WO2021020030A1 - Water treatment system - Google Patents

Water treatment system Download PDF

Info

Publication number
WO2021020030A1
WO2021020030A1 PCT/JP2020/026194 JP2020026194W WO2021020030A1 WO 2021020030 A1 WO2021020030 A1 WO 2021020030A1 JP 2020026194 W JP2020026194 W JP 2020026194W WO 2021020030 A1 WO2021020030 A1 WO 2021020030A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
insoluble particles
polymer flocculant
main flow
water
Prior art date
Application number
PCT/JP2020/026194
Other languages
French (fr)
Japanese (ja)
Inventor
ゆうこ 丸尾
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2021020030A1 publication Critical patent/WO2021020030A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/54Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material
    • C02F1/56Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • C02F1/62Heavy metal compounds
    • C02F1/64Heavy metal compounds of iron or manganese
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/76Treatment of water, waste water, or sewage by oxidation with halogens or compounds of halogens

Definitions

  • the present invention relates to a water treatment system.
  • Patent Document 1 describes a method in which an inorganic coagulant, a polymer coagulant, and insoluble particles are added to raw water to form flocs of suspended substances contained in the raw water and settle. It is disclosed.
  • Patent Document 1 First, suspended particles contained in raw water are aggregated by an inorganic flocculant to generate fine flocs. Next, a polymer flocculant and insoluble fine particles are added, the fine flocs are crosslinked with the polymer flocculant, and the grown flocs contain insoluble fine particles having a large specific gravity to generate flocs that are easily precipitated. ..
  • the water quality of well water varies from region to region. For example, many iron components may be dissolved in well water in various parts of the world. Such well water is not suitable for use as it is as domestic water such as drinking water. Therefore, it is preferable to use a water purification device to remove iron ions dissolved in the well water and purify the water into water suitable for domestic use.
  • a water purification device to remove iron ions dissolved in the well water and purify the water into water suitable for domestic use.
  • the current Japanese tap water quality standards stipulate that the amount of iron contained in tap water is 0.3 mg / L or less.
  • Patent Document 1 is a coagulation-precipitation method using steel wastewater containing iron oxide as raw water, and an inorganic coagulant is used.
  • Common inorganic flocculants are iron-based flocculants or aluminum-based flocculants.
  • the iron-based flocculant Since the iron-based flocculant is colored, if it is added in excess of the amount of reaction with pollutants, the color will remain in the treated water. Therefore, in order to supply colorless water, it is necessary to measure the concentration of pollutants in real time and precisely control the amount of iron-based flocculant added. However, such control complicates the system and increases the installation cost of the system.
  • the amount of aluminum contained in tap water is 0.2 mg / L or less, which is a strict standard.
  • the installation is easy and the installation cost is low. Therefore, it is not easy to manage the tap water quality standard for aluminum while adding an aluminum-based coagulant as in a large-scale water purification plant. Therefore, when supplying water to be used as domestic water, it is not preferable to add a large amount of an inorganic flocculant such as an iron-based flocculant or an aluminum-based flocculant to the raw water.
  • An object of the present invention is to provide a water treatment system capable of removing iron ions from raw water and supplying water of high quality.
  • the water treatment system includes a main flow path through which raw water containing iron ions flows, and a filtration tank provided in the main flow path.
  • the raw water flowing through this flow path is supplied with an oxidizing agent that oxidizes iron ions to iron hydroxide, a cationic polymer flocculant, and insoluble particles having a negative surface charge in the neutral region.
  • the filtration tank filters raw water containing flocs. Flocks include polymeric flocculants, insoluble particles, and iron hydroxide.
  • FIG. 1 is a schematic diagram for explaining an example of a water treatment system according to the first embodiment.
  • FIG. 2 is a schematic diagram for explaining an example of the water treatment system according to the second embodiment.
  • FIG. 3 is a schematic diagram for explaining an example of the water treatment system according to the third embodiment.
  • FIG. 4 is a graph showing the relationship between the standing time and the total iron concentration (total Fe concentration) when each polymer flocculant is used.
  • FIG. 5 is a graph showing the relationship between the flocculant concentration and the total iron concentration (total Fe concentration) when each insoluble particle is used.
  • the water treatment system 100 includes the main flow path 10 and the filtration tank 20.
  • the filtration tank 20 is provided in the main flow path 10. One end of this flow path 10 reaches the raw water W existing in the ground. The other end of this flow path 10 is connected to the faucet T used by the user.
  • the filtration tank 20 is provided between the raw water W existing in the ground and the faucet T in the main flow path 10.
  • the raw water W is, for example, water that becomes a raw material for tap water, and is water or rainwater drawn from a water source such as a well, a river, or a pond.
  • the raw water W contains iron ions, and the iron ions are, for example, mainly eluted iron contained in the ground.
  • a pump P is provided upstream of the filtration tank 20 in the main flow path 10, and the raw water W is pumped from the ground by the pump P, and the raw water W flows through the main flow path 10.
  • the water treatment system 100 includes a first supply unit 11, a first flow path 12, a second supply unit 13, a second flow path 14, a third supply unit 15, and a third flow path 16. You may.
  • the oxidant is supplied from the first supply unit 11 to the main flow path 10 by the first flow path 12.
  • the polymer flocculant is supplied from the second supply unit 13 to the main flow path 10 by the second flow path 14.
  • the insoluble particles are supplied from the third supply unit 15 to the main flow path 10 by the third flow path 16.
  • the first flow path 12, the second flow path 14, and the third flow path 16 are connected to the main flow path 10 downstream of the pump P and upstream of the filtration tank 20.
  • the first flow path 12, the second flow path 14, and the third flow path 16 are connected to the main flow path 10 in this order from the upstream. Therefore, first, the oxidizing agent is supplied to the main flow path 10 from the first flow path 12. Next, the polymer flocculant is supplied to the main flow path 10 from the second flow path 14. Then, the insoluble particles are supplied from the third flow path 16.
  • the main flow path 10 may be provided with a pipe, and the oxidizing agent, the polymer flocculant, and the insoluble particles may be reacted in the pipe. Further, the main flow path 10 may be provided with a reaction tank, and the oxidizing agent, the polymer flocculant, and the insoluble particles may be reacted in the reaction tank. The main flow path 10 may be provided with one reaction tank or may be provided with a plurality of reaction tanks. For example, the main flow path 10 is connected to the first flow path 12, the second flow path 14, and the third flow path 16, and includes one reaction tank to which an oxidizing agent, a polymer flocculant, and insoluble particles are supplied. May be.
  • flocs are formed from iron ions contained in the raw water W by the oxidizing agent, the polymer flocculant, and the insoluble particles.
  • Flock contains polymer flocculants, insoluble particles, and iron hydroxide.
  • the main flow path 10 may be provided with a first reaction tank connected to the first flow path 12 and to which an oxidizing agent is supplied.
  • a reaction may be carried out in which iron ions contained in the raw water W are oxidized by an oxidizing agent.
  • the main flow path 10 may be connected to the second flow path 14 and may include a second reaction tank to which the polymer flocculant is supplied.
  • a reaction in which iron hydroxide is aggregated by a polymer flocculant may be carried out.
  • the main flow path 10 may be connected to the third flow path 16 and may include a third reaction tank to which insoluble particles are supplied. In the third reaction tank, a reaction in which insoluble fine particles are bound to the polymer flocculant may be carried out.
  • the raw water W containing the flocs reaches the filtration tank 20 through the main flow path 10.
  • the filtration tank 20 filters the raw water W containing the flocs. In this way, iron ions are removed from the raw water W, and purified water is supplied to the user from the faucet T.
  • the oxidizing agent, the polymer flocculant, and the insoluble particles will be described in detail.
  • Oxidizing agents oxidize iron ions to iron hydroxide. Most of the iron ions dissolved in the raw water W are divalent iron ions (Fe 2+ ). The oxidizing agent oxidizes iron ions dissolved in the raw water W to form iron hydroxide (Fe (OH) 3 ). Since iron hydroxide has low solubility in water, it precipitates as particles in raw water W.
  • the oxidizing agent is not particularly limited as long as it can oxidize iron ions contained in the raw water W to iron hydroxide.
  • the oxidizing agent may contain ozone or chlorine because it can be easily added to the raw water W and iron ions can be efficiently oxidized.
  • chlorine-based chemicals are preferable as the oxidizing agent, and those in which hypochlorous acid is generated inside the raw water W are particularly preferable.
  • the chlorinated agent may contain at least one selected from the group consisting of sodium hypochlorite, calcium hypochlorite and chlorinated isocyanuric acid.
  • Calcium hypochlorite may contain at least one of bleached powder (30% effective chlorine) and highly bleached powder (70% effective chlorine).
  • the chlorinated isocyanuric acid may contain at least one selected from the group consisting of sodium trichloroisocyanurate, potassium trichloroisocyanurate, sodium dichloroisocyanurate, and potassium dichloroisocyanurate.
  • the chlorine-based drug contains sodium hypochlorite because it is a liquid and can be quantitatively added to the raw water W by using an injection method using a metering pump.
  • the chlorine-based chemical contains highly bleached powder because it has high solubility in raw water W and exhibits a high oxidizing action.
  • the polymer flocculant crosslinks with iron hydroxide and aggregates iron hydroxide to form coarse flocs.
  • the polymer flocculant generally includes a nonionic polymer flocculant, an anionic polymer flocculant, and a cationic polymer flocculant.
  • the nonionic polymer flocculant and the anionic polymer flocculant have a small effect of aggregating iron hydroxide. Therefore, in this embodiment, a cationic polymer flocculant is used.
  • the polymer flocculant preferably contains a natural polymer flocculant when supplied as domestic water.
  • the natural polymer flocculant may contain polysaccharides.
  • the polysaccharide may include chitosan, starch, guar gum, locust bean gum, cellulose, sodium alginate, or derivatives thereof. Among these, chitosan is more preferable as the polymer flocculant because the flocs are well formed, easily available, and suitable for household water treatment.
  • the molecular weight of the polymer flocculant is not particularly limited, but may be 1 million to 20 million.
  • Insoluble particles are particles that are insoluble or hardly soluble in raw water W. Insoluble particles promote floc precipitation by binding to flocs. Insoluble particles have a negative surface charge in the neutral region.
  • a cationic polymer flocculant is used as the flocculant.
  • the surface charge of the insoluble particles is positive, the cationic polymer flocculant does not have high iron ion removing performance as compared with the case where the surface charge of the insoluble particles is negative. Therefore, in this embodiment, insoluble particles having a negative surface charge in the neutral region are used.
  • the surface charge in the neutral region can be determined by measuring the zeta potential. Specifically, for insoluble particles, the pH value (pH zpc ) at which the zeta potential becomes 0 mV is measured, and when the pH zpc value is smaller than the neutral region, the surface charge in the neutral region is negative. Can be determined to be. Further, when the value of pH zpc is larger than that in the neutral region, it can be determined that the surface charge in the neutral region is a positive charge.
  • the neutral region for determining the surface charge is about pH 6 to pH 8, may be pH 6.5 to pH 7.5, or may be pH 7.
  • the insoluble particles having a negative surface charge in the neutral region may contain, for example, a silicate mineral.
  • the silicate mineral may be a nesosilicate mineral, a solosilicate mineral, a cyclosilicate mineral, an innosilicate mineral, a phyllosilicate mineral, a tectosilicate mineral, or a mixture thereof.
  • Nesokei minerals tetrahedral structure having a SiO 4 4-exist alone.
  • the nesosilicate minerals may include olivine, garnet, calyx, andalusite, kyanite, titanite, or mixtures thereof.
  • Sorokei minerals tetrahedral structure are attached two share one oxygen having a SiO 4 4-.
  • Solosilicate minerals may include gerene stones, hemimorphites, lawsonites, vesvianites, epidote, or mixtures thereof.
  • Cyclo silicate minerals bonded annularly tetrahedral structure share two oxygen having a SiO 4 4-.
  • Cyclosilicate minerals may include beryl, kin blue stone, tourmaline, osumilite, ax stone, or mixtures thereof. In inosilicate minerals, it is covalently to the chain tetrahedral structure with two or three oxygen having a SiO 4 4-.
  • Innosilicate minerals may include pyroxene, quasi-pyroxene, amphibole, soda wollastonite, Babbingtonite, or mixtures thereof.
  • the phyllosilicate minerals are attached to a flat shape tetrahedral structure share three oxygen having a SiO 4 4-.
  • Phyllosilicate minerals may include kaolinite, mica, chlorite, vermiculite, serpentine, talc, or mixtures thereof.
  • the tectosilicates minerals are attached to a network by sharing tetrahedral structure with four oxygen having a SiO 4 4-.
  • Tectate silicate minerals may include quartz, feldspar, feldspathoids, zeolites, scapolite, or mixtures thereof.
  • the insoluble particles are kaolinite, zeolite, or a mixture thereof because they are excellent in promoting floc precipitation, easily available, and suitable for domestic water treatment. Is preferably contained.
  • the average particle size of the insoluble particles is preferably 0.1 ⁇ m or more. When the average particle size is equal to or larger than the above value, floc precipitation can be promoted.
  • the average particle size of the insoluble particles is preferably 20 ⁇ m or less. By setting the average particle size of the insoluble particles to the above value or less, the insoluble particles float in the raw water and diffuse uniformly, so that the probability of contact with iron hydroxide and the polymer flocculant increases, and the floc's The precipitation efficiency can be improved.
  • the average particle size of the insoluble particles is preferably 1 ⁇ m to 20 ⁇ m, and more preferably 1 ⁇ m to 10 ⁇ m or less.
  • the average particle size represents the particle size when the cumulative value of the particle size distribution on a volume basis is 50%, and can be measured by, for example, a laser diffraction / scattering method.
