WO2021020136A1 - Substrate treatment apparatus and substrate treatment method - Google Patents

Substrate treatment apparatus and substrate treatment method Download PDF

Info

Publication number
WO2021020136A1
WO2021020136A1 PCT/JP2020/027566 JP2020027566W WO2021020136A1 WO 2021020136 A1 WO2021020136 A1 WO 2021020136A1 JP 2020027566 W JP2020027566 W JP 2020027566W WO 2021020136 A1 WO2021020136 A1 WO 2021020136A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
liquid
drying
dry
gas
Prior art date
Application number
PCT/JP2020/027566
Other languages
French (fr)
Japanese (ja)
Inventor
和也 ▲高▼山
宏展 百武
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2021020136A1 publication Critical patent/WO2021020136A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present disclosure relates to a substrate processing apparatus and a substrate processing method.
  • the washing / drying unit described in Patent Document 1 raises and lowers a washing tank for storing a rinse solution (for example, pure water), a drying chamber located above the washing tank, a substrate holder for holding a substrate, and a substrate holder. It has an elevating mechanism for raising and lowering.
  • the substrate holder holds a plurality of substrates in an upright position in a horizontally arranged state.
  • the elevating mechanism raises and lowers the substrate holder between the inside of the washing tank and the drying chamber.
  • the plurality of substrates are immersed in the rinse liquid stored in the washing tank, then pulled up from the surface of the rinse liquid and dried in the drying chamber.
  • One aspect of the present disclosure provides a technique capable of suppressing the collapse of the surface pattern of the substrate when the substrate immersed in the treatment liquid is pulled up.
  • the substrate processing apparatus is A treatment tank that forms a storage chamber for the treatment liquid in which the substrate is immersed, A substrate holder for holding the substrate and An elevating mechanism for raising and lowering the substrate holder between the storage chamber in the treatment tank and the drying chamber above the treatment tank.
  • a drying gas supply unit that supplies a drying gas containing vapor of the drying liquid above the liquid level of the processing liquid stored in the storage chamber, It has a control unit that controls the elevating mechanism and the dry gas supply unit. When the substrate is pulled up from the liquid level, the control unit sets the substrate so that the height of the boundary line between the dry region and the immersion region of the substrate from the horizontal plane of the liquid level is within an allowable range. At least one of the pulling speed of the dry gas, the flow velocity of the dry gas, the temperature of the dry gas, and the concentration of the vapor of the dry liquid in the dry gas is controlled.
  • FIG. 1 is a diagram showing a substrate processing apparatus according to an embodiment.
  • FIG. 2 is a cross-sectional view showing a state of the liquid level when the substrate according to the embodiment is pulled up.
  • FIG. 3 is an enlarged cross-sectional view showing a part of FIG. 2.
  • FIG. 4 is a diagram showing a main part of the substrate processing apparatus according to the embodiment.
  • FIG. 5A is a diagram showing a boundary line when the pulling speed of the substrate according to the embodiment is the first speed.
  • FIG. 5B is a diagram showing a boundary line when the pulling speed of the substrate according to one embodiment is the second speed.
  • the same or corresponding configurations may be designated by the same reference numerals and description thereof may be omitted.
  • the X-axis direction, the Y-axis direction, and the Z-axis direction are perpendicular to each other.
  • the X-axis direction and the Y-axis direction are the horizontal direction, and the Z-axis direction is the vertical direction.
  • FIG. 1 is a diagram showing a substrate processing apparatus according to an embodiment.
  • the substrate processing apparatus 1 immerses the substrate 2 in the treatment liquid 3, treats the substrate 2 with the treatment liquid 3, then pulls the substrate 2 from the treatment liquid 3 and dries the substrate 2.
  • the substrate processing device 1 includes, for example, a processing tank 10, a drying container 20, a substrate holder 30, an elevating mechanism 40, a drying gas supply unit 50, and a control unit 90.
  • the treatment tank 10 forms a storage chamber for the treatment liquid 3 in which the substrate 2 is immersed.
  • the treatment tank 10 is, for example, a double tank, and has an inner tank 11 for storing the treatment liquid 3 and an outer tank 12 for collecting the treatment liquid 3 overflowing from the inner tank 11.
  • the outer tank 12 surrounds the upper part of the inner tank 11.
  • the substrate 2 is immersed in the treatment liquid 3 in the inner tank 11, and is treated by the treatment liquid 3.
  • the treatment liquid 3 is not particularly limited, but includes a rinse liquid such as pure water.
  • a nozzle 13 for discharging a treatment liquid 3 such as a rinse liquid toward the substrate 2 is provided in the tank of the inner tank 11.
  • the nozzle 13 discharges the processing liquid 3 toward the substrate 2 above the nozzle 13.
  • a discharge pipe 14 for discharging the treatment liquid 3 is provided at the bottom of the inner tank 11. Further, a discharge pipe (not shown) for discharging the treatment liquid 3 is also provided at the bottom of the outer tank 12.
  • the drying container 20 forms a drying chamber above the processing tank 10.
  • the drying container 20 includes a base portion 21 fixed to the processing tank 10 and a hood portion 24 that moves up and down with respect to the base portion 21.
  • the base portion 21 has a tubular portion 22 and an upper flange portion 23 formed at the upper end of the tubular portion 22.
  • the hood portion 24 has a ceiling portion 25 having a dome shape in cross section and a lower flange portion 26 formed at the lower end of the ceiling portion 25.
  • the lower flange portion 26 is brought into close contact with the upper flange portion 23 via a ring-shaped seal 27.
  • the board holder 30 holds a plurality of boards 2. Of course, the substrate holder 30 can hold only one substrate 2.
  • the substrate holder 30 has a plurality of holding rods 31 that hold the outer periphery of the substrate 2 at intervals in the circumferential direction, and a connecting plate (not shown) that is connected to one end of each of the plurality of holding rods 31.
  • Each of the plurality of holding rods 31 extends from the connecting plate in the X-axis direction, which is the arrangement direction of the substrate 2, and has a plurality of holding grooves at intervals in the longitudinal direction thereof.
  • the plurality of holding rods 31 vertically hold the substrate 2 in the holding grooves.
  • the lifting mechanism 40 raises and lowers the substrate holder 30 between the storage chamber in the inner tank 11 and the drying chamber above the inner tank 11.
  • the elevating mechanism 40 has, for example, a rod 41 extending vertically upward from the connecting plate and a drive source 42 for elevating and lowering the rod 41.
  • the rod 41 is inserted into a through hole at the top of the hood portion 24 of the drying container 20.
  • the through hole is provided with an inflatable seal 28 that expands due to the supply of gas.
  • the inflatable seal 28 seals the gap between the hood portion 24 and the rod 41.
  • the hood portion 24 is lowered and comes into close contact with the base portion 21 via the seal 27. And the drying chamber is closed.
  • the elevating mechanism 40 lowers the substrate holder 30 from the drying chamber to the storage chamber, and immerses the substrate 2 in the treatment liquid 3 previously stored in the storage chamber.
  • the elevating mechanism 40 raises the substrate holder 30 from the storage chamber to the drying chamber.
  • the hood portion 24 rises and the drying chamber is opened.
  • the external transfer device receives the substrate 2 from the substrate holder 30 and carries out the received substrate 2 to the outside.
  • the dry gas supply unit 50 supplies the dry gas containing the vapor of the dry liquid onto the liquid level 5 of the treatment liquid 3 stored in the inner tank 11.
  • the desiccant is an alcohol such as IPA (isopropyl alcohol).
  • the dry liquid may have a smaller surface tension and a lower density than, for example, a rinse liquid.
  • the drying gas may include a carrier gas such as nitrogen gas in addition to the vapor of the drying liquid.
  • the drying gas supply unit 50 heats, for example, a steam generator 51 that generates steam of the drying liquid, a drying liquid supply device 52 that supplies the drying liquid in a liquid state to the steam generator 51, and a carrier gas to generate steam. It includes a carrier gas supply device 53 that supplies the device 51.
  • the drying liquid supply device 52 includes a flow rate controller 521 that controls the supply flow rate of the drying liquid.
  • the carrier gas supply device 53 includes a flow rate controller 531 that controls the supply flow rate of the carrier gas, and a heater 532 that heats the carrier gas.
  • the dry liquid is vaporized by the heat of the carrier gas inside the steam generator 51 to become steam.
  • the dry gas supply unit 50 may further include a line heater 54 for heating the dry gas in the middle of the supply line extending from the steam generator 51 to the nozzle 55.
  • the dry gas supply unit 50 includes, for example, a nozzle 55 that discharges dry gas toward the dry region A1 exposed from the processing liquid 3 of the substrate 2 when the substrate 2 is pulled up from the liquid level 5 of the processing liquid 3.
  • the nozzle 55 is arranged, for example, between the processing tank 10 and the drying container 20.
  • the nozzle 55 is a hollow rod extending in the X-axis direction, which is the arrangement direction of the substrate 2, and has a plurality of discharge ports 56 at intervals in the longitudinal direction thereof.
  • the plurality of discharge ports 56 discharge dry gas in the Y-axis direction, which is a horizontal direction, for example. Since the flow of the dry gas does not directly hit the liquid level 5 of the treatment liquid 3, the fluctuation of the liquid level 5 can be suppressed.
  • a pair of nozzles 55 may be provided with the substrate 2 interposed therebetween. The pair of nozzles 55 are arranged at intervals in the Y-axis direction, and discharge dry gas toward the substrate 2.
  • the nozzle 55 discharges the dry gas in the horizontal direction so as not to cause the liquid level 5 to undulate, but if the discharge flow rate is suppressed, the dry gas is discharged toward the liquid level 5.
  • the dry gas may be discharged diagonally downward, for example. Further, a nozzle different from the nozzle 55 may discharge the dry gas upward.
  • a discharge port 211 for discharging dry gas from the drying chamber is provided on the side wall of the base portion 21 of the drying container 20.
  • An exhaust device 60 is connected to the exhaust port 211.
  • the exhaust device 60 includes an exhaust source 61 such as a vacuum pump and a barometric pressure controller 62. When the exhaust source 61 is operated, gas is discharged from the drying chamber.
  • the air pressure in the drying chamber is controlled by the air pressure controller 62, and may be higher, lower, or the same as the outside air pressure.
  • the control unit 90 controls the elevating mechanism 40 and the dry gas supply unit 50.
  • the control unit 90 is, for example, a computer, and as shown in FIG. 1, includes a CPU (Central Processing Unit) 91 and a storage medium 92 such as a memory.
  • the storage medium 92 stores programs that control various processes executed by the substrate processing device 1.
  • the control unit 90 controls the operation of the substrate processing device 1 by causing the CPU 91 to execute the program stored in the storage medium 92.
  • the control unit 90 includes an input interface 93 and an output interface 94.
  • the control unit 90 receives a signal from the outside through the input interface 93, and transmits the signal to the outside through the output interface 94.
  • the above program is stored in, for example, a computer-readable storage medium, and is installed from the storage medium in the storage medium 92 of the control unit 90.
  • Examples of the storage medium that can be read by a computer include a hard disk (HD), a flexible disk (FD), a compact disk (CD), a magnet optical desk (MO), and a memory card.
  • the program may be downloaded from the server via the Internet and installed on the storage medium 92 of the control unit 90.
  • FIG. 2 is a cross-sectional view showing the state of the liquid level when the substrate according to the embodiment is pulled up.
  • the substrate processing apparatus 1 supplies the drying gas from the nozzle 55 above the liquid level 5. Since the dry gas condenses on the liquid surface 5 which is colder than the dry gas, a thin dry liquid layer 6 is formed on the liquid surface 5. Since the dry liquid has a lower density than the rinse liquid, the dry liquid layer 6 continues to be formed on the rinse liquid layer 7. The boundary between the dry liquid layer 6 and the rinse liquid layer 7 is not really clear, and the deeper the depth from the liquid surface 5, the lower the concentration of the dry liquid.
  • the drying liquid has a lower surface tension than the rinsing liquid, when the substrate 2 passes through the drying liquid layer 6, the rinsing liquid and particles adhering to the substrate 2 can be taken into the drying liquid layer 6 by the Marangoni effect and dried. Can be promoted. Moreover, since the dry liquid has a smaller surface tension than the rinse liquid, pattern collapse due to the surface tension can be suppressed.
  • FIG. 3 is a cross-sectional view showing a part of FIG. 2 in an enlarged manner.
  • the substrate 2 may have an uneven pattern on its surface 2a.
  • the drying liquid since the drying liquid has a surface tension smaller than that of the rinsing liquid, it is possible to suppress pattern collapse due to the surface tension when the substrate 2 passes through the drying liquid layer 6.
  • the liquid level 5 has a horizontal plane 5a and a curved meniscus 5b. Since the meniscus 5b is formed by contact with the substrate 2, it is formed in the vicinity of the substrate 2. The meniscus 5b is formed above the horizontal plane 5a and has a concave curved surface above.
  • the present inventor has determined the height from the horizontal surface 5a of the liquid surface 5 to the boundary line B between the dry region A1 exposed from the treatment liquid 3 of the substrate 2 and the immersion region A2 immersed in the treatment liquid 3 by experiments or the like. It was found that the pattern collapse can be suppressed by controlling the H.
  • the height H of the boundary line B from the horizontal plane 5a is equal to the height of the meniscus 5b.
  • the drying speed VB is the speed at which the boundary line B moves downward in the vertical direction with respect to the substrate 2 when the pulling speed VA of the substrate 2 is tentatively zero.
  • the pulling speed VA is too faster than the drying speed VB
