WO2021215538A1 - Exterior material for power storage device, method for manufacturing same, and power storage device - Google Patents

Exterior material for power storage device, method for manufacturing same, and power storage device Download PDF

Info

Publication number
WO2021215538A1
WO2021215538A1 PCT/JP2021/016524 JP2021016524W WO2021215538A1 WO 2021215538 A1 WO2021215538 A1 WO 2021215538A1 JP 2021016524 W JP2021016524 W JP 2021016524W WO 2021215538 A1 WO2021215538 A1 WO 2021215538A1
Authority
WO
WIPO (PCT)
Prior art keywords
base material
layer
material layer
power storage
storage device
Prior art date
Application number
PCT/JP2021/016524
Other languages
French (fr)
Japanese (ja)
Inventor
天野 真
一彦 横田
山下 孝典
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Priority to JP2022517115A priority Critical patent/JPWO2021215538A1/ja
Priority to CN202180030488.0A priority patent/CN115443577A/en
Publication of WO2021215538A1 publication Critical patent/WO2021215538A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/121Organic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This disclosure relates to an exterior material for a power storage device, a manufacturing method thereof, and a power storage device.
  • a packaging material (exterior material) is an indispensable member for sealing the power storage device elements such as electrodes and electrolytes.
  • a metal exterior material has been widely used as an exterior material for a power storage device.
  • Exterior material for a power storage device that can be easily processed into various shapes and can be made thinner and lighter, it is in the form of a film in which a base material / aluminum foil layer / heat-sealing resin layer is sequentially laminated. Exterior materials have been proposed (see, for example, Patent Document 1).
  • a recess is generally formed by cold molding, and a storage device element such as an electrode or an electrolytic solution is arranged in the space formed by the recess to form a heat-sealing resin.
  • film-like exterior materials have been required to be further thinned. Further, from the viewpoint of further increasing the energy density of the power storage device, it is also required to form a deeper recess in the exterior material.
  • the present disclosure provides an exterior material for a power storage device, which is composed of a laminate having at least a base material layer, a barrier layer, and a heat-sealing resin layer in this order, and has excellent moldability.
  • the main purpose is that.
  • the inventors of the present disclosure have made diligent studies to solve the above problems.
  • it is an exterior material for a power storage device composed of a laminate having at least a base material layer, a barrier layer, and a heat-sealing resin layer in this order, and the base material layer is measured by the following measuring method. It has been found that the exterior material for a power storage device having a principal axis orientation within the range of 90 ° ⁇ 30 ° has excellent moldability.
  • the base material layer is set so that the camera of the measuring device, the base material layer of the exterior material for the power storage device, and the light source of the measuring device are located in a straight line.
  • the base material layer is arranged between the light source and the light source so that the TD direction of the base material layer is 0 ° and the MD direction of the base material layer is 90 °, the base material layer The light of the light source is irradiated in the thickness direction, and the principal axis orientation of the base material layer is measured.
  • the base material layer may be selected based on the tensile breaking strength (MPa) of the film used for the base material layer.
  • MPa tensile breaking strength
  • N tensile force
  • Correlation is hard to find.
  • the principal axis orientation of the base material layer is within the predetermined range, the physical properties of the base material layer and the exterior material for the power storage device are examined.
  • the measurement test of the tensile breaking strength is a fracture test, but the measurement test of the principal axis orientation is a non-destructive test, and there is an advantage that the substrate layer can be selected without breaking.
  • the present disclosure provides the inventions of the following aspects. It is composed of a laminate having at least a base material layer, a barrier layer, and a heat-sealing resin layer in this order.
  • the base material layer is an exterior material for a power storage device, which is measured by the following measuring method and has a principal axis orientation within the range of 90 ° ⁇ 30 °.
  • a spindle orientation measuring device including a camera and a light source is used so that the camera, the base material layer, and the light source of the measuring device are located in a straight line, and the base material layer is formed between the camera and the light source.
  • the base material layer is arranged between them so that the TD direction of the base material layer is 0 ° and the MD direction of the base material layer is 90 °, the thickness direction of the base material layer Is irradiated with the light of the light source, and the principal axis direction of the base material layer is measured.
  • an exterior material for a power storage device which is composed of a laminate having at least a base material layer, a barrier layer, and a heat-sealing resin layer in this order, and has excellent moldability.
  • a method for manufacturing an exterior material for a power storage device and a power storage device it is also possible to provide a method for manufacturing an exterior material for a power storage device and a power storage device.
  • the exterior material for a power storage device of the present disclosure is composed of a laminate having at least a base material layer, a barrier layer, and a heat-sealing resin layer in this order, and the base material layer is measured by the following measuring method.
  • the principal axis orientation is within the range of 90 ° ⁇ 30 °.
  • the exterior material for a power storage device of the present disclosure has excellent moldability by having such a configuration.
  • a spindle orientation measuring device including a camera and a light source is used so that the camera, the base material layer, and the light source of the measuring device are located in a straight line, and the base material layer is formed between the camera and the light source.
  • the base material layer is arranged between them so that the TD direction of the base material layer is 0 ° and the MD direction of the base material layer is 90 °, the thickness direction of the base material layer Is irradiated with the light of the light source, and the principal axis direction of the base material layer is measured.
  • the exterior material for the power storage device of the present disclosure will be described in detail.
  • the numerical range indicated by “-” means “greater than or equal to” and “less than or equal to”.
  • the notation of 2 to 15 mm means 2 mm or more and 15 mm or less.
  • the barrier layer 3 described later in the exterior material for a power storage device it is usually possible to discriminate between MD (Machine Direction) and TD (Transverse Direction) in the manufacturing process thereof.
  • MD Machine Direction
  • TD Transverse Direction
  • the barrier layer 3 is made of a metal foil such as an aluminum alloy foil or a stainless steel foil
  • RD Rolling Direction
  • Shaped streaks are formed. Since the rolling marks extend along the rolling direction, the rolling direction of the metal foil can be grasped by observing the surface of the metal foil.
  • the MD of the laminated body and the RD of the metal foil usually match, the surface of the metal foil of the laminated body is observed and the rolling direction (RD) of the metal foil is specified. Thereby, the MD of the laminated body can be specified. Further, since the TD of the laminated body is in the direction perpendicular to the MD of the laminated body, the TD of the laminated body can also be specified.
  • the MD of the exterior material for the power storage device cannot be specified due to the rolling marks of the metal foil such as the aluminum alloy foil or the stainless steel foil, it can be specified by the following method.
  • a method of confirming the MD of the exterior material for the electricity storage device there is a method of observing the cross section of the heat-sealing resin layer of the exterior material for the electricity storage device with an electron microscope to confirm the sea-island structure. In this method, the direction parallel to the cross section in which the average diameter of the island shape in the direction perpendicular to the thickness direction of the heat-sealing resin layer is the maximum can be determined as MD.
  • the angle is changed by 10 degrees from the cross section of the heat-sealing resin layer in the length direction and the direction parallel to the cross section in the length direction to the direction perpendicular to the cross section in the length direction.
  • Each cross section (10 cross sections in total) is observed with an electron micrograph to confirm the sea-island structure.
  • the shape of each island is observed.
  • the diameter y is the linear distance connecting the leftmost end in the direction perpendicular to the thickness direction of the heat-sealing resin layer and the rightmost end in the vertical direction.
  • the average of the top 20 diameters y is calculated in descending order of the diameter y of the island shape.
  • the direction parallel to the cross section in which the average of the diameter y of the island shape is the largest is determined as MD.
  • the exterior material 10 for power storage device of the present disclosure is a laminated body including a base material layer 1, a barrier layer 3, and a heat-sealing resin layer 4 in this order, for example, as shown in FIG. It is composed of.
  • the base material layer 1 is on the outermost layer side
  • the heat-sealing resin layer 4 is on the innermost layer.
  • the peripheral portion is heat-sealed with the heat-sealing resin layers 4 of the power storage device exterior material 10 facing each other.
  • the power storage device element is housed in the space formed by.
  • the heat-sealing resin layer 4 side is inside the barrier layer 3 and the base material layer 1 side is more than the barrier layer 3 with the barrier layer 3 as a reference. It is the outside.
  • the exterior material 10 for a power storage device is used, if necessary, for the purpose of enhancing the adhesiveness between the base material layer 1 and the barrier layer 3 and the like. It may have an adhesive layer 2. Further, for example, as shown in FIGS. 3 and 4, the adhesive layer 5 is required between the barrier layer 3 and the heat-sealing resin layer 4 for the purpose of enhancing the adhesiveness between the layers. May have. Further, as shown in FIG. 4, a surface coating layer 6 or the like may be provided on the outside of the base material layer 1 (the side opposite to the heat-sealing resin layer 4 side), if necessary.
  • the thickness of the laminate constituting the exterior material 10 for the power storage device is not particularly limited, but from the viewpoint of cost reduction, energy density improvement, etc., for example, about 190 ⁇ m or less, preferably about 180 ⁇ m or less, about 155 ⁇ m or less, about 120 ⁇ m. Hereinafter, it is about 100 ⁇ m or less. Further, the thickness of the laminate constituting the exterior material 10 for the power storage device is preferably about 35 ⁇ m or more, about 45 ⁇ m or more, and about from the viewpoint of maintaining the function of the exterior material for the power storage device of protecting the power storage device element. 60 ⁇ m or more can be mentioned.
  • the preferred range of the laminated body constituting the exterior material 10 for the power storage device is, for example, about 35 to 190 ⁇ m, about 35 to 180 ⁇ m, about 35 to 155 ⁇ m, about 35 to 120 ⁇ m, about 35 to 100 ⁇ m, about 45 to 190 ⁇ m.
  • the ratio of the total thickness of the adhesive layer 5, the heat-sealing resin layer 4, and the surface coating layer 6 provided as needed is preferably 90% or more, more preferably 95% or more. More preferably, it is 98% or more.
  • the exterior material 10 for a power storage device of the present disclosure includes a base material layer 1, an adhesive layer 2, a barrier layer 3, an adhesive layer 5, and a heat-sealing resin layer 4, the exterior for a power storage device
  • the ratio of the total thickness of each of these layers to the thickness (total thickness) of the laminate constituting the material 10 is preferably 90% or more, more preferably 95% or more, and further preferably 98% or more.
  • the exterior material 10 for a power storage device of the present disclosure is a laminated body including a base material layer 1, an adhesive layer 2, a barrier layer 3, and a heat-sealing resin layer 4, the exterior material for a power storage device is also used.
  • the ratio of the total thickness of each of these layers to the thickness (total thickness) of the laminate constituting 10 is, for example, 80% or more, preferably 90% or more, more preferably 95% or more, and further preferably 98% or more. Can be done.
  • the base material layer 1 is a layer provided for the purpose of exerting a function as a base material of an exterior material for a power storage device.
  • the base material layer 1 is located on the outer layer side of the exterior material for the power storage device.
  • the base material layer 1 may be the outermost layer (layer constituting the outer surface).
  • the surface coating layer 6 is the outermost layer (layer constituting the outer surface). ) May be.
  • the base material layer 1 is characterized in that a predetermined principal axis direction is within the range of 90 ° ⁇ 30 °. That is, as shown in the schematic views of FIGS. 6 to 8, the camera C of the spindle orientation measuring device, the base material layer 1 of the exterior material for the power storage device, and the light source LS of the spindle orientation measuring device are aligned.
  • the base material layer 1 is arranged between the camera C and the light source LS so as to be positioned so that the TD direction of the base material layer 1 is 0 ° and the MD direction of the base material layer 1 is 90 °.
  • the principal axis orientation of the base material layer 1 measured by irradiating the light L of the light source LS in the thickness direction (z direction) of the base material layer 1 is 90 ° ⁇ 30. It is within the range of ° (that is, 60 to 120 °). From the viewpoint of more preferably exerting the effects of the invention of the present disclosure, the principal axis orientation of the base material layer 1 is preferably within the range of 90 ° ⁇ 25 ° (that is, 65 to 115 °), more preferably 90 ° ⁇ 20.
  • the method for measuring the principal axis direction of the base material layer 1 is as follows.
  • a spindle orientation measuring device including a camera C and a light source LS is used, and the camera C of the measuring device is used.
  • the base material layer 1 is arranged between the camera C and the light source LS so that the base material layer 1 and the light source LS are located in a straight line, and the TD direction of the base material layer 1 is set to 0 °.
  • the measurement was performed by irradiating the light L of the light source LS in the thickness direction D of the base material layer 1 with the MD direction of the material layer 1 as the 90 ° direction.
  • the light L is irradiated from the light source arranged on the back side of the base material layer 1 in the thickness direction (z direction) of the base material layer 1.
  • a transparent glass plate G is arranged on the base material layer 1 (on the camera C side), and the measurement is performed so that wrinkles are not formed on the surface of the base material layer 1.
  • the base material layer 1 and the glass plate G are arranged in order on a plate provided with an opening at a position where the base material layer 1 is irradiated with light. The measurement is carried out so that the light L passes through the base material layer 1 and the glass plate G through the opening of the plate.
  • the specific measurement conditions are as follows.
  • the base material layer (resin film constituting the base material layer) is acquired from the power storage device or the exterior material for the power storage device and the principal axis direction of the base material layer 1 is measured, the heat-sealed portion of the power storage device is used.
  • the exterior material for the power storage device is obtained from the top surface or the bottom surface, not from the side surface or the side surface, and a sample is prepared.
  • the main axis orientation of the base material layer is the phase advance axis. (Measurement condition) Measuring device: For example, polarized high-speed imaging device (CRYSTA PI-5) manufactured by Photron Co., Ltd.
  • Measurement sample The base material layer is prepared by cutting it into, for example, A4 size (TD210 mm ⁇ MD300 mm).
  • Measurement wavelength camera side: 520 to 570 nm (The camera that receives light through the film detects light with a wavelength of 520 to 570 nm)
  • Light source White LED light (measurement samples are placed so that the positional relationship between the light source (light), the base material layer, and the camera coincides with the extension line of the light source and the thickness direction of the base material layer, and the camera is placed on the extension line of the light source. Is placed.)
  • the mechanism by which the moldability of the exterior material 10 for the power storage device is improved by keeping the predetermined principal axis orientation of the base material layer 1 within the range of 90 ° ⁇ 30 ° can be considered as follows. That is, in the molding of the exterior material for a power storage device, it is general that a rectangular molded portion (recess) having a side parallel to the MD direction is formed by cold molding using a mold. Here, in the circumference of the ridgeline portion of the molded portion, the area to be stretched is large in the side portion of the rectangle, and the corner portion (near 45 °) has a small stretched area.
  • the principal axis orientation of the base material layer is 90 ° ⁇ 30 °
  • the base material layers are considered to have relatively uniform molecular orientations along the MD direction. Therefore, it is considered that when the exterior material for the power storage device is molded, the resistance to the stretching of the ridgeline portion of the rectangular side portion having a large stretched area becomes strong and it becomes difficult for the pinhole to be formed.
  • the principal axis orientation of the base material layer exceeds 90 ° ⁇ 30 °, it is considered that the base material layers are relatively aligned in the molecular orientation in the diagonal 45 ° direction with respect to the MD direction.
  • the resistance is strong only for the stretching of the ridgeline portion of the corner portion where the stretched area is small, so that the ridgeline portion of the rectangular side portion is stretched. It is presumed that the resistance became weak and pinholes were easily formed.
  • the phase difference of the base material layer 1 is preferably about 210 nm or less, more preferably about 200 nm or less, still more preferably about 150 nm or less, still more preferably about 100 nm or less. More preferably, it is about 80 nm or less.
  • the phase difference of the base material layer 1 is, for example, about 30 nm or more, about 50 nm or more, and the like.
  • the preferred ranges of the phase difference of the base material layer 1 are about 30 to 210 nm, about 30 to 200 nm, about 30 to 150 nm, about 30 to 100 nm, about 30 to 80 nm, about 50 to 210 nm, about 50 to 200 nm, and about 50 to. It is about 150 nm, about 50 to 100 nm, and about 50 to 80 nm.
  • the material, thickness, and various physical properties of the base material layer 1 are adjusted, and the base material layer 1 is formed of a resin film.
  • the production conditions such as the stretching method of the resin film (for example, the inflation method, the tenter method, etc.), the stretching ratio, the stretching rate, the cooling temperature, and the heat fixing temperature are adjusted. These adjustments may be made based on known techniques.
  • the principal axis orientation of the base material layer 1 corresponds to the direction in which the crystallinity of the resin is high, when a resin film produced by a predetermined stretching method is cut into a predetermined size and used as the base material layer, the resin is used. It can also be said that it is effective to select a position to be cut from the film and adopt a substrate layer 1 having the same crystal orientation.
  • the material forming the base material layer 1 is not particularly limited as long as it has a function as a base material, that is, at least has insulating properties and satisfies the above-mentioned principal axis orientation.
  • the base material layer 1 can be formed by using, for example, a resin, and the resin may contain an additive described later.
  • the base material layer 1 may be, for example, a resin film formed of a resin, or may be formed by applying a resin.
  • the resin film may be an unstretched film or a stretched film.
  • the stretched film include a uniaxially stretched film and a biaxially stretched film, and a biaxially stretched film is preferable.
  • the stretching method for forming the biaxially stretched film include a sequential biaxial stretching method, an inflation method, and a simultaneous biaxial stretching method.
  • Examples of the method for applying the resin include a roll coating method, a gravure coating method, and an extrusion coating method.
  • the resin forming the base material layer 1 examples include resins such as polyester, polyamide, polyolefin, epoxy resin, acrylic resin, fluororesin, polyurethane, silicon resin, and phenol resin, and modified products of these resins. Further, the resin forming the base material layer 1 may be a copolymer of these resins or a modified product of the copolymer. Further, it may be a mixture of these resins.
  • the resin forming the base material layer 1 preferably includes polyester and polyamide, and particularly preferably polyamide.
  • polyester examples include polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, polyethylene isophthalate, and copolymerized polyester.
  • copolymerized polyester examples include a copolymerized polyester containing ethylene terephthalate as a repeating unit as a main component.
  • copolymer polyester (hereinafter abbreviated after polyethylene (terephthalate / isophthalate)), polyethylene (terephthalate / adipate), polyethylene (terephthalate / terephthalate / (Sodium sulfoisophthalate), polyethylene (terephthalate / sodium isophthalate), polyethylene (terephthalate / phenyl-dicarboxylate), polyethylene (terephthalate / decandicarboxylate) and the like.
  • polyesters may be used alone or in combination of two or more.
  • polyamide examples include an aliphatic polyamide such as nylon 6, nylon 66, nylon 610, nylon 12, nylon 46, and a copolymer of nylon 6 and nylon 66; terephthalic acid and / or isophthalic acid.
  • Hexamethylenediamine-isophthalic acid-terephthalic acid copolymerized polyamide such as nylon 6I, nylon 6T, nylon 6IT, nylon 6I6T (I stands for isophthalic acid, T stands for terephthalic acid), polyamide MXD6 (polymethaki Polyamide containing aromatics such as silylene adipamide); Alicyclic polyamide such as polyamide PACM6 (polybis (4-aminocyclohexyl) methaneadipamide); Further, lactam component and isocyanate component such as 4,4'-diphenylmethane-diisocyanate Examples thereof include a copolymerized polyamide, a polyesteramide copolymer or a polyether esteramide copolymer
  • the base material layer 1 preferably contains at least one of a polyester film, a polyamide film, and a polyolefin film, and preferably contains at least one of a stretched polyester film, a stretched polyamide film, and a stretched polyolefin film. It is more preferable to contain at least one of a stretched polyethylene terephthalate film, a stretched polybutylene terephthalate film, a stretched nylon film, and a stretched polypropylene film, and a biaxially stretched polyethylene terephthalate film, a biaxially stretched polybutylene terephthalate film, and a biaxially stretched nylon film. , It is more preferable to contain at least one of the biaxially stretched polypropylene films. From the viewpoint of more preferably exerting the effects of the invention of the present disclosure, it is particularly preferable that the base material layer 1 is made of a biaxially stretched nylon film.
  • the base material layer 1 may be a single layer or may be composed of two or more layers.
  • the base material layer 1 may be a laminated body in which a resin film is laminated with an adhesive or the like, or the resin is co-extruded to form two or more layers. It may be a laminated body of the resin film. Further, the laminated body of the resin film obtained by co-extruding the resin into two or more layers may be used as the base material layer 1 without being stretched, or may be uniaxially stretched or biaxially stretched as the base material layer 1.
  • the laminate of two or more layers of resin film in the base material layer 1 include a laminate of a polyester film and a nylon film, a laminate of two or more layers of nylon film, and a laminate of two or more layers of polyester film. And the like, preferably, a laminate of a stretched nylon film and a stretched polyester film, a laminate of two or more layers of stretched nylon film, and a laminate of two or more layers of stretched polyester film are preferable.
  • the base material layer 1 is a laminate of two layers of resin film, a laminate of polyester resin film and polyester resin film, a laminate of polyamide resin film and polyamide resin film, or a laminate of polyester resin film and polyamide resin film.
  • a laminate is preferable, and a laminate of a polyethylene terephthalate film and a polyethylene terephthalate film, a laminate of a nylon film and a nylon film, or a laminate of a polyethylene terephthalate film and a nylon film is more preferable.
  • the polyester resin is difficult to discolor when the electrolytic solution adheres to the surface, for example, when the base material layer 1 is a laminate of two or more resin films, the polyester resin film is the base material layer 1. It is preferably located in the outermost layer.
  • the two or more layers of resin films may be laminated via an adhesive.
  • the base material layer 1 is a laminate of two or more resin films, at least one layer may have the above-mentioned principal axis orientation.
  • Preferred adhesives include those similar to the adhesives exemplified in the adhesive layer 2 described later.
  • the method of laminating two or more layers of resin films is not particularly limited, and known methods can be adopted. Examples thereof include a dry laminating method, a sandwich laminating method, an extrusion laminating method, and a thermal laminating method, and a dry laminating method is preferable. The laminating method can be mentioned.
  • the thickness of the adhesive is, for example, about 2 to 5 ⁇ m.
  • an anchor coat layer may be formed on the resin film and laminated. Examples of the anchor coat layer include the same adhesives as those exemplified in the adhesive layer 2 described later. At this time, the thickness of the anchor coat layer is, for example, about 0.01 to 1.0 ⁇ m.
  • additives such as a lubricant, a flame retardant, an antiblocking agent, an antioxidant, a light stabilizer, a tackifier, and an antistatic agent are present on at least one of the surface and the inside of the base material layer 1. good. Only one type of additive may be used, or two or more types may be mixed and used.
  • the lubricant is present on the surface of the base material layer 1.
  • the lubricant is not particularly limited, but an amide-based lubricant is preferable.
  • Specific examples of the amide-based lubricant include saturated fatty acid amides, unsaturated fatty acid amides, substituted amides, methylol amides, saturated fatty acid bisamides, unsaturated fatty acid bisamides, fatty acid ester amides, and aromatic bisamides.
  • saturated fatty acid amide examples include lauric acid amide, palmitic acid amide, stearic acid amide, bechenic acid amide, hydroxystearic acid amide and the like.
  • unsaturated fatty acid amide examples include oleic acid amide and erucic acid amide.
  • substituted amide examples include N-oleyl palmitate amide, N-stearyl stearyl amide, N-stearyl oleate amide, N-oleyl stealic acid amide, N-stearyl erucate amide and the like.
  • methylolamide examples include methylolstearic acid amide.
  • saturated fatty acid bisamides include methylene bisstearic acid amide, ethylene biscapric acid amide, ethylene bislauric acid amide, ethylene bisstearic acid amide, ethylene bishydroxystearic acid amide, ethylene bisbechenic acid amide, and hexamethylene bisstearate.
  • saturated fatty acid bisamides include acid amide, hexamethylene bisbechenic acid amide, hexamethylene hydroxystearic acid amide, N, N'-distearyl adipate amide, and N, N'-distealyl sebasic acid amide.
  • unsaturated fatty acid bisamides include ethylene bisoleic acid amide, ethylene biserucate amide, hexamethylene bisoleic acid amide, N, N'-diorail adipate amide, and N, N'-diorail sebacic acid amide. And so on.
  • Specific examples of the fatty acid ester amide include stearoamide ethyl stearate and the like.
  • Specific examples of the aromatic bisamide include m-xylylene bisstearic acid amide, m-xylylene bishydroxystearic acid amide, and N, N'-distearyl isophthalic acid amide.
  • One type of lubricant may be used alone, or two or more types may be used in combination.
  • the abundance thereof is not particularly limited, but is preferably about 3 mg / m 2 or more, more preferably about 4 to 15 mg / m 2 , and further preferably 5 to 14 mg. / M 2 is mentioned.
  • the lubricant existing on the surface of the base material layer 1 may be one in which the lubricant contained in the resin constituting the base material layer 1 is exuded, or one in which the lubricant is applied to the surface of the base material layer 1. You may.
  • the thickness of the base material layer 1 is not particularly limited as long as it functions as a base material, but is preferably about 10 ⁇ m or more, more preferably about 15 ⁇ m or more, from the viewpoint of more preferably exerting the effects of the invention of the present disclosure. be. From the same viewpoint, it is preferably about 50 ⁇ m or less, more preferably about 40 ⁇ m or less, still more preferably about 30 ⁇ m or less, still more preferably about 25 ⁇ m or less, still more preferably about 20 ⁇ m or less.
  • the preferable range of the thickness of the base material layer 1 is about 10 to 50 ⁇ m, about 10 to 40 ⁇ m, about 10 to 30 ⁇ m, about 10 to 25 ⁇ m, about 10 to 20 ⁇ m, about 15 to 50 ⁇ m, about 15 to 40 ⁇ m, and about 15 to 30 ⁇ m.
  • the degree is about 15 to 25 ⁇ m and about 15 to 20 ⁇ m.
  • the thickness of the resin films constituting each layer is preferably about 2 to 25 ⁇ m, respectively.
  • the adhesive layer 2 is a layer provided between the base material layer 1 and the barrier layer 3 as necessary for the purpose of enhancing the adhesiveness between the base material layer 1 and the barrier layer 3.
  • the adhesive layer 2 is formed by an adhesive capable of adhering the base material layer 1 and the barrier layer 3.
  • the adhesive used for forming the adhesive layer 2 is not limited, but may be any of a chemical reaction type, a solvent volatile type, a heat melting type, a hot pressure type and the like. Further, it may be a two-component curable adhesive (two-component adhesive), a one-component curable adhesive (one-component adhesive), or a resin that does not involve a curing reaction. Further, the adhesive layer 2 may be a single layer or a multilayer.
  • the adhesive component contained in the adhesive include polyesters such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, polyethylene isophthalate, and copolymerized polyester; polyether; polyurethane; epoxy resin; Phenolic resin; polyamide such as nylon 6, nylon 66, nylon 12, copolymerized polyamide; polyolefin resin such as polyolefin, cyclic polyolefin, acid-modified polyolefin, acid-modified cyclic polyolefin; polyvinyl acetate; cellulose; (meth) acrylic resin; Polyethylene; polycarbonate; amino resin such as urea resin and melamine resin; rubber such as chloroprene rubber, nitrile rubber and styrene-butadiene rubber; silicone resin and the like.
  • polyesters such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybut
  • adhesive components may be used alone or in combination of two or more.
  • a polyurethane adhesive is preferable.
  • the resins used as these adhesive components can be used in combination with an appropriate curing agent to increase the adhesive strength.
  • An appropriate curing agent is selected from polyisocyanate, polyfunctional epoxy resin, oxazoline group-containing polymer, polyamine resin, acid anhydride and the like, depending on the functional group of the adhesive component.
  • the polyurethane adhesive examples include a polyurethane adhesive containing a first agent containing a polyol compound and a second agent containing an isocyanate compound.
  • a two-component curable polyurethane adhesive using a polyol such as a polyester polyol, a polyether polyol, and an acrylic polyol as a first agent and an aromatic or aliphatic polyisocyanate as a second agent can be mentioned.
  • the polyurethane adhesive examples include a polyurethane adhesive in which a polyol compound and an isocyanate compound are reacted in advance, and a polyurethane adhesive containing the isocyanate compound.
  • examples of the polyurethane adhesive include a polyurethane adhesive in which a polyol compound and an isocyanate compound are reacted in advance, and a polyurethane adhesive containing the polyol compound.
  • examples of the polyurethane adhesive include a polyurethane adhesive obtained by reacting a polyurethane compound in which a polyol compound and an isocyanate compound are previously reacted with water such as in the air to cure the polyurethane compound.
  • the polyol compound it is preferable to use a polyester polyol having a hydroxyl group in the side chain in addition to the hydroxyl group at the end of the repeating unit.
  • Examples of the second agent include aliphatic, alicyclic, aromatic, and aromatic aliphatic isocyanate compounds.
  • Examples of the isocyanate-based compound include hexamethylene diisocyanate (HDI), xylylene diisocyanate (XDI), isophorone diisocyanate (IPDI), hydrogenated XDI (H6XDI), hydrogenated MDI (H12MDI), tolylene diisocyanate (TDI), and diphenylmethane diisocyanate. (MDI), naphthalenediocyanate (NDI) and the like.
  • a polyfunctional isocyanate modified product from one kind or two or more kinds of these diisocyanates and the like can be mentioned.
  • a multimer for example, a trimer
  • a multimer include an adduct body, a biuret body, a nurate body and the like. Since the adhesive layer 2 is formed of the polyurethane adhesive, excellent electrolytic solution resistance is imparted to the exterior material for the power storage device, and even if the electrolytic solution adheres to the side surface, the base material layer 1 is suppressed from peeling off. ..
  • the adhesive layer 2 may contain a colorant, a thermoplastic elastomer, a tackifier, a filler, etc., as long as the addition of other components is permitted as long as the adhesiveness is not impaired. Since the adhesive layer 2 contains a colorant, the exterior material for the power storage device can be colored. As the colorant, known ones such as pigments and dyes can be used. Further, only one type of colorant may be used, or two or more types may be mixed and used.
  • the type of pigment is not particularly limited as long as it does not impair the adhesiveness of the adhesive layer 2.
  • organic pigments include azo-based, phthalocyanine-based, quinacridone-based, anthracinone-based, dioxazine-based, indigothioindigo-based, perinone-perylene-based, isowearnine-based, and benzimidazolone-based pigments, which are inorganic.
  • the pigment include carbon black-based, titanium oxide-based, cadmium-based, lead-based, chromium oxide-based, and iron-based pigments, and other examples include fine powder of mica (mica) and fish scale foil.
  • carbon black is preferable in order to make the appearance of the exterior material for the power storage device black, for example.
  • the average particle size of the pigment is not particularly limited, and examples thereof include about 0.05 to 5 ⁇ m, preferably about 0.08 to 2 ⁇ m.
  • the average particle size of the pigment is the median size measured by the laser diffraction / scattering type particle size distribution measuring device.
  • the content of the pigment in the adhesive layer 2 is not particularly limited as long as the exterior material for the power storage device is colored, and examples thereof include about 5 to 60% by mass, preferably 10 to 40% by mass.
  • the thickness of the adhesive layer 2 is not particularly limited as long as the base material layer 1 and the barrier layer 3 can be adhered to each other, but is, for example, about 1 ⁇ m or more and about 2 ⁇ m or more.
  • the thickness of the adhesive layer 2 is, for example, about 10 ⁇ m or less and about 5 ⁇ m or less.
  • the preferable range of the thickness of the adhesive layer 2 is about 1 to 10 ⁇ m, about 1 to 5 ⁇ m, about 2 to 10 ⁇ m, and about 2 to 5 ⁇ m.
  • the colored layer is a layer provided between the base material layer 1 and the barrier layer 3 as needed (not shown).
  • a colored layer may be provided between the base material layer 1 and the adhesive layer 2 and between the adhesive layer 2 and the barrier layer 3. Further, a colored layer may be provided on the outside of the base material layer 1. By providing the colored layer, the exterior material for the power storage device can be colored.
  • the colored layer can be formed, for example, by applying an ink containing a colorant to the surface of the base material layer 1 or the surface of the barrier layer 3.
  • a colorant known ones such as pigments and dyes can be used. Further, only one type of colorant may be used, or two or more types may be mixed and used.
  • colorant contained in the colored layer include the same as those exemplified in the column of [Adhesive layer 2].
  • the barrier layer 3 is at least a layer that suppresses the infiltration of water.
  • Examples of the barrier layer 3 include a metal foil having a barrier property, a thin-film deposition film, a resin layer, and the like.
  • Examples of the vapor deposition film include a metal vapor deposition film, an inorganic oxide vapor deposition film, a carbon-containing inorganic oxide vapor deposition film, and the like
  • examples of the resin layer include polymers and tetras mainly composed of polyvinylidene chloride and chlorotrifluoroethylene (CTFE). Examples thereof include polymers containing fluoroethylene (TFE) as a main component, polymers having a fluoroalkyl group, fluorine-containing resins such as polymers containing fluoroalkyl units as a main component, and ethylene vinyl alcohol copolymers.
  • examples of the barrier layer 3 include a resin film provided with at least one of these vapor-deposited films and a resin layer.
  • a plurality of barrier layers 3 may be provided.
  • the barrier layer 3 preferably includes a layer made of a metal material.
  • Specific examples of the metal material constituting the barrier layer 3 include an aluminum alloy, stainless steel, titanium steel, and a steel plate.
  • the metal material includes at least one of an aluminum alloy foil and a stainless steel foil. Is preferable.
  • the aluminum alloy foil is more preferably a soft aluminum alloy foil composed of, for example, an annealed aluminum alloy, and from the viewpoint of further improving the moldability. Therefore, it is preferable that the aluminum alloy foil contains iron.
  • the iron content is preferably 0.1 to 9.0% by mass, more preferably 0.5 to 2.0% by mass.
  • the iron content is 0.1% by mass or more, an exterior material for a power storage device having more excellent moldability can be obtained.
  • the iron content is 9.0% by mass or less, a more flexible exterior material for a power storage device can be obtained.
  • the soft aluminum alloy foil examples include aluminum alloys having a composition specified by JIS H4160: 1994 A8021HO, JIS H4160: 1994 A8079HO, JIS H4000: 2014 A8021PO, or JIS H4000: 2014 A8077P-O. Foil is mentioned. Further, if necessary, silicon, magnesium, copper, manganese and the like may be added. Further, softening can be performed by annealing or the like.
  • stainless steel foils examples include austenite-based, ferrite-based, austenite-ferritic-based, martensitic-based, and precipitation-hardened stainless steel foils. Further, from the viewpoint of providing an exterior material for a power storage device having excellent moldability, the stainless steel foil is preferably made of austenitic stainless steel.
  • austenitic stainless steel constituting the stainless steel foil include SUS304, SUS301, and SUS316L, and among these, SUS304 is particularly preferable.
  • the thickness of the barrier layer 3 may at least exhibit a function as a barrier layer that suppresses the infiltration of water, and is, for example, about 9 to 200 ⁇ m.
  • the thickness of the barrier layer 3 is preferably about 85 ⁇ m or less, more preferably about 50 ⁇ m or less, still more preferably about 40 ⁇ m or less, and particularly preferably about 35 ⁇ m or less.
  • the thickness of the barrier layer 3 is preferably about 10 ⁇ m or more, more preferably about 20 ⁇ m or more, and more preferably about 25 ⁇ m or more.
  • the preferred range of the thickness of the barrier layer 3 is about 10 to 85 ⁇ m, about 10 to 50 ⁇ m, about 10 to 40 ⁇ m, about 10 to 35 ⁇ m, about 20 to 85 ⁇ m, about 20 to 50 ⁇ m, about 20 to 40 ⁇ m, and about 20 to. Examples thereof include about 35 ⁇ m, about 25 to 85 ⁇ m, about 25 to 50 ⁇ m, about 25 to 40 ⁇ m, and about 25 to 35 ⁇ m.
  • the barrier layer 3 is made of an aluminum alloy foil, the above range is particularly preferable.
  • the thickness of the stainless steel foil is preferably about 60 ⁇ m or less, more preferably about 50 ⁇ m or less, still more preferably about 40 ⁇ m or less, still more preferably about 30 ⁇ m. Below, it is particularly preferably about 25 ⁇ m or less.
  • the thickness of the stainless steel foil is preferably about 10 ⁇ m or more, more preferably about 15 ⁇ m or more.
  • the preferred range of the thickness of the stainless steel foil is about 10 to 60 ⁇ m, about 10 to 50 ⁇ m, about 10 to 40 ⁇ m, about 10 to 30 ⁇ m, about 10 to 25 ⁇ m, about 15 to 60 ⁇ m, about 15 to 50 ⁇ m, and about 15 to. Examples thereof include about 40 ⁇ m, about 15 to 30 ⁇ m, and about 15 to 25 ⁇ m.
  • the barrier layer 3 is a metal foil, it is preferable that a corrosion-resistant film is provided on at least the surface opposite to the base material layer in order to prevent dissolution and corrosion.
  • the barrier layer 3 may be provided with a corrosion resistant film on both sides.
  • the corrosion-resistant film is, for example, a hot water transformation treatment such as boehmite treatment, a chemical conversion treatment, an anodization treatment, a plating treatment such as nickel or chromium, and a corrosion prevention treatment for applying a coating agent on the surface of the barrier layer.
  • a hot water transformation treatment such as boehmite treatment
  • a chemical conversion treatment such as boehmite treatment
  • an anodization treatment such as anodization treatment
  • a plating treatment such as nickel or chromium
  • a corrosion prevention treatment for applying a coating agent on the surface of the barrier layer.
  • a thin film that makes the barrier layer provided with corrosion resistance for example, acid resistance, alkali resistance, etc.
  • the corrosion-resistant film means a film for improving the acid resistance of the barrier layer (acid-resistant film), a film for improving the alkali resistance of the barrier layer (alkali-resistant film), and the like.
  • the treatment for forming the corrosion-resistant film one type may be performed, or two or more types may be combined. Moreover, not only one layer but also multiple layers can be used.
  • the hydrothermal modification treatment and the anodizing treatment are treatments in which the surface of the metal foil is dissolved by the treatment agent to form a metal compound having excellent corrosion resistance. In addition, these processes may be included in the definition of chemical conversion process.
  • the barrier layer 3 has a corrosion-resistant film
  • the barrier layer 3 includes the corrosion-resistant film.
  • the corrosion-resistant film is formed by preventing delamination between the barrier layer (for example, aluminum alloy foil) and the base material layer during molding of the exterior material for a power storage device, and by hydrogen fluoride generated by the reaction between the electrolyte and water. , Melting and corrosion of the surface of the barrier layer, especially when the barrier layer is an aluminum alloy foil, it prevents the aluminum oxide existing on the surface of the barrier layer from melting and corroding, and the adhesiveness (wetness) of the surface of the barrier layer. The effect of preventing the corrosion between the base material layer and the barrier layer at the time of heat sealing and the prevention of the corrosion between the base material layer and the barrier layer at the time of molding is shown.
  • the barrier layer for example, aluminum alloy foil
  • Various corrosion-resistant films formed by chemical conversion treatment are known, and mainly, at least one of phosphate, chromate, fluoride, triazinethiol compound, and rare earth oxide. Examples thereof include a corrosion-resistant film containing.
  • Examples of the chemical conversion treatment using phosphate and chromate include chromic acid chromate treatment, chromic acid chromate treatment, phosphoric acid-chromate treatment, and chromate treatment, and chromium used in these treatments.
  • Examples of the compound include chromium nitrate, chromium fluoride, chromium sulfate, chromium acetate, chromium oxalate, chromium bicarbonate, acetylacetate chromate, chromium chloride, chromium sulfate and the like.
  • examples of the phosphorus compound used in these treatments include sodium phosphate, potassium phosphate, ammonium phosphate, polyphosphoric acid and the like.
  • examples of the chromate treatment include etching chromate treatment, electrolytic chromate treatment, and coating type chromate treatment, and coating type chromate treatment is preferable.
  • At least the inner layer side surface of the barrier layer (for example, aluminum alloy foil) is first known as an alkali dipping method, an electrolytic cleaning method, an acid cleaning method, an electrolytic acid cleaning method, an acid activation method and the like. Degreasing is performed by the treatment method, and then metal phosphates such as Cr phosphate (chromium) salt, Ti (titanium) phosphate, Zr (zyroxide) salt, and Zn (zinc) phosphate are applied to the degreased surface.
  • metal phosphates such as Cr phosphate (chromium) salt, Ti (titanium) phosphate, Zr (zyroxide) salt, and Zn (zinc) phosphate are applied to the degreased surface.
  • This is a treatment in which a treatment liquid composed of a mixture is coated by a well-known coating method such as a roll coating method, a gravure printing method, or a dipping method, and dried.
  • a treatment liquid for example, various solvents such as water, alcohol-based solvent, hydrocarbon-based solvent, ketone-based solvent, ester-based solvent, and ether-based solvent can be used, and water is preferable.
  • the resin component used at this time examples include polymers such as phenol-based resins and acrylic-based resins, and aminoated phenol polymers having repeating units represented by the following general formulas (1) to (4) can be used. Examples thereof include the chromate treatment used. In the amination phenol polymer, the repeating units represented by the following general formulas (1) to (4) may be contained alone or in any combination of two or more. May be good.
  • the acrylic resin shall be a polyacrylic acid, an acrylic acid methacrylate copolymer, an acrylic acid maleic acid copolymer, an acrylic acid styrene copolymer, or a derivative of these sodium salts, ammonium salts, amine salts, etc. Is preferable.
  • polyacrylic acid means a polymer of acrylic acid.
  • the acrylic resin is preferably a copolymer of an acrylic acid and a dicarboxylic acid or a dicarboxylic acid anhydride, and an ammonium salt or a sodium salt of a copolymer of an acrylic acid and a dicarboxylic acid or a dicarboxylic acid anhydride.
  • it is preferably an amine salt. Only one type of acrylic resin may be used, or two or more types may be mixed and used.
  • X represents a hydrogen atom, a hydroxy group, an alkyl group, a hydroxyalkyl group, an allyl group or a benzyl group.
  • R 1 and R 2 represent a hydroxy group, an alkyl group, or a hydroxyalkyl group, respectively, which are the same or different.
  • examples of the alkyl group represented by X, R 1 and R 2 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group and an isobutyl group.
  • Examples thereof include a linear or branched alkyl group having 1 to 4 carbon atoms such as a tert-butyl group.
  • Examples of the hydroxyalkyl groups represented by X, R 1 and R 2 include a hydroxymethyl group, a 1-hydroxyethyl group, a 2-hydroxyethyl group, a 1-hydroxypropyl group, a 2-hydroxypropyl group and 3-.
  • Alkyl groups can be mentioned.
  • the alkyl group and the hydroxyalkyl group represented by X, R 1 and R 2 may be the same or different, respectively.
  • X is preferably a hydrogen atom, a hydroxy group or a hydroxyalkyl group.
  • the number average molecular weight of the amination phenol polymer having the repeating unit represented by the general formulas (1) to (4) is, for example, preferably about 5 to 1,000,000, and preferably about 1,000 to 20,000. More preferred.
  • the amination phenol polymer is produced, for example, by polycondensing a phenol compound or a naphthol compound with formaldehyde to produce a polymer composed of repeating units represented by the above general formula (1) or general formula (3), and then forming a formaldehyde. It is produced by introducing a functional group (-CH 2 NR 1 R 2 ) into the polymer obtained above using an amine (R 1 R 2 NH).
  • the amination phenol polymer is used alone or in combination of two or more.
  • the corrosion resistant film it is formed by a coating type corrosion prevention treatment in which a coating agent containing at least one selected from the group consisting of a rare earth element oxide sol, an anionic polymer, and a cationic polymer is applied.
  • the thin film to be used is mentioned.
  • the coating agent may further contain phosphoric acid or phosphate, a cross-linking agent for cross-linking the polymer.
  • fine particles of the rare earth element oxide for example, particles having an average particle size of 100 nm or less
  • the rare earth element oxide examples include cerium oxide, yttrium oxide, neodium oxide, lanthanum oxide and the like, and cerium oxide is preferable from the viewpoint of further improving adhesion.
  • the rare earth element oxide contained in the corrosion-resistant film may be used alone or in combination of two or more.
  • various solvents such as water, alcohol-based solvent, hydrocarbon-based solvent, ketone-based solvent, ester-based solvent, and ether-based solvent can be used, and water is preferable.
  • the cationic polymer examples include polyethyleneimine, an ionic polymer complex composed of polyethyleneimine and a polymer having a carboxylic acid, a primary amine graft acrylic resin obtained by graft-polymerizing a primary amine on an acrylic main skeleton, polyallylamine or a derivative thereof. , Amination phenol and the like are preferable.
  • the anionic polymer is preferably a poly (meth) acrylic acid or a salt thereof, or a copolymer containing (meth) acrylic acid or a salt thereof as a main component.
  • the cross-linking agent is at least one selected from the group consisting of a compound having a functional group of any of an isocyanate group, a glycidyl group, a carboxyl group and an oxazoline group and a silane coupling agent.
  • the phosphoric acid or phosphate is condensed phosphoric acid or condensed phosphate.
  • a film in which fine particles of metal oxides such as aluminum oxide, titanium oxide, cerium oxide, and tin oxide and barium sulfate are dispersed in phosphoric acid is applied to the surface of the barrier layer, and 150 Examples thereof include those formed by performing a baking treatment at a temperature of ° C. or higher.
  • the corrosion-resistant film may have a laminated structure in which at least one of a cationic polymer and an anionic polymer is further laminated, if necessary.
  • a cationic polymer and an anionic polymer include those described above.
  • composition of the corrosion-resistant film can be analyzed by using, for example, a time-of-flight secondary ion mass spectrometry method.
  • the amount of the corrosion-resistant film formed on the surface of the barrier layer 3 in the chemical conversion treatment is not particularly limited, but for example, in the case of performing the coating type chromate treatment, the chromic acid compound per 1 m 2 of the surface of the barrier layer 3 Is, for example, about 0.5 to 50 mg, preferably about 1.0 to 40 mg in terms of chromium, and the phosphorus compound is, for example, about 0.5 to 50 mg, preferably about 1.0 to 40 mg in terms of phosphorus, and an amination phenol polymer. Is preferably contained in a proportion of, for example, about 1.0 to 200 mg, preferably about 5.0 to 150 mg.
  • the thickness of the corrosion-resistant film is not particularly limited, but is preferably about 1 nm to 20 ⁇ m, more preferably 1 nm to 100 nm, from the viewpoint of the cohesive force of the film and the adhesion to the barrier layer and the heat-sealing resin layer. The degree, more preferably about 1 nm to 50 nm.
  • the thickness of the corrosion-resistant film can be measured by observation with a transmission electron microscope or a combination of observation with a transmission electron microscope and energy dispersion type X-ray spectroscopy or electron beam energy loss spectroscopy.
  • the time-of-flight secondary ion mass spectrometry analysis of the composition of the corrosion resistant coating using, for example, secondary ion consisting Ce and P and O (e.g., Ce 2 PO 4 +, CePO 4 - at least 1, such as species) or, for example, secondary ion of Cr and P and O (e.g., CrPO 2 +, CrPO 4 - peak derived from at least one), such as is detected.
  • secondary ion consisting Ce and P and O e.g., Ce 2 PO 4 +, CePO 4 - at least 1, such as species
  • secondary ion of Cr and P and O e.g., CrPO 2 +, CrPO 4 - peak derived from at least one
  • a solution containing a compound used for forming a corrosion-resistant film is applied to the surface of the barrier layer by a bar coating method, a roll coating method, a gravure coating method, a dipping method, or the like, and then the temperature of the barrier layer is applied. It is carried out by heating so that the temperature is about 70 to 200 ° C.
  • the barrier layer may be subjected to a degreasing treatment by an alkali dipping method, an electrolytic cleaning method, an acid cleaning method, an electrolytic acid cleaning method or the like in advance. By performing the degreasing treatment in this way, it becomes possible to more efficiently perform the chemical conversion treatment on the surface of the barrier layer.
  • an acid degreasing agent in which a fluorine-containing compound is dissolved in an inorganic acid for the degreasing treatment it is possible to form not only the degreasing effect of the metal foil but also the immobile metal fluoride. In such cases, only degreasing treatment may be performed.
  • the heat-sealing resin layer 4 corresponds to the innermost layer, and has a function of heat-sealing the heat-sealing resin layers with each other when assembling the power storage device to seal the power storage device element. It is a layer (sealant layer) that exerts.
  • the resin constituting the heat-fusing resin layer 4 is not particularly limited as long as it can be heat-fused, but a resin containing a polyolefin skeleton such as polyolefin or acid-modified polyolefin is preferable.
  • a resin containing a polyolefin skeleton such as polyolefin or acid-modified polyolefin is preferable.
  • the fact that the resin constituting the heat-sealing resin layer 4 contains a polyolefin skeleton can be analyzed by, for example, infrared spectroscopy, gas chromatography-mass spectrometry, or the like. Further, when the resin constituting the heat-sealing resin layer 4 is analyzed by infrared spectroscopy, it is preferable that a peak derived from maleic anhydride is detected.
  • a peak derived from maleic acid is detected in the vicinity of the wave number of 1760 cm -1 and near the wave number 1780 cm -1.
  • the heat-sealing resin layer 4 is a layer composed of maleic anhydride-modified polyolefin
  • a peak derived from maleic anhydride is detected when measured by infrared spectroscopy.
  • the degree of acid denaturation is low, the peak may become small and may not be detected. In that case, it can be analyzed by nuclear magnetic resonance spectroscopy.
  • polystyrene resin examples include polyethylenes such as low-density polyethylene, medium-density polyethylene, high-density polyethylene, and linear low-density polyethylene; ethylene- ⁇ -olefin copolymers; homopolypropylene and block copolymers of polypropylene (for example, with propylene).
  • Polyethylene for example, a random copolymer of propylene and ethylene
  • a block copolymer of polyethylene such as a block copolymer of polyethylene
  • a random copolymer of polyethylene for example, a random copolymer of propylene and ethylene
  • a propylene- ⁇ -olefin copolymer such as a propylene- ⁇ -olefin copolymer
  • a tarpolymer of ethylene-butene-propylene and the like can be mentioned.
  • polypropylene is preferable.
  • the polyolefin resin may be a block copolymer or a random copolymer.
  • One type of these polyolefin resins may be used alone, or two or more types may be used in combination.
  • the polyolefin may be a cyclic polyolefin.
  • the cyclic polyolefin is a copolymer of an olefin and a cyclic monomer, and examples of the olefin that is a constituent monomer of the cyclic polyolefin include ethylene, propylene, 4-methyl-1-pentene, styrene, butadiene, and isoprene. Be done.
  • cyclic monomer which is a constituent monomer of the cyclic polyolefin examples include cyclic alkenes such as norbornene; cyclic diene such as cyclopentadiene, dicyclopentadiene, cyclohexadiene, and norbornadiene. Among these, cyclic alkene is preferable, and norbornene is more preferable.
  • Acid-modified polyolefin is a polymer modified by block polymerization or graft polymerization of polyolefin with an acid component.
  • the acid-modified polyolefin the above-mentioned polyolefin, a copolymer obtained by copolymerizing the above-mentioned polyolefin with a polar molecule such as acrylic acid or methacrylic acid, or a polymer such as a crosslinked polyolefin can also be used.
  • the acid component used for acid modification include carboxylic acids such as maleic acid, acrylic acid, itaconic acid, crotonic acid, maleic anhydride, and itaconic anhydride, or anhydrides thereof.
  • the acid-modified polyolefin may be an acid-modified cyclic polyolefin.
  • the acid-modified cyclic polyolefin is a polymer obtained by copolymerizing a part of the monomers constituting the cyclic polyolefin in place of the acid component, or by block-polymerizing or graft-polymerizing the acid component with the cyclic polyolefin. be.
  • the acid component used for acid denaturation is the same as the acid component used for denaturation of the polyolefin.
  • Preferred acid-modified polyolefins include polyolefins modified with carboxylic acid or its anhydride, polypropylene modified with carboxylic acid or its anhydride, maleic anhydride-modified polyolefin, and maleic anhydride-modified polypropylene.
  • the heat-sealing resin layer 4 may be formed of one type of resin alone, or may be formed of a blended polymer in which two or more types of resins are combined. Further, the heat-sealing resin layer 4 may be formed of only one layer, but may be formed of two or more layers with the same or different resins.
  • the heat-sealing resin layer 4 may contain a lubricant or the like, if necessary.
  • a lubricant When the heat-sealing resin layer 4 contains a lubricant, the moldability of the exterior material for a power storage device can be improved.
  • the lubricant is not particularly limited, and a known lubricant can be used.
  • the lubricant may be used alone or in combination of two or more.
  • the lubricant is not particularly limited, but an amide-based lubricant is preferable. Specific examples of the lubricant include those exemplified in the base material layer 1. One type of lubricant may be used alone, or two or more types may be used in combination.
  • the amount of the lubricant is not particularly limited, but is preferably about 10 to 50 mg / m 2 from the viewpoint of improving the moldability of the exterior material for the power storage device. , More preferably about 15 to 40 mg / m 2.
  • the lubricant existing on the surface of the heat-sealing resin layer 4 may be one in which the lubricant contained in the resin constituting the heat-sealing resin layer 4 is exuded, or the lubricant contained in the heat-sealing resin layer 4 may be exuded.
  • the surface may be coated with a lubricant.
  • the thickness of the heat-sealing resin layer 4 is not particularly limited as long as the heat-sealing resin layers have a function of heat-sealing to seal the power storage device element, but is preferably about 100 ⁇ m or less, preferably about 100 ⁇ m or less. It is about 85 ⁇ m or less, more preferably about 15 to 85 ⁇ m.
  • the thickness of the heat-sealing resin layer 4 is preferably about 85 ⁇ m or less, more preferably about 15 to 45 ⁇ m, for example.
  • the thickness of the heat-sealing resin layer 4 is preferably about 20 ⁇ m or more, more preferably 35 to 85 ⁇ m. The degree can be mentioned.
  • the adhesive layer 5 is provided between the barrier layer 3 (or the corrosion-resistant film) and the heat-sealing resin layer 4 as necessary in order to firmly bond them. It is a layer to be corroded.
  • the adhesive layer 5 is formed of a resin capable of adhering the barrier layer 3 and the heat-sealing resin layer 4.
  • the resin used for forming the adhesive layer 5 for example, the same resin as the adhesive exemplified in the adhesive layer 2 can be used.
  • the resin used for forming the adhesive layer 5 contains a polyolefin skeleton, and the above-mentioned heat-sealing property Examples thereof include the polyolefin exemplified in the resin layer 4 and the acid-modified polyolefin.
  • the adhesive layer 5 preferably contains an acid-modified polyolefin.
  • the acid-modifying component include dicarboxylic acids such as maleic acid, itaconic acid, succinic acid, and adipic acid, and anhydrides thereof, acrylic acid, and methacrylic acid. Maleic acid is most preferred.
  • the olefin component is preferably polypropylene-based resin, and the adhesive layer 5 most preferably contains maleic anhydride-modified polypropylene.
  • the resin constituting the adhesive layer 5 contains a polyolefin skeleton can be analyzed by, for example, infrared spectroscopy, gas chromatography-mass spectrometry, or the like, and the analysis method is not particularly limited.
  • the resin constituting the adhesive layer 5 comprises an acid-modified polyolefin, for example, when measuring the infrared spectroscopy at maleic anhydride-modified polyolefin, anhydride in the vicinity of a wave number of 1760 cm -1 and near the wave number 1780 cm -1 A peak derived from maleic anhydride is detected. However, if the degree of acid denaturation is low, the peak may become small and may not be detected. In that case, it can be analyzed by nuclear magnetic resonance spectroscopy.
  • the adhesive layer 5 is a resin composition containing an acid-modified polyolefin and a curing agent. It is more preferably a cured product.
  • the acid-modified polyolefin the above-mentioned ones are preferably exemplified.
  • the adhesive layer 5 is a cured product of a resin composition containing an acid-modified polyolefin and at least one selected from the group consisting of a compound having an isocyanate group, a compound having an oxazoline group, and a compound having an epoxy group. It is particularly preferable that the resin composition is a cured product containing an acid-modified polyolefin and at least one selected from the group consisting of a compound having an isocyanate group and a compound having an epoxy group. Further, the adhesive layer 5 preferably contains at least one selected from the group consisting of polyurethane, polyester, and epoxy resin, and more preferably contains polyurethane and epoxy resin.
  • an ester resin produced by a reaction of an epoxy group and a maleic anhydride group and an amide ester resin produced by a reaction of an oxazoline group and a maleic anhydride group are preferable.
  • an unreacted substance of a curing agent such as a compound having an isocyanate group, a compound having an oxazoline group, or an epoxy resin remains in the adhesive layer 5
  • the presence of the unreacted substance is determined by, for example, infrared spectroscopy. It can be confirmed by a method selected from Raman spectroscopy, time-of-flight secondary ion mass spectrometry (TOF-SIMS), and the like.
  • the curing agent having a heterocycle include a curing agent having an oxazoline group and a curing agent having an epoxy group.
  • the curing agent having a C—C bond examples include a curing agent having an oxazoline group and a curing agent having an epoxy group.
  • the fact that the adhesive layer 5 is a cured product of a resin composition containing these curing agents is, for example, gas chromatograph mass spectrometry (GCMS), infrared spectroscopy (IR), time-of-flight secondary ion mass spectrometry (TOF). -SIMS), X-ray photoelectron spectroscopy (XPS) and other methods can be used for confirmation.
  • GCMS gas chromatograph mass spectrometry
  • IR infrared spectroscopy
  • TOF time-of-flight secondary ion mass spectrometry
  • -SIMS X-ray photoelectron spectroscopy
  • XPS X-ray photoelectron spectroscopy
  • the compound having an isocyanate group is not particularly limited, but from the viewpoint of effectively enhancing the adhesion between the barrier layer 3 and the adhesive layer 5, a polyfunctional isocyanate compound is preferable.
  • the polyfunctional isocyanate compound is not particularly limited as long as it is a compound having two or more isocyanate groups.
  • Specific examples of the polyfunctional isocyanate-based curing agent include pentandiisocyanate (PDI), isophorone diisocyanate (IPDI), hexamethylene diisocyanate (HDI), tolylene diisocyanate (TDI), and diphenylmethane diisocyanate (MDI), which are polymerized or nurate. Examples thereof include chemical compounds, mixtures thereof, and copolymers with other polymers.
  • an adduct body, a burette body, an isocyanurate body and the like can be mentioned.
  • the content of the compound having an isocyanate group in the adhesive layer 5 is preferably in the range of 0.1 to 50% by mass, and 0.5 to 40% by mass in the resin composition constituting the adhesive layer 5. More preferably in the range. As a result, the adhesion between the barrier layer 3 and the adhesive layer 5 can be effectively enhanced.
  • the compound having an oxazoline group is not particularly limited as long as it is a compound having an oxazoline skeleton.
  • Specific examples of the compound having an oxazoline group include those having a polystyrene main chain and those having an acrylic main chain. Examples of commercially available products include the Epocross series manufactured by Nippon Shokubai Co., Ltd.
  • the proportion of the compound having an oxazoline group in the adhesive layer 5 is preferably in the range of 0.1 to 50% by mass, preferably in the range of 0.5 to 40% by mass in the resin composition constituting the adhesive layer 5. It is more preferable to be in. As a result, the adhesion between the barrier layer 3 and the adhesive layer 5 can be effectively enhanced.
  • Examples of the compound having an epoxy group include an epoxy resin.
  • the epoxy resin is not particularly limited as long as it is a resin capable of forming a crosslinked structure by an epoxy group existing in the molecule, and a known epoxy resin can be used.
  • the weight average molecular weight of the epoxy resin is preferably about 50 to 2000, more preferably about 100 to 1000, and even more preferably about 200 to 800.
  • the weight average molecular weight of the epoxy resin is a value measured by gel permeation chromatography (GPC) measured under the condition that polystyrene is used as a standard sample.
  • epoxy resin examples include glycidyl ether derivative of trimethylolpropane, bisphenol A diglycidyl ether, modified bisphenol A diglycidyl ether, bisphenol F type glycidyl ether, novolac glycidyl ether, glycerin polyglycidyl ether, polyglycerin polyglycidyl ether and the like. Can be mentioned.
  • One type of epoxy resin may be used alone, or two or more types may be used in combination.
  • the proportion of the epoxy resin in the adhesive layer 5 is preferably in the range of 0.1 to 50% by mass, preferably in the range of 0.5 to 40% by mass in the resin composition constituting the adhesive layer 5. Is more preferable. As a result, the adhesion between the barrier layer 3 and the adhesive layer 5 can be effectively enhanced.
  • the polyurethane is not particularly limited, and known polyurethane can be used.
  • the adhesive layer 5 may be, for example, a cured product of a two-component curable polyurethane.
  • the proportion of polyurethane in the adhesive layer 5 is preferably in the range of 0.1 to 50% by mass, and preferably in the range of 0.5 to 40% by mass in the resin composition constituting the adhesive layer 5. More preferred. As a result, the adhesion between the barrier layer 3 and the adhesive layer 5 can be effectively enhanced in an atmosphere in which a component that induces corrosion of the barrier layer such as an electrolytic solution is present.
  • the adhesive layer 5 is a cured product of a resin composition containing at least one selected from the group consisting of a compound having an isocyanate group, a compound having an oxazoline group, and an epoxy resin, and the acid-modified polyolefin.
  • the acid-modified polyolefin functions as a main agent, and the compound having an isocyanate group, the compound having an oxazoline group, and the compound having an epoxy group each function as a curing agent.
  • the adhesive layer 5 may contain a modifier having a carbodiimide group.
  • the thickness of the adhesive layer 5 is preferably about 50 ⁇ m or less, about 40 ⁇ m or less, about 30 ⁇ m or less, about 20 ⁇ m or less, and about 5 ⁇ m or less.
  • the thickness of the adhesive layer 5 is preferably about 0.1 ⁇ m or more and about 0.5 ⁇ m or more.
  • the thickness range of the adhesive layer 5 is preferably about 0.1 to 50 ⁇ m, about 0.1 to 40 ⁇ m, about 0.1 to 30 ⁇ m, about 0.1 to 20 ⁇ m, and about 0.1 to 5 ⁇ m. , About 0.5 to 50 ⁇ m, about 0.5 to 40 ⁇ m, about 0.5 to 30 ⁇ m, about 0.5 to 20 ⁇ m, and about 0.5 to 5 ⁇ m.
  • the thickness is preferably about 1 to 10 ⁇ m, more preferably about 1 to 5 ⁇ m.
  • the resin exemplified in the heat-sealing resin layer 4 it is preferably about 2 to 50 ⁇ m, more preferably about 10 to 40 ⁇ m.
  • the adhesive layer 5 is a cured product of the adhesive exemplified in the adhesive layer 2 or a resin composition containing an acid-modified polyolefin and a curing agent, for example, the resin composition is applied and cured by heating or the like. Thereby, the adhesive layer 5 can be formed.
  • the resin exemplified in the heat-sealing resin layer 4 it can be formed by, for example, extrusion molding of the heat-sealing resin layer 4 and the adhesive layer 5.
  • the exterior material for a power storage device of the present disclosure is above the base material layer 1 (base material layer 1), if necessary, for the purpose of improving at least one of designability, electrolytic solution resistance, scratch resistance, moldability, and the like.
  • the surface coating layer 6 may be provided on the side opposite to the barrier layer 3 of the above.
  • the surface coating layer 6 is a layer located on the outermost layer side of the exterior material for the power storage device when the power storage device is assembled using the exterior material for the power storage device.
  • the surface coating layer 6 can be formed of, for example, a resin such as polyvinylidene chloride, polyester, polyurethane, acrylic resin, or epoxy resin.
  • the resin forming the surface coating layer 6 is a curable resin
  • the resin may be either a one-component curable type or a two-component curable type, but is preferably a two-component curable type.
  • the two-component curable resin include two-component curable polyurethane, two-component curable polyester, and two-component curable epoxy resin. Of these, two-component curable polyurethane is preferable.
  • the two-component curable polyurethane examples include a polyurethane containing a first agent containing a polyol compound and a second agent containing an isocyanate compound.
  • a two-component curable polyurethane using a polyol such as a polyester polyol, a polyether polyol, and an acrylic polyol as a first agent and an aromatic or aliphatic polyisocyanate as a second agent can be mentioned.
  • the polyurethane include a polyurethane compound obtained by reacting a polyol compound and an isocyanate compound in advance, and a polyurethane containing the isocyanate compound.
  • polyurethane examples include a polyurethane compound obtained by reacting a polyol compound and an isocyanate compound in advance, and a polyurethane containing the polyol compound.
  • polyurethane examples include polyurethane obtained by reacting a polyurethane compound in which a polyol compound and an isocyanate compound are previously reacted with water such as in the air to cure the polyurethane.
  • the polyol compound it is preferable to use a polyester polyol having a hydroxyl group in the side chain in addition to the hydroxyl group at the end of the repeating unit.
  • the second agent examples include aliphatic, alicyclic, aromatic, and aromatic aliphatic isocyanate compounds.
  • isocyanate-based compound examples include hexamethylene diisocyanate (HDI), xylylene diisocyanate (XDI), isophorone diisocyanate (IPDI), hydrogenated XDI (H6XDI), hydrogenated MDI (H12MDI), tolylene diisocyanate (TDI), and diphenylmethane diisocyanate. (MDI), naphthalenediocyanate (NDI) and the like. Moreover, a polyfunctional isocyanate modified product from one kind or two or more kinds of these diisocyanates and the like can be mentioned. Further, a multimer (for example, a trimer) can be used as the polyisocyanate compound.
  • a multimer for example, a trimer
  • Examples of such a multimer include an adduct body, a biuret body, a nurate body and the like.
  • the aliphatic isocyanate-based compound refers to an isocyanate having an aliphatic group and no aromatic ring
  • the alicyclic isocyanate-based compound refers to an isocyanate having an alicyclic hydrocarbon group, which is an aromatic isocyanate-based compound.
  • the surface coating layer 6 has the above-mentioned lubricant or antistatic agent on at least one of the surface and the inside of the surface coating layer 6, depending on the functionality and the like to be provided on the surface coating layer 6 and the surface thereof. It may contain additives such as a blocking agent, a matting agent, a flame retardant, an antioxidant, a tackifier, and an antistatic agent. Examples of the additive include fine particles having an average particle size of about 0.5 nm to 5 ⁇ m. The average particle size of the additive shall be the median size measured by the laser diffraction / scattering type particle size distribution measuring device.
  • the additive may be either an inorganic substance or an organic substance.
  • the shape of the additive is also not particularly limited, and examples thereof include a spherical shape, a fibrous shape, a plate shape, an amorphous shape, and a scaly shape.
  • additives include talc, silica, graphite, kaolin, montmorillonite, mica, hydrotalcite, silica gel, zeolite, aluminum hydroxide, magnesium hydroxide, zinc oxide, magnesium oxide, aluminum oxide, neodium oxide, and antimony oxide.
  • Titanium oxide, cerium oxide, calcium sulfate, barium sulfate, calcium carbonate, calcium silicate, lithium carbonate, calcium benzoate, calcium oxalate, magnesium stearate, alumina, carbon black, carbon nanotubes, refractory nylon, acrylate resin examples thereof include crosslinked acrylic, crosslinked styrene, crosslinked polyethylene, benzoguanamine, gold, aluminum, copper and nickel.
  • the additive may be used alone or in combination of two or more.
  • silica, barium sulfate, and titanium oxide are preferable from the viewpoint of dispersion stability and cost.
  • the additive may be subjected to various surface treatments such as an insulation treatment and a highly dispersible treatment on the surface.
  • the method for forming the surface coating layer 6 is not particularly limited, and examples thereof include a method of applying a resin for forming the surface coating layer 6.
  • a resin mixed with the additive may be applied.
  • the thickness of the surface coating layer 6 is not particularly limited as long as it exhibits the above-mentioned functions as the surface coating layer 6, and examples thereof include about 0.5 to 10 ⁇ m, preferably about 1 to 5 ⁇ m.
  • the method for manufacturing the exterior material for power storage device is not particularly limited as long as a laminated body in which each layer of the exterior material for power storage device of the present invention is laminated can be obtained, and at least the base material.
  • Examples thereof include a method including a step of laminating the layer 1, the barrier layer 3, and the heat-sealing resin layer 4 in this order. That is, the method for manufacturing the exterior material 10 for a power storage device of the present disclosure is a step of laminating at least the base material layer 1, the barrier layer 3, and the heat-sealing resin layer 4 in this order to obtain a laminated body.
  • a main axis orientation measuring device including a camera and a light source is used, and the base material layer is formed between the camera and the light source so that the direction of the camera of the measuring device and the direction of the MD of the base material layer 1 coincide with each other.
  • the principal axis orientation of the base material layer 1 measured by irradiating the light of the light source in the thickness direction of the base material layer is within the range of 90 ° ⁇ 30 °.
  • laminate A a laminate in which the base material layer 1, the adhesive layer 2, and the barrier layer 3 are laminated in this order
  • the laminated body A is formed by applying an adhesive used for forming the adhesive layer 2 on the base material layer 1 or, if necessary, on the barrier layer 3 whose surface has been chemically converted, by a gravure coating method. It can be carried out by a dry laminating method in which the barrier layer 3 or the base material layer 1 is laminated and the adhesive layer 2 is cured after being applied and dried by a coating method such as a roll coating method.
  • the heat-sealing resin layer 4 is laminated on the barrier layer 3 of the laminated body A.
  • the heat-sealing resin layer 4 is directly laminated on the barrier layer 3
  • the heat-sealing resin layer 4 is laminated on the barrier layer 3 of the laminated body A by a method such as a thermal laminating method or an extrusion laminating method. do it.
  • the adhesive layer 5 is provided between the barrier layer 3 and the heat-sealing resin layer 4, for example, (1) the adhesive layer 5 and the heat-sealing resin layer are placed on the barrier layer 3 of the laminated body A.
  • a method of laminating 4 by extruding (coextrusion laminating method, tandem laminating method), (2) Separately, a laminated body in which the adhesive layer 5 and the heat-sealing resin layer 4 are laminated is formed, and the laminated body A is formed.
  • Method of Laminating (3) While pouring the melted adhesive layer 5 between the barrier layer 3 of the laminated body A and the heat-sealing resin layer 4 which has been formed into a sheet in advance, the adhesive layer 5 is passed through.
  • a method of laminating the laminated body A and the heat-sealing resin layer 4 (sandwich laminating method), (4) a solution coating of an adhesive for forming the adhesive layer 5 on the barrier layer 3 of the laminated body A is performed. Examples thereof include a method of laminating by a method of drying, a method of baking, and the like, and a method of laminating a heat-sealing resin layer 4 which has been formed into a sheet in advance on the adhesive layer 5.
  • the surface coating layer 6 is laminated on the surface of the base material layer 1 opposite to the barrier layer 3.
  • the surface coating layer 6 can be formed, for example, by applying the above resin that forms the surface coating layer 6 to the surface of the base material layer 1.
  • the order of the step of laminating the barrier layer 3 on the surface of the base material layer 1 and the step of laminating the surface coating layer 6 on the surface of the base material layer 1 is not particularly limited.
  • the barrier layer 3 may be formed on the surface of the base material layer 1 opposite to the surface coating layer 6.
  • the surface coating layer 6 provided as needed / the base material layer 1 / the adhesive layer 2 provided as needed / the barrier layer 3 / the adhesive layer 5 provided as needed / heat fusion A laminate having the sex resin layers 4 in this order is formed, and may be further subjected to heat treatment in order to strengthen the adhesiveness of the adhesive layer 2 and the adhesive layer 5 provided as needed.
  • each layer constituting the laminated body may be subjected to surface activation treatment such as corona treatment, blast treatment, oxidation treatment, ozone treatment, etc., if necessary, to improve processing suitability. ..
  • surface activation treatment such as corona treatment, blast treatment, oxidation treatment, ozone treatment, etc.
  • a corona treatment to the surface of the base material layer 1 opposite to the barrier layer 3, the printability of the ink on the surface of the base material layer 1 can be improved.
  • exterior materials for power storage devices of the present disclosure are used for packaging for sealing and accommodating power storage device elements such as positive electrodes, negative electrodes, and electrolytes. That is, a power storage device element having at least a positive electrode, a negative electrode, and an electrolyte can be housed in a package formed of the exterior material for a power storage device of the present disclosure to form a power storage device.
  • a power storage device element having at least a positive electrode, a negative electrode, and an electrolyte is provided with the exterior material for the power storage device of the present disclosure in a state in which metal terminals connected to each of the positive electrode and the negative electrode are projected outward.
  • the peripheral edge of the power storage device element is covered so that a flange portion (a region where the heat-sealing resin layers come into contact with each other) can be formed, and the heat-sealing resin layers of the flange portion are heat-sealed and sealed.
  • the heat-sealing resin portion of the exterior material for the power storage device of the present disclosure is inside (the surface in contact with the power storage device element). )
  • the heat-sealing resin layers of the two exterior materials for power storage devices may be overlapped with each other facing each other, and the peripheral edges of the overlapped exterior materials for power storage devices may be heat-sealed to form a package.
  • one exterior material for a power storage device may be folded back and overlapped, and the peripheral edge portion may be heat-sealed to form a package. In the case of folding and overlapping, as shown in the example shown in FIG.
  • the side other than the folded side may be heat-sealed to form a package by a three-way seal, or the package may be folded so that a flange portion can be formed. It may be sealed on all sides.
  • a recess for accommodating the power storage device element may be formed by deep drawing molding or overhang molding. As shown in the example shown in FIG. 5, it is not necessary to provide a recess in one of the exterior materials for the power storage device and not in the exterior material for the other power storage device, and the other exterior material for the power storage device also has a recess. May be provided.
  • the exterior material for a power storage device of the present disclosure can be suitably used for a power storage device such as a battery (including a capacitor, a capacitor, etc.). Further, the exterior material for a power storage device of the present disclosure may be used for either a primary battery or a secondary battery, but is preferably used for a secondary battery.
  • the type of the secondary battery to which the exterior material for the power storage device of the present disclosure is applied is not particularly limited, and for example, a lithium ion battery, a lithium ion polymer battery, an all-solid-state battery, a lead storage battery, a nickel / hydrogen storage battery, and a nickel / hydrogen storage battery.
  • lithium ion batteries and lithium ion polymer batteries can be mentioned as suitable application targets of the exterior materials for power storage devices of the present disclosure.
  • Examples 1, 2, 5, 6, 8 and Comparative Example 1 Biaxially stretched nylon film as a base material layer (Ny 20 ⁇ m or 15 ⁇ m in thickness shown in Table 1) and aluminum foil as a barrier layer having corrosion-resistant films formed on both sides (JIS H4160: 1994 A8021HO, thickness 35 ⁇ m). ) was prepared.
  • Examples 1, 2, 5, 6, 8 and Comparative Example 1 those having the main axis orientations shown in Table 1 were used.
  • the principal axis orientation of the base material layer is a value measured by the method described later.
  • a base material layer and a barrier layer are laminated by a dry laminating method using a two-component curable urethane adhesive (polyol compound and aromatic isocyanate compound), and an aging treatment is performed to obtain a base material layer (thickness).
  • a laminate of 20 ⁇ m or 15 ⁇ m) / adhesive layer (thickness after curing was 3 ⁇ m) / barrier layer (thickness 35 ⁇ m) was prepared.
  • Example 3 Biaxially stretched nylon film in the same manner as in Example 2 except that the thickness of the barrier layer was 30 ⁇ m, the thickness of the adhesive layer was 14 ⁇ m, and the thickness of the heat-sealing resin layer was 10 ⁇ m. / Adhesive layer / Barrier layer / Adhesive layer / Heat-sealing resin layer were laminated in this order to obtain an exterior material for a power storage device (thickness shown in Table 1).
  • Example 4 A two-component curable urethane resin (including silica particles (matting agent), polyol compound, and aromatic isocyanate compound) is used on the surface of the base material layer, and a surface coating layer (thickness) is used as the outermost layer of the exterior material for a power storage device. 3 ⁇ m) was formed, and a two-component curable urethane adhesive containing carbon black (including carbon black, polyol compound, and aromatic isocyanate compound) was used to form the adhesive layer between the base material layer and the barrier layer.
  • a two-component curable urethane resin including silica particles (matting agent), polyol compound, and aromatic isocyanate compound
  • Example 7 A surface coating layer (thickness) is used as the outermost layer of the exterior material for power storage devices by using a two-component curable urethane resin (including silica particles (matting agent), polyol compound, and aromatic isocyanate compound) on the surface of the base material layer. 3 ⁇ m) was formed, and a two-component curable urethane adhesive containing carbon black (including carbon black, polyol compound, and aromatic isocyanate compound) was used to form the adhesive layer between the base material layer and the barrier layer.
  • a two-component curable urethane resin including silica particles (matting agent), polyol compound, and aromatic isocyanate compound
  • Erucic acid amide was applied as a lubricant to the outer surface of the base material layer of the exterior material for each power storage device.
  • a spindle orientation measuring device provided with a camera C and a light source LS was used.
  • the base material layer 1 is arranged between the camera C and the light source LS so that the camera C of the measuring device, the base material layer 1, and the light source LS are located in a straight line, and the direction of the TD of the base material layer 1 is set.
  • the measurement was performed by irradiating the light L of the light source LS in the thickness direction D of the base material layer 1 with the 0 ° direction and the MD direction of the base material layer 1 as the 90 ° direction.
  • the biaxially stretched nylon is transmitted from the light source arranged on the back side (the side opposite to the camera C side) of the biaxially stretched nylon film (base material layer 1).
  • Light was irradiated in the thickness direction of the film.
  • a transparent glass plate G was placed on the base material layer 1 (on the camera C side), and the measurement was performed so that no wrinkles were formed on the surface of the base material layer 1.
  • the base material layer 1 and the glass plate G are arranged in this order on a plate provided with an opening at a position where the base material layer 1 is irradiated with light.
  • Measurement condition Measuring device: Polarized high-speed imaging device (CRYSTA PI-5) manufactured by Photron Co., Ltd.
  • Analysis software KAMAKIRI offline basic software Ver: 1.5.0.1
  • Measurement sample A biaxially stretched nylon film is cut into A4 size (TD210 mm ⁇ MD300 mm) to prepare.
  • Measurement wavelength (camera side): 520 to 570 nm (The camera that receives light through the film detects light with a wavelength of 520 to 570 nm)
  • Light source White LED light (measurement samples are placed so that the positional relationship between the light source (light), the base material layer, and the camera coincides with the extension line of the light source and the thickness direction of the base material layer, and the camera is placed on the extension line of the light source. Is placed.)
  • the exterior material for the power storage device was cut into a rectangle having a length (direction of MD (Machine Direction)) of 90 mm ⁇ width (direction of TD (Transverse Direction)) of 150 mm to prepare a test sample.
  • This sample is a rectangular molding die having a diameter of 31.6 mm (MD direction) x 54.5 mm (TD direction) (female mold, surface is JIS B 0659-1: 2002 Annex 1 (reference)).
  • the maximum height roughness (nominal value of Rz) specified in Table 2 of the comparative surface roughness standard piece is 3.2 ⁇ m. Corner R2.0 mm, ridge line R1.0 mm) and the corresponding molding die.
  • the cold-formed sample was exposed to light with a penlight in a dark room, and it was confirmed whether or not pinholes or cracks were generated in the aluminum alloy foil due to the transmission of light.
  • the deepest molding depth where pinholes and cracks do not occur in all 10 samples of the aluminum alloy foil is Amm, and the number of samples where pinholes and the like occur at the shallowest molding depth where pinholes and the like occur in the aluminum alloy foil.
  • the depth reference was determined in four stages as follows, separately for the case where the thickness of the base material layer was 20 ⁇ m and the case where the thickness was 15 ⁇ m. The results are shown in Table 1.
  • Limit molding depth Amm + (0.5mm / 10 pieces) x (10 pieces-B pieces)
  • Limit molding depth is 7.5 mm or more
  • Limit molding depth is 6.5 mm or more
  • the exterior materials for power storage devices of Examples 1 to 8 have excellent moldability because the predetermined principal axis orientation of the base material layer is within the range of 90 ° ⁇ 30 °.
  • the phase difference of the base material layer was also measured in the above-mentioned measurement of the principal axis orientation
  • the phase difference of Example 1 was 72.9 nm
  • the phase difference of Example 2 was 196.4 nm
  • the phase difference of Example 5 was measured. Is 205.1 nm
  • the phase difference of Example 6 is 49.8 nm
  • the phase difference of Example 8 is 123.7 nm
  • the phase difference of Comparative Example 1 is 228.7 nm
  • even if the phase difference is 210 nm or less. It can be seen that the exterior material for the power storage device is excellent in moldability.
  • the tensile breaking strength (MPa) of each of the biaxially stretched nylon films used as the base material layer in Example 1 and Comparative Example 1 was measured, and the tensile breaking strength of Example 1 was MD.
  • the tensile breaking strength of Comparative Example 1 was 284 MPa in the MD direction and 320 MPa in the TD direction, whereas the direction of 270 MPa and the direction of TD were 300 MPa.
  • the base material layer of Comparative Example 1 had a higher tensile breaking strength than the base material layer of Example 1, but the moldability of the exterior material for the power storage device was higher in Comparative Example 1 than in Example 1. Was also inferior.
  • Item 1 It is composed of a laminate having at least a base material layer, a barrier layer, and a heat-sealing resin layer in this order.
  • the base material layer is an exterior material for a power storage device, which is measured by the following measuring method and has a principal axis orientation within the range of 90 ° ⁇ 30 °.
  • a spindle orientation measuring device including a camera and a light source is used so that the camera, the base material layer, and the light source of the measuring device are located in a straight line, and the base material layer is formed between the camera and the light source.
  • the light of the light source is irradiated in the direction, and the principal axis orientation of the base material layer is measured.
  • Item 2. Item 2. The exterior material for a power storage device according to Item 1, wherein the base material layer has a thickness of 10 ⁇ m or more and 30 ⁇ m or less.
  • the exterior material for a power storage device according to Item 1 or 2 wherein the base material layer contains at least one of a polyamide film and a polyester film.
  • Item 5. A power storage device in which a power storage device element including at least a positive electrode, a negative electrode, and an electrolyte is housed in a package formed of the exterior material for the power storage device according to any one of Items 1 to 4.
  • Item 6. At least, it includes a step of laminating the base material layer, the barrier layer, and the heat-sealing resin layer in this order to obtain a laminate.
  • the base material layer is a method for manufacturing an exterior material for a power storage device, in which the principal axis direction is within the range of 90 ° ⁇ 30 °, which is measured by the following measuring method.
  • a spindle orientation measuring device including a camera and a light source is used so that the camera, the base material layer, and the light source of the measuring device are located in a straight line, and the base material layer is formed between the camera and the light source.
  • the TD direction of the base material layer is 0 °
  • the MD direction of the base material layer is 90 °
  • the light of the light source is irradiated in the thickness direction of the base material layer.
  • the principal axis direction of the base material layer is measured.
  • Item 7. It is composed of a laminate having at least a base material layer, a barrier layer, and a heat-sealing resin layer in this order.
  • the base material layer is an exterior material for a power storage device having a phase difference of 210 nm or less, which is measured by the following measuring method.
  • a spindle orientation measuring device including a camera and a light source is used so that the camera, the base material layer, and the light source of the measuring device are located in a straight line, and the base material layer is formed between the camera and the light source.
  • the thickness of the base material layer when the base material layer is arranged so that the TD direction of the base material layer is 0 ° and the MD direction of the base material layer is 90 °.
  • the light of the light source is irradiated in the direction, and the phase difference of the base material layer is measured.
  • Base material layer 2 Adhesive layer 3 Barrier layer 4 Heat-sealing resin layer 5 Adhesive layer 6 Surface coating layer 10 Exterior material for power storage devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Laminated Bodies (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

An exterior material for a power storage device is constituted from a laminate provided with at least a substrate layer, a barrier layer, and a heat-fusible resin layer in the sequence listed, the substrate layer being such that the principal axis direction measured by the following measurement method is in the range of 90° ± 30°. [Measurement method] Using a principal-axis-direction measurement device provided with a camera and a light source, when the substrate is positioned between the camera and the light source so that the camera of the measurement device, the substrate layer, and the light source are located on a straight line, and the substrate layer is positioned so that the direction of the TD of the substrate layer is the 0° direction and the direction of the MD of the substrate layer is the 90° direction, the light from the light source is beamed in the thickness direction of the substrate layer and the principal axis direction of the substrate layer is measured.

Description

蓄電デバイス用外装材、その製造方法、及び蓄電デバイスExterior materials for power storage devices, their manufacturing methods, and power storage devices
 本開示は、蓄電デバイス用外装材、その製造方法、及び蓄電デバイスに関する。 This disclosure relates to an exterior material for a power storage device, a manufacturing method thereof, and a power storage device.
 従来、様々なタイプの蓄電デバイスが開発されているが、あらゆる蓄電デバイスにおいて、電極や電解質等の蓄電デバイス素子を封止するために包装材料(外装材)が不可欠な部材になっている。従来、蓄電デバイス用外装材として金属製の外装材が多用されていた。 Conventionally, various types of power storage devices have been developed, but in all power storage devices, a packaging material (exterior material) is an indispensable member for sealing the power storage device elements such as electrodes and electrolytes. Conventionally, a metal exterior material has been widely used as an exterior material for a power storage device.
 一方、近年、電気自動車、ハイブリッド電気自動車、パソコン、カメラ、携帯電話等の高性能化に伴い、蓄電デバイスには、多様な形状が要求されると共に、薄型化や軽量化が求められている。しかしながら、従来多用されていた金属製の蓄電デバイス用外装材では、形状の多様化に追従することが困難であり、しかも軽量化にも限界があるという欠点がある。 On the other hand, in recent years, with the improvement of high performance of electric vehicles, hybrid electric vehicles, personal computers, cameras, mobile phones, etc., various shapes are required for power storage devices, and thinning and weight reduction are required. However, the metal exterior material for a power storage device, which has been widely used in the past, has a drawback that it is difficult to keep up with the diversification of shapes and there is a limit to weight reduction.
 そこで、従来、多様な形状に加工が容易で、薄型化や軽量化を実現し得る蓄電デバイス用外装材として、基材/アルミニウム箔層/熱融着性樹脂層が順次積層されたフィルム状の外装材が提案されている(例えば、特許文献1を参照)。 Therefore, conventionally, as an exterior material for a power storage device that can be easily processed into various shapes and can be made thinner and lighter, it is in the form of a film in which a base material / aluminum foil layer / heat-sealing resin layer is sequentially laminated. Exterior materials have been proposed (see, for example, Patent Document 1).
 このようなフィルム状の外装材においては、一般的に、冷間成形により凹部が形成され、当該凹部によって形成された空間に電極や電解液などの蓄電デバイス素子を配し、熱融着性樹脂層同士を熱融着させることにより、外装材の内部に蓄電デバイス素子が収容された蓄電デバイスが得られる。 In such a film-like exterior material, a recess is generally formed by cold molding, and a storage device element such as an electrode or an electrolytic solution is arranged in the space formed by the recess to form a heat-sealing resin. By heat-sealing the layers together, a power storage device in which the power storage device element is housed inside the exterior material can be obtained.
特開2008-287971号公報Japanese Unexamined Patent Publication No. 2008-287971
 近年、フィルム状の外装材には、さらなる薄型化が求められている。また、蓄電デバイスのエネルギー密度をより一層高める観点などから、外装材に凹部をより深く形成することも求められている。 In recent years, film-like exterior materials have been required to be further thinned. Further, from the viewpoint of further increasing the energy density of the power storage device, it is also required to form a deeper recess in the exterior material.
 ところが、フィルム状の蓄電デバイス用外装材を成形して、蓄電デバイス素子を収容する凹部を形成する場合に、クラックやピンホールが発生しやすいという問題がある。 However, there is a problem that cracks and pinholes are likely to occur when a film-shaped exterior material for a power storage device is formed to form a recess for accommodating the power storage device element.
 本開示は、少なくとも、基材層、バリア層、及び熱融着性樹脂層をこの順に備える積層体からなる蓄電デバイス用外装材であって、成形性に優れた蓄電デバイス用外装材を提供することを主な目的とする。 The present disclosure provides an exterior material for a power storage device, which is composed of a laminate having at least a base material layer, a barrier layer, and a heat-sealing resin layer in this order, and has excellent moldability. The main purpose is that.
 本開示の発明者らは、前記課題を解決すべく、鋭意検討を行った。その結果、少なくとも、基材層、バリア層、及び熱融着性樹脂層をこの順に備える積層体から構成された蓄電デバイス用外装材であって、前記基材層は、以下の測定方法によって測定される、主軸方位が、90°±30°の範囲内である、蓄電デバイス用外装材は、優れた成形性を備えることを見出した。
[測定方法]
 カメラ及び光源を備える主軸方位の測定装置を用い、測定装置のカメラと、蓄電デバイス用外装材の基材層と、測定装置の光源とが一直線上に位置するようにして、基材層をカメラと光源との間に配置し、基材層のTDの方向を0°方向、基材層のMDの方向を90°方向となるように基材層を配置した場合に、前記基材層の厚み方向に前記光源の光を照射して、前記基材層の主軸方位を測定する。
The inventors of the present disclosure have made diligent studies to solve the above problems. As a result, it is an exterior material for a power storage device composed of a laminate having at least a base material layer, a barrier layer, and a heat-sealing resin layer in this order, and the base material layer is measured by the following measuring method. It has been found that the exterior material for a power storage device having a principal axis orientation within the range of 90 ° ± 30 ° has excellent moldability.
[Measuring method]
Using a spindle orientation measuring device equipped with a camera and a light source, the base material layer is set so that the camera of the measuring device, the base material layer of the exterior material for the power storage device, and the light source of the measuring device are located in a straight line. When the base material layer is arranged between the light source and the light source so that the TD direction of the base material layer is 0 ° and the MD direction of the base material layer is 90 °, the base material layer The light of the light source is irradiated in the thickness direction, and the principal axis orientation of the base material layer is measured.
 蓄電デバイス用外装材の成形性を向上させるために、基材層に用いるフィルムの引張破断強度(MPa)に基づいて、基材層を選定することがある。しかしながら、特に基材層の厚みが薄くなると、基材層の引張力(N)の差は小さくなり、基材層の引張破断強度と蓄電デバイス用外装材の成形性との間に、明確な相関関係が見出されにくい。これに対して、本開示の発明者らが検討したところ、そのような場合でも、基材層の主軸方位が前記所定の範囲内であれば、基材層の当該物性と蓄電デバイス用外装材の成形性との間に、明確な相関が見出された。また、引張破断強度の測定試験は破壊試験であるが、主軸方位の測定試験は非破壊試験であり、基材層を破壊せずに選定することができるという利点がある。 In order to improve the moldability of the exterior material for power storage devices, the base material layer may be selected based on the tensile breaking strength (MPa) of the film used for the base material layer. However, especially when the thickness of the base material layer becomes thin, the difference in the tensile force (N) of the base material layer becomes small, and there is a clear difference between the tensile breaking strength of the base material layer and the moldability of the exterior material for the power storage device. Correlation is hard to find. On the other hand, as a result of examination by the inventors of the present disclosure, even in such a case, if the principal axis orientation of the base material layer is within the predetermined range, the physical properties of the base material layer and the exterior material for the power storage device are examined. A clear correlation was found with the formability of. Further, the measurement test of the tensile breaking strength is a fracture test, but the measurement test of the principal axis orientation is a non-destructive test, and there is an advantage that the substrate layer can be selected without breaking.
 本開示は、これらの知見に基づいて、更に検討を重ねることにより完成したものである。即ち、本開示は、下記に掲げる態様の発明を提供する。
 少なくとも、基材層、バリア層、及び熱融着性樹脂層をこの順に備える積層体から構成されており、
 前記基材層は、以下の測定方法によって測定される、主軸方位が、90°±30°の範囲内である、蓄電デバイス用外装材。
[測定方法]
 カメラ及び光源を備える主軸方位の測定装置を用い、前記測定装置の前記カメラと前記基材層と前記光源とが一直線上に位置するようにして、前記基材層を前記カメラと前記光源との間に配置し、前記基材層のTDの方向を0°方向、前記基材層のMDの方向を90°方向となるように基材層を配置した場合に、前記基材層の厚み方向に前記光源の光を照射して、前記基材層の主軸方位を測定する。
This disclosure has been completed by further studies based on these findings. That is, the present disclosure provides the inventions of the following aspects.
It is composed of a laminate having at least a base material layer, a barrier layer, and a heat-sealing resin layer in this order.
The base material layer is an exterior material for a power storage device, which is measured by the following measuring method and has a principal axis orientation within the range of 90 ° ± 30 °.
[Measuring method]
A spindle orientation measuring device including a camera and a light source is used so that the camera, the base material layer, and the light source of the measuring device are located in a straight line, and the base material layer is formed between the camera and the light source. When the base material layer is arranged between them so that the TD direction of the base material layer is 0 ° and the MD direction of the base material layer is 90 °, the thickness direction of the base material layer Is irradiated with the light of the light source, and the principal axis direction of the base material layer is measured.
 本開示によれば、少なくとも、基材層、バリア層、及び熱融着性樹脂層をこの順に備える積層体からなる蓄電デバイス用外装材であって、成形性に優れた蓄電デバイス用外装材を提供することができる。また、本開示によれば、蓄電デバイス用外装材の製造方法、及び蓄電デバイスを提供することもできる。 According to the present disclosure, an exterior material for a power storage device, which is composed of a laminate having at least a base material layer, a barrier layer, and a heat-sealing resin layer in this order, and has excellent moldability. Can be provided. Further, according to the present disclosure, it is also possible to provide a method for manufacturing an exterior material for a power storage device and a power storage device.
本開示の蓄電デバイス用外装材の断面構造の一例を示す模式図である。It is a schematic diagram which shows an example of the cross-sectional structure of the exterior material for a power storage device of this disclosure. 本開示の蓄電デバイス用外装材の断面構造の一例を示す模式図である。It is a schematic diagram which shows an example of the cross-sectional structure of the exterior material for a power storage device of this disclosure. 本開示の蓄電デバイス用外装材の断面構造の一例を示す模式図である。It is a schematic diagram which shows an example of the cross-sectional structure of the exterior material for a power storage device of this disclosure. 本開示の蓄電デバイス用外装材の断面構造の一例を示す模式図である。It is a schematic diagram which shows an example of the cross-sectional structure of the exterior material for a power storage device of this disclosure. 本開示の蓄電デバイス用外装材により形成された包装体中に蓄電デバイス素子を収容する方法を説明するための模式図である。It is a schematic diagram for demonstrating the method of accommodating a power storage device element in a package formed by the exterior material for a power storage device of the present disclosure. 主軸方位の測定方法を説明するための模式図(斜視図)である。It is a schematic diagram (perspective view) for demonstrating the measurement method of a spindle direction. 主軸方位の測定方法を説明するための模式図(側面図)である。It is a schematic view (side view) for demonstrating the measurement method of a spindle direction. 主軸方位の測定方法を説明するための模式図(平面図)である。It is a schematic diagram (plan view) for demonstrating the measurement method of a spindle direction.
 本開示の蓄電デバイス用外装材は、少なくとも、基材層、バリア層、及び熱融着性樹脂層をこの順に備える積層体から構成されており、前記基材層は、以下の測定方法によって測定される、主軸方位が、90°±30°の範囲内であることを特徴とする。本開示の蓄電デバイス用外装材は、このような構成を備えることにより、優れた成形性を備えている。
[測定方法]
 カメラ及び光源を備える主軸方位の測定装置を用い、前記測定装置の前記カメラと前記基材層と前記光源とが一直線上に位置するようにして、前記基材層を前記カメラと前記光源との間に配置し、前記基材層のTDの方向を0°方向、前記基材層のMDの方向を90°方向となるように基材層を配置した場合に、前記基材層の厚み方向に前記光源の光を照射して、前記基材層の主軸方位を測定する。
The exterior material for a power storage device of the present disclosure is composed of a laminate having at least a base material layer, a barrier layer, and a heat-sealing resin layer in this order, and the base material layer is measured by the following measuring method. The principal axis orientation is within the range of 90 ° ± 30 °. The exterior material for a power storage device of the present disclosure has excellent moldability by having such a configuration.
[Measuring method]
A spindle orientation measuring device including a camera and a light source is used so that the camera, the base material layer, and the light source of the measuring device are located in a straight line, and the base material layer is formed between the camera and the light source. When the base material layer is arranged between them so that the TD direction of the base material layer is 0 ° and the MD direction of the base material layer is 90 °, the thickness direction of the base material layer Is irradiated with the light of the light source, and the principal axis direction of the base material layer is measured.
 以下、本開示の蓄電デバイス用外装材について詳述する。なお、本明細書において、「~」で示される数値範囲は「以上」、「以下」を意味する。例えば、2~15mmとの表記は、2mm以上15mm以下を意味する。 Hereinafter, the exterior material for the power storage device of the present disclosure will be described in detail. In this specification, the numerical range indicated by "-" means "greater than or equal to" and "less than or equal to". For example, the notation of 2 to 15 mm means 2 mm or more and 15 mm or less.
 なお、蓄電デバイス用外装材において、後述のバリア層3については、通常、その製造過程におけるMD(Machine Direction)とTD(Transverse Direction)を判別することができる。例えば、バリア層3がアルミニウム合金箔やステンレス鋼箔等の金属箔により構成されている場合、金属箔の圧延方向(RD:Rolling Direction)には、金属箔の表面に、いわゆる圧延痕と呼ばれる線状の筋が形成されている。圧延痕は、圧延方向に沿って伸びているため、金属箔の表面を観察することによって、金属箔の圧延方向を把握することができる。また、積層体の製造過程においては、通常、積層体のMDと、金属箔のRDとが一致するため、積層体の金属箔の表面を観察し、金属箔の圧延方向(RD)を特定することにより、積層体のMDを特定することができる。また、積層体のTDは、積層体のMDとは垂直方向であるため、積層体のTDについても特定することができる。 Regarding the barrier layer 3 described later in the exterior material for a power storage device, it is usually possible to discriminate between MD (Machine Direction) and TD (Transverse Direction) in the manufacturing process thereof. For example, when the barrier layer 3 is made of a metal foil such as an aluminum alloy foil or a stainless steel foil, a line called a so-called rolling mark is formed on the surface of the metal foil in the rolling direction (RD: Rolling Direction) of the metal foil. Shaped streaks are formed. Since the rolling marks extend along the rolling direction, the rolling direction of the metal foil can be grasped by observing the surface of the metal foil. Further, in the manufacturing process of the laminated body, since the MD of the laminated body and the RD of the metal foil usually match, the surface of the metal foil of the laminated body is observed and the rolling direction (RD) of the metal foil is specified. Thereby, the MD of the laminated body can be specified. Further, since the TD of the laminated body is in the direction perpendicular to the MD of the laminated body, the TD of the laminated body can also be specified.
 また、アルミニウム合金箔やステンレス鋼箔等の金属箔の圧延痕により蓄電デバイス用外装材のMDが特定できない場合は、次の方法により特定することができる。蓄電デバイス用外装材のMDの確認方法として、蓄電デバイス用外装材の熱融着性樹脂層の断面を電子顕微鏡で観察し海島構造を確認する方法がある。当該方法においては、熱融着性樹脂層の厚み方向に対して垂直な方向の島の形状の径の平均が最大であった断面と平行な方向を、MDと判断することができる。具体的には、熱融着性樹脂層の長さ方向の断面と、当該長さ方向の断面と平行な方向から10度ずつ角度を変更し、長さ方向の断面に対して垂直な方向までの各断面(合計10の断面)について、それぞれ、電子顕微鏡写真で観察して海島構造を確認する。次に、各断面において、それぞれ、個々の島の形状を観察する。個々の島の形状について、熱融着性樹脂層の厚み方向に対して垂直方向の最左端と、当該垂直方向の最右端とを結ぶ直線距離を径yとする。各断面において、島の形状の当該径yが大きい順に上位20個の径yの平均を算出する。島の形状の当該径yの平均が最も大きかった断面と平行な方向をMDと判断する。 Further, when the MD of the exterior material for the power storage device cannot be specified due to the rolling marks of the metal foil such as the aluminum alloy foil or the stainless steel foil, it can be specified by the following method. As a method of confirming the MD of the exterior material for the electricity storage device, there is a method of observing the cross section of the heat-sealing resin layer of the exterior material for the electricity storage device with an electron microscope to confirm the sea-island structure. In this method, the direction parallel to the cross section in which the average diameter of the island shape in the direction perpendicular to the thickness direction of the heat-sealing resin layer is the maximum can be determined as MD. Specifically, the angle is changed by 10 degrees from the cross section of the heat-sealing resin layer in the length direction and the direction parallel to the cross section in the length direction to the direction perpendicular to the cross section in the length direction. Each cross section (10 cross sections in total) is observed with an electron micrograph to confirm the sea-island structure. Next, in each cross section, the shape of each island is observed. For the shape of each island, the diameter y is the linear distance connecting the leftmost end in the direction perpendicular to the thickness direction of the heat-sealing resin layer and the rightmost end in the vertical direction. In each cross section, the average of the top 20 diameters y is calculated in descending order of the diameter y of the island shape. The direction parallel to the cross section in which the average of the diameter y of the island shape is the largest is determined as MD.
1.蓄電デバイス用外装材の積層構造
 本開示の蓄電デバイス用外装材10は、例えば図1に示すように、基材層1、バリア層3、及び熱融着性樹脂層4をこの順に備える積層体から構成されている。蓄電デバイス用外装材10において、基材層1が最外層側になり、熱融着性樹脂層4は最内層になる。蓄電デバイス用外装材10と蓄電デバイス素子を用いて蓄電デバイスを組み立てる際に、蓄電デバイス用外装材10の熱融着性樹脂層4同士を対向させた状態で、周縁部を熱融着させることによって形成された空間に、蓄電デバイス素子が収容される。本開示の蓄電デバイス用外装材10を構成する積層体において、バリア層3を基準とし、バリア層3よりも熱融着性樹脂層4側が内側であり、バリア層3よりも基材層1側が外側である。
1. 1. Laminated structure of exterior material for power storage device The exterior material 10 for power storage device of the present disclosure is a laminated body including a base material layer 1, a barrier layer 3, and a heat-sealing resin layer 4 in this order, for example, as shown in FIG. It is composed of. In the exterior material 10 for a power storage device, the base material layer 1 is on the outermost layer side, and the heat-sealing resin layer 4 is on the innermost layer. When assembling a power storage device using the power storage device exterior material 10 and the power storage device element, the peripheral portion is heat-sealed with the heat-sealing resin layers 4 of the power storage device exterior material 10 facing each other. The power storage device element is housed in the space formed by. In the laminate constituting the exterior material 10 for the power storage device of the present disclosure, the heat-sealing resin layer 4 side is inside the barrier layer 3 and the base material layer 1 side is more than the barrier layer 3 with the barrier layer 3 as a reference. It is the outside.
 蓄電デバイス用外装材10は、例えば図2から図4に示すように、基材層1とバリア層3との間に、これらの層間の接着性を高めることなどを目的として、必要に応じて接着剤層2を有していてもよい。また、例えば図3及び図4に示すように、バリア層3と熱融着性樹脂層4との間に、これらの層間の接着性を高めることなどを目的として、必要に応じて接着層5を有していてもよい。また、図4に示すように、基材層1の外側(熱融着性樹脂層4側とは反対側)には、必要に応じて表面被覆層6などが設けられていてもよい。 As shown in FIGS. 2 to 4, for example, the exterior material 10 for a power storage device is used, if necessary, for the purpose of enhancing the adhesiveness between the base material layer 1 and the barrier layer 3 and the like. It may have an adhesive layer 2. Further, for example, as shown in FIGS. 3 and 4, the adhesive layer 5 is required between the barrier layer 3 and the heat-sealing resin layer 4 for the purpose of enhancing the adhesiveness between the layers. May have. Further, as shown in FIG. 4, a surface coating layer 6 or the like may be provided on the outside of the base material layer 1 (the side opposite to the heat-sealing resin layer 4 side), if necessary.
 蓄電デバイス用外装材10を構成する積層体の厚みとしては、特に制限されないが、コスト削減、エネルギー密度向上等の観点からは、例えば約190μm以下、好ましくは約180μm以下、約155μm以下、約120μm以下、約100μm以下が挙げられる。また、蓄電デバイス用外装材10を構成する積層体の厚みとしては、蓄電デバイス素子を保護するという蓄電デバイス用外装材の機能を維持する観点からは、好ましくは約35μm以上、約45μm以上、約60μm以上が挙げられる。また、蓄電デバイス用外装材10を構成する積層体の好ましい範囲については、例えば、35~190μm程度、35~180μm程度、35~155μm程度、35~120μm程度、35~100μm、45~190μm程度、45~180μm程度、45~155μm程度、45~120μm程度、45~100μm程度、60~190μm程度、60~180μm程度、60~155μm程度、60~120μm程度、60~100μm程度が挙げられ、特に60~100μm程度が好ましい。 The thickness of the laminate constituting the exterior material 10 for the power storage device is not particularly limited, but from the viewpoint of cost reduction, energy density improvement, etc., for example, about 190 μm or less, preferably about 180 μm or less, about 155 μm or less, about 120 μm. Hereinafter, it is about 100 μm or less. Further, the thickness of the laminate constituting the exterior material 10 for the power storage device is preferably about 35 μm or more, about 45 μm or more, and about from the viewpoint of maintaining the function of the exterior material for the power storage device of protecting the power storage device element. 60 μm or more can be mentioned. The preferred range of the laminated body constituting the exterior material 10 for the power storage device is, for example, about 35 to 190 μm, about 35 to 180 μm, about 35 to 155 μm, about 35 to 120 μm, about 35 to 100 μm, about 45 to 190 μm. About 45 to 180 μm, about 45 to 155 μm, about 45 to 120 μm, about 45 to 100 μm, about 60 to 190 μm, about 60 to 180 μm, about 60 to 155 μm, about 60 to 120 μm, about 60 to 100 μm, in particular 60 It is preferably about 100 μm.
 蓄電デバイス用外装材10において、蓄電デバイス用外装材10を構成する積層体の厚み(総厚み)に対する、基材層1、必要に応じて設けられる接着剤層2、バリア層3、必要に応じて設けられる接着層5、熱融着性樹脂層4、及び必要に応じて設けられる表面被覆層6の合計厚みの割合は、好ましくは90%以上であり、より好ましくは95%以上であり、さらに好ましくは98%以上である。具体例としては、本開示の蓄電デバイス用外装材10が、基材層1、接着剤層2、バリア層3、接着層5、及び熱融着性樹脂層4を含む場合、蓄電デバイス用外装材10を構成する積層体の厚み(総厚み)に対する、これら各層の合計厚みの割合は、好ましくは90%以上であり、より好ましくは95%以上であり、さらに好ましくは98%以上である。また、本開示の蓄電デバイス用外装材10が、基材層1、接着剤層2、バリア層3、及び熱融着性樹脂層4を含む積層体である場合にも、蓄電デバイス用外装材10を構成する積層体の厚み(総厚み)に対する、これら各層の合計厚みの割合は、例えば80%以上、好ましくは90%以上、より好ましくは95%以上、さらに好ましくは98%以上とすることができる。 In the power storage device exterior material 10, the base material layer 1, the adhesive layer 2 provided as necessary, the barrier layer 3, and if necessary with respect to the thickness (total thickness) of the laminate constituting the power storage device exterior material 10. The ratio of the total thickness of the adhesive layer 5, the heat-sealing resin layer 4, and the surface coating layer 6 provided as needed is preferably 90% or more, more preferably 95% or more. More preferably, it is 98% or more. As a specific example, when the exterior material 10 for a power storage device of the present disclosure includes a base material layer 1, an adhesive layer 2, a barrier layer 3, an adhesive layer 5, and a heat-sealing resin layer 4, the exterior for a power storage device The ratio of the total thickness of each of these layers to the thickness (total thickness) of the laminate constituting the material 10 is preferably 90% or more, more preferably 95% or more, and further preferably 98% or more. Further, even when the exterior material 10 for a power storage device of the present disclosure is a laminated body including a base material layer 1, an adhesive layer 2, a barrier layer 3, and a heat-sealing resin layer 4, the exterior material for a power storage device is also used. The ratio of the total thickness of each of these layers to the thickness (total thickness) of the laminate constituting 10 is, for example, 80% or more, preferably 90% or more, more preferably 95% or more, and further preferably 98% or more. Can be done.
2.蓄電デバイス用外装材を形成する各層
[基材層1]
 本開示において、基材層1は、蓄電デバイス用外装材の基材としての機能を発揮させることなどを目的として設けられる層である。基材層1は、蓄電デバイス用外装材の外層側に位置する。基材層1は、最外層(外表面を構成する層)であってもよいし、例えば後述する表面被覆層6を設ける場合には、表面被覆層6が最外層(外表面を構成する層)であってもよい。
2. Each layer forming the exterior material for the power storage device [base material layer 1]
In the present disclosure, the base material layer 1 is a layer provided for the purpose of exerting a function as a base material of an exterior material for a power storage device. The base material layer 1 is located on the outer layer side of the exterior material for the power storage device. The base material layer 1 may be the outermost layer (layer constituting the outer surface). For example, when the surface coating layer 6 described later is provided, the surface coating layer 6 is the outermost layer (layer constituting the outer surface). ) May be.
 本開示において、基材層1は、所定の主軸方位が90°±30°の範囲内であることを特徴としている。すなわち、図6から図8の模式図に示すように、主軸方位の測定装置のカメラCと、蓄電デバイス用外装材の基材層1と、主軸方位の測定装置の光源LSとが一直線上に位置するようにして、基材層1をカメラCと光源LSとの間に配置し、基材層1のTDの方向を0°方向、基材層1のMDの方向を90°方向となるように基材層1を配置した場合に、基材層1の厚み方向(z方向)に光源LSの光Lを照射して測定される、基材層1の主軸方位が、90°±30°の範囲内(すなわち、60~120°)である。本開示の発明の効果をより好適に奏する観点から、基材層1の当該主軸方位は、好ましくは90°±25°の範囲内(すなわち、65~115°)、より好ましくは90°±20°の範囲内(すなわち、70~110°)、さらに好ましくは90°±15°の範囲内(すなわち、75~105°)、さらに好ましくは90°±10°の範囲内(すなわち、80~100°)、さらに好ましくは90°±5°の範囲内(すなわち、85~95°)である。基材層1の主軸方位の測定方法は、以下の通りである。 In the present disclosure, the base material layer 1 is characterized in that a predetermined principal axis direction is within the range of 90 ° ± 30 °. That is, as shown in the schematic views of FIGS. 6 to 8, the camera C of the spindle orientation measuring device, the base material layer 1 of the exterior material for the power storage device, and the light source LS of the spindle orientation measuring device are aligned. The base material layer 1 is arranged between the camera C and the light source LS so as to be positioned so that the TD direction of the base material layer 1 is 0 ° and the MD direction of the base material layer 1 is 90 °. When the base material layer 1 is arranged as described above, the principal axis orientation of the base material layer 1 measured by irradiating the light L of the light source LS in the thickness direction (z direction) of the base material layer 1 is 90 ° ± 30. It is within the range of ° (that is, 60 to 120 °). From the viewpoint of more preferably exerting the effects of the invention of the present disclosure, the principal axis orientation of the base material layer 1 is preferably within the range of 90 ° ± 25 ° (that is, 65 to 115 °), more preferably 90 ° ± 20. Within ° (ie, 70-110 °), more preferably within 90 ° ± 15 ° (ie, 75-105 °), even more preferably within 90 ° ± 10 ° (ie, 80-100). °), more preferably in the range of 90 ° ± 5 ° (ie, 85-95 °). The method for measuring the principal axis direction of the base material layer 1 is as follows.
<主軸方位の測定>
 基材層(基材層を構成する樹脂フィルム)について、それぞれ、図6から図8の模式図に示すように、カメラC及び光源LSを備える主軸方位の測定装置を用い、測定装置のカメラCと基材層1と光源LSとが一直線上に位置するようにして、基材層1をカメラCと光源LSとの間に配置し、基材層1のTDの方向を0°方向、基材層1のMDの方向を90°方向として、基材層1の厚み方向Dに光源LSの光Lを照射して測定を行った。図6及び図7の模式図に示すように、測定においては、基材層1の裏側に配置された光源から、基材層1の厚み方向(z方向)に光Lを照射する。基材層1の上(カメラC側)には透明なガラス板Gを配置して、基材層1の表面に皺が形成されてないようにして測定を行う。また、図6から図8では図示を省略しているが、基材層1に光が照射される位置に開口が設けられた板の上に、基材層1及びガラス板Gを順に配置し、板の開口を通して光Lが基材層1及びガラス板Gを透過するようにして測定を実施する。具体的な測定条件は、以下の通りである。なお、蓄電デバイスや蓄電デバイス用外装材から基材層(基材層を構成する樹脂フィルム)を取得して、基材層1の主軸方位を測定する場合には、蓄電デバイスの熱融着部や側面ではなく、天面又は底面から蓄電デバイス用外装材を取得してサンプルを作製する。なお、本開示において、基材層の主軸方位は、進相軸である。
(測定条件)
測定装置:例えば株式会社フォトロン製の偏光高速度イメージング装置(CRYSTA PI-5)
解析ソフト:例えばKAMAKIRIオフライン基本ソフト Ver:1.5.0.1
測定サンプル:基材層を例えばA4サイズ(TD210mm×MD300mm)に裁断して調製する。
測定波長(カメラ側):520~570nm(フィルムを透過して受けるカメラが、波長520~570nmの光を検出する)
光源:白色LEDライト(光源(ライト)と基材層とカメラの位置関係が、光源の延長線と基材層の厚み方向とが一致するように測定サンプルを配置し、光源の延長線上にカメラが配置される。)
<Measurement of spindle direction>
For each of the base material layers (resin films constituting the base material layer), as shown in the schematic views of FIGS. 6 to 8, a spindle orientation measuring device including a camera C and a light source LS is used, and the camera C of the measuring device is used. The base material layer 1 is arranged between the camera C and the light source LS so that the base material layer 1 and the light source LS are located in a straight line, and the TD direction of the base material layer 1 is set to 0 °. The measurement was performed by irradiating the light L of the light source LS in the thickness direction D of the base material layer 1 with the MD direction of the material layer 1 as the 90 ° direction. As shown in the schematic views of FIGS. 6 and 7, in the measurement, the light L is irradiated from the light source arranged on the back side of the base material layer 1 in the thickness direction (z direction) of the base material layer 1. A transparent glass plate G is arranged on the base material layer 1 (on the camera C side), and the measurement is performed so that wrinkles are not formed on the surface of the base material layer 1. Further, although not shown in FIGS. 6 to 8, the base material layer 1 and the glass plate G are arranged in order on a plate provided with an opening at a position where the base material layer 1 is irradiated with light. The measurement is carried out so that the light L passes through the base material layer 1 and the glass plate G through the opening of the plate. The specific measurement conditions are as follows. When the base material layer (resin film constituting the base material layer) is acquired from the power storage device or the exterior material for the power storage device and the principal axis direction of the base material layer 1 is measured, the heat-sealed portion of the power storage device is used. The exterior material for the power storage device is obtained from the top surface or the bottom surface, not from the side surface or the side surface, and a sample is prepared. In the present disclosure, the main axis orientation of the base material layer is the phase advance axis.
(Measurement condition)
Measuring device: For example, polarized high-speed imaging device (CRYSTA PI-5) manufactured by Photron Co., Ltd.
Analysis software: For example, KAMAKIRI offline basic software Ver: 1.5.0.1
Measurement sample: The base material layer is prepared by cutting it into, for example, A4 size (TD210 mm × MD300 mm).
Measurement wavelength (camera side): 520 to 570 nm (The camera that receives light through the film detects light with a wavelength of 520 to 570 nm)
Light source: White LED light (measurement samples are placed so that the positional relationship between the light source (light), the base material layer, and the camera coincides with the extension line of the light source and the thickness direction of the base material layer, and the camera is placed on the extension line of the light source. Is placed.)
 基材層1の所定の主軸方位が90°±30°の範囲内であることによって、蓄電デバイス用外装材10の成形性が高められる機序については、次のように考えることができる。すなわち、蓄電デバイス用外装材の成形は、金型を用いた冷間成形によって、MDの方向に平行な辺を持つ長方形の成形部(凹部)を賦形することが一般的である。ここで、成形部の稜線部の一周の内、引き延ばされる面積が多いのは、長方形の辺部分であり、コーナー部分(45°付近)は、引き延ばされる面積が少ない。基材層の主軸方位が90°±30°であるということは、基材層は、MDの方向に沿って分子配向が比較的揃っていると考えられる。このため、蓄電デバイス用外装材の成形時においては、引き延ばされる面積が多い長方形の辺部分の稜線部分の引き延ばしに対して、抵抗が強くなり、ピンホールが形成され難くなったと考えられる。一方、基材層の主軸方位が90°±30°を超えると、基材層は、MDの方向に対して斜め45°方向に分子配向が比較的揃っていると考えられる。このため、蓄電デバイス用外装材の成形時においては、引き延ばされる面積が少ないコーナー部分の稜線部分の引き延ばしに対してのみ抵抗が強くなるため、長方形の辺部分の稜線部分の引き延ばしに対しては抵抗が弱い状態になり、ピンホールが形成され易くなったと推察される。 The mechanism by which the moldability of the exterior material 10 for the power storage device is improved by keeping the predetermined principal axis orientation of the base material layer 1 within the range of 90 ° ± 30 ° can be considered as follows. That is, in the molding of the exterior material for a power storage device, it is general that a rectangular molded portion (recess) having a side parallel to the MD direction is formed by cold molding using a mold. Here, in the circumference of the ridgeline portion of the molded portion, the area to be stretched is large in the side portion of the rectangle, and the corner portion (near 45 °) has a small stretched area. The fact that the principal axis orientation of the base material layer is 90 ° ± 30 ° means that the base material layers are considered to have relatively uniform molecular orientations along the MD direction. Therefore, it is considered that when the exterior material for the power storage device is molded, the resistance to the stretching of the ridgeline portion of the rectangular side portion having a large stretched area becomes strong and it becomes difficult for the pinhole to be formed. On the other hand, when the principal axis orientation of the base material layer exceeds 90 ° ± 30 °, it is considered that the base material layers are relatively aligned in the molecular orientation in the diagonal 45 ° direction with respect to the MD direction. For this reason, when molding the exterior material for the power storage device, the resistance is strong only for the stretching of the ridgeline portion of the corner portion where the stretched area is small, so that the ridgeline portion of the rectangular side portion is stretched. It is presumed that the resistance became weak and pinholes were easily formed.
 また、基材層1の主軸方位の測定において、基材層1の位相差を測定することもできる。本開示の発明の効果をより好適に奏する観点から、基材層1の位相差は、好ましくは約210nm以下、より好ましくは約200nm以下、さらに好ましくは約150nm以下、さらに好ましくは約100nm以下、さらに好ましくは約80nm以下である。また、基材層1の位相差は、例えば約30nm以上、約50nm以上などである。基材層1の位相差の好ましい範囲としては、30~210nm程度、30~200nm程度、30~150nm程度、30~100nm程度、30~80nm程度、50~210nm程度、50~200nm程度、50~150nm程度、50~100nm程度、50~80nm程度である。 It is also possible to measure the phase difference of the base material layer 1 in the measurement of the principal axis direction of the base material layer 1. From the viewpoint of more preferably exerting the effects of the invention of the present disclosure, the phase difference of the base material layer 1 is preferably about 210 nm or less, more preferably about 200 nm or less, still more preferably about 150 nm or less, still more preferably about 100 nm or less. More preferably, it is about 80 nm or less. The phase difference of the base material layer 1 is, for example, about 30 nm or more, about 50 nm or more, and the like. The preferred ranges of the phase difference of the base material layer 1 are about 30 to 210 nm, about 30 to 200 nm, about 30 to 150 nm, about 30 to 100 nm, about 30 to 80 nm, about 50 to 210 nm, about 50 to 200 nm, and about 50 to. It is about 150 nm, about 50 to 100 nm, and about 50 to 80 nm.
 基材層1の主軸方位や位相差を前記の値に設定するためには、例えば、基材層1の材料、厚み、各種物性を調整することや、基材層1を樹脂フィルムにより形成する場合であれば、樹脂フィルムの延伸方法(例えば、インフレーション法、テンター法など)、延伸倍率、延伸速度、冷却温度、熱固定温度などの製造条件を調整する。これらの調整は、公知技術に基づいて行えばよい。例えば、基材層1の主軸方位は、樹脂の結晶性の高い方向に相当することから、所定の延伸方法で製造された樹脂フィルムを所定サイズに切りとって基材層として利用する際に、樹脂フィルムから切りとる位置を選択して、結晶の配向が揃ったものを基材層1として採用することも有効といえる。 In order to set the principal axis orientation and the phase difference of the base material layer 1 to the above values, for example, the material, thickness, and various physical properties of the base material layer 1 are adjusted, and the base material layer 1 is formed of a resin film. In some cases, the production conditions such as the stretching method of the resin film (for example, the inflation method, the tenter method, etc.), the stretching ratio, the stretching rate, the cooling temperature, and the heat fixing temperature are adjusted. These adjustments may be made based on known techniques. For example, since the principal axis orientation of the base material layer 1 corresponds to the direction in which the crystallinity of the resin is high, when a resin film produced by a predetermined stretching method is cut into a predetermined size and used as the base material layer, the resin is used. It can also be said that it is effective to select a position to be cut from the film and adopt a substrate layer 1 having the same crystal orientation.
 基材層1を形成する素材については、基材としての機能、すなわち少なくとも絶縁性を備え、かつ、前記の主軸方位を満たすものであることを限度として特に制限されない。基材層1は、例えば樹脂を用いて形成することができ、樹脂には後述の添加剤が含まれていてもよい。 The material forming the base material layer 1 is not particularly limited as long as it has a function as a base material, that is, at least has insulating properties and satisfies the above-mentioned principal axis orientation. The base material layer 1 can be formed by using, for example, a resin, and the resin may contain an additive described later.
 基材層1は、例えば、樹脂により形成された樹脂フィルムであってもよいし、樹脂を塗布して形成したものであってもよい。樹脂フィルムは、未延伸フィルムであってもよいし、延伸フィルムであってもよい。延伸フィルムとしては、一軸延伸フィルム、二軸延伸フィルムが挙げられ、二軸延伸フィルムが好ましい。二軸延伸フィルムを形成する延伸方法としては、例えば、逐次二軸延伸法、インフレーション法、同時二軸延伸法等が挙げられる。樹脂を塗布する方法としては、ロールコーティング法、グラビアコーティング法、押出コーティング法などが挙げられる。 The base material layer 1 may be, for example, a resin film formed of a resin, or may be formed by applying a resin. The resin film may be an unstretched film or a stretched film. Examples of the stretched film include a uniaxially stretched film and a biaxially stretched film, and a biaxially stretched film is preferable. Examples of the stretching method for forming the biaxially stretched film include a sequential biaxial stretching method, an inflation method, and a simultaneous biaxial stretching method. Examples of the method for applying the resin include a roll coating method, a gravure coating method, and an extrusion coating method.
 基材層1を形成する樹脂としては、例えば、ポリエステル、ポリアミド、ポリオレフィン、エポキシ樹脂、アクリル樹脂、フッ素樹脂、ポリウレタン、珪素樹脂、フェノール樹脂などの樹脂や、これらの樹脂の変性物が挙げられる。また、基材層1を形成する樹脂は、これらの樹脂の共重合物であってもよいし、共重合物の変性物であってもよい。さらに、これらの樹脂の混合物であってもよい。 Examples of the resin forming the base material layer 1 include resins such as polyester, polyamide, polyolefin, epoxy resin, acrylic resin, fluororesin, polyurethane, silicon resin, and phenol resin, and modified products of these resins. Further, the resin forming the base material layer 1 may be a copolymer of these resins or a modified product of the copolymer. Further, it may be a mixture of these resins.
 基材層1を形成する樹脂としては、これらの中でも、好ましくはポリエステル、ポリアミドが挙げられ、特に好ましくはポリアミドである。 Among these, the resin forming the base material layer 1 preferably includes polyester and polyamide, and particularly preferably polyamide.
 ポリエステルとしては、具体的には、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリエチレンイソフタレート、共重合ポリエステル等が挙げられる。また、共重合ポリエステルとしては、エチレンテレフタレートを繰り返し単位の主体とした共重合ポリエステル等が挙げられる。具体的には、エチレンテレフタレートを繰り返し単位の主体としてエチレンイソフタレートと重合する共重合体ポリエステル(以下、ポリエチレン(テレフタレート/イソフタレート)にならって略す)、ポリエチレン(テレフタレート/アジペート)、ポリエチレン(テレフタレート/ナトリウムスルホイソフタレート)、ポリエチレン(テレフタレート/ナトリウムイソフタレート)、ポリエチレン(テレフタレート/フェニル-ジカルボキシレート)、ポリエチレン(テレフタレート/デカンジカルボキシレート)等が挙げられる。これらのポリエステルは、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。 Specific examples of the polyester include polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, polyethylene isophthalate, and copolymerized polyester. Further, examples of the copolymerized polyester include a copolymerized polyester containing ethylene terephthalate as a repeating unit as a main component. Specifically, copolymer polyester (hereinafter abbreviated after polyethylene (terephthalate / isophthalate)), polyethylene (terephthalate / adipate), polyethylene (terephthalate / terephthalate / (Sodium sulfoisophthalate), polyethylene (terephthalate / sodium isophthalate), polyethylene (terephthalate / phenyl-dicarboxylate), polyethylene (terephthalate / decandicarboxylate) and the like. These polyesters may be used alone or in combination of two or more.
 また、ポリアミドとしては、具体的には、ナイロン6、ナイロン66、ナイロン610、ナイロン12、ナイロン46、ナイロン6とナイロン66との共重合体等の脂肪族ポリアミド;テレフタル酸及び/又はイソフタル酸に由来する構成単位を含むナイロン6I、ナイロン6T、ナイロン6IT、ナイロン6I6T(Iはイソフタル酸、Tはテレフタル酸を表す)等のヘキサメチレンジアミン-イソフタル酸-テレフタル酸共重合ポリアミド、ポリアミドMXD6(ポリメタキシリレンアジパミド)等の芳香族を含むポリアミド;ポリアミドPACM6(ポリビス(4-アミノシクロヘキシル)メタンアジパミド)等の脂環式ポリアミド;さらにラクタム成分や、4,4’-ジフェニルメタン-ジイソシアネート等のイソシアネート成分を共重合させたポリアミド、共重合ポリアミドとポリエステルやポリアルキレンエーテルグリコールとの共重合体であるポリエステルアミド共重合体やポリエーテルエステルアミド共重合体;これらの共重合体等のポリアミドが挙げられる。これらのポリアミドは、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。 Specific examples of the polyamide include an aliphatic polyamide such as nylon 6, nylon 66, nylon 610, nylon 12, nylon 46, and a copolymer of nylon 6 and nylon 66; terephthalic acid and / or isophthalic acid. Hexamethylenediamine-isophthalic acid-terephthalic acid copolymerized polyamide such as nylon 6I, nylon 6T, nylon 6IT, nylon 6I6T (I stands for isophthalic acid, T stands for terephthalic acid), polyamide MXD6 (polymethaki Polyamide containing aromatics such as silylene adipamide); Alicyclic polyamide such as polyamide PACM6 (polybis (4-aminocyclohexyl) methaneadipamide); Further, lactam component and isocyanate component such as 4,4'-diphenylmethane-diisocyanate Examples thereof include a copolymerized polyamide, a polyesteramide copolymer or a polyether esteramide copolymer which is a copolymer of a copolymerized polyamide and polyester or polyalkylene ether glycol; and a polyamide such as these copolymers. These polyamides may be used alone or in combination of two or more.
 基材層1は、ポリエステルフィルム、ポリアミドフィルム、及びポリオレフィンフィルムのうち少なくとも1つを含むことが好ましく、延伸ポリエステルフィルム、及び延伸ポリアミドフィルム、及び延伸ポリオレフィンフィルムのうち少なくとも1つを含むことが好ましく、延伸ポリエチレンテレフタレートフィルム、延伸ポリブチレンテレフタレートフィルム、延伸ナイロンフィルム、延伸ポリプロピレンフィルムのうち少なくとも1つを含むことがさらに好ましく、二軸延伸ポリエチレンテレフタレートフィルム、二軸延伸ポリブチレンテレフタレートフィルム、二軸延伸ナイロンフィルム、二軸延伸ポリプロピレンフィルムのうち少なくとも1つを含むことがさらに好ましい。本開示の発明の効果をより好適に奏する観点から、基材層1は、二軸延伸ナイロンフィルムにより構成されていることが特に好ましい。 The base material layer 1 preferably contains at least one of a polyester film, a polyamide film, and a polyolefin film, and preferably contains at least one of a stretched polyester film, a stretched polyamide film, and a stretched polyolefin film. It is more preferable to contain at least one of a stretched polyethylene terephthalate film, a stretched polybutylene terephthalate film, a stretched nylon film, and a stretched polypropylene film, and a biaxially stretched polyethylene terephthalate film, a biaxially stretched polybutylene terephthalate film, and a biaxially stretched nylon film. , It is more preferable to contain at least one of the biaxially stretched polypropylene films. From the viewpoint of more preferably exerting the effects of the invention of the present disclosure, it is particularly preferable that the base material layer 1 is made of a biaxially stretched nylon film.
 基材層1は、単層であってもよいし、2層以上により構成されていてもよい。基材層1が2層以上により構成されている場合、基材層1は、樹脂フィルムを接着剤などで積層させた積層体であってもよいし、樹脂を共押出しして2層以上とした樹脂フィルムの積層体であってもよい。また、樹脂を共押出しして2層以上とした樹脂フィルムの積層体を、未延伸のまま基材層1としてもよいし、一軸延伸または二軸延伸して基材層1としてもよい。 The base material layer 1 may be a single layer or may be composed of two or more layers. When the base material layer 1 is composed of two or more layers, the base material layer 1 may be a laminated body in which a resin film is laminated with an adhesive or the like, or the resin is co-extruded to form two or more layers. It may be a laminated body of the resin film. Further, the laminated body of the resin film obtained by co-extruding the resin into two or more layers may be used as the base material layer 1 without being stretched, or may be uniaxially stretched or biaxially stretched as the base material layer 1.
 基材層1において、2層以上の樹脂フィルムの積層体の具体例としては、ポリエステルフィルムとナイロンフィルムとの積層体、2層以上のナイロンフィルムの積層体、2層以上のポリエステルフィルムの積層体などが挙げられ、好ましくは、延伸ナイロンフィルムと延伸ポリエステルフィルムとの積層体、2層以上の延伸ナイロンフィルムの積層体、2層以上の延伸ポリエステルフィルムの積層体が好ましい。例えば、基材層1が2層の樹脂フィルムの積層体である場合、ポリエステル樹脂フィルムとポリエステル樹脂フィルムの積層体、ポリアミド樹脂フィルムとポリアミド樹脂フィルムの積層体、またはポリエステル樹脂フィルムとポリアミド樹脂フィルムの積層体が好ましく、ポリエチレンテレフタレートフィルムとポリエチレンテレフタレートフィルムの積層体、ナイロンフィルムとナイロンフィルムの積層体、またはポリエチレンテレフタレートフィルムとナイロンフィルムの積層体がより好ましい。また、ポリエステル樹脂は、例えば電解液が表面に付着した際に変色し難いことなどから、基材層1が2層以上の樹脂フィルムの積層体である場合、ポリエステル樹脂フィルムが基材層1の最外層に位置することが好ましい。 Specific examples of the laminate of two or more layers of resin film in the base material layer 1 include a laminate of a polyester film and a nylon film, a laminate of two or more layers of nylon film, and a laminate of two or more layers of polyester film. And the like, preferably, a laminate of a stretched nylon film and a stretched polyester film, a laminate of two or more layers of stretched nylon film, and a laminate of two or more layers of stretched polyester film are preferable. For example, when the base material layer 1 is a laminate of two layers of resin film, a laminate of polyester resin film and polyester resin film, a laminate of polyamide resin film and polyamide resin film, or a laminate of polyester resin film and polyamide resin film. A laminate is preferable, and a laminate of a polyethylene terephthalate film and a polyethylene terephthalate film, a laminate of a nylon film and a nylon film, or a laminate of a polyethylene terephthalate film and a nylon film is more preferable. Further, since the polyester resin is difficult to discolor when the electrolytic solution adheres to the surface, for example, when the base material layer 1 is a laminate of two or more resin films, the polyester resin film is the base material layer 1. It is preferably located in the outermost layer.
 基材層1が、2層以上の樹脂フィルムの積層体である場合、2層以上の樹脂フィルムは、接着剤を介して積層させてもよい。基材層1が、2層以上の樹脂フィルムの積層体である場合、少なくとも1層が、前記の主軸方位を有していればよい。好ましい接着剤については、後述の接着剤層2で例示する接着剤と同様のものが挙げられる。なお、2層以上の樹脂フィルムを積層させる方法としては、特に制限されず、公知方法が採用でき、例えばドライラミネート法、サンドイッチラミネート法、押出ラミネート法、サーマルラミネート法などが挙げられ、好ましくはドライラミネート法が挙げられる。ドライラミネート法により積層させる場合には、接着剤としてポリウレタン接着剤を用いることが好ましい。このとき、接着剤の厚みとしては、例えば2~5μm程度が挙げられる。また、樹脂フィルムにアンカーコート層を形成し積層させても良い。アンカーコート層は、後述の接着剤層2で例示する接着剤と同様のものが挙げられる。このとき、アンカーコート層の厚みとしては、例えば0.01から1.0μm程度が挙げられる。 When the base material layer 1 is a laminated body of two or more layers of resin films, the two or more layers of resin films may be laminated via an adhesive. When the base material layer 1 is a laminate of two or more resin films, at least one layer may have the above-mentioned principal axis orientation. Preferred adhesives include those similar to the adhesives exemplified in the adhesive layer 2 described later. The method of laminating two or more layers of resin films is not particularly limited, and known methods can be adopted. Examples thereof include a dry laminating method, a sandwich laminating method, an extrusion laminating method, and a thermal laminating method, and a dry laminating method is preferable. The laminating method can be mentioned. When laminating by the dry laminating method, it is preferable to use a polyurethane adhesive as the adhesive. At this time, the thickness of the adhesive is, for example, about 2 to 5 μm. Further, an anchor coat layer may be formed on the resin film and laminated. Examples of the anchor coat layer include the same adhesives as those exemplified in the adhesive layer 2 described later. At this time, the thickness of the anchor coat layer is, for example, about 0.01 to 1.0 μm.
 また、基材層1の表面及び内部の少なくとも一方には、滑剤、難燃剤、アンチブロッキング剤、酸化防止剤、光安定剤、粘着付与剤、耐電防止剤等の添加剤が存在していてもよい。添加剤は、1種類のみを用いてもよいし、2種類以上を混合して用いてもよい。 Further, even if additives such as a lubricant, a flame retardant, an antiblocking agent, an antioxidant, a light stabilizer, a tackifier, and an antistatic agent are present on at least one of the surface and the inside of the base material layer 1. good. Only one type of additive may be used, or two or more types may be mixed and used.
 本開示において、蓄電デバイス用外装材の成形性を高める観点からは、基材層1の表面には、滑剤が存在していることが好ましい。滑剤としては、特に制限されないが、好ましくはアミド系滑剤が挙げられる。アミド系滑剤の具体例としては、例えば、飽和脂肪酸アミド、不飽和脂肪酸アミド、置換アミド、メチロールアミド、飽和脂肪酸ビスアミド、不飽和脂肪酸ビスアミド、脂肪酸エステルアミド、芳香族ビスアミドなどが挙げられる。飽和脂肪酸アミドの具体例としては、ラウリン酸アミド、パルミチン酸アミド、ステアリン酸アミド、ベヘン酸アミド、ヒドロキシステアリン酸アミドなどが挙げられる。不飽和脂肪酸アミドの具体例としては、オレイン酸アミド、エルカ酸アミドなどが挙げられる。置換アミドの具体例としては、N-オレイルパルミチン酸アミド、N-ステアリルステアリン酸アミド、N-ステアリルオレイン酸アミド、N-オレイルステアリン酸アミド、N-ステアリルエルカ酸アミドなどが挙げられる。また、メチロールアミドの具体例としては、メチロールステアリン酸アミドなどが挙げられる。飽和脂肪酸ビスアミドの具体例としては、メチレンビスステアリン酸アミド、エチレンビスカプリン酸アミド、エチレンビスラウリン酸アミド、エチレンビスステアリン酸アミド、エチレンビスヒドロキシステアリン酸アミド、エチレンビスベヘン酸アミド、ヘキサメチレンビスステアリン酸アミド、ヘキサメチレンビスベヘン酸アミド、ヘキサメチレンヒドロキシステアリン酸アミド、N,N’-ジステアリルアジピン酸アミド、N,N’-ジステアリルセバシン酸アミドなどが挙げられる。不飽和脂肪酸ビスアミドの具体例としては、エチレンビスオレイン酸アミド、エチレンビスエルカ酸アミド、ヘキサメチレンビスオレイン酸アミド、N,N’-ジオレイルアジピン酸アミド、N,N’-ジオレイルセバシン酸アミドなどが挙げられる。脂肪酸エステルアミドの具体例としては、ステアロアミドエチルステアレートなどが挙げられる。また、芳香族ビスアミドの具体例としては、m-キシリレンビスステアリン酸アミド、m-キシリレンビスヒドロキシステアリン酸アミド、N,N’-ジステアリルイソフタル酸アミドなどが挙げられる。滑剤は、1種類単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。 In the present disclosure, from the viewpoint of enhancing the moldability of the exterior material for the power storage device, it is preferable that the lubricant is present on the surface of the base material layer 1. The lubricant is not particularly limited, but an amide-based lubricant is preferable. Specific examples of the amide-based lubricant include saturated fatty acid amides, unsaturated fatty acid amides, substituted amides, methylol amides, saturated fatty acid bisamides, unsaturated fatty acid bisamides, fatty acid ester amides, and aromatic bisamides. Specific examples of the saturated fatty acid amide include lauric acid amide, palmitic acid amide, stearic acid amide, bechenic acid amide, hydroxystearic acid amide and the like. Specific examples of the unsaturated fatty acid amide include oleic acid amide and erucic acid amide. Specific examples of the substituted amide include N-oleyl palmitate amide, N-stearyl stearyl amide, N-stearyl oleate amide, N-oleyl stealic acid amide, N-stearyl erucate amide and the like. Further, specific examples of methylolamide include methylolstearic acid amide. Specific examples of saturated fatty acid bisamides include methylene bisstearic acid amide, ethylene biscapric acid amide, ethylene bislauric acid amide, ethylene bisstearic acid amide, ethylene bishydroxystearic acid amide, ethylene bisbechenic acid amide, and hexamethylene bisstearate. Examples thereof include acid amide, hexamethylene bisbechenic acid amide, hexamethylene hydroxystearic acid amide, N, N'-distearyl adipate amide, and N, N'-distealyl sebasic acid amide. Specific examples of unsaturated fatty acid bisamides include ethylene bisoleic acid amide, ethylene biserucate amide, hexamethylene bisoleic acid amide, N, N'-diorail adipate amide, and N, N'-diorail sebacic acid amide. And so on. Specific examples of the fatty acid ester amide include stearoamide ethyl stearate and the like. Specific examples of the aromatic bisamide include m-xylylene bisstearic acid amide, m-xylylene bishydroxystearic acid amide, and N, N'-distearyl isophthalic acid amide. One type of lubricant may be used alone, or two or more types may be used in combination.
 基材層1の表面に滑剤が存在する場合、その存在量としては、特に制限されないが、好ましくは約3mg/m2以上、より好ましくは4~15mg/m2程度、さらに好ましくは5~14mg/m2程度が挙げられる。 When the lubricant is present on the surface of the base material layer 1, the abundance thereof is not particularly limited, but is preferably about 3 mg / m 2 or more, more preferably about 4 to 15 mg / m 2 , and further preferably 5 to 14 mg. / M 2 is mentioned.
 基材層1の表面に存在する滑剤は、基材層1を構成する樹脂に含まれる滑剤を滲出させたものであってもよいし、基材層1の表面に滑剤を塗布したものであってもよい。 The lubricant existing on the surface of the base material layer 1 may be one in which the lubricant contained in the resin constituting the base material layer 1 is exuded, or one in which the lubricant is applied to the surface of the base material layer 1. You may.
 基材層1の厚みについては、基材としての機能を発揮すれば特に制限されないが、本開示の発明の効果をより好適に奏する観点から、好ましくは約10μm以上、より好ましくは約15μm以上である。同様の観点から、好ましくは約50μm以下、より好ましくは約40μm以下、さらに好ましくは約30μm以下、さらに好ましくは約25μm以下、さらに好ましくは約20μm以下である。基材層1の厚みの好ましい範囲としては、10~50μm程度、10~40μm程度、10~30μm程度、10~25μm程度、10~20μm程度、15~50μm程度、15~40μm程度、15~30μm程度、15~25μm程度、15~20μm程度が挙げられる。基材層1が、2層以上の樹脂フィルムの積層体である場合、各層を構成している樹脂フィルムの厚みとしては、それぞれ、好ましくは2~25μm程度が挙げられる。 The thickness of the base material layer 1 is not particularly limited as long as it functions as a base material, but is preferably about 10 μm or more, more preferably about 15 μm or more, from the viewpoint of more preferably exerting the effects of the invention of the present disclosure. be. From the same viewpoint, it is preferably about 50 μm or less, more preferably about 40 μm or less, still more preferably about 30 μm or less, still more preferably about 25 μm or less, still more preferably about 20 μm or less. The preferable range of the thickness of the base material layer 1 is about 10 to 50 μm, about 10 to 40 μm, about 10 to 30 μm, about 10 to 25 μm, about 10 to 20 μm, about 15 to 50 μm, about 15 to 40 μm, and about 15 to 30 μm. The degree is about 15 to 25 μm and about 15 to 20 μm. When the base material layer 1 is a laminate of two or more resin films, the thickness of the resin films constituting each layer is preferably about 2 to 25 μm, respectively.
[接着剤層2]
 本開示の蓄電デバイス用外装材において、接着剤層2は、基材層1とバリア層3との接着性を高めることを目的として、必要に応じて、これらの間に設けられる層である。
[Adhesive layer 2]
In the exterior material for a power storage device of the present disclosure, the adhesive layer 2 is a layer provided between the base material layer 1 and the barrier layer 3 as necessary for the purpose of enhancing the adhesiveness between the base material layer 1 and the barrier layer 3.
 接着剤層2は、基材層1とバリア層3とを接着可能である接着剤によって形成される。接着剤層2の形成に使用される接着剤は限定されないが、化学反応型、溶剤揮発型、熱溶融型、熱圧型等のいずれであってもよい。また、2液硬化型接着剤(2液性接着剤)であってもよく、1液硬化型接着剤(1液性接着剤)であってもよく、硬化反応を伴わない樹脂でもよい。また、接着剤層2は単層であってもよいし、多層であってもよい。 The adhesive layer 2 is formed by an adhesive capable of adhering the base material layer 1 and the barrier layer 3. The adhesive used for forming the adhesive layer 2 is not limited, but may be any of a chemical reaction type, a solvent volatile type, a heat melting type, a hot pressure type and the like. Further, it may be a two-component curable adhesive (two-component adhesive), a one-component curable adhesive (one-component adhesive), or a resin that does not involve a curing reaction. Further, the adhesive layer 2 may be a single layer or a multilayer.
 接着剤に含まれる接着成分としては、具体的には、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリエチレンイソフタレート、共重合ポリエステル等のポリエステル;ポリエーテル;ポリウレタン;エポキシ樹脂;フェノール樹脂;ナイロン6、ナイロン66、ナイロン12、共重合ポリアミド等のポリアミド;ポリオレフィン、環状ポリオレフィン、酸変性ポリオレフィン、酸変性環状ポリオレフィンなどのポリオレフィン系樹脂;ポリ酢酸ビニル;セルロース;(メタ)アクリル樹脂;ポリイミド;ポリカーボネート;尿素樹脂、メラミン樹脂等のアミノ樹脂;クロロプレンゴム、ニトリルゴム、スチレン-ブタジエンゴム等のゴム;シリコーン樹脂等が挙げられる。これらの接着成分は1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。これらの接着成分の中でも、好ましくはポリウレタン接着剤が挙げられる。また、これらの接着成分となる樹脂は適切な硬化剤を併用して接着強度を高めることができる。前記硬化剤は、接着成分の持つ官能基に応じて、ポリイソシアネート、多官能エポキシ樹脂、オキサゾリン基含有ポリマー、ポリアミン樹脂、酸無水物などから適切なものを選択する。 Specific examples of the adhesive component contained in the adhesive include polyesters such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, polyethylene isophthalate, and copolymerized polyester; polyether; polyurethane; epoxy resin; Phenolic resin; polyamide such as nylon 6, nylon 66, nylon 12, copolymerized polyamide; polyolefin resin such as polyolefin, cyclic polyolefin, acid-modified polyolefin, acid-modified cyclic polyolefin; polyvinyl acetate; cellulose; (meth) acrylic resin; Polyethylene; polycarbonate; amino resin such as urea resin and melamine resin; rubber such as chloroprene rubber, nitrile rubber and styrene-butadiene rubber; silicone resin and the like. These adhesive components may be used alone or in combination of two or more. Among these adhesive components, a polyurethane adhesive is preferable. In addition, the resins used as these adhesive components can be used in combination with an appropriate curing agent to increase the adhesive strength. An appropriate curing agent is selected from polyisocyanate, polyfunctional epoxy resin, oxazoline group-containing polymer, polyamine resin, acid anhydride and the like, depending on the functional group of the adhesive component.
 ポリウレタン接着剤としては、例えば、ポリオール化合物を含有する第1剤と、イソシアネート化合物を含有する第2剤とを含むポリウレタン接着剤が挙げられる。好ましくはポリエステルポリオール、ポリエーテルポリオール、およびアクリルポリオール等のポリオールを第1剤として、芳香族系又は脂肪族系のポリイソシアネートを第2剤とした二液硬化型のポリウレタン接着剤が挙げられる。また、ポリウレタン接着剤としては、例えば、予めポリオール化合物とイソシアネート化合物とを反応させたポリウレタン化合物と、イソシアネート化合物とを含むポリウレタン接着剤が挙げられる。また、ポリウレタン接着剤としては、例えば、予めポリオール化合物とイソシアネート化合物とを反応させたポリウレタン化合物と、ポリオール化合物とを含むポリウレタン接着剤が挙げられる。また、ポリウレタン接着剤としては、例えば、予めポリオール化合物とイソシアネート化合物とを反応させたポリウレタン化合物を、空気中などの水分と反応させることによって硬化させたポリウレタン接着剤が挙げられる。ポリオール化合物としては、繰り返し単位の末端の水酸基に加えて、側鎖にも水酸基を有するポリエステルポリオールを用いることが好ましい。第2剤としては、脂肪族、脂環式、芳香族、芳香脂肪族のイソシアネート系化合物が挙げられる。イソシアネート系化合物としては、例えばヘキサメチレンジイソシアネート(HDI)、キシリレンジイソシアネート(XDI)、イソホロンジイソシアネート(IPDI)、水素化XDI(H6XDI)、水素化MDI(H12MDI)、トリレンジイソシアネート(TDI)、ジフェニルメタンジイソシアネート(MDI)、ナフタレンジイソシアネート(NDI)等が挙げられる。また、これらのジイソシアネートの1種類又は2種類以上からの多官能イソシアネート変性体等が挙げられる。また、ポリイソシアネート化合物として多量体(例えば三量体)を使用することもできる。このような多量体には、アダクト体、ビウレット体、ヌレート体等が挙げられる。接着剤層2がポリウレタン接着剤により形成されていることで蓄電デバイス用外装材に優れた電解液耐性が付与され、側面に電解液が付着しても基材層1が剥がれることが抑制される。 Examples of the polyurethane adhesive include a polyurethane adhesive containing a first agent containing a polyol compound and a second agent containing an isocyanate compound. Preferably, a two-component curable polyurethane adhesive using a polyol such as a polyester polyol, a polyether polyol, and an acrylic polyol as a first agent and an aromatic or aliphatic polyisocyanate as a second agent can be mentioned. Examples of the polyurethane adhesive include a polyurethane adhesive in which a polyol compound and an isocyanate compound are reacted in advance, and a polyurethane adhesive containing the isocyanate compound. Further, examples of the polyurethane adhesive include a polyurethane adhesive in which a polyol compound and an isocyanate compound are reacted in advance, and a polyurethane adhesive containing the polyol compound. Examples of the polyurethane adhesive include a polyurethane adhesive obtained by reacting a polyurethane compound in which a polyol compound and an isocyanate compound are previously reacted with water such as in the air to cure the polyurethane compound. As the polyol compound, it is preferable to use a polyester polyol having a hydroxyl group in the side chain in addition to the hydroxyl group at the end of the repeating unit. Examples of the second agent include aliphatic, alicyclic, aromatic, and aromatic aliphatic isocyanate compounds. Examples of the isocyanate-based compound include hexamethylene diisocyanate (HDI), xylylene diisocyanate (XDI), isophorone diisocyanate (IPDI), hydrogenated XDI (H6XDI), hydrogenated MDI (H12MDI), tolylene diisocyanate (TDI), and diphenylmethane diisocyanate. (MDI), naphthalenediocyanate (NDI) and the like. Moreover, a polyfunctional isocyanate modified product from one kind or two or more kinds of these diisocyanates and the like can be mentioned. Further, a multimer (for example, a trimer) can be used as the polyisocyanate compound. Examples of such a multimer include an adduct body, a biuret body, a nurate body and the like. Since the adhesive layer 2 is formed of the polyurethane adhesive, excellent electrolytic solution resistance is imparted to the exterior material for the power storage device, and even if the electrolytic solution adheres to the side surface, the base material layer 1 is suppressed from peeling off. ..
 また、接着剤層2は、接着性を阻害しない限り他成分の添加が許容され、着色剤や熱可塑性エラストマー、粘着付与剤、フィラーなどを含有してもよい。接着剤層2が着色剤を含んでいることにより、蓄電デバイス用外装材を着色することができる。着色剤としては、顔料、染料などの公知のものが使用できる。また、着色剤は、1種類のみを用いてもよいし、2種類以上を混合して用いてもよい。 Further, the adhesive layer 2 may contain a colorant, a thermoplastic elastomer, a tackifier, a filler, etc., as long as the addition of other components is permitted as long as the adhesiveness is not impaired. Since the adhesive layer 2 contains a colorant, the exterior material for the power storage device can be colored. As the colorant, known ones such as pigments and dyes can be used. Further, only one type of colorant may be used, or two or more types may be mixed and used.
 顔料の種類は、接着剤層2の接着性を損なわない範囲であれば、特に限定されない。有機顔料としては、例えば、アゾ系、フタロシアニン系、キナクリドン系、アンスラキノン系、ジオキサジン系、インジゴチオインジゴ系、ペリノン-ペリレン系、イソインドレニン系、ベンズイミダゾロン系等の顔料が挙げられ、無機顔料としては、カーボンブラック系、酸化チタン系、カドミウム系、鉛系、酸化クロム系、鉄系等の顔料が挙げられ、その他に、マイカ(雲母)の微粉末、魚鱗箔等が挙げられる。 The type of pigment is not particularly limited as long as it does not impair the adhesiveness of the adhesive layer 2. Examples of organic pigments include azo-based, phthalocyanine-based, quinacridone-based, anthracinone-based, dioxazine-based, indigothioindigo-based, perinone-perylene-based, isoindrenine-based, and benzimidazolone-based pigments, which are inorganic. Examples of the pigment include carbon black-based, titanium oxide-based, cadmium-based, lead-based, chromium oxide-based, and iron-based pigments, and other examples include fine powder of mica (mica) and fish scale foil.
 着色剤の中でも、例えば蓄電デバイス用外装材の外観を黒色とするためには、カーボンブラックが好ましい。 Among the colorants, carbon black is preferable in order to make the appearance of the exterior material for the power storage device black, for example.
 顔料の平均粒子径としては、特に制限されず、例えば、0.05~5μm程度、好ましくは0.08~2μm程度が挙げられる。なお、顔料の平均粒子径は、レーザ回折/散乱式粒子径分布測定装置で測定されたメジアン径とする。 The average particle size of the pigment is not particularly limited, and examples thereof include about 0.05 to 5 μm, preferably about 0.08 to 2 μm. The average particle size of the pigment is the median size measured by the laser diffraction / scattering type particle size distribution measuring device.
 接着剤層2における顔料の含有量としては、蓄電デバイス用外装材が着色されれば特に制限されず、例えば5~60質量%程度、好ましくは10~40質量%が挙げられる。 The content of the pigment in the adhesive layer 2 is not particularly limited as long as the exterior material for the power storage device is colored, and examples thereof include about 5 to 60% by mass, preferably 10 to 40% by mass.
 接着剤層2の厚みは、基材層1とバリア層3とを接着できれば、特に制限されないが、例えば、約1μm以上、約2μm以上である。また、接着剤層2の厚みは、例えば、約10μm以下、約5μm以下である。また、接着剤層2の厚みの好ましい範囲については、1~10μm程度、1~5μm程度、2~10μm程度、2~5μm程度が挙げられる。 The thickness of the adhesive layer 2 is not particularly limited as long as the base material layer 1 and the barrier layer 3 can be adhered to each other, but is, for example, about 1 μm or more and about 2 μm or more. The thickness of the adhesive layer 2 is, for example, about 10 μm or less and about 5 μm or less. The preferable range of the thickness of the adhesive layer 2 is about 1 to 10 μm, about 1 to 5 μm, about 2 to 10 μm, and about 2 to 5 μm.
[着色層]
 着色層は、基材層1とバリア層3との間に必要に応じて設けられる層である(図示を省略する)。接着剤層2を有する場合には、基材層1と接着剤層2との間、接着剤層2とバリア層3との間に着色層を設けてもよい。また、基材層1の外側に着色層を設けてもよい。着色層を設けることにより、蓄電デバイス用外装材を着色することができる。
[Colored layer]
The colored layer is a layer provided between the base material layer 1 and the barrier layer 3 as needed (not shown). When the adhesive layer 2 is provided, a colored layer may be provided between the base material layer 1 and the adhesive layer 2 and between the adhesive layer 2 and the barrier layer 3. Further, a colored layer may be provided on the outside of the base material layer 1. By providing the colored layer, the exterior material for the power storage device can be colored.
 着色層は、例えば、着色剤を含むインキを基材層1の表面、またはバリア層3の表面に塗布することにより形成することができる。着色剤としては、顔料、染料などの公知のものが使用できる。また、着色剤は、1種類のみを用いてもよいし、2種類以上を混合して用いてもよい。 The colored layer can be formed, for example, by applying an ink containing a colorant to the surface of the base material layer 1 or the surface of the barrier layer 3. As the colorant, known ones such as pigments and dyes can be used. Further, only one type of colorant may be used, or two or more types may be mixed and used.
 着色層に含まれる着色剤の具体例としては、[接着剤層2]の欄で例示したものと同じものが例示される。 Specific examples of the colorant contained in the colored layer include the same as those exemplified in the column of [Adhesive layer 2].
[バリア層3]
 蓄電デバイス用外装材において、バリア層3は、少なくとも水分の浸入を抑止する層である。
[Barrier layer 3]
In the exterior material for a power storage device, the barrier layer 3 is at least a layer that suppresses the infiltration of water.
 バリア層3としては、例えば、バリア性を有する金属箔、蒸着膜、樹脂層などが挙げられる。蒸着膜としては金属蒸着膜、無機酸化物蒸着膜、炭素含有無機酸化物蒸着膜などが挙げられ、樹脂層としてはポリ塩化ビニリデン、クロロトリフルオロエチレン(CTFE)を主成分としたポリマー類やテトラフルオロエチレン(TFE)を主成分としたポリマー類やフルオロアルキル基を有するポリマー、およびフルオロアルキル単位を主成分としたポリマー類などのフッ素含有樹脂、エチレンビニルアルコール共重合体などが挙げられる。また、バリア層3としては、これらの蒸着膜及び樹脂層の少なくとも1層を設けた樹脂フィルムなども挙げられる。バリア層3は、複数層設けてもよい。バリア層3は、金属材料により構成された層を含むことが好ましい。バリア層3を構成する金属材料としては、具体的には、アルミニウム合金、ステンレス鋼、チタン鋼、鋼板などが挙げられ、金属箔として用いる場合は、アルミニウム合金箔及びステンレス鋼箔の少なくとも一方を含むことが好ましい。 Examples of the barrier layer 3 include a metal foil having a barrier property, a thin-film deposition film, a resin layer, and the like. Examples of the vapor deposition film include a metal vapor deposition film, an inorganic oxide vapor deposition film, a carbon-containing inorganic oxide vapor deposition film, and the like, and examples of the resin layer include polymers and tetras mainly composed of polyvinylidene chloride and chlorotrifluoroethylene (CTFE). Examples thereof include polymers containing fluoroethylene (TFE) as a main component, polymers having a fluoroalkyl group, fluorine-containing resins such as polymers containing fluoroalkyl units as a main component, and ethylene vinyl alcohol copolymers. Further, examples of the barrier layer 3 include a resin film provided with at least one of these vapor-deposited films and a resin layer. A plurality of barrier layers 3 may be provided. The barrier layer 3 preferably includes a layer made of a metal material. Specific examples of the metal material constituting the barrier layer 3 include an aluminum alloy, stainless steel, titanium steel, and a steel plate. When used as a metal foil, the metal material includes at least one of an aluminum alloy foil and a stainless steel foil. Is preferable.
 アルミニウム合金箔は、蓄電デバイス用外装材の成形性を向上させる観点から、例えば、焼きなまし処理済みのアルミニウム合金などにより構成された軟質アルミニウム合金箔であることがより好ましく、より成形性を向上させる観点から、鉄を含むアルミニウム合金箔であることが好ましい。鉄を含むアルミニウム合金箔(100質量%)において、鉄の含有量は、0.1~9.0質量%であることが好ましく、0.5~2.0質量%であることがより好ましい。鉄の含有量が0.1質量%以上であることにより、より優れた成形性を有する蓄電デバイス用外装材を得ることができる。鉄の含有量が9.0質量%以下であることにより、より柔軟性に優れた蓄電デバイス用外装材を得ることができる。軟質アルミニウム合金箔としては、例えば、JIS H4160:1994 A8021H-O、JIS H4160:1994 A8079H-O、JIS H4000:2014 A8021P-O、又はJIS H4000:2014 A8079P-Oで規定される組成を備えるアルミニウム合金箔が挙げられる。また必要に応じて、ケイ素、マグネシウム、銅、マンガンなどが添加されていてもよい。また軟質化は焼鈍処理などで行うことができる。 From the viewpoint of improving the moldability of the exterior material for the power storage device, the aluminum alloy foil is more preferably a soft aluminum alloy foil composed of, for example, an annealed aluminum alloy, and from the viewpoint of further improving the moldability. Therefore, it is preferable that the aluminum alloy foil contains iron. In the aluminum alloy foil containing iron (100% by mass), the iron content is preferably 0.1 to 9.0% by mass, more preferably 0.5 to 2.0% by mass. When the iron content is 0.1% by mass or more, an exterior material for a power storage device having more excellent moldability can be obtained. When the iron content is 9.0% by mass or less, a more flexible exterior material for a power storage device can be obtained. Examples of the soft aluminum alloy foil include aluminum alloys having a composition specified by JIS H4160: 1994 A8021HO, JIS H4160: 1994 A8079HO, JIS H4000: 2014 A8021PO, or JIS H4000: 2014 A8077P-O. Foil is mentioned. Further, if necessary, silicon, magnesium, copper, manganese and the like may be added. Further, softening can be performed by annealing or the like.
 また、ステンレス鋼箔としては、オーステナイト系、フェライト系、オーステナイト・フェライト系、マルテンサイト系、析出硬化系のステンレス鋼箔などが挙げられる。さらに成形性に優れた蓄電デバイス用外装材を提供する観点から、ステンレス鋼箔は、オーステナイト系のステンレス鋼により構成されていることが好ましい。 Examples of stainless steel foils include austenite-based, ferrite-based, austenite-ferritic-based, martensitic-based, and precipitation-hardened stainless steel foils. Further, from the viewpoint of providing an exterior material for a power storage device having excellent moldability, the stainless steel foil is preferably made of austenitic stainless steel.
 ステンレス鋼箔を構成するオーステナイト系のステンレス鋼の具体例としては、SUS304、SUS301、SUS316Lなどが挙げられ、これら中でも、SUS304が特に好ましい。 Specific examples of the austenitic stainless steel constituting the stainless steel foil include SUS304, SUS301, and SUS316L, and among these, SUS304 is particularly preferable.
 バリア層3の厚みは、金属箔の場合、少なくとも水分の浸入を抑止するバリア層としての機能を発揮すればよく、例えば9~200μm程度が挙げられる。バリア層3の厚みは、好ましくは約85μm以下、より好ましくは約50μm以下、さらに好ましくは約40μm以下、特に好ましくは約35μm以下である。また、バリア層3の厚みは、好ましくは約10μm以上、さらに好ましくは約20μm以上、より好ましくは約25μm以上である。また、バリア層3の厚みの好ましい範囲としては、10~85μm程度、10~50μm程度、10~40μm程度、10~35μm程度、20~85μm程度、20~50μm程度、20~40μm程度、20~35μm程度、25~85μm程度、25~50μm程度、25~40μm程度、25~35μm程度が挙げられる。バリア層3がアルミニウム合金箔により構成されている場合、上述した範囲が特に好ましい。また、特に、バリア層3がステンレス鋼箔により構成されている場合、ステンレス鋼箔の厚みは、好ましくは約60μm以下、より好ましくは約50μm以下、さらに好ましくは約40μm以下、さらに好ましくは約30μm以下、特に好ましくは約25μm以下である。また、ステンレス鋼箔の厚みは、好ましくは約10μm以上、より好ましくは約15μm以上である。また、ステンレス鋼箔の厚みの好ましい範囲としては、10~60μm程度、10~50μm程度、10~40μm程度、10~30μm程度、10~25μm程度、15~60μm程度、15~50μm程度、15~40μm程度、15~30μm程度、15~25μm程度が挙げられる。 In the case of a metal foil, the thickness of the barrier layer 3 may at least exhibit a function as a barrier layer that suppresses the infiltration of water, and is, for example, about 9 to 200 μm. The thickness of the barrier layer 3 is preferably about 85 μm or less, more preferably about 50 μm or less, still more preferably about 40 μm or less, and particularly preferably about 35 μm or less. The thickness of the barrier layer 3 is preferably about 10 μm or more, more preferably about 20 μm or more, and more preferably about 25 μm or more. The preferred range of the thickness of the barrier layer 3 is about 10 to 85 μm, about 10 to 50 μm, about 10 to 40 μm, about 10 to 35 μm, about 20 to 85 μm, about 20 to 50 μm, about 20 to 40 μm, and about 20 to. Examples thereof include about 35 μm, about 25 to 85 μm, about 25 to 50 μm, about 25 to 40 μm, and about 25 to 35 μm. When the barrier layer 3 is made of an aluminum alloy foil, the above range is particularly preferable. Further, in particular, when the barrier layer 3 is made of stainless steel foil, the thickness of the stainless steel foil is preferably about 60 μm or less, more preferably about 50 μm or less, still more preferably about 40 μm or less, still more preferably about 30 μm. Below, it is particularly preferably about 25 μm or less. The thickness of the stainless steel foil is preferably about 10 μm or more, more preferably about 15 μm or more. The preferred range of the thickness of the stainless steel foil is about 10 to 60 μm, about 10 to 50 μm, about 10 to 40 μm, about 10 to 30 μm, about 10 to 25 μm, about 15 to 60 μm, about 15 to 50 μm, and about 15 to. Examples thereof include about 40 μm, about 15 to 30 μm, and about 15 to 25 μm.
 また、バリア層3が金属箔の場合は、溶解や腐食の防止などのために、少なくとも基材層と反対側の面に耐腐食性皮膜を備えていることが好ましい。バリア層3は、耐腐食性皮膜を両面に備えていてもよい。ここで、耐腐食性皮膜とは、例えば、ベーマイト処理などの熱水変成処理、化成処理、陽極酸化処理、ニッケルやクロムなどのメッキ処理、コーティング剤を塗工する腐食防止処理をバリア層の表面に行い、バリア層に耐腐食性(例えば耐酸性、耐アルカリ性など)を備えさせる薄膜をいう。耐腐食性皮膜は、具体的には、バリア層の耐酸性を向上させる皮膜(耐酸性皮膜)、バリア層の耐アルカリ性を向上させる皮膜(耐アルカリ性皮膜)などを意味している。耐腐食性皮膜を形成する処理としては、1種類を行ってもよいし、2種類以上を組み合わせて行ってもよい。また、1層だけではなく多層化することもできる。さらに、これらの処理のうち、熱水変成処理及び陽極酸化処理は、処理剤によって金属箔表面を溶解させ、耐腐食性に優れる金属化合物を形成させる処理である。なお、これらの処理は、化成処理の定義に包含される場合もある。また、バリア層3が耐腐食性皮膜を備えている場合、耐腐食性皮膜を含めてバリア層3とする。 When the barrier layer 3 is a metal foil, it is preferable that a corrosion-resistant film is provided on at least the surface opposite to the base material layer in order to prevent dissolution and corrosion. The barrier layer 3 may be provided with a corrosion resistant film on both sides. Here, the corrosion-resistant film is, for example, a hot water transformation treatment such as boehmite treatment, a chemical conversion treatment, an anodization treatment, a plating treatment such as nickel or chromium, and a corrosion prevention treatment for applying a coating agent on the surface of the barrier layer. Refers to a thin film that makes the barrier layer provided with corrosion resistance (for example, acid resistance, alkali resistance, etc.). Specifically, the corrosion-resistant film means a film for improving the acid resistance of the barrier layer (acid-resistant film), a film for improving the alkali resistance of the barrier layer (alkali-resistant film), and the like. As the treatment for forming the corrosion-resistant film, one type may be performed, or two or more types may be combined. Moreover, not only one layer but also multiple layers can be used. Further, among these treatments, the hydrothermal modification treatment and the anodizing treatment are treatments in which the surface of the metal foil is dissolved by the treatment agent to form a metal compound having excellent corrosion resistance. In addition, these processes may be included in the definition of chemical conversion process. When the barrier layer 3 has a corrosion-resistant film, the barrier layer 3 includes the corrosion-resistant film.
 耐腐食性皮膜は、蓄電デバイス用外装材の成形時において、バリア層(例えば、アルミニウム合金箔)と基材層との間のデラミネーション防止、電解質と水分とによる反応で生成するフッ化水素により、バリア層表面の溶解、腐食、特にバリア層がアルミニウム合金箔である場合にバリア層表面に存在する酸化アルミニウムが溶解、腐食することを防止し、かつ、バリア層表面の接着性(濡れ性)を向上させ、ヒートシール時の基材層とバリア層とのデラミネーション防止、成形時の基材層とバリア層とのデラミネーション防止の効果を示す。 The corrosion-resistant film is formed by preventing delamination between the barrier layer (for example, aluminum alloy foil) and the base material layer during molding of the exterior material for a power storage device, and by hydrogen fluoride generated by the reaction between the electrolyte and water. , Melting and corrosion of the surface of the barrier layer, especially when the barrier layer is an aluminum alloy foil, it prevents the aluminum oxide existing on the surface of the barrier layer from melting and corroding, and the adhesiveness (wetness) of the surface of the barrier layer. The effect of preventing the corrosion between the base material layer and the barrier layer at the time of heat sealing and the prevention of the corrosion between the base material layer and the barrier layer at the time of molding is shown.
 化成処理によって形成される耐腐食性皮膜としては、種々のものが知られており、主には、リン酸塩、クロム酸塩、フッ化物、トリアジンチオール化合物、及び希土類酸化物のうち少なくとも1種を含む耐腐食性皮膜などが挙げられる。リン酸塩、クロム酸塩を用いた化成処理としては、例えば、クロム酸クロメート処理、リン酸クロメート処理、リン酸-クロム酸塩処理、クロム酸塩処理などが挙げられ、これらの処理に用いるクロム化合物としては、例えば、硝酸クロム、フッ化クロム、硫酸クロム、酢酸クロム、蓚酸クロム、重リン酸クロム、クロム酸アセチルアセテート、塩化クロム、硫酸カリウムクロムなどが挙げられる。また、これらの処理に用いるリン化合物としては、リン酸ナトリウム、リン酸カリウム、リン酸アンモニウム、ポリリン酸などが挙げられる。また、クロメート処理としてはエッチングクロメート処理、電解クロメート処理、塗布型クロメート処理などが挙げられ、塗布型クロメート処理が好ましい。この塗布型クロメート処理は、バリア層(例えばアルミニウム合金箔)の少なくとも内層側の面を、まず、アルカリ浸漬法、電解洗浄法、酸洗浄法、電解酸洗浄法、酸活性化法等の周知の処理方法で脱脂処理を行い、その後、脱脂処理面にリン酸Cr(クロム)塩、リン酸Ti(チタン)塩、リン酸Zr(ジルコニウム)塩、リン酸Zn(亜鉛)塩などのリン酸金属塩及びこれらの金属塩の混合体を主成分とする処理液、または、リン酸非金属塩及びこれらの非金属塩の混合体を主成分とする処理液、あるいは、これらと合成樹脂などとの混合物からなる処理液をロールコート法、グラビア印刷法、浸漬法等の周知の塗工法で塗工し、乾燥する処理である。処理液は例えば、水、アルコール系溶剤、炭化水素系溶剤、ケトン系溶剤、エステル系溶剤、エーテル系溶剤など各種溶媒を用いることができ、水が好ましい。また、このとき用いる樹脂成分としては、フェノール系樹脂やアクリル系樹脂などの高分子などが挙げられ、下記一般式(1)~(4)で表される繰り返し単位を有するアミノ化フェノール重合体を用いたクロメート処理などが挙げられる。なお、当該アミノ化フェノール重合体において、下記一般式(1)~(4)で表される繰り返し単位は、1種類単独で含まれていてもよいし、2種類以上の任意の組み合わせであってもよい。アクリル系樹脂は、ポリアクリル酸、アクリル酸メタクリル酸エステル共重合体、アクリル酸マレイン酸共重合体、アクリル酸スチレン共重合体、またはこれらのナトリウム塩、アンモニウム塩、アミン塩等の誘導体であることが好ましい。特にポリアクリル酸のアンモニウム塩、ナトリウム塩、又はアミン塩等のポリアクリル酸の誘導体が好ましい。本開示において、ポリアクリル酸とは、アクリル酸の重合体を意味している。また、アクリル系樹脂は、アクリル酸とジカルボン酸又はジカルボン酸無水物との共重合体であることも好ましく、アクリル酸とジカルボン酸又はジカルボン酸無水物との共重合体のアンモニウム塩、ナトリウム塩、又はアミン塩であることも好ましい。アクリル系樹脂は、1種類のみを用いてもよいし、2種類以上を混合して用いてもよい。 Various corrosion-resistant films formed by chemical conversion treatment are known, and mainly, at least one of phosphate, chromate, fluoride, triazinethiol compound, and rare earth oxide. Examples thereof include a corrosion-resistant film containing. Examples of the chemical conversion treatment using phosphate and chromate include chromic acid chromate treatment, chromic acid chromate treatment, phosphoric acid-chromate treatment, and chromate treatment, and chromium used in these treatments. Examples of the compound include chromium nitrate, chromium fluoride, chromium sulfate, chromium acetate, chromium oxalate, chromium bicarbonate, acetylacetate chromate, chromium chloride, chromium sulfate and the like. In addition, examples of the phosphorus compound used in these treatments include sodium phosphate, potassium phosphate, ammonium phosphate, polyphosphoric acid and the like. Further, examples of the chromate treatment include etching chromate treatment, electrolytic chromate treatment, and coating type chromate treatment, and coating type chromate treatment is preferable. In this coating type chromate treatment, at least the inner layer side surface of the barrier layer (for example, aluminum alloy foil) is first known as an alkali dipping method, an electrolytic cleaning method, an acid cleaning method, an electrolytic acid cleaning method, an acid activation method and the like. Degreasing is performed by the treatment method, and then metal phosphates such as Cr phosphate (chromium) salt, Ti (titanium) phosphate, Zr (zyroxide) salt, and Zn (zinc) phosphate are applied to the degreased surface. A treatment liquid containing a salt and a mixture of these non-metal salts as a main component, or a treatment liquid containing a mixture of a phosphate non-metal salt and these non-metal salts as a main component, or a synthetic resin and the like. This is a treatment in which a treatment liquid composed of a mixture is coated by a well-known coating method such as a roll coating method, a gravure printing method, or a dipping method, and dried. As the treatment liquid, for example, various solvents such as water, alcohol-based solvent, hydrocarbon-based solvent, ketone-based solvent, ester-based solvent, and ether-based solvent can be used, and water is preferable. Examples of the resin component used at this time include polymers such as phenol-based resins and acrylic-based resins, and aminoated phenol polymers having repeating units represented by the following general formulas (1) to (4) can be used. Examples thereof include the chromate treatment used. In the amination phenol polymer, the repeating units represented by the following general formulas (1) to (4) may be contained alone or in any combination of two or more. May be good. The acrylic resin shall be a polyacrylic acid, an acrylic acid methacrylate copolymer, an acrylic acid maleic acid copolymer, an acrylic acid styrene copolymer, or a derivative of these sodium salts, ammonium salts, amine salts, etc. Is preferable. In particular, derivatives of polyacrylic acid such as ammonium salt, sodium salt, and amine salt of polyacrylic acid are preferable. In the present disclosure, polyacrylic acid means a polymer of acrylic acid. Further, the acrylic resin is preferably a copolymer of an acrylic acid and a dicarboxylic acid or a dicarboxylic acid anhydride, and an ammonium salt or a sodium salt of a copolymer of an acrylic acid and a dicarboxylic acid or a dicarboxylic acid anhydride. Alternatively, it is preferably an amine salt. Only one type of acrylic resin may be used, or two or more types may be mixed and used.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 一般式(1)~(4)中、Xは、水素原子、ヒドロキシ基、アルキル基、ヒドロキシアルキル基、アリル基またはベンジル基を示す。また、R1及びR2は、それぞれ同一または異なって、ヒドロキシ基、アルキル基、またはヒドロキシアルキル基を示す。一般式(1)~(4)において、X、R1及びR2で示されるアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基などの炭素数1~4の直鎖または分枝鎖状アルキル基が挙げられる。また、X、R1及びR2で示されるヒドロキシアルキル基としては、例えば、ヒドロキシメチル基、1-ヒドロキシエチル基、2-ヒドロキシエチル基、1-ヒドロキシプロピル基、2-ヒドロキシプロピル基、3-ヒドロキシプロピル基、1-ヒドロキシブチル基、2-ヒドロキシブチル基、3-ヒドロキシブチル基、4-ヒドロキシブチル基などのヒドロキシ基が1個置換された炭素数1~4の直鎖または分枝鎖状アルキル基が挙げられる。一般式(1)~(4)において、X、R1及びR2で示されるアルキル基及びヒドロキシアルキル基は、それぞれ同一であってもよいし、異なっていてもよい。一般式(1)~(4)において、Xは、水素原子、ヒドロキシ基またはヒドロキシアルキル基であることが好ましい。一般式(1)~(4)で表される繰り返し単位を有するアミノ化フェノール重合体の数平均分子量は、例えば、500~100万程度であることが好ましく、1000~2万程度であることがより好ましい。アミノ化フェノール重合体は、例えば、フェノール化合物又はナフトール化合物とホルムアルデヒドとを重縮合して上記一般式(1)又は一般式(3)で表される繰返し単位からなる重合体を製造し、次いでホルムアルデヒド及びアミン(R12NH)を用いて官能基(-CH2NR12)を上記で得られた重合体に導入することにより、製造される。アミノ化フェノール重合体は、1種単独で又は2種以上混合して使用される。 In the general formulas (1) to (4), X represents a hydrogen atom, a hydroxy group, an alkyl group, a hydroxyalkyl group, an allyl group or a benzyl group. Further, R 1 and R 2 represent a hydroxy group, an alkyl group, or a hydroxyalkyl group, respectively, which are the same or different. In the general formulas (1) to (4) , examples of the alkyl group represented by X, R 1 and R 2 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group and an isobutyl group. Examples thereof include a linear or branched alkyl group having 1 to 4 carbon atoms such as a tert-butyl group. Examples of the hydroxyalkyl groups represented by X, R 1 and R 2 include a hydroxymethyl group, a 1-hydroxyethyl group, a 2-hydroxyethyl group, a 1-hydroxypropyl group, a 2-hydroxypropyl group and 3-. A linear or branched chain having 1 to 4 carbon atoms in which one hydroxy group such as a hydroxypropyl group, a 1-hydroxybutyl group, a 2-hydroxybutyl group, a 3-hydroxybutyl group, or a 4-hydroxybutyl group is substituted. Alkyl groups can be mentioned. In the general formulas (1) to (4), the alkyl group and the hydroxyalkyl group represented by X, R 1 and R 2 may be the same or different, respectively. In the general formulas (1) to (4), X is preferably a hydrogen atom, a hydroxy group or a hydroxyalkyl group. The number average molecular weight of the amination phenol polymer having the repeating unit represented by the general formulas (1) to (4) is, for example, preferably about 5 to 1,000,000, and preferably about 1,000 to 20,000. More preferred. The amination phenol polymer is produced, for example, by polycondensing a phenol compound or a naphthol compound with formaldehyde to produce a polymer composed of repeating units represented by the above general formula (1) or general formula (3), and then forming a formaldehyde. It is produced by introducing a functional group (-CH 2 NR 1 R 2 ) into the polymer obtained above using an amine (R 1 R 2 NH). The amination phenol polymer is used alone or in combination of two or more.
 耐腐食性皮膜の他の例としては、希土類元素酸化物ゾル、アニオン性ポリマー、カチオン性ポリマーからなる群から選ばれる少なくとも1種を含有するコーティング剤を塗工するコーティングタイプの腐食防止処理によって形成される薄膜が挙げられる。コーティング剤には、さらにリン酸またはリン酸塩、ポリマーを架橋させる架橋剤を含んでもよい。希土類元素酸化物ゾルには、液体分散媒中に希土類元素酸化物の微粒子(例えば、平均粒径100nm以下の粒子)が分散されている。希土類元素酸化物としては、酸化セリウム、酸化イットリウム、酸化ネオジウム、酸化ランタン等が挙げられ、密着性をより向上させる観点から酸化セリウムが好ましい。耐腐食性皮膜に含まれる希土類元素酸化物は1種を単独で又は2種以上を組み合わせて用いることができる。希土類元素酸化物ゾルの液体分散媒としては、例えば、水、アルコール系溶剤、炭化水素系溶剤、ケトン系溶剤、エステル系溶剤、エーテル系溶剤など各種溶媒を用いることができ、水が好ましい。カチオン性ポリマーとしては、例えば、ポリエチレンイミン、ポリエチレンイミンとカルボン酸を有するポリマーからなるイオン高分子錯体、アクリル主骨格に1級アミンをグラフト重合させた1級アミングラフトアクリル樹脂、ポリアリルアミンまたはその誘導体、アミノ化フェノールなどが好ましい。また、アニオン性ポリマーとしては、ポリ(メタ)アクリル酸またはその塩、あるいは(メタ)アクリル酸またはその塩を主成分とする共重合体であることが好ましい。また、架橋剤が、イソシアネート基、グリシジル基、カルボキシル基、オキサゾリン基のいずれかの官能基を有する化合物とシランカップリング剤よりなる群から選ばれる少なくとも1種であることが好ましい。また、前記リン酸またはリン酸塩が、縮合リン酸または縮合リン酸塩であることが好ましい。 As another example of the corrosion resistant film, it is formed by a coating type corrosion prevention treatment in which a coating agent containing at least one selected from the group consisting of a rare earth element oxide sol, an anionic polymer, and a cationic polymer is applied. The thin film to be used is mentioned. The coating agent may further contain phosphoric acid or phosphate, a cross-linking agent for cross-linking the polymer. In the rare earth element oxide sol, fine particles of the rare earth element oxide (for example, particles having an average particle size of 100 nm or less) are dispersed in a liquid dispersion medium. Examples of the rare earth element oxide include cerium oxide, yttrium oxide, neodium oxide, lanthanum oxide and the like, and cerium oxide is preferable from the viewpoint of further improving adhesion. The rare earth element oxide contained in the corrosion-resistant film may be used alone or in combination of two or more. As the liquid dispersion medium of the rare earth element oxide sol, for example, various solvents such as water, alcohol-based solvent, hydrocarbon-based solvent, ketone-based solvent, ester-based solvent, and ether-based solvent can be used, and water is preferable. Examples of the cationic polymer include polyethyleneimine, an ionic polymer complex composed of polyethyleneimine and a polymer having a carboxylic acid, a primary amine graft acrylic resin obtained by graft-polymerizing a primary amine on an acrylic main skeleton, polyallylamine or a derivative thereof. , Amination phenol and the like are preferable. The anionic polymer is preferably a poly (meth) acrylic acid or a salt thereof, or a copolymer containing (meth) acrylic acid or a salt thereof as a main component. Further, it is preferable that the cross-linking agent is at least one selected from the group consisting of a compound having a functional group of any of an isocyanate group, a glycidyl group, a carboxyl group and an oxazoline group and a silane coupling agent. Further, it is preferable that the phosphoric acid or phosphate is condensed phosphoric acid or condensed phosphate.
 耐腐食性皮膜の一例としては、リン酸中に、酸化アルミニウム、酸化チタン、酸化セリウム、酸化スズなどの金属酸化物や硫酸バリウムの微粒子を分散させたものをバリア層の表面に塗布し、150℃以上で焼付け処理を行うことにより形成したものが挙げられる。 As an example of the corrosion-resistant film, a film in which fine particles of metal oxides such as aluminum oxide, titanium oxide, cerium oxide, and tin oxide and barium sulfate are dispersed in phosphoric acid is applied to the surface of the barrier layer, and 150 Examples thereof include those formed by performing a baking treatment at a temperature of ° C. or higher.
 耐腐食性皮膜は、必要に応じて、さらにカチオン性ポリマー及びアニオン性ポリマーの少なくとも一方を積層した積層構造としてもよい。カチオン性ポリマー、アニオン性ポリマーとしては、上述したものが挙げられる。 The corrosion-resistant film may have a laminated structure in which at least one of a cationic polymer and an anionic polymer is further laminated, if necessary. Examples of the cationic polymer and the anionic polymer include those described above.
 なお、耐腐食性皮膜の組成の分析は、例えば、飛行時間型2次イオン質量分析法を用いて行うことができる。 The composition of the corrosion-resistant film can be analyzed by using, for example, a time-of-flight secondary ion mass spectrometry method.
 化成処理においてバリア層3の表面に形成させる耐腐食性皮膜の量については、特に制限されないが、例えば、塗布型クロメート処理を行う場合であれば、バリア層3の表面1m2当たり、クロム酸化合物がクロム換算で例えば0.5~50mg程度、好ましくは1.0~40mg程度、リン化合物がリン換算で例えば0.5~50mg程度、好ましくは1.0~40mg程度、及びアミノ化フェノール重合体が例えば1.0~200mg程度、好ましくは5.0~150mg程度の割合で含有されていることが望ましい。 The amount of the corrosion-resistant film formed on the surface of the barrier layer 3 in the chemical conversion treatment is not particularly limited, but for example, in the case of performing the coating type chromate treatment, the chromic acid compound per 1 m 2 of the surface of the barrier layer 3 Is, for example, about 0.5 to 50 mg, preferably about 1.0 to 40 mg in terms of chromium, and the phosphorus compound is, for example, about 0.5 to 50 mg, preferably about 1.0 to 40 mg in terms of phosphorus, and an amination phenol polymer. Is preferably contained in a proportion of, for example, about 1.0 to 200 mg, preferably about 5.0 to 150 mg.
 耐腐食性皮膜の厚みとしては、特に制限されないが、皮膜の凝集力や、バリア層や熱融着性樹脂層との密着力の観点から、好ましくは1nm~20μm程度、より好ましくは1nm~100nm程度、さらに好ましくは1nm~50nm程度が挙げられる。なお、耐腐食性皮膜の厚みは、透過電子顕微鏡による観察、または、透過電子顕微鏡による観察と、エネルギー分散型X線分光法もしくは電子線エネルギー損失分光法との組み合わせによって測定することができる。飛行時間型2次イオン質量分析法を用いた耐腐食性皮膜の組成の分析により、例えば、CeとPとOからなる2次イオン(例えば、Ce2PO4 +、CePO4 -などの少なくとも1種)や、例えば、CrとPとOからなる2次イオン(例えば、CrPO2 +、CrPO4 -などの少なくとも1種)に由来するピークが検出される。 The thickness of the corrosion-resistant film is not particularly limited, but is preferably about 1 nm to 20 μm, more preferably 1 nm to 100 nm, from the viewpoint of the cohesive force of the film and the adhesion to the barrier layer and the heat-sealing resin layer. The degree, more preferably about 1 nm to 50 nm. The thickness of the corrosion-resistant film can be measured by observation with a transmission electron microscope or a combination of observation with a transmission electron microscope and energy dispersion type X-ray spectroscopy or electron beam energy loss spectroscopy. The time-of-flight secondary ion mass spectrometry analysis of the composition of the corrosion resistant coating using, for example, secondary ion consisting Ce and P and O (e.g., Ce 2 PO 4 +, CePO 4 - at least 1, such as species) or, for example, secondary ion of Cr and P and O (e.g., CrPO 2 +, CrPO 4 - peak derived from at least one), such as is detected.
 化成処理は、耐腐食性皮膜の形成に使用される化合物を含む溶液を、バーコート法、ロールコート法、グラビアコート法、浸漬法などによって、バリア層の表面に塗布した後に、バリア層の温度が70~200℃程度になるように加熱することにより行われる。また、バリア層に化成処理を施す前に、予めバリア層を、アルカリ浸漬法、電解洗浄法、酸洗浄法、電解酸洗浄法などによる脱脂処理に供してもよい。このように脱脂処理を行うことにより、バリア層の表面の化成処理をより効率的に行うことが可能となる。また、脱脂処理にフッ素含有化合物を無機酸で溶解させた酸脱脂剤を用いることで、金属箔の脱脂効果だけでなく不動態である金属のフッ化物を形成させることが可能であり、このような場合には脱脂処理だけを行ってもよい。 In the chemical conversion treatment, a solution containing a compound used for forming a corrosion-resistant film is applied to the surface of the barrier layer by a bar coating method, a roll coating method, a gravure coating method, a dipping method, or the like, and then the temperature of the barrier layer is applied. It is carried out by heating so that the temperature is about 70 to 200 ° C. Further, before the barrier layer is subjected to the chemical conversion treatment, the barrier layer may be subjected to a degreasing treatment by an alkali dipping method, an electrolytic cleaning method, an acid cleaning method, an electrolytic acid cleaning method or the like in advance. By performing the degreasing treatment in this way, it becomes possible to more efficiently perform the chemical conversion treatment on the surface of the barrier layer. Further, by using an acid degreasing agent in which a fluorine-containing compound is dissolved in an inorganic acid for the degreasing treatment, it is possible to form not only the degreasing effect of the metal foil but also the immobile metal fluoride. In such cases, only degreasing treatment may be performed.
[熱融着性樹脂層4]
 本開示の蓄電デバイス用外装材において、熱融着性樹脂層4は、最内層に該当し、蓄電デバイスの組み立て時に熱融着性樹脂層同士が熱融着して蓄電デバイス素子を密封する機能を発揮する層(シーラント層)である。
[Heat-sealing resin layer 4]
In the exterior material for a power storage device of the present disclosure, the heat-sealing resin layer 4 corresponds to the innermost layer, and has a function of heat-sealing the heat-sealing resin layers with each other when assembling the power storage device to seal the power storage device element. It is a layer (sealant layer) that exerts.
 熱融着性樹脂層4を構成している樹脂については、熱融着可能であることを限度として特に制限されないが、ポリオレフィン、酸変性ポリオレフィンなどのポリオレフィン骨格を含む樹脂が好ましい。熱融着性樹脂層4を構成している樹脂がポリオレフィン骨格を含むことは、例えば、赤外分光法、ガスクロマトグラフィー質量分析法などにより分析可能である。また、熱融着性樹脂層4を構成している樹脂を赤外分光法で分析すると、無水マレイン酸に由来するピークが検出されることが好ましい。例えば、赤外分光法にて無水マレイン酸変性ポリオレフィンを測定すると、波数1760cm-1付近と波数1780cm-1付近に無水マレイン酸由来のピークが検出される。熱融着性樹脂層4が無水マレイン酸変性ポリオレフィンより構成された層である場合、赤外分光法にて測定すると、無水マレイン酸由来のピークが検出される。ただし、酸変性度が低いとピークが小さくなり検出されない場合がある。その場合は核磁気共鳴分光法にて分析可能である。 The resin constituting the heat-fusing resin layer 4 is not particularly limited as long as it can be heat-fused, but a resin containing a polyolefin skeleton such as polyolefin or acid-modified polyolefin is preferable. The fact that the resin constituting the heat-sealing resin layer 4 contains a polyolefin skeleton can be analyzed by, for example, infrared spectroscopy, gas chromatography-mass spectrometry, or the like. Further, when the resin constituting the heat-sealing resin layer 4 is analyzed by infrared spectroscopy, it is preferable that a peak derived from maleic anhydride is detected. For example, when measuring the infrared spectroscopy at a maleic anhydride-modified polyolefin, a peak derived from maleic acid is detected in the vicinity of the wave number of 1760 cm -1 and near the wave number 1780 cm -1. When the heat-sealing resin layer 4 is a layer composed of maleic anhydride-modified polyolefin, a peak derived from maleic anhydride is detected when measured by infrared spectroscopy. However, if the degree of acid denaturation is low, the peak may become small and may not be detected. In that case, it can be analyzed by nuclear magnetic resonance spectroscopy.
 ポリオレフィンとしては、具体的には、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、線状低密度ポリエチレン等のポリエチレン;エチレン-αオレフィン共重合体;ホモポリプロピレン、ポリプロピレンのブロックコポリマー(例えば、プロピレンとエチレンのブロックコポリマー)、ポリプロピレンのランダムコポリマー(例えば、プロピレンとエチレンのランダムコポリマー)等のポリプロピレン;プロピレン-αオレフィン共重合体;エチレン-ブテン-プロピレンのターポリマー等が挙げられる。これらの中でも、ポリプロピレンが好ましい。共重合体である場合のポリオレフィン樹脂は、ブロック共重合体であってもよく、ランダム共重合体であってもよい。これらポリオレフィン系樹脂は、1種を単独で使用してもよく、2種以上を併用してもよい。 Specific examples of the polyolefin include polyethylenes such as low-density polyethylene, medium-density polyethylene, high-density polyethylene, and linear low-density polyethylene; ethylene-α-olefin copolymers; homopolypropylene and block copolymers of polypropylene (for example, with propylene). Polyethylene (for example, a random copolymer of propylene and ethylene) such as a block copolymer of polyethylene), a random copolymer of polyethylene (for example, a random copolymer of propylene and ethylene); a propylene-α-olefin copolymer; a tarpolymer of ethylene-butene-propylene and the like can be mentioned. Among these, polypropylene is preferable. When it is a copolymer, the polyolefin resin may be a block copolymer or a random copolymer. One type of these polyolefin resins may be used alone, or two or more types may be used in combination.
 また、ポリオレフィンは、環状ポリオレフィンであってもよい。環状ポリオレフィンは、オレフィンと環状モノマーとの共重合体であり、前記環状ポリオレフィンの構成モノマーであるオレフィンとしては、例えば、エチレン、プロピレン、4-メチル-1-ペンテン、スチレン、ブタジエン、イソプレン等が挙げられる。また、環状ポリオレフィンの構成モノマーである環状モノマーとしては、例えば、ノルボルネン等の環状アルケン;シクロペンタジエン、ジシクロペンタジエン、シクロヘキサジエン、ノルボルナジエン等の環状ジエン等が挙げられる。これらの中でも、好ましくは環状アルケン、さらに好ましくはノルボルネンが挙げられる。 Further, the polyolefin may be a cyclic polyolefin. The cyclic polyolefin is a copolymer of an olefin and a cyclic monomer, and examples of the olefin that is a constituent monomer of the cyclic polyolefin include ethylene, propylene, 4-methyl-1-pentene, styrene, butadiene, and isoprene. Be done. Examples of the cyclic monomer which is a constituent monomer of the cyclic polyolefin include cyclic alkenes such as norbornene; cyclic diene such as cyclopentadiene, dicyclopentadiene, cyclohexadiene, and norbornadiene. Among these, cyclic alkene is preferable, and norbornene is more preferable.
 酸変性ポリオレフィンとは、ポリオレフィンを酸成分でブロック重合又はグラフト重合することにより変性したポリマーである。酸変性されるポリオレフィンとしては、前記のポリオレフィンや、前記のポリオレフィンにアクリル酸若しくはメタクリル酸等の極性分子を共重合させた共重合体、又は、架橋ポリオレフィン等の重合体等も使用できる。また、酸変性に使用される酸成分としては、例えば、マレイン酸、アクリル酸、イタコン酸、クロトン酸、無水マレイン酸、無水イタコン酸等のカルボン酸またはその無水物が挙げられる。 Acid-modified polyolefin is a polymer modified by block polymerization or graft polymerization of polyolefin with an acid component. As the acid-modified polyolefin, the above-mentioned polyolefin, a copolymer obtained by copolymerizing the above-mentioned polyolefin with a polar molecule such as acrylic acid or methacrylic acid, or a polymer such as a crosslinked polyolefin can also be used. Examples of the acid component used for acid modification include carboxylic acids such as maleic acid, acrylic acid, itaconic acid, crotonic acid, maleic anhydride, and itaconic anhydride, or anhydrides thereof.
 酸変性ポリオレフィンは、酸変性環状ポリオレフィンであってもよい。酸変性環状ポリオレフィンとは、環状ポリオレフィンを構成するモノマーの一部を、酸成分に代えて共重合することにより、または環状ポリオレフィンに対して酸成分をブロック重合又はグラフト重合することにより得られるポリマーである。酸変性される環状ポリオレフィンについては、前記と同様である。また、酸変性に使用される酸成分としては、前記のポリオレフィンの変性に使用される酸成分と同様である。 The acid-modified polyolefin may be an acid-modified cyclic polyolefin. The acid-modified cyclic polyolefin is a polymer obtained by copolymerizing a part of the monomers constituting the cyclic polyolefin in place of the acid component, or by block-polymerizing or graft-polymerizing the acid component with the cyclic polyolefin. be. The same applies to the cyclic polyolefin that is acid-modified. The acid component used for acid denaturation is the same as the acid component used for denaturation of the polyolefin.
 好ましい酸変性ポリオレフィンとしては、カルボン酸またはその無水物で変性されたポリオレフィン、カルボン酸またはその無水物で変性されたポリプロピレン、無水マレイン酸変性ポリオレフィン、無水マレイン酸変性ポリプロピレンが挙げられる。 Preferred acid-modified polyolefins include polyolefins modified with carboxylic acid or its anhydride, polypropylene modified with carboxylic acid or its anhydride, maleic anhydride-modified polyolefin, and maleic anhydride-modified polypropylene.
 熱融着性樹脂層4は、1種の樹脂単独で形成してもよく、また2種以上の樹脂を組み合わせたブレンドポリマーにより形成してもよい。さらに、熱融着性樹脂層4は、1層のみで形成されていてもよいが、同一又は異なる樹脂によって2層以上で形成されていてもよい。 The heat-sealing resin layer 4 may be formed of one type of resin alone, or may be formed of a blended polymer in which two or more types of resins are combined. Further, the heat-sealing resin layer 4 may be formed of only one layer, but may be formed of two or more layers with the same or different resins.
 また、熱融着性樹脂層4は、必要に応じて滑剤などを含んでいてもよい。熱融着性樹脂層4が滑剤を含む場合、蓄電デバイス用外装材の成形性を高め得る。滑剤としては、特に制限されず、公知の滑剤を用いることができる。滑剤は、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。 Further, the heat-sealing resin layer 4 may contain a lubricant or the like, if necessary. When the heat-sealing resin layer 4 contains a lubricant, the moldability of the exterior material for a power storage device can be improved. The lubricant is not particularly limited, and a known lubricant can be used. The lubricant may be used alone or in combination of two or more.
 滑剤としては、特に制限されないが、好ましくはアミド系滑剤が挙げられる。滑剤の具体例としては、基材層1で例示したものが挙げられる。滑剤は、1種類単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。 The lubricant is not particularly limited, but an amide-based lubricant is preferable. Specific examples of the lubricant include those exemplified in the base material layer 1. One type of lubricant may be used alone, or two or more types may be used in combination.
 熱融着性樹脂層4の表面に滑剤が存在する場合、その存在量としては、特に制限されないが、蓄電デバイス用外装材の成形性を高める観点からは、好ましくは10~50mg/m2程度、さらに好ましくは15~40mg/m2程度が挙げられる。 When the lubricant is present on the surface of the heat-sealing resin layer 4, the amount of the lubricant is not particularly limited, but is preferably about 10 to 50 mg / m 2 from the viewpoint of improving the moldability of the exterior material for the power storage device. , More preferably about 15 to 40 mg / m 2.
 熱融着性樹脂層4の表面に存在する滑剤は、熱融着性樹脂層4を構成する樹脂に含まれる滑剤を滲出させたものであってもよいし、熱融着性樹脂層4の表面に滑剤を塗布したものであってもよい。 The lubricant existing on the surface of the heat-sealing resin layer 4 may be one in which the lubricant contained in the resin constituting the heat-sealing resin layer 4 is exuded, or the lubricant contained in the heat-sealing resin layer 4 may be exuded. The surface may be coated with a lubricant.
 また、熱融着性樹脂層4の厚みとしては、熱融着性樹脂層同士が熱融着して蓄電デバイス素子を密封する機能を発揮すれば特に制限されないが、例えば約100μm以下、好ましくは約85μm以下、より好ましくは15~85μm程度が挙げられる。なお、例えば、後述の接着層5の厚みが10μm以上である場合には、熱融着性樹脂層4の厚みとしては、好ましくは約85μm以下、より好ましくは15~45μm程度が挙げられ、例えば後述の接着層5の厚みが10μm未満である場合や接着層5が設けられていない場合には、熱融着性樹脂層4の厚みとしては、好ましくは約20μm以上、より好ましくは35~85μm程度が挙げられる。 The thickness of the heat-sealing resin layer 4 is not particularly limited as long as the heat-sealing resin layers have a function of heat-sealing to seal the power storage device element, but is preferably about 100 μm or less, preferably about 100 μm or less. It is about 85 μm or less, more preferably about 15 to 85 μm. For example, when the thickness of the adhesive layer 5 described later is 10 μm or more, the thickness of the heat-sealing resin layer 4 is preferably about 85 μm or less, more preferably about 15 to 45 μm, for example. When the thickness of the adhesive layer 5 described later is less than 10 μm or when the adhesive layer 5 is not provided, the thickness of the heat-sealing resin layer 4 is preferably about 20 μm or more, more preferably 35 to 85 μm. The degree can be mentioned.
[接着層5]
 本開示の蓄電デバイス用外装材において、接着層5は、バリア層3(又は耐腐食性皮膜)と熱融着性樹脂層4を強固に接着させるために、これらの間に必要に応じて設けられる
層である。
[Adhesive layer 5]
In the exterior material for a power storage device of the present disclosure, the adhesive layer 5 is provided between the barrier layer 3 (or the corrosion-resistant film) and the heat-sealing resin layer 4 as necessary in order to firmly bond them. It is a layer to be corroded.
 接着層5は、バリア層3と熱融着性樹脂層4とを接着可能である樹脂によって形成される。接着層5の形成に使用される樹脂としては、例えば接着剤層2で例示した接着剤と同様のものが使用できる。また、接着層5と熱融着性樹脂層4とを強固に接着する観点から、接着層5の形成に使用される樹脂としてはポリオレフィン骨格を含んでいることが好ましく、前述の熱融着性樹脂層4で例示したポリオレフィン、酸変性ポリオレフィンが挙げられる。一方、バリア層3と接着層5とを強固に接着する観点から、接着層5は酸変性ポリオレフィンを含むことが好ましい。酸変性成分としては、マレイン酸、イタコン酸、コハク酸、アジピン酸などのジカルボン酸やこれらの無水物、アクリル酸、メタクリル酸などが挙げられるが、変性のし易さや汎用性などの点から無水マレイン酸が最も好ましい。また、蓄電デバイス用外装材の耐熱性の観点からは、オレフィン成分はポリプロピレン系樹脂であることが好ましく、接着層5は無水マレイン酸変性ポリプロピレンを含むことが最も好ましい。 The adhesive layer 5 is formed of a resin capable of adhering the barrier layer 3 and the heat-sealing resin layer 4. As the resin used for forming the adhesive layer 5, for example, the same resin as the adhesive exemplified in the adhesive layer 2 can be used. Further, from the viewpoint of firmly adhering the adhesive layer 5 and the heat-sealing resin layer 4, it is preferable that the resin used for forming the adhesive layer 5 contains a polyolefin skeleton, and the above-mentioned heat-sealing property Examples thereof include the polyolefin exemplified in the resin layer 4 and the acid-modified polyolefin. On the other hand, from the viewpoint of firmly adhering the barrier layer 3 and the adhesive layer 5, the adhesive layer 5 preferably contains an acid-modified polyolefin. Examples of the acid-modifying component include dicarboxylic acids such as maleic acid, itaconic acid, succinic acid, and adipic acid, and anhydrides thereof, acrylic acid, and methacrylic acid. Maleic acid is most preferred. From the viewpoint of heat resistance of the exterior material for the power storage device, the olefin component is preferably polypropylene-based resin, and the adhesive layer 5 most preferably contains maleic anhydride-modified polypropylene.
 接着層5を構成している樹脂がポリオレフィン骨格を含むことは、例えば、赤外分光法、ガスクロマトグラフィー質量分析法などにより分析可能であり、分析方法は特に問わない。また、接着層5を構成している樹脂が酸変性ポリオレフィンを含むことは、例えば、赤外分光法にて無水マレイン酸変性ポリオレフィンを測定すると、波数1760cm-1付近と波数1780cm-1付近に無水マレイン酸由来のピークが検出される。ただし、酸変性度が低いとピークが小さくなり検出されない場合がある。その場合は核磁気共鳴分光法にて分析可能である。 The fact that the resin constituting the adhesive layer 5 contains a polyolefin skeleton can be analyzed by, for example, infrared spectroscopy, gas chromatography-mass spectrometry, or the like, and the analysis method is not particularly limited. Further, the resin constituting the adhesive layer 5 comprises an acid-modified polyolefin, for example, when measuring the infrared spectroscopy at maleic anhydride-modified polyolefin, anhydride in the vicinity of a wave number of 1760 cm -1 and near the wave number 1780 cm -1 A peak derived from maleic anhydride is detected. However, if the degree of acid denaturation is low, the peak may become small and may not be detected. In that case, it can be analyzed by nuclear magnetic resonance spectroscopy.
 さらに、蓄電デバイス用外装材の耐熱性や耐内容物性などの耐久性や、厚みを薄くしつつ成形性を担保する観点からは、接着層5は酸変性ポリオレフィンと硬化剤を含む樹脂組成物の硬化物であることがより好ましい。酸変性ポリオレフィンとしては、好ましくは、前記のものが例示できる。 Further, from the viewpoint of ensuring durability such as heat resistance and content resistance of the exterior material for a power storage device and ensuring moldability while reducing the thickness, the adhesive layer 5 is a resin composition containing an acid-modified polyolefin and a curing agent. It is more preferably a cured product. As the acid-modified polyolefin, the above-mentioned ones are preferably exemplified.
 また、接着層5は、酸変性ポリオレフィンと、イソシアネート基を有する化合物、オキサゾリン基を有する化合物、及びエポキシ基を有する化合物からなる群より選択される少なくとも1種とを含む樹脂組成物の硬化物であることが好ましく、酸変性ポリオレフィンと、イソシアネート基を有する化合物及びエポキシ基を有する化合物からなる群より選択される少なくとも1種とを含む樹脂組成物の硬化物であることが特に好ましい。また、接着層5は、ポリウレタン、ポリエステル、及びエポキシ樹脂からなる群より選択される少なくとも1種を含むことが好ましく、ポリウレタン及びエポキシ樹脂を含むことがより好ましい。ポリエステルとしては、例えばエポキシ基と無水マレイン酸基の反応により生成するエステル樹脂、オキサゾリン基と無水マレイン酸基の反応で生成するアミドエステル樹脂が好ましい。なお、接着層5に、イソシアネート基を有する化合物、オキサゾリン基を有する化合物、エポキシ樹脂などの硬化剤の未反応物が残存している場合、未反応物の存在は、例えば、赤外分光法、ラマン分光法、飛行時間型二次イオン質量分析法(TOF-SIMS)などから選択される方法で確認することが可能である。 The adhesive layer 5 is a cured product of a resin composition containing an acid-modified polyolefin and at least one selected from the group consisting of a compound having an isocyanate group, a compound having an oxazoline group, and a compound having an epoxy group. It is particularly preferable that the resin composition is a cured product containing an acid-modified polyolefin and at least one selected from the group consisting of a compound having an isocyanate group and a compound having an epoxy group. Further, the adhesive layer 5 preferably contains at least one selected from the group consisting of polyurethane, polyester, and epoxy resin, and more preferably contains polyurethane and epoxy resin. As the polyester, for example, an ester resin produced by a reaction of an epoxy group and a maleic anhydride group, and an amide ester resin produced by a reaction of an oxazoline group and a maleic anhydride group are preferable. When an unreacted substance of a curing agent such as a compound having an isocyanate group, a compound having an oxazoline group, or an epoxy resin remains in the adhesive layer 5, the presence of the unreacted substance is determined by, for example, infrared spectroscopy. It can be confirmed by a method selected from Raman spectroscopy, time-of-flight secondary ion mass spectrometry (TOF-SIMS), and the like.
 また、バリア層3と接着層5との密着性をより高める観点から、接着層5は、酸素原子、複素環、C=N結合、及びC-O-C結合からなる群より選択される少なくとも1種を有する硬化剤を含む樹脂組成物の硬化物であることが好ましい。複素環を有する硬化剤としては、例えば、オキサゾリン基を有する硬化剤、エポキシ基を有する硬化剤などが挙げられる。また、C=N結合を有する硬化剤としては、オキサゾリン基を有する硬化剤、イソシアネート基を有する硬化剤などが挙げられる。また、C-O-C結合を有する硬化剤としては、オキサゾリン基を有する硬化剤、エポキシ基を有する硬化剤などが挙げられる。接着層5がこれらの硬化剤を含む樹脂組成物の硬化物であることは、例えば、ガスクロマトグラフ質量分析(GCMS)、赤外分光法(IR)、飛行時間型二次イオン質量分析法(TOF-SIMS)、X線光電子分光法(XPS)などの方法で確認することができる。 Further, from the viewpoint of further enhancing the adhesion between the barrier layer 3 and the adhesive layer 5, the adhesive layer 5 is selected from at least a group consisting of an oxygen atom, a heterocycle, a C = N bond, and a COC bond. It is preferably a cured product of a resin composition containing a curing agent having one type. Examples of the curing agent having a heterocycle include a curing agent having an oxazoline group and a curing agent having an epoxy group. Examples of the curing agent having a C = N bond include a curing agent having an oxazoline group and a curing agent having an isocyanate group. Examples of the curing agent having a C—C bond include a curing agent having an oxazoline group and a curing agent having an epoxy group. The fact that the adhesive layer 5 is a cured product of a resin composition containing these curing agents is, for example, gas chromatograph mass spectrometry (GCMS), infrared spectroscopy (IR), time-of-flight secondary ion mass spectrometry (TOF). -SIMS), X-ray photoelectron spectroscopy (XPS) and other methods can be used for confirmation.
 イソシアネート基を有する化合物としては、特に制限されないが、バリア層3と接着層5との密着性を効果的に高める観点からは、好ましくは多官能イソシアネート化合物が挙げられる。多官能イソシアネート化合物は、2つ以上のイソシアネート基を有する化合物であれば、特に限定されない。多官能イソシアネート系硬化剤の具体例としては、ペンタンジイソシアネート(PDI)、イソホロンジイソシアネート(IPDI)、ヘキサメチレンジイソシアネート(HDI)、トリレンジイソシアネート(TDI)、ジフェニルメタンジイソシアネート(MDI)、これらをポリマー化やヌレート化したもの、これらの混合物や他ポリマーとの共重合物などが挙げられる。また、アダクト体、ビュレット体、イソシアヌレート体などが挙げられる。 The compound having an isocyanate group is not particularly limited, but from the viewpoint of effectively enhancing the adhesion between the barrier layer 3 and the adhesive layer 5, a polyfunctional isocyanate compound is preferable. The polyfunctional isocyanate compound is not particularly limited as long as it is a compound having two or more isocyanate groups. Specific examples of the polyfunctional isocyanate-based curing agent include pentandiisocyanate (PDI), isophorone diisocyanate (IPDI), hexamethylene diisocyanate (HDI), tolylene diisocyanate (TDI), and diphenylmethane diisocyanate (MDI), which are polymerized or nurate. Examples thereof include chemical compounds, mixtures thereof, and copolymers with other polymers. In addition, an adduct body, a burette body, an isocyanurate body and the like can be mentioned.
 接着層5における、イソシアネート基を有する化合物の含有量としては、接着層5を構成する樹脂組成物中、0.1~50質量%の範囲にあることが好ましく、0.5~40質量%の範囲にあることがより好ましい。これにより、バリア層3と接着層5との密着性を効果的に高めることができる。 The content of the compound having an isocyanate group in the adhesive layer 5 is preferably in the range of 0.1 to 50% by mass, and 0.5 to 40% by mass in the resin composition constituting the adhesive layer 5. More preferably in the range. As a result, the adhesion between the barrier layer 3 and the adhesive layer 5 can be effectively enhanced.
 オキサゾリン基を有する化合物は、オキサゾリン骨格を備える化合物であれば、特に限定されない。オキサゾリン基を有する化合物の具体例としては、ポリスチレン主鎖を有するもの、アクリル主鎖を有するものなどが挙げられる。また、市販品としては、例えば、日本触媒社製のエポクロスシリーズなどが挙げられる。 The compound having an oxazoline group is not particularly limited as long as it is a compound having an oxazoline skeleton. Specific examples of the compound having an oxazoline group include those having a polystyrene main chain and those having an acrylic main chain. Examples of commercially available products include the Epocross series manufactured by Nippon Shokubai Co., Ltd.
 接着層5における、オキサゾリン基を有する化合物の割合としては、接着層5を構成する樹脂組成物中、0.1~50質量%の範囲にあることが好ましく、0.5~40質量%の範囲にあることがより好ましい。これにより、バリア層3と接着層5との密着性を効果的に高めることができる。 The proportion of the compound having an oxazoline group in the adhesive layer 5 is preferably in the range of 0.1 to 50% by mass, preferably in the range of 0.5 to 40% by mass in the resin composition constituting the adhesive layer 5. It is more preferable to be in. As a result, the adhesion between the barrier layer 3 and the adhesive layer 5 can be effectively enhanced.
 エポキシ基を有する化合物としては、例えば、エポキシ樹脂が挙げられる。エポキシ樹脂としては、分子内に存在するエポキシ基によって架橋構造を形成することが可能な樹脂であれば、特に制限されず、公知のエポキシ樹脂を用いることができる。エポキシ樹脂の重量平均分子量としては、好ましくは50~2000程度、より好ましくは100~1000程度、さらに好ましくは200~800程度が挙げられる。なお、第1の開示において、エポキシ樹脂の重量平均分子量は、標準サンプルとしてポリスチレンを用いた条件で測定された、ゲル浸透クロマトグラフィ(GPC)により測定された値である。 Examples of the compound having an epoxy group include an epoxy resin. The epoxy resin is not particularly limited as long as it is a resin capable of forming a crosslinked structure by an epoxy group existing in the molecule, and a known epoxy resin can be used. The weight average molecular weight of the epoxy resin is preferably about 50 to 2000, more preferably about 100 to 1000, and even more preferably about 200 to 800. In the first disclosure, the weight average molecular weight of the epoxy resin is a value measured by gel permeation chromatography (GPC) measured under the condition that polystyrene is used as a standard sample.
 エポキシ樹脂の具体例としては、トリメチロールプロパンのグリシジルエーテル誘導体、ビスフェノールAジグリシジルエーテル、変性ビスフェノールAジグリシジルエーテル、ビスフェノールF型グリシジルエーテル、ノボラックグリシジルエーテル、グリセリンポリグリシジルエーテル、ポリグリセリンポリグリシジルエーテルなどが挙げられる。エポキシ樹脂は、1種類単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。 Specific examples of the epoxy resin include glycidyl ether derivative of trimethylolpropane, bisphenol A diglycidyl ether, modified bisphenol A diglycidyl ether, bisphenol F type glycidyl ether, novolac glycidyl ether, glycerin polyglycidyl ether, polyglycerin polyglycidyl ether and the like. Can be mentioned. One type of epoxy resin may be used alone, or two or more types may be used in combination.
 接着層5における、エポキシ樹脂の割合としては、接着層5を構成する樹脂組成物中、0.1~50質量%の範囲にあることが好ましく、0.5~40質量%の範囲にあることがより好ましい。これにより、バリア層3と接着層5との密着性を効果的に高めることができる。 The proportion of the epoxy resin in the adhesive layer 5 is preferably in the range of 0.1 to 50% by mass, preferably in the range of 0.5 to 40% by mass in the resin composition constituting the adhesive layer 5. Is more preferable. As a result, the adhesion between the barrier layer 3 and the adhesive layer 5 can be effectively enhanced.
 ポリウレタンとしては、特に制限されず、公知のポリウレタンを使用することができる。接着層5は、例えば、2液硬化型ポリウレタンの硬化物であってもよい。 The polyurethane is not particularly limited, and known polyurethane can be used. The adhesive layer 5 may be, for example, a cured product of a two-component curable polyurethane.
 接着層5における、ポリウレタンの割合としては、接着層5を構成する樹脂組成物中、0.1~50質量%の範囲にあることが好ましく、0.5~40質量%の範囲にあることがより好ましい。これにより、電解液などのバリア層の腐食を誘発する成分が存在する雰囲気における、バリア層3と接着層5との密着性を効果的に高めることができる。 The proportion of polyurethane in the adhesive layer 5 is preferably in the range of 0.1 to 50% by mass, and preferably in the range of 0.5 to 40% by mass in the resin composition constituting the adhesive layer 5. More preferred. As a result, the adhesion between the barrier layer 3 and the adhesive layer 5 can be effectively enhanced in an atmosphere in which a component that induces corrosion of the barrier layer such as an electrolytic solution is present.
 なお、接着層5が、イソシアネート基を有する化合物、オキサゾリン基を有する化合物、及びエポキシ樹脂からなる群より選択される少なくとも1種と、前記酸変性ポリオレフィンとを含む樹脂組成物の硬化物である場合、酸変性ポリオレフィンが主剤として機能し、イソシアネート基を有する化合物、オキサゾリン基を有する化合物、及びエポキシ基を有する化合物は、それぞれ、硬化剤として機能する。 When the adhesive layer 5 is a cured product of a resin composition containing at least one selected from the group consisting of a compound having an isocyanate group, a compound having an oxazoline group, and an epoxy resin, and the acid-modified polyolefin. , The acid-modified polyolefin functions as a main agent, and the compound having an isocyanate group, the compound having an oxazoline group, and the compound having an epoxy group each function as a curing agent.
 接着層5には、カルボジイミド基を有する改質剤が含まれていてもよい。 The adhesive layer 5 may contain a modifier having a carbodiimide group.
 接着層5の厚さは、好ましくは、約50μm以下、約40μm以下、約30μm以下、約20μm以下、約5μm以下である。また、接着層5の厚さは、好ましくは、約0.1μm以上、約0.5μm以上である。また、接着層5の厚さの範囲としては、好ましくは、0.1~50μm程度、0.1~40μm程度、0.1~30μm程度、0.1~20μm程度、0.1~5μm程度、0.5~50μm程度、0.5~40μm程度、0.5~30μm程度、0.5~20μm程度、0.5~5μm程度が挙げられる。より具体的には、接着剤層2で例示した接着剤や、酸変性ポリオレフィンと硬化剤との硬化物である場合は、好ましくは1~10μm程度、より好ましくは1~5μm程度が挙げられる。また、熱融着性樹脂層4で例示した樹脂を用いる場合であれば、好ましくは2~50μm程度、より好ましくは10~40μm程度が挙げられる。なお、接着層5が接着剤層2で例示した接着剤や、酸変性ポリオレフィンと硬化剤を含む樹脂組成物の硬化物である場合、例えば、当該樹脂組成物を塗布し、加熱等により硬化させることにより、接着層5を形成することができる。また、熱融着性樹脂層4で例示した樹脂を用いる場合、例えば、熱融着性樹脂層4と接着層5との押出成形により形成することができる。 The thickness of the adhesive layer 5 is preferably about 50 μm or less, about 40 μm or less, about 30 μm or less, about 20 μm or less, and about 5 μm or less. The thickness of the adhesive layer 5 is preferably about 0.1 μm or more and about 0.5 μm or more. The thickness range of the adhesive layer 5 is preferably about 0.1 to 50 μm, about 0.1 to 40 μm, about 0.1 to 30 μm, about 0.1 to 20 μm, and about 0.1 to 5 μm. , About 0.5 to 50 μm, about 0.5 to 40 μm, about 0.5 to 30 μm, about 0.5 to 20 μm, and about 0.5 to 5 μm. More specifically, in the case of the adhesive exemplified in the adhesive layer 2 or the cured product of the acid-modified polyolefin and the curing agent, the thickness is preferably about 1 to 10 μm, more preferably about 1 to 5 μm. Further, when the resin exemplified in the heat-sealing resin layer 4 is used, it is preferably about 2 to 50 μm, more preferably about 10 to 40 μm. When the adhesive layer 5 is a cured product of the adhesive exemplified in the adhesive layer 2 or a resin composition containing an acid-modified polyolefin and a curing agent, for example, the resin composition is applied and cured by heating or the like. Thereby, the adhesive layer 5 can be formed. Further, when the resin exemplified in the heat-sealing resin layer 4 is used, it can be formed by, for example, extrusion molding of the heat-sealing resin layer 4 and the adhesive layer 5.
[表面被覆層6]
 本開示の蓄電デバイス用外装材は、意匠性、耐電解液性、耐傷性、成形性などの向上の少なくとも一つを目的として、必要に応じて、基材層1の上(基材層1のバリア層3とは反対側)に、表面被覆層6を備えていてもよい。表面被覆層6は、蓄電デバイス用外装材を用いて蓄電デバイスを組み立てた時に、蓄電デバイス用外装材の最外層側に位置する層である。
[Surface coating layer 6]
The exterior material for a power storage device of the present disclosure is above the base material layer 1 (base material layer 1), if necessary, for the purpose of improving at least one of designability, electrolytic solution resistance, scratch resistance, moldability, and the like. The surface coating layer 6 may be provided on the side opposite to the barrier layer 3 of the above. The surface coating layer 6 is a layer located on the outermost layer side of the exterior material for the power storage device when the power storage device is assembled using the exterior material for the power storage device.
 表面被覆層6は、例えば、ポリ塩化ビニリデン、ポリエステル、ポリウレタン、アクリル樹脂、エポキシ樹脂などの樹脂により形成することができる。 The surface coating layer 6 can be formed of, for example, a resin such as polyvinylidene chloride, polyester, polyurethane, acrylic resin, or epoxy resin.
 表面被覆層6を形成する樹脂が硬化型の樹脂である場合、当該樹脂は、1液硬化型及び2液硬化型のいずれであってもよいが、好ましくは2液硬化型である。2液硬化型樹脂としては、例えば、2液硬化型ポリウレタン、2液硬化型ポリエステル、2液硬化型エポキシ樹脂などが挙げられる。これらの中でも2液硬化型ポリウレタンが好ましい。 When the resin forming the surface coating layer 6 is a curable resin, the resin may be either a one-component curable type or a two-component curable type, but is preferably a two-component curable type. Examples of the two-component curable resin include two-component curable polyurethane, two-component curable polyester, and two-component curable epoxy resin. Of these, two-component curable polyurethane is preferable.
 2液硬化型ポリウレタンとしては、例えば、ポリオール化合物を含有する第1剤と、イソシアネート化合物を含有する第2剤とを含むポリウレタンが挙げられる。好ましくはポリエステルポリオール、ポリエーテルポリオール、およびアクリルポリオール等のポリオールを第1剤として、芳香族系又は脂肪族系のポリイソシアネートを第2剤とした二液硬化型のポリウレタンが挙げられる。また、ポリウレタンとしては、例えば、予めポリオール化合物とイソシアネート化合物とを反応させたポリウレタン化合物と、イソシアネート化合物とを含むポリウレタンが挙げられる。ポリウレタンとしては、例えば、予めポリオール化合物とイソシアネート化合物とを反応させたポリウレタン化合物と、ポリオール化合物とを含むポリウレタンが挙げられる。ポリウレタンとしては、例えば、予めポリオール化合物とイソシアネート化合物とを反応させたポリウレタン化合物を、空気中などの水分と反応させることによって硬化させたポリウレタンが挙げられる。ポリオール化合物としては、繰り返し単位の末端の水酸基に加えて、側鎖にも水酸基を有するポリエステルポリオールを用いることが好ましい。第2剤としては、脂肪族、脂環式、芳香族、芳香脂肪族のイソシアネート系化合物が挙げられる。イソシアネート系化合物としては、例えばヘキサメチレンジイソシアネート(HDI)、キシリレンジイソシアネート(XDI)、イソホロンジイソシアネート(IPDI)、水素化XDI(H6XDI)、水素化MDI(H12MDI)、トリレンジイソシアネート(TDI)、ジフェニルメタンジイソシアネート(MDI)、ナフタレンジイソシアネート(NDI)等が挙げられる。また、これらのジイソシアネートの1種類又は2種類以上からの多官能イソシアネート変性体等が挙げられる。また、ポリイソシアネート化合物として多量体(例えば三量体)を使用することもできる。このような多量体には、アダクト体、ビウレット体、ヌレート体等が挙げられる。なお、脂肪族イソシアネート系化合物とは脂肪族基を有し芳香環を有さないイソシアネートを指し、脂環式イソシアネート系化合物とは脂環式炭化水素基を有するイソシアネートを指し、芳香族イソシアネート系化合物とは芳香環を有するイソシアネートを指す。表面被覆層6がポリウレタンにより形成されていることで蓄電デバイス用外装材に優れた電解液耐性が付与される。 Examples of the two-component curable polyurethane include a polyurethane containing a first agent containing a polyol compound and a second agent containing an isocyanate compound. Preferably, a two-component curable polyurethane using a polyol such as a polyester polyol, a polyether polyol, and an acrylic polyol as a first agent and an aromatic or aliphatic polyisocyanate as a second agent can be mentioned. Examples of the polyurethane include a polyurethane compound obtained by reacting a polyol compound and an isocyanate compound in advance, and a polyurethane containing the isocyanate compound. Examples of the polyurethane include a polyurethane compound obtained by reacting a polyol compound and an isocyanate compound in advance, and a polyurethane containing the polyol compound. Examples of the polyurethane include polyurethane obtained by reacting a polyurethane compound in which a polyol compound and an isocyanate compound are previously reacted with water such as in the air to cure the polyurethane. As the polyol compound, it is preferable to use a polyester polyol having a hydroxyl group in the side chain in addition to the hydroxyl group at the end of the repeating unit. Examples of the second agent include aliphatic, alicyclic, aromatic, and aromatic aliphatic isocyanate compounds. Examples of the isocyanate-based compound include hexamethylene diisocyanate (HDI), xylylene diisocyanate (XDI), isophorone diisocyanate (IPDI), hydrogenated XDI (H6XDI), hydrogenated MDI (H12MDI), tolylene diisocyanate (TDI), and diphenylmethane diisocyanate. (MDI), naphthalenediocyanate (NDI) and the like. Moreover, a polyfunctional isocyanate modified product from one kind or two or more kinds of these diisocyanates and the like can be mentioned. Further, a multimer (for example, a trimer) can be used as the polyisocyanate compound. Examples of such a multimer include an adduct body, a biuret body, a nurate body and the like. The aliphatic isocyanate-based compound refers to an isocyanate having an aliphatic group and no aromatic ring, and the alicyclic isocyanate-based compound refers to an isocyanate having an alicyclic hydrocarbon group, which is an aromatic isocyanate-based compound. Refers to an isocyanate having an aromatic ring. Since the surface coating layer 6 is made of polyurethane, excellent electrolytic solution resistance is imparted to the exterior material for the power storage device.
 表面被覆層6は、表面被覆層6の表面及び内部の少なくとも一方には、該表面被覆層6やその表面に備えさせるべき機能性等に応じて、必要に応じて、前述した滑剤や、アンチブロッキング剤、艶消し剤、難燃剤、酸化防止剤、粘着付与剤、耐電防止剤等の添加剤を含んでいてもよい。添加剤としては、例えば、平均粒子径が0.5nm~5μm程度の微粒子が挙げられる。添加剤の平均粒子径は、レーザ回折/散乱式粒子径分布測定装置で測定されたメジアン径とする。 The surface coating layer 6 has the above-mentioned lubricant or antistatic agent on at least one of the surface and the inside of the surface coating layer 6, depending on the functionality and the like to be provided on the surface coating layer 6 and the surface thereof. It may contain additives such as a blocking agent, a matting agent, a flame retardant, an antioxidant, a tackifier, and an antistatic agent. Examples of the additive include fine particles having an average particle size of about 0.5 nm to 5 μm. The average particle size of the additive shall be the median size measured by the laser diffraction / scattering type particle size distribution measuring device.
 添加剤は、無機物及び有機物のいずれであってもよい。また、添加剤の形状についても、特に制限されず、例えば、球状、繊維状、板状、不定形、鱗片状などが挙げられる。 The additive may be either an inorganic substance or an organic substance. The shape of the additive is also not particularly limited, and examples thereof include a spherical shape, a fibrous shape, a plate shape, an amorphous shape, and a scaly shape.
 添加剤の具体例としては、タルク、シリカ、グラファイト、カオリン、モンモリロナイト、マイカ、ハイドロタルサイト、シリカゲル、ゼオライト、水酸化アルミニウム、水酸化マグネシウム、酸化亜鉛、酸化マグネシウム、酸化アルミニウム、酸化ネオジウム、酸化アンチモン、酸化チタン、酸化セリウム、硫酸カルシウム、硫酸バリウム、炭酸カルシウム、ケイ酸カルシウム、炭酸リチウム、安息香酸カルシウム、シュウ酸カルシウム、ステアリン酸マグネシウム、アルミナ、カーボンブラック、カーボンナノチューブ、高融点ナイロン、アクリレート樹脂、架橋アクリル、架橋スチレン、架橋ポリエチレン、ベンゾグアナミン、金、アルミニウム、銅、ニッケルなどが挙げられる。添加剤は、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。これらの添加剤の中でも、分散安定性やコストなどの観点から、好ましくはシリカ、硫酸バリウム、酸化チタンが挙げられる。また、添加剤には、表面に絶縁処理、高分散性処理などの各種表面処理を施してもよい。 Specific examples of additives include talc, silica, graphite, kaolin, montmorillonite, mica, hydrotalcite, silica gel, zeolite, aluminum hydroxide, magnesium hydroxide, zinc oxide, magnesium oxide, aluminum oxide, neodium oxide, and antimony oxide. , Titanium oxide, cerium oxide, calcium sulfate, barium sulfate, calcium carbonate, calcium silicate, lithium carbonate, calcium benzoate, calcium oxalate, magnesium stearate, alumina, carbon black, carbon nanotubes, refractory nylon, acrylate resin, Examples thereof include crosslinked acrylic, crosslinked styrene, crosslinked polyethylene, benzoguanamine, gold, aluminum, copper and nickel. The additive may be used alone or in combination of two or more. Among these additives, silica, barium sulfate, and titanium oxide are preferable from the viewpoint of dispersion stability and cost. Further, the additive may be subjected to various surface treatments such as an insulation treatment and a highly dispersible treatment on the surface.
 表面被覆層6を形成する方法としては、特に制限されず、例えば、表面被覆層6を形成する樹脂を塗布する方法が挙げられる。表面被覆層6に添加剤を配合する場合には、添加剤を混合した樹脂を塗布すればよい。 The method for forming the surface coating layer 6 is not particularly limited, and examples thereof include a method of applying a resin for forming the surface coating layer 6. When an additive is blended in the surface coating layer 6, a resin mixed with the additive may be applied.
 表面被覆層6の厚みとしては、表面被覆層6としての上記の機能を発揮すれば特に制限されず、例えば0.5~10μm程度、好ましくは1~5μm程度が挙げられる。 The thickness of the surface coating layer 6 is not particularly limited as long as it exhibits the above-mentioned functions as the surface coating layer 6, and examples thereof include about 0.5 to 10 μm, preferably about 1 to 5 μm.
3.蓄電デバイス用外装材の製造方法
 蓄電デバイス用外装材の製造方法については、本発明の蓄電デバイス用外装材が備える各層を積層させた積層体が得られる限り、特に制限されず、少なくとも、基材層1、バリア層3、及び熱融着性樹脂層4がこの順となるように積層する工程を備える方法が挙げられる。すなわち、本開示の蓄電デバイス用外装材10の製造方法は、少なくとも、基材層1、バリア層3、及び熱融着性樹脂層4がこの順となるように積層して積層体を得る工程を備えており、カメラ及び光源を備える主軸方位の測定装置を用い、測定装置のカメラの方向と基材層1のMDの方向とが一致するようにして、基材層をカメラと光源との間に配置し、基材層の厚み方向に光源の光を照射して測定される、基材層1の主軸方位が、90°±30°の範囲内である。
3. 3. Method for Manufacturing Exterior Material for Power Storage Device The method for manufacturing the exterior material for power storage device is not particularly limited as long as a laminated body in which each layer of the exterior material for power storage device of the present invention is laminated can be obtained, and at least the base material. Examples thereof include a method including a step of laminating the layer 1, the barrier layer 3, and the heat-sealing resin layer 4 in this order. That is, the method for manufacturing the exterior material 10 for a power storage device of the present disclosure is a step of laminating at least the base material layer 1, the barrier layer 3, and the heat-sealing resin layer 4 in this order to obtain a laminated body. A main axis orientation measuring device including a camera and a light source is used, and the base material layer is formed between the camera and the light source so that the direction of the camera of the measuring device and the direction of the MD of the base material layer 1 coincide with each other. The principal axis orientation of the base material layer 1 measured by irradiating the light of the light source in the thickness direction of the base material layer is within the range of 90 ° ± 30 °.
 本発明の蓄電デバイス用外装材の製造方法の一例としては、以下の通りである。まず、基材層1、接着剤層2、バリア層3が順に積層された積層体(以下、「積層体A」と表記することもある)を形成する。積層体Aの形成は、具体的には、基材層1上又は必要に応じて表面が化成処理されたバリア層3に接着剤層2の形成に使用される接着剤を、グラビアコート法、ロールコート法などの塗布方法で塗布、乾燥した後に、当該バリア層3又は基材層1を積層させて接着剤層2を硬化させるドライラミネート法によって行うことができる。 An example of the method for manufacturing the exterior material for a power storage device of the present invention is as follows. First, a laminate in which the base material layer 1, the adhesive layer 2, and the barrier layer 3 are laminated in this order (hereinafter, may be referred to as “laminate A”) is formed. Specifically, the laminated body A is formed by applying an adhesive used for forming the adhesive layer 2 on the base material layer 1 or, if necessary, on the barrier layer 3 whose surface has been chemically converted, by a gravure coating method. It can be carried out by a dry laminating method in which the barrier layer 3 or the base material layer 1 is laminated and the adhesive layer 2 is cured after being applied and dried by a coating method such as a roll coating method.
 次いで、積層体Aのバリア層3上に、熱融着性樹脂層4を積層させる。バリア層3上に熱融着性樹脂層4を直接積層させる場合には、積層体Aのバリア層3上に、熱融着性樹脂層4をサーマルラミネート法、押出ラミネート法などの方法により積層すればよい。また、バリア層3と熱融着性樹脂層4の間に接着層5を設ける場合には、例えば、(1)積層体Aのバリア層3上に、接着層5及び熱融着性樹脂層4を押出しすることにより積層する方法(共押出しラミネート法、タンデムラミネート法)、(2)別途、接着層5と熱融着性樹脂層4が積層した積層体を形成し、これを積層体Aのバリア層3上にサーマルラミネート法により積層する方法や、積層体Aのバリア層3上に接着層5が積層した積層体を形成し、これを熱融着性樹脂層4とサーマルラミネート法により積層する方法、(3)積層体Aのバリア層3と、予めシート状に製膜した熱融着性樹脂層4との間に、溶融させた接着層5を流し込みながら、接着層5を介して積層体Aと熱融着性樹脂層4を貼り合せる方法(サンドイッチラミネート法)、(4)積層体Aのバリア層3上に、接着層5を形成させるための接着剤を溶液コーティングし、乾燥させる方法や、さらには焼き付ける方法などにより積層させ、この接着層5上に予めシート状に製膜した熱融着性樹脂層4を積層する方法などが挙げられる。 Next, the heat-sealing resin layer 4 is laminated on the barrier layer 3 of the laminated body A. When the heat-sealing resin layer 4 is directly laminated on the barrier layer 3, the heat-sealing resin layer 4 is laminated on the barrier layer 3 of the laminated body A by a method such as a thermal laminating method or an extrusion laminating method. do it. When the adhesive layer 5 is provided between the barrier layer 3 and the heat-sealing resin layer 4, for example, (1) the adhesive layer 5 and the heat-sealing resin layer are placed on the barrier layer 3 of the laminated body A. A method of laminating 4 by extruding (coextrusion laminating method, tandem laminating method), (2) Separately, a laminated body in which the adhesive layer 5 and the heat-sealing resin layer 4 are laminated is formed, and the laminated body A is formed. A method of laminating on the barrier layer 3 of the above by a thermal laminating method, or a laminating body in which an adhesive layer 5 is laminated on the barrier layer 3 of the laminated body A is formed, and this is formed by a heat-sealing resin layer 4 and a thermal laminating method. Method of Laminating, (3) While pouring the melted adhesive layer 5 between the barrier layer 3 of the laminated body A and the heat-sealing resin layer 4 which has been formed into a sheet in advance, the adhesive layer 5 is passed through. A method of laminating the laminated body A and the heat-sealing resin layer 4 (sandwich laminating method), (4) a solution coating of an adhesive for forming the adhesive layer 5 on the barrier layer 3 of the laminated body A is performed. Examples thereof include a method of laminating by a method of drying, a method of baking, and the like, and a method of laminating a heat-sealing resin layer 4 which has been formed into a sheet in advance on the adhesive layer 5.
 表面被覆層6を設ける場合には、基材層1のバリア層3とは反対側の表面に、表面被覆層6を積層する。表面被覆層6は、例えば表面被覆層6を形成する上記の樹脂を基材層1の表面に塗布することにより形成することができる。なお、基材層1の表面にバリア層3を積層する工程と、基材層1の表面に表面被覆層6を積層する工程の順番は、特に制限されない。例えば、基材層1の表面に表面被覆層6を形成した後、基材層1の表面被覆層6とは反対側の表面にバリア層3を形成してもよい。 When the surface coating layer 6 is provided, the surface coating layer 6 is laminated on the surface of the base material layer 1 opposite to the barrier layer 3. The surface coating layer 6 can be formed, for example, by applying the above resin that forms the surface coating layer 6 to the surface of the base material layer 1. The order of the step of laminating the barrier layer 3 on the surface of the base material layer 1 and the step of laminating the surface coating layer 6 on the surface of the base material layer 1 is not particularly limited. For example, after forming the surface coating layer 6 on the surface of the base material layer 1, the barrier layer 3 may be formed on the surface of the base material layer 1 opposite to the surface coating layer 6.
 上記のようにして、必要に応じて設けられる表面被覆層6/基材層1/必要に応じて設けられる接着剤層2/バリア層3/必要に応じて設けられる接着層5/熱融着性樹脂層4をこの順に備える積層体が形成されるが、必要に応じて設けられる接着剤層2及び接着層5の接着性を強固にするために、さらに、加熱処理に供してもよい。 As described above, the surface coating layer 6 provided as needed / the base material layer 1 / the adhesive layer 2 provided as needed / the barrier layer 3 / the adhesive layer 5 provided as needed / heat fusion A laminate having the sex resin layers 4 in this order is formed, and may be further subjected to heat treatment in order to strengthen the adhesiveness of the adhesive layer 2 and the adhesive layer 5 provided as needed.
 蓄電デバイス用外装材において、積層体を構成する各層には、必要に応じて、コロナ処理、ブラスト処理、酸化処理、オゾン処理などの表面活性化処理を施すことにより加工適性を向上させてもよい。例えば、基材層1のバリア層3とは反対側の表面にコロナ処理を施すことにより、基材層1表面へのインクの印刷適性を向上させることができる。 In the exterior material for a power storage device, each layer constituting the laminated body may be subjected to surface activation treatment such as corona treatment, blast treatment, oxidation treatment, ozone treatment, etc., if necessary, to improve processing suitability. .. For example, by applying a corona treatment to the surface of the base material layer 1 opposite to the barrier layer 3, the printability of the ink on the surface of the base material layer 1 can be improved.
4.蓄電デバイス用外装材の用途
 本開示の蓄電デバイス用外装材は、正極、負極、電解質等の蓄電デバイス素子を密封して収容するための包装体に使用される。すなわち、本開示の蓄電デバイス用外装材によって形成された包装体中に、少なくとも正極、負極、及び電解質を備えた蓄電デバイス素子を収容して、蓄電デバイスとすることができる。
4. Applications of exterior materials for power storage devices The exterior materials for power storage devices of the present disclosure are used for packaging for sealing and accommodating power storage device elements such as positive electrodes, negative electrodes, and electrolytes. That is, a power storage device element having at least a positive electrode, a negative electrode, and an electrolyte can be housed in a package formed of the exterior material for a power storage device of the present disclosure to form a power storage device.
 具体的には、少なくとも正極、負極、及び電解質を備えた蓄電デバイス素子を、本開示の蓄電デバイス用外装材で、前記正極及び負極の各々に接続された金属端子を外側に突出させた状態で、蓄電デバイス素子の周縁にフランジ部(熱融着性樹脂層同士が接触する領域)が形成できるようにして被覆し、前記フランジ部の熱融着性樹脂層同士をヒートシールして密封させることによって、蓄電デバイス用外装材を使用した蓄電デバイスが提供される。なお、本開示の蓄電デバイス用外装材により形成された包装体中に蓄電デバイス素子を収容する場合、本開示の蓄電デバイス用外装材の熱融着性樹脂部分が内側(蓄電デバイス素子と接する面)になるようにして、包装体を形成する。2つの蓄電デバイス用外装材の熱融着性樹脂層同士を対向させて重ね合わせ、重ねられた蓄電デバイス用外装材の周縁部を熱融着して包装体を形成してもよく、また、図5に示す例のように、1つの蓄電デバイス用外装材を折り返して重ね合わせ、周縁部を熱融着して包装体を形成してもよい。折り返して重ね合わせる場合は、図5に示す例のように、折り返した辺以外の辺を熱融着して三方シールにより包装体を形成してもよいし、フランジ部が形成できるように折り返して四方シールしてもよい。また、蓄電デバイス用外装材には、蓄電デバイス素子を収容するための凹部が、深絞り成形または張出成形によって形成されてもよい。図5に示す例のように、一方の蓄電デバイス用外装材には凹部を設けて他方の蓄電デバイス用外装材には凹部を設けなくてもよいし、他方の蓄電デバイス用外装材にも凹部を設けてもよい。 Specifically, a power storage device element having at least a positive electrode, a negative electrode, and an electrolyte is provided with the exterior material for the power storage device of the present disclosure in a state in which metal terminals connected to each of the positive electrode and the negative electrode are projected outward. , The peripheral edge of the power storage device element is covered so that a flange portion (a region where the heat-sealing resin layers come into contact with each other) can be formed, and the heat-sealing resin layers of the flange portion are heat-sealed and sealed. Provides a power storage device using an exterior material for the power storage device. When the power storage device element is housed in the package formed of the exterior material for the power storage device of the present disclosure, the heat-sealing resin portion of the exterior material for the power storage device of the present disclosure is inside (the surface in contact with the power storage device element). ) To form a package. The heat-sealing resin layers of the two exterior materials for power storage devices may be overlapped with each other facing each other, and the peripheral edges of the overlapped exterior materials for power storage devices may be heat-sealed to form a package. As in the example shown in FIG. 5, one exterior material for a power storage device may be folded back and overlapped, and the peripheral edge portion may be heat-sealed to form a package. In the case of folding and overlapping, as shown in the example shown in FIG. 5, the side other than the folded side may be heat-sealed to form a package by a three-way seal, or the package may be folded so that a flange portion can be formed. It may be sealed on all sides. Further, in the exterior material for the power storage device, a recess for accommodating the power storage device element may be formed by deep drawing molding or overhang molding. As shown in the example shown in FIG. 5, it is not necessary to provide a recess in one of the exterior materials for the power storage device and not in the exterior material for the other power storage device, and the other exterior material for the power storage device also has a recess. May be provided.
 本開示の蓄電デバイス用外装材は、電池(コンデンサー、キャパシター等を含む)などの蓄電デバイスに好適に使用することができる。また、本開示の蓄電デバイス用外装材は、一次電池、二次電池のいずれに使用してもよいが、好ましくは二次電池に使用される。本開示の蓄電デバイス用外装材が適用される二次電池の種類については、特に制限されず、例えば、リチウムイオン電池、リチウムイオンポリマー電池、全固体電池、鉛蓄電池、ニッケル・水素蓄電池、ニッケル・カドミウム蓄電池、ニッケル・鉄蓄電池、ニッケル・亜鉛蓄電池、酸化銀・亜鉛蓄電池、金属空気電池、多価カチオン電池、コンデンサー、キャパシター等が挙げられる。これらの二次電池の中でも、本開示の蓄電デバイス用外装材の好適な適用対象として、リチウムイオン電池及びリチウムイオンポリマー電池が挙げられる。 The exterior material for a power storage device of the present disclosure can be suitably used for a power storage device such as a battery (including a capacitor, a capacitor, etc.). Further, the exterior material for a power storage device of the present disclosure may be used for either a primary battery or a secondary battery, but is preferably used for a secondary battery. The type of the secondary battery to which the exterior material for the power storage device of the present disclosure is applied is not particularly limited, and for example, a lithium ion battery, a lithium ion polymer battery, an all-solid-state battery, a lead storage battery, a nickel / hydrogen storage battery, and a nickel / hydrogen storage battery. Examples thereof include cadmium storage batteries, nickel / iron storage batteries, nickel / zinc storage batteries, silver oxide / zinc storage batteries, metal air batteries, polyvalent cation batteries, capacitors, and capacitors. Among these secondary batteries, lithium ion batteries and lithium ion polymer batteries can be mentioned as suitable application targets of the exterior materials for power storage devices of the present disclosure.
 以下に実施例及び比較例を示して本開示を詳細に説明する。但し本開示は実施例に限定されるものではない。 The present disclosure will be described in detail below with reference to Examples and Comparative Examples. However, the present disclosure is not limited to the examples.
<蓄電デバイス用外装材の製造>
実施例1,2,5,6,8及び比較例1
 基材層としての二軸延伸ナイロンフィルム(Ny 表1に記載の厚み20μm又は15μm)と、両面に耐腐食性皮膜を形成したバリア層としてのアルミニウム箔(JIS H4160:1994 A8021H-O、厚み35μm)を用意した。実施例1,2,5,6,8及び比較例1で使用した基材層は、それぞれ、表1に記載された主軸方位を有しているものを用いた。基材層の主軸方位は、後述の方法で測定された値である。次に、2液硬化型ウレタン接着剤(ポリオール化合物と芳香族イソシアネート化合物)を用いて、基材層とバリア層をドライラミネート法により積層させ、エージング処理を実施することにより、基材層(厚み20μm又は15μm)/接着剤層(硬化後の厚みが3μm)/バリア層(厚み35μm)の積層体を作製した。
<Manufacturing of exterior materials for power storage devices>
Examples 1, 2, 5, 6, 8 and Comparative Example 1
Biaxially stretched nylon film as a base material layer (Ny 20 μm or 15 μm in thickness shown in Table 1) and aluminum foil as a barrier layer having corrosion-resistant films formed on both sides (JIS H4160: 1994 A8021HO, thickness 35 μm). ) Was prepared. As the base material layers used in Examples 1, 2, 5, 6, 8 and Comparative Example 1, those having the main axis orientations shown in Table 1 were used. The principal axis orientation of the base material layer is a value measured by the method described later. Next, a base material layer and a barrier layer are laminated by a dry laminating method using a two-component curable urethane adhesive (polyol compound and aromatic isocyanate compound), and an aging treatment is performed to obtain a base material layer (thickness). A laminate of 20 μm or 15 μm) / adhesive layer (thickness after curing was 3 μm) / barrier layer (thickness 35 μm) was prepared.
 次に、得られた積層体のバリア層の上に、接着層としての無水マレイン酸変性ポリプロピレン(PPa、厚み15μm)と、熱融着性樹脂層としてのポリプロピレン(PP、厚み15μm)とを共押出しすることにより、バリア層上に接着層/熱融着性樹脂層を積層させた。次に、得られた積層体をエージングし、加熱することにより、二軸延伸ナイロンフィルム/接着剤層/バリア層/接着層/熱融着性樹脂層がこの順に積層された蓄電デバイス用外装材(表1に記載の厚み)を得た。 Next, on the barrier layer of the obtained laminate, maleic anhydride-modified polypropylene (PPa, thickness 15 μm) as an adhesive layer and polypropylene (PP, thickness 15 μm) as a heat-sealing resin layer are combined. By extruding, an adhesive layer / heat-sealing resin layer was laminated on the barrier layer. Next, by aging and heating the obtained laminate, a biaxially stretched nylon film / adhesive layer / barrier layer / adhesive layer / heat-sealing resin layer are laminated in this order as an exterior material for a power storage device. (Thickness shown in Table 1) was obtained.
実施例3
 バリア層の厚みを30μmとしたこと、接着層の厚みを14μmとしたこと、及び熱融着性樹脂層の厚みを10μmとしたこと以外は、実施例2と同様にして、二軸延伸ナイロンフィルム/接着剤層/バリア層/接着層/熱融着性樹脂層がこの順に積層された蓄電デバイス用外装材(表1に記載の厚み)を得た。
Example 3
Biaxially stretched nylon film in the same manner as in Example 2 except that the thickness of the barrier layer was 30 μm, the thickness of the adhesive layer was 14 μm, and the thickness of the heat-sealing resin layer was 10 μm. / Adhesive layer / Barrier layer / Adhesive layer / Heat-sealing resin layer were laminated in this order to obtain an exterior material for a power storage device (thickness shown in Table 1).
実施例4
 基材層の表面に、2液硬化型ウレタン樹脂(シリカ粒子(マット化剤)、ポリオール化合物、芳香族イソシアネート化合物を含む)を用いて、蓄電デバイス用外装材の最外層として表面被覆層(厚み3μm)を形成したこと、基材層とバリア層との間の接着剤層の形成に、カーボンブラックを含む2液硬化型ウレタン接着剤(カーボンブラック、ポリオール化合物、芳香族イソシアネート化合物を含む)を用いたこと以外は、実施例3と同様にして、表面被覆層/二軸延伸ナイロンフィルム/接着剤層/バリア層/接着層/熱融着性樹脂層がこの順に積層された蓄電デバイス用外装材(表1に記載の厚み)を得た。
Example 4
A two-component curable urethane resin (including silica particles (matting agent), polyol compound, and aromatic isocyanate compound) is used on the surface of the base material layer, and a surface coating layer (thickness) is used as the outermost layer of the exterior material for a power storage device. 3 μm) was formed, and a two-component curable urethane adhesive containing carbon black (including carbon black, polyol compound, and aromatic isocyanate compound) was used to form the adhesive layer between the base material layer and the barrier layer. Exterior for power storage device in which a surface coating layer / biaxially stretched nylon film / adhesive layer / barrier layer / adhesive layer / heat-sealing resin layer are laminated in this order in the same manner as in Example 3 except that they are used. A material (thickness shown in Table 1) was obtained.
実施例7
 基材層の表面に、2液硬化型ウレタン樹脂(シリカ粒子(マット化剤)、ポリオール化合物、芳香族イソシアネート化合物を含む)を用いて、蓄電デバイス用外装材の最外層として表面被覆層(厚み3μm)を形成したこと、基材層とバリア層との間の接着剤層の形成に、カーボンブラックを含む2液硬化型ウレタン接着剤(カーボンブラック、ポリオール化合物、芳香族イソシアネート化合物を含む)を用いたこと、接着層の厚みを14μmとしたこと、及び熱融着性樹脂層の厚みを10μmとしたこと以外は、実施例6と同様にして、表面被覆層/二軸延伸ナイロンフィルム/接着剤層/バリア層/接着層/熱融着性樹脂層がこの順に積層された蓄電デバイス用外装材(表1に記載の厚み)を得た。
Example 7
A surface coating layer (thickness) is used as the outermost layer of the exterior material for power storage devices by using a two-component curable urethane resin (including silica particles (matting agent), polyol compound, and aromatic isocyanate compound) on the surface of the base material layer. 3 μm) was formed, and a two-component curable urethane adhesive containing carbon black (including carbon black, polyol compound, and aromatic isocyanate compound) was used to form the adhesive layer between the base material layer and the barrier layer. Surface coating layer / biaxially stretched nylon film / adhesive in the same manner as in Example 6 except that it was used, the thickness of the adhesive layer was 14 μm, and the thickness of the heat-sealing resin layer was 10 μm. An exterior material for a power storage device (thickness shown in Table 1) was obtained in which an agent layer / a barrier layer / an adhesive layer / a heat-sealing resin layer were laminated in this order.
 なお、各蓄電デバイス用外装材の基材層の外側表面には、それぞれ、滑剤としてエルカ酸アミドを塗布した。 Erucic acid amide was applied as a lubricant to the outer surface of the base material layer of the exterior material for each power storage device.
<主軸方位の測定>
 各実施例及び比較例で基材層として用いた二軸延伸ナイロンフィルムについて、それぞれ、図6から図8の模式図に示すように、カメラC及び光源LSを備える主軸方位の測定装置を用い、測定装置のカメラCと基材層1と光源LSとが一直線上に位置するようにして、基材層1をカメラCと光源LSとの間に配置し、基材層1のTDの方向を0°方向、基材層1のMDの方向を90°方向として、基材層1の厚み方向Dに光源LSの光Lを照射して測定を行った。図6及び図7の模式図に示すように、測定においては、二軸延伸ナイロンフィルム(基材層1)の裏側(カメラC側とは反対側)に配置された光源から、二軸延伸ナイロンフィルムの厚み方向に光を照射した。基材層1の上(カメラC側)には透明なガラス板Gを配置して、基材層1の表面に皺が形成されてないようにして測定を行った。また、図6から図8では図示を省略しているが、基材層1に光が照射される位置に開口が設けられた板の上に、基材層1及びガラス板Gが順に配置され、板の開口を通して光Lが基材層1及びガラス板Gを透過するようにして測定を実施した。測定結果を表1に示す。具体的な測定条件は、以下の通りである。
(測定条件)
測定装置:株式会社フォトロン製の偏光高速度イメージング装置(CRYSTA PI-5)
解析ソフト:KAMAKIRIオフライン基本ソフト Ver:1.5.0.1
測定サンプル:二軸延伸ナイロンフィルムをA4サイズ(TD210mm×MD300mm)に裁断して調製する。
測定波長(カメラ側):520~570nm(フィルムを透過して受けるカメラが、波長520~570nmの光を検出する)
光源:白色LEDライト(光源(ライト)と基材層とカメラの位置関係が、光源の延長線と基材層の厚み方向とが一致するように測定サンプルを配置し、光源の延長線上にカメラが配置される。)
<Measurement of spindle direction>
For the biaxially stretched nylon film used as the base material layer in each Example and Comparative Example, as shown in the schematic views of FIGS. 6 to 8, a spindle orientation measuring device provided with a camera C and a light source LS was used. The base material layer 1 is arranged between the camera C and the light source LS so that the camera C of the measuring device, the base material layer 1, and the light source LS are located in a straight line, and the direction of the TD of the base material layer 1 is set. The measurement was performed by irradiating the light L of the light source LS in the thickness direction D of the base material layer 1 with the 0 ° direction and the MD direction of the base material layer 1 as the 90 ° direction. As shown in the schematic views of FIGS. 6 and 7, in the measurement, the biaxially stretched nylon is transmitted from the light source arranged on the back side (the side opposite to the camera C side) of the biaxially stretched nylon film (base material layer 1). Light was irradiated in the thickness direction of the film. A transparent glass plate G was placed on the base material layer 1 (on the camera C side), and the measurement was performed so that no wrinkles were formed on the surface of the base material layer 1. Further, although not shown in FIGS. 6 to 8, the base material layer 1 and the glass plate G are arranged in this order on a plate provided with an opening at a position where the base material layer 1 is irradiated with light. The measurement was carried out so that the light L was transmitted through the base material layer 1 and the glass plate G through the opening of the plate. The measurement results are shown in Table 1. The specific measurement conditions are as follows.
(Measurement condition)
Measuring device: Polarized high-speed imaging device (CRYSTA PI-5) manufactured by Photron Co., Ltd.
Analysis software: KAMAKIRI offline basic software Ver: 1.5.0.1
Measurement sample: A biaxially stretched nylon film is cut into A4 size (TD210 mm × MD300 mm) to prepare.
Measurement wavelength (camera side): 520 to 570 nm (The camera that receives light through the film detects light with a wavelength of 520 to 570 nm)
Light source: White LED light (measurement samples are placed so that the positional relationship between the light source (light), the base material layer, and the camera coincides with the extension line of the light source and the thickness direction of the base material layer, and the camera is placed on the extension line of the light source. Is placed.)
<成形性の評価>
 蓄電デバイス用外装材を長さ(MD(Machine Direction)の方向)90mm×幅(TD(Transverse Direction)の方向)150mmの長方形に裁断して試験サンプルとした。このサンプルを31.6mm(MDの方向)×54.5mm(TDの方向)の口径を有する矩形状の成形金型(雌型、表面は、JIS B 0659-1:2002附属書1(参考) 比較用表面粗さ標準片の表2に規定される、最大高さ粗さ(Rzの呼び値)が3.2μmである。コーナーR2.0mm、稜線R1.0mm)と、これに対応した成形金型(雄型、表面は、JIS B 0659-1:2002附属書1(参考) 比較用表面粗さ標準片の表2に規定される、最大高さ粗さ(Rzの呼び値)が1.6μmである。コーナーR2.0mm、稜線R1.0mm)を用いて、押さえ圧(面圧)0.25MPaで0.5mmの成形深さから0.5mm単位で成形深さを変えて、それぞれ10個のサンプルについて冷間成形(引き込み1段成形)を行った。このとき、雄型側に熱融着性樹脂層側が位置するよう、雌型上に上記試験サンプルを載置して成形を行った。また、雄型及び雌型のクリアランスは、0.3mmとした。冷間成形後のサンプルについて、暗室の中にてペンライトで光を当てて、光の透過によって、アルミニウム合金箔にピンホールやクラックが生じているか否かを確認した。アルミニウム合金箔にピンホール、クラックが10個のサンプル全てにおいて発生しない最も深い成形深さをAmm、アルミニウム合金箔にピンホール等が発生した最も浅い成形深さにおいてピンホール等が発生したサンプルの数をB個とし、以下の式により算出される値を小数点以下2桁目で四捨五入し、蓄電デバイス用外装材の限界成形深さとした。基材層の厚みが20μmである場合と15μmである場合とに分けて、それぞれ、深さの基準を以下のように4段階で判定した。結果を表1に示す。
 限界成形深さ=Amm+(0.5mm/10個)×(10個-B個)
<Evaluation of moldability>
The exterior material for the power storage device was cut into a rectangle having a length (direction of MD (Machine Direction)) of 90 mm × width (direction of TD (Transverse Direction)) of 150 mm to prepare a test sample. This sample is a rectangular molding die having a diameter of 31.6 mm (MD direction) x 54.5 mm (TD direction) (female mold, surface is JIS B 0659-1: 2002 Annex 1 (reference)). The maximum height roughness (nominal value of Rz) specified in Table 2 of the comparative surface roughness standard piece is 3.2 μm. Corner R2.0 mm, ridge line R1.0 mm) and the corresponding molding die. Mold (male type, surface is JIS B 0659-1: 2002 Annex 1 (reference) Maximum height roughness (nominal value of Rz) specified in Table 2 of the comparative surface roughness standard piece is 1.6 μm. (Corner R2.0 mm, ridge line R1.0 mm), the molding depth is changed from 0.5 mm molding depth at a pressing pressure (surface pressure) of 0.25 MPa in 0.5 mm increments, and 10 pieces each. Cold molding (pull-in one-stage molding) was performed on the sample of. At this time, the test sample was placed on the female mold so that the heat-sealing resin layer side was located on the male mold side, and molding was performed. The clearance between the male type and the female type was set to 0.3 mm. The cold-formed sample was exposed to light with a penlight in a dark room, and it was confirmed whether or not pinholes or cracks were generated in the aluminum alloy foil due to the transmission of light. The deepest molding depth where pinholes and cracks do not occur in all 10 samples of the aluminum alloy foil is Amm, and the number of samples where pinholes and the like occur at the shallowest molding depth where pinholes and the like occur in the aluminum alloy foil. Was taken as B pieces, and the value calculated by the following formula was rounded off to the second digit after the decimal point to obtain the limit molding depth of the exterior material for the power storage device. The depth reference was determined in four stages as follows, separately for the case where the thickness of the base material layer was 20 μm and the case where the thickness was 15 μm. The results are shown in Table 1.
Limit molding depth = Amm + (0.5mm / 10 pieces) x (10 pieces-B pieces)
(基材層の厚みが20μmである場合の成形性評価基準)
A1:限界成形深さが7.5mm以上
B1:限界成形深さが7.0mm以上7.5mm未満
C1:限界成形深さが6.5mm以上7.0mm未満
D1:限界成形深さが6.5mm未満
(Evaluation criteria for moldability when the thickness of the base material layer is 20 μm)
A1: Limit molding depth is 7.5 mm or more B1: Limit molding depth is 7.0 mm or more and less than 7.5 mm C1: Limit molding depth is 6.5 mm or more and less than 7.0 mm D1: Limit molding depth is 6. Less than 5 mm
(基材層の厚みが15μmである場合の成形性評価基準)
A2:限界成形深さが6.5mm以上
B2:限界成形深さが6.0mm以上6.5mm未満
C2:限界成形深さが5.5mm以上6.0mm未満
D2:限界成形深さが5.5mm未満
(Evaluation criteria for moldability when the thickness of the base material layer is 15 μm)
A2: Limit molding depth is 6.5 mm or more B2: Limit molding depth is 6.0 mm or more and less than 6.5 mm C2: Limit molding depth is 5.5 mm or more and less than 6.0 mm D2: Limit molding depth is 5. Less than 5 mm
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 実施例1~8の蓄電デバイス用外装材は、基材層の前記所定の主軸方位が90°±30°の範囲内であり、成形性に優れていることが分かる。 It can be seen that the exterior materials for power storage devices of Examples 1 to 8 have excellent moldability because the predetermined principal axis orientation of the base material layer is within the range of 90 ° ± 30 °.
 さらに、前記の主軸方位の測定において、基材層の位相差についても測定したところ、実施例1の位相差は72.9nm、実施例2の位相差は196.4nm、実施例5の位相差は205.1nm、実施例6の位相差は49.8nm、実施例8の位相差は123.7nm、比較例1の位相差は228.7nmであり、位相差が210nm以下であっても、蓄電デバイス用外装材の成形性に優れていることが分かる。 Further, when the phase difference of the base material layer was also measured in the above-mentioned measurement of the principal axis orientation, the phase difference of Example 1 was 72.9 nm, the phase difference of Example 2 was 196.4 nm, and the phase difference of Example 5 was measured. Is 205.1 nm, the phase difference of Example 6 is 49.8 nm, the phase difference of Example 8 is 123.7 nm, the phase difference of Comparative Example 1 is 228.7 nm, and even if the phase difference is 210 nm or less. It can be seen that the exterior material for the power storage device is excellent in moldability.
 また、参考のため、実施例1及び比較例1で基材層として用いた二軸延伸ナイロンフィルムについて、それぞれ、引張破断強度(MPa)を測定したところ、実施例1の引張破断強度は、MDの方向が270MPa、TDの方向が300MPaであったのに対して、比較例1の引張破断強度は、MDの方向が284MPa、TDの方向が320MPaであった。比較例1の基材層の方が、実施例1の基材層よりも引張破断強度は大きい値であったが、蓄電デバイス用外装材の成形性は比較例1の方が実施例1よりも劣っていた。 For reference, the tensile breaking strength (MPa) of each of the biaxially stretched nylon films used as the base material layer in Example 1 and Comparative Example 1 was measured, and the tensile breaking strength of Example 1 was MD. The tensile breaking strength of Comparative Example 1 was 284 MPa in the MD direction and 320 MPa in the TD direction, whereas the direction of 270 MPa and the direction of TD were 300 MPa. The base material layer of Comparative Example 1 had a higher tensile breaking strength than the base material layer of Example 1, but the moldability of the exterior material for the power storage device was higher in Comparative Example 1 than in Example 1. Was also inferior.
 以上の通り、本開示は、以下に示す態様の発明を提供する。
項1. 少なくとも、基材層、バリア層、及び熱融着性樹脂層をこの順に備える積層体から構成されており、
 前記基材層は、以下の測定方法によって測定される、主軸方位が、90°±30°の範囲内である、蓄電デバイス用外装材。
[測定方法]
 カメラ及び光源を備える主軸方位の測定装置を用い、前記測定装置の前記カメラと前記基材層と前記光源とが一直線上に位置するようにして、前記基材層を前記カメラと前記光源との間に配置し、前記基材層のTDの方向を0°方向、前記基材層のMDの方向を90°方向となるように前記基材層を配置した場合に、前記基材層の厚み方向に前記光源の光を照射して、前記基材層の主軸方位を測定する。
項2. 前記基材層の厚みが、10μm以上30μm以下である、項1に記載の蓄電デバイス用外装材。
項3. 前記基材層は、ポリアミドフィルム及びポリエステルフィルムの少なくも一方を含む、項1又は2に記載の蓄電デバイス用外装材。
項4. 前記積層体の厚みは、100μm以下である、項1~3のいずれか1項に記載の蓄電デバイス用外装材。
項5. 少なくとも正極、負極、及び電解質を備えた蓄電デバイス素子が、項1~4のいずれかに記載の蓄電デバイス用外装材により形成された包装体中に収容されている、蓄電デバイス。
項6. 少なくとも、基材層、バリア層、及び熱融着性樹脂層がこの順となるように積層して積層体を得る工程を備えており、
 前記基材層は、以下の測定方法によって測定される、主軸方位が、90°±30°の範囲内である、蓄電デバイス用外装材の製造方法。
[測定方法]
 カメラ及び光源を備える主軸方位の測定装置を用い、前記測定装置の前記カメラと前記基材層と前記光源とが一直線上に位置するようにして、前記基材層を前記カメラと前記光源との間に配置し、前記基材層のTDの方向を0°方向、前記基材層のMDの方向を90°方向とした場合に、前記基材層の厚み方向に前記光源の光を照射して、前記基材層の主軸方位を測定する。
項7. 少なくとも、基材層、バリア層、及び熱融着性樹脂層をこの順に備える積層体から構成されており、
 前記基材層は、以下の測定方法によって測定される、位相差が、210nm以下である、蓄電デバイス用外装材。
[測定方法]
 カメラ及び光源を備える主軸方位の測定装置を用い、前記測定装置の前記カメラと前記基材層と前記光源とが一直線上に位置するようにして、前記基材層を前記カメラと前記光源との間に配置し、前記基材層のTDの方向を0°方向、前記基材層のMDの方向を90°方向となるように前記基材層を配置した場合に、前記基材層の厚み方向に前記光源の光を照射して、前記基材層の位相差を測定する。
As described above, the present disclosure provides the inventions of the following aspects.
Item 1. It is composed of a laminate having at least a base material layer, a barrier layer, and a heat-sealing resin layer in this order.
The base material layer is an exterior material for a power storage device, which is measured by the following measuring method and has a principal axis orientation within the range of 90 ° ± 30 °.
[Measuring method]
A spindle orientation measuring device including a camera and a light source is used so that the camera, the base material layer, and the light source of the measuring device are located in a straight line, and the base material layer is formed between the camera and the light source. The thickness of the base material layer when the base material layer is arranged so that the TD direction of the base material layer is 0 ° and the MD direction of the base material layer is 90 °. The light of the light source is irradiated in the direction, and the principal axis orientation of the base material layer is measured.
Item 2. Item 2. The exterior material for a power storage device according to Item 1, wherein the base material layer has a thickness of 10 μm or more and 30 μm or less.
Item 3. Item 2. The exterior material for a power storage device according to Item 1 or 2, wherein the base material layer contains at least one of a polyamide film and a polyester film.
Item 4. Item 2. The exterior material for a power storage device according to any one of Items 1 to 3, wherein the thickness of the laminated body is 100 μm or less.
Item 5. A power storage device in which a power storage device element including at least a positive electrode, a negative electrode, and an electrolyte is housed in a package formed of the exterior material for the power storage device according to any one of Items 1 to 4.
Item 6. At least, it includes a step of laminating the base material layer, the barrier layer, and the heat-sealing resin layer in this order to obtain a laminate.
The base material layer is a method for manufacturing an exterior material for a power storage device, in which the principal axis direction is within the range of 90 ° ± 30 °, which is measured by the following measuring method.
[Measuring method]
A spindle orientation measuring device including a camera and a light source is used so that the camera, the base material layer, and the light source of the measuring device are located in a straight line, and the base material layer is formed between the camera and the light source. When the TD direction of the base material layer is 0 ° and the MD direction of the base material layer is 90 °, the light of the light source is irradiated in the thickness direction of the base material layer. Then, the principal axis direction of the base material layer is measured.
Item 7. It is composed of a laminate having at least a base material layer, a barrier layer, and a heat-sealing resin layer in this order.
The base material layer is an exterior material for a power storage device having a phase difference of 210 nm or less, which is measured by the following measuring method.
[Measuring method]
A spindle orientation measuring device including a camera and a light source is used so that the camera, the base material layer, and the light source of the measuring device are located in a straight line, and the base material layer is formed between the camera and the light source. The thickness of the base material layer when the base material layer is arranged so that the TD direction of the base material layer is 0 ° and the MD direction of the base material layer is 90 °. The light of the light source is irradiated in the direction, and the phase difference of the base material layer is measured.
1 基材層
2 接着剤層
3 バリア層
4 熱融着性樹脂層
5 接着層
6 表面被覆層
10 蓄電デバイス用外装材
1 Base material layer 2 Adhesive layer 3 Barrier layer 4 Heat-sealing resin layer 5 Adhesive layer 6 Surface coating layer 10 Exterior material for power storage devices

Claims (6)

  1.  少なくとも、基材層、バリア層、及び熱融着性樹脂層をこの順に備える積層体から構成されており、
     前記基材層は、以下の測定方法によって測定される、主軸方位が、90°±30°の範囲内である、蓄電デバイス用外装材。
    [測定方法]
     カメラ及び光源を備える主軸方位の測定装置を用い、前記測定装置の前記カメラと前記基材層と前記光源とが一直線上に位置するようにして、前記基材層を前記カメラと前記光源との間に配置し、前記基材層のTDの方向を0°方向、前記基材層のMDの方向を90°方向となるように前記基材層を配置した場合に、前記基材層の厚み方向に前記光源の光を照射して、前記基材層の主軸方位を測定する。
    It is composed of a laminate having at least a base material layer, a barrier layer, and a heat-sealing resin layer in this order.
    The base material layer is an exterior material for a power storage device, which is measured by the following measuring method and has a principal axis orientation within the range of 90 ° ± 30 °.
    [Measuring method]
    A spindle orientation measuring device including a camera and a light source is used so that the camera, the base material layer, and the light source of the measuring device are located in a straight line, and the base material layer is formed between the camera and the light source. The thickness of the base material layer when the base material layer is arranged so that the TD direction of the base material layer is 0 ° and the MD direction of the base material layer is 90 °. The light of the light source is irradiated in the direction, and the principal axis orientation of the base material layer is measured.
  2.  前記基材層の厚みが、10μm以上30μm以下である、請求項1に記載の蓄電デバイス用外装材。 The exterior material for a power storage device according to claim 1, wherein the thickness of the base material layer is 10 μm or more and 30 μm or less.
  3.  前記基材層は、ポリアミドフィルム及びポリエステルフィルムの少なくも一方を含む、請求項1又は2に記載の蓄電デバイス用外装材。 The exterior material for a power storage device according to claim 1 or 2, wherein the base material layer contains at least one of a polyamide film and a polyester film.
  4.  前記積層体の厚みは、100μm以下である、請求項1~3のいずれか1項に記載の蓄電デバイス用外装材。 The exterior material for a power storage device according to any one of claims 1 to 3, wherein the thickness of the laminated body is 100 μm or less.
  5.  少なくとも正極、負極、及び電解質を備えた蓄電デバイス素子が、請求項1~4のいずれかに記載の蓄電デバイス用外装材により形成された包装体中に収容されている、蓄電デバイス。 A power storage device in which a power storage device element including at least a positive electrode, a negative electrode, and an electrolyte is housed in a package formed of the exterior material for the power storage device according to any one of claims 1 to 4.
  6.  少なくとも、基材層、バリア層、及び熱融着性樹脂層がこの順となるように積層して積層体を得る工程を備えており、
     前記基材層は、以下の測定方法によって測定される、主軸方位が、90°±30°の範囲内である、蓄電デバイス用外装材の製造方法。
    [測定方法]
     カメラ及び光源を備える主軸方位の測定装置を用い、前記測定装置の前記カメラと前記基材層と前記光源とが一直線上に位置するようにして、前記基材層を前記カメラと前記光源との間に配置し、前記基材層のTDの方向を0°方向、前記基材層のMDの方向を90°方向となるように前記基材層を配置した場合に、前記基材層の厚み方向に前記光源の光を照射して、前記基材層の主軸方位を測定する。
    At least, it includes a step of laminating the base material layer, the barrier layer, and the heat-sealing resin layer in this order to obtain a laminate.
    The base material layer is a method for manufacturing an exterior material for a power storage device, in which the principal axis direction is within the range of 90 ° ± 30 °, which is measured by the following measuring method.
    [Measuring method]
    A spindle orientation measuring device including a camera and a light source is used so that the camera, the base material layer, and the light source of the measuring device are located in a straight line, and the base material layer is formed between the camera and the light source. The thickness of the base material layer when the base material layer is arranged so that the TD direction of the base material layer is 0 ° and the MD direction of the base material layer is 90 °. The light of the light source is irradiated in the direction, and the principal axis orientation of the base material layer is measured.
PCT/JP2021/016524 2020-04-24 2021-04-23 Exterior material for power storage device, method for manufacturing same, and power storage device WO2021215538A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022517115A JPWO2021215538A1 (en) 2020-04-24 2021-04-23
CN202180030488.0A CN115443577A (en) 2020-04-24 2021-04-23 Outer packaging material for electricity storage device, method for producing same, and electricity storage device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020077593 2020-04-24
JP2020-077593 2020-04-24

Publications (1)

Publication Number Publication Date
WO2021215538A1 true WO2021215538A1 (en) 2021-10-28

Family

ID=78269365

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/016524 WO2021215538A1 (en) 2020-04-24 2021-04-23 Exterior material for power storage device, method for manufacturing same, and power storage device

Country Status (3)

Country Link
JP (1) JPWO2021215538A1 (en)
CN (1) CN115443577A (en)
WO (1) WO2021215538A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08267569A (en) * 1995-03-30 1996-10-15 Toyobo Co Ltd Biaxially oriented polyamide resin film
JP2006117792A (en) * 2004-10-21 2006-05-11 Kaneka Corp Novel polyimide film
JP2020056445A (en) * 2018-10-01 2020-04-09 大日本印刷株式会社 Valve structure, housing body having it, and power storage device with valve structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08267569A (en) * 1995-03-30 1996-10-15 Toyobo Co Ltd Biaxially oriented polyamide resin film
JP2006117792A (en) * 2004-10-21 2006-05-11 Kaneka Corp Novel polyimide film
JP2020056445A (en) * 2018-10-01 2020-04-09 大日本印刷株式会社 Valve structure, housing body having it, and power storage device with valve structure

Also Published As

Publication number Publication date
CN115443577A (en) 2022-12-06
JPWO2021215538A1 (en) 2021-10-28

Similar Documents

Publication Publication Date Title
WO2017209218A1 (en) Battery packaging material, production method therefor, battery, and polyester film
WO2020235534A1 (en) Exterior material for power storage device, method for manufacturing same, power storage device, and polyamide film
JP2020155364A (en) Exterior material for power storage device, manufacturing method of the same, and power storage device
JP7104136B2 (en) Exterior materials for power storage devices, their manufacturing methods, and power storage devices
JP6690800B1 (en) Power storage device exterior material, manufacturing method thereof, and power storage device
WO2020085462A1 (en) Casing material for power storage device, production method therefor, and power storage device
WO2020204186A1 (en) Exterior material for electrical storage device, method for manufacturing same, and electrical storage device
JP7414004B2 (en) Exterior material for power storage device, manufacturing method thereof, and power storage device
JP2020187976A (en) Exterior material for power storage device, manufacturing method thereof, power storage device, and polyamide film
WO2021201294A1 (en) Outer packaging for electrical storage devices, method for manufacturing said outer packaging, and electrical storage device
WO2021215538A1 (en) Exterior material for power storage device, method for manufacturing same, and power storage device
WO2021162059A1 (en) Exterior material for electrical storage device, method for manufacturing said exterior material, and electrical storage device
WO2021157673A1 (en) Exterior material for electrical storage device, method for manufacturing same, and electrical storage device
JP7060185B1 (en) Exterior materials for power storage devices, their manufacturing methods, and power storage devices
WO2022114024A1 (en) Outer package material for power storage devices, method for producing same, and power storage device
JP7055904B2 (en) Exterior materials for power storage devices, their manufacturing methods, and power storage devices
WO2023058453A1 (en) Outer package material for power storage devices, method for producing same, and power storage device
JP6849162B1 (en) Quality control method in the molding process of exterior material for power storage device, manufacturing method of power storage device, exterior material for power storage device, and power storage device
WO2021251501A1 (en) Exterior material for power storage device, method for manufacturing same, and power storage device
WO2020204185A1 (en) Outer package material for electricity storage devices, method for producing same, and electricity storage device
JP7332072B1 (en) Exterior material for power storage device, manufacturing method thereof, and power storage device
JP7118038B2 (en) Exterior material for power storage device, power storage device, and manufacturing method thereof
WO2022138868A1 (en) Exterior material for power storage device, method for manufacturing same, resin composition, elastic particles, and power storage device
JP2021077647A (en) Exterior material for power storage device, manufacturing method thereof, and power storage device
JPWO2020085461A1 (en) Exterior materials for power storage devices, their manufacturing methods, and power storage devices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21791831

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022517115

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21791831

Country of ref document: EP

Kind code of ref document: A1