  • Density of insoluble particles is not particularly limited as long as it can promote the precipitation of flocs may be 1.5g / cm 3 ⁇ 5g / cm 3, even 2g / cm 3 ⁇ 4g / cm 3 Good.
  • the density of the insoluble particles is within the above range, the insoluble particles are uniformly dispersed in the raw water before the formation of flocs, the reaction efficiency with the polymer flocculant is increased, and the effect of promoting precipitation after the formation of flocs is enhanced.
  • the shape of the insoluble particles is not particularly limited, and may be any shape such as spherical, elliptical, needle-shaped, rod-shaped, fibrous, and layered.
  • the amount of oxidizing agent, polymer flocculant, and insoluble particles added to the raw water can be appropriately determined according to the quality of the raw water. For example, when the content of iron ions contained in the raw water is high, the amount of these ions added may be increased. Further, in the present embodiment, a small amount of an inorganic coagulant such as an iron-based coagulant or an aluminum coagulant may be added to the raw water W flowing through the main flow path 10, but the inorganic coagulant is added to the raw water W flowing through the main flow path 10. It does not have to be done.
  • an inorganic coagulant such as an iron-based coagulant or an aluminum coagulant
  • the water treatment system 100 supplies the first flow path 12 that supplies the oxidizing agent to the main flow path 10, the second flow path 14 that supplies the polymer flocculant to the main flow path 10, and the insoluble particles in the main flow path.
  • a third flow path 16 for supplying to 10 is provided.
  • the order in which these are added is not particularly limited. Therefore, these may be connected to the main flow path 10 in the order of the first flow path 12, the second flow path 14, and the third flow path 16 from the upstream, and the first flow path 12, the third flow path 16 And the second flow path 14 may be connected to the main flow path 10 in this order.
  • these may be connected to the main flow path 10 in the order of the second flow path 14, the first flow path 12 and the third flow path 16 from the upstream, and the second flow path 14, the third flow path 16 And the first flow path 12 may be connected to the main flow path 10 in this order. Further, these may be connected to the main flow path 10 in the order of the third flow path 16, the first flow path 12, and the second flow path 14 from the upstream, and the third flow path 16, the second flow path 14 And the first flow path 12 may be connected to the main flow path 10 in this order.
  • the filtration tank 20 is provided in the main flow path 10.
  • the filtration tank 20 filters the raw water W containing the flocs.
  • the filtration tank 20 is not particularly limited as long as it can filter raw water containing flocs.
  • the filter tank 20 may include, for example, a container and a filter medium filled in the container.
  • the filter media includes granular filter media in which sand, garnet, pebble, anthracite, ylmenite, etc. are made into a single layer or multiple layers, granular filter media such as manganese sand, granular activated carbon, etc.
  • Filter media showing a filtration phenomenon called deep filtration such as non-woven fabric filter media and membrane filter media, can be used without particular limitation.
  • the density of manganese sand can be, for example, 2.57 g / cm 3 to 2.67 g / cm 3 .
  • the amount of manganese adhered to the manganese sand is preferably 0.3 mg / g or more.
  • the water treatment system 100 includes the main flow path 10 and the filtration tank 20.
  • Raw water W containing iron ions flows through this flow path 10.
  • an oxidizing agent, a polymer flocculant, and insoluble particles are supplied to the raw water W flowing through the main flow path 10.
  • the oxidizing agent oxidizes iron ions to iron hydroxide, the polymer flocculant is cationic, and the insoluble particles have a negative surface charge in the neutral region. Therefore, flocs containing polymer flocculants, insoluble particles, and iron hydroxide are effectively formed. Such flocs are removed by the filtration tank 20. Therefore, according to the water treatment system according to the present embodiment, iron ions can be removed from the raw water and water having high water quality can be supplied.
  • the effect of removing iron ions from raw water and supplying water of high quality can also be achieved by a water treatment method including a supply step and a filtration step.
  • the raw water W containing iron ions is supplied with an oxidant that oxidizes iron ions to iron hydroxide, a cationic polymer flocculant, and insoluble particles whose surface charge is negative in the neutral region. ..
  • the filtration step the raw water W containing flocs is filtered.
  • the order in which the oxidizing agent, the polymer flocculant and the insoluble particles are supplied is not particularly limited.
  • the water treatment system 100 according to the second embodiment will be described with reference to FIG.
  • the water treatment system 100 according to the first embodiment has a first flow path and 12 for supplying an oxidizing agent to the main flow path 10 and a second flow for supplying a polymer flocculant to the main flow path 10.
  • a path 14 and a third channel 16 for supplying insoluble particles to the main channel 10 were provided.
  • the first flow path 12 that supplies the oxidizing agent and the polymer flocculant to the main flow path 10 and the insoluble particles are supplied to the main flow path 10.
  • the second flow path 14 and the like are provided.
  • the water treatment system 100 includes a first supply unit 11, a first flow path 12, a second supply unit 13, and a second flow path 14.
  • the oxidizing agent and the polymer flocculant are supplied from the first supply unit 11 to the main flow path 10 by the first flow path 12.
  • the insoluble particles are supplied from the second supply unit 13 to the main flow path 10 by the second flow path 14.
  • the first flow path 12 and the second flow path 14 are connected to the main flow path 10 downstream of the pump P and upstream of the filtration tank 20.
  • the first flow path 12 and the second flow path 14 are connected to the main flow path 10 in this order from the upstream.
  • An oxidizing agent, a polymer flocculant, and insoluble particles are supplied to the raw water W flowing through the main flow path 10.
  • an oxidizing agent and a polymer flocculant are supplied to the main flow path 10 from the first flow path 12.
  • insoluble particles are supplied to the main flow path 10 from the second flow path 14.
  • the iron component contained in the raw water W is aggregated as flocs by the oxidizing agent, the polymer flocculant, and the insoluble particles.
  • Flock contains polymer flocculants, insoluble particles, and iron hydroxide.
  • the raw water W containing the flocs is filtered by the filtration tank 20, and the purified water is supplied to the user from the faucet T.
  • the water treatment system 100 includes a first flow path 12 that supplies the oxidizing agent and insoluble particles to the main flow path 10, and a second flow path 14 that supplies the polymer flocculant to the main flow path 10. Good.
  • the oxidizing agent and the insoluble particles are supplied to the main flow path 10 from the first flow path 12.
  • the polymer flocculant is supplied to the main flow path 10 from the second flow path 14.
  • the iron component contained in the raw water W is aggregated as flocs by the oxidizing agent, the polymer flocculant, and the insoluble particles.
  • Flock contains polymer flocculants, insoluble particles, and iron hydroxide.
  • the raw water W containing the flocs is filtered by the filtration tank 20, and the purified water is supplied to the user from the faucet T.
  • the order in which the oxidizing agent, the polymer flocculant, and the insoluble particles are added is not particularly limited. Therefore, from the upstream, the first flow path 12 and the second flow path 14 may be connected to the main flow path 10 in the order, and the second flow path 14 and the first flow path 12 are connected to the main flow path 10 in the order. You may be.
  • the cationic polymer flocculant and the insoluble particles having a negative surface charge in the neutral region may cancel each other out. Therefore, it is preferable that the polymer flocculant and the insoluble particles are not added in the same flow path such as the first flow path 12 or the second flow path 14.
  • the water treatment system 100 according to the third embodiment is provided upstream of the filtration tank 20 in the main flow path 10, and further includes a settling tank 30 for precipitating flocs.
  • the settling tank 30 is connected downstream from the first flow path 12, the second flow path 14, and the third flow path.
  • flocs contain polymer flocculants, insoluble particles, and iron hydroxide. Precipitation of flocs is promoted by insoluble particles. Therefore, by providing the settling tank 30 upstream of the filtration tank 20, at least a part of the flocs is settled on the bottom of the settling tank 30 before the raw water W containing the flocs is filtered by the filtration tank 20. Therefore, the amount of flocs that reach the filtration tank 20 can be reduced, and the load on the filtration tank 20 can be reduced.
  • the settling tank 30 As the settling tank 30, a known one can be used.
  • the filtration tank 20 may be formed so as to have a concave shape toward the bottom so that the precipitate tends to collect in a part thereof.
  • a discharge pipe may be connected to the bottom wall of the settling tank 30, and the settling tank 30 may be configured to discharge the sediment containing flocs by a pump or the like.
  • the water treatment system 100 according to the first embodiment further includes a settling tank 30
  • the settling tank 30 is provided downstream of the first flow path 12, the second flow path 14, and the third flow path 16 has been described.
  • the same effect can be expected even when the third flow path 16 is not provided as in the case of the water treatment system 100 according to the second embodiment.
  • the settling tank 30 may be provided downstream of the first flow path 12 and the second flow path 14.
  • the water treatment system 100 has been described above using the first to third embodiments.
  • the water treatment system 100 includes a main flow path 10 through which the raw water W containing iron ions flows, and a filtration tank 20 provided in the main flow path 10.
  • the raw water W flowing through the main flow path 10 is supplied with an oxidizing agent that oxidizes iron ions to iron hydroxide, a cationic polymer flocculant, and insoluble particles having a negative surface charge in the neutral region.
  • the filtration tank 20 filters the raw water W containing the flocs. Flocks include polymeric flocculants, insoluble particles, and iron hydroxide. Therefore, it is possible to remove iron ions from raw water and supply water with high water quality.
  • Such a water treatment system 100 can be suitably used as a household water treatment system.
  • Example 1 In a beaker containing raw water having a total iron concentration of 4.5 mg / L, an oxidizing agent that oxidizes iron ions to iron hydroxide, a cationic polymer flocculant, and a surface charge in the neutral region are negative charges. Insoluble particles were added and stirred well. Then, the water obtained by stirring was allowed to stand for 5 minutes, and then the supernatant was collected.
  • aqueous sodium hypochlorite solution sodium hypochlorite manufactured by Wako Pure Chemical Industries, Ltd.
  • chitosan chitosan 100 manufactured by Wako Pure Chemical Industries, Ltd.
  • the polymer flocculant was added so as to have a concentration of 10 mg / L.
  • the insoluble particles As the insoluble particles, kaolinite (Hakuto soil manufactured by Wako Pure Chemical Industries, Ltd.) having a negative surface charge in the neutral region was used, and the insoluble particles were added to the raw water so as to have a concentration of 5 mg / L. .. The average particle size of the insoluble particles was 10 ⁇ m, and the density was 2.6 g / cm 3 .
  • pH value (pH zpc ) at which the zeta potential was 0 mV was measured using a zeta potential measuring device manufactured by Shimadzu Corporation, the pH zpc of kaolinite was 4.9 and the pH zpc of chitosan was 8. there were.
  • Example 2 The supernatant was collected by the same method as in Example 1 except that the water obtained by stirring was allowed to stand for 8 minutes.
  • Example 3 The supernatant was collected by the same method as in Example 1 except that the water obtained by stirring was allowed to stand for 10 minutes.
  • Example 1 As the polymer flocculant, the supernatant was collected by the same method as in Example 1 except that an anionic polymer flocculant of sodium alginate (sodium alginate manufactured by Wako Pure Chemical Industries, Ltd.) was used instead of the cationic polymer flocculant. did.
  • an anionic polymer flocculant of sodium alginate sodium alginate manufactured by Wako Pure Chemical Industries, Ltd.
  • the total iron concentration (total Fe concentration) of each supernatant collected as described above was measured.
  • the total iron concentration was measured by the FERROVER method. Specifically, a powdered iron reagent (HACH0583 manufactured by HACH) was added to 10 mL of water treated as described above, and the total iron concentration was measured using a portable absorptiometer (DR900 manufactured by HACH). ..
  • the reaction time between the treated water and the iron reagent was 3 minutes, and the measurement was carried out at room temperature (about 20 ° C.).
  • FIG. 4 is a graph showing the relationship between the standing time and the total iron concentration when each polymer flocculant is used.
  • the total iron concentration of the supernatant decreased as the standing time increased. There is.
  • the total iron concentration is lower when the cationic polymer flocculant is used than when the anionic polymer flocculant is used. From this result, it can be seen that the cationic polymer flocculant is superior to the anionic polymer flocculant when removing iron ions in the raw water.
  • Example 4 Except that raw water having a total iron concentration of 2.9 mg / L was used, the concentration of the coagulant of the water obtained by stirring was set to 10 mg / L, and the water obtained by stirring was allowed to stand for 10 minutes. The supernatant was collected by the same method as in Example 1.
  • Example 5 The supernatant was collected by the same method as in Example 4 except that the concentration of the water flocculant obtained by stirring was set to 12.5 mg / L.
  • Example 6 The supernatant was collected by the same method as in Example 4 except that the concentration of the water flocculant obtained by stirring was set to 15 mg / L.
  • Example 4 except that magnesium oxide (magnesium oxide manufactured by Wako Pure Chemical Industries, Ltd.) having a positive surface charge in the neutral region was used as the insoluble particles instead of the insoluble particles having a negative surface charge in the neutral region. The supernatant was collected by the same method.
  • magnesium oxide magnesium oxide manufactured by Wako Pure Chemical Industries, Ltd.
  • FIG. 5 is a graph showing the relationship between the flocculant concentration and the total iron concentration when each insoluble particle is used.
  • the total iron concentration of the supernatant decreases as the concentration of the flocculant increases.
  • the cationic polymer flocculant and the insoluble particles having a positive surface charge are combined, even if the concentration of the flocculant is increased, the total iron concentration of the supernatant is the insoluble particles having a negative surface charge. It was higher than when used and was similar to the absence of insoluble particles.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