  • the meniscus 5b is stretched vertically, the height H of the boundary line B from the horizontal plane 5a becomes too large, the treatment liquid 3 is torn, and two points are shown in FIG.
  • the droplet 4 is left behind in the dry region A1 above the boundary line B.
  • the droplet 4 causes pattern collapse and particles.
  • the pulling speed VA is too faster than the drying speed VB
  • the thin drying liquid layer 6 is disturbed and a sufficient Marangoni effect cannot be obtained, which also causes pattern collapse and particles.
  • the pulling speed VA is too slower than the drying speed VB
  • the height H of the boundary line B from the horizontal plane 5a becomes too small, and is above the boundary line B due to the shaking of the substrate 2 or the shaking of the liquid level 5.
  • the dry region A1 gets wet again with the treatment liquid 3. As a result, pattern collapse and particles may be generated.
  • the allowable range of height H is defined by an upper limit value and a lower limit value. Both the upper limit value and the lower limit value are larger than zero. If the height H is maintained below the upper limit value, it is possible to prevent the droplet 4 from being left behind in the dry region A1 above the boundary line B. Further, if the height H is maintained at or above the lower limit value, it is possible to prevent the dry region A1 above the boundary line B from getting wet again due to the shaking of the substrate 2 or the shaking of the liquid level 5. As a result, the collapse of the uneven pattern on the surface 2a of the substrate 2 can be suppressed, and the generation of particles can also be suppressed.
  • FIG. 4 is a diagram showing a main part of the substrate processing apparatus according to the embodiment.
  • the control unit 90 pulls up the substrate 2 from the liquid level 5, for example, the pulling speed VA of the substrate 2, the flow velocity of the dry gas, and the drying so that the height H of the boundary line B from the horizontal plane 5a is within the allowable range.
  • Control the temperature of the gas and at least one of the vapor concentrations of the dry liquid in the dry gas.
  • the flow velocity of the drying gas, the temperature of the drying gas, and the concentration of the vapor of the drying liquid in the drying gas affect the drying rate VB.
  • the pulling speed VA of the substrate 2 can be changed by the lifting mechanism 40.
  • the shape of the meniscus 5b changes immediately, so that the height H changes immediately.
  • the pulling speed VA of the substrate 2 is superior in responsiveness to other physical quantities, and is therefore suitable for feedback control described later.
  • the flow rate of the dry gas can be changed by at least one of the flow rate controller 521 of the desiccant supply device 52 and the flow rate controller 531 of the carrier gas supply device 53. The larger the supply flow rate of the drying liquid, the faster the flow rate of the drying gas. Further, the larger the supply flow rate of the carrier gas, the faster the flow rate of the dry gas.
  • the temperature of the drying gas can be changed by, for example, the line heater 54.
  • the temperature of the dry gas can also be changed by the heater 532 of the carrier gas supply device 53. The higher the temperature of the carrier gas, the higher the temperature of the dry gas.
  • the concentration of the vapor of the drying liquid in the drying gas can be changed by at least one of the flow rate controller 521 of the drying liquid supply device 52 and the flow rate controller 531 of the carrier gas supply device 53.
  • the physical quantities that affect the drying rate VB include the flow rate of the drying gas, the temperature of the drying gas, the concentration of the steam of the drying liquid in the drying gas, the number of substrates 2 per batch, and the drying chamber.
  • the pressure and the elapsed time from the start of continuous operation can be mentioned.
  • the number of substrates 2 per batch is the number of substrates 2 received by the substrate holder 30 from the external transfer device, and is usually constant but may vary.
  • the air pressure in the drying chamber can be changed by the air pressure controller 62. As described above, the pressure in the drying chamber may be higher than the atmospheric pressure. Even if the pressure in the drying chamber is higher than the atmospheric pressure, the drying speed VB changes according to the pressure.
  • Continuous operation means that the batch processing of the substrate 2 is repeatedly performed. Further, the batch processing of the substrate 2 refers to a series of treatments in which the substrate 2 is carried into the substrate processing apparatus 1, immersed in the processing liquid 3, then dried, and then carried out from the substrate processing apparatus 1.
  • control unit 90 sets the pulling speed VA of the substrate 2 and the drying gas so that the height H of the boundary line B from the horizontal plane 5a is within the allowable range when the substrate 2 is pulled up from the liquid level 5. Controls the flow velocity of the dry gas, the temperature of the dry gas, and at least one of the vapor concentrations of the dry liquid in the dry gas. As a result, the collapse of the uneven pattern on the surface 2a of the substrate 2 can be suppressed, and the generation of particles can also be suppressed.
  • the allowable range of height H is determined in advance by experiments or the like. In the experiment, for example, the presence or absence of pattern collapse, the presence or absence of particles, and the like are examined. After being determined by an experiment or the like, the allowable range of the height H is input by an input unit 81 such as a touch panel or an operation button that accepts a user's input operation, is transmitted from the input unit 81 to the control unit 90, and is transmitted to the storage medium 92. Is remembered in.
  • an input unit 81 such as a touch panel or an operation button that accepts a user's input operation
  • the allowable range of the height H is determined in advance by the user, but may be determined by the control unit 90.
  • the control unit 90 determines the allowable range of the height H based on, for example, at least one of the material and the pattern shape of the surface 2a of the substrate 2.
  • the drying speed VB changes depending on the material of the surface 2a of the substrate 2, the drying speed VB changes. Further, the more complicated the pattern shape of the surface 2a of the substrate 2, the more difficult it is for the substrate 2 to dry, so that the drying speed VB becomes slower.
  • the control unit 90 stores at least one of the material and pattern shape of the surface 2a of the substrate 2 in advance in the storage medium 92 in association with the allowable range of the height H.
  • the allowable range of the height H is stored for each material of the surface 2a of the substrate 2. Further, the allowable range of the height H is stored for each pattern shape of the surface 2a of the substrate 2.
  • the control unit 90 reads from the storage medium 92 an allowable range associated with at least one of the material and pattern shape of the surface 2a of the substrate 2 input by the input unit 81, and determines the allowable range.
  • the setting values of the pulling speed VA of the substrate 2, the flow velocity of the drying gas, the temperature of the drying gas, and the concentration of the vapor of the drying liquid in the drying gas are determined in advance by experiments or the like, and are input by the user in the input unit 81. ..
  • the input set value is transmitted from the input unit 81 to the control unit 90 and stored in the storage medium 92.
  • the control unit 90 controls the pulling speed VA of the substrate 2, the flow velocity of the dry gas, the temperature of the dry gas, and the concentration of the vapor of the dry liquid in the dry gas according to the set values input by the input unit 81.
  • the substrate processing device 1 may have a height detector 71 that detects the height H of the boundary line B from the horizontal plane 5a.
  • the height detector 71 includes, for example, an image sensor 72 such as a CCD or CMOS that images the meniscus 5b, and an image processing device 73 that processes an image captured by the image sensor 72 and detects the height H.
  • the substrate processing device 1 may further have a light source 74 that irradiates the meniscus 5b whose height H is detected by the height detector 71 with light.
  • An interferometer may be used as the height detector 71. The interferometer uses the interference of light to detect the surface shape of the meniscus 5b and detect the height of the boundary line B from the horizontal plane 5a.
  • the control unit 90 sets the pulling speed VA of the substrate 2, the flow velocity of the drying gas, the temperature of the drying gas, and the drying liquid in the drying gas so that the height H detected by the height detector 71 is within the permissible range. Control at least one of the vapor concentrations of. When the height H fluctuates due to a disturbance, the height detector 71 can immediately detect the fluctuation, so that feedback control for correcting the physical quantity that affects the height H is possible in order to suppress the fluctuation.
  • the physical quantity corrected by the feedback control is, for example, at least one of the pulling speed VA of the substrate 2, the flow velocity of the dry gas, the temperature of the dry gas, and the concentration of the vapor of the dry liquid in the dry gas. ..
  • the pulling speed VA of the substrate 2 is excellent in responsiveness.
  • the pulling speed VA of the substrate 2 is also excellent in that the liquid level 5 does not undulate and the change in height H is large as compared with other physical quantities.
  • control unit 90 monitors the height H by the height detector 71, and corrects the set value input by the user in the input unit 81 so that the height H is within the permissible range.
  • the control unit 90 controls at least one of, for example, the pulling speed VA of the substrate 2, the flow velocity of the dry gas, the temperature of the dry gas, and the concentration of the vapor of the dry liquid in the dry gas according to the set value after correction. ..
  • the control unit 90 of the present embodiment monitors the height H by the height detector 71, and sets the set value input by the user in the input unit 81 so that the height H is within the allowable range. Although the correction is performed, the control unit 90 may determine the set value before the correction. For example, the control unit 90 may use the set value corrected by the past feedback control as a new set value. Further, the control unit 90 may receive a set value corrected by feedback control from a board processing device 1 different from the board processing device 1, and use the received set value as a new set value.
  • control unit 90 of the present embodiment monitors the height H by the height detector 71, and for example, the pulling speed VA of the substrate 2 and the flow velocity of the dry gas so that the height H is within the permissible range. It corrects for at least one of the temperature of the dry gas and the concentration of vapor of the dry liquid in the dry gas, but the techniques of the present disclosure are not limited to this. If the fluctuation of the height H is small, the above correction is unnecessary, and therefore the monitoring of the height H is also unnecessary.
  • FIG. 5A is a diagram showing a boundary line when the pulling speed of the substrate according to one embodiment is the first speed.
  • FIG. 5B is a diagram showing a boundary line when the pulling speed of the substrate according to one embodiment is the second speed.
  • the entire substrate 2 Before the start of pulling up the substrate 2, the entire substrate 2 is immersed in the treatment liquid 3 so that the entire substrate 2 is treated with the treatment liquid 3. Therefore, at the start of pulling up the substrate 2, there is no dry region A1 and there is no boundary line B between the dry region A1 and the immersion region A2, so that the height H of the boundary line B from the horizontal plane 5a cannot be controlled.
  • the control unit 90 pulls up the substrate 2 from the liquid level 5
  • the control unit 90 pulls up the substrate 2 until the upper end of the substrate 2 is exposed from the liquid level 5 and the boundary line B is formed on the surface 2a of the substrate 2.
  • the speed VA is controlled to the first speed VA1.
  • the control unit 90 sets the pulling speed VA of the substrate 2 so as to make the height H equal to or higher than the lower limit value.
  • the second speed VA2, which is faster than the first speed VA1, is controlled.
  • the time for forming the dry region A1 can be secured, and from the horizontal plane 5a of the boundary line B formed at the initial stage. Height H can be kept within the permissible range. If the pulling speed VA of the substrate 2 immediately before the boundary line B is formed on the surface 2a of the substrate 2 is too fast, the substrate 2 rises before the drying of the substrate 2 proceeds, so that the boundary line formed at the initial stage is formed. The height H of B from the horizontal plane 5a exceeds the upper limit of the allowable range.
  • the control unit 90 pulls up the substrate 2 in order to maintain the height H above the lower limit value and below the upper limit value.
  • the VA is controlled to the second speed VA2, which is faster than the first speed VA1.
  • the control unit 90 may perform feedback control for appropriately correcting the second speed VA2 based on the detection result of the height detector 71.
  • the control unit 90 raises and lowers the mechanism so that both the maximum value and the minimum value of the height H of the boundary line B from the horizontal plane 5a are within the allowable range.
  • 40 and the dry gas supply unit 50 may be controlled.
  • the control unit 90 controls the elevating mechanism 40 and the dry gas supply unit 50 so that the height H of a specific portion (for example, a portion where the pattern collapses easily) in the boundary line B is within an allowable range. May be good.
  • the boundary line B becomes a concave curve upward immediately after the upper end of the substrate 2 is exposed from the liquid level 5. At this time, only the central portion of the substrate 2 in the Y-axis direction is exposed, and only the exposed portion is intensively dried by the drying gas. After that, as the substrate 2 rises and the dry region A1 of the substrate 2 becomes larger, the boundary line B becomes a horizontal straight line.
  • the substrate 2 is dried by pulling up the substrate 2 from the liquid level 5, but the substrate 2 is removed by discharging the treatment liquid 3 from the inside of the treatment tank 10 and lowering the liquid level 5. It is also possible to dry. In this case, if the discharge speed of the treatment liquid 3 is controlled instead of the pulling speed of the substrate 2, the height H of the boundary line B from the horizontal plane 5a can be controlled.
  • Substrate processing device 2 Substrate 3 Treatment liquid 5 Liquid level 5a Horizontal surface 10 Treatment tank 30
  • Elevating mechanism 50 Dry gas supply unit 90

Abstract

This substrate treatment apparatus has: a treatment tank that forms a storage chamber for a treatment liquid in which a substrate is immersed; a substrate holder that holds the substrate; a raising/lowering mechanism that raises and lowers the substrate holder between the storage chamber in the treatment tank and a drying chamber above the treatment tank; a dried gas supply unit that supplies, onto a liquid level of the treatment liquid stored in the storage chamber, dried gas containing vapor of a dry liquid; and a control unit that controls the raising/lowering mechanism and the dried gas supply unit, wherein the control unit controls at least one among the pull-up speed of the substrate, the flow rate of the dried gas, the temperature of the dried gas, and the concentration of the vapor of the dry liquid in the dried gas such that when the substrate is pulled up from the liquid level, the height of a boundary line between a dry region and an immersion region of the substrate from the horizontal plane of the liquid level is within an allowable range.

Description

基板処理装置、及び基板処理方法Substrate processing equipment and substrate processing method
 本開示は、基板処理装置、及び基板処理方法に関する。 The present disclosure relates to a substrate processing apparatus and a substrate processing method.
 特許文献1に記載の洗浄乾燥ユニットは、リンス液(例えば純水)を貯留する洗浄槽と、洗浄槽の上部に位置する乾燥室と、基板を保持する基板保持具と、基板保持具を昇降させる昇降機構とを有する。基板保持具は、複数枚の基板を、起立姿勢で、水平方向に配列した状態で保持する。昇降機構は、基板保持具を、洗浄槽の槽内と、乾燥室との間で昇降する。複数枚の基板は、洗浄槽の槽内に貯留されたリンス液に浸漬された後、リンス液の液面から引き上げられ、乾燥室で乾燥される。 The washing / drying unit described in Patent Document 1 raises and lowers a washing tank for storing a rinse solution (for example, pure water), a drying chamber located above the washing tank, a substrate holder for holding a substrate, and a substrate holder. It has an elevating mechanism for raising and lowering. The substrate holder holds a plurality of substrates in an upright position in a horizontally arranged state. The elevating mechanism raises and lowers the substrate holder between the inside of the washing tank and the drying chamber. The plurality of substrates are immersed in the rinse liquid stored in the washing tank, then pulled up from the surface of the rinse liquid and dried in the drying chamber.
日本国特開2016-9727号公報Japanese Patent Application Laid-Open No. 2016-9727
 本開示の一態様は、処理液に浸漬された基板を引き上げる際に、基板の表面パターンの倒壊を抑制できる、技術を提供する。 One aspect of the present disclosure provides a technique capable of suppressing the collapse of the surface pattern of the substrate when the substrate immersed in the treatment liquid is pulled up.
 本開示の一態様に係る基板処理装置は、
 基板が浸漬される処理液の貯留室を形成する処理槽と、
 前記基板を保持する基板保持具と、
 前記基板保持具を前記処理槽の槽内の前記貯留室と前記処理槽の上方の乾燥室との間で昇降させる昇降機構と、
 前記貯留室に貯留した前記処理液の液面の上方に、乾燥液の蒸気を含む乾燥ガスを供給する乾燥ガス供給部と、
 前記昇降機構と前記乾燥ガス供給部とを制御する制御部と、を有し、
 前記制御部は、前記液面から前記基板を引き上げる際に、前記基板の乾燥領域と浸漬領域との境界線の、前記液面の水平面からの高さが許容範囲内になるように、前記基板の引き上げ速度、前記乾燥ガスの流速、前記乾燥ガスの温度、及び前記乾燥ガスに占める前記乾燥液の蒸気の濃度のうちの少なくとも1つを制御する。
The substrate processing apparatus according to one aspect of the present disclosure is
A treatment tank that forms a storage chamber for the treatment liquid in which the substrate is immersed,
A substrate holder for holding the substrate and
An elevating mechanism for raising and lowering the substrate holder between the storage chamber in the treatment tank and the drying chamber above the treatment tank.
A drying gas supply unit that supplies a drying gas containing vapor of the drying liquid above the liquid level of the processing liquid stored in the storage chamber,
It has a control unit that controls the elevating mechanism and the dry gas supply unit.
When the substrate is pulled up from the liquid level, the control unit sets the substrate so that the height of the boundary line between the dry region and the immersion region of the substrate from the horizontal plane of the liquid level is within an allowable range. At least one of the pulling speed of the dry gas, the flow velocity of the dry gas, the temperature of the dry gas, and the concentration of the vapor of the dry liquid in the dry gas is controlled.
 本開示の一態様によれば、処理液に浸漬された基板を引き上げる際に、基板の表面パターンの倒壊を抑制できる。 According to one aspect of the present disclosure, it is possible to suppress the collapse of the surface pattern of the substrate when the substrate immersed in the treatment liquid is pulled up.
図1は、一実施形態に係る基板処理装置を示す図である。FIG. 1 is a diagram showing a substrate processing apparatus according to an embodiment. 図2は、一実施形態に係る基板の引き上げ時の液面の状態を示す断面図である。FIG. 2 is a cross-sectional view showing a state of the liquid level when the substrate according to the embodiment is pulled up. 図3は、図2の一部を拡大して示す断面図である。FIG. 3 is an enlarged cross-sectional view showing a part of FIG. 2. 図4は、一実施形態に係る基板処理装置の要部を示す図である。FIG. 4 is a diagram showing a main part of the substrate processing apparatus according to the embodiment. 図5Aは、一実施形態に係る基板の引き上げ速度が第1速度である時の境界線を示す図である。FIG. 5A is a diagram showing a boundary line when the pulling speed of the substrate according to the embodiment is the first speed. 図5Bは、一実施形態に係る基板の引き上げ速度が第2速度である時の境界線を示す図である。FIG. 5B is a diagram showing a boundary line when the pulling speed of the substrate according to one embodiment is the second speed.
 以下、本開示の実施形態について図面を参照して説明する。なお、各図面において同一の又は対応する構成には同一の符号を付し、説明を省略することがある。本明細書において、X軸方向、Y軸方向、Z軸方向は互いに垂直な方向である。X軸方向およびY軸方向は水平方向、Z軸方向は鉛直方向である。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. In each drawing, the same or corresponding configurations may be designated by the same reference numerals and description thereof may be omitted. In the present specification, the X-axis direction, the Y-axis direction, and the Z-axis direction are perpendicular to each other. The X-axis direction and the Y-axis direction are the horizontal direction, and the Z-axis direction is the vertical direction.
 図1は、一実施形態に係る基板処理装置を示す図である。基板処理装置1は、基板2を処理液3に浸漬し、基板2を処理液3で処理し、次いで処理液3から基板2を引き上げ、基板2を乾燥する。基板処理装置1は、例えば、処理槽10と、乾燥容器20と、基板保持具30と、昇降機構40と、乾燥ガス供給部50と、制御部90とを有する。 FIG. 1 is a diagram showing a substrate processing apparatus according to an embodiment. The substrate processing apparatus 1 immerses the substrate 2 in the treatment liquid 3, treats the substrate 2 with the treatment liquid 3, then pulls the substrate 2 from the treatment liquid 3 and dries the substrate 2. The substrate processing device 1 includes, for example, a processing tank 10, a drying container 20, a substrate holder 30, an elevating mechanism 40, a drying gas supply unit 50, and a control unit 90.
 処理槽10は、基板2が浸漬される処理液3の貯留室を内部に形成する。処理槽10は、例えば二重槽であって、処理液3を貯留する内槽11と、内槽11からオーバーフローした処理液3を回収する外槽12とを有する。外槽12は、内槽11の上部を取り囲む。基板2は、内槽11の槽内で処理液3に浸漬され、処理液3によって処理される。処理液3は、特に限定されないが、例えば純水などのリンス液を含む。 The treatment tank 10 forms a storage chamber for the treatment liquid 3 in which the substrate 2 is immersed. The treatment tank 10 is, for example, a double tank, and has an inner tank 11 for storing the treatment liquid 3 and an outer tank 12 for collecting the treatment liquid 3 overflowing from the inner tank 11. The outer tank 12 surrounds the upper part of the inner tank 11. The substrate 2 is immersed in the treatment liquid 3 in the inner tank 11, and is treated by the treatment liquid 3. The treatment liquid 3 is not particularly limited, but includes a rinse liquid such as pure water.
 内槽11の槽内には、基板2に向けてリンス液などの処理液3を吐出するノズル13が設けられる。ノズル13は、ノズル13よりも上方の基板2に向けて処理液3を吐出する。内槽11の底部には、処理液3を排出する排出管14が設けられる。また、外槽12の底部にも、処理液3を排出する不図示の排出管が設けられる。 A nozzle 13 for discharging a treatment liquid 3 such as a rinse liquid toward the substrate 2 is provided in the tank of the inner tank 11. The nozzle 13 discharges the processing liquid 3 toward the substrate 2 above the nozzle 13. A discharge pipe 14 for discharging the treatment liquid 3 is provided at the bottom of the inner tank 11. Further, a discharge pipe (not shown) for discharging the treatment liquid 3 is also provided at the bottom of the outer tank 12.
 乾燥容器20は、処理槽10の上方に乾燥室を形成する。乾燥容器20は、処理槽10に対して固定されたベース部21と、ベース部21に対して昇降するフード部24とを含む。ベース部21は、筒状部22と、筒状部22の上端に形成される上フランジ部23とを有する。一方、フード部24は、断面視ドーム状の天井部25と、天井部25の下端に形成される下フランジ部26とを有する。下フランジ部26は、リング状のシール27を介して上フランジ部23と密着される。 The drying container 20 forms a drying chamber above the processing tank 10. The drying container 20 includes a base portion 21 fixed to the processing tank 10 and a hood portion 24 that moves up and down with respect to the base portion 21. The base portion 21 has a tubular portion 22 and an upper flange portion 23 formed at the upper end of the tubular portion 22. On the other hand, the hood portion 24 has a ceiling portion 25 having a dome shape in cross section and a lower flange portion 26 formed at the lower end of the ceiling portion 25. The lower flange portion 26 is brought into close contact with the upper flange portion 23 via a ring-shaped seal 27.
 基板保持具30は、複数枚の基板2を保持する。基板保持具30は、基板2を一枚のみ保持することも当然に可能である。基板保持具30は、基板2の外周を周方向に間隔をおいて保持する複数の保持棒31と、複数の保持棒31のそれぞれの一端に連結される不図示の連結板とを有する。複数の保持棒31のそれぞれは、上記連結板から、基板2の配列方向であるX軸方向に延びており、その長手方向に間隔をおいて複数の保持溝を有する。複数の保持棒31は、保持溝にて基板2を鉛直に保持する。 The board holder 30 holds a plurality of boards 2. Of course, the substrate holder 30 can hold only one substrate 2. The substrate holder 30 has a plurality of holding rods 31 that hold the outer periphery of the substrate 2 at intervals in the circumferential direction, and a connecting plate (not shown) that is connected to one end of each of the plurality of holding rods 31. Each of the plurality of holding rods 31 extends from the connecting plate in the X-axis direction, which is the arrangement direction of the substrate 2, and has a plurality of holding grooves at intervals in the longitudinal direction thereof. The plurality of holding rods 31 vertically hold the substrate 2 in the holding grooves.
 昇降機構40は、基板保持具30を、内槽11の槽内の貯留室と、内槽11の上方の乾燥室との間で昇降させる。昇降機構40は、例えば上記連結板から鉛直上方に延びるロッド41と、ロッド41を昇降させる駆動源42とを有する。ロッド41は乾燥容器20のフード部24の頂部の貫通穴に挿し通される。その貫通穴には、ガスの供給によって膨張するインフレートシール28が設けられる。インフレートシール28は、フード部24と、ロッド41との隙間をシールする。 The lifting mechanism 40 raises and lowers the substrate holder 30 between the storage chamber in the inner tank 11 and the drying chamber above the inner tank 11. The elevating mechanism 40 has, for example, a rod 41 extending vertically upward from the connecting plate and a drive source 42 for elevating and lowering the rod 41. The rod 41 is inserted into a through hole at the top of the hood portion 24 of the drying container 20. The through hole is provided with an inflatable seal 28 that expands due to the supply of gas. The inflatable seal 28 seals the gap between the hood portion 24 and the rod 41.
 乾燥室が開放された状態で、基板保持具30が不図示の外部搬送装置から基板2を受け取り、外部搬送装置が退出すると、フード部24が下降され、シール27を介してベース部21に密着され、乾燥室が閉塞される。次いで、昇降機構40は、基板保持具30を乾燥室から貯留室に下降させ、予め貯留室に貯留された処理液3に基板2を浸漬する。基板2の処理が終わると、昇降機構40が基板保持具30を貯留室から乾燥室に上昇させる。次いで、基板2が乾燥室で乾燥されると、フード部24が上昇し、乾燥室が開放される。その後、外部搬送装置が、基板保持具30から基板2を受け取り、受け取った基板2を外部に搬出する。 When the substrate holder 30 receives the substrate 2 from an external transfer device (not shown) and the external transfer device exits with the drying chamber open, the hood portion 24 is lowered and comes into close contact with the base portion 21 via the seal 27. And the drying chamber is closed. Next, the elevating mechanism 40 lowers the substrate holder 30 from the drying chamber to the storage chamber, and immerses the substrate 2 in the treatment liquid 3 previously stored in the storage chamber. When the processing of the substrate 2 is completed, the elevating mechanism 40 raises the substrate holder 30 from the storage chamber to the drying chamber. Next, when the substrate 2 is dried in the drying chamber, the hood portion 24 rises and the drying chamber is opened. After that, the external transfer device receives the substrate 2 from the substrate holder 30 and carries out the received substrate 2 to the outside.
 乾燥ガス供給部50は、内槽11に貯留された処理液3の液面5上に、乾燥液の蒸気を含む乾燥ガスを供給する。乾燥液は、例えばIPA(イソプロピルアルコール)などのアルコールである。乾燥液は、例えばリンス液よりも、小さな表面張力と小さな密度とを有するものであればよい。乾燥ガスは、乾燥液の蒸気の他に、窒素ガスなどのキャリアガスを含んでよい。 The dry gas supply unit 50 supplies the dry gas containing the vapor of the dry liquid onto the liquid level 5 of the treatment liquid 3 stored in the inner tank 11. The desiccant is an alcohol such as IPA (isopropyl alcohol). The dry liquid may have a smaller surface tension and a lower density than, for example, a rinse liquid. The drying gas may include a carrier gas such as nitrogen gas in addition to the vapor of the drying liquid.
 乾燥ガス供給部50は、例えば、乾燥液の蒸気を発生させる蒸気発生器51と、乾燥液を液体の状態で蒸気発生器51に供給する乾燥液供給器52と、キャリアガスを加熱し蒸気発生器51に供給するキャリアガス供給器53とを含む。乾燥液供給器52は、乾燥液の供給流量を制御する流量制御器521を有する。また、キャリアガス供給器53は、キャリアガスの供給流量を制御する流量制御器531と、キャリアガスを加熱する加熱器532とを有する。乾燥液は、蒸気発生器51の内部にて、キャリアガスの熱によって気化され、蒸気になる。その結果、乾燥液の蒸気とキャリアガスとの混合ガスである乾燥ガスが発生する。乾燥ガスは、蒸気発生器51から、後述のノズル55に送られる。乾燥ガス供給部50は、蒸気発生器51からノズル55まで延びる供給ラインの途中に、乾燥ガスを加熱するライン加熱器54を更に含んでもよい。 The drying gas supply unit 50 heats, for example, a steam generator 51 that generates steam of the drying liquid, a drying liquid supply device 52 that supplies the drying liquid in a liquid state to the steam generator 51, and a carrier gas to generate steam. It includes a carrier gas supply device 53 that supplies the device 51. The drying liquid supply device 52 includes a flow rate controller 521 that controls the supply flow rate of the drying liquid. Further, the carrier gas supply device 53 includes a flow rate controller 531 that controls the supply flow rate of the carrier gas, and a heater 532 that heats the carrier gas. The dry liquid is vaporized by the heat of the carrier gas inside the steam generator 51 to become steam. As a result, a dry gas, which is a mixed gas of the vapor of the dry liquid and the carrier gas, is generated. The dry gas is sent from the steam generator 51 to the nozzle 55 described later. The dry gas supply unit 50 may further include a line heater 54 for heating the dry gas in the middle of the supply line extending from the steam generator 51 to the nozzle 55.
 乾燥ガス供給部50は、例えば、処理液3の液面5から基板2を引き上げる際に、基板2の処理液3から露出する乾燥領域A1に向けて乾燥ガスを吐出するノズル55を含む。ノズル55は、例えば処理槽10と乾燥容器20との間に配置される。ノズル55は、基板2の配列方向であるX軸方向に延びる中空の棒であり、その長手方向に間隔をおいて複数の吐出口56を有する。複数の吐出口56は、例えば水平方向であるY軸方向に乾燥ガスを吐出する。乾燥ガスの流れが処理液3の液面5に直接当たらないので、液面5の揺れを抑制できる。ノズル55は、基板2を挟んで一対設けられてよい。一対のノズル55は、Y軸方向に間隔をおいて配置され、基板2に向けて乾燥ガスを吐出する。 The dry gas supply unit 50 includes, for example, a nozzle 55 that discharges dry gas toward the dry region A1 exposed from the processing liquid 3 of the substrate 2 when the substrate 2 is pulled up from the liquid level 5 of the processing liquid 3. The nozzle 55 is arranged, for example, between the processing tank 10 and the drying container 20. The nozzle 55 is a hollow rod extending in the X-axis direction, which is the arrangement direction of the substrate 2, and has a plurality of discharge ports 56 at intervals in the longitudinal direction thereof. The plurality of discharge ports 56 discharge dry gas in the Y-axis direction, which is a horizontal direction, for example. Since the flow of the dry gas does not directly hit the liquid level 5 of the treatment liquid 3, the fluctuation of the liquid level 5 can be suppressed. A pair of nozzles 55 may be provided with the substrate 2 interposed therebetween. The pair of nozzles 55 are arranged at intervals in the Y-axis direction, and discharge dry gas toward the substrate 2.
 なお、ノズル55は、本実施形態では液面5を波立たせないように、水平方向に乾燥ガスを吐出するが、その吐出流量を抑えれば、液面5に向けて乾燥ガスを吐出してもよく、例えば斜め下向きに乾燥ガスを吐出してもよい。また、ノズル55とは別のノズルが、上向きに乾燥ガスを吐出してもよい。 In the present embodiment, the nozzle 55 discharges the dry gas in the horizontal direction so as not to cause the liquid level 5 to undulate, but if the discharge flow rate is suppressed, the dry gas is discharged toward the liquid level 5. The dry gas may be discharged diagonally downward, for example. Further, a nozzle different from the nozzle 55 may discharge the dry gas upward.
 乾燥容器20のベース部21の側壁には、乾燥室から乾燥ガスを排出する排出口211が設けられている。この排出口211には排気装置60が接続される。排気装置60は、真空ポンプなどの排気源61と、気圧制御器62とを有する。排気源61を作動させると、乾燥室からガスが排出される。乾燥室の気圧は、気圧制御器62によって制御され、外気圧よりも高くても、低くても、同じでもよい。 A discharge port 211 for discharging dry gas from the drying chamber is provided on the side wall of the base portion 21 of the drying container 20. An exhaust device 60 is connected to the exhaust port 211. The exhaust device 60 includes an exhaust source 61 such as a vacuum pump and a barometric pressure controller 62. When the exhaust source 61 is operated, gas is discharged from the drying chamber. The air pressure in the drying chamber is controlled by the air pressure controller 62, and may be higher, lower, or the same as the outside air pressure.
 制御部90は、昇降機構40と乾燥ガス供給部50とを制御する。制御部90は、例えばコンピュータであり、図1に示すように、CPU(Central Processing Unit)91と、メモリなどの記憶媒体92とを備える。記憶媒体92には、基板処理装置1において実行される各種の処理を制御するプログラムが格納される。制御部90は、記憶媒体92に記憶されたプログラムをCPU91に実行させることにより、基板処理装置1の動作を制御する。また、制御部90は、入力インターフェース93と、出力インターフェース94とを備える。制御部90は、入力インターフェース93で外部からの信号を受信し、出力インターフェース94で外部に信号を送信する。 The control unit 90 controls the elevating mechanism 40 and the dry gas supply unit 50. The control unit 90 is, for example, a computer, and as shown in FIG. 1, includes a CPU (Central Processing Unit) 91 and a storage medium 92 such as a memory. The storage medium 92 stores programs that control various processes executed by the substrate processing device 1. The control unit 90 controls the operation of the substrate processing device 1 by causing the CPU 91 to execute the program stored in the storage medium 92. Further, the control unit 90 includes an input interface 93 and an output interface 94. The control unit 90 receives a signal from the outside through the input interface 93, and transmits the signal to the outside through the output interface 94.
 上記プログラムは、例えばコンピュータによって読み取り可能な記憶媒体に記憶され、その記憶媒体から制御部90の記憶媒体92にインストールされる。コンピュータによって読み取り可能な記憶媒体としては、例えば、ハードディスク(HD)、フレキシブルディスク(FD)、コンパクトディスク(CD)、マグネットオプティカルデスク(MO)、メモリーカードなどが挙げられる。なお、プログラムは、インターネットを介してサーバからダウンロードされ、制御部90の記憶媒体92にインストールされてもよい。 The above program is stored in, for example, a computer-readable storage medium, and is installed from the storage medium in the storage medium 92 of the control unit 90. Examples of the storage medium that can be read by a computer include a hard disk (HD), a flexible disk (FD), a compact disk (CD), a magnet optical desk (MO), and a memory card. The program may be downloaded from the server via the Internet and installed on the storage medium 92 of the control unit 90.
 図2は、一実施形態に係る基板の引き上げ時の液面の状態を示す断面図である。基板処理装置1は、処理液3の液面5から基板2を引き上げる際に、液面5の上方にノズル55から乾燥ガスを供給する。乾燥ガスは乾燥ガスよりも冷たい液面5上で凝縮するので、液面5に薄い乾燥液層6が形成される。乾燥液はリンス液よりも小さな密度を有するので、乾燥液層6はリンス液層7の上に形成され続ける。なお、乾燥液層6とリンス液層7との境界は実際には明瞭なものではなく、液面5からの深さが深くなるほど乾燥液の濃度が薄くなる。 FIG. 2 is a cross-sectional view showing the state of the liquid level when the substrate according to the embodiment is pulled up. When the substrate 2 is pulled up from the liquid level 5 of the processing liquid 3, the substrate processing apparatus 1 supplies the drying gas from the nozzle 55 above the liquid level 5. Since the dry gas condenses on the liquid surface 5 which is colder than the dry gas, a thin dry liquid layer 6 is formed on the liquid surface 5. Since the dry liquid has a lower density than the rinse liquid, the dry liquid layer 6 continues to be formed on the rinse liquid layer 7. The boundary between the dry liquid layer 6 and the rinse liquid layer 7 is not really clear, and the deeper the depth from the liquid surface 5, the lower the concentration of the dry liquid.
 乾燥液はリンス液よりも小さな表面張力を有するので、基板2が乾燥液層6を通過する時に、基板2に付着したリンス液及びパーティクルをマランゴニ効果によって乾燥液層6に取り込むことができ、乾燥を促進できる。また、乾燥液はリンス液よりも小さな表面張力を有するので、表面張力によるパターン倒壊を抑制できる。 Since the drying liquid has a lower surface tension than the rinsing liquid, when the substrate 2 passes through the drying liquid layer 6, the rinsing liquid and particles adhering to the substrate 2 can be taken into the drying liquid layer 6 by the Marangoni effect and dried. Can be promoted. Moreover, since the dry liquid has a smaller surface tension than the rinse liquid, pattern collapse due to the surface tension can be suppressed.
 図3は、図2の一部を拡大して示す断面図である。図3に示すように、基板2は、その表面2aに凹凸パターンを有してよい。上記の通り、乾燥液はリンス液よりも小さな表面張力を有するので、基板2が乾燥液層6を通過する時に、表面張力によるパターン倒壊を抑制できる。 FIG. 3 is a cross-sectional view showing a part of FIG. 2 in an enlarged manner. As shown in FIG. 3, the substrate 2 may have an uneven pattern on its surface 2a. As described above, since the drying liquid has a surface tension smaller than that of the rinsing liquid, it is possible to suppress pattern collapse due to the surface tension when the substrate 2 passes through the drying liquid layer 6.
 ところで、液面5は、水平面5aと、曲面であるメニスカス5bとを有する。メニスカス5bは、基板2との接触により形成されるので、基板2の近傍に形成される。メニスカス5bは、水平面5aよりも上に形成され、上に凹の曲面である。 By the way, the liquid level 5 has a horizontal plane 5a and a curved meniscus 5b. Since the meniscus 5b is formed by contact with the substrate 2, it is formed in the vicinity of the substrate 2. The meniscus 5b is formed above the horizontal plane 5a and has a concave curved surface above.
 本発明者は、実験等によって、液面5のうちの水平面5aから、基板2の処理液3から露出する乾燥領域A1と処理液3に浸漬される浸漬領域A2との境界線Bまでの高さHを制御することにより、パターン倒壊を抑制できることを見出した。境界線Bの水平面5aからの高さHは、メニスカス5bの高さに等しい。 The present inventor has determined the height from the horizontal surface 5a of the liquid surface 5 to the boundary line B between the dry region A1 exposed from the treatment liquid 3 of the substrate 2 and the immersion region A2 immersed in the treatment liquid 3 by experiments or the like. It was found that the pattern collapse can be suppressed by controlling the H. The height H of the boundary line B from the horizontal plane 5a is equal to the height of the meniscus 5b.
 また、本発明者は、境界線Bの水平面5aからの高さHの制御には、基板2の引き上げ速度VAと、乾燥速度VBとが重要であることを見出した。乾燥速度VBは、基板2の引き上げ速度VAが仮にゼロであるときに、基板2に対して境界線Bが鉛直方向下方に向けて移動する速さである。 Further, the present inventor has found that the pulling speed VA of the substrate 2 and the drying speed VB are important for controlling the height H of the boundary line B from the horizontal plane 5a. The drying speed VB is the speed at which the boundary line B moves downward in the vertical direction with respect to the substrate 2 when the pulling speed VA of the substrate 2 is tentatively zero.
 引き上げ速度VAが乾燥速度VBよりも速過ぎると、メニスカス5bが縦に引き伸ばされ、境界線Bの水平面5aからの高さHが大きくなり過ぎ、処理液3が千切れて、図3に二点鎖線で示すように液滴4が境界線Bよりも上方の乾燥領域A1に取り残されてしまう。液滴4は、パターン倒壊及びパーティクルの要因になる。また、引き上げ速度VAが乾燥速度VBよりも速過ぎると、薄い乾燥液層6が乱され、十分なマランゴニ効果が得られないことも、パターン倒壊及びパーティクルの要因になる。 If the pulling speed VA is too faster than the drying speed VB, the meniscus 5b is stretched vertically, the height H of the boundary line B from the horizontal plane 5a becomes too large, the treatment liquid 3 is torn, and two points are shown in FIG. As shown by the chain line, the droplet 4 is left behind in the dry region A1 above the boundary line B. The droplet 4 causes pattern collapse and particles. Further, if the pulling speed VA is too faster than the drying speed VB, the thin drying liquid layer 6 is disturbed and a sufficient Marangoni effect cannot be obtained, which also causes pattern collapse and particles.
 一方、引き上げ速度VAが乾燥速度VBよりも遅すぎると、境界線Bの水平面5aからの高さHが小さくなり過ぎ、基板2の揺れ又は液面5の揺れなどによって境界線Bよりも上の乾燥領域A1が処理液3によって再び濡れてしまう。その結果、パターン倒壊及びパーティクルが発生する恐れがある。 On the other hand, if the pulling speed VA is too slower than the drying speed VB, the height H of the boundary line B from the horizontal plane 5a becomes too small, and is above the boundary line B due to the shaking of the substrate 2 or the shaking of the liquid level 5. The dry region A1 gets wet again with the treatment liquid 3. As a result, pattern collapse and particles may be generated.
 本発明者は、上記の知見に基づき、境界線Bの水平面5aからの高さHを制御することにより、パターン倒壊を抑制できることを見出した。高さHの許容範囲は上限値と下限値とで規定される。上限値及び下限値は、いずれも、ゼロによりも大きい値である。高さHを上限値以下に維持すれば、境界線Bよりも上方の乾燥領域A1に液滴4が取り残されることを抑制できる。また、高さHを下限値以上に維持すれば、基板2の揺れ又は液面5の揺れによって境界線Bよりも上方の乾燥領域A1が再び濡れることを抑制できる。その結果、基板2の表面2aの凹凸パターンの倒壊を抑制でき、また、パーティクルの発生をも抑制できる。 Based on the above findings, the present inventor has found that pattern collapse can be suppressed by controlling the height H of the boundary line B from the horizontal plane 5a. The allowable range of height H is defined by an upper limit value and a lower limit value. Both the upper limit value and the lower limit value are larger than zero. If the height H is maintained below the upper limit value, it is possible to prevent the droplet 4 from being left behind in the dry region A1 above the boundary line B. Further, if the height H is maintained at or above the lower limit value, it is possible to prevent the dry region A1 above the boundary line B from getting wet again due to the shaking of the substrate 2 or the shaking of the liquid level 5. As a result, the collapse of the uneven pattern on the surface 2a of the substrate 2 can be suppressed, and the generation of particles can also be suppressed.
 図4は、一実施形態に係る基板処理装置の要部を示す図である。制御部90は、液面5から基板2を引き上げる際に、境界線Bの水平面5aからの高さHが許容範囲内になるように、例えば基板2の引き上げ速度VA、乾燥ガスの流速、乾燥ガスの温度、及び乾燥ガスに占める乾燥液の蒸気の濃度のうちの少なくとも1つを制御する。乾燥ガスの流速、乾燥ガスの温度、及び乾燥ガスに占める乾燥液の蒸気の濃度は、乾燥速度VBに影響を与える。 FIG. 4 is a diagram showing a main part of the substrate processing apparatus according to the embodiment. When the control unit 90 pulls up the substrate 2 from the liquid level 5, for example, the pulling speed VA of the substrate 2, the flow velocity of the dry gas, and the drying so that the height H of the boundary line B from the horizontal plane 5a is within the allowable range. Control the temperature of the gas and at least one of the vapor concentrations of the dry liquid in the dry gas. The flow velocity of the drying gas, the temperature of the drying gas, and the concentration of the vapor of the drying liquid in the drying gas affect the drying rate VB.
 基板2の引き上げ速度VAが速いほど、メニスカス5bが縦に引き伸ばされ、境界線Bの水平面5aからの高さHが高くなる。基板2の引き上げ速度VAは、昇降機構40によって変更できる。基板2の引き上げ速度VAを変更すると、直ぐにメニスカス5bの形状が変化するので、直ぐに高さHが変化する。基板2の引き上げ速度VAは、その他の物理量に比べて、応答性に優れるので、後述のフィードバック制御に適している。 The faster the pulling speed VA of the substrate 2, the vertically stretched the meniscus 5b, and the higher the height H of the boundary line B from the horizontal plane 5a. The pulling speed VA of the substrate 2 can be changed by the lifting mechanism 40. When the pulling speed VA of the substrate 2 is changed, the shape of the meniscus 5b changes immediately, so that the height H changes immediately. The pulling speed VA of the substrate 2 is superior in responsiveness to other physical quantities, and is therefore suitable for feedback control described later.
 乾燥ガスの流速が速いほど、乾燥が進みやすいので、乾燥速度VBが大きくなり、境界線Bの水平面5aからの高さHが低くなる。乾燥ガスの流速は、乾燥液供給器52の流量制御器521、及びキャリアガス供給器53の流量制御器531のうちの少なくとも1つによって変更できる。乾燥液の供給流量が多いほど、乾燥ガスの流速が速くなる。また、キャリアガスの供給流量が多いほど、乾燥ガスの流速が速くなる。 The faster the flow velocity of the drying gas, the easier it is for the drying to proceed, so the drying speed VB increases and the height H of the boundary line B from the horizontal plane 5a decreases. The flow rate of the dry gas can be changed by at least one of the flow rate controller 521 of the desiccant supply device 52 and the flow rate controller 531 of the carrier gas supply device 53. The larger the supply flow rate of the drying liquid, the faster the flow rate of the drying gas. Further, the larger the supply flow rate of the carrier gas, the faster the flow rate of the dry gas.
 乾燥ガスの温度が高いほど、乾燥が進みやすいので、乾燥速度VBが速くなり、境界線Bの水平面5aからの高さHが低くなる。乾燥ガスの温度は、例えばライン加熱器54によって変更できる。なお、乾燥ガスの温度は、キャリアガス供給器53の加熱器532によっても変更できる。キャリアガスの温度が高いほど、乾燥ガスの温度が高くなる。 The higher the temperature of the drying gas, the easier the drying progresses, so the drying speed VB becomes faster, and the height H of the boundary line B from the horizontal plane 5a becomes lower. The temperature of the drying gas can be changed by, for example, the line heater 54. The temperature of the dry gas can also be changed by the heater 532 of the carrier gas supply device 53. The higher the temperature of the carrier gas, the higher the temperature of the dry gas.
 乾燥ガスに占める乾燥液の蒸気の濃度が高いほど、乾燥が進みやすいので、乾燥速度VBが速くなり、境界線Bの水平面5aからの高さHが低くなる。乾燥ガスに占める乾燥液の蒸気の濃度は、乾燥液供給器52の流量制御器521、及びキャリアガス供給器53の流量制御器531のうちの少なくとも1つによって変更できる。 The higher the concentration of the vapor of the drying liquid in the drying gas, the easier the drying progresses, so the drying speed VB becomes faster and the height H of the boundary line B from the horizontal plane 5a becomes lower. The concentration of the vapor of the drying liquid in the drying gas can be changed by at least one of the flow rate controller 521 of the drying liquid supply device 52 and the flow rate controller 531 of the carrier gas supply device 53.
 なお、乾燥速度VBに影響を与える物理量としては、乾燥ガスの流速、乾燥ガスの温度、及び乾燥ガスに占める乾燥液の蒸気の濃度の他に、1バッチ当たりの基板2の枚数、乾燥室の気圧、及び連続運転開始時からの経過時間が挙げられる。 The physical quantities that affect the drying rate VB include the flow rate of the drying gas, the temperature of the drying gas, the concentration of the steam of the drying liquid in the drying gas, the number of substrates 2 per batch, and the drying chamber. The pressure and the elapsed time from the start of continuous operation can be mentioned.
 1バッチ当たりの基板2の枚数が少ないほど、乾燥が進みやすいので、乾燥速度VBが速くなり、境界線Bの水平面5aからの高さHが低くなる。1バッチ当たりの基板2の枚数は、基板保持具30が外部搬送装置から受け取る基板2の枚数であって、通常、一定であるが、変動することもある。 The smaller the number of substrates 2 per batch, the easier it is for drying to proceed, so the drying speed VB becomes faster and the height H of the boundary line B from the horizontal plane 5a becomes lower. The number of substrates 2 per batch is the number of substrates 2 received by the substrate holder 30 from the external transfer device, and is usually constant but may vary.
 乾燥室の気圧が大気圧よりも低いほど、乾燥が進みやすいので、乾燥速度VBが速くなり、境界線Bの水平面5aからの高さHが低くなる。乾燥室の気圧は、気圧制御器62によって変更できる。なお、上記の通り、乾燥室の気圧は大気圧よりも高くてもよい。乾燥室の気圧が大気圧よりも高くても、その気圧に応じて乾燥速度VBが変化する。 The lower the pressure in the drying chamber is, the easier it is for drying to proceed, so the drying speed VB becomes faster and the height H of the boundary line B from the horizontal plane 5a becomes lower. The air pressure in the drying chamber can be changed by the air pressure controller 62. As described above, the pressure in the drying chamber may be higher than the atmospheric pressure. Even if the pressure in the drying chamber is higher than the atmospheric pressure, the drying speed VB changes according to the pressure.
 連続運転とは、基板2のバッチ処理を繰り返し実施することをいう。また、基板2のバッチ処理とは、基板2が基板処理装置1に搬入され、処理液3に浸漬され、次いで乾燥され、基板処理装置1から搬出されるまでの一連の処理をいう。 Continuous operation means that the batch processing of the substrate 2 is repeatedly performed. Further, the batch processing of the substrate 2 refers to a series of treatments in which the substrate 2 is carried into the substrate processing apparatus 1, immersed in the processing liquid 3, then dried, and then carried out from the substrate processing apparatus 1.
 連続運転開始時からの経過時間が長いほど、基板処理装置1の構成部品が蓄熱し、構成部品の温度が上がるので、乾燥が進みやすく、乾燥速度VBが速くなり、境界線Bの水平面5aからの高さHが低くなる。但し、連続運転開始時からの経過時間が長くなると、畜熱と放熱のバランスが取れるので、構成部品の温度は一定になる。 The longer the elapsed time from the start of continuous operation, the more heat is stored in the components of the substrate processing device 1, and the temperature of the components rises. Therefore, drying is facilitated, the drying speed VB is increased, and the horizontal plane 5a of the boundary line B is used. Height H becomes lower. However, if the elapsed time from the start of continuous operation becomes long, the heat storage and heat dissipation can be balanced, so that the temperature of the component parts becomes constant.
 制御部90は、上記の通り、液面5から基板2を引き上げる際に、境界線Bの水平面5aからの高さHが許容範囲内になるように、例えば基板2の引き上げ速度VA、乾燥ガスの流速、乾燥ガスの温度、及び乾燥ガスに占める乾燥液の蒸気の濃度のうちの少なくとも1つを制御する。その結果、基板2の表面2aの凹凸パターンの倒壊を抑制でき、また、パーティクルの発生をも抑制できる。 As described above, the control unit 90 sets the pulling speed VA of the substrate 2 and the drying gas so that the height H of the boundary line B from the horizontal plane 5a is within the allowable range when the substrate 2 is pulled up from the liquid level 5. Controls the flow velocity of the dry gas, the temperature of the dry gas, and at least one of the vapor concentrations of the dry liquid in the dry gas. As a result, the collapse of the uneven pattern on the surface 2a of the substrate 2 can be suppressed, and the generation of particles can also be suppressed.
 高さHの許容範囲は、予め実験等で決められる。実験では、例えばパターン倒壊の有無、及びパーティクルの有無等が調べられる。高さHの許容範囲は、実験等で決められた後、ユーザーの入力操作を受け付けるタッチパネル又は操作ボタン等の入力部81にて入力され、入力部81から制御部90に送信され、記憶媒体92に記憶される。 The allowable range of height H is determined in advance by experiments or the like. In the experiment, for example, the presence or absence of pattern collapse, the presence or absence of particles, and the like are examined. After being determined by an experiment or the like, the allowable range of the height H is input by an input unit 81 such as a touch panel or an operation button that accepts a user's input operation, is transmitted from the input unit 81 to the control unit 90, and is transmitted to the storage medium 92. Is remembered in.
 なお、高さHの許容範囲は、予めユーザーによって決められるが、制御部90によって決められてもよい。制御部90は、例えば基板2の表面2aの材質及びパターン形状のうちの少なくとも1つに基づき、高さHの許容範囲を決める。 The allowable range of the height H is determined in advance by the user, but may be determined by the control unit 90. The control unit 90 determines the allowable range of the height H based on, for example, at least one of the material and the pattern shape of the surface 2a of the substrate 2.
 基板2の表面2aの材質に応じて、基板2に対する処理液3の濡れ性が変わるので、乾燥速度VBが変わる。また、基板2の表面2aのパターン形状が複雑になるほど、基板2の乾燥が進みにくいので、乾燥速度VBが遅くなる。 Since the wettability of the treatment liquid 3 with respect to the substrate 2 changes depending on the material of the surface 2a of the substrate 2, the drying speed VB changes. Further, the more complicated the pattern shape of the surface 2a of the substrate 2, the more difficult it is for the substrate 2 to dry, so that the drying speed VB becomes slower.
 制御部90は、予め基板2の表面2aの材質及びパターン形状のうちの少なくとも1つと高さHの許容範囲とを紐付けて記憶媒体92に記憶しておく。基板2の表面2aの材質毎に高さHの許容範囲が記憶される。また、基板2の表面2aのパターン形状毎に高さHの許容範囲が記憶される。 The control unit 90 stores at least one of the material and pattern shape of the surface 2a of the substrate 2 in advance in the storage medium 92 in association with the allowable range of the height H. The allowable range of the height H is stored for each material of the surface 2a of the substrate 2. Further, the allowable range of the height H is stored for each pattern shape of the surface 2a of the substrate 2.
 制御部90は、入力部81にて入力される基板2の表面2aの材質及びパターン形状のうちの少なくとも1つと紐付けされた許容範囲を記憶媒体92から読み出し、許容範囲を決める。 The control unit 90 reads from the storage medium 92 an allowable range associated with at least one of the material and pattern shape of the surface 2a of the substrate 2 input by the input unit 81, and determines the allowable range.
 基板2の引き上げ速度VA、乾燥ガスの流速、乾燥ガスの温度、及び乾燥ガスに占める乾燥液の蒸気の濃度の設定値は、予め実験等で決められ、ユーザーによって入力部81にて入力される。入力された設定値は、入力部81から制御部90に送信され、記憶媒体92に記憶される。制御部90は、入力部81にて入力された設定値に従って、基板2の引き上げ速度VA、乾燥ガスの流速、乾燥ガスの温度、及び乾燥ガスに占める乾燥液の蒸気の濃度を制御する。 The setting values of the pulling speed VA of the substrate 2, the flow velocity of the drying gas, the temperature of the drying gas, and the concentration of the vapor of the drying liquid in the drying gas are determined in advance by experiments or the like, and are input by the user in the input unit 81. .. The input set value is transmitted from the input unit 81 to the control unit 90 and stored in the storage medium 92. The control unit 90 controls the pulling speed VA of the substrate 2, the flow velocity of the dry gas, the temperature of the dry gas, and the concentration of the vapor of the dry liquid in the dry gas according to the set values input by the input unit 81.
 図4に示すように、基板処理装置1は、境界線Bの水平面5aからの高さHを検出する高さ検出器71を有してよい。高さ検出器71は、例えば、メニスカス5bを撮像するCCD又はCMOSなどの撮像素子72と、撮像素子72で撮像した画像を画像処理し、高さHを検出する画像処理装置73とを含む。また、基板処理装置1は、高さ検出器71によって高さHを検出するメニスカス5bに対して、光を照射する光源74を更に有してもよい。なお、高さ検出器71として、干渉計が用いられてもよい。干渉計は、光の干渉を利用して、メニスカス5bの表面形状を検出し、境界線Bの水平面5aからの高さを検出する。 As shown in FIG. 4, the substrate processing device 1 may have a height detector 71 that detects the height H of the boundary line B from the horizontal plane 5a. The height detector 71 includes, for example, an image sensor 72 such as a CCD or CMOS that images the meniscus 5b, and an image processing device 73 that processes an image captured by the image sensor 72 and detects the height H. Further, the substrate processing device 1 may further have a light source 74 that irradiates the meniscus 5b whose height H is detected by the height detector 71 with light. An interferometer may be used as the height detector 71. The interferometer uses the interference of light to detect the surface shape of the meniscus 5b and detect the height of the boundary line B from the horizontal plane 5a.
 制御部90は、高さ検出器71によって検出した高さHが許容範囲内になるように、例えば基板2の引き上げ速度VA、乾燥ガスの流速、乾燥ガスの温度、及び乾燥ガスに占める乾燥液の蒸気の濃度のうちの少なくとも1つを制御する。外乱によって高さHが変動すると、その変動を即座に高さ検出器71が検出できるので、その変動を抑制すべく、高さHに影響を与える物理量を補正するフィードバック制御が可能である。 The control unit 90 sets the pulling speed VA of the substrate 2, the flow velocity of the drying gas, the temperature of the drying gas, and the drying liquid in the drying gas so that the height H detected by the height detector 71 is within the permissible range. Control at least one of the vapor concentrations of. When the height H fluctuates due to a disturbance, the height detector 71 can immediately detect the fluctuation, so that feedback control for correcting the physical quantity that affects the height H is possible in order to suppress the fluctuation.
 フィードバック制御で補正する物理量は、上記の通り、例えば、基板2の引き上げ速度VA、乾燥ガスの流速、乾燥ガスの温度、及び乾燥ガスに占める乾燥液の蒸気の濃度のうちの少なくとも1つである。これらの中でも、基板2の引き上げ速度VAは、応答性に優れている。また、基板2の引き上げ速度VAは、その他の物理量に比べて、液面5が波立たない点、高さHの変化が大きい点でも優れている。 As described above, the physical quantity corrected by the feedback control is, for example, at least one of the pulling speed VA of the substrate 2, the flow velocity of the dry gas, the temperature of the dry gas, and the concentration of the vapor of the dry liquid in the dry gas. .. Among these, the pulling speed VA of the substrate 2 is excellent in responsiveness. Further, the pulling speed VA of the substrate 2 is also excellent in that the liquid level 5 does not undulate and the change in height H is large as compared with other physical quantities.
 例えば、制御部90は、高さ検出器71によって高さHを監視し、その高さHが許容範囲内になるように、ユーザーによって入力部81にて入力された設定値を補正する。制御部90は、補正後の設定値に従って、例えば基板2の引き上げ速度VA、乾燥ガスの流速、乾燥ガスの温度、及び乾燥ガスに占める乾燥液の蒸気の濃度のうちの少なくとも1つを制御する。 For example, the control unit 90 monitors the height H by the height detector 71, and corrects the set value input by the user in the input unit 81 so that the height H is within the permissible range. The control unit 90 controls at least one of, for example, the pulling speed VA of the substrate 2, the flow velocity of the dry gas, the temperature of the dry gas, and the concentration of the vapor of the dry liquid in the dry gas according to the set value after correction. ..
 なお、本実施形態の制御部90は、高さ検出器71によって高さHを監視し、その高さHが許容範囲内になるように、ユーザーによって入力部81にて入力された設定値を補正するが、補正前の設定値を制御部90が決めてもよい。制御部90は、例えば、過去のフィードバック制御で補正した設定値を、新たな設定値として使用してもよい。また、制御部90は、基板処理装置1とは別の基板処理装置1から、フィードバック制御で補正した設定値を受信し、受信した設定値を新たな設定値として使用してもよい。 The control unit 90 of the present embodiment monitors the height H by the height detector 71, and sets the set value input by the user in the input unit 81 so that the height H is within the allowable range. Although the correction is performed, the control unit 90 may determine the set value before the correction. For example, the control unit 90 may use the set value corrected by the past feedback control as a new set value. Further, the control unit 90 may receive a set value corrected by feedback control from a board processing device 1 different from the board processing device 1, and use the received set value as a new set value.
 また、本実施形態の制御部90は、高さ検出器71によって高さHを監視し、その高さHが許容範囲内になるように、例えば基板2の引き上げ速度VA、乾燥ガスの流速、乾燥ガスの温度、及び乾燥ガスに占める乾燥液の蒸気の濃度のうちの少なくとも1つを補正するが、本開示の技術はこれに限定されない。高さHの変動が小さければ、上記補正が不要であるので、高さHの監視も不要である。 Further, the control unit 90 of the present embodiment monitors the height H by the height detector 71, and for example, the pulling speed VA of the substrate 2 and the flow velocity of the dry gas so that the height H is within the permissible range. It corrects for at least one of the temperature of the dry gas and the concentration of vapor of the dry liquid in the dry gas, but the techniques of the present disclosure are not limited to this. If the fluctuation of the height H is small, the above correction is unnecessary, and therefore the monitoring of the height H is also unnecessary.
 図5Aは、一実施形態に係る基板の引き上げ速度が第1速度である時の境界線を示す図である。図5Bは、一実施形態に係る基板の引き上げ速度が第2速度である時の境界線を示す図である。 FIG. 5A is a diagram showing a boundary line when the pulling speed of the substrate according to one embodiment is the first speed. FIG. 5B is a diagram showing a boundary line when the pulling speed of the substrate according to one embodiment is the second speed.
 基板2の引き上げ開始前には、基板2の全体が処理液3で処理されるように、基板2の全体が処理液3に浸漬される。従って、基板2の引き上げ開始時には、乾燥領域A1が全くなく、乾燥領域A1と浸漬領域A2との境界線Bも全くないので、境界線Bの水平面5aからの高さHも制御できない。 Before the start of pulling up the substrate 2, the entire substrate 2 is immersed in the treatment liquid 3 so that the entire substrate 2 is treated with the treatment liquid 3. Therefore, at the start of pulling up the substrate 2, there is no dry region A1 and there is no boundary line B between the dry region A1 and the immersion region A2, so that the height H of the boundary line B from the horizontal plane 5a cannot be controlled.
 制御部90は、液面5から基板2を引き上げる際に、基板2の上端が液面5から露出し、基板2の表面2aに境界線Bが形成されるまでの間は、基板2の引き上げ速度VAを第1速度VA1に制御する。その後、境界線Bが形成され、境界線Bの水平面5aからの高さHが制御可能になると、制御部90は、高さHを下限値以上にすべく、基板2の引き上げ速度VAを第1速度VA1よりも速い第2速度VA2に制御する。 When the control unit 90 pulls up the substrate 2 from the liquid level 5, the control unit 90 pulls up the substrate 2 until the upper end of the substrate 2 is exposed from the liquid level 5 and the boundary line B is formed on the surface 2a of the substrate 2. The speed VA is controlled to the first speed VA1. After that, when the boundary line B is formed and the height H of the boundary line B from the horizontal plane 5a can be controlled, the control unit 90 sets the pulling speed VA of the substrate 2 so as to make the height H equal to or higher than the lower limit value. The second speed VA2, which is faster than the first speed VA1, is controlled.
 基板2の表面2aに境界線Bが形成される直前の、基板2の引き上げ速度VAが遅いので、乾燥領域A1が形成される時間を確保でき、初期に形成される境界線Bの水平面5aからの高さHを許容範囲内に収めることができる。仮に基板2の表面2aに境界線Bが形成される直前の、基板2の引き上げ速度VAが速過ぎると、基板2の乾燥が進む前に基板2が上昇するので、初期に形成される境界線Bの水平面5aからの高さHが許容範囲の上限値を超えてしまう。 Since the pulling speed VA of the substrate 2 is slow immediately before the boundary line B is formed on the surface 2a of the substrate 2, the time for forming the dry region A1 can be secured, and from the horizontal plane 5a of the boundary line B formed at the initial stage. Height H can be kept within the permissible range. If the pulling speed VA of the substrate 2 immediately before the boundary line B is formed on the surface 2a of the substrate 2 is too fast, the substrate 2 rises before the drying of the substrate 2 proceeds, so that the boundary line formed at the initial stage is formed. The height H of B from the horizontal plane 5a exceeds the upper limit of the allowable range.
 境界線Bが形成され、境界線Bの水平面5aからの高さHが制御可能になると、制御部90は、高さHを下限値以上、上限値以下に維持すべく、基板2の引き上げ速度VAを第1速度VA1よりも速い第2速度VA2に制御する。制御部90は、高さ検出器71の検出結果に基づき第2速度VA2を適宜補正するフィードバック制御を実施してもよい。 When the boundary line B is formed and the height H of the boundary line B from the horizontal plane 5a can be controlled, the control unit 90 pulls up the substrate 2 in order to maintain the height H above the lower limit value and below the upper limit value. The VA is controlled to the second speed VA2, which is faster than the first speed VA1. The control unit 90 may perform feedback control for appropriately correcting the second speed VA2 based on the detection result of the height detector 71.
 図5Bに示すように、境界線Bが曲線である場合、境界線Bの水平面5aからの高さHの最大値と最小値の両方が許容範囲内になるように、制御部90が昇降機構40と乾燥ガス供給部50とを制御してよい。但し、境界線Bのうちの特定の部位(例えばパターン倒壊しやすい部位)の高さHが許容範囲内になるように、制御部90が昇降機構40と乾燥ガス供給部50とを制御してもよい。 As shown in FIG. 5B, when the boundary line B is a curved line, the control unit 90 raises and lowers the mechanism so that both the maximum value and the minimum value of the height H of the boundary line B from the horizontal plane 5a are within the allowable range. 40 and the dry gas supply unit 50 may be controlled. However, the control unit 90 controls the elevating mechanism 40 and the dry gas supply unit 50 so that the height H of a specific portion (for example, a portion where the pattern collapses easily) in the boundary line B is within an allowable range. May be good.
 なお、境界線Bが上に凹の曲線になるのは、基板2の上端が液面5から露出した直後である。この時には、基板2のY軸方向中心部のみが露出し、露出した部分のみが乾燥ガスによって集中的に乾燥されるからである。その後、基板2が上昇し、基板2の乾燥領域A1が大きくなるにつれ、境界線Bが水平な直線になる。 It should be noted that the boundary line B becomes a concave curve upward immediately after the upper end of the substrate 2 is exposed from the liquid level 5. At this time, only the central portion of the substrate 2 in the Y-axis direction is exposed, and only the exposed portion is intensively dried by the drying gas. After that, as the substrate 2 rises and the dry region A1 of the substrate 2 becomes larger, the boundary line B becomes a horizontal straight line.
 以上、本開示に係る基板処理装置及び基板処理方法の実施形態について説明したが、本開示は上記実施形態などに限定されない。特許請求の範囲に記載された範疇内において、各種の変更、修正、置換、付加、削除、及び組み合わせが可能である。それらについても当然に本開示の技術的範囲に属する。 Although the embodiments of the substrate processing apparatus and the substrate processing method according to the present disclosure have been described above, the present disclosure is not limited to the above embodiments and the like. Various changes, modifications, replacements, additions, deletions, and combinations are possible within the scope of the claims. These also naturally belong to the technical scope of the present disclosure.
 なお、上記実施形態では、液面5から基板2を引き上げることにより、基板2を乾燥するが、処理槽10の槽内から処理液3を排出し、液面5を下げることにより、基板2を乾燥することも可能である。この場合、基板2の引き上げ速度の代わりに、処理液3の排出速度を制御すれば、境界線Bの水平面5aからの高さHを制御できる。 In the above embodiment, the substrate 2 is dried by pulling up the substrate 2 from the liquid level 5, but the substrate 2 is removed by discharging the treatment liquid 3 from the inside of the treatment tank 10 and lowering the liquid level 5. It is also possible to dry. In this case, if the discharge speed of the treatment liquid 3 is controlled instead of the pulling speed of the substrate 2, the height H of the boundary line B from the horizontal plane 5a can be controlled.
 本出願は、2019年7月26日に日本国特許庁に出願した特願2019-138217号に基づく優先権を主張するものであり、特願2019-138217号の全内容を本出願に援用する。 This application claims priority based on Japanese Patent Application No. 2019-138217 filed with the Japan Patent Office on July 26, 2019, and the entire contents of Japanese Patent Application No. 2019-138217 are incorporated in this application. ..
1  基板処理装置
2  基板
3  処理液
5  液面
5a 水平面
10 処理槽
30 基板保持具
40 昇降機構
50 乾燥ガス供給部
90 制御部
A1 乾燥領域
A2 浸漬領域
B  境界線
1 Substrate processing device 2 Substrate 3 Treatment liquid 5 Liquid level 5a Horizontal surface 10 Treatment tank 30 Substrate holder 40 Elevating mechanism 50 Dry gas supply unit 90 Control unit A1 Drying area A2 Immersion area B Boundary line

Claims (12)

  1.  基板が浸漬される処理液の貯留室を形成する処理槽と、
     前記基板を保持する基板保持具と、
     前記基板保持具を前記処理槽の槽内の前記貯留室と前記処理槽の上方の乾燥室との間で昇降させる昇降機構と、
     前記貯留室に貯留した前記処理液の液面の上方に、乾燥液の蒸気を含む乾燥ガスを供給する乾燥ガス供給部と、
     前記昇降機構と前記乾燥ガス供給部とを制御する制御部と、を有し、
     前記制御部は、前記液面から前記基板を引き上げる際に、前記基板の乾燥領域と浸漬領域との境界線の、前記液面の水平面からの高さが許容範囲内になるように、前記基板の引き上げ速度、前記乾燥ガスの流速、前記乾燥ガスの温度、及び前記乾燥ガスに占める前記乾燥液の蒸気の濃度のうちの少なくとも1つを制御する、基板処理装置。
    A treatment tank that forms a storage chamber for the treatment liquid in which the substrate is immersed,
    A substrate holder for holding the substrate and
    An elevating mechanism for raising and lowering the substrate holder between the storage chamber in the treatment tank and the drying chamber above the treatment tank.
    A drying gas supply unit that supplies a drying gas containing vapor of the drying liquid above the liquid level of the processing liquid stored in the storage chamber,
    It has a control unit that controls the elevating mechanism and the dry gas supply unit.
    When the substrate is pulled up from the liquid level, the control unit sets the substrate so that the height of the boundary line between the dry region and the immersion region of the substrate from the horizontal plane of the liquid level is within an allowable range. A substrate processing apparatus that controls at least one of a pulling speed, a flow velocity of the dry gas, a temperature of the dry gas, and a concentration of vapor of the dry liquid in the dry gas.
  2.  前記制御部は、前記基板の表面の材質及びパターン形状のうちの少なくとも1つに基づき前記許容範囲を決める、請求項1に記載の基板処理装置。 The substrate processing apparatus according to claim 1, wherein the control unit determines the allowable range based on at least one of the surface material and the pattern shape of the substrate.
  3.  前記制御部は、
     前記境界線の前記水平面からの前記高さが前記許容範囲内になるように、前記基板の引き上げ速度、前記乾燥ガスの流速、前記乾燥ガスの温度、及び前記乾燥ガスに占める前記乾燥液の蒸気の濃度のうちの少なくとも1つの設定値を決め、
     決めた前記設定値に従って、前記基板の引き上げ速度、前記乾燥ガスの流速、前記乾燥ガスの温度、及び前記乾燥ガスに占める前記乾燥液の蒸気の濃度のうちの少なくとも1つを制御する、請求項1又は2に記載の基板処理装置。
    The control unit
    The pulling speed of the substrate, the flow velocity of the drying gas, the temperature of the drying gas, and the vapor of the drying liquid in the drying gas so that the height of the boundary line from the horizontal plane is within the allowable range. Determine the set value of at least one of the concentrations of
    A claim that controls at least one of the pulling speed of the substrate, the flow rate of the drying gas, the temperature of the drying gas, and the concentration of the vapor of the drying liquid in the drying gas according to the determined set value. The substrate processing apparatus according to 1 or 2.
  4.  前記境界線の前記水平面からの前記高さを検出する高さ検出器を有し、
     前記制御部は、前記高さ検出器によって検出した前記高さが前記許容範囲内になるように、前記基板の引き上げ速度、前記乾燥ガスの流速、前記乾燥ガスの温度、及び前記乾燥ガスに占める前記乾燥液の蒸気の濃度のうちの少なくとも1つを制御する、請求項1~3のいずれか1項に記載の基板処理装置。
    It has a height detector that detects the height of the boundary line from the horizontal plane.
    The control unit occupies the pulling speed of the substrate, the flow velocity of the dry gas, the temperature of the dry gas, and the dry gas so that the height detected by the height detector is within the allowable range. The substrate processing apparatus according to any one of claims 1 to 3, which controls at least one of the vapor concentrations of the drying liquid.
  5.  前記制御部は、前記液面から前記基板を引き上げる際に、前記基板の上端が前記液面から露出し、前記基板の表面に前記境界線が形成されるまでの間は、前記基板の引き上げ速度を第1速度に制御し、その後、前記第1速度よりも速い第2速度に制御する、請求項1~4のいずれか1項に記載の基板処理装置。 When the control unit pulls up the substrate from the liquid surface, the pulling speed of the substrate is until the upper end of the substrate is exposed from the liquid surface and the boundary line is formed on the surface of the substrate. The substrate processing apparatus according to any one of claims 1 to 4, wherein the first speed is controlled, and then the second speed is controlled to be faster than the first speed.
  6.  前記乾燥ガス供給部は、前記基板の前記乾燥領域に向けて、前記乾燥ガスを吐出するノズルを含む、請求項1~5のいずれか1項に記載の基板処理装置。 The substrate processing apparatus according to any one of claims 1 to 5, wherein the dry gas supply unit includes a nozzle for discharging the dry gas toward the dry region of the substrate.
  7.  処理槽の貯留室に貯留された処理液に基板を浸漬することと、
     前記処理液の液面から前記基板を引き上げることと、
     前記処理液の液面の上方に、乾燥液の蒸気を含む乾燥ガスを供給することと、を有し、
     前記液面から前記基板を引き上げることは、前記基板の乾燥領域と浸漬領域との境界線の、前記液面の水平面からの高さが許容範囲内になるように、前記基板の引き上げ速度、前記乾燥ガスの流速、前記乾燥ガスの温度、及び前記乾燥ガスに占める前記乾燥液の蒸気の濃度のうちの少なくとも1つを制御することを含む、基板処理方法。
    Immersing the substrate in the treatment liquid stored in the storage chamber of the treatment tank and
    When the substrate is pulled up from the liquid level of the treatment liquid,
    A drying gas containing vapor of the drying liquid is supplied above the liquid level of the treatment liquid.
    Pulling the substrate from the liquid surface means that the pulling speed of the substrate is such that the height of the boundary line between the dry region and the immersion region of the substrate from the horizontal plane of the liquid level is within an allowable range. A substrate processing method comprising controlling at least one of a flow velocity of a dry gas, a temperature of the dry gas, and a concentration of vapor of the dry liquid in the dry gas.
  8.  前記基板の表面の材質及びパターン形状のうちの少なくとも1つに基づき前記許容範囲を決めることを含む、請求項7に記載の基板処理方法。 The substrate processing method according to claim 7, wherein the allowable range is determined based on at least one of the surface material and the pattern shape of the substrate.
  9.  前記境界線の前記水平面からの前記高さが前記許容範囲内になるように、前記基板の引き上げ速度、前記乾燥ガスの流速、前記乾燥ガスの温度、及び前記乾燥ガスに占める前記乾燥液の蒸気の濃度のうちの少なくとも1つの設定値を決めることと、
     決めた前記設定値に従って、前記基板の引き上げ速度、前記乾燥ガスの流速、前記乾燥ガスの温度、及び前記乾燥ガスに占める前記乾燥液の蒸気の濃度のうちの少なくとも1つを制御することと、
     を含む、請求項7又は8に記載の基板処理方法。
    The pulling speed of the substrate, the flow velocity of the drying gas, the temperature of the drying gas, and the vapor of the drying liquid in the drying gas so that the height of the boundary line from the horizontal plane is within the allowable range. To determine the setting value of at least one of the concentrations of
    In accordance with the determined set value, at least one of the pulling speed of the substrate, the flow rate of the drying gas, the temperature of the drying gas, and the concentration of the vapor of the drying liquid in the drying gas is controlled.
    7. The substrate processing method according to claim 7 or 8.
  10.  前記境界線の前記水平面からの前記高さを検出し、検出した前記高さが前記許容範囲内になるように、前記基板の引き上げ速度、前記乾燥ガスの流速、前記乾燥ガスの温度、及び前記乾燥ガスに占める前記乾燥液の蒸気の濃度のうちの少なくとも1つを制御することを含む、請求項7~9のいずれか1項に記載の基板処理方法。 The height of the boundary line from the horizontal plane is detected, and the pulling speed of the substrate, the flow velocity of the dry gas, the temperature of the dry gas, and the temperature of the dry gas are adjusted so that the detected height is within the allowable range. The substrate processing method according to any one of claims 7 to 9, which comprises controlling at least one of the vapor concentrations of the drying liquid in the drying gas.
  11.  前記液面から前記基板を引き上げる際に、前記基板の上端が前記液面から露出し、前記基板の表面に前記境界線が形成されるまでの間は、前記基板の引き上げ速度を第1速度に制御し、その後、前記第1速度よりも速い第2速度に制御することを含む、請求項7~10のいずれか1項に記載の基板処理方法。 When the substrate is pulled up from the liquid surface, the pulling speed of the substrate is set to the first speed until the upper end of the substrate is exposed from the liquid surface and the boundary line is formed on the surface of the substrate. The substrate processing method according to any one of claims 7 to 10, further comprising controlling and then controlling to a second speed higher than the first speed.
  12.  前記基板の前記乾燥領域に向けて、前記乾燥ガスを吐出することを含む、請求項7~11のいずれか1項に記載の基板処理方法。 The substrate processing method according to any one of claims 7 to 11, which comprises discharging the dry gas toward the dry region of the substrate.
PCT/JP2020/027566 2019-07-26 2020-07-15 Substrate treatment apparatus and substrate treatment method WO2021020136A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019138217 2019-07-26
JP2019-138217 2019-07-26

Publications (1)

Publication Number Publication Date
WO2021020136A1 true WO2021020136A1 (en) 2021-02-04

Family

ID=74229057

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/027566 WO2021020136A1 (en) 2019-07-26 2020-07-15 Substrate treatment apparatus and substrate treatment method

Country Status (1)

Country Link
WO (1) WO2021020136A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003528444A (en) * 1999-09-09 2003-09-24 セミトゥール・インコーポレイテッド Thermal capillary drying machine
JP2008211038A (en) * 2007-02-27 2008-09-11 Dainippon Screen Mfg Co Ltd Substrate-treating device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003528444A (en) * 1999-09-09 2003-09-24 セミトゥール・インコーポレイテッド Thermal capillary drying machine
JP2008211038A (en) * 2007-02-27 2008-09-11 Dainippon Screen Mfg Co Ltd Substrate-treating device

Similar Documents

Publication Publication Date Title
KR100927523B1 (en) Substrate Processing Equipment
US5950328A (en) Drying method and drying equipment
KR100767001B1 (en) Apparatus for dry treating substrates and method of dry treating substrates
TWI408737B (en) A substrate processing method, a substrate processing apparatus, a program, a recording medium, and a displacer
KR102584337B1 (en) Substrate processing apparatus, substrate processing method and recording medium
JPH1126423A (en) Method and apparatus for processing semiconductor wafer and the like
KR20110028534A (en) Substrate processing apparatus and substrate processing method
JP6224515B2 (en) Substrate processing apparatus, substrate processing method, and computer-readable recording medium recording substrate processing program
WO2021020136A1 (en) Substrate treatment apparatus and substrate treatment method
JP6805048B2 (en) Substrate liquid treatment equipment, substrate liquid treatment method and storage medium
JP7281925B2 (en) SUBSTRATE PROCESSING APPARATUS, SUBSTRATE PROCESSING METHOD, AND STORAGE MEDIUM
JP2004165624A (en) Substrate processing equipment and method therefor
JPH11330039A (en) Substrate processing device
JP4351981B2 (en) Semiconductor substrate cleaning method and apparatus
KR100687503B1 (en) Apparatus for wafer transaction
JP5729678B2 (en) Cleaning device
JP4421967B2 (en) Substrate processing apparatus and substrate processing method
KR20010040938A (en) Device for processing wafer
JP4994133B2 (en) Substrate processing equipment
JP2588524Y2 (en) Substrate pure water pulling and drying equipment
JP3923193B2 (en) Vapor dryer
JP6458123B1 (en) Substrate processing apparatus and substrate processing method
JP7241568B2 (en) SUBSTRATE PROCESSING APPARATUS, SUBSTRATE PROCESSING METHOD, AND STORAGE MEDIUM
US20220375743A1 (en) Substrate processing method and substrate processing apparatus
JP2007067072A (en) Processing device and processing method of substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20846991

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20846991

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP