鉛)塩などのリン酸金属塩及びこれらの金属塩の混合体を主成分とする処理液、または、リン酸非金属塩及びこれらの非金属塩の混合体を主成分とする処理液、あるいは、これらと合成樹脂などとの混合物からなる処理液をロールコート法、グラビア印刷法、浸漬法等の周知の塗工法で塗工し、乾燥する処理である。処理液は例えば、水、アルコール系溶剤、炭化水素系溶剤、ケトン系溶剤、エステル系溶剤、エーテル系溶剤など各種溶媒を用いることができ、水が好ましい。また、このとき用いる樹脂成分としては、フェノール系樹脂やアクリル系樹脂などの高分子などが挙げられ、下記一般式(1)~(4)で表される繰り返し単位を有するアミノ化フェノール重合体を用いたクロメート処理などが挙げられる。なお、当該アミノ化フェノール重合体において、下記一般式(1)~(4)で表される繰り返し単位は、1種類単独で含まれていてもよいし、2種類以上の任意の組み合わせであってもよい。アクリル系樹脂は、ポリアクリル酸、アクリル酸メタクリル酸エステル共重合体、アクリル酸マレイン酸共重合体、アクリル酸スチレン共重合体、またはこれらのナトリウム塩、アンモニウム塩、アミン塩等の誘導体であることが好ましい。特にポリアクリル酸のアンモニウム塩、ナトリウム塩、又はアミン塩等のポリアクリル酸の誘導体が好ましい。本開示において、ポリアクリル酸とは、アクリル酸の重合体を意味している。また、アクリル系樹脂は、アクリル酸とジカルボン酸又はジカルボン酸無水物との共重合体であることも好ましく、アクリル酸とジカルボン酸又はジカルボン酸無水物との共重合体のアンモニウム塩、ナトリウム塩、又はアミン塩であることも好ましい。アクリル系樹脂は、1種類のみを用いてもよいし、2種類以上を混合して用いてもよい。 Various corrosion-resistant films formed by chemical conversion treatment are known, and mainly, at least one of phosphate, chromate, fluoride, triazinethiol compound, and rare earth oxide. Examples include a corrosion-resistant film containing. Examples of the chemical conversion treatment using a phosphate or a chromate include a chromium acid chromate treatment, a phosphoric acid chromate treatment, a phosphoric acid-chromate treatment, a chromium salt treatment, and the like, and chromium used in these treatments. Examples of the compound include chromium nitrate, chromium fluoride, chromium sulfate, chromium acetate, chromium oxalate, chromium dichromate, acetylacetate chromate, chromium chloride, and chromium potassium sulfate. In addition, examples of the phosphorus compound used in these treatments include sodium phosphate, potassium phosphate, ammonium phosphate, polyphosphoric acid and the like. Further, examples of the chromate treatment include etching chromate treatment, electrolytic chromate treatment, and coating type chromate treatment, and coating type chromate treatment is preferable. In this coating type chromate treatment, at least the inner layer side surface of the barrier layer (for example, aluminum alloy foil) is first known as an alkali dipping method, an electrolytic cleaning method, an acid cleaning method, an electrolytic acid cleaning method, an acid activation method and the like. Degreasing is performed by the treatment method, and then metal phosphates such as Cr phosphate (chromium) salt, Ti (titanium) phosphate, Zr (zyroxide) salt, and Zn (zinc) phosphate are applied to the degreased surface. A treatment liquid containing a salt and a mixture of these non-metal salts as a main component, or a treatment liquid containing a mixture of a phosphate non-metal salt and these non-metal salts as a main component, or a synthetic resin and the like. This is a treatment in which a treatment liquid composed of a mixture is coated by a well-known coating method such as a roll coating method, a gravure printing method, or a dipping method, and dried. As the treatment liquid, for example, various solvents such as water, alcohol-based solvent, hydrocarbon-based solvent, ketone-based solvent, ester-based solvent, and ether-based solvent can be used, and water is preferable. Further, examples of the resin component used at this time include polymers such as phenolic resin and acrylic resin, and an amination phenol polymer having a repeating unit represented by the following general formulas (1) to (4) can be used. Examples thereof include the chromate treatment used. In the aminated phenol polymer, the repeating units represented by the following general formulas (1) to (4) may be contained alone or in any combination of two or more. May be good. The acrylic resin shall be a polyacrylic acid, an acrylic acid methacrylate copolymer, an acrylic acid maleic acid copolymer, an acrylic acid styrene copolymer, or a derivative of these sodium salts, ammonium salts, amine salts, etc. Is preferable. In particular, derivatives of polyacrylic acid such as ammonium salt, sodium salt, and amine salt of polyacrylic acid are preferable. In the present disclosure, polyacrylic acid means a polymer of acrylic acid. Further, the acrylic resin is preferably a copolymer of acrylic acid and a dicarboxylic acid or a dicarboxylic acid anhydride, and an ammonium salt, a sodium salt, or a copolymer of an acrylic acid and a dicarboxylic acid or a dicarboxylic acid anhydride. Alternatively, it is preferably an amine salt. Only one type of acrylic resin may be used, or two or more types may be mixed and used.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 一般式(1)~(4)中、Xは、水素原子、ヒドロキシ基、アルキル基、ヒドロキシアルキル基、アリル基またはベンジル基を示す。また、R1及びR2は、それぞれ同一または異なって、ヒドロキシ基、アルキル基、またはヒドロキシアルキル基を示す。一般式(1)~(4)において、X、R1及びR2で示されるアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基などの炭素数1~4の直鎖または分枝鎖状アルキル基が挙げられる。また、X、R1及びR2で示されるヒドロキシアルキル基としては、例えば、ヒドロキシメチル基、1-ヒドロキシエチル基、2-ヒドロキシエチル基、1-ヒドロキシプロピル基、2-ヒドロキシプロピル基、3-ヒドロキシプロピル基、1-ヒドロキシブチル基、2-ヒドロキシブチル基、3-ヒドロキシブチル基、4-ヒドロキシブチル基などのヒドロキシ基が1個置換された炭素数1~4の直鎖または分枝鎖状アルキル基が挙げられる。一般式(1)~(4)において、X、R1及びR2で示されるアルキル基及びヒドロキシアルキル基は、それぞれ同一であってもよいし、異なっていてもよい。一般式(1)~(4)において、Xは、水素原子、ヒドロキシ基またはヒドロキシアルキル基であることが好ましい。一般式(1)~(4)で表される繰り返し単位を有するアミノ化フェノール重合体の数平均分子量は、例えば、500~100万程度であることが好ましく、1000~2万程度であることがより好ましい。アミノ化フェノール重合体は、例えば、フェノール化合物又はナフトール化合物とホルムアルデヒドとを重縮合して上記一般式(1)又は一般式(3)で表される繰返し単位からなる重合体を製造し、次いでホルムアルデヒド及びアミン(R12NH)を用いて官能基(-CH2NR12)を上記で得られた重合体に導入することにより、製造される。アミノ化フェノール重合体は、1種単独で又は2種以上混合して使用される。 In the general formulas (1) to (4), X represents a hydrogen atom, a hydroxy group, an alkyl group, a hydroxyalkyl group, an allyl group or a benzyl group. Further, R 1 and R 2 represent a hydroxy group, an alkyl group, or a hydroxyalkyl group, respectively, which are the same or different. In the general formulas (1) to (4), examples of the alkyl group represented by X, R 1 and R 2 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group and an isobutyl group. Examples thereof include straight-chain or branched alkyl groups having 1 to 4 carbon atoms such as tert-butyl groups. Examples of the hydroxyalkyl groups represented by X, R 1 and R 2 include a hydroxymethyl group, a 1-hydroxyethyl group, a 2-hydroxyethyl group, a 1-hydroxypropyl group, a 2-hydroxypropyl group and 3-. A linear or branched chain having 1 to 4 carbon atoms in which one hydroxy group such as a hydroxypropyl group, a 1-hydroxybutyl group, a 2-hydroxybutyl group, a 3-hydroxybutyl group, or a 4-hydroxybutyl group is substituted. Alkyl groups can be mentioned. In the general formulas (1) to (4), the alkyl group and the hydroxyalkyl group represented by X, R 1 and R 2 may be the same or different, respectively. In the general formulas (1) to (4), X is preferably a hydrogen atom, a hydroxy group or a hydroxyalkyl group. The number average molecular weight of the aminated phenol polymer having the repeating unit represented by the general formulas (1) to (4) is, for example, preferably about 5 to 1,000,000, and preferably about 1,000 to 20,000. More preferred. The amination phenol polymer, for example, polycondenses a phenol compound or a naphthol compound with formaldehyde to produce a polymer composed of repeating units represented by the above general formula (1) or general formula (3), and then formsaldehyde. It is produced by introducing a functional group (-CH 2 NR 1 R 2 ) into the polymer obtained above using amine (R 1 R 2 NH). The aminated phenol polymer is used alone or in combination of two or more.
 耐腐食性皮膜の他の例としては、希土類元素酸化物ゾル、アニオン性ポリマー、カチオン性ポリマーからなる群から選ばれる少なくとも1種を含有するコーティング剤を塗工するコーティングタイプの腐食防止処理によって形成される薄膜が挙げられる。コーティング剤には、さらにリン酸またはリン酸塩、ポリマーを架橋させる架橋剤を含んでもよい。希土類元素酸化物ゾルには、液体分散媒中に希土類元素酸化物の微粒子(例えば、平均粒径100nm以下の粒子)が分散されている。希土類元素酸化物としては、酸化セリウム、酸化イットリウム、酸化ネオジウム、酸化ランタン等が挙げられ、密着性をより向上させる観点から酸化セリウムが好ましい。耐腐食性皮膜に含まれる希土類元素酸化物は1種を単独で又は2種以上を組み合わせて用いることができる。希土類元素酸化物ゾルの液体分散媒としては、例えば、水、アルコール系溶剤、炭化水素系溶剤、ケトン系溶剤、エステル系溶剤、エーテル系溶剤など各種溶媒を用いることができ、水が好ましい。カチオン性ポリマーとしては、例えば、ポリエチレンイミン、ポリエチレンイミンとカルボン酸を有するポリマーからなるイオン高分子錯体、アクリル主骨格に1級アミンをグラフト重合させた1級アミングラフトアクリル樹脂、ポリアリルアミンまたはその誘導体、アミノ化フェノールなどが好ましい。また、アニオン性ポリマーとしては、ポリ(メタ)アクリル酸またはその塩、あるいは(メタ)アクリル酸またはその塩を主成分とする共重合体であることが好ましい。また、架橋剤が、イソシアネート基、グリシジル基、カルボキシル基、オキサゾリン基のいずれかの官能基を有する化合物とシランカップリング剤よりなる群から選ばれる少なくとも1種であることが好ましい。また、前記リン酸またはリン酸塩が、縮合リン酸または縮合リン酸塩であることが好ましい。 As another example of the corrosion resistant film, it is formed by a coating type corrosion prevention treatment in which a coating agent containing at least one selected from the group consisting of rare earth element oxide sol, anionic polymer, and cationic polymer is applied. The thin film to be used is mentioned. The coating agent may further contain phosphoric acid or phosphate, a cross-linking agent for cross-linking the polymer. In the rare earth element oxide sol, fine particles of the rare earth element oxide (for example, particles having an average particle size of 100 nm or less) are dispersed in a liquid dispersion medium. Examples of the rare earth element oxide include cerium oxide, yttrium oxide, neodymium oxide, and lanthanum oxide, and cerium oxide is preferable from the viewpoint of further improving adhesion. The rare earth element oxide contained in the corrosion-resistant film may be used alone or in combination of two or more. As the liquid dispersion medium of the rare earth element oxide sol, for example, various solvents such as water, alcohol solvent, hydrocarbon solvent, ketone solvent, ester solvent, ether solvent and the like can be used, and water is preferable. Examples of the cationic polymer include polyethyleneimine, an ionic polymer complex composed of polyethyleneimine and a polymer having a carboxylic acid, a primary amine graft acrylic resin obtained by graft-polymerizing a primary amine on an acrylic main skeleton, polyallylamine or a derivative thereof. , Amination phenol and the like are preferable. The anionic polymer is preferably a poly (meth) acrylic acid or a salt thereof, or a copolymer containing (meth) acrylic acid or a salt thereof as a main component. Further, it is preferable that the cross-linking agent is at least one selected from the group consisting of a compound having a functional group of any of an isocyanate group, a glycidyl group, a carboxyl group and an oxazoline group and a silane coupling agent. Further, it is preferable that the phosphoric acid or phosphate is condensed phosphoric acid or condensed phosphate.
 耐腐食性皮膜の一例としては、リン酸中に、酸化アルミニウム、酸化チタン、酸化セリウム、酸化スズなどの金属酸化物や硫酸バリウムの微粒子を分散させたものをバリア層の表面に塗布し、150℃以上で焼付け処理を行うことにより形成したものが挙げられる。 As an example of the corrosion-resistant film, a film in which fine particles of metal oxides such as aluminum oxide, titanium oxide, cerium oxide, and tin oxide and barium sulfate are dispersed in phosphoric acid is applied to the surface of the barrier layer, and 150 Examples thereof include those formed by performing a baking treatment at a temperature of ° C. or higher.
 耐腐食性皮膜は、必要に応じて、さらにカチオン性ポリマー及びアニオン性ポリマーの少なくとも一方を積層した積層構造としてもよい。カチオン性ポリマー、アニオン性ポリマーとしては、上述したものが挙げられる。 The corrosion-resistant film may have a laminated structure in which at least one of a cationic polymer and an anionic polymer is further laminated, if necessary. Examples of the cationic polymer and the anionic polymer include those described above.
 なお、耐腐食性皮膜の組成の分析は、例えば、飛行時間型2次イオン質量分析法を用いて行うことができる。 The composition of the corrosion-resistant film can be analyzed by using, for example, a time-of-flight secondary ion mass spectrometry method.
 化成処理においてバリア層3の表面に形成させる耐腐食性皮膜の量については、特に制限されないが、例えば、塗布型クロメート処理を行う場合であれば、バリア層3の表面1m2当たり、クロム酸化合物がクロム換算で例えば0.5~50mg程度、好ましくは1.0~40mg程度、リン化合物がリン換算で例えば0.5~50mg程度、好ましくは1.0~40mg程度、及びアミノ化フェノール重合体が例えば1.0~200mg程度、好ましくは5.0~150mg程度の割合で含有されていることが望ましい。 The amount of the corrosion-resistant film formed on the surface of the barrier layer 3 in the chemical conversion treatment is not particularly limited, but for example, in the case of performing a coating type chromate treatment, a chromic acid compound per 1 m 2 of the surface of the barrier layer 3 Is, for example, about 0.5 to 50 mg, preferably about 1.0 to 40 mg in terms of chromium, and the phosphorus compound is, for example, about 0.5 to 50 mg, preferably about 1.0 to 40 mg in terms of phosphorus, and an amination phenol polymer. Is preferably contained in a proportion of, for example, about 1.0 to 200 mg, preferably about 5.0 to 150 mg.
 耐腐食性皮膜の厚みとしては、特に制限されないが、皮膜の凝集力や、バリア層や熱融着性樹脂層との密着力の観点から、好ましくは1nm~20μm程度、より好ましくは1nm~100nm程度、さらに好ましくは1nm~50nm程度が挙げられる。なお、耐腐食性皮膜の厚みは、透過電子顕微鏡による観察、または、透過電子顕微鏡による観察と、エネルギー分散型X線分光法もしくは電子線エネルギー損失分光法との組み合わせによって測定することができる。飛行時間型2次イオン質量分析法を用いた耐腐食性皮膜の組成の分析により、例えば、CeとPとOからなる2次イオン(例えば、Ce2PO4 +、CePO4 -などの少なくとも1種)や、例えば、CrとPとOからなる2次イオン(例えば、CrPO2 +、CrPO4 -などの少なくとも1種)に由来するピークが検出される。 The thickness of the corrosion-resistant film is not particularly limited, but is preferably about 1 nm to 20 μm, more preferably 1 nm to 100 nm, from the viewpoint of the cohesive force of the film and the adhesion to the barrier layer and the thermosetting resin layer. The degree, more preferably about 1 nm to 50 nm. The thickness of the corrosion-resistant film can be measured by observation with a transmission electron microscope or a combination of observation with a transmission electron microscope and energy dispersion type X-ray spectroscopy or electron beam energy loss spectroscopy. The time-of-flight secondary ion mass spectrometry analysis of the composition of the corrosion resistant coating using, for example, secondary ion consisting Ce and P and O (e.g., Ce 2 PO 4 +, CePO 4 - at least 1, such as species) or, for example, secondary ion of Cr and P and O (e.g., CrPO 2 +, CrPO 4 - peak derived from at least one), such as is detected.
 化成処理は、耐腐食性皮膜の形成に使用される化合物を含む溶液を、バーコート法、ロールコート法、グラビアコート法、浸漬法などによって、バリア層の表面に塗布した後に、バリア層の温度が70~200℃程度になるように加熱することにより行われる。また、バリア層に化成処理を施す前に、予めバリア層を、アルカリ浸漬法、電解洗浄法、酸洗浄法、電解酸洗浄法などによる脱脂処理に供してもよい。このように脱脂処理を行うことにより、バリア層の表面の化成処理をより効率的に行うことが可能となる。また、脱脂処理にフッ素含有化合物を無機酸で溶解させた酸脱脂剤を用いることで、金属箔の脱脂効果だけでなく不動態である金属のフッ化物を形成させることが可能であり、このような場合には脱脂処理だけを行ってもよい。 In the chemical conversion treatment, a solution containing a compound used for forming a corrosion-resistant film is applied to the surface of the barrier layer by a bar coating method, a roll coating method, a gravure coating method, a dipping method, or the like, and then the temperature of the barrier layer is applied. It is carried out by heating so that the temperature is about 70 to 200 ° C. Further, before the chemical conversion treatment is applied to the barrier layer, the barrier layer may be subjected to a degreasing treatment by an alkali dipping method, an electrolytic cleaning method, an acid cleaning method, an electrolytic acid cleaning method or the like in advance. By performing the degreasing treatment in this way, it becomes possible to more efficiently perform the chemical conversion treatment on the surface of the barrier layer. Further, by using an acid degreasing agent in which a fluorine-containing compound is dissolved in an inorganic acid for the degreasing treatment, it is possible to form not only the degreasing effect of the metal foil but also the fluoride of the metal which is immobile. In such cases, only degreasing treatment may be performed.
[熱融着性樹脂層4]
 本開示の蓄電デバイス用外装材において、熱融着性樹脂層4は、最内層に該当し、蓄電デバイスの組み立て時に熱融着性樹脂層同士が熱融着して蓄電デバイス素子を密封する機能を発揮する層(シーラント層)である。
[Thermosetting resin layer 4]
In the exterior material for a power storage device of the present disclosure, the thermosetting resin layer 4 corresponds to the innermost layer, and has a function of heat-sealing the heat-sealing resin layers with each other when assembling the power storage device to seal the power storage device element. It is a layer (sealant layer) that exerts.
 熱融着性樹脂層4を構成している樹脂については、熱融着可能であることを限度として特に制限されないが、ポリオレフィン、酸変性ポリオレフィンなどのポリオレフィン骨格を含む樹脂が好ましい。熱融着性樹脂層4を構成している樹脂がポリオレフィン骨格を含むことは、例えば、赤外分光法、ガスクロマトグラフィー質量分析法などにより分析可能である。また、熱融着性樹脂層4を構成している樹脂を赤外分光法で分析すると、無水マレイン酸に由来するピークが検出されることが好ましい。例えば、赤外分光法にて無水マレイン酸変性ポリオレフィンを測定すると、波数1760cm-1付近と波数1780cm-1付近に無水マレイン酸由来のピークが検出される。熱融着性樹脂層4が無水マレイン酸変性ポリオレフィンより構成された層である場合、赤外分光法にて測定すると、無水マレイン酸由来のピークが検出される。ただし、酸変性度が低いとピークが小さくなり検出されない場合がある。その場合は核磁気共鳴分光法にて分析可能である。 The resin constituting the heat-fusing resin layer 4 is not particularly limited as long as it can be heat-fused, but a resin containing a polyolefin skeleton such as polyolefin or acid-modified polyolefin is preferable. The fact that the resin constituting the heat-sealing resin layer 4 contains a polyolefin skeleton can be analyzed by, for example, infrared spectroscopy, gas chromatography-mass spectrometry, or the like. Further, when the resin constituting the thermosetting resin layer 4 is analyzed by infrared spectroscopy, it is preferable that a peak derived from maleic anhydride is detected. For example, when measuring the infrared spectroscopy at a maleic anhydride-modified polyolefin, a peak derived from maleic acid is detected in the vicinity of the wave number of 1760 cm -1 and near the wave number 1780 cm -1. When the thermosetting resin layer 4 is a layer composed of maleic anhydride-modified polyolefin, a peak derived from maleic anhydride is detected when measured by infrared spectroscopy. However, if the degree of acid denaturation is low, the peak may become small and may not be detected. In that case, it can be analyzed by nuclear magnetic resonance spectroscopy.
 ポリオレフィンとしては、具体的には、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、線状低密度ポリエチレン等のポリエチレン;エチレン-αオレフィン共重合体;ホモポリプロピレン、ポリプロピレンのブロックコポリマー(例えば、プロピレンとエチレンのブロックコポリマー)、ポリプロピレンのランダムコポリマー(例えば、プロピレンとエチレンのランダムコポリマー)等のポリプロピレン;プロピレン-αオレフィン共重合体;エチレン-ブテン-プロピレンのターポリマー等が挙げられる。これらの中でも、ポリプロピレンが好ましい。共重合体である場合のポリオレフィン樹脂は、ブロック共重合体であってもよく、ランダム共重合体であってもよい。これらポリオレフィン系樹脂は、1種を単独で使用してもよく、2種以上を併用してもよい。 Specific examples of the polyolefin include polyethylenes such as low-density polyethylene, medium-density polyethylene, high-density polyethylene, and linear low-density polyethylene; ethylene-α-olefin copolymers; homopolypropylene and block copolymers of polypropylene (for example, with propylene). Polypropylene such as (block copolymer of ethylene), random copolymer of polypropylene (for example, random copolymer of propylene and ethylene); propylene-α-olefin copolymer; terpolymer of ethylene-butene-propylene and the like. Among these, polypropylene is preferable. When it is a copolymer, the polyolefin resin may be a block copolymer or a random copolymer. One type of these polyolefin resins may be used alone, or two or more types may be used in combination.
 また、ポリオレフィンは、環状ポリオレフィンであってもよい。環状ポリオレフィンは、オレフィンと環状モノマーとの共重合体であり、前記環状ポリオレフィンの構成モノマーであるオレフィンとしては、例えば、エチレン、プロピレン、4-メチル-1-ペンテン、スチレン、ブタジエン、イソプレン等が挙げられる。また、環状ポリオレフィンの構成モノマーである環状モノマーとしては、例えば、ノルボルネン等の環状アルケン;シクロペンタジエン、ジシクロペンタジエン、シクロヘキサジエン、ノルボルナジエン等の環状ジエン等が挙げられる。これらの中でも、好ましくは環状アルケン、さらに好ましくはノルボルネンが挙げられる。 Further, the polyolefin may be a cyclic polyolefin. The cyclic polyolefin is a copolymer of an olefin and a cyclic monomer, and examples of the olefin which is a constituent monomer of the cyclic polyolefin include ethylene, propylene, 4-methyl-1-pentene, styrene, butadiene, and isoprene. Be done. Examples of the cyclic monomer which is a constituent monomer of the cyclic polyolefin include cyclic alkenes such as norbornene; cyclic diene such as cyclopentadiene, dicyclopentadiene, cyclohexadiene, and norbornadiene. Among these, cyclic alkene is preferable, and norbornene is more preferable.
 酸変性ポリオレフィンとは、ポリオレフィンを酸成分でブロック重合又はグラフト重合することにより変性したポリマーである。酸変性されるポリオレフィンとしては、前記のポリオレフィンや、前記のポリオレフィンにアクリル酸若しくはメタクリル酸等の極性分子を共重合させた共重合体、又は、架橋ポリオレフィン等の重合体等も使用できる。また、酸変性に使用される酸成分としては、例えば、マレイン酸、アクリル酸、イタコン酸、クロトン酸、無水マレイン酸、無水イタコン酸等のカルボン酸またはその無水物が挙げられる。 The acid-modified polyolefin is a polymer modified by block-polymerizing or graft-polymerizing a polyolefin with an acid component. As the acid-modified polyolefin, the above-mentioned polyolefin, a copolymer obtained by copolymerizing the above-mentioned polyolefin with a polar molecule such as acrylic acid or methacrylic acid, or a polymer such as a crosslinked polyolefin can also be used. Examples of the acid component used for acid modification include carboxylic acids such as maleic acid, acrylic acid, itaconic acid, crotonic acid, maleic anhydride, and itaconic anhydride, or anhydrides thereof.
 酸変性ポリオレフィンは、酸変性環状ポリオレフィンであってもよい。酸変性環状ポリオレフィンとは、環状ポリオレフィンを構成するモノマーの一部を、酸成分に代えて共重合することにより、または環状ポリオレフィンに対して酸成分をブロック重合又はグラフト重合することにより得られるポリマーである。酸変性される環状ポリオレフィンについては、前記と同様である。また、酸変性に使用される酸成分としては、前記のポリオレフィンの変性に使用される酸成分と同様である。 The acid-modified polyolefin may be an acid-modified cyclic polyolefin. The acid-modified cyclic polyolefin is a polymer obtained by copolymerizing a part of the monomers constituting the cyclic polyolefin in place of the acid component, or by block-polymerizing or graft-polymerizing the acid component with the cyclic polyolefin. is there. The same applies to the cyclic polyolefins that are acid-modified. The acid component used for the acid modification is the same as the acid component used for the modification of the polyolefin.
 好ましい酸変性ポリオレフィンとしては、カルボン酸またはその無水物で変性されたポリオレフィン、カルボン酸またはその無水物で変性されたポリプロピレン、無水マレイン酸変性ポリオレフィン、無水マレイン酸変性ポリプロピレンが挙げられる。 Preferred acid-modified polyolefins include polyolefins modified with carboxylic acid or its anhydride, polypropylene modified with carboxylic acid or its anhydride, maleic anhydride-modified polyolefin, and maleic anhydride-modified polypropylene.
 熱融着性樹脂層4は、1種の樹脂単独で形成してもよく、また2種以上の樹脂を組み合わせたブレンドポリマーにより形成してもよい。さらに、熱融着性樹脂層4は、1層のみで形成されていてもよいが、同一又は異なる樹脂によって2層以上で形成されていてもよい。 The thermosetting resin layer 4 may be formed of one type of resin alone, or may be formed of a blended polymer in which two or more types of resins are combined. Further, the thermosetting resin layer 4 may be formed of only one layer, but may be formed of two or more layers with the same or different resins.
 また、熱融着性樹脂層4は、必要に応じて滑剤などを含んでいてもよい。熱融着性樹脂層4が滑剤を含む場合、蓄電デバイス用外装材の成形時のピンホールやクラックの発生を抑制し得る。滑剤としては、特に制限されず、公知の滑剤を用いることができる。滑剤は、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。 Further, the thermosetting resin layer 4 may contain a lubricant or the like, if necessary. When the thermosetting resin layer 4 contains a lubricant, it is possible to suppress the occurrence of pinholes and cracks during molding of the exterior material for the power storage device. The lubricant is not particularly limited, and a known lubricant can be used. The lubricant may be used alone or in combination of two or more.
 滑剤としては、特に制限されないが、好ましくはアミド系滑剤が挙げられる。滑剤の具体例としては、基材層1で例示したものが挙げられる。滑剤は、1種類単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。 The lubricant is not particularly limited, but an amide-based lubricant is preferable. Specific examples of the lubricant include those exemplified in the base material layer 1. One type of lubricant may be used alone, or two or more types may be used in combination.
 熱融着性樹脂層4の表面に滑剤が存在する場合、その存在量としては、特に制限されないが、蓄電デバイス用外装材の成形時のピンホールやクラックの発生を抑制する観点からは、好ましくは10~50mg/m2程度、さらに好ましくは15~40mg/m2程度が挙げられる。 When the lubricant is present on the surface of the thermosetting resin layer 4, the amount of the lubricant is not particularly limited, but is preferable from the viewpoint of suppressing the occurrence of pinholes and cracks during molding of the exterior material for the power storage device. Is about 10 to 50 mg / m 2 , more preferably about 15 to 40 mg / m 2 .
 熱融着性樹脂層4の表面に存在する滑剤は、熱融着性樹脂層4を構成する樹脂に含まれる滑剤を滲出させたものであってもよいし、熱融着性樹脂層4の表面に滑剤を塗布したものであってもよい。 The lubricant existing on the surface of the thermosetting resin layer 4 may be one in which the lubricant contained in the resin constituting the thermosetting resin layer 4 is exuded, or the lubricant of the thermosetting resin layer 4 may be exuded. The surface may be coated with a lubricant.
 また、熱融着性樹脂層4の厚みとしては、熱融着性樹脂層同士が熱融着して蓄電デバイス素子を密封する機能を発揮すれば特に制限されないが、例えば約100μm以下、好ましくは約85μm以下、より好ましくは15~85μm程度が挙げられる。なお、例えば、後述の接着層5の厚みが10μm以上である場合には、熱融着性樹脂層4の厚みとしては、好ましくは約85μm以下、より好ましくは15~45μm程度が挙げられ、例えば後述の接着層5の厚みが10μm未満である場合や接着層5が設けられていない場合には、熱融着性樹脂層4の厚みとしては、好ましくは約20μm以上、より好ましくは35~85μm程度が挙げられる。 The thickness of the thermosetting resin layer 4 is not particularly limited as long as the thermosetting resin layers have a function of heat-sealing to seal the power storage device element, but is preferably about 100 μm or less, preferably. It is about 85 μm or less, more preferably about 15 to 85 μm. For example, when the thickness of the adhesive layer 5 described later is 10 μm or more, the thickness of the thermosetting resin layer 4 is preferably about 85 μm or less, more preferably about 15 to 45 μm, for example. When the thickness of the adhesive layer 5 described later is less than 10 μm or when the adhesive layer 5 is not provided, the thickness of the thermosetting resin layer 4 is preferably about 20 μm or more, more preferably 35 to 85 μm. The degree can be mentioned.
[接着層5]
 本開示の蓄電デバイス用外装材において、接着層5は、バリア層3(又は耐酸性皮膜)と熱融着性樹脂層4を強固に接着させるために、これらの間に必要に応じて設けられる層である。
[Adhesive layer 5]
In the exterior material for a power storage device of the present disclosure, the adhesive layer 5 is provided between the barrier layer 3 (or the acid-resistant film) and the thermosetting resin layer 4 in order to firmly bond them, if necessary. It is a layer.
 接着層5は、バリア層3と熱融着性樹脂層4とを接着可能である樹脂によって形成される。接着層5の形成に使用される樹脂としては、例えば接着剤層2で例示した接着剤と同様のものが使用できる。なお、接着層5の形成に使用される樹脂としては、ポリオレフィン骨格を含んでいることが好ましく、前述の熱融着性樹脂層4で例示したポリオレフィン、酸変性ポリオレフィンが挙げられる。接着層5を構成している樹脂がポリオレフィン骨格を含むことは、例えば、赤外分光法、ガスクロマトグラフィー質量分析法などにより分析可能であり、分析方法は特に問わない。また、接着層5を構成している樹脂を赤外分光法で分析すると、無水マレイン酸に由来するピークが検出されることが好ましい。例えば、赤外分光法にて無水マレイン酸変性ポリオレフィンを測定すると、波数1760cm-1付近と波数1780cm-1付近に無水マレイン酸由来のピークが検出される。ただし、酸変性度が低いとピークが小さくなり検出されない場合がある。その場合は核磁気共鳴分光法にて分析可能である。 The adhesive layer 5 is formed of a resin capable of adhering the barrier layer 3 and the thermosetting resin layer 4 to each other. As the resin used for forming the adhesive layer 5, for example, the same resin as the adhesive exemplified in the adhesive layer 2 can be used. The resin used for forming the adhesive layer 5 preferably contains a polyolefin skeleton, and examples thereof include the polyolefins exemplified in the above-mentioned heat-sealing resin layer 4 and acid-modified polyolefins. The fact that the resin constituting the adhesive layer 5 contains a polyolefin skeleton can be analyzed by, for example, infrared spectroscopy, gas chromatography-mass spectrometry, or the like, and the analysis method is not particularly limited. Further, when the resin constituting the adhesive layer 5 is analyzed by infrared spectroscopy, it is preferable that a peak derived from maleic anhydride is detected. For example, when measuring the infrared spectroscopy at a maleic anhydride-modified polyolefin, a peak derived from maleic acid is detected in the vicinity of the wave number of 1760 cm -1 and near the wave number 1780 cm -1. However, if the degree of acid denaturation is low, the peak may become small and may not be detected. In that case, it can be analyzed by nuclear magnetic resonance spectroscopy.
 バリア層3と熱融着性樹脂層4とを強固に接着する観点から、接着層5は、酸変性ポリオレフィンを含むことが好ましい。酸変性ポリオレフィンとしては、カルボン酸またはその無水物で変性されたポリオレフィン、カルボン酸またはその無水物で変性されたポリプロピレン、無水マレイン酸変性ポリオレフィン、無水マレイン酸変性ポリプロピレンが特に好ましい。 From the viewpoint of firmly adhering the barrier layer 3 and the thermosetting resin layer 4, the adhesive layer 5 preferably contains an acid-modified polyolefin. As the acid-modified polyolefin, a polyolefin modified with a carboxylic acid or an anhydride thereof, a polypropylene modified with a carboxylic acid or an anhydride thereof, a maleic anhydride-modified polyolefin, and a maleic anhydride-modified polypropylene are particularly preferable.
 さらに、蓄電デバイス用外装材の厚みを薄くしつつ、成形後の形状安定性に優れた蓄電デバイス用外装材とする観点からは、接着層5は、酸変性ポリオレフィンと硬化剤を含む樹脂組成物の硬化物であることがより好ましい。酸変性ポリオレフィンとしては、好ましくは、前記のものが例示できる。 Further, from the viewpoint of making the exterior material for the power storage device excellent in shape stability after molding while reducing the thickness of the exterior material for the power storage device, the adhesive layer 5 is a resin composition containing an acid-modified polyolefin and a curing agent. It is more preferable that it is a cured product of. As the acid-modified polyolefin, the above-mentioned ones are preferably exemplified.
 また、接着層5は、酸変性ポリオレフィンと、イソシアネート基を有する化合物、オキサゾリン基を有する化合物、及びエポキシ基を有する化合物からなる群より選択される少なくとも1種とを含む樹脂組成物の硬化物であることが好ましく、酸変性ポリオレフィンと、イソシアネート基を有する化合物及びエポキシ基を有する化合物からなる群より選択される少なくとも1種とを含む樹脂組成物の硬化物であることが特に好ましい。また、接着層5は、ポリウレタン、ポリエステル、及びエポキシ樹脂からなる群より選択される少なくとも1種を含むことが好ましく、ポリウレタン及びエポキシ樹脂を含むことがより好ましい。ポリエステルとしては、例えばアミドエステル樹脂が好ましい。アミドエステル樹脂は、一般的にカルボキシル基とオキサゾリン基の反応で生成する。接着層5は、これらの樹脂のうち少なくとも1種と前記酸変性ポリオレフィンを含む樹脂組成物の硬化物であることがより好ましい。なお、接着層5に、イソシアネート基を有する化合物、オキサゾリン基を有する化合物、エポキシ樹脂などの硬化剤の未反応物が残存している場合、未反応物の存在は、例えば、赤外分光法、ラマン分光法、飛行時間型二次イオン質量分析法(TOF-SIMS)などから選択される方法で確認することが可能である。 The adhesive layer 5 is a cured product of a resin composition containing an acid-modified polyolefin and at least one selected from the group consisting of a compound having an isocyanate group, a compound having an oxazoline group, and a compound having an epoxy group. It is particularly preferable that the resin composition is a cured product containing an acid-modified polyolefin and at least one selected from the group consisting of a compound having an isocyanate group and a compound having an epoxy group. Further, the adhesive layer 5 preferably contains at least one selected from the group consisting of polyurethane, polyester, and epoxy resin, and more preferably contains polyurethane and epoxy resin. As the polyester, for example, an amide ester resin is preferable. The amide ester resin is generally produced by the reaction of a carboxyl group and an oxazoline group. The adhesive layer 5 is more preferably a cured product of a resin composition containing at least one of these resins and the acid-modified polyolefin. When an unreacted substance of a curing agent such as a compound having an isocyanate group, a compound having an oxazoline group, or an epoxy resin remains in the adhesive layer 5, the presence of the unreacted substance is determined by, for example, infrared spectroscopy. It can be confirmed by a method selected from Raman spectroscopy, time-of-flight secondary ion mass spectrometry (TOF-SIMS), and the like.
 また、バリア層3と接着層5との密着性をより高める観点から、接着層5は、酸素原子、複素環、C=N結合、及びC-O-C結合からなる群より選択される少なくとも1種を有する硬化剤を含む樹脂組成物の硬化物であることが好ましい。複素環を有する硬化剤としては、例えば、オキサゾリン基を有する硬化剤、エポキシ基を有する硬化剤などが挙げられる。また、C=N結合を有する硬化剤としては、オキサゾリン基を有する硬化剤、イソシアネート基を有する硬化剤などが挙げられる。また、C-O-C結合を有する硬化剤としては、オキサゾリン基を有する硬化剤、エポキシ基を有する硬化剤、ポリウレタンなどが挙げられる。接着層5がこれらの硬化剤を含む樹脂組成物の硬化物であることは、例えば、ガスクロマトグラフ質量分析(GCMS)、赤外分光法(IR)、飛行時間型二次イオン質量分析法(TOF-SIMS)、X線光電子分光法(XPS)などの方法で確認することができる。 Further, from the viewpoint of further enhancing the adhesion between the barrier layer 3 and the adhesive layer 5, the adhesive layer 5 is selected from at least a group consisting of an oxygen atom, a heterocycle, a C = N bond, and a COC bond. It is preferably a cured product of a resin composition containing a curing agent having one type. Examples of the curing agent having a heterocycle include a curing agent having an oxazoline group and a curing agent having an epoxy group. Examples of the curing agent having a C = N bond include a curing agent having an oxazoline group and a curing agent having an isocyanate group. Examples of the curing agent having a C—C bond include a curing agent having an oxazoline group, a curing agent having an epoxy group, and polyurethane. The fact that the adhesive layer 5 is a cured product of a resin composition containing these curing agents is, for example, gas chromatograph mass spectrometry (GCMS), infrared spectroscopy (IR), time-of-flight secondary ion mass spectrometry (TOF). -SIMS), X-ray photoelectron spectroscopy (XPS) and other methods can be used for confirmation.
 イソシアネート基を有する化合物としては、特に制限されないが、バリア層3と接着層5との密着性を効果的に高める観点からは、好ましくは多官能イソシアネート化合物が挙げられる。多官能イソシアネート化合物は、2つ以上のイソシアネート基を有する化合物であれば、特に限定されない。多官能イソシアネート系硬化剤の具体例としては、ペンタンジイソシアネート(PDI)、イソホロンジイソシアネート(IPDI)、ヘキサメチレンジイソシアネート(HDI)、トリレンジイソシアネート(TDI)、ジフェニルメタンジイソシアネート(MDI)、これらをポリマー化やヌレート化したもの、これらの混合物や他ポリマーとの共重合物などが挙げられる。また、アダクト体、ビュレット体、イソシアヌレート体などが挙げられる。 The compound having an isocyanate group is not particularly limited, but from the viewpoint of effectively enhancing the adhesion between the barrier layer 3 and the adhesive layer 5, a polyfunctional isocyanate compound is preferable. The polyfunctional isocyanate compound is not particularly limited as long as it is a compound having two or more isocyanate groups. Specific examples of the polyfunctional isocyanate-based curing agent include pentandiisocyanate (PDI), isophorone diisocyanate (IPDI), hexamethylene diisocyanate (HDI), tolylene diisocyanate (TDI), and diphenylmethane diisocyanate (MDI), which are polymerized or nurate. Examples thereof include chemical compounds, mixtures thereof, and copolymers with other polymers. In addition, an adduct body, a burette body, an isocyanate body and the like can be mentioned.
 接着層5における、イソシアネート基を有する化合物の含有量としては、接着層5を構成する樹脂組成物中、0.1~50質量%の範囲にあることが好ましく、0.5~40質量%の範囲にあることがより好ましい。これにより、バリア層3と接着層5との密着性を効果的に高めることができる。 The content of the compound having an isocyanate group in the adhesive layer 5 is preferably in the range of 0.1 to 50% by mass, and 0.5 to 40% by mass in the resin composition constituting the adhesive layer 5. More preferably in the range. As a result, the adhesion between the barrier layer 3 and the adhesive layer 5 can be effectively enhanced.
 オキサゾリン基を有する化合物は、オキサゾリン骨格を備える化合物であれば、特に限定されない。オキサゾリン基を有する化合物の具体例としては、ポリスチレン主鎖を有するもの、アクリル主鎖を有するものなどが挙げられる。また、市販品としては、例えば、日本触媒社製のエポクロスシリーズなどが挙げられる。 The compound having an oxazoline group is not particularly limited as long as it is a compound having an oxazoline skeleton. Specific examples of the compound having an oxazoline group include those having a polystyrene main chain and those having an acrylic main chain. In addition, examples of commercially available products include the Epocross series manufactured by Nippon Shokubai Co., Ltd.
 接着層5における、オキサゾリン基を有する化合物の割合としては、接着層5を構成する樹脂組成物中、0.1~50質量%の範囲にあることが好ましく、0.5~40質量%の範囲にあることがより好ましい。これにより、バリア層3と接着層5との密着性を効果的に高めることができる。 The proportion of the compound having an oxazoline group in the adhesive layer 5 is preferably in the range of 0.1 to 50% by mass, preferably in the range of 0.5 to 40% by mass in the resin composition constituting the adhesive layer 5. It is more preferable to be in. As a result, the adhesion between the barrier layer 3 and the adhesive layer 5 can be effectively enhanced.
 エポキシ基を有する化合物としては、例えば、エポキシ樹脂が挙げられる。エポキシ樹脂としては、分子内に存在するエポキシ基によって架橋構造を形成することが可能な樹脂であれば、特に制限されず、公知のエポキシ樹脂を用いることができる。エポキシ樹脂の重量平均分子量としては、好ましくは50~2000程度、より好ましくは100~1000程度、さらに好ましくは200~800程度が挙げられる。なお、本開示において、エポキシ樹脂の重量平均分子量は、標準サンプルとしてポリスチレンを用いた条件で測定された、ゲル浸透クロマトグラフィ(GPC)により測定された値である。 Examples of the compound having an epoxy group include an epoxy resin. The epoxy resin is not particularly limited as long as it is a resin capable of forming a crosslinked structure by an epoxy group existing in the molecule, and a known epoxy resin can be used. The weight average molecular weight of the epoxy resin is preferably about 50 to 2000, more preferably about 100 to 1000, and even more preferably about 200 to 800. In the present disclosure, the weight average molecular weight of the epoxy resin is a value measured by gel permeation chromatography (GPC) measured under the condition that polystyrene is used as a standard sample.
 エポキシ樹脂の具体例としては、トリメチロールプロパンのグリシジルエーテル誘導体、ビスフェノールAジグリシジルエーテル、変性ビスフェノールAジグリシジルエーテル、ノボラックグリシジルエーテル、グリセリンポリグリシジルエーテル、ポリグリセリンポリグリシジルエーテルなどが挙げられる。エポキシ樹脂は、1種類単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。 Specific examples of the epoxy resin include glycidyl ether derivative of trimethylolpropane, bisphenol A diglycidyl ether, modified bisphenol A diglycidyl ether, novolac glycidyl ether, glycerin polyglycidyl ether, polyglycerin polyglycidyl ether and the like. One type of epoxy resin may be used alone, or two or more types may be used in combination.
 接着層5における、エポキシ樹脂の割合としては、接着層5を構成する樹脂組成物中、0.1~50質量%の範囲にあることが好ましく、0.5~40質量%の範囲にあることがより好ましい。これにより、バリア層3と接着層5との密着性を効果的に高めることができる。 The proportion of the epoxy resin in the adhesive layer 5 is preferably in the range of 0.1 to 50% by mass, and preferably in the range of 0.5 to 40% by mass in the resin composition constituting the adhesive layer 5. Is more preferable. As a result, the adhesion between the barrier layer 3 and the adhesive layer 5 can be effectively enhanced.
 ポリウレタンとしては、特に制限されず、公知のポリウレタンを使用することができる。接着層5は、例えば、2液硬化型ポリウレタンの硬化物であってもよい。 The polyurethane is not particularly limited, and known polyurethane can be used. The adhesive layer 5 may be, for example, a cured product of a two-component curable polyurethane.
 接着層5における、ポリウレタンの割合としては、接着層5を構成する樹脂組成物中、0.1~50質量%の範囲にあることが好ましく、0.5~40質量%の範囲にあることがより好ましい。これにより、電解液などのバリア層の腐食を誘発する成分が存在する雰囲気における、バリア層3と接着層5との密着性を効果的に高めることができる。 The proportion of polyurethane in the adhesive layer 5 is preferably in the range of 0.1 to 50% by mass, and preferably in the range of 0.5 to 40% by mass in the resin composition constituting the adhesive layer 5. More preferred. As a result, the adhesion between the barrier layer 3 and the adhesive layer 5 can be effectively enhanced in an atmosphere in which a component that induces corrosion of the barrier layer such as an electrolytic solution is present.
 なお、接着層5が、イソシアネート基を有する化合物、オキサゾリン基を有する化合物、及びエポキシ樹脂からなる群より選択される少なくとも1種と、前記酸変性ポリオレフィンとを含む樹脂組成物の硬化物である場合、酸変性ポリオレフィンが主剤として機能し、イソシアネート基を有する化合物、オキサゾリン基を有する化合物、及びエポキシ基を有する化合物は、それぞれ、硬化剤として機能する。 When the adhesive layer 5 is a cured product of a resin composition containing at least one selected from the group consisting of a compound having an isocyanate group, a compound having an oxazoline group, and an epoxy resin, and the acid-modified polyolefin. , The acid-modified polyolefin functions as a main agent, and the compound having an isocyanate group, the compound having an oxazoline group, and the compound having an epoxy group each function as a curing agent.
 接着層5の厚さは、好ましくは、約50μm以下、約40μm以下、約30μm以下、約20μm以下、約5μm以下である。また、接着層5の厚さは、好ましくは、約0.1μm以上、約0.5μm以上である。また、接着層5の厚さの範囲としては、好ましくは、0.1~50μm程度、0.1~40μm程度、0.1~30μm程度、0.1~20μm程度、0.1~5μm程度、0.5~50μm程度、0.5~40μm程度、0.5~30μm程度、0.5~20μm程度、0.5~5μm程度が挙げられる。より具体的には、接着剤層2で例示した接着剤や、酸変性ポリオレフィンと硬化剤との硬化物である場合は、好ましくは1~10μm程度、より好ましくは1~5μm程度が挙げられる。また、熱融着性樹脂層4で例示した樹脂を用いる場合であれば、好ましくは2~50μm程度、より好ましくは10~40μm程度が挙げられる。例えば、接着層5を酸変性ポリオレフィンから形成する場合には、接着層5の厚みとしては、好ましくは約2μm以上、より好ましくは5μm以上、さらに好ましくは8μm以上である。また、例えば接着層5を酸変性ポリオレフィンから形成する場合には、接着層5の厚みとしては、好ましくは約50μm以下、より好ましくは40μm以下である。また、例えば接着層5を酸変性ポリオレフィンから形成する場合には、接着層5の厚みの好ましい範囲としては、2~50μm程度、2~40μm程度、5~50μm程度、5~40μm程度、8~50μm程度、8~40μm程度である。なお、接着層5が接着剤層2で例示した接着剤や、酸変性ポリオレフィンと硬化剤を含む樹脂組成物の硬化物である場合、例えば、当該樹脂組成物を塗布し、加熱等により硬化させることにより、接着層5を形成することができる。また、熱融着性樹脂層4で例示した樹脂を用いる場合、例えば、熱融着性樹脂層4と接着層5との押出成形により形成することができる。 The thickness of the adhesive layer 5 is preferably about 50 μm or less, about 40 μm or less, about 30 μm or less, about 20 μm or less, and about 5 μm or less. The thickness of the adhesive layer 5 is preferably about 0.1 μm or more and about 0.5 μm or more. The thickness range of the adhesive layer 5 is preferably about 0.1 to 50 μm, about 0.1 to 40 μm, about 0.1 to 30 μm, about 0.1 to 20 μm, and about 0.1 to 5 μm. , About 0.5 to 50 μm, about 0.5 to 40 μm, about 0.5 to 30 μm, about 0.5 to 20 μm, and about 0.5 to 5 μm. More specifically, in the case of the adhesive exemplified in the adhesive layer 2 or the cured product of the acid-modified polyolefin and the curing agent, the thickness is preferably about 1 to 10 μm, more preferably about 1 to 5 μm. When the resin exemplified in the thermosetting resin layer 4 is used, it is preferably about 2 to 50 μm, more preferably about 10 to 40 μm. For example, when the adhesive layer 5 is formed from acid-modified polyolefin, the thickness of the adhesive layer 5 is preferably about 2 μm or more, more preferably 5 μm or more, and further preferably 8 μm or more. Further, for example, when the adhesive layer 5 is formed from acid-modified polyolefin, the thickness of the adhesive layer 5 is preferably about 50 μm or less, more preferably 40 μm or less. Further, for example, when the adhesive layer 5 is formed from acid-modified polyolefin, the preferable range of the thickness of the adhesive layer 5 is about 2 to 50 μm, about 2 to 40 μm, about 5 to 50 μm, about 5 to 40 μm, and 8 to. It is about 50 μm and about 8 to 40 μm. When the adhesive layer 5 is a cured product of the adhesive exemplified in the adhesive layer 2 or a resin composition containing an acid-modified polyolefin and a curing agent, for example, the resin composition is applied and cured by heating or the like. As a result, the adhesive layer 5 can be formed. Further, when the resin exemplified in the thermosetting resin layer 4 is used, it can be formed by, for example, extrusion molding of the thermosetting resin layer 4 and the adhesive layer 5.
3.蓄電デバイス用外装材の製造方法
 蓄電デバイス用外装材の製造方法については、本発明の蓄電デバイス用外装材が備える各層を積層させた積層体が得られる限り、特に制限されず、外側から順に、少なくとも、表面被覆層6と、基材層1と、バリア層3と、熱融着性樹脂層4とが積層された積層体を得る工程を備える方法が挙げられる。具体的には、本開示の蓄電デバイス用外装材の製造方法は、外側から順に、少なくとも、表面被覆層6と、基材層1と、バリア層3と、熱融着性樹脂層4とが積層された積層体を得る工程を備えており、表面被覆層6は、樹脂及び粒子を含んでおり、23℃環境において、表面被覆層6の外側表面について、ナノインデンテーション法により測定される硬さが、420.4MPa以下である。
3. 3. Method for Manufacturing Exterior Material for Power Storage Device The method for manufacturing the exterior material for power storage device is not particularly limited as long as a laminated body in which each layer of the exterior material for power storage device of the present invention is laminated can be obtained, and the method is not particularly limited. At least, there is a method including a step of obtaining a laminate in which the surface coating layer 6, the base material layer 1, the barrier layer 3, and the thermosetting resin layer 4 are laminated. Specifically, in the method for producing an exterior material for a power storage device of the present disclosure, at least a surface coating layer 6, a base material layer 1, a barrier layer 3, and a thermosetting resin layer 4 are provided in this order from the outside. The surface coating layer 6 contains a resin and particles, and the outer surface of the surface coating layer 6 is measured by a nanoindentation method in a 23 ° C. environment. Is 420.4 MPa or less.
 本発明の蓄電デバイス用外装材の製造方法の一例としては、以下の通りである。まず、基材層1、接着剤層2、バリア層3が順に積層された積層体(以下、「積層体A」と表記することもある)を形成する。積層体Aの形成は、具体的には、基材層1上又は必要に応じて表面が化成処理されたバリア層3に接着剤層2の形成に使用される接着剤を、グラビアコート法、ロールコート法などの塗布方法で塗布、乾燥した後に、当該バリア層3又は基材層1を積層させて接着剤層2を硬化させるドライラミネート法によって行うことができる。 An example of the method for manufacturing the exterior material for a power storage device of the present invention is as follows. First, a laminate in which the base material layer 1, the adhesive layer 2, and the barrier layer 3 are laminated in this order (hereinafter, may be referred to as “laminate A”) is formed. Specifically, the laminated body A is formed by applying an adhesive used for forming the adhesive layer 2 on the base material layer 1 or, if necessary, on the barrier layer 3 whose surface has been chemically converted, by a gravure coating method. It can be carried out by a dry laminating method in which the barrier layer 3 or the base material layer 1 is laminated and the adhesive layer 2 is cured after being applied and dried by a coating method such as a roll coating method.
 次いで、積層体Aのバリア層3上に、熱融着性樹脂層4を積層させる。バリア層3上に熱融着性樹脂層4を直接積層させる場合には、積層体Aのバリア層3上に、熱融着性樹脂層4をサーマルラミネート法、押出ラミネート法などの方法により積層すればよい。また、バリア層3と熱融着性樹脂層4の間に接着層5を設ける場合には、例えば、(1)積層体Aのバリア層3上に、接着層5及び熱融着性樹脂層4を押出しすることにより積層する方法(共押出しラミネート法、タンデムラミネート法)、(2)別途、接着層5と熱融着性樹脂層4が積層した積層体を形成し、これを積層体Aのバリア層3上にサーマルラミネート法により積層する方法や、積層体Aのバリア層3上に接着層5が積層した積層体を形成し、これを熱融着性樹脂層4とサーマルラミネート法により積層する方法、(3)積層体Aのバリア層3と、予めシート状に製膜した熱融着性樹脂層4との間に、溶融させた接着層5を流し込みながら、接着層5を介して積層体Aと熱融着性樹脂層4を貼り合せる方法(サンドイッチラミネート法)、(4)積層体Aのバリア層3上に、接着層5を形成させるための接着剤を溶液コーティングし、乾燥させる方法や、さらには焼き付ける方法などにより積層させ、この接着層5上に予めシート状に製膜した熱融着性樹脂層4を積層する方法などが挙げられる。 Next, the thermosetting resin layer 4 is laminated on the barrier layer 3 of the laminated body A. When the thermosetting resin layer 4 is directly laminated on the barrier layer 3, the thermosetting resin layer 4 is laminated on the barrier layer 3 of the laminated body A by a method such as a thermal laminating method or an extrusion laminating method. do it. When the adhesive layer 5 is provided between the barrier layer 3 and the heat-sealing resin layer 4, for example, (1) the adhesive layer 5 and the heat-sealing resin layer are placed on the barrier layer 3 of the laminated body A. A method of laminating 4 by extruding (co-extruded laminating method, tandem laminating method), (2) Separately, a laminated body in which the adhesive layer 5 and the heat-sealing resin layer 4 are laminated is formed, and this is laminated. A laminated body in which the adhesive layer 5 is laminated on the barrier layer 3 of the laminated body A is formed by a method of laminating on the barrier layer 3 of the above, and this is formed by a heat-sealing resin layer 4 and a thermal laminating method. Method of Laminating, (3) While pouring the melted adhesive layer 5 between the barrier layer 3 of the laminated body A and the heat-sealing resin layer 4 formed into a sheet in advance, the adhesive layer 5 is passed through. A method of laminating the laminate A and the heat-sealing resin layer 4 (sandwich lamination method), (4) a solution coating of an adhesive for forming the adhesive layer 5 on the barrier layer 3 of the laminate A is performed. Examples thereof include a method of laminating by a method of drying, a method of baking, and the like, and a method of laminating a heat-sealing resin layer 4 having a sheet-like film formed in advance on the adhesive layer 5.
 次に、基材層1のバリア層3とは反対側の表面に、表面被覆層6を積層する。表面被覆層6は、例えば表面被覆層6を形成する上記の樹脂組成物を基材層1の表面に塗布し、硬化させることにより形成することができる。なお、基材層1の表面にバリア層3を積層する工程と、基材層1の表面に表面被覆層6を積層する工程の順番は、特に制限されない。例えば、基材層1の表面に表面被覆層6を形成した後、基材層1の表面被覆層6とは反対側の表面にバリア層3を形成してもよい。 Next, the surface coating layer 6 is laminated on the surface of the base material layer 1 opposite to the barrier layer 3. The surface coating layer 6 can be formed, for example, by applying the above resin composition for forming the surface coating layer 6 to the surface of the base material layer 1 and curing the surface coating layer 1. The order of the step of laminating the barrier layer 3 on the surface of the base material layer 1 and the step of laminating the surface coating layer 6 on the surface of the base material layer 1 is not particularly limited. For example, after forming the surface coating layer 6 on the surface of the base material layer 1, the barrier layer 3 may be formed on the surface of the base material layer 1 opposite to the surface coating layer 6.
 上記のようにして、外側から順に、表面被覆層6/基材層1/必要に応じて設けられる接着剤層2/バリア層3/必要に応じて設けられる接着層5/熱融着性樹脂層4を備える積層体が形成されるが、必要に応じて設けられる接着剤層2及び接着層5の接着性を強固にするために、さらに、加熱処理に供してもよい。また、前記のとおり、基材層1とバリア層3との間に着色層を設けてもよい。 As described above, in order from the outside, the surface coating layer 6 / the base material layer 1 / the adhesive layer 2 provided as needed / the barrier layer 3 / the adhesive layer 5 provided as needed / the thermosetting resin. A laminated body including the layer 4 is formed, and may be further subjected to a heat treatment in order to strengthen the adhesiveness of the adhesive layer 2 and the adhesive layer 5 provided as needed. Further, as described above, a colored layer may be provided between the base material layer 1 and the barrier layer 3.
4.蓄電デバイス用外装材の用途
 本開示の蓄電デバイス用外装材は、正極、負極、電解質等の蓄電デバイス素子を密封して収容するための包装体に使用される。すなわち、本開示の蓄電デバイス用外装材によって形成された包装体中に、少なくとも正極、負極、及び電解質を備えた蓄電デバイス素子を収容して、蓄電デバイスとすることができる。
4. Applications of exterior materials for power storage devices The exterior materials for power storage devices of the present disclosure are used for packaging for sealing and accommodating power storage device elements such as positive electrodes, negative electrodes, and electrolytes. That is, a power storage device element including at least a positive electrode, a negative electrode, and an electrolyte can be housed in a package formed of the exterior material for a power storage device of the present disclosure to form a power storage device.
 具体的には、少なくとも正極、負極、及び電解質を備えた蓄電デバイス素子を、本開示の蓄電デバイス用外装材で、前記正極及び負極の各々に接続された金属端子を外側に突出させた状態で、蓄電デバイス素子の周縁にフランジ部(熱融着性樹脂層同士が接触する領域)が形成できるようにして被覆し、前記フランジ部の熱融着性樹脂層同士をヒートシールして密封させることによって、蓄電デバイス用外装材を使用した蓄電デバイスが提供される。なお、本開示の蓄電デバイス用外装材により形成された包装体中に蓄電デバイス素子を収容する場合、本開示の蓄電デバイス用外装材の熱融着性樹脂部分が内側(蓄電デバイス素子と接する面)になるようにして、包装体を形成する。 Specifically, a power storage device element having at least a positive electrode, a negative electrode, and an electrolyte is provided with the exterior material for the power storage device of the present disclosure in a state in which metal terminals connected to each of the positive electrode and the negative electrode are projected outward. , The peripheral edge of the power storage device element is covered so that a flange portion (a region where the heat-sealing resin layers come into contact with each other) can be formed, and the heat-sealing resin layers of the flange portion are heat-sealed and sealed. Provides a power storage device using an exterior material for the power storage device. When the power storage device element is housed in the package formed of the exterior material for the power storage device of the present disclosure, the thermosetting resin portion of the exterior material for the power storage device of the present disclosure is inside (the surface in contact with the power storage device element). ) To form a package.
 本開示の蓄電デバイス用外装材は、電池(コンデンサー、キャパシター等を含む)などの蓄電デバイスに好適に使用することができる。また、本開示の蓄電デバイス用外装材は、一次電池、二次電池のいずれに使用してもよいが、好ましくは二次電池である。本開示の蓄電デバイス用外装材が適用される二次電池の種類については、特に制限されず、例えば、リチウムイオン電池、リチウムイオンポリマー電池、全固体電池、鉛蓄電池、ニッケル・水素蓄電池、ニッケル・カドミウム蓄電池、ニッケル・鉄蓄電池、ニッケル・亜鉛蓄電池、酸化銀・亜鉛蓄電池、金属空気電池、多価カチオン電池、コンデンサー、キャパシター等が挙げられる。これらの二次電池の中でも、本開示の蓄電デバイス用外装材の好適な適用対象として、リチウムイオン電池及びリチウムイオンポリマー電池が挙げられる。 The exterior material for a power storage device of the present disclosure can be suitably used for a power storage device such as a battery (including a capacitor, a capacitor, etc.). Further, the exterior material for the power storage device of the present disclosure may be used for either a primary battery or a secondary battery, but is preferably a secondary battery. The type of the secondary battery to which the exterior material for the power storage device of the present disclosure is applied is not particularly limited, and for example, a lithium ion battery, a lithium ion polymer battery, an all-solid-state battery, a lead storage battery, a nickel / hydrogen storage battery, a nickel / hydrogen battery, Examples thereof include cadmium storage batteries, nickel / iron storage batteries, nickel / zinc storage batteries, silver oxide / zinc storage batteries, metal air batteries, polyvalent cation batteries, capacitors, and capacitors. Among these secondary batteries, lithium ion batteries and lithium ion polymer batteries are examples of suitable application targets of the exterior materials for power storage devices of the present disclosure.
 以下に実施例及び比較例を示して本開示を詳細に説明する。但し本開示は実施例に限定されるものではない。 The present disclosure will be described in detail below with reference to Examples and Comparative Examples. However, the present disclosure is not limited to the examples.
<蓄電デバイス用外装材の製造>
[実施例1]
 基材層として、延伸ナイロン(ONy)フィルム(厚さ15μm)を準備した。また、バリア層として、アルミニウム箔(JIS H4160:1994 A8021H-O(厚さ35μm))を用意した。次に、後述の接着剤(着色剤を含有する2液型ウレタン接着剤)を用いて、バリア層と基材層をドライラミネート法で積層した後、エージング処理を実施することにより、基材層/接着剤層/バリア層の積層体を作製した。アルミニウム箔の両面には、化成処理が施してある。アルミニウム箔の化成処理は、フェノール樹脂、フッ化クロム化合物、及びリン酸からなる処理液をクロムの塗布量が10mg/m2(乾燥質量)となるように、ロールコート法によりアルミニウム箔の両面に塗布し、焼付けすることにより行った。
<Manufacturing of exterior materials for power storage devices>
[Example 1]
A stretched nylon (ONy) film (thickness 15 μm) was prepared as a base material layer. Further, as a barrier layer, an aluminum foil (JIS H4160: 1994 A8021HO (thickness 35 μm)) was prepared. Next, the barrier layer and the base material layer are laminated by a dry laminating method using an adhesive (two-component urethane adhesive containing a colorant) described later, and then an aging treatment is performed to carry out the base material layer. A laminate of / adhesive layer / barrier layer was prepared. Both sides of the aluminum foil are subjected to chemical conversion treatment. The chemical conversion treatment of the aluminum foil is performed by applying a treatment liquid consisting of a phenol resin, a chromium fluoride compound, and phosphoric acid to both sides of the aluminum foil by a roll coating method so that the amount of chromium applied is 10 mg / m 2 (dry mass). This was done by coating and baking.
 次に、上記で得られた各積層体のバリア層の上に、接着層(厚さ20μm)としての無水マレイン酸変性ポリプロピレンと、熱融着性樹脂層(厚さ20μm)としてのランダムポリプロピレンとを共押出しすることにより、バリア層の上に接着層/熱融着性樹脂層とを積層させた。さらに、得られた積層体の基材層の表面に、下記の樹脂組成物1を厚さ3μmとなるように塗工し、温度40℃から100℃環境で3日間の形成条件で硬化させることにより、艶消し調の表面被覆層を形成して、外側から順に、表面被覆層(3μm)/基材層(厚さ15μm)/接着剤層(3μm)/バリア層(35μm)/接着層(20μm)/熱融着性樹脂層(20μm)が積層された積層体(総厚み96μm)からなる蓄電デバイス用外装材を得た。 Next, on the barrier layer of each of the above-mentioned laminates, maleic anhydride-modified polypropylene as an adhesive layer (thickness 20 μm) and random polypropylene as a thermosetting resin layer (thickness 20 μm) The adhesive layer / thermosetting resin layer was laminated on the barrier layer by co-extruding. Further, the surface of the base material layer of the obtained laminate is coated with the following resin composition 1 so as to have a thickness of 3 μm, and cured in an environment of a temperature of 40 ° C. to 100 ° C. for 3 days. A matte surface coating layer is formed by the above method, and the surface coating layer (3 μm) / base material layer (thickness 15 μm) / adhesive layer (3 μm) / barrier layer (35 μm) / adhesive layer (in order from the outside). An exterior material for a power storage device was obtained, which consisted of a laminated body (total thickness 96 μm) in which a heat-sealing resin layer (20 μm) was laminated (20 μm).
[実施例2]
 表面被覆層の形成において、樹脂組成物1の代わりに、下記の樹脂組成物2を用い、表面被覆層を形成したこと以外は、実施例1と同様にして、蓄電デバイス用外装材を得た。
[Example 2]
In the formation of the surface coating layer, the following resin composition 2 was used instead of the resin composition 1, and the exterior material for the power storage device was obtained in the same manner as in Example 1 except that the surface coating layer was formed. ..
[実施例3]
 表面被覆層の形成において、樹脂組成物1の代わりに、下記の樹脂組成物3を用い、表面被覆層を形成したこと以外は、実施例1と同様にして、蓄電デバイス用外装材を得た。
[Example 3]
In the formation of the surface coating layer, the following resin composition 3 was used instead of the resin composition 1, and an exterior material for a power storage device was obtained in the same manner as in Example 1 except that the surface coating layer was formed. ..
[実施例4]
 表面被覆層の形成において、樹脂組成物1の代わりに、下記の樹脂組成物4を用い、表面被覆層を形成したこと以外は、実施例1と同様にして、蓄電デバイス用外装材を得た。
[Example 4]
In the formation of the surface coating layer, an exterior material for a power storage device was obtained in the same manner as in Example 1 except that the following resin composition 4 was used instead of the resin composition 1 to form the surface coating layer. ..
[実施例5]
 表面被覆層の形成において、樹脂組成物1の代わりに、下記の樹脂組成物5を用い、表面被覆層を形成したこと以外は、実施例1と同様にして、蓄電デバイス用外装材を得た。
[Example 5]
In the formation of the surface coating layer, the following resin composition 5 was used instead of the resin composition 1, and an exterior material for a power storage device was obtained in the same manner as in Example 1 except that the surface coating layer was formed. ..
[実施例6]
 表面被覆層の形成において、樹脂組成物1の代わりに、下記の樹脂組成物6を用い、表面被覆層を形成したこと以外は、実施例1と同様にして、蓄電デバイス用外装材を得た。
[Example 6]
In the formation of the surface coating layer, an exterior material for a power storage device was obtained in the same manner as in Example 1 except that the following resin composition 6 was used instead of the resin composition 1 to form the surface coating layer. ..
[実施例7]
 表面被覆層の形成において、樹脂組成物1の代わりに、下記の樹脂組成物7を用い、表面被覆層を形成したこと以外は、実施例1と同様にして、蓄電デバイス用外装材を得た。
[Example 7]
In the formation of the surface coating layer, the following resin composition 7 was used instead of the resin composition 1, and an exterior material for a power storage device was obtained in the same manner as in Example 1 except that the surface coating layer was formed. ..
[実施例8]
 基材層として、延伸ナイロン(ONy)フィルム(厚さ12μm)を準備した。また、バリア層として、ステンレス鋼箔(SUS301(厚さ20μm))を用意した。次に、後述の接着剤(着色剤を含有する2液型ウレタン接着剤)を用いて、バリア層と基材層をドライラミネート法で積層した後、エージング処理を実施することにより、基材層/接着剤層/バリア層の積層体を作製した。ステンレス鋼箔の両面には、化成処理が施してある。ステンレス鋼箔の化成処理は、フェノール樹脂、フッ化クロム化合物、及びリン酸からなる処理液をクロムの塗布量が10mg/m2(乾燥質量)となるように、ロールコート法によりステンレス鋼箔の両面に塗布し、焼付けすることにより行った。
[Example 8]
A stretched nylon (ONy) film (thickness 12 μm) was prepared as a base material layer. Further, as a barrier layer, a stainless steel foil (SUS301 (thickness 20 μm)) was prepared. Next, the barrier layer and the base material layer are laminated by a dry laminating method using an adhesive (two-component urethane adhesive containing a colorant) described later, and then an aging treatment is performed to carry out the base material layer. A laminate of / adhesive layer / barrier layer was prepared. Both sides of the stainless steel foil are subjected to chemical conversion treatment. The chemical conversion treatment of the stainless steel foil is performed by applying a treatment liquid consisting of a phenol resin, a chromium fluoride compound, and phosphoric acid to the stainless steel foil by a roll coating method so that the amount of chromium applied is 10 mg / m 2 (dry mass). This was done by applying and baking on both sides.
 次に、上記で得られた各積層体のバリア層と熱融着性樹脂層とを、変性オレフィン系接着剤(硬化後の接着層の厚みは3μm)を用いてドライラミネート法で接着し、バリア層の上に接着層と熱融着性樹脂層とを積層した。熱融着性樹脂層としては、未延伸ポリプロピレンフィルム(厚さ23μm)を用いた。さらに、得られた積層体の基材層の表面に、下記の樹脂組成物2を厚さ3μmとなるように塗工し、温度40℃から100℃環境で3日間の形成条件で硬化させることにより、艶消し調の表面被覆層を形成して、外側から順に、表面被覆層(3μm)/基材層(厚さ12μm)/接着剤層(3μm)/バリア層(20μm)/接着層(3μm)/熱融着性樹脂層(23μm)が積層された積層体(総厚み64μm)からなる蓄電デバイス用外装材を得た。 Next, the barrier layer and the thermosetting resin layer of each of the above-mentioned laminates are bonded by a dry laminating method using a modified olefin adhesive (the thickness of the adhesive layer after curing is 3 μm). An adhesive layer and a thermosetting resin layer were laminated on the barrier layer. As the thermosetting resin layer, an unstretched polypropylene film (thickness 23 μm) was used. Further, the surface of the base material layer of the obtained laminate is coated with the following resin composition 2 so as to have a thickness of 3 μm, and cured in an environment of a temperature of 40 ° C. to 100 ° C. for 3 days. A matte surface coating layer is formed by the above method, and the surface coating layer (3 μm) / base material layer (thickness 12 μm) / adhesive layer (3 μm) / barrier layer (20 μm) / adhesive layer (in order from the outside). An exterior material for a power storage device made of a laminated body (total thickness 64 μm) in which a heat-sealing resin layer (23 μm) was laminated (3 μm) was obtained.
[実施例9]
 表面被覆層の形成において、樹脂組成物2の代わりに、下記の樹脂組成物9を用い、表面被覆層を形成したこと以外は、実施例8と同様にして、蓄電デバイス用外装材を得た。
[Example 9]
In the formation of the surface coating layer, an exterior material for a power storage device was obtained in the same manner as in Example 8 except that the following resin composition 9 was used instead of the resin composition 2 to form the surface coating layer. ..
[実施例10]
 表面被覆層の形成において、樹脂組成物1の代わりに、下記の樹脂組成物10を用い、表面被覆層を形成したこと以外は、実施例1と同様にして、蓄電デバイス用外装材を得た。
[Example 10]
In the formation of the surface coating layer, the following resin composition 10 was used instead of the resin composition 1, and an exterior material for a power storage device was obtained in the same manner as in Example 1 except that the surface coating layer was formed. ..
[比較例1]
 表面被覆層の形成において、樹脂組成物1の代わりに、下記の樹脂組成物8を用い、表面被覆層を形成したこと以外は、実施例1と同様にして、蓄電デバイス用外装材を得た。
[Comparative Example 1]
In the formation of the surface coating layer, the following resin composition 8 was used instead of the resin composition 1, and an exterior material for a power storage device was obtained in the same manner as in Example 1 except that the surface coating layer was formed. ..
<表面被覆層の形成に用いた樹脂組成物と形成条件>
(樹脂組成物1(実施例1で使用))
 樹脂(2種のポリオール化合物と芳香族系イソシアネート系化合物の混合物から形成されるポリウレタン)と、無機粒子(シリカ粒子 平均粒子径1μm)と、ポリスチレン系有機粒子(平均粒子径2μm)と、オレフィン系ワックスを含む樹脂組成物
<Resin composition and formation conditions used to form the surface coating layer>
(Resin composition 1 (used in Example 1))
Resin (polyurethane formed from a mixture of two polyol compounds and aromatic isocyanate compounds), inorganic particles (silica particle average particle size 1 μm), polystyrene organic particles (average particle size 2 μm), and olefin type Resin composition containing wax
(樹脂組成物2(実施例2,8で使用))
 樹脂(2種のポリオール化合物と脂肪族系イソシアネート系化合物の混合物から形成されるポリウレタン)と、無機粒子(シリカ粒子 平均粒子径1μm)と、ポリスチレン系有機粒子(平均粒子径2μm)と、オレフィン系ワックスを含む樹脂組成物
(Resin composition 2 (used in Examples 2 and 8))
Resin (polyurethane formed from a mixture of two polyol compounds and an aliphatic isocyanate compound), inorganic particles (silica particle average particle size 1 μm), polystyrene organic particles (average particle size 2 μm), and olefin type. Resin composition containing wax
(樹脂組成物3(実施例3で使用))
 樹脂(2種のポリオール化合物と芳香族系イソシアネート系化合物の混合物から形成されるポリウレタン(2種のポリオール化合物の配合比を樹脂組成物1から変更))と、無機粒子(シリカ粒子 平均粒子径1μm)と、ポリスチレン系有機粒子(平均粒子径2μm)と、オレフィン系ワックスを含む樹脂組成物
(Resin composition 3 (used in Example 3))
Resin (polyurethane formed from a mixture of two types of polyol compound and aromatic isocyanate compound (the compounding ratio of the two types of polyol compounds is changed from resin composition 1)) and inorganic particles (silica particle average particle diameter 1 μm). ), Polystyrene-based organic particles (average particle size 2 μm), and resin composition containing olefin-based wax.
(樹脂組成物4(実施例4で使用))
 樹脂(1種のポリオール化合物と脂肪族系イソシアネート系化合物の混合物から形成されるポリウレタン)100質量部と、無機粒子(硫酸バリウム粒子 平均粒子径1μm)10質量部と、ポリスチレン系有機粒子(平均粒子径2μm)と、オレフィン系ワックスを含む樹脂組成物
(Resin composition 4 (used in Example 4))
100 parts by mass of resin (polyurethane formed from a mixture of one polyol compound and an aliphatic isocyanate compound), 10 parts by mass of inorganic particles (barium sulfate particles average particle diameter 1 μm), and polystyrene organic particles (average particles) Resin composition containing 2 μm in diameter) and olefinic wax
(樹脂組成物5(実施例5で使用))
 実施例3の樹脂組成物のオレフィン系ワックスの含有量を1/4とした樹脂組成物
(Resin composition 5 (used in Example 5))
A resin composition in which the content of the olefin wax in the resin composition of Example 3 is 1/4.
(樹脂組成物6(実施例6で使用))
 実施例3の樹脂組成物のオレフィン系ワックスの含有量を1/8とした樹脂組成物
(Resin composition 6 (used in Example 6))
A resin composition in which the content of the olefin wax in the resin composition of Example 3 is 1/8.
(樹脂組成物7(実施例7で使用))
 実施例3の樹脂組成物にオレフィン系ワックスが含まれていない樹脂組成物
(Resin composition 7 (used in Example 7))
A resin composition in which the resin composition of Example 3 does not contain an olefin wax.
(樹脂組成物8(比較例1で使用))
 実施例1とは別の芳香族系イソシアネート系化合物を使用した以外は、実施例1と同じ材料を用いた。
(Resin composition 8 (used in Comparative Example 1))
The same material as in Example 1 was used except that an aromatic isocyanate compound different from that in Example 1 was used.
(樹脂組成物9(実施例9で使用))
 樹脂(2種のポリオール化合物と芳香族系イソシアネート系化合物の混合物から形成されるポリウレタン(2種のポリオール化合物の配合比を樹脂組成物1から変更))と、無機粒子(シリカ粒子 平均粒子径1μm)と、ポリスチレン系有機粒子(平均粒子径2μm)を含む樹脂組成物
(Resin composition 9 (used in Example 9))
Resin (polyurethane formed from a mixture of two types of polyol compound and aromatic isocyanate compound (the compounding ratio of the two types of polyol compounds is changed from resin composition 1)) and inorganic particles (silica particle average particle diameter 1 μm). ) And polystyrene-based organic particles (average particle size 2 μm).
(樹脂組成物10(実施例10で使用))
 樹脂(2種のポリオール化合物と芳香族系イソシアネート系化合物の混合物から形成されるポリウレタン(2種のポリオール化合物の配合比を樹脂組成物1から変更))と、無機粒子(シリカ粒子 平均粒子径1μm)と、ポリスチレン系有機粒子(平均粒子径2μm)を含む樹脂組成物
(Resin composition 10 (used in Example 10))
Resin (polyurethane formed from a mixture of two types of polyol compound and aromatic isocyanate compound (the compounding ratio of the two types of polyol compounds is changed from resin composition 1)) and inorganic particles (silica particle average particle diameter 1 μm). ) And polystyrene-based organic particles (average particle size 2 μm).
[23℃環境でのナノインデンテーション法により測定される硬さ]
 装置として、ナノインデンター(HYSITRON(ハイジトロン)社製の「TI950 TriboIndenter」)を用いて硬さを測定した。ナノインデンターの圧子としては、Berkovich圧子(TI-0039)を用いた。まず、相対湿度50%、23℃環境において、当該圧子を、蓄電デバイス用外装材の表面被覆層の表面(表面被覆層が露出している面であり、各層の厚み方向とは平行な面)に厚み方向とは垂直な方向から当て、10秒間かけて当該表面から荷重50μNまで圧子を表面被覆層に押し込み、その状態で5秒間保持し、次に10秒間かけて除荷した。測定箇所をずらして測定したN=5の平均値を硬さとした。結果を表1に示す。なお、圧子を押し込む表面は、蓄電デバイス用外装材の中心部を通るように厚み方向に切断して得られた、表面被覆層の断面が露出した樹脂部分である。また、表面被覆層の硬さの測定において、圧子を押し込む箇所は、表面被覆層の表面に粒子が存在していない部分(樹脂部分)である。なお、測定結果は小数点第二位を四捨五入した。実施例1-10及び比較例1の表面被覆層に含まれる有機粒子は同じであり、実施例2,10の表面被覆層について、有機粒子が存在している部分に圧子を押し込むことで測定された硬さは、496.1MPaであった。切断は、市販品の回転式ミクロトームを用いて行った。なお、測定結果は小数点第二位を四捨五入した。
[Hardness measured by nanoindentation method in 23 ° C environment]
The hardness was measured using a nanoindenter (“TI950 TriboIndenter” manufactured by HYSITRON) as an apparatus. As the indenter of the nano indenter, a Berkovich indenter (TI-0039) was used. First, in an environment with a relative humidity of 50% and 23 ° C., the indenter is applied to the surface of the surface coating layer of the exterior material for a power storage device (the surface on which the surface coating layer is exposed and parallel to the thickness direction of each layer). The indenter was pushed into the surface coating layer from the surface to a load of 50 μN over 10 seconds, held for 5 seconds in that state, and then unloaded over 10 seconds. The average value of N = 5 measured by shifting the measurement points was taken as the hardness. The results are shown in Table 1. The surface on which the indenter is pushed is a resin portion having an exposed cross section of the surface coating layer obtained by cutting in the thickness direction so as to pass through the central portion of the exterior material for a power storage device. Further, in the measurement of the hardness of the surface coating layer, the portion where the indenter is pushed is a portion (resin portion) in which particles do not exist on the surface of the surface coating layer. The measurement results were rounded to the first decimal place. The organic particles contained in the surface coating layers of Examples 1-10 and Comparative Example 1 are the same, and the surface coating layers of Examples 2 and 10 are measured by pushing an indenter into a portion where the organic particles are present. The hardness was 496.1 MPa. Cutting was performed using a commercially available rotary microtome. The measurement results were rounded to the first decimal place.
[成形性]
 各蓄電デバイス用外装材を長さ(MD)90mm×幅(TD)150mmの長方形に裁断して試験サンプルとした。蓄電デバイス用外装材のMDが、アルミニウム合金箔の圧延方向(RD)に対応し、蓄電デバイス用外装材のTDが、アルミニウム合金箔のTDに対応する。この試験サンプルを25℃の環境下にて、31.6mm(MD)×54.5mm(TD)の口径を有する矩形状の成形金型(雌型、表面は、JIS B 0659-1:2002附属書1(参考) 比較用表面粗さ標準片の表2に規定される、最大高さ粗さ(Rzの呼び値)が3.2μmである。コーナーR2.0mm、稜線R1.0mm)と、これに対応した成形金型(雄型、稜線部の表面は、JIS B 0659-1:2002附属書1(参考) 比較用表面粗さ標準片の表2に規定される、最大高さ粗さ(Rzの呼び値)が1.6μmであり、稜線部以外の表面は、JIS B 0659-1:2002附属書1(参考) 比較用表面粗さ標準片の表2に規定される、最大高さ粗さ(Rzの呼び値)が3.2μmである。コーナーR2.0mm、稜線R1.0mm)を用いて、押さえ圧(面圧)0.22MPaで5mmの成形深さで、10個の試験サンプルについて冷間成形(引き込み1段成形)を行った。このとき、雄型側に熱融着性樹脂層側が位置するよう、雌型上に上記試験サンプルを載置して成形をおこなった。また、雄型及び雌型のクリアランスは、0.3mmとした。冷間成形後の試験サンプルについて、それぞれ、以下の基準により、成形後の艶消し調の意匠を評価した。結果を表1に示す。
A:成形後においても艶消し調の意匠が良好に保持されており、表面被覆層の割れや剥がれもなかった。
B:成形後において、表面被覆層の割れや剥がれは生じていないが、表面被覆層の表面に光沢が生じ艶消し調の意匠が損なわれていた。
C:成形後において、表面被覆層の表面に光沢が生じ艶消し調の意匠が損なわれており、さらに表面被覆層の割れや剥がれが発生していた。
[Moldability]
The exterior material for each power storage device was cut into a rectangle having a length (MD) of 90 mm and a width (TD) of 150 mm to prepare a test sample. The MD of the exterior material for the power storage device corresponds to the rolling direction (RD) of the aluminum alloy foil, and the TD of the exterior material for the power storage device corresponds to the TD of the aluminum alloy foil. This test sample is subjected to a rectangular molding mold (female mold, surface is JIS B 0659-1: 2002) having a diameter of 31.6 mm (MD) × 54.5 mm (TD) in an environment of 25 ° C. Book 1 (Reference) The maximum height roughness (nominal value of Rz) specified in Table 2 of the comparative surface roughness standard piece is 3.2 μm. Corner R2.0 mm, ridge line R1.0 mm) and this. Molding dies corresponding to (male mold, the surface of the ridge line is JIS B 0659-1: 2002 Annex 1 (reference) Maximum height roughness specified in Table 2 of the comparative surface roughness standard piece (reference) The nominal value of Rz) is 1.6 μm, and the surface other than the ridgeline is the maximum height roughness specified in Table 2 of JIS B 0659-1: 2002 Annex 1 (Reference) Comparative Surface Roughness Standard Piece. (Nominal value of Rz) is 3.2 μm. Using a corner R2.0 mm, ridge line R1.0 mm), with a pressing pressure (surface pressure) of 0.22 MPa and a molding depth of 5 mm, about 10 test samples. Cold molding (pull-in one-stage molding) was performed. At this time, the test sample was placed on the female mold so that the thermosetting resin layer side was located on the male mold side, and molding was performed. The clearance between the male type and the female type was set to 0.3 mm. For each of the test samples after cold molding, the matte design after molding was evaluated according to the following criteria. The results are shown in Table 1.
A: The matte design was well maintained even after molding, and the surface coating layer was not cracked or peeled off.
B: After molding, the surface coating layer was not cracked or peeled off, but the surface of the surface coating layer was glossy and the matte design was impaired.
C: After molding, the surface of the surface coating layer was glossy and the matte design was impaired, and the surface coating layer was cracked or peeled off.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 実施例1-10の蓄電デバイス用外装材は、表面被覆層は、樹脂及び粒子を含んでおり、23℃環境において、表面被覆層の外側表面について、ナノインデンテーション法により測定される硬さが、420.4MPa以下である。実施例1-10の蓄電デバイス用外装材は、蓄電デバイス用外装材の成形による表面被覆層の割れや剥がれの発生が抑制されている。さらに、表面被覆層のワックスの添加量を少量とした実施例5、6は、表面被覆層の割れや剥がれの発生がより抑制されており、表面被覆層にワックスを含まない実施例7,9,10は、表面被覆層の割れや剥がれの発生がさらに抑制されていた。 In the exterior material for a power storage device of Example 1-10, the surface coating layer contains a resin and particles, and the hardness of the outer surface of the surface coating layer measured by the nanoindentation method in an environment of 23 ° C. , 420.4 MPa or less. In the exterior material for the power storage device of Example 1-10, the occurrence of cracking or peeling of the surface coating layer due to molding of the exterior material for the power storage device is suppressed. Further, in Examples 5 and 6 in which the amount of wax added to the surface coating layer was small, the occurrence of cracking and peeling of the surface coating layer was further suppressed, and Examples 7 and 9 did not contain wax in the surface coating layer. In Nos. 10 and 10, the occurrence of cracking and peeling of the surface coating layer was further suppressed.
 以上の通り、本開示は、以下に示す態様の発明を提供する。
項1. 外側から順に、少なくとも、表面被覆層、基材層、バリア層、及び熱融着性樹脂層を備える積層体から構成されており、
 前記表面被覆層は、樹脂及び粒子を含んでおり、
 23℃環境において、前記表面被覆層の厚み方向の断面について、ナノインデンテーション法により測定される前記表面被覆層の樹脂の硬さが、420.4MPa以下である、蓄電デバイス用外装材。
項2. 23℃環境において、前記表面被覆層の厚み方向の断面について、ナノインデンテーション法により測定される前記表面被覆層の粒子の硬さが、300.0MPa以上である、項1に記載の蓄電デバイス用外装材。
項3. 前記基材層と前記バリア層との間に、接着剤層を備えている、項1又は2に記載の蓄電デバイス用外装材。
項4. 前記接着剤層が着色されている、項3に記載の蓄電デバイス用外装材。
項5. 前記基材層と前記バリア層との間に、着色層を備えている、項1~4のいずれか1項に記載の蓄電デバイス用外装材。
項6. 蓄電デバイス用外装材の製造方法であって、
 外側から順に、少なくとも、表面被覆層と、基材層と、バリア層と、熱融着性樹脂層とが積層された積層体を得る工程を備えており、
 前記表面被覆層は、樹脂及び粒子を含んでおり、
 23℃環境において、前記表面被覆層の厚み方向の断面について、ナノインデンテーション法により測定される前記表面被覆層の樹脂の硬さが、420.4MPa以下である、蓄電デバイス用外装材の製造方法。
項7. 少なくとも正極、負極、及び電解質を備えた蓄電デバイス素子が、項1~5のいずれか1項に記載の蓄電デバイス用外装材により形成された包装体中に収容されている、蓄電デバイス。
As described above, the present disclosure provides the inventions of the following aspects.
Item 1. From the outside, it is composed of a laminate having at least a surface coating layer, a base material layer, a barrier layer, and a thermosetting resin layer.
The surface coating layer contains resin and particles, and contains resin and particles.
An exterior material for a power storage device in which the hardness of the resin of the surface coating layer measured by the nanoindentation method with respect to the cross section in the thickness direction of the surface coating layer in an environment of 23 ° C. is 420.4 MPa or less.
Item 2. Item 2. For a power storage device according to Item 1, wherein in a 23 ° C. environment, the hardness of the particles of the surface coating layer measured by the nanoindentation method with respect to the cross section in the thickness direction of the surface coating layer is 300.0 MPa or more. Exterior material.
Item 3. Item 2. The exterior material for a power storage device according to Item 1 or 2, wherein an adhesive layer is provided between the base material layer and the barrier layer.
Item 4. Item 3. The exterior material for a power storage device, wherein the adhesive layer is colored.
Item 5. Item 2. The exterior material for a power storage device according to any one of Items 1 to 4, wherein a colored layer is provided between the base material layer and the barrier layer.
Item 6. A method for manufacturing exterior materials for power storage devices.
A step of obtaining a laminate in which at least a surface coating layer, a base material layer, a barrier layer, and a thermosetting resin layer are laminated in order from the outside is provided.
The surface coating layer contains resin and particles, and contains resin and particles.
A method for producing an exterior material for a power storage device, wherein the hardness of the resin of the surface coating layer measured by the nanoindentation method is 420.4 MPa or less with respect to the cross section of the surface coating layer in the thickness direction in an environment of 23 ° C. ..
Item 7. A power storage device in which a power storage device element including at least a positive electrode, a negative electrode, and an electrolyte is housed in a package formed of the exterior material for the power storage device according to any one of Items 1 to 5.
1 基材層
2 接着剤層
3 バリア層
4 熱融着性樹脂層
5 接着層
6 表面被覆層
10 蓄電デバイス用外装材
1 Base material layer 2 Adhesive layer 3 Barrier layer 4 Thermosetting resin layer 5 Adhesive layer 6 Surface coating layer 10 Exterior material for power storage devices

Claims (7)

  1.  外側から順に、少なくとも、表面被覆層、基材層、バリア層、及び熱融着性樹脂層を備える積層体から構成されており、
     前記表面被覆層は、樹脂及び粒子を含んでおり、
     23℃環境において、前記表面被覆層の厚み方向の断面について、ナノインデンテーション法により測定される前記表面被覆層の樹脂の硬さが、420.4MPa以下である、蓄電デバイス用外装材。
    From the outside, it is composed of a laminate having at least a surface coating layer, a base material layer, a barrier layer, and a thermosetting resin layer.
    The surface coating layer contains resin and particles, and contains resin and particles.
    An exterior material for a power storage device in which the hardness of the resin of the surface coating layer measured by the nanoindentation method with respect to the cross section in the thickness direction of the surface coating layer in an environment of 23 ° C. is 420.4 MPa or less.
  2.  23℃環境において、前記表面被覆層の厚み方向の断面について、ナノインデンテーション法により測定される前記表面被覆層の粒子の硬さが、300.0MPa以上である、請求項1に記載の蓄電デバイス用外装材。 The power storage device according to claim 1, wherein in a 23 ° C. environment, the hardness of the particles of the surface coating layer measured by the nanoindentation method is 300.0 MPa or more with respect to the cross section in the thickness direction of the surface coating layer. Exterior material.
  3.  前記基材層と前記バリア層との間に、接着剤層を備えている、請求項1又は2に記載の蓄電デバイス用外装材。 The exterior material for a power storage device according to claim 1 or 2, wherein an adhesive layer is provided between the base material layer and the barrier layer.
  4.  前記接着剤層が着色されている、請求項3に記載の蓄電デバイス用外装材。 The exterior material for a power storage device according to claim 3, wherein the adhesive layer is colored.
  5.  前記基材層と前記バリア層との間に、着色層を備えている、請求項1~4のいずれか1項に記載の蓄電デバイス用外装材。 The exterior material for a power storage device according to any one of claims 1 to 4, wherein a colored layer is provided between the base material layer and the barrier layer.
  6.  蓄電デバイス用外装材の製造方法であって、
     外側から順に、少なくとも、表面被覆層と、基材層と、バリア層と、熱融着性樹脂層とが積層された積層体を得る工程を備えており、
     前記表面被覆層は、樹脂及び粒子を含んでおり、
     23℃環境において、前記表面被覆層の厚み方向の断面について、ナノインデンテーション法により測定される前記表面被覆層の樹脂の硬さが、420.4MPa以下である、蓄電デバイス用外装材の製造方法。
    A method for manufacturing exterior materials for power storage devices.
    A step of obtaining a laminate in which at least a surface coating layer, a base material layer, a barrier layer, and a thermosetting resin layer are laminated in order from the outside is provided.
    The surface coating layer contains resin and particles, and contains resin and particles.
    A method for producing an exterior material for a power storage device, wherein the hardness of the resin of the surface coating layer measured by the nanoindentation method is 420.4 MPa or less with respect to the cross section of the surface coating layer in the thickness direction in an environment of 23 ° C. ..
  7.  少なくとも正極、負極、及び電解質を備えた蓄電デバイス素子が、請求項1~5のいずれか1項に記載の蓄電デバイス用外装材により形成された包装体中に収容されている、蓄電デバイス。 A power storage device in which a power storage device element including at least a positive electrode, a negative electrode, and an electrolyte is housed in a package formed of the exterior material for the power storage device according to any one of claims 1 to 5.
PCT/JP2020/029576 2019-08-01 2020-07-31 Exterior material for electrical storage device, method for manufacturing same, and electrical storage device WO2021020583A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080053595.0A CN114175369A (en) 2019-08-01 2020-07-31 Outer packaging material for electricity storage device, method for producing same, and electricity storage device
JP2020569207A JP7055904B2 (en) 2019-08-01 2020-07-31 Exterior materials for power storage devices, their manufacturing methods, and power storage devices

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019142003 2019-08-01
JP2019-142003 2019-08-01

Publications (1)

Publication Number Publication Date
WO2021020583A1 true WO2021020583A1 (en) 2021-02-04

Family

ID=74230373

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/029576 WO2021020583A1 (en) 2019-08-01 2020-07-31 Exterior material for electrical storage device, method for manufacturing same, and electrical storage device

Country Status (3)

Country Link
JP (2) JP7055904B2 (en)
CN (1) CN114175369A (en)
WO (1) WO2021020583A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011054563A (en) * 2009-08-07 2011-03-17 Dainippon Printing Co Ltd Packaging material for electrochemical cell
WO2014156904A1 (en) * 2013-03-25 2014-10-02 大日本印刷株式会社 Battery packaging material
WO2019027021A1 (en) * 2017-08-02 2019-02-07 大日本印刷株式会社 Battery packaging material and battery
WO2019078284A1 (en) * 2017-10-18 2019-04-25 大日本印刷株式会社 Battery packaging material and battery

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5293845B2 (en) * 2011-11-11 2013-09-18 大日本印刷株式会社 Packaging materials for electrochemical cells
JP5708860B1 (en) * 2013-09-26 2015-04-30 大日本印刷株式会社 Battery packaging materials
JPWO2016175091A1 (en) * 2015-04-28 2018-02-22 凸版印刷株式会社 Power storage device exterior materials
WO2017209218A1 (en) * 2016-05-31 2017-12-07 大日本印刷株式会社 Battery packaging material, production method therefor, battery, and polyester film
CN109417133B (en) * 2016-07-08 2021-10-29 大日本印刷株式会社 Battery exterior material and battery
CN108701780B (en) * 2016-11-28 2022-08-30 大日本印刷株式会社 Battery packaging material, method for producing same, and battery
KR102419865B1 (en) * 2017-04-20 2022-07-11 다이니폰 인사츠 가부시키가이샤 Battery packaging material, method for manufacturing same, and battery
CN111133603B (en) 2017-10-06 2022-11-29 大日本印刷株式会社 Battery packaging material and battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011054563A (en) * 2009-08-07 2011-03-17 Dainippon Printing Co Ltd Packaging material for electrochemical cell
WO2014156904A1 (en) * 2013-03-25 2014-10-02 大日本印刷株式会社 Battery packaging material
WO2019027021A1 (en) * 2017-08-02 2019-02-07 大日本印刷株式会社 Battery packaging material and battery
WO2019078284A1 (en) * 2017-10-18 2019-04-25 大日本印刷株式会社 Battery packaging material and battery

Also Published As

Publication number Publication date
JPWO2021020583A1 (en) 2021-09-13
JP2021182550A (en) 2021-11-25
CN114175369A (en) 2022-03-11
JP7055904B2 (en) 2022-04-18

Similar Documents

Publication Publication Date Title
WO2020235534A1 (en) Exterior material for power storage device, method for manufacturing same, power storage device, and polyamide film
JP2021012876A (en) Exterior material for power storage devices, method for manufacturing the same, and power storage device
WO2020085462A1 (en) Casing material for power storage device, production method therefor, and power storage device
JP6819839B1 (en) Exterior materials for power storage devices, their manufacturing methods, and power storage devices
JP2020187976A (en) Exterior material for power storage device, manufacturing method thereof, power storage device, and polyamide film
JPWO2020071254A1 (en) Exterior materials for power storage devices, their manufacturing methods, and power storage devices
JP6989071B1 (en) Exterior materials for power storage devices, their manufacturing methods, and power storage devices
WO2021201294A1 (en) Outer packaging for electrical storage devices, method for manufacturing said outer packaging, and electrical storage device
JP6828858B1 (en) Exterior materials for power storage devices, their manufacturing methods, and power storage devices
WO2021020583A1 (en) Exterior material for electrical storage device, method for manufacturing same, and electrical storage device
WO2020204185A1 (en) Outer package material for electricity storage devices, method for producing same, and electricity storage device
JP6828777B1 (en) Exterior materials for power storage devices, their manufacturing methods, and power storage devices
JP6870777B2 (en) Exterior materials for power storage devices, their manufacturing methods, and power storage devices
JP7024935B1 (en) Exterior materials for power storage devices, their manufacturing methods, and power storage devices
WO2021162059A1 (en) Exterior material for electrical storage device, method for manufacturing said exterior material, and electrical storage device
WO2021215538A1 (en) Exterior material for power storage device, method for manufacturing same, and power storage device
JP6849162B1 (en) Quality control method in the molding process of exterior material for power storage device, manufacturing method of power storage device, exterior material for power storage device, and power storage device
WO2021157673A1 (en) Exterior material for electrical storage device, method for manufacturing same, and electrical storage device
WO2022114024A1 (en) Outer package material for power storage devices, method for producing same, and power storage device
JP2021077647A (en) Exterior material for power storage device, manufacturing method thereof, and power storage device
JP2021103687A (en) Exterior material for power storage device, power storage device, and method for manufacturing these
JPWO2020085461A1 (en) Exterior materials for power storage devices, their manufacturing methods, and power storage devices
JP2020181645A (en) Packaging material for power storage device, method for producing the same, power storage device, energization method using conductive layer of power storage device as wiring, and electrical equipment

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020569207

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20847204

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20847204

Country of ref document: EP

Kind code of ref document: A1