This water treatment system (100) comprises: a main flow path (10) through which raw water (W) containing iron ions flows; and a filtering tank (20) provided in the main flow path (10). The raw water (W) flowing through the main flow path (10) is supplied with an oxidizing agent that oxidizes iron ions to iron hydroxide, a cationic polymer flocculant, and insoluble particles each having a negative surface charge in a neutral region. The filtering tank (20) filters the raw water (W) containing a floc. The floc contains a polymer flocculant, insoluble particles, and iron hydroxide.

Description

水処理システムWater treatment system
 本発明は、水処理システムに関するものである。 The present invention relates to a water treatment system.
 従来、原水に含まれる懸濁物質を凝集沈殿処理により汚泥と処理水とに分離する凝集沈殿方法が開示されている。このような凝集沈殿方法として、特許文献1には、原水に対して無機凝集剤、高分子凝集剤、不溶性粒子を添加し、原水に含まれる懸濁物質のフロックを形成して沈降させる方法が開示されている。 Conventionally, a coagulation-sedimentation method for separating a suspended substance contained in raw water into sludge and treated water by coagulation-sedimentation treatment has been disclosed. As such a coagulation-precipitation method, Patent Document 1 describes a method in which an inorganic coagulant, a polymer coagulant, and insoluble particles are added to raw water to form flocs of suspended substances contained in the raw water and settle. It is disclosed.
 具体的には、特許文献1では、まず、原水に含まれる懸濁粒子を無機凝集剤によって凝集させ、微細なフロックを生成している。次に、高分子凝集剤と不溶性微粒子とを添加し、微細フロック間を高分子凝集剤によって架橋し、成長したフロックに比重の大きな不溶性微粒子を含ませることで沈殿しやすいフロックを生成している。 Specifically, in Patent Document 1, first, suspended particles contained in raw water are aggregated by an inorganic flocculant to generate fine flocs. Next, a polymer flocculant and insoluble fine particles are added, the fine flocs are crosslinked with the polymer flocculant, and the grown flocs contain insoluble fine particles having a large specific gravity to generate flocs that are easily precipitated. ..
特開2014-237122号公報Japanese Unexamined Patent Publication No. 2014-237122
 井水の水質は地域によって異なるものであり、例えば世界各地で、井水の中に多くの鉄成分が溶存していることがある。このような井水は、そのまま飲料水等の生活用水として用いるのには適していない。そのため、浄水装置を用いて井水中に溶存している鉄イオンを除去し、生活用水として適した水に浄化するのが好ましい。例えば、現行の日本の水道水質基準では、水道水に含まれる鉄の量は0.3mg/L以下と規定されている。 The water quality of well water varies from region to region. For example, many iron components may be dissolved in well water in various parts of the world. Such well water is not suitable for use as it is as domestic water such as drinking water. Therefore, it is preferable to use a water purification device to remove iron ions dissolved in the well water and purify the water into water suitable for domestic use. For example, the current Japanese tap water quality standards stipulate that the amount of iron contained in tap water is 0.3 mg / L or less.
 ところで、特許文献1に記載の方法は、酸化鉄を含む鉄鋼排水を原水とする凝集沈殿方法であり、無機凝集剤が使用されている。一般的な無機凝集剤は、鉄系凝集剤又はアルミニウム系凝集剤である。 By the way, the method described in Patent Document 1 is a coagulation-precipitation method using steel wastewater containing iron oxide as raw water, and an inorganic coagulant is used. Common inorganic flocculants are iron-based flocculants or aluminum-based flocculants.
 鉄系凝集剤は、有色であるため、汚染物質との反応量を超えて添加されると、処理水に色が残ってしまう。したがって、無色の水を供給するためには、汚染物質の濃度をリアルタイムで測定し、鉄系凝集剤の添加量を精密に制御する必要がある。しかしながら、このような制御によって、システムが複雑になり、システムの設置コストも高くなってしまう。 Since the iron-based flocculant is colored, if it is added in excess of the amount of reaction with pollutants, the color will remain in the treated water. Therefore, in order to supply colorless water, it is necessary to measure the concentration of pollutants in real time and precisely control the amount of iron-based flocculant added. However, such control complicates the system and increases the installation cost of the system.
 一方、水道水質基準によれば、水道水に含まれるアルミニウムの量は0.2mg/L以下と厳しい基準が設けられている。しかしながら、各家庭で個別に設置するような水処理システムでは、設置が簡便であることや設置コストが低いことが求められている。そのため、大規模な浄水場のように、アルミニウム系凝集剤を添加しつつ、アルミニウムに関する水道水質基準を管理することは容易ではない。したがって、生活用水となる水を供給する場合において、鉄系凝集剤又はアルミニウム系凝集剤のような無機凝集剤を原水に多く添加することは好ましくない。 On the other hand, according to the tap water quality standard, the amount of aluminum contained in tap water is 0.2 mg / L or less, which is a strict standard. However, in a water treatment system that is installed individually in each household, it is required that the installation is easy and the installation cost is low. Therefore, it is not easy to manage the tap water quality standard for aluminum while adding an aluminum-based coagulant as in a large-scale water purification plant. Therefore, when supplying water to be used as domestic water, it is not preferable to add a large amount of an inorganic flocculant such as an iron-based flocculant or an aluminum-based flocculant to the raw water.
 本発明は、このような従来技術の有する課題に鑑みてなされたものである。そして、本発明の目的は、原水から鉄イオンを除去し、水質の高い水を供給することが可能な水処理システムを提供することにある。 The present invention has been made in view of the problems of the prior art. An object of the present invention is to provide a water treatment system capable of removing iron ions from raw water and supplying water of high quality.
 上記課題を解決するために、本発明の態様に係る水処理システムは、鉄イオンを含む原水が流れる本流路と、本流路に設けられた濾過槽と、を備える。本流路を流れる原水には、鉄イオンを水酸化鉄に酸化する酸化剤、カチオン性の高分子凝集剤、及び中性領域における表面電荷が負電荷である不溶性粒子が供給される。濾過槽は、フロックを含有する原水を濾過する。フロックには、高分子凝集剤、不溶性粒子、及び水酸化鉄が含まれる。 In order to solve the above problems, the water treatment system according to the aspect of the present invention includes a main flow path through which raw water containing iron ions flows, and a filtration tank provided in the main flow path. The raw water flowing through this flow path is supplied with an oxidizing agent that oxidizes iron ions to iron hydroxide, a cationic polymer flocculant, and insoluble particles having a negative surface charge in the neutral region. The filtration tank filters raw water containing flocs. Flocks include polymeric flocculants, insoluble particles, and iron hydroxide.
図1は、第1実施形態に係る水処理システムの一例を説明するための模式図である。FIG. 1 is a schematic diagram for explaining an example of a water treatment system according to the first embodiment. 図2は、第2実施形態に係る水処理システムの一例を説明するための模式図である。FIG. 2 is a schematic diagram for explaining an example of the water treatment system according to the second embodiment. 図3は、第3実施形態に係る水処理システムの一例を説明するための模式図である。FIG. 3 is a schematic diagram for explaining an example of the water treatment system according to the third embodiment. 図4は、各高分子凝集剤を使用した場合における、静置時間と全鉄濃度(全Fe濃度)との関係を示したグラフである。FIG. 4 is a graph showing the relationship between the standing time and the total iron concentration (total Fe concentration) when each polymer flocculant is used. 図5は、各不溶性粒子を使用した場合における、凝集剤濃度と全鉄濃度(全Fe濃度)との関係を示したグラフである。FIG. 5 is a graph showing the relationship between the flocculant concentration and the total iron concentration (total Fe concentration) when each insoluble particle is used.
 以下、本実施形態に係る水処理システムについて詳細に説明する。なお、図面の寸法比率は説明の都合上誇張されており、実際の比率とは異なる場合がある。 Hereinafter, the water treatment system according to this embodiment will be described in detail. The dimensional ratios in the drawings are exaggerated for convenience of explanation and may differ from the actual ratios.
 図1に示すように、本実施形態に係る水処理システム100は、本流路10と、濾過槽20とを備えている。濾過槽20は、本流路10に設けられている。本流路10の一端は、地中に存在する原水Wに到達している。本流路10の他端は、ユーザーが使用する蛇口Tに接続されている。濾過槽20は、本流路10において、地中に存在する原水Wと蛇口Tとの間に設けられている。原水Wは、例えば、水道水の原材料になる水であり、井戸、河川若しくは池等の水源から汲み出した水又は雨水である。原水Wは鉄イオンを含んでおり、この鉄イオンは、例えば、地中に含まれる鉄が主に溶出したものである。本流路10における濾過槽20の上流にはポンプPが設けられており、ポンプPによって地中から原水Wが汲み上げられ、本流路10に原水Wが流れる。 As shown in FIG. 1, the water treatment system 100 according to the present embodiment includes the main flow path 10 and the filtration tank 20. The filtration tank 20 is provided in the main flow path 10. One end of this flow path 10 reaches the raw water W existing in the ground. The other end of this flow path 10 is connected to the faucet T used by the user. The filtration tank 20 is provided between the raw water W existing in the ground and the faucet T in the main flow path 10. The raw water W is, for example, water that becomes a raw material for tap water, and is water or rainwater drawn from a water source such as a well, a river, or a pond. The raw water W contains iron ions, and the iron ions are, for example, mainly eluted iron contained in the ground. A pump P is provided upstream of the filtration tank 20 in the main flow path 10, and the raw water W is pumped from the ground by the pump P, and the raw water W flows through the main flow path 10.
 本流路10を流れる原水Wには、酸化剤、高分子凝集剤、及び不溶性粒子が供給される。本実施形態に係る水処理システム100は、第1供給部11、第1流路12、第2供給部13、第2流路14、第3供給部15、及び第3流路16を備えていてもよい。酸化剤は、第1供給部11から第1流路12によって本流路10に供給される。高分子凝集剤は、第2供給部13から第2流路14によって本流路10に供給される。不溶性粒子は、第3供給部15から第3流路16によって本流路10に供給される。第1流路12、第2流路14、及び第3流路16は、本流路10において、ポンプPよりも下流であって濾過槽20よりも上流に接続されている。 An oxidizing agent, a polymer flocculant, and insoluble particles are supplied to the raw water W flowing through the main flow path 10. The water treatment system 100 according to the present embodiment includes a first supply unit 11, a first flow path 12, a second supply unit 13, a second flow path 14, a third supply unit 15, and a third flow path 16. You may. The oxidant is supplied from the first supply unit 11 to the main flow path 10 by the first flow path 12. The polymer flocculant is supplied from the second supply unit 13 to the main flow path 10 by the second flow path 14. The insoluble particles are supplied from the third supply unit 15 to the main flow path 10 by the third flow path 16. The first flow path 12, the second flow path 14, and the third flow path 16 are connected to the main flow path 10 downstream of the pump P and upstream of the filtration tank 20.
 第1流路12、第2流路14及び第3流路16は、上流からこの順番で、本流路10に接続されている。したがって、まず、本流路10に、第1流路12から酸化剤が供給される。次に、本流路10に、第2流路14から高分子凝集剤が供給される。そして、第3流路16から不溶性粒子が供給される。 The first flow path 12, the second flow path 14, and the third flow path 16 are connected to the main flow path 10 in this order from the upstream. Therefore, first, the oxidizing agent is supplied to the main flow path 10 from the first flow path 12. Next, the polymer flocculant is supplied to the main flow path 10 from the second flow path 14. Then, the insoluble particles are supplied from the third flow path 16.
 本流路10は配管を備えていてもよく、酸化剤、高分子凝集剤、及び不溶性粒子は、配管内で反応が行われてもよい。また、本流路10は反応槽を備えていてもよく、酸化剤、高分子凝集剤、及び不溶性粒子は、反応槽内で反応が行われていてもよい。本流路10は、1つの反応槽を備えていてもよく、複数の反応槽を備えていてもよい。例えば、本流路10は、第1流路12、第2流路14、及び第3流路16に接続され、酸化剤、高分子凝集剤、及び不溶性粒子が供給される1つの反応槽を備えていてもよい。当該反応槽では、後述するように、酸化剤、高分子凝集剤、及び不溶性粒子によって、原水Wに含まれていた鉄イオンからフロックが形成される。フロックには、高分子凝集剤、不溶性粒子、及び水酸化鉄が含まれている。 The main flow path 10 may be provided with a pipe, and the oxidizing agent, the polymer flocculant, and the insoluble particles may be reacted in the pipe. Further, the main flow path 10 may be provided with a reaction tank, and the oxidizing agent, the polymer flocculant, and the insoluble particles may be reacted in the reaction tank. The main flow path 10 may be provided with one reaction tank or may be provided with a plurality of reaction tanks. For example, the main flow path 10 is connected to the first flow path 12, the second flow path 14, and the third flow path 16, and includes one reaction tank to which an oxidizing agent, a polymer flocculant, and insoluble particles are supplied. May be. In the reaction vessel, as will be described later, flocs are formed from iron ions contained in the raw water W by the oxidizing agent, the polymer flocculant, and the insoluble particles. Flock contains polymer flocculants, insoluble particles, and iron hydroxide.
 一方、本流路10は、第1流路12に接続され、酸化剤が供給される第1反応槽を備えていてもよい。第1反応槽では、原水Wに含まれる鉄イオンが酸化剤によって酸化される反応が行われてもよい。本流路10は、第2流路14に接続され、高分子凝集剤が供給される第2反応槽を備えていてもよい。第2反応槽では、水酸化鉄が高分子凝集剤によって凝集する反応が行われてもよい。本流路10は、第3流路16に接続され、不溶性粒子が供給される第3反応槽を備えていてもよい。第3反応槽では、高分子凝集剤に不溶性微粒子が結合する反応が行われてもよい。 On the other hand, the main flow path 10 may be provided with a first reaction tank connected to the first flow path 12 and to which an oxidizing agent is supplied. In the first reaction tank, a reaction may be carried out in which iron ions contained in the raw water W are oxidized by an oxidizing agent. The main flow path 10 may be connected to the second flow path 14 and may include a second reaction tank to which the polymer flocculant is supplied. In the second reaction tank, a reaction in which iron hydroxide is aggregated by a polymer flocculant may be carried out. The main flow path 10 may be connected to the third flow path 16 and may include a third reaction tank to which insoluble particles are supplied. In the third reaction tank, a reaction in which insoluble fine particles are bound to the polymer flocculant may be carried out.
 フロックを含有する原水Wは、本流路10を通って、濾過槽20に到達する。濾過槽20は、フロックを含有する原水Wを濾過する。このようにして、原水Wから鉄イオンが除去され、浄化された水が蛇口Tからユーザーに供給される。以下、酸化剤、高分子凝集剤、不溶性粒子について詳細に説明する。 The raw water W containing the flocs reaches the filtration tank 20 through the main flow path 10. The filtration tank 20 filters the raw water W containing the flocs. In this way, iron ions are removed from the raw water W, and purified water is supplied to the user from the faucet T. Hereinafter, the oxidizing agent, the polymer flocculant, and the insoluble particles will be described in detail.
 (酸化剤)
 酸化剤は、鉄イオンを水酸化鉄に酸化する。原水Wに溶解している鉄イオンの多くは、2価の鉄イオン(Fe2+)である。酸化剤は、原水Wに溶解している鉄イオンを酸化し、水酸化鉄(Fe(OH))を形成する。水酸化鉄は、水への溶解性が低いため、原水W中に粒子として析出する。
(Oxidant)
Oxidizing agents oxidize iron ions to iron hydroxide. Most of the iron ions dissolved in the raw water W are divalent iron ions (Fe 2+ ). The oxidizing agent oxidizes iron ions dissolved in the raw water W to form iron hydroxide (Fe (OH) 3 ). Since iron hydroxide has low solubility in water, it precipitates as particles in raw water W.
 酸化剤は、原水Wに含まれる鉄イオンを水酸化鉄に酸化することができれば特に限定されない。酸化剤は、原水Wへの添加が容易にでき、鉄イオンを効率的に酸化可能なことから、オゾン又は塩素を含んでいてもよい。これらのなかでも、酸化剤としては塩素系薬剤が好ましく、特に原水Wの内部で次亜塩素酸が生成するものが好ましい。 The oxidizing agent is not particularly limited as long as it can oxidize iron ions contained in the raw water W to iron hydroxide. The oxidizing agent may contain ozone or chlorine because it can be easily added to the raw water W and iron ions can be efficiently oxidized. Among these, chlorine-based chemicals are preferable as the oxidizing agent, and those in which hypochlorous acid is generated inside the raw water W are particularly preferable.
 塩素系薬剤は、次亜塩素酸ナトリウム、次亜塩素酸カルシウム及び塩素化イソシアヌル酸からなる群より選ばれる少なくとも一つを含んでいてもよい。次亜塩素酸カルシウムは、さらし粉(有効塩素30%)及び高度さらし粉(有効塩素70%)の少なくとも一方を含んでいてもよい。塩素化イソシアヌル酸は、トリクロロイソシアヌル酸ナトリウム、トリクロロイソシアヌル酸カリウム、ジクロロイソシアヌル酸ナトリウム、及びジクロロイソシアヌル酸カリウムからなる群より選ばれる少なくとも一つを含んでいてもよい。これらの中でも、液体であり、定量ポンプによる注入方式を用いて原水Wに定量的に添加できるため、塩素系薬剤は、次亜塩素酸ナトリウムを含んでいることが特に好ましい。また、原水Wに対する溶解性が高く、高い酸化作用を発揮するため、塩素系薬剤は高度さらし粉を含むことも好ましい。 The chlorinated agent may contain at least one selected from the group consisting of sodium hypochlorite, calcium hypochlorite and chlorinated isocyanuric acid. Calcium hypochlorite may contain at least one of bleached powder (30% effective chlorine) and highly bleached powder (70% effective chlorine). The chlorinated isocyanuric acid may contain at least one selected from the group consisting of sodium trichloroisocyanurate, potassium trichloroisocyanurate, sodium dichloroisocyanurate, and potassium dichloroisocyanurate. Among these, it is particularly preferable that the chlorine-based drug contains sodium hypochlorite because it is a liquid and can be quantitatively added to the raw water W by using an injection method using a metering pump. Further, it is preferable that the chlorine-based chemical contains highly bleached powder because it has high solubility in raw water W and exhibits a high oxidizing action.
 (高分子凝集剤)
 高分子凝集剤は、水酸化鉄と架橋し、水酸化鉄を凝集させ、粗大なフロックを形成する。高分子凝集剤としては、一般的に、ノニオン性高分子凝集剤、アニオン性高分子凝集剤、及びカチオン性高分子凝集剤などがある。しかしながら、ノニオン性高分子凝集剤、及びアニオン性高分子凝集剤は、水酸化鉄を凝集させる効果が小さい。したがって、本実施形態では、カチオン性の高分子凝集剤が用いられている。
(Polymer flocculant)
The polymer flocculant crosslinks with iron hydroxide and aggregates iron hydroxide to form coarse flocs. The polymer flocculant generally includes a nonionic polymer flocculant, an anionic polymer flocculant, and a cationic polymer flocculant. However, the nonionic polymer flocculant and the anionic polymer flocculant have a small effect of aggregating iron hydroxide. Therefore, in this embodiment, a cationic polymer flocculant is used.
 高分子凝集剤は、生活用水として供給する場合、天然高分子凝集剤を含むことが好ましい。天然高分子凝集剤は、多糖類を含んでいてもよい。多糖類は、キトサン、デンプン、グァーガム、ローカストビーンガム、セルロース、アルギン酸ナトリウム、又はこれらの誘導体を含んでいてもよい。これらの中でも、フロックの形成が良好で、入手が容易であり、家庭用水処理に適していることから、高分子凝集剤はキトサンであることがより好ましい。高分子凝集剤の分子量は、特に限定されないが、100万~2000万であってもよい。 The polymer flocculant preferably contains a natural polymer flocculant when supplied as domestic water. The natural polymer flocculant may contain polysaccharides. The polysaccharide may include chitosan, starch, guar gum, locust bean gum, cellulose, sodium alginate, or derivatives thereof. Among these, chitosan is more preferable as the polymer flocculant because the flocs are well formed, easily available, and suitable for household water treatment. The molecular weight of the polymer flocculant is not particularly limited, but may be 1 million to 20 million.
 (不溶性粒子)
 不溶性粒子は、原水Wに対して溶解しないか、又はほとんど溶解しない粒子である。不溶性粒子は、フロックと結合することにより、フロックの沈殿を促進する。不溶性粒子は、中性領域における表面電荷が負電荷である。上述の通り、本実施形態では、凝集剤として、カチオン性高分子凝集剤を使用している。しかしながら、カチオン性高分子凝集剤は、不溶性粒子の表面電荷が正電荷の場合には、不溶性粒子の表面電荷が負電荷の場合と比較し、鉄イオンの除去性能は高くない。したがって、本実施形態では、中性領域における表面電荷が負電荷である不溶性粒子を使用している。
(Insoluble particles)
Insoluble particles are particles that are insoluble or hardly soluble in raw water W. Insoluble particles promote floc precipitation by binding to flocs. Insoluble particles have a negative surface charge in the neutral region. As described above, in the present embodiment, a cationic polymer flocculant is used as the flocculant. However, when the surface charge of the insoluble particles is positive, the cationic polymer flocculant does not have high iron ion removing performance as compared with the case where the surface charge of the insoluble particles is negative. Therefore, in this embodiment, insoluble particles having a negative surface charge in the neutral region are used.
 中性領域における表面電荷は、ゼータ電位を測定することにより判断することができる。具体的には、不溶性粒子について、ゼータ電位が0mVとなるpHの値(pHzpc)を測定し、pHzpcの値が中性領域よりも小さい場合には、中性領域における表面電荷は負電荷であると判定することができる。また、pHzpcの値が中性領域よりも大きい場合には、中性領域における表面電荷は正電荷であると判定することができる。表面電荷を判定する際の中性領域は、pH6~pH8程度であり、pH6.5~pH7.5であってもよく、pH7であってもよい。 The surface charge in the neutral region can be determined by measuring the zeta potential. Specifically, for insoluble particles, the pH value (pH zpc ) at which the zeta potential becomes 0 mV is measured, and when the pH zpc value is smaller than the neutral region, the surface charge in the neutral region is negative. Can be determined to be. Further, when the value of pH zpc is larger than that in the neutral region, it can be determined that the surface charge in the neutral region is a positive charge. The neutral region for determining the surface charge is about pH 6 to pH 8, may be pH 6.5 to pH 7.5, or may be pH 7.
 中性領域における表面電荷が負電荷である不溶性粒子は、例えば、ケイ酸塩鉱物を含んでいてもよい。ケイ酸塩鉱物は、ネソケイ酸塩鉱物、ソロケイ酸塩鉱物、サイクロケイ酸塩鉱物、イノケイ酸塩鉱物、フィロケイ酸塩鉱物、テクトケイ酸塩鉱物、又はこれらの混合物などであってもよい。 The insoluble particles having a negative surface charge in the neutral region may contain, for example, a silicate mineral. The silicate mineral may be a nesosilicate mineral, a solosilicate mineral, a cyclosilicate mineral, an innosilicate mineral, a phyllosilicate mineral, a tectosilicate mineral, or a mixture thereof.
 ネソケイ酸塩鉱物では、SiO 4-を有する四面体構造が単独で存在している。ネソケイ酸塩鉱物は、カンラン石、ザクロ石、ケイ線石、紅柱石、藍晶石、チタン石、又はこれらの混合物を含んでいてもよい。ソロケイ酸塩鉱物では、SiO 4-を有する四面体構造が1つの酸素を共有して2つ結合している。ソロケイ酸塩鉱物は、ゲーレン石、異極鉱、ローソン石、ベスブ石、緑簾石、又はこれらの混合物を含んでいてもよい。 In Nesokei minerals, tetrahedral structure having a SiO 4 4-exist alone. The nesosilicate minerals may include olivine, garnet, calyx, andalusite, kyanite, titanite, or mixtures thereof. In Sorokei minerals, tetrahedral structure are attached two share one oxygen having a SiO 4 4-. Solosilicate minerals may include gerene stones, hemimorphites, lawsonites, vesvianites, epidote, or mixtures thereof.
 サイクロケイ酸塩鉱物では、SiO 4-を有する四面体構造が2つの酸素を共有して環状に結合している。サイクロケイ酸塩鉱物は、緑柱石、キン青石、電気石、大隅石、斧石、又はこれらの混合物を含んでいてもよい。イノケイ酸塩鉱物では、SiO 4-を有する四面体構造が2つ又は3つの酸素を共有して鎖状に結合している。イノケイ酸塩鉱物は、輝石、準輝石、角閃石、ソーダ珪灰石、バビントン石、又はこれらの混合物を含んでいてもよい。 The Cyclo silicate minerals, bonded annularly tetrahedral structure share two oxygen having a SiO 4 4-. Cyclosilicate minerals may include beryl, kin blue stone, tourmaline, osumilite, ax stone, or mixtures thereof. In inosilicate minerals, it is covalently to the chain tetrahedral structure with two or three oxygen having a SiO 4 4-. Innosilicate minerals may include pyroxene, quasi-pyroxene, amphibole, soda wollastonite, Babbingtonite, or mixtures thereof.
 フィロケイ酸塩鉱物では、SiO 4-を有する四面体構造が3つの酸素を共有して平面状に結合している。フィロケイ酸塩鉱物は、カオリナイト、雲母、緑泥石、苦土蛭石、蛇紋石、滑石、又はこれらの混合物を含んでいてもよい。テクトケイ酸塩鉱物では、SiO 4-を有する四面体構造が4つの酸素を共有して網状に結合している。テクトケイ酸塩鉱物は、石英、長石、準長石、ゼオライト、柱石、又はこれらの混合物を含んでいてもよい。 The phyllosilicate minerals, are attached to a flat shape tetrahedral structure share three oxygen having a SiO 4 4-. Phyllosilicate minerals may include kaolinite, mica, chlorite, vermiculite, serpentine, talc, or mixtures thereof. The tectosilicates minerals, are attached to a network by sharing tetrahedral structure with four oxygen having a SiO 4 4-. Tectate silicate minerals may include quartz, feldspar, feldspathoids, zeolites, scapolite, or mixtures thereof.
 上記で挙げられたケイ酸塩鉱物の中でも、フロックの沈殿の促進性に優れ、入手が容易であり、家庭用水処理に適していることから、不溶性粒子は、カオリナイト、ゼオライト、又はこれらの混合物を含んでいることが好ましい。 Among the silicate minerals listed above, the insoluble particles are kaolinite, zeolite, or a mixture thereof because they are excellent in promoting floc precipitation, easily available, and suitable for domestic water treatment. Is preferably contained.
 不溶性粒子の平均粒子径は0.1μm以上であることが好ましい。平均粒子径が上記の値以上であることにより、フロックの沈殿を促進することができる。また、不溶性粒子の平均粒子径は20μm以下であることが好ましい。不溶性粒子の平均粒子径を上記の値以下とすることにより、不溶性粒子が原水中で浮遊し、均一に拡散することから、水酸化鉄及び高分子凝集剤と接触する確率が高くなり、フロックの沈殿効率を向上させることができる。不溶性粒子の平均粒子径は1μm~20μmであることが好ましく、1μm~10μm以下であることがより好ましい。平均粒子径は、体積基準における粒度分布の累積値が50%の場合の粒子径を表し、例えば、レーザー回折・散乱法により測定することができる。 The average particle size of the insoluble particles is preferably 0.1 μm or more. When the average particle size is equal to or larger than the above value, floc precipitation can be promoted. The average particle size of the insoluble particles is preferably 20 μm or less. By setting the average particle size of the insoluble particles to the above value or less, the insoluble particles float in the raw water and diffuse uniformly, so that the probability of contact with iron hydroxide and the polymer flocculant increases, and the floc's The precipitation efficiency can be improved. The average particle size of the insoluble particles is preferably 1 μm to 20 μm, and more preferably 1 μm to 10 μm or less. The average particle size represents the particle size when the cumulative value of the particle size distribution on a volume basis is 50%, and can be measured by, for example, a laser diffraction / scattering method.
 不溶性粒子の密度は、フロックの沈降を促進することができれば特に限定されないが、1.5g/cm~5g/cmであってもよく、2g/cm~4g/cmであってもよい。不溶性粒子の密度が上記の範囲であると、不溶性粒子がフロック形成前において原水中に均一に分散して高分子凝集剤との反応効率が高くなり、フロック形成後の沈殿促進効果が大きくなる。 Density of insoluble particles is not particularly limited as long as it can promote the precipitation of flocs may be 1.5g / cm 3 ~ 5g / cm 3, even 2g / cm 3 ~ 4g / cm 3 Good. When the density of the insoluble particles is within the above range, the insoluble particles are uniformly dispersed in the raw water before the formation of flocs, the reaction efficiency with the polymer flocculant is increased, and the effect of promoting precipitation after the formation of flocs is enhanced.
 不溶性粒子の形状は特に限定されず、球状、楕円状、針状、棒状、繊維状、層状などのいずれの形状であってもよい。 The shape of the insoluble particles is not particularly limited, and may be any shape such as spherical, elliptical, needle-shaped, rod-shaped, fibrous, and layered.
 酸化剤、高分子凝集剤、及び不溶性粒子の原水への添加量は、原水の水質に応じて適宜定めることができる。例えば、原水に含まれる鉄イオンの含有量が多い場合には、これらの添加量を増やせばよい。また、本実施形態では、本流路10を流れる原水Wに鉄系凝集剤又はアルミニウム凝集剤などの無機凝集剤が少量添加されてもよいが、本流路10に流れる原水Wに無機凝集剤が添加されなくてもよい。 The amount of oxidizing agent, polymer flocculant, and insoluble particles added to the raw water can be appropriately determined according to the quality of the raw water. For example, when the content of iron ions contained in the raw water is high, the amount of these ions added may be increased. Further, in the present embodiment, a small amount of an inorganic coagulant such as an iron-based coagulant or an aluminum coagulant may be added to the raw water W flowing through the main flow path 10, but the inorganic coagulant is added to the raw water W flowing through the main flow path 10. It does not have to be done.
 本実施形態では、水処理システム100は、酸化剤を本流路10に供給する第1流路12と、高分子凝集剤を本流路10に供給する第2流路14と、不溶性粒子を本流路10に供給する第3流路16と、を備えている。しかしながら、これらを添加する順番は特に限定されない。したがって、これらは、上流から、第1流路12、第2流路14及び第3流路16の順番で本流路10に接続されていてもよく、第1流路12、第3流路16及び第2流路14の順番で本流路10に接続されていてもよい。また、これらは、上流から、第2流路14、第1流路12及び第3流路16の順番で本流路10に接続されていてもよく、第2流路14、第3流路16及び第1流路12の順番で本流路10に接続されていてもよい。また、これらは、上流から、第3流路16、第1流路12及び第2流路14の順番で本流路10に接続されていてもよく、第3流路16、第2流路14及び第1流路12の順番で本流路10に接続されていてもよい。 In the present embodiment, the water treatment system 100 supplies the first flow path 12 that supplies the oxidizing agent to the main flow path 10, the second flow path 14 that supplies the polymer flocculant to the main flow path 10, and the insoluble particles in the main flow path. A third flow path 16 for supplying to 10 is provided. However, the order in which these are added is not particularly limited. Therefore, these may be connected to the main flow path 10 in the order of the first flow path 12, the second flow path 14, and the third flow path 16 from the upstream, and the first flow path 12, the third flow path 16 And the second flow path 14 may be connected to the main flow path 10 in this order. Further, these may be connected to the main flow path 10 in the order of the second flow path 14, the first flow path 12 and the third flow path 16 from the upstream, and the second flow path 14, the third flow path 16 And the first flow path 12 may be connected to the main flow path 10 in this order. Further, these may be connected to the main flow path 10 in the order of the third flow path 16, the first flow path 12, and the second flow path 14 from the upstream, and the third flow path 16, the second flow path 14 And the first flow path 12 may be connected to the main flow path 10 in this order.
 濾過槽20は本流路10に設けられている。濾過槽20は、フロックを含有する原水Wを濾過する。濾過槽20は、フロックを含有する原水を濾過することができれば、特に限定されない。濾過槽20は、例えば、容器と容器内に充填された濾材とを含んでいてもよい。 The filtration tank 20 is provided in the main flow path 10. The filtration tank 20 filters the raw water W containing the flocs. The filtration tank 20 is not particularly limited as long as it can filter raw water containing flocs. The filter tank 20 may include, for example, a container and a filter medium filled in the container.
 濾材は、砂、ガーネット、軽石、アンスラサイト、イルメナイト等を単一層又は多層にした粒状濾材、マンガン砂、粒状活性炭等の濾材表面に吸着能を持たせた粒状濾材、繊維、プラスチック等の織物や不織布濾材、膜濾材などの深層濾過と言われている濾過現象を示す濾材を、特に制限すること無く利用できる。濾材としてマンガン砂を用いる場合、マンガン砂の密度は、例えば2.57g/cm~2.67g/cmとすることができる。マンガン砂のマンガン付着量は、0.3mg/g以上であることが好ましい。 The filter media includes granular filter media in which sand, garnet, pebble, anthracite, ylmenite, etc. are made into a single layer or multiple layers, granular filter media such as manganese sand, granular activated carbon, etc. Filter media showing a filtration phenomenon called deep filtration, such as non-woven fabric filter media and membrane filter media, can be used without particular limitation. When manganese sand is used as the filter medium, the density of manganese sand can be, for example, 2.57 g / cm 3 to 2.67 g / cm 3 . The amount of manganese adhered to the manganese sand is preferably 0.3 mg / g or more.
 以上の通り、本実施形態に係る水処理システム100は、本流路10と濾過槽20とを備えている。本流路10には、鉄イオンを含む原水Wが流れている。そして、本流路10を流れる原水Wには、酸化剤、高分子凝集剤、及び不溶性粒子が供給される。酸化剤は鉄イオンを水酸化鉄に酸化し、高分子凝集剤はカチオン性であり、不溶性粒子は中性領域における表面電荷が負電荷である。したがって、高分子凝集剤、不溶性粒子、及び水酸化鉄を含むフロックが効果的に形成される。このようなフロックは、濾過槽20によって除去される。そのため、本実施形態に係る水処理システムによれば、原水から鉄イオンを除去し、水質の高い水を供給することができる。 As described above, the water treatment system 100 according to the present embodiment includes the main flow path 10 and the filtration tank 20. Raw water W containing iron ions flows through this flow path 10. Then, an oxidizing agent, a polymer flocculant, and insoluble particles are supplied to the raw water W flowing through the main flow path 10. The oxidizing agent oxidizes iron ions to iron hydroxide, the polymer flocculant is cationic, and the insoluble particles have a negative surface charge in the neutral region. Therefore, flocs containing polymer flocculants, insoluble particles, and iron hydroxide are effectively formed. Such flocs are removed by the filtration tank 20. Therefore, according to the water treatment system according to the present embodiment, iron ions can be removed from the raw water and water having high water quality can be supplied.
 なお、原水から鉄イオンを除去し、水質の高い水を供給するという効果は、供給工程と、濾過工程と、を備える水処理方法によっても達成することができる。供給工程では、鉄イオンを含む原水Wに、鉄イオンを水酸化鉄に酸化する酸化剤、カチオン性の高分子凝集剤、及び中性領域における表面電荷が負電荷である不溶性粒子が供給される。濾過工程では、フロックを含有する原水Wが濾過される。酸化剤、高分子凝集剤及び不溶性粒子を供給する順番は特に限定されない。 The effect of removing iron ions from raw water and supplying water of high quality can also be achieved by a water treatment method including a supply step and a filtration step. In the supply step, the raw water W containing iron ions is supplied with an oxidant that oxidizes iron ions to iron hydroxide, a cationic polymer flocculant, and insoluble particles whose surface charge is negative in the neutral region. .. In the filtration step, the raw water W containing flocs is filtered. The order in which the oxidizing agent, the polymer flocculant and the insoluble particles are supplied is not particularly limited.
 [第2実施形態]
 次に、第2実施形態に係る水処理システム100について図2を用いて説明する。第1実施形態に係る水処理システム100は、図1に示すように、酸化剤を本流路10に供給する第1流路と12と、高分子凝集剤を本流路10に供給する第2流路14と、不溶性粒子を本流路10に供給する第3流路16とを備えていた。一方、第2実施形態に係る水処理システム100は、図2に示すように、酸化剤及び高分子凝集剤を本流路10に供給する第1流路12と、不溶性粒子を本流路10に供給する第2流路14と、を備えている。
[Second Embodiment]
Next, the water treatment system 100 according to the second embodiment will be described with reference to FIG. As shown in FIG. 1, the water treatment system 100 according to the first embodiment has a first flow path and 12 for supplying an oxidizing agent to the main flow path 10 and a second flow for supplying a polymer flocculant to the main flow path 10. A path 14 and a third channel 16 for supplying insoluble particles to the main channel 10 were provided. On the other hand, in the water treatment system 100 according to the second embodiment, as shown in FIG. 2, the first flow path 12 that supplies the oxidizing agent and the polymer flocculant to the main flow path 10 and the insoluble particles are supplied to the main flow path 10. The second flow path 14 and the like are provided.
 図2に示すように、本実施形態に係る水処理システム100は、第1供給部11、第1流路12、第2供給部13、及び第2流路14を備えている。酸化剤及び高分子凝集剤は、第1供給部11から第1流路12によって本流路10に供給される。不溶性粒子は、第2供給部13から第2流路14によって本流路10に供給される。第1流路12、及び第2流路14は、本流路10において、ポンプPよりも下流であって濾過槽20よりも上流に接続されている。第1流路12は、及び第2流路14は、上流からこの順番で、本流路10に接続されている。 As shown in FIG. 2, the water treatment system 100 according to the present embodiment includes a first supply unit 11, a first flow path 12, a second supply unit 13, and a second flow path 14. The oxidizing agent and the polymer flocculant are supplied from the first supply unit 11 to the main flow path 10 by the first flow path 12. The insoluble particles are supplied from the second supply unit 13 to the main flow path 10 by the second flow path 14. The first flow path 12 and the second flow path 14 are connected to the main flow path 10 downstream of the pump P and upstream of the filtration tank 20. The first flow path 12 and the second flow path 14 are connected to the main flow path 10 in this order from the upstream.
 本流路10を流れる原水Wには、酸化剤、高分子凝集剤、及び不溶性粒子が供給される。まず、本流路10に、第1流路12から酸化剤及び高分子凝集剤が供給される。次に、本流路10に、第2流路14から不溶性粒子が供給される。酸化剤、高分子凝集剤、及び不溶性粒子によって、原水Wに含まれていた鉄成分がフロックとして凝集する。フロックには、高分子凝集剤、不溶性粒子、及び水酸化鉄が含まれている。フロックを含有する原水Wは濾過槽20によって濾過され、浄化された水が蛇口Tからユーザーに供給される。 An oxidizing agent, a polymer flocculant, and insoluble particles are supplied to the raw water W flowing through the main flow path 10. First, an oxidizing agent and a polymer flocculant are supplied to the main flow path 10 from the first flow path 12. Next, insoluble particles are supplied to the main flow path 10 from the second flow path 14. The iron component contained in the raw water W is aggregated as flocs by the oxidizing agent, the polymer flocculant, and the insoluble particles. Flock contains polymer flocculants, insoluble particles, and iron hydroxide. The raw water W containing the flocs is filtered by the filtration tank 20, and the purified water is supplied to the user from the faucet T.
 なお、酸化剤及び不溶性粒子、並びに、高分子凝集剤を添加する順番を変えても、上記と同様の効果が期待できる。したがって、水処理システム100は、酸化剤及び不溶性粒子を本流路10に供給する第1流路12と、高分子凝集剤を本流路10に供給する第2流路14と、を備えていてもよい。この場合、まず、本流路10に、第1流路12から酸化剤及び不溶性粒子が供給される。次に、本流路10に、第2流路14から高分子凝集剤が供給される。酸化剤、高分子凝集剤、及び不溶性粒子によって、原水Wに含まれていた鉄成分がフロックとして凝集する。フロックには、高分子凝集剤、不溶性粒子、及び水酸化鉄が含まれている。フロックを含有する原水Wは濾過槽20によって濾過され、浄化された水が蛇口Tからユーザーに供給される。 The same effect as above can be expected even if the order of adding the oxidizing agent, the insoluble particles, and the polymer flocculant is changed. Therefore, even if the water treatment system 100 includes a first flow path 12 that supplies the oxidizing agent and insoluble particles to the main flow path 10, and a second flow path 14 that supplies the polymer flocculant to the main flow path 10. Good. In this case, first, the oxidizing agent and the insoluble particles are supplied to the main flow path 10 from the first flow path 12. Next, the polymer flocculant is supplied to the main flow path 10 from the second flow path 14. The iron component contained in the raw water W is aggregated as flocs by the oxidizing agent, the polymer flocculant, and the insoluble particles. Flock contains polymer flocculants, insoluble particles, and iron hydroxide. The raw water W containing the flocs is filtered by the filtration tank 20, and the purified water is supplied to the user from the faucet T.
 なお、第1実施形態と同様に、酸化剤、高分子凝集剤、及び不溶性粒子を添加する順番は特に限定されない。そのため、上流から、第1流路12及び第2流路14の順番で本流路10に接続されていてもよく、第2流路14及び第1流路12の順番で本流路10に接続されていてもよい。なお、カチオン性の高分子凝集剤と、中性領域における表面電荷が負電荷である不溶性粒子とは、電荷を打ち消しあってしまうおそれがある。したがって、高分子凝集剤と不溶性粒子とは、第1流路12又は第2流路14といったような同一の流路で添加しない方が好ましい。 As in the first embodiment, the order in which the oxidizing agent, the polymer flocculant, and the insoluble particles are added is not particularly limited. Therefore, from the upstream, the first flow path 12 and the second flow path 14 may be connected to the main flow path 10 in the order, and the second flow path 14 and the first flow path 12 are connected to the main flow path 10 in the order. You may be. In addition, the cationic polymer flocculant and the insoluble particles having a negative surface charge in the neutral region may cancel each other out. Therefore, it is preferable that the polymer flocculant and the insoluble particles are not added in the same flow path such as the first flow path 12 or the second flow path 14.
 [第3実施形態]
 次に、第3実施形態に係る水処理システム100について図3を用いて説明する。図3に示すように、第3実施形態に係る水処理システム100は、本流路10における濾過槽20の上流に設けられ、フロックを沈殿させる沈殿槽30をさらに備える。沈殿槽30は、第1流路12、第2流路14、及び第3流路よりも下流に接続されている。
[Third Embodiment]
Next, the water treatment system 100 according to the third embodiment will be described with reference to FIG. As shown in FIG. 3, the water treatment system 100 according to the third embodiment is provided upstream of the filtration tank 20 in the main flow path 10, and further includes a settling tank 30 for precipitating flocs. The settling tank 30 is connected downstream from the first flow path 12, the second flow path 14, and the third flow path.
 上述したように、フロックには、高分子凝集剤、不溶性粒子、及び水酸化鉄が含まれている。フロックは、不溶性粒子によって沈殿が促進されている。したがって、濾過槽20の上流に沈殿槽30を設けることにより、フロックを含む原水Wが濾過槽20で濾過される前に、フロックの少なくとも一部が沈殿槽30の底部に沈殿する。そのため、濾過槽20まで到達するフロックの量を低減させることができ、濾過槽20の負荷を減らすことができる。 As mentioned above, flocs contain polymer flocculants, insoluble particles, and iron hydroxide. Precipitation of flocs is promoted by insoluble particles. Therefore, by providing the settling tank 30 upstream of the filtration tank 20, at least a part of the flocs is settled on the bottom of the settling tank 30 before the raw water W containing the flocs is filtered by the filtration tank 20. Therefore, the amount of flocs that reach the filtration tank 20 can be reduced, and the load on the filtration tank 20 can be reduced.
 沈殿槽30は、公知のものを使用することができる。濾過槽20は、沈殿物が一部に集まりやすいよう、底部に向かうに従ってすぼんだ形状となるように形成されていてもよい。また、沈殿槽30の底壁には排出管が接続され、ポンプなどによって沈殿槽30からフロックを含む沈殿物が排出されるように構成されていてもよい。 As the settling tank 30, a known one can be used. The filtration tank 20 may be formed so as to have a concave shape toward the bottom so that the precipitate tends to collect in a part thereof. Further, a discharge pipe may be connected to the bottom wall of the settling tank 30, and the settling tank 30 may be configured to discharge the sediment containing flocs by a pump or the like.
 また、本実施形態では、第1実施形態に係る水処理システム100が、さらに沈殿槽30を備える例について説明した。すなわち、沈殿槽30が、第1流路12、第2流路14、及び第3流路16の下流に設けられる場合について説明した。しかしながら、第2実施形態に係る水処理システム100のように、第3流路16を備えていない場合についても同様の効果が期待できる。この場合、沈殿槽30は、第1流路12、及び第2流路14の下流に設けられていてもよい。 Further, in the present embodiment, an example in which the water treatment system 100 according to the first embodiment further includes a settling tank 30 has been described. That is, the case where the settling tank 30 is provided downstream of the first flow path 12, the second flow path 14, and the third flow path 16 has been described. However, the same effect can be expected even when the third flow path 16 is not provided as in the case of the water treatment system 100 according to the second embodiment. In this case, the settling tank 30 may be provided downstream of the first flow path 12 and the second flow path 14.
 以上、水処理システム100を第1~第3実施形態を用いて説明した。以上の通り、本実施形態に係る水処理システム100は、鉄イオンを含む原水Wが流れる本流路10と、本流路10に設けられた濾過槽20と、を備える。本流路10を流れる原水Wには、鉄イオンを水酸化鉄に酸化する酸化剤、カチオン性の高分子凝集剤、及び中性領域における表面電荷が負電荷である不溶性粒子が供給される。濾過槽20は、フロックを含有する原水Wを濾過する。フロックには、高分子凝集剤、不溶性粒子、及び水酸化鉄が含まれる。したがって、原水から鉄イオンを除去し、水質の高い水を供給することが可能である。このような水処理システム100は、家庭用水処理システムとして好適に用いることができる。 The water treatment system 100 has been described above using the first to third embodiments. As described above, the water treatment system 100 according to the present embodiment includes a main flow path 10 through which the raw water W containing iron ions flows, and a filtration tank 20 provided in the main flow path 10. The raw water W flowing through the main flow path 10 is supplied with an oxidizing agent that oxidizes iron ions to iron hydroxide, a cationic polymer flocculant, and insoluble particles having a negative surface charge in the neutral region. The filtration tank 20 filters the raw water W containing the flocs. Flocks include polymeric flocculants, insoluble particles, and iron hydroxide. Therefore, it is possible to remove iron ions from raw water and supply water with high water quality. Such a water treatment system 100 can be suitably used as a household water treatment system.
 以下、本実施形態を実施例及び比較例によりさらに詳細に説明するが、本実施形態はこれらに限定されるものではない。 Hereinafter, the present embodiment will be described in more detail with reference to Examples and Comparative Examples, but the present embodiment is not limited thereto.
 まず、高分子凝集剤の違いによる原水中の鉄の除去性能について以下のように調査した。 First, the iron removal performance in raw water due to the difference in polymer flocculants was investigated as follows.
 [実施例1]
 全鉄濃度が4.5mg/Lである原水が入ったビーカーに、鉄イオンを水酸化鉄に酸化する酸化剤、カチオン性の高分子凝集剤、及び中性領域における表面電荷が負電荷である不溶性粒子を添加し、十分に撹拌した。そして、撹拌して得られた水を5分間静置した後、上澄み液を採取した。
[Example 1]
In a beaker containing raw water having a total iron concentration of 4.5 mg / L, an oxidizing agent that oxidizes iron ions to iron hydroxide, a cationic polymer flocculant, and a surface charge in the neutral region are negative charges. Insoluble particles were added and stirred well. Then, the water obtained by stirring was allowed to stand for 5 minutes, and then the supernatant was collected.
 酸化剤としては次亜塩素酸ナトリウム水溶液(和光純薬社製の次亜塩素酸ナトリウム)を使用し、濃度が40mg/Lとなるように酸化剤を原水に添加した。高分子凝集剤としてはカチオン性高分子凝集剤であるキトサン(和光純薬社製のキトサン100)を使用し、濃度が10mg/Lとなるように高分子凝集剤を添加した。不溶性粒子としては、中性領域における表面電荷が負電荷であるカオリナイト(和光純薬社製のはくとう土)を使用し、濃度が5mg/Lとなるように不溶性粒子を原水に添加した。不溶性粒子の平均粒子径は10μmであり、密度は2.6g/cmであった。なお、島津製作所社のゼータ電位測定装置を用い、ゼータ電位が0mVとなるpHの値(pHzpc)を測定したところ、カオリナイトのpHzpcは4.9であり、キトサンのpHzpcは8であった。 An aqueous sodium hypochlorite solution (sodium hypochlorite manufactured by Wako Pure Chemical Industries, Ltd.) was used as the oxidizing agent, and the oxidizing agent was added to the raw water so that the concentration was 40 mg / L. As the polymer flocculant, chitosan (chitosan 100 manufactured by Wako Pure Chemical Industries, Ltd.), which is a cationic polymer flocculant, was used, and the polymer flocculant was added so as to have a concentration of 10 mg / L. As the insoluble particles, kaolinite (Hakuto soil manufactured by Wako Pure Chemical Industries, Ltd.) having a negative surface charge in the neutral region was used, and the insoluble particles were added to the raw water so as to have a concentration of 5 mg / L. .. The average particle size of the insoluble particles was 10 μm, and the density was 2.6 g / cm 3 . When the pH value (pH zpc ) at which the zeta potential was 0 mV was measured using a zeta potential measuring device manufactured by Shimadzu Corporation, the pH zpc of kaolinite was 4.9 and the pH zpc of chitosan was 8. there were.
 [実施例2]
 撹拌して得られた水を8分間静置した以外は、実施例1と同様の方法により上澄み液を採取した。
[Example 2]
The supernatant was collected by the same method as in Example 1 except that the water obtained by stirring was allowed to stand for 8 minutes.
 [実施例3]
 撹拌して得られた水を10分間静置した以外は、実施例1と同様の方法により上澄み液を採取した。
[Example 3]
The supernatant was collected by the same method as in Example 1 except that the water obtained by stirring was allowed to stand for 10 minutes.
 [比較例1]
 高分子凝集剤として、カチオン性高分子凝集剤に代え、アルギン酸ナトリウム(和光純薬社製アルギン酸ナトリウム)のアニオン性高分子凝集剤を用いた以外は実施例1と同様の方法により上澄み液を採取した。
[Comparative Example 1]
As the polymer flocculant, the supernatant was collected by the same method as in Example 1 except that an anionic polymer flocculant of sodium alginate (sodium alginate manufactured by Wako Pure Chemical Industries, Ltd.) was used instead of the cationic polymer flocculant. did.
 [比較例2]
 撹拌して得られた水を8分間静置した以外は、比較例1と同様の方法により上澄み液を採取した。
[Comparative Example 2]
The supernatant was collected by the same method as in Comparative Example 1 except that the water obtained by stirring was allowed to stand for 8 minutes.
 [比較例3]
 撹拌して得られた水を10分間静置した以外は、比較例1と同様の方法により上澄み液を採取した。
[Comparative Example 3]
The supernatant was collected by the same method as in Comparative Example 1 except that the water obtained by stirring was allowed to stand for 10 minutes.
 [評価]
 上記のようにして採取した各上澄み液の全鉄濃度(全Fe濃度)を測定した。全鉄濃度は、FERROVER法により測定した。具体的には、上述のようにして処理した水10mLに、粉末状の鉄試薬(HACH社製 HACH0583)を添加し、ポータブル吸光光度計(HACH社製 DR900)を用いて全鉄濃度を測定した。なお、処理水と鉄試薬との反応時間は3分間とし、測定は室温(約20℃)にて実施した。
[Evaluation]
The total iron concentration (total Fe concentration) of each supernatant collected as described above was measured. The total iron concentration was measured by the FERROVER method. Specifically, a powdered iron reagent (HACH0583 manufactured by HACH) was added to 10 mL of water treated as described above, and the total iron concentration was measured using a portable absorptiometer (DR900 manufactured by HACH). .. The reaction time between the treated water and the iron reagent was 3 minutes, and the measurement was carried out at room temperature (about 20 ° C.).
 図4は、各高分子凝集剤を使用した場合における、静置時間と全鉄濃度との関係を示したグラフである。図4から分かるように、カチオン性高分子凝集剤を用いた場合も、アニオン性高分子凝集剤を用いた場合も、静置時間が長くなるに伴い、上澄み液の全鉄濃度が低くなっている。しかしながら、静置時間が同じである場合には、カチオン性高分子凝集剤を用いた場合は、アニオン性高分子凝集剤を用いた場合よりも、全鉄濃度が低くなっている。この結果から、原水中の鉄イオンを除去する場合には、アニオン性高分子凝集剤よりもカチオン性高分子凝集剤の方が優れていることが分かる。なお、ノニオン性高分子凝集剤の鉄イオンの除去性能も確認したところ、アニオン性高分子凝集剤よりも低かった。そのため、原水中の鉄イオンを除去する場合には、ノニオン性高分子凝集剤よりもカチオン性高分子凝集剤の方が優れていると考えられる。 FIG. 4 is a graph showing the relationship between the standing time and the total iron concentration when each polymer flocculant is used. As can be seen from FIG. 4, both when the cationic polymer flocculant was used and when the anionic polymer flocculant was used, the total iron concentration of the supernatant decreased as the standing time increased. There is. However, when the standing time is the same, the total iron concentration is lower when the cationic polymer flocculant is used than when the anionic polymer flocculant is used. From this result, it can be seen that the cationic polymer flocculant is superior to the anionic polymer flocculant when removing iron ions in the raw water. When the iron ion removing performance of the nonionic polymer flocculant was also confirmed, it was lower than that of the anionic polymer flocculant. Therefore, when removing iron ions in raw water, it is considered that the cationic polymer flocculant is superior to the nonionic polymer flocculant.
 次に、不溶性粒子の違いによる原水中の鉄の除去性能について以下のように調査した。 Next, the iron removal performance in raw water due to the difference in insoluble particles was investigated as follows.
 [実施例4]
 全鉄濃度が2.9mg/Lである原水を使用し、撹拌して得られた水の凝集剤の濃度を10mg/Lとし、撹拌して得られた水を10分間静置した以外は、実施例1と同様の方法により上澄み液を採取した。
[Example 4]
Except that raw water having a total iron concentration of 2.9 mg / L was used, the concentration of the coagulant of the water obtained by stirring was set to 10 mg / L, and the water obtained by stirring was allowed to stand for 10 minutes. The supernatant was collected by the same method as in Example 1.
 [実施例5]
 撹拌して得られた水の凝集剤の濃度を12.5mg/Lとした以外は、実施例4と同様の方法により上澄み液を採取した。
[Example 5]
The supernatant was collected by the same method as in Example 4 except that the concentration of the water flocculant obtained by stirring was set to 12.5 mg / L.
 [実施例6]
 撹拌して得られた水の凝集剤の濃度を15mg/Lとした以外は、実施例4と同様の方法により上澄み液を採取した。
[Example 6]
The supernatant was collected by the same method as in Example 4 except that the concentration of the water flocculant obtained by stirring was set to 15 mg / L.
 [比較例4]
 中性領域における表面電荷が負電荷である不溶性粒子に代え、中性領域における表面電荷が正電荷である酸化マグネシウム(和光純薬社製酸化マグネシウム)を不溶性粒子として用いた以外は実施例4と同様の方法により上澄み液を採取した。
[Comparative Example 4]
Example 4 except that magnesium oxide (magnesium oxide manufactured by Wako Pure Chemical Industries, Ltd.) having a positive surface charge in the neutral region was used as the insoluble particles instead of the insoluble particles having a negative surface charge in the neutral region. The supernatant was collected by the same method.
 [比較例5]
 撹拌して得られた水の凝集剤の濃度を12.5mg/Lとした以外は、比較例4と同様の方法により上澄み液を採取した。
[Comparative Example 5]
The supernatant was collected by the same method as in Comparative Example 4 except that the concentration of the water flocculant obtained by stirring was set to 12.5 mg / L.
 [比較例6]
 撹拌して得られた水の凝集剤の濃度を15mg/Lとした以外は、比較例4と同様の方法により上澄み液を採取した。
[Comparative Example 6]
The supernatant was collected by the same method as in Comparative Example 4 except that the concentration of the water flocculant obtained by stirring was set to 15 mg / L.
 [比較例7]
 不溶性粒子を添加しなかった以外は実施例4と同様の方法により上澄み液を採取した。
[Comparative Example 7]
The supernatant was collected by the same method as in Example 4 except that insoluble particles were not added.
 [比較例8]
 撹拌して得られた水の凝集剤の濃度を12.5mg/Lとした以外は、比較例7と同様の方法により上澄み液を採取した。
[Comparative Example 8]
The supernatant was collected by the same method as in Comparative Example 7 except that the concentration of the water flocculant obtained by stirring was set to 12.5 mg / L.
 [比較例9]
 撹拌して得られた水の凝集剤の濃度を15mg/Lとした以外は、比較例7と同様の方法により上澄み液を採取した。
[Comparative Example 9]
The supernatant was collected by the same method as in Comparative Example 7 except that the concentration of the water flocculant obtained by stirring was set to 15 mg / L.
 上記のようにして採取した各上澄み液の全濃度を上述したように測定した。図5は、各不溶性粒子を使用した場合における、凝集剤濃度と全鉄濃度との関係を示したグラフである。図5から分かるように、カチオン性高分子凝集剤と表面電荷が負電荷である不溶性粒子との組み合わせると、凝集剤の濃度が高くなるに伴って上澄み液の全鉄濃度が低くなっている。一方、カチオン性高分子凝集剤と表面が正電荷である不溶性粒子とを組み合わせると、凝集剤の濃度を高くしても、上澄み液の全鉄濃度は、表面電荷が負電荷である不溶性粒子を用いた場合より高く、不溶性粒子が存在しない場合と同様であった。 The total concentration of each supernatant collected as described above was measured as described above. FIG. 5 is a graph showing the relationship between the flocculant concentration and the total iron concentration when each insoluble particle is used. As can be seen from FIG. 5, when the cationic polymer flocculant and the insoluble particles having a negative surface charge are combined, the total iron concentration of the supernatant decreases as the concentration of the flocculant increases. On the other hand, when the cationic polymer flocculant and the insoluble particles having a positive surface charge are combined, even if the concentration of the flocculant is increased, the total iron concentration of the supernatant is the insoluble particles having a negative surface charge. It was higher than when used and was similar to the absence of insoluble particles.
 以上の結果から、カチオン性の高分子凝集剤と、中性領域における表面電荷が負電荷である不溶性粒子とを使用した場合に、鉄イオンの除去性能が高いことが分かった。 From the above results, it was found that the iron ion removal performance is high when a cationic polymer flocculant and insoluble particles having a negative surface charge in the neutral region are used.
 特願2019-138857号(出願日:2019年7月29日)の全内容は、ここに援用される。 The entire contents of Japanese Patent Application No. 2019-138857 (application date: July 29, 2019) are incorporated here.
 以上、本実施形態を説明したが、本実施形態はこれらに限定されるものではなく、本実施形態の要旨の範囲内で種々の変形が可能である。 Although the present embodiment has been described above, the present embodiment is not limited to these, and various modifications can be made within the scope of the gist of the present embodiment.
 本開示によれば、原水から鉄イオンを除去し、水質の高い水を供給することが可能な水処理システムを提供することができる。 According to the present disclosure, it is possible to provide a water treatment system capable of removing iron ions from raw water and supplying high quality water.
 10 本流路
 12 第1流路
 14 第2流路
 16 第3流路
 20 濾過槽
 30 沈殿槽
 100 水処理システム
10 main flow path 12 1st flow path 14 2nd flow path 16 3rd flow path 20 Filtration tank 30 Sedimentation tank 100 Water treatment system

Claims (6)

  1.  鉄イオンを含む原水が流れる本流路と、
     前記本流路に設けられた濾過槽と、
     を備え、
     前記本流路を流れる原水には、鉄イオンを水酸化鉄に酸化する酸化剤、カチオン性の高分子凝集剤、及び中性領域における表面電荷が負電荷である不溶性粒子が供給され、
     前記濾過槽は、フロックを含有する原水を濾過し、
     前記フロックには、前記高分子凝集剤、前記不溶性粒子、及び前記水酸化鉄が含まれる、水処理システム。
    This flow path through which raw water containing iron ions flows,
    The filtration tank provided in the main flow path and
    With
    An oxidizing agent that oxidizes iron ions to iron hydroxide, a cationic polymer flocculant, and insoluble particles having a negative surface charge in the neutral region are supplied to the raw water flowing through the main flow path.
    The filtration tank filters raw water containing flocs and
    A water treatment system in which the flocs contain the polymer flocculant, the insoluble particles, and the iron hydroxide.
  2.  前記不溶性粒子の平均粒子径は1μm~20μmである、請求項1に記載の水処理システム。 The water treatment system according to claim 1, wherein the average particle size of the insoluble particles is 1 μm to 20 μm.
  3.  前記酸化剤及び前記高分子凝集剤を前記本流路に供給する第1流路と、
     前記不溶性粒子を前記本流路に供給する第2流路と、
     をさらに備える、請求項1又は2に記載の水処理システム。
    A first flow path for supplying the oxidizing agent and the polymer flocculant to the main flow path, and
    A second flow path for supplying the insoluble particles to the main flow path, and
    The water treatment system according to claim 1 or 2, further comprising.
  4.  前記酸化剤及び前記不溶性粒子を前記本流路に供給する第1流路と、
     前記高分子凝集剤を前記本流路に供給する第2流路と、
     をさらに備える、請求項1又は2に記載の水処理システム。
    A first flow path for supplying the oxidizing agent and the insoluble particles to the main flow path,
    A second flow path for supplying the polymer flocculant to the main flow path, and
    The water treatment system according to claim 1 or 2, further comprising.
  5.  前記酸化剤を前記本流路に供給する第1流路と、
     前記高分子凝集剤を前記本流路に供給する第2流路と、
     前記不溶性粒子を前記本流路に供給する第3流路と、
     をさらに備える、請求項1又は2に記載の水処理システム。
    A first flow path for supplying the oxidizing agent to the main flow path, and
    A second flow path for supplying the polymer flocculant to the main flow path, and
    A third flow path that supplies the insoluble particles to the main flow path, and
    The water treatment system according to claim 1 or 2, further comprising.
  6.  本流路における前記濾過槽の上流に設けられ、前記フロックを沈殿させる沈殿槽をさらに備える、請求項1~5のいずれか一項に記載の水処理システム。 The water treatment system according to any one of claims 1 to 5, further comprising a settling tank for precipitating the flocs, which is provided upstream of the filtration tank in this flow path.
PCT/JP2020/026194 2019-07-29 2020-07-03 Water treatment system WO2021020030A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-138857 2019-07-29
JP2019138857 2019-07-29

Publications (1)

Publication Number Publication Date
WO2021020030A1 true WO2021020030A1 (en) 2021-02-04

Family

ID=74229917

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/026194 WO2021020030A1 (en) 2019-07-29 2020-07-03 Water treatment system

Country Status (1)

Country Link
WO (1) WO2021020030A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113185025A (en) * 2021-04-30 2021-07-30 江苏若焱环境设计有限公司 Method for eliminating black and odorous river channel

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11253704A (en) * 1998-03-10 1999-09-21 Japan Organo Co Ltd Flocculator and operation method thereof
JP2003245504A (en) * 2002-02-21 2003-09-02 Ebara Corp Method and device for treating wastewater
JP2016198702A (en) * 2015-04-08 2016-12-01 新日鐵住金株式会社 Flocculation and precipitation method
WO2017158581A1 (en) * 2016-03-17 2017-09-21 Gavish-Galilee Bio Applications Ltd. Method for production of potable water
WO2018131650A1 (en) * 2017-01-13 2018-07-19 パナソニックIpマネジメント株式会社 Water treatment device and water treatment system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11253704A (en) * 1998-03-10 1999-09-21 Japan Organo Co Ltd Flocculator and operation method thereof
JP2003245504A (en) * 2002-02-21 2003-09-02 Ebara Corp Method and device for treating wastewater
JP2016198702A (en) * 2015-04-08 2016-12-01 新日鐵住金株式会社 Flocculation and precipitation method
WO2017158581A1 (en) * 2016-03-17 2017-09-21 Gavish-Galilee Bio Applications Ltd. Method for production of potable water
WO2018131650A1 (en) * 2017-01-13 2018-07-19 パナソニックIpマネジメント株式会社 Water treatment device and water treatment system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113185025A (en) * 2021-04-30 2021-07-30 江苏若焱环境设计有限公司 Method for eliminating black and odorous river channel

Similar Documents

Publication Publication Date Title
US7790042B2 (en) Method for the removal of submicron particulates from chlorinated water by sequentially adding a cationic polymer followed by adding an anionic polymer
Pernitsky et al. Selection of alum and polyaluminum coagulants: principles and applications
JP4183741B1 (en) Adsorption / coagulation wastewater treatment agent
US20120267315A1 (en) Treatment of wastewater
Stevenson Water treatment unit processes
MX2014011542A (en) Water treatment compositions and methods of use.
CN204824453U (en) Desulfurization pretreatment of water device that gives up
AU2005240579A1 (en) Method for removing cryptosporidium oocysts from water
JP4853755B2 (en) Flocculant for car wash wastewater treatment
JP2007245150A (en) Waste water treating device
EP2554521A1 (en) Apparatus and method for purifying and sterilizing water using nano catalytic microelectrolysis
CA2858727A1 (en) Treatment of wastewater
BR112018068812B1 (en) Method for producing drinking water
JP3896101B2 (en) Car wash wastewater treatment equipment
WO2021020030A1 (en) Water treatment system
US20110006013A1 (en) Method for the removal of submicron particulates from chlorinated water by sequentially adding a cationic polymer followed by adding an anionic polymer
JP4465431B2 (en) Inorganic powdery water treatment flocculant and various sludge / polluted wastewater treatment methods
JP2010172882A (en) Coagulant, and method of treating muddy effluent
CN111410366A (en) Wastewater treatment system and treatment process
CN113003810A (en) System for make municipal sewage into new water
AU2005201711A1 (en) Method and apparatus for removing contaminants from water
WO2021106570A1 (en) Water treatment device
Hua et al. Physico‐Chemical Processes
CN217838604U (en) Processing system for repairing soil micro-polluted groundwater
WO2024070733A1 (en) Water purification device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20845912

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20845912

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP