WO2021019976A1 - Fluid pump - Google Patents

Fluid pump Download PDF

Info

Publication number
WO2021019976A1
WO2021019976A1 PCT/JP2020/024935 JP2020024935W WO2021019976A1 WO 2021019976 A1 WO2021019976 A1 WO 2021019976A1 JP 2020024935 W JP2020024935 W JP 2020024935W WO 2021019976 A1 WO2021019976 A1 WO 2021019976A1
Authority
WO
WIPO (PCT)
Prior art keywords
casing
pump
contact
fluid
casing portion
Prior art date
Application number
PCT/JP2020/024935
Other languages
French (fr)
Japanese (ja)
Inventor
直純 村上
Original Assignee
愛三工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 愛三工業株式会社 filed Critical 愛三工業株式会社
Publication of WO2021019976A1 publication Critical patent/WO2021019976A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/60Mounting; Assembling; Disassembling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D5/00Pumps with circumferential or transverse flow

Definitions

  • Patent Document 1 Japanese Unexamined Patent Publication No. 2002-276566 discloses a fuel pump that distributes fuel by driving an impeller connected to a motor.
  • a motor and a pump casing are housed in a housing (motor casing).
  • the pump casing is a member provided with a fluid suction port for sucking fluid into the pump casing (second plate) and a member provided with a fluid discharge port for discharging fluid from the inside of the pump casing (second plate).
  • the first plate) is provided.
  • the first plate and the second plate are respectively press-fitted into the motor casing. That is, the pump casing is formed by press-fitting the first plate and the second plate into the motor casing.
  • the pump casing When the pump casing is formed of two members (first plate, second plate), it is required to align each member with high accuracy. For example, if the alignment of each member is insufficient, liquid leakage may occur from the inside of the pump casing, or the fluid (fuel) may not move smoothly from the fluid suction port to the fluid discharge port. That is, the pump performance of the fuel pump deteriorates. Therefore, in the case of the fuel pump of Patent Document 1, it is necessary to finish the size of the housing (motor casing) with high accuracy. It is also necessary to finish the housing with high strength so that deformation does not occur when each member is press-fitted. As a result, the manufacturing cost of the fuel pump of Patent Document 1 increases. There is a need for a technique for aligning each part (two parts forming the pump casing) with a simpler structure. The present specification provides a technique for realizing a fluid pump having a pump casing having a novel structure that has never existed before.
  • the first technique disclosed in this specification is a fluid pump including an impeller driven by a motor and a pump casing accommodating the impeller.
  • the pump casing is provided with a first casing portion in which a fluid suction port for sucking fluid is provided in the pump casing, and a fluid discharge port for discharging fluid from the inside of the pump casing. It may have a second casing portion.
  • the first casing portion is provided with a first plane portion extending in a direction orthogonal to the rotation axis of the motor and a first inclined portion inclined with respect to the first plane portion, and the second casing portion is provided.
  • a second plane portion extending in a direction orthogonal to the rotation axis of the motor and a second inclined portion inclined with respect to the second plane portion are provided, and the first plane portion and the second plane portion come into contact with each other.
  • the space inside the pump casing in which the impeller is arranged may be defined by the contact between the first inclined portion and the second inclined portion.
  • the second technique disclosed in the present specification is the fluid pump of the first technique, and a housing surrounding the outer periphery of the pump casing may be provided in a direction orthogonal to the rotation axis of the motor.
  • the housing may apply a force to the first casing portion and the second casing portion to prevent them from separating in the rotation axis direction of the motor.
  • the third technique disclosed in the present specification is the fluid pump of the first or second technique described above, and the first inclined portion and the second inclined portion may be parallel to each other.
  • the parts constituting the pump casing are highly accurate without being affected by the characteristics (machining accuracy, strength) of other members (housing, etc.). Can be aligned. In other words, in order to align the first casing portion and the second casing portion with high accuracy, it is not necessary to process other members with high accuracy. As a result, the manufacturing cost of the fluid pump can be reduced.
  • the first casing portion and the second casing portion are the first and second plane portions (planes orthogonal to the rotation axis of the motor) and the first and second inclined portions (of the motor). It is in contact with an inclined surface that is inclined with respect to a plane orthogonal to the rotation axis).
  • the distance between the first casing portion and the second casing portion in the rotation axis direction can be controlled by the contact between the first flat surface portion and the second flat surface portion.
  • by contacting the first inclined portion and the second inclined portion it is possible to control the relative positions of the first casing portion and the second casing portion in the direction orthogonal to the rotation axis direction of the motor (that is, axis alignment). can do).
  • the rotation axis direction of the motor is referred to as "axial direction”
  • the direction orthogonal to the rotation axis of the motor that is, the radial direction of the motor
  • the impeller used in the fluid pump may have blade grooves on the front and back surfaces.
  • a groove may be formed in the pump casing so as to face the blade groove to control the flow of fluid.
  • the groove in the pump casing and the blade groove face each other as designed.
  • the fluid pump of the first technique can satisfactorily align the first casing portion and the second casing portion in the axial direction and the radial direction. As a result, the fluid pump of the first technique can exhibit good pump performance.
  • the first inclined portion and the second inclined portion are in contact with each other.
  • the first casing portion is brought into contact with the second inclined portion (or the second casing portion) so that the first inclined portion and the second inclined portion come into contact with each other.
  • the casing portion is press-fitted into the first casing portion). Since the first casing portion and the second casing portion are joined by press fitting, the gap between the first casing portion and the second casing portion is satisfactorily sealed.
  • the first casing portion and the second casing portion are in contact with each other on both the flat surface portion (the first flat surface portion and the second flat surface portion) and the inclined surface portion (the first inclined portion and the second inclined portion). , Except for the fluid inlet and fluid outlet, the inside of the pump casing is well sealed. That is, it is possible to suppress liquid leakage from the inside of the pump casing.
  • the first casing portion and the second casing portion When the first casing portion and the second casing portion are not in contact with each other on the flat surface portion but only on the inclined portion, the first casing portion is referred to as the second casing portion (or the second casing portion is referred to as the first casing portion). ), It becomes difficult to control the axial distance between the first casing portion and the second casing portion to an appropriate value. That is, it becomes difficult to control the space volume in the pump casing to an appropriate value. Further, if the axial distance between the first casing portion and the second casing portion becomes long (if the press-fitting is insufficient), the sheath property of the pump casing may deteriorate.
  • the first casing portion and the second casing portion are in contact with each other on both the flat surface portion and the inclined portion, the first casing portion is referred to as the second casing portion (or the second casing portion is referred to as the second casing portion).
  • the first casing portion is referred to as the second casing portion (or the second casing portion is referred to as the second casing portion).
  • the housing can keep the positions of the first casing portion and the second casing portion in good condition. That is, it is possible to maintain a good contact state between the first casing portion and the second casing portion in the flat surface portion and the inclined portion.
  • the first inclined portion and the second inclined portion come into surface contact with each other. Since the contact area between the first inclined portion and the second inclined portion is increased, the sealing property of the pump casing is further improved.
  • the cross-sectional view of the fuel pump is shown.
  • An enlarged view of the range surrounded by the broken line II in FIG. 1 is shown.
  • An enlarged view of the range surrounded by the broken line II in FIG. 1 is shown.
  • a modified example of the joint portion between the first casing portion and the second casing portion is shown.
  • a modified example of the joint portion between the first casing portion and the second casing portion is shown.
  • a modified example of the joint portion between the first casing portion and the second casing portion is shown.
  • a modified example of the joint portion between the first casing portion and the second casing portion is shown.
  • a modified example of the joint portion between the first casing portion and the second casing portion is shown.
  • a modified example of the joint portion between the first casing portion and the second casing portion is shown.
  • a modified example of the joint portion between the first casing portion and the second casing portion is shown.
  • a modified example of the joint portion between the first casing portion and the second casing portion is shown.
  • the fuel pump 100 will be described as an example of the fluid pump with reference to FIGS. 1 to 3.
  • FIG. 1 only both end portions (pump portion 20 and pump discharge port 22) of the fuel pump 100 are shown in cross section, and the appearance (housing 46) is shown for the intermediate portion (motor portion 30).
  • the fuel pump 100 is arranged in, for example, a fuel tank of an automobile, and supplies fuel in the fuel tank to the engine.
  • the pump discharge port 22 side may be referred to as "upper side” or "upper side”
  • the fuel suction port 2 side may be referred to as "lower side” or "lower side”.
  • the motor unit 30 and the pump unit 20 are arranged in the housing 46.
  • a motor having a rotor and a stator (for example, a brushless motor) is arranged in the motor unit 30.
  • the rotor shaft 40 fixed to the rotor extends downward toward the pump portion 20 and engages with the impeller 14 housed in the pump casing 8. More specifically, an engaging portion 42 having a non-circular cross section (for example, a D shape) is provided at the end of the rotor shaft 40, and the impeller 14 is engaged with the engaging portion 42.
  • the rotor shaft 40 is supported by a bearing 44 and rotates around a rotation shaft CL. When the rotor shaft 40 rotates (the motor is driven), the impeller 14 rotates in the pump casing 8.
  • the rotary shaft CL is a rotary shaft of the motor (rotor shaft 40) and a rotary shaft of the impeller 14.
  • the pump unit 20 includes a substantially disk-shaped impeller 14 and a pump casing 8 accommodating the impeller 14, and is arranged in the housing 46. More specifically, the outer peripheral surface (diametric end surface) of the pump casing 8 is surrounded by the housing 46, and the axial end surface (lower end portion) of the pump casing 8 is exposed from the opening of the housing 46. .. That is, the pump casing 8 forms a part of the appearance of the fuel pump 100.
  • the pump casing 8 includes a first casing portion 4 in which the fuel suction port 2 is formed, and a second casing portion 9 in which the fuel discharge port 10 is formed.
  • the fuel suction port 2 is an example of a fluid suction port
  • the fuel discharge port 10 is an example of a fluid discharge port.
  • the first casing portion 4 and the second casing portion 9 are joined by a joining portion 50.
  • a side wall portion 6 extending toward the first casing portion 4 is provided at the radial end portion of the second casing portion 9.
  • the first casing portion 4 and the second casing portion 9 are joined by press-fitting and fixing the radial end portion of the first casing portion 4 and the side wall portion 6.
  • the pump internal space 8a in which the impeller 14 is housed is formed. That is, the surface (upper surface) of the first casing portion 4 constitutes the lower surface of the pump inner space 8a, and the surface (lower surface) of the second casing portion 9 is the upper surface of the pump inner space 8a.
  • the inner surface of the side wall portion 6 constitutes the side surface of the pump inner space 8a.
  • a caulking portion 46a is provided at the lower end of the housing 46, and a force is applied to the second casing portion 9 side with respect to the first casing portion 4.
  • the fuel suction port 2 and the fuel discharge port 10 communicate with each other in the pump internal space 8a.
  • fuel pump 100 when the impeller 14 rotates as the motor is driven, fuel is sucked from the fuel suction port 2 into the pump internal space 8a.
  • the fuel sucked into the pump internal space 8a is boosted as the impeller 14 rotates, and is discharged from the fuel discharge port 10 to the motor unit 30.
  • the fuel supplied to the motor unit 30 passes through the motor unit 30 and is discharged from the pump discharge port 22 to the outside of the fuel pump 100 (toward the engine).
  • Blade grooves 14a and 14b are formed on the front and back surfaces of the impeller 14. Further, a suction groove 5 facing the blade groove 14a is formed in the first casing portion 4, and a discharge groove 7 facing the blade groove 14b is formed in the second casing portion 9.
  • the suction groove 5 is connected to the fuel suction port 2 and extends in an arc shape around the rotation shaft CL. Further, the discharge groove 7 is connected to the fuel discharge port 10 and extends in an arc shape around the rotation shaft CL.
  • a space formed by the blade groove 14a and the suction groove 5 suction side space
  • a space formed by the blade groove 14b and the discharge groove 7 discharge side space
  • FIG. 2 shows a joint portion 50 between the first casing portion 4 and the side wall portion 6.
  • a first inclined portion 4a and a first flat surface portion 4b are formed at the radial end portion of the first casing portion 4.
  • the first flat surface portion 4b is a flat surface extending in the radial direction, and makes a round in the circumferential direction.
  • the first flat surface portion 4b is located below the surface of the first casing portion 4 (lower surface of the pump inner space 8a), and is provided radially outside the first inclined portion 4a. That is, the first inclined portion 4a is a tapered surface provided between the surface of the first casing portion 4 and the first flat surface portion 4b.
  • the first inclined portion 4a also makes a round in the circumferential direction.
  • a second inclined portion 6a and a second flat surface portion 6b are formed at the lower end portion of the side wall portion 6 (second casing portion 9).
  • the second flat surface portion 6b is an end surface of the side wall portion 6, is a flat surface extending in the radial direction, and makes a round in the circumferential direction.
  • the second flat surface portion 6b is provided on the outer side in the radial direction from the second inclined portion 6a.
  • the second inclined portion 6a is a tapered surface provided between the second flat surface portion 6b and the inner surface of the side wall portion 6.
  • the second inclined portion 6a also makes a round in the circumferential direction.
  • the first inclined portion 4a and the second inclined portion 6a are in surface contact with each other to form the inclined contact portion 51.
  • first flat surface portion 4b and the second flat surface portion 6b are in surface contact with each other to form the flat surface contact portion 52.
  • the joint portion 50 is composed of an inclined contact portion 51 and a plane contact portion 52.
  • a gap 60 is provided between the side wall portion 6 and the radial end surface of the first casing portion 4 (the outer peripheral surface of the pump casing 8) and the housing 46. That is, the first casing portion 4 and the second casing portion 9 are not fixed to the housing 46.
  • the first casing portion 4 (first inclined portion 4a) is press-fitted into the second inclined portion 6a of the second casing portion 9 (side wall portion 6) until the flat surfaces 4b and 6b come into contact with each other.
  • the first casing portion 4 and the second casing portion 9 are joined to each other (the pump casing 8 is formed). Since the first casing portion 4 and the second casing portion 9 are provided with the inclined portions 4a and 6a, when the first casing portion 4 is press-fitted into the second casing portion 9, the first casing portion 4 and the second casing portion 9 are press-fitted.
  • the radial alignment of the portion 9 progresses (the coaxiality of the first casing portion 4 and the second casing portion 9 increases).
  • the inclined portions 4a and 6a are parallel to each other, and they are in surface contact with each other.
  • the axial distance between the first casing 4 and the second casing 9 is controlled to the design value, and the relative positions of the first casing 4 and the second casing 9 in the radial direction are changed. It is controlled by the design value (the first casing portion 4 and the second casing portion 9 are coaxial).
  • a caulking portion 46a is provided at the lower end of the housing 46.
  • the caulking portion 46a is in contact with the lower surface of the radial end portion of the first casing portion 4, and applies a force to the first casing portion 4 in the direction of arrow 54 (upward). That is, the caulking portion 46a applies a force to the joint portion 50 to prevent the first casing portion 4 and the second casing portion 9 from being separated in the axial direction (a gap is generated between the flat surface portions 4b and 6b). ing.
  • the caulked portion 46a brings the flat surfaces 4b, 6b and the inclined portions 4a, 6a into close contact with each other, and the adhesiveness is maintained.
  • the first casing portion 4 and the second casing portion 9 are not fixed to the housing 46. Therefore, even if the housing 46 is deformed in the radial outer portion of the pump casing 8 by providing the caulking portion 46a in the housing 46, the positional relationship between the first casing portion 4 and the second casing portion 9 does not change.
  • the first casing portion 4 is simply press-fitted into the second casing portion 9 without controlling the positions, dimensions, etc. of the casing portions 4 and 9 and other parts (for example, the housing 46).
  • the casing portion 4 and the second casing portion 9 can be aligned with high accuracy. Further, since the first casing portion 4 and the second casing portion 9 are aligned with high accuracy, the blade groove 14a and the suction groove 5, and the blade groove 14b and the discharge groove 7 are also aligned with high accuracy. ..
  • a swirling flow is satisfactorily formed between the blade groove 14a and the suction groove 5 and between the blade groove 14b and the discharge groove 7, and the pump performance as designed is realized.
  • the casing portions 4 and 9 are positioned with respect to other parts (for example, the housing 46) (for example, press-fitted into the housing 46), if the strength and processing accuracy of the housing 46 are insufficient, the first casing portion The alignment between 4 and the second casing portion 9 becomes insufficient. As a result, the alignment between the blade groove 14a and the suction groove 5 and / or the blade groove 14b and the discharge groove 7 becomes insufficient, and between the blade groove 14a and the suction groove 5 and / or the blade groove 14b and the discharge groove Turbulence may occur between the seven.
  • the pump performance may deviate from the design value (typically, the discharge performance of the pump deteriorates). ..
  • the casing portions 4 and 9 are in contact with the inclined contact portion 51 at the flat contact portion 52, the casing portions 4 and 9 are aligned with each other with high accuracy, and good pump performance is realized. Has advantages.
  • the fuel pump 100 since the first casing portion 4 is press-fitted into the second casing portion 9 (side wall portion 6) to join the two, the two are joined at the joining portion 50 (inclined contact portion 51 and the flat contact portion 52). Good adhesion can be achieved and the sealing property of the pump internal space 8a can be improved. Further, since the caulking portion 46a applies a force upward to the first casing portion 4, for example, even if vibration is applied to the fuel pump 100, the joint state of the joint portion 50 can be maintained satisfactorily.
  • the fuel pump 100 also has an advantage that liquid leakage from the pump internal space 8a can be suppressed for a long period of time.
  • joint portions 50a to 50h modifications of the joint portion 50 (joint portions 50a to 50h) will be described with reference to FIGS. 4 to 11.
  • the joint portions 50a to 50h are common in that they have an inclined contact portion and a plane contact portion. Therefore, the features common to the joint portions 50a to 50h may be omitted by assigning the same reference numbers as those of the joint portion 50. Any of the joint portions 50a to 50h can be applied as a joint portion between the first casing portion 4 and the second casing portion 9 in the pump portion 20 of the fuel pump 100.
  • the joint portion 50a shown in FIG. 4 includes an inclined contact portion 51, a first plane contact portion 52a, and a second plane contact portion 52b.
  • the relationship between the inclined contact portion 51 and the first plane contact portion 52a is substantially the same as the relationship between the inclined contact portion 51 and the plane contact portion 52 of the joint portion 50 (see also FIG. 2).
  • the first casing portion 4 is provided with two flat surfaces (first flat surface portion 4b and third flat surface portion 4c), and the side wall portion 6 is provided with two flat surface portions (second flat surface portion 6b).
  • the fourth plane portion 6c) are provided.
  • the third flat surface portion 4c is a part of the surface of the first casing portion 4, and is provided radially inside the first inclined portion 4a.
  • the fourth flat surface portion 6c is provided on the inner side in the radial direction from the second inclined portion 6a.
  • the third flat surface portion 4c and the fourth flat surface portion 6c make a round in the circumferential direction.
  • the third plane portion 4c and the fourth plane portion 6c are in contact with each other to form the second plane contact portion 52b.
  • the first casing portion 4 and the second casing portion 9 are in contact with each other at three locations (inclined contact portion 51, first plane contact portion 52a, and second plane contact portion 52b). Therefore, the space 8a inside the pump can be sealed even better.
  • the joint portion 50b shown in FIG. 5 includes a first inclined contact portion 51a, a second inclined contact portion 51b, and a flat contact portion 52.
  • the inclined contact portions 51a and 51b are provided between the flat contact portion 52 and the pump internal space 8a.
  • the first casing portion 4 is provided with two inclined portions (first inclined portion 4a1 and the third inclined portion 4a2), and the side wall portion 6 is provided with two inclined portions (second inclined portion 6a1).
  • a fourth inclined portion 6a2) are provided.
  • the third inclined portion 4a2 is provided radially inside the first inclined portion 4a1. That is, in the radial direction, the first inclined portion 4a1 is provided between the first plane portion 4b and the third inclined portion 4a2.
  • the fourth inclined portion 6a2 is provided on the inner side in the radial direction with respect to the second inclined portion 6a1. That is, in the radial direction, the second inclined portion 6a1 is provided between the second plane portion 6b and the fourth inclined portion 6a2.
  • the inclined portions 4a1, 4a2, 6a1, 6a2 make a round in the circumferential direction.
  • the first inclined portion 4a1 and the second inclined portion 6a1 are in contact with each other to form the first inclined contact portion 51a. Further, the third inclined portion 4a2 and the fourth inclined portion 6a2 are in contact with each other to form the second inclined contact portion 51b.
  • the inclination angle of the first inclined contact portion 51a (angle with respect to the plane contact portion 52) is smaller than the inclination angle of the second inclined contact portion 51b.
  • the first casing portion 4 and the second casing portion 9 are in contact with each other at three locations (first inclined contact portion 51a, second inclined contact portion 51b, flat contact portion 52).
  • the pump internal space 8a can be satisfactorily sealed.
  • the first inclined portion 4a and the second inclined portion 6a partially contact each other to form an inclined contact portion 51, and the first plane portion 4b and the second plane portion 6b come into surface contact with each other.
  • the plane contact portion 52 is formed.
  • the first inclined portion 4a and the second inclined portion 6a are non-parallel, the inclination angle of the first inclined portion 4a is larger than the inclined angle of the second inclined portion 6a, and in the vicinity of the plane contact portion 52, The first inclined portion 4a and the second inclined portion 6a are not in contact with each other. Even in such a form, there is an advantage that the first casing portion 4 and the second casing portion 9 can be aligned with high accuracy without being affected by the processing accuracy of the housing 46.
  • the first inclined portion 4a and the second inclined portion 6a partially contact to form the inclined contact portion 51, and the first plane portion 4b and the second inclined portion 50d are formed.
  • the flat surface portion 6b is in surface contact to form the flat surface contact portion 52.
  • the first inclined portion 4a and the second inclined portion 6a are non-parallel, the inclination angle of the first inclined portion 4a is smaller than the inclined angle of the second inclined portion 6a, and the first inclined portion 4a and the second inclined portion 6a are on the pump inner space 8a side.
  • the second inclined portion 6a is non-contact. Even in such a form, there is an advantage that the first casing portion 4 and the second casing portion 9 can be aligned with high accuracy without being affected by the processing accuracy of the housing 46.
  • a part of the surface of the first casing portion 4 also serves as the first flat surface portion 4b, and the first inclined portion 4a is provided radially outside the first flat surface portion 4b. ..
  • the first inclined portion 4a is inclined downward from the surface of the first casing portion 4 toward the outer side in the radial direction.
  • the second casing portion 9 (side wall portion 6) has a second flat surface portion 6b on the inner side in the radial direction, and has a second inclined portion 6a protruding downward in the radial direction from the second flat surface portion 6b.
  • the inclined contact portion 51 is provided radially outside the plane contact portion 52.
  • the inclined contact portion 51 is formed by press-fitting the first inclined portion 4a of the first casing portion 4 into the second inclined portion 6a of the side wall portion 6. Therefore, the degree of adhesion of the inclined portions 4a and 6a in the inclined contact portion 51 is higher than the degree of adhesion of the flat portions 4b and 6b in the planar contact portion 52. That is, the sealing property of the inclined contact portion 51 is higher than the sealing property of the flat contact portion 52. Further, as described above, a force is applied upward by the caulking portion 46a to the radial end portion of the first casing portion 4. In the joint portion 50e, the force applied from the caulking portion 46a is likely to be applied to the inclined contact portion 51 having a high sealing property, and the sealing property of the pump inner space 8a is more easily maintained.
  • the first plane portion 4b is located above the surface of the first casing portion 4 (the lower surface of the pump inner space 8a).
  • the second inclined portion 6a of the side wall portion 6 is press-fitted into the first inclined portion 4a of the first casing portion 4.
  • a part of the surface of the first casing portion 4 also serves as the first flat surface portion 4b, and the first inclined portion 4a is provided radially outside the first flat surface portion 4b. ..
  • the first inclined portion 4a is inclined upward from the surface of the first casing portion 4 toward the outer side in the radial direction.
  • the second casing portion 9 (side wall portion 6) is provided with a second flat surface portion 6b on the inner side in the radial direction and a second inclined portion 6a on the outer side in the radial direction.
  • the second inclined portion 6a is inclined upward from the second plane portion 6b toward the outer side in the radial direction.
  • the joint portion 50g is provided with the inclined contact portion 51 radially outward from the plane contact portion 52 (see also FIG. 8). Therefore, also in the joint portion 50g, the force applied from the caulking portion 46a is likely to be applied to the inclined contact portion 51 having a high sealing property, and the sealing property of the pump inner space 8a is further easily maintained.
  • the joint portion 50h shown in FIG. 11 includes an inclined contact portion 51, a first plane contact portion 52a, and a second plane contact portion 52b, similarly to the joint portion 50a (see also FIG. 4). However, the first plane contact portion 52a is located above the second plane contact portion 52b. In the joint portion 50h, the first casing portion 4 and the second casing portion 9 (side wall portion 6) are in contact with each other at three points, so that the pump internal space 8a can be satisfactorily sealed.
  • the fuel pump in which the side wall portion (member forming the side surface of the pump inner space) is provided in the second casing portion has been described.
  • the side wall portion may be provided on the first casing portion (a member provided with the fluid suction port).
  • a force may be applied upward to the first casing portion by sandwiching the first casing portion and the second casing portion with a clamp member or the like (first). A force may be applied to prevent the casing portion and the second casing portion from separating).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

This fluid pump is provided with a pump casing (8) accommodating an impeller (14). The pump casing includes a first casing portion (4) in which a fluid intake port (2) for intake of a fluid is provided, and a second casing portion (9) in which a fluid discharge port (10) for discharging the fluid is provided. A first planar surface portion (4b) perpendicular to the axis of rotation of a motor, and a first inclined portion (4a) which is inclined with respect to the first planar surface portion are provided in the first casing portion. A second planar surface portion (6b) perpendicular to the axis of rotation of the motor, and a second inclined portion (6a) which is inclined with respect to the second planar surface portion are provided in a side wall portion (6) of the second casing portion. The first planar surface portion is in contact with the second planar surface portion and the first inclined portion is in contact with the second inclined portion, thereby defining a space, inside the pump casing, in which the impeller is disposed.

Description

流体ポンプFluid pump
 本出願は、2019年7月31日に出願された日本国特許出願第2019-141460号に基づく優先権を主張する。その出願の全ての内容は、この明細書中に参照により援用されている。本明細書は、流体ポンプに関する技術を開示する。 This application claims priority based on Japanese Patent Application No. 2019-141460 filed on July 31, 2019. The entire contents of that application are incorporated herein by reference. This specification discloses a technique relating to a fluid pump.
 特開2002-276566号公報(以下、特許文献1と称する)に、モータに連結されたインペラを駆動することによって燃料を流通させる燃料ポンプが開示されている。特許文献1の燃料ポンプは、ハウジング(モータケーシング)内にモータとポンプケーシングが収容されている。ポンプケーシングは、ポンプケーシング内に流体を吸入するための流体吸入口が設けられている部材(第2プレート)と、ポンプケーシング内から流体を吐出するための流体吐出口が設けられている部材(第1プレート)を備えている。第1プレート及び第2プレートは、各々モータケーシングに圧入されている。すなわち、モータケーシングに第1プレート及び第2プレートを圧入することによって、ポンプケーシングが形成されている。 Japanese Unexamined Patent Publication No. 2002-276566 (hereinafter referred to as Patent Document 1) discloses a fuel pump that distributes fuel by driving an impeller connected to a motor. In the fuel pump of Patent Document 1, a motor and a pump casing are housed in a housing (motor casing). The pump casing is a member provided with a fluid suction port for sucking fluid into the pump casing (second plate) and a member provided with a fluid discharge port for discharging fluid from the inside of the pump casing (second plate). The first plate) is provided. The first plate and the second plate are respectively press-fitted into the motor casing. That is, the pump casing is formed by press-fitting the first plate and the second plate into the motor casing.
 2個の部材(第1プレート、第2プレート)でポンプケーシングを形成する場合、各部材の位置合わせを高精度に行うことが求められる。例えば、各部材の位置合わせが不十分である場合、ポンプケーシング内から液漏れが生じたり、流体(燃料)が流体吸入口から流体吐出口までスムーズに移動しないことが起こり得る。すなわち、燃料ポンプのポンプ性能が低下する。そのため、特許文献1の燃料ポンプの場合、ハウジング(モータケーシング)のサイズを高精度に仕上げることが必要である。また、各部材が圧入される際に変形が起こらないように、ハウジングを高強度に仕上げることも必要である。その結果、特許文献1の燃料ポンプは、製造コストが増大する。より簡易な構造で各部品(ポンプケーシングを形成する2個の部品)の位置合わせを行う技術が必要とされている。本明細書は、従来にない新規な構造のポンプケーシングを有する流体ポンプを実現する技術を提供する。 When the pump casing is formed of two members (first plate, second plate), it is required to align each member with high accuracy. For example, if the alignment of each member is insufficient, liquid leakage may occur from the inside of the pump casing, or the fluid (fuel) may not move smoothly from the fluid suction port to the fluid discharge port. That is, the pump performance of the fuel pump deteriorates. Therefore, in the case of the fuel pump of Patent Document 1, it is necessary to finish the size of the housing (motor casing) with high accuracy. It is also necessary to finish the housing with high strength so that deformation does not occur when each member is press-fitted. As a result, the manufacturing cost of the fuel pump of Patent Document 1 increases. There is a need for a technique for aligning each part (two parts forming the pump casing) with a simpler structure. The present specification provides a technique for realizing a fluid pump having a pump casing having a novel structure that has never existed before.
 本明細書で開示する第1技術は、モータによって駆動されるインペラと、インペラを収容しているポンプケーシングを備えた流体ポンプである。この流体ポンプでは、ポンプケーシングは、ポンプケーシング内に流体を吸入するための流体吸入口が設けられている第1ケーシング部と、ポンプケーシング内から流体を吐出するための流体吐出口が設けられている第2ケーシング部を有していてよい。また、第1ケーシング部に、モータの回転軸に直交する方向に広がる第1平面部と、第1平面部に対して傾斜している第1傾斜部が設けられており、第2ケーシング部に、モータの回転軸に直交する方向に広がる第2平面部と、第2平面部に対して傾斜している第2傾斜部が設けられており、第1平面部と第2平面部が接触し、第1傾斜部と第2傾斜部が接触することによって、インペラが配置されるポンプケーシング内空間が画定されていてよい。 The first technique disclosed in this specification is a fluid pump including an impeller driven by a motor and a pump casing accommodating the impeller. In this fluid pump, the pump casing is provided with a first casing portion in which a fluid suction port for sucking fluid is provided in the pump casing, and a fluid discharge port for discharging fluid from the inside of the pump casing. It may have a second casing portion. Further, the first casing portion is provided with a first plane portion extending in a direction orthogonal to the rotation axis of the motor and a first inclined portion inclined with respect to the first plane portion, and the second casing portion is provided. , A second plane portion extending in a direction orthogonal to the rotation axis of the motor and a second inclined portion inclined with respect to the second plane portion are provided, and the first plane portion and the second plane portion come into contact with each other. , The space inside the pump casing in which the impeller is arranged may be defined by the contact between the first inclined portion and the second inclined portion.
 本明細書で開示する第2技術は、上記第1技術の流体ポンプであって、モータの回転軸に直交する方向に、ポンプケーシングの外周を囲うハウジングが設けられていてよい。ハウジングは、第1ケーシング部と第2ケーシング部に、両者がモータの回転軸方向に分離することを防止するための力を付与していてよい。 The second technique disclosed in the present specification is the fluid pump of the first technique, and a housing surrounding the outer periphery of the pump casing may be provided in a direction orthogonal to the rotation axis of the motor. The housing may apply a force to the first casing portion and the second casing portion to prevent them from separating in the rotation axis direction of the motor.
 本明細書で開示する第3技術は、上記第1または第2技術の流体ポンプであって、第1傾斜部と第2傾斜部が平行であってよい。 The third technique disclosed in the present specification is the fluid pump of the first or second technique described above, and the first inclined portion and the second inclined portion may be parallel to each other.
 第1技術によると、ポンプケーシングを構成する部品同士(第1ケーシング部及び第2ケーシング部)を、他の部材(ハウジング等)の特性(加工精度、強度)に影響されることなく、高精度の位置合わせすることができる。換言すると、第1ケーシング部及び第2ケーシング部を高精度に位置合わせするために、他の部材を高精度に加工する必要がない。その結果、流体ポンプの製造コストを低減することができる。 According to the first technology, the parts constituting the pump casing (first casing portion and second casing portion) are highly accurate without being affected by the characteristics (machining accuracy, strength) of other members (housing, etc.). Can be aligned. In other words, in order to align the first casing portion and the second casing portion with high accuracy, it is not necessary to process other members with high accuracy. As a result, the manufacturing cost of the fluid pump can be reduced.
 また、第1技術の流体ポンプでは、第1ケーシング部と第2ケーシング部は、第1及び第2平面部(モータの回転軸に直交する平面)と、第1及び第2傾斜部(モータの回転軸に直交する平面に対して傾斜している傾斜面)で接触している。第1平面部と第2平面部が接触することによって、第1ケーシング部と第2ケーシング部のモータの回転軸方向の距離を制御することができる。また、第1傾斜部と第2傾斜部が接触することによって、第1ケーシング部と第2ケーシング部のモータの回転軸方向に直交する方向の相対位置を制御することができる(すなわち、軸合わせすることができる)。なお、以下の説明では、モータの回転軸方向を「軸方向」と称し、モータの回転軸に直交する方向(すなわち、モータの径方向)を「径方向」と称する。 Further, in the fluid pump of the first technology, the first casing portion and the second casing portion are the first and second plane portions (planes orthogonal to the rotation axis of the motor) and the first and second inclined portions (of the motor). It is in contact with an inclined surface that is inclined with respect to a plane orthogonal to the rotation axis). The distance between the first casing portion and the second casing portion in the rotation axis direction can be controlled by the contact between the first flat surface portion and the second flat surface portion. Further, by contacting the first inclined portion and the second inclined portion, it is possible to control the relative positions of the first casing portion and the second casing portion in the direction orthogonal to the rotation axis direction of the motor (that is, axis alignment). can do). In the following description, the rotation axis direction of the motor is referred to as "axial direction", and the direction orthogonal to the rotation axis of the motor (that is, the radial direction of the motor) is referred to as "diameter direction".
 なお、流体ポンプで用いられるインペラは、表裏面に羽根溝が設けられていることがある。このようなインペラが用いられる場合、ポンプケーシング内には、羽根溝に対向するように溝を形成し、流体の流れを制御することがある。流体ポンプのポンプ性能を設計通りに発揮させるためには、ポンプケーシング内の溝と羽根溝が設計通りに対向していることが必要とされる。上記したように、第1技術の流体ポンプは、第1ケーシング部と第2ケーシング部を、軸方向及び径方向で良好に位置合わせすることができる。その結果、第1技術の流体ポンプは、良好なポンプ性能を発揮することができる。 The impeller used in the fluid pump may have blade grooves on the front and back surfaces. When such an impeller is used, a groove may be formed in the pump casing so as to face the blade groove to control the flow of fluid. In order to bring out the pump performance of the fluid pump as designed, it is necessary that the groove in the pump casing and the blade groove face each other as designed. As described above, the fluid pump of the first technique can satisfactorily align the first casing portion and the second casing portion in the axial direction and the radial direction. As a result, the fluid pump of the first technique can exhibit good pump performance.
 上記したように、第1技術の流体ポンプでは、第1傾斜部と第2傾斜部が接触している。ポンプケーシングを形成する(第1ケーシング部と第2ケーシング部を接合する)際、第1傾斜部と第2傾斜部が接触するように、第1ケーシング部を第2ケーシング部(あるいは、第2ケーシング部を第1ケーシング部)に圧入する。第1ケーシング部と第2ケーシング部が圧入によって接合されるので、第1ケーシング部と第2ケーシング部の隙間が良好にシールされる。第1技術の流体ポンプは、平面部(第1平面部と第2平面部)と傾斜面部(第1傾斜部と第2傾斜部)の双方で第1ケーシング部と第2ケーシング部が接するので、流体吸入口及び流体吐出口を除き、ポンプケーシング内が良好にシールされる。すなわち、ポンプケーシング内からの液漏れを抑制することができる。 As described above, in the fluid pump of the first technology, the first inclined portion and the second inclined portion are in contact with each other. When forming the pump casing (joining the first casing portion and the second casing portion), the first casing portion is brought into contact with the second inclined portion (or the second casing portion) so that the first inclined portion and the second inclined portion come into contact with each other. The casing portion is press-fitted into the first casing portion). Since the first casing portion and the second casing portion are joined by press fitting, the gap between the first casing portion and the second casing portion is satisfactorily sealed. In the fluid pump of the first technology, since the first casing portion and the second casing portion are in contact with each other on both the flat surface portion (the first flat surface portion and the second flat surface portion) and the inclined surface portion (the first inclined portion and the second inclined portion). , Except for the fluid inlet and fluid outlet, the inside of the pump casing is well sealed. That is, it is possible to suppress liquid leakage from the inside of the pump casing.
 なお、第1ケーシング部と第2ケーシング部が平面部で接触せず、傾斜部のみで接触している場合、第1ケーシング部を第2ケーシング部(あるいは、第2ケーシング部を第1ケーシング部)に圧入する際、第1ケーシング部と第2ケーシング部の軸方向距離を適値に制御することが難しくなる。すなわち、ポンプケーシング内の空間体積を適値に制御することが難しくなる。また、第1ケーシング部と第2ケーシング部の軸方向距離が長くなると(圧入が不十分であると)、ポンプケーシングのシース性が低下することがある。一方、第1ケーシング部と第2ケーシング部の軸方向距離が短くなっても(圧入が過大であっても)、第1ケーシング部及び/又は第2ケーシング部が変形し、ポンプケーシングのシース性が低下することがある。第1技術の流体ポンプは、第1ケーシング部と第2ケーシング部が平面部と傾斜部の両方で接触しているので、第1ケーシング部を第2ケーシング部(あるいは、第2ケーシング部を第1ケーシング部)に圧入するだけで両者が位置合わせされるとともに、ポンプケーシングのシール性を確保することができる。 When the first casing portion and the second casing portion are not in contact with each other on the flat surface portion but only on the inclined portion, the first casing portion is referred to as the second casing portion (or the second casing portion is referred to as the first casing portion). ), It becomes difficult to control the axial distance between the first casing portion and the second casing portion to an appropriate value. That is, it becomes difficult to control the space volume in the pump casing to an appropriate value. Further, if the axial distance between the first casing portion and the second casing portion becomes long (if the press-fitting is insufficient), the sheath property of the pump casing may deteriorate. On the other hand, even if the axial distance between the first casing portion and the second casing portion is shortened (even if the press-fitting is excessive), the first casing portion and / or the second casing portion is deformed, and the sheath property of the pump casing is increased. May decrease. In the fluid pump of the first technique, since the first casing portion and the second casing portion are in contact with each other on both the flat surface portion and the inclined portion, the first casing portion is referred to as the second casing portion (or the second casing portion is referred to as the second casing portion). By simply press-fitting into 1 casing), both can be aligned and the sealing performance of the pump casing can be ensured.
 第2技術によると、ハウジングによって、第1ケーシング部と第2ケーシング部の位置を良好に維持し続けることができる。すなわち、平面部及び傾斜部における第1ケーシング部と第2ケーシング部の接触状態を良好に維持することができる。 According to the second technology, the housing can keep the positions of the first casing portion and the second casing portion in good condition. That is, it is possible to maintain a good contact state between the first casing portion and the second casing portion in the flat surface portion and the inclined portion.
 第3技術によると、第1傾斜部と第2傾斜部が面接触する。第1傾斜部と第2傾斜部の接触面積が増大するので、ポンプケーシングのシール性がさらに向上する。 According to the third technology, the first inclined portion and the second inclined portion come into surface contact with each other. Since the contact area between the first inclined portion and the second inclined portion is increased, the sealing property of the pump casing is further improved.
燃料ポンプの断面図を示す。The cross-sectional view of the fuel pump is shown. 図1の破線IIで囲った範囲の拡大図を示す。An enlarged view of the range surrounded by the broken line II in FIG. 1 is shown. 図1の破線IIで囲った範囲の拡大図を示す。An enlarged view of the range surrounded by the broken line II in FIG. 1 is shown. 第1ケーシング部と第2ケーシング部の接合部の変形例を示す。A modified example of the joint portion between the first casing portion and the second casing portion is shown. 第1ケーシング部と第2ケーシング部の接合部の変形例を示す。A modified example of the joint portion between the first casing portion and the second casing portion is shown. 第1ケーシング部と第2ケーシング部の接合部の変形例を示す。A modified example of the joint portion between the first casing portion and the second casing portion is shown. 第1ケーシング部と第2ケーシング部の接合部の変形例を示す。A modified example of the joint portion between the first casing portion and the second casing portion is shown. 第1ケーシング部と第2ケーシング部の接合部の変形例を示す。A modified example of the joint portion between the first casing portion and the second casing portion is shown. 第1ケーシング部と第2ケーシング部の接合部の変形例を示す。A modified example of the joint portion between the first casing portion and the second casing portion is shown. 第1ケーシング部と第2ケーシング部の接合部の変形例を示す。A modified example of the joint portion between the first casing portion and the second casing portion is shown. 第1ケーシング部と第2ケーシング部の接合部の変形例を示す。A modified example of the joint portion between the first casing portion and the second casing portion is shown.
(燃料ポンプ)
 図1から図3を参照し、流体ポンプの一例として、燃料ポンプ100について説明する。なお、図1では、燃料ポンプ100の両端部分(ポンプ部20及びポンプ吐出口22)についてのみ断面で示し、中間部分(モータ部30)については、外観(ハウジング46)が示されている。燃料ポンプ100は、例えば、自動車の燃料タンク内に配置され、燃料タンク内の燃料をエンジンに供給する。また、以下の説明では、ポンプ吐出口22側を「上方」または「上側」と称し、燃料吸入口2側を「下方」または「下側」と称することがある。
(Fuel pump)
The fuel pump 100 will be described as an example of the fluid pump with reference to FIGS. 1 to 3. In addition, in FIG. 1, only both end portions (pump portion 20 and pump discharge port 22) of the fuel pump 100 are shown in cross section, and the appearance (housing 46) is shown for the intermediate portion (motor portion 30). The fuel pump 100 is arranged in, for example, a fuel tank of an automobile, and supplies fuel in the fuel tank to the engine. Further, in the following description, the pump discharge port 22 side may be referred to as "upper side" or "upper side", and the fuel suction port 2 side may be referred to as "lower side" or "lower side".
 図1に示すように、モータ部30及びポンプ部20は、ハウジング46内に配置されている。モータ部30には、ロータとステータを備えたモータ(たとえば、ブラシレスモータ)が配置されている。ロータに固定されたロータシャフト40がポンプ部20に向けて下方に伸びており、ポンプケーシング8内に収容されているインペラ14と係合している。より具体的には、ロータシャフト40の端部に断面が非円形(例えばD形状)の係合部42が設けられており、係合部42にインペラ14が係合している。ロータシャフト40は、軸受44によって支持されており、回転軸CLの周りを回転する。ロータシャフト40が回転(モータが駆動)すると、ポンプケーシング8内でインペラ14が回転する。回転軸CLは、モータ(ロータシャフト40)の回転軸であるとともに、インペラ14の回転軸である。 As shown in FIG. 1, the motor unit 30 and the pump unit 20 are arranged in the housing 46. A motor having a rotor and a stator (for example, a brushless motor) is arranged in the motor unit 30. The rotor shaft 40 fixed to the rotor extends downward toward the pump portion 20 and engages with the impeller 14 housed in the pump casing 8. More specifically, an engaging portion 42 having a non-circular cross section (for example, a D shape) is provided at the end of the rotor shaft 40, and the impeller 14 is engaged with the engaging portion 42. The rotor shaft 40 is supported by a bearing 44 and rotates around a rotation shaft CL. When the rotor shaft 40 rotates (the motor is driven), the impeller 14 rotates in the pump casing 8. The rotary shaft CL is a rotary shaft of the motor (rotor shaft 40) and a rotary shaft of the impeller 14.
(ポンプ部の構成)
 ポンプ部20は、略円板状のインペラ14と、インペラ14を収容しているポンプケーシング8を備えており、ハウジング46内に配置されている。より具体的には、ポンプケーシング8の外周面(径方向端面)がハウジング46に囲まれており、ポンプケーシング8の軸方向の端面(下方の端部)がハウジング46の開口から露出している。すなわち、ポンプケーシング8は、燃料ポンプ100の外観の一部を構成している。
(Composition of pump part)
The pump unit 20 includes a substantially disk-shaped impeller 14 and a pump casing 8 accommodating the impeller 14, and is arranged in the housing 46. More specifically, the outer peripheral surface (diametric end surface) of the pump casing 8 is surrounded by the housing 46, and the axial end surface (lower end portion) of the pump casing 8 is exposed from the opening of the housing 46. .. That is, the pump casing 8 forms a part of the appearance of the fuel pump 100.
 ポンプケーシング8は、燃料吸入口2が形成されている第1ケーシング部4と、燃料吐出口10が形成されている第2ケーシング部9を備えている。燃料吸入口2は流体吸入口の一例であり、燃料吐出口10は流体吐出口の一例である。第1ケーシング部4と第2ケーシング部9は、接合部50で接合されている。具体的には、第2ケーシング部9の径方向端部には、第1ケーシング部4に向けて伸びる側壁部6が設けられている。第1ケーシング部4の径方向端部と側壁部6が圧入固定されることによって、第1ケーシング部4と第2ケーシング部9が接合されている。第1ケーシング部4と第2ケーシング部9が接合されることによって、インペラ14が収容されるポンプ内空間8aが形成される。すなわち、第1ケーシング部4の表面(上側の面)がポンプ内空間8aの下側の面を構成し、第2ケーシング部9の表面(下側の面)がポンプ内空間8aの上側の面を構成し、側壁部6の内面がポンプ内空間8aの側面を構成する。なお、ハウジング46の下方の端部に、かしめ部46aが設けられており、第1ケーシング部4に対し、第2ケーシング部9側に力を付与している。第1ケーシング部4と第2ケーシング部9の固定状態(圧入状態)については後述する。 The pump casing 8 includes a first casing portion 4 in which the fuel suction port 2 is formed, and a second casing portion 9 in which the fuel discharge port 10 is formed. The fuel suction port 2 is an example of a fluid suction port, and the fuel discharge port 10 is an example of a fluid discharge port. The first casing portion 4 and the second casing portion 9 are joined by a joining portion 50. Specifically, a side wall portion 6 extending toward the first casing portion 4 is provided at the radial end portion of the second casing portion 9. The first casing portion 4 and the second casing portion 9 are joined by press-fitting and fixing the radial end portion of the first casing portion 4 and the side wall portion 6. By joining the first casing portion 4 and the second casing portion 9, the pump internal space 8a in which the impeller 14 is housed is formed. That is, the surface (upper surface) of the first casing portion 4 constitutes the lower surface of the pump inner space 8a, and the surface (lower surface) of the second casing portion 9 is the upper surface of the pump inner space 8a. The inner surface of the side wall portion 6 constitutes the side surface of the pump inner space 8a. A caulking portion 46a is provided at the lower end of the housing 46, and a force is applied to the second casing portion 9 side with respect to the first casing portion 4. The fixed state (press-fitting state) of the first casing portion 4 and the second casing portion 9 will be described later.
 ポンプ内空間8aには、燃料吸入口2と燃料吐出口10が連通している。燃料ポンプ100では、モータの駆動に伴ってインペラ14が回転すると、燃料吸入口2からポンプ内空間8aに燃料が吸引される。ポンプ内空間8aに吸引された燃料は、インペラ14の回転に伴って昇圧され、燃料吐出口10からモータ部30に吐出される。モータ部30に供給された燃料は、モータ部30を通過してポンプ吐出口22から燃料ポンプ100外に(エンジンに向けて)吐出される。 The fuel suction port 2 and the fuel discharge port 10 communicate with each other in the pump internal space 8a. In the fuel pump 100, when the impeller 14 rotates as the motor is driven, fuel is sucked from the fuel suction port 2 into the pump internal space 8a. The fuel sucked into the pump internal space 8a is boosted as the impeller 14 rotates, and is discharged from the fuel discharge port 10 to the motor unit 30. The fuel supplied to the motor unit 30 passes through the motor unit 30 and is discharged from the pump discharge port 22 to the outside of the fuel pump 100 (toward the engine).
 インペラ14の表裏面には、羽根溝14a,14bが形成されている。また、第1ケーシング部4に羽根溝14aに対向する吸入溝5が形成されており、第2ケーシング部9に羽根溝14bに対向する吐出溝7が形成されている。吸入溝5は、燃料吸入口2に接続されており、回転軸CLの周りに円弧状に伸びている。また、吐出溝7は、燃料吐出口10に接続されており、回転軸CLの周りに円弧状に伸びている。なお、燃料ポンプ100では、インペラ14の回転に伴い、羽根溝14aと吸入溝5で形成される空間(吸入側空間)、及び、羽根溝14bと吐出溝7で形成される空間(吐出側空間)において旋回流が生じる。吸入側空間及び吐出側空間における旋回流の流れがスムーズである程、燃料ポンプ100の燃料吐出性能(ポンプ性能)が向上する。換言すると、吸入側空間及び吐出側空間において乱流が生じる程、燃料ポンプ100の燃料吐出性能が低下する。 Blade grooves 14a and 14b are formed on the front and back surfaces of the impeller 14. Further, a suction groove 5 facing the blade groove 14a is formed in the first casing portion 4, and a discharge groove 7 facing the blade groove 14b is formed in the second casing portion 9. The suction groove 5 is connected to the fuel suction port 2 and extends in an arc shape around the rotation shaft CL. Further, the discharge groove 7 is connected to the fuel discharge port 10 and extends in an arc shape around the rotation shaft CL. In the fuel pump 100, a space formed by the blade groove 14a and the suction groove 5 (suction side space) and a space formed by the blade groove 14b and the discharge groove 7 (discharge side space) as the impeller 14 rotates. ), A swirling flow occurs. The smoother the flow of the swirling flow in the suction side space and the discharge side space, the better the fuel discharge performance (pump performance) of the fuel pump 100. In other words, the more turbulent flow occurs in the intake side space and the discharge side space, the lower the fuel discharge performance of the fuel pump 100.
 図2及び図3を参照し、第1ケーシング部4と第2ケーシング部9(側壁部6)の接合状態について説明する。図2は、第1ケーシング部4と側壁部6の接合部50を示している。図2に示すように、第1ケーシング部4の径方向端部に、第1傾斜部4aと第1平面部4bが形成されている。第1平面部4bは、径方向に広がる平坦面であり、周方向に一巡している。また、第1平面部4bは、第1ケーシング部4の表面(ポンプ内空間8aの下面)より下方に位置しており、第1傾斜部4aより径方向外側に設けられている。すなわち、第1傾斜部4aは、第1ケーシング部4の表面と第1平面部4bの間に設けられたテーパー面である。第1傾斜部4aも、周方向に一巡している。 The joint state of the first casing portion 4 and the second casing portion 9 (side wall portion 6) will be described with reference to FIGS. 2 and 3. FIG. 2 shows a joint portion 50 between the first casing portion 4 and the side wall portion 6. As shown in FIG. 2, a first inclined portion 4a and a first flat surface portion 4b are formed at the radial end portion of the first casing portion 4. The first flat surface portion 4b is a flat surface extending in the radial direction, and makes a round in the circumferential direction. Further, the first flat surface portion 4b is located below the surface of the first casing portion 4 (lower surface of the pump inner space 8a), and is provided radially outside the first inclined portion 4a. That is, the first inclined portion 4a is a tapered surface provided between the surface of the first casing portion 4 and the first flat surface portion 4b. The first inclined portion 4a also makes a round in the circumferential direction.
 側壁部6(第2ケーシング部9)の下方端部に、第2傾斜部6aと第2平面部6bが形成されている。第2平面部6bは、側壁部6の端面であり、径方向に広がる平坦面であるとともに周方向に一巡している。第2平面部6bは、第2傾斜部6aより径方向外側に設けられている。第2傾斜部6aは、第2平面部6bと側壁部6の内面の間に設けられたテーパー面である。第2傾斜部6aも、周方向に一巡している。第1傾斜部4aと第2傾斜部6aが面接触し、傾斜接触部51を形成している。また、第1平面部4bと第2平面部6bが面接触し、平面接触部52を構成している。接合部50は、傾斜接触部51と平面接触部52によって構成されている。なお、図2に示すように、側壁部6と第1ケーシング部4の径方向端面(ポンプケーシング8の外周面)とハウジング46の間には隙間60が設けられている。すなわち、第1ケーシング部4及び第2ケーシング部9は、ハウジング46に固定されていない。 A second inclined portion 6a and a second flat surface portion 6b are formed at the lower end portion of the side wall portion 6 (second casing portion 9). The second flat surface portion 6b is an end surface of the side wall portion 6, is a flat surface extending in the radial direction, and makes a round in the circumferential direction. The second flat surface portion 6b is provided on the outer side in the radial direction from the second inclined portion 6a. The second inclined portion 6a is a tapered surface provided between the second flat surface portion 6b and the inner surface of the side wall portion 6. The second inclined portion 6a also makes a round in the circumferential direction. The first inclined portion 4a and the second inclined portion 6a are in surface contact with each other to form the inclined contact portion 51. Further, the first flat surface portion 4b and the second flat surface portion 6b are in surface contact with each other to form the flat surface contact portion 52. The joint portion 50 is composed of an inclined contact portion 51 and a plane contact portion 52. As shown in FIG. 2, a gap 60 is provided between the side wall portion 6 and the radial end surface of the first casing portion 4 (the outer peripheral surface of the pump casing 8) and the housing 46. That is, the first casing portion 4 and the second casing portion 9 are not fixed to the housing 46.
 燃料ポンプ100では、第1ケーシング部4(第1傾斜部4a)を、第2ケーシング部9(側壁部6)の第2傾斜部6aに、平面部4b,6b同士が接触するまで圧入することによって第1ケーシング部4と第2ケーシング部9を接合する(ポンプケーシング8を形成する)。第1ケーシング部4と第2ケーシング部9が傾斜部4a,6aを備えているので、第1ケーシング部4を第2ケーシング部9に圧入していくと、第1ケーシング部4と第2ケーシング部9の径方向の位置合わせが進む(第1ケーシング部4と第2ケーシング部9の同軸度が増す)。傾斜部4a,6aは互いに平行であり、両者は面接触する。平面部4b,6b同士が接触すると、第1ケーシング部4と第2ケーシング部9の軸方向距離が設計値に制御され、第1ケーシング部4と第2ケーシング部9の径方向における相対位置が設計値に制御される(第1ケーシング部4と第2ケーシング部9が同軸となる)。 In the fuel pump 100, the first casing portion 4 (first inclined portion 4a) is press-fitted into the second inclined portion 6a of the second casing portion 9 (side wall portion 6) until the flat surfaces 4b and 6b come into contact with each other. The first casing portion 4 and the second casing portion 9 are joined to each other (the pump casing 8 is formed). Since the first casing portion 4 and the second casing portion 9 are provided with the inclined portions 4a and 6a, when the first casing portion 4 is press-fitted into the second casing portion 9, the first casing portion 4 and the second casing portion 9 are press-fitted. The radial alignment of the portion 9 progresses (the coaxiality of the first casing portion 4 and the second casing portion 9 increases). The inclined portions 4a and 6a are parallel to each other, and they are in surface contact with each other. When the flat surfaces 4b and 6b come into contact with each other, the axial distance between the first casing 4 and the second casing 9 is controlled to the design value, and the relative positions of the first casing 4 and the second casing 9 in the radial direction are changed. It is controlled by the design value (the first casing portion 4 and the second casing portion 9 are coaxial).
 図3に示すように、ハウジング46の下方端にかしめ部46aが設けられている。かしめ部46aは、第1ケーシング部4の径方向端部の下面に接しており、第1ケーシング部4に対して矢印54方向(上方)に力を加えている。すなわち、かしめ部46aは、第1ケーシング部4と第2ケーシング部9が軸方向に分離する(平面部4b、6b間に隙間が生じる)ことを防止するための力を接合部50に付与している。かしめ部46aによって、平面部4b,6b及び傾斜部4a,6aが密着し、その密着性が維持される。なお、上記したように、第1ケーシング部4及び第2ケーシング部9は、ハウジング46に固定されていない。そのため、ハウジング46にかしめ部46aを設けることによってポンプケーシング8の径方向外側部分でハウジング46に変形が生じても、第1ケーシング部4と第2ケーシング部9の位置関係は変化しない。 As shown in FIG. 3, a caulking portion 46a is provided at the lower end of the housing 46. The caulking portion 46a is in contact with the lower surface of the radial end portion of the first casing portion 4, and applies a force to the first casing portion 4 in the direction of arrow 54 (upward). That is, the caulking portion 46a applies a force to the joint portion 50 to prevent the first casing portion 4 and the second casing portion 9 from being separated in the axial direction (a gap is generated between the flat surface portions 4b and 6b). ing. The caulked portion 46a brings the flat surfaces 4b, 6b and the inclined portions 4a, 6a into close contact with each other, and the adhesiveness is maintained. As described above, the first casing portion 4 and the second casing portion 9 are not fixed to the housing 46. Therefore, even if the housing 46 is deformed in the radial outer portion of the pump casing 8 by providing the caulking portion 46a in the housing 46, the positional relationship between the first casing portion 4 and the second casing portion 9 does not change.
(燃料ポンプ100の利点)
 燃料ポンプ100では、ケーシング部4,9と他の部品(例えば、ハウジング46)の位置、寸法等を制御することなく、第1ケーシング部4を第2ケーシング部9に圧入するだけで、第1ケーシング部4と第2ケーシング部9を高精度に位置合わせすることができる。また、第1ケーシング部4と第2ケーシング部9が高精度に位置合わせされているので、羽根溝14aと吸入溝5、及び、羽根溝14bと吐出溝7も、高精度に位置合わせされる。燃料ポンプ100を駆動したときに、羽根溝14aと吸入溝5の間、及び、羽根溝14bと吐出溝7の間に良好に旋回流が形成され、設計通りのポンプ性能が実現される。
(Advantages of fuel pump 100)
In the fuel pump 100, the first casing portion 4 is simply press-fitted into the second casing portion 9 without controlling the positions, dimensions, etc. of the casing portions 4 and 9 and other parts (for example, the housing 46). The casing portion 4 and the second casing portion 9 can be aligned with high accuracy. Further, since the first casing portion 4 and the second casing portion 9 are aligned with high accuracy, the blade groove 14a and the suction groove 5, and the blade groove 14b and the discharge groove 7 are also aligned with high accuracy. .. When the fuel pump 100 is driven, a swirling flow is satisfactorily formed between the blade groove 14a and the suction groove 5 and between the blade groove 14b and the discharge groove 7, and the pump performance as designed is realized.
 一方、ケーシング部4,9を各々他の部品(例えば、ハウジング46)に対して位置決め(例えばハウジング46に圧入)する場合、ハウジング46の強度、加工精度が不十分であると、第1ケーシング部4と第2ケーシング部9の位置合わせが不十分となる。その結果、羽根溝14aと吸入溝5、及び/又は、羽根溝14bと吐出溝7の位置合わせが不十分となり、羽根溝14aと吸入溝5の間、及び/又は、羽根溝14bと吐出溝7の間で乱流が発生することがある。羽根溝14aと吸入溝5の間(羽根溝14bと吐出溝7の間)に乱流が発生すると、ポンプ性能が設計値からずれる(典型的に、ポンプの吐出性能が低下する)ことがある。燃料ポンプ100は、ケーシング部4,9が傾斜接触部51と平面接触部52で接触しているので、ケーシング部4,9同士が高精度に位置合わせされ、良好なポンプ性能が実現されるという利点を有している。 On the other hand, when the casing portions 4 and 9 are positioned with respect to other parts (for example, the housing 46) (for example, press-fitted into the housing 46), if the strength and processing accuracy of the housing 46 are insufficient, the first casing portion The alignment between 4 and the second casing portion 9 becomes insufficient. As a result, the alignment between the blade groove 14a and the suction groove 5 and / or the blade groove 14b and the discharge groove 7 becomes insufficient, and between the blade groove 14a and the suction groove 5 and / or the blade groove 14b and the discharge groove Turbulence may occur between the seven. If turbulence occurs between the blade groove 14a and the suction groove 5 (between the blade groove 14b and the discharge groove 7), the pump performance may deviate from the design value (typically, the discharge performance of the pump deteriorates). .. In the fuel pump 100, since the casing portions 4 and 9 are in contact with the inclined contact portion 51 at the flat contact portion 52, the casing portions 4 and 9 are aligned with each other with high accuracy, and good pump performance is realized. Has advantages.
 また、燃料ポンプ100では、第1ケーシング部4を第2ケーシング部9(側壁部6)に圧入して両者を接合するため、両者が接合部50(傾斜接触部51と平面接触部52)で良好に密着し、ポンプ内空間8aのシール性を向上させることができる。また、かしめ部46aが第1ケーシング部4に対して上方に力を加えているので、例えば、燃料ポンプ100に振動が加わっても、接合部50の接合状態を良好に維持することができる。燃料ポンプ100は、長期間にわたり、ポンプ内空間8aからの液漏れを抑制することができるという利点も有している。 Further, in the fuel pump 100, since the first casing portion 4 is press-fitted into the second casing portion 9 (side wall portion 6) to join the two, the two are joined at the joining portion 50 (inclined contact portion 51 and the flat contact portion 52). Good adhesion can be achieved and the sealing property of the pump internal space 8a can be improved. Further, since the caulking portion 46a applies a force upward to the first casing portion 4, for example, even if vibration is applied to the fuel pump 100, the joint state of the joint portion 50 can be maintained satisfactorily. The fuel pump 100 also has an advantage that liquid leakage from the pump internal space 8a can be suppressed for a long period of time.
(接触部の変形例)
 以下、図4から図11を参照し、接合部50の変形例(接合部50a~50h)について説明する。接合部50a~50hは、傾斜接触部と平面接触部を有するという点で共通している。そのため、接合部50a~50hについて、接合部50と共通の特徴については、接合部50と同じ参照番号を付すことにより、説明を省略することがある。なお、接合部50a~50hは、何れも、燃料ポンプ100のポンプ部20における第1ケーシング部4と第2ケーシング部9の接合部として適用することができる。
(Modification example of contact part)
Hereinafter, modifications of the joint portion 50 (joint portions 50a to 50h) will be described with reference to FIGS. 4 to 11. The joint portions 50a to 50h are common in that they have an inclined contact portion and a plane contact portion. Therefore, the features common to the joint portions 50a to 50h may be omitted by assigning the same reference numbers as those of the joint portion 50. Any of the joint portions 50a to 50h can be applied as a joint portion between the first casing portion 4 and the second casing portion 9 in the pump portion 20 of the fuel pump 100.
 図4に示す接合部50aは、傾斜接触部51と、第1平面接触部52aと、第2平面接触部52bを備えている。傾斜接触部51と第1平面接触部52aの関係は、接合部50の傾斜接触部51と平面接触部52の関係と実質的に同じである(図2も参照)。接合部50aでは、第1ケーシング部4に2個の平面部(第1平面部4bと第3平面部4c)が設けられており、側壁部6に2個の平面部(第2平面部6bと第4平面部6c)が設けられている。第3平面部4cは、第1ケーシング部4の表面の一部であり、第1傾斜部4aより径方向内側に設けられている。第4平面部6cは、第2傾斜部6aより径方向内側に設けられている。第3平面部4c及び第4平面部6cは、周方向に一巡している。 The joint portion 50a shown in FIG. 4 includes an inclined contact portion 51, a first plane contact portion 52a, and a second plane contact portion 52b. The relationship between the inclined contact portion 51 and the first plane contact portion 52a is substantially the same as the relationship between the inclined contact portion 51 and the plane contact portion 52 of the joint portion 50 (see also FIG. 2). In the joint portion 50a, the first casing portion 4 is provided with two flat surfaces (first flat surface portion 4b and third flat surface portion 4c), and the side wall portion 6 is provided with two flat surface portions (second flat surface portion 6b). And the fourth plane portion 6c) are provided. The third flat surface portion 4c is a part of the surface of the first casing portion 4, and is provided radially inside the first inclined portion 4a. The fourth flat surface portion 6c is provided on the inner side in the radial direction from the second inclined portion 6a. The third flat surface portion 4c and the fourth flat surface portion 6c make a round in the circumferential direction.
 接合部50aでは、第3平面部4cと第4平面部6cが接触し、第2平面接触部52bを構成している。接合部50aは、第1ケーシング部4と第2ケーシング部9(側壁部6)が3箇所(傾斜接触部51と、第1平面接触部52aと、第2平面接触部52b)で接触しており、ポンプ内空間8aをさらに良好にシールすることができる。 In the joint portion 50a, the third plane portion 4c and the fourth plane portion 6c are in contact with each other to form the second plane contact portion 52b. In the joint portion 50a, the first casing portion 4 and the second casing portion 9 (side wall portion 6) are in contact with each other at three locations (inclined contact portion 51, first plane contact portion 52a, and second plane contact portion 52b). Therefore, the space 8a inside the pump can be sealed even better.
 図5に示す接合部50bは、第1傾斜接触部51aと、第2傾斜接触部51bと、平面接触部52を備えている。傾斜接触部51a,51bは、平面接触部52とポンプ内空間8aの間に設けられている。接合部50bでは、第1ケーシング部4に2個の傾斜部(第1傾斜部4a1と第3傾斜部4a2)が設けられており、側壁部6に2個の傾斜部(第2傾斜部6a1と第4傾斜部6a2)が設けられている。第3傾斜部4a2は、第1傾斜部4a1より径方向内側に設けられている。すなわち、径方向において、第1傾斜部4a1は、第1平面部4bと第3傾斜部4a2の間に設けられている。また、第4傾斜部6a2は、第2傾斜部6a1より径方向内側に設けられている。すなわち、径方向において、第2傾斜部6a1は、第2平面部6bと第4傾斜部6a2の間に設けられている。傾斜部4a1,4a2,6a1,6a2は、周方向に一巡している。 The joint portion 50b shown in FIG. 5 includes a first inclined contact portion 51a, a second inclined contact portion 51b, and a flat contact portion 52. The inclined contact portions 51a and 51b are provided between the flat contact portion 52 and the pump internal space 8a. In the joint portion 50b, the first casing portion 4 is provided with two inclined portions (first inclined portion 4a1 and the third inclined portion 4a2), and the side wall portion 6 is provided with two inclined portions (second inclined portion 6a1). And a fourth inclined portion 6a2) are provided. The third inclined portion 4a2 is provided radially inside the first inclined portion 4a1. That is, in the radial direction, the first inclined portion 4a1 is provided between the first plane portion 4b and the third inclined portion 4a2. Further, the fourth inclined portion 6a2 is provided on the inner side in the radial direction with respect to the second inclined portion 6a1. That is, in the radial direction, the second inclined portion 6a1 is provided between the second plane portion 6b and the fourth inclined portion 6a2. The inclined portions 4a1, 4a2, 6a1, 6a2 make a round in the circumferential direction.
 接合部50bでは、第1傾斜部4a1と第2傾斜部6a1が接触し、第1傾斜接触部51aを構成している。また、第3傾斜部4a2と第4傾斜部6a2が接触し、第2傾斜接触部51bを構成している。なお、第1傾斜接触部51aの傾斜角(平面接触部52に対する角度)は、第2傾斜接触部51bの傾斜角より小さい。接合部50bは、第1ケーシング部4と第2ケーシング部9(側壁部6)が3箇所(第1傾斜接触部51a、第2傾斜接触部51b、平面接触部52)で接触しており、ポンプ内空間8aを良好にシールすることができる。 At the joint portion 50b, the first inclined portion 4a1 and the second inclined portion 6a1 are in contact with each other to form the first inclined contact portion 51a. Further, the third inclined portion 4a2 and the fourth inclined portion 6a2 are in contact with each other to form the second inclined contact portion 51b. The inclination angle of the first inclined contact portion 51a (angle with respect to the plane contact portion 52) is smaller than the inclination angle of the second inclined contact portion 51b. In the joint portion 50b, the first casing portion 4 and the second casing portion 9 (side wall portion 6) are in contact with each other at three locations (first inclined contact portion 51a, second inclined contact portion 51b, flat contact portion 52). The pump internal space 8a can be satisfactorily sealed.
 図6に示す接合部50cは、第1傾斜部4aと第2傾斜部6aが部分的に接触して傾斜接触部51を形成し、第1平面部4bと第2平面部6bが面接触して平面接触部52を構成している。具体的には、第1傾斜部4aと第2傾斜部6aは非平行であり、第1傾斜部4aの傾斜角が第2傾斜部6aの傾斜角より大きく、平面接触部52の近傍では、第1傾斜部4aと第2傾斜部6aが非接触である。このような形態でも、ハウジング46の加工精度の影響を受けることなく、第1ケーシング部4と第2ケーシング部9を高精度に位置合わせすることができるという利点が得られる。 In the joint portion 50c shown in FIG. 6, the first inclined portion 4a and the second inclined portion 6a partially contact each other to form an inclined contact portion 51, and the first plane portion 4b and the second plane portion 6b come into surface contact with each other. The plane contact portion 52 is formed. Specifically, the first inclined portion 4a and the second inclined portion 6a are non-parallel, the inclination angle of the first inclined portion 4a is larger than the inclined angle of the second inclined portion 6a, and in the vicinity of the plane contact portion 52, The first inclined portion 4a and the second inclined portion 6a are not in contact with each other. Even in such a form, there is an advantage that the first casing portion 4 and the second casing portion 9 can be aligned with high accuracy without being affected by the processing accuracy of the housing 46.
 図7に示す接合部50dは、接合部50cと同様に、第1傾斜部4aと第2傾斜部6aが部分的に接触して傾斜接触部51を形成し、第1平面部4bと第2平面部6bが面接触して平面接触部52を構成している。第1傾斜部4aと第2傾斜部6aは非平行であり、第1傾斜部4aの傾斜角が第2傾斜部6aの傾斜角より小さく、ポンプ内空間8a側で、第1傾斜部4aと第2傾斜部6aが非接触である。このような形態でも、ハウジング46の加工精度の影響を受けることなく、第1ケーシング部4と第2ケーシング部9を高精度に位置合わせすることができるという利点が得られる。 In the joint portion 50d shown in FIG. 7, similarly to the joint portion 50c, the first inclined portion 4a and the second inclined portion 6a partially contact to form the inclined contact portion 51, and the first plane portion 4b and the second inclined portion 50d are formed. The flat surface portion 6b is in surface contact to form the flat surface contact portion 52. The first inclined portion 4a and the second inclined portion 6a are non-parallel, the inclination angle of the first inclined portion 4a is smaller than the inclined angle of the second inclined portion 6a, and the first inclined portion 4a and the second inclined portion 6a are on the pump inner space 8a side. The second inclined portion 6a is non-contact. Even in such a form, there is an advantage that the first casing portion 4 and the second casing portion 9 can be aligned with high accuracy without being affected by the processing accuracy of the housing 46.
 図8に示す接合部50eは、第1ケーシング部4の表面の一部が第1平面部4bを兼ねており、第1平面部4bより径方向外側に第1傾斜部4aが設けられている。第1傾斜部4aは、径方向外側に向かうに従って、第1ケーシング部4の表面より下方に向けて傾斜している。第2ケーシング部9(側壁部6)は、径方向内側が第2平面部6bを有し、第2平面部6bより径方向外側に下方に突出する第2傾斜部6aを有している。接合部50eでは、平面接触部52より径方向外側に傾斜接触部51が設けられる。上記したように、傾斜接触部51は、第1ケーシング部4の第1傾斜部4aを側壁部6の第2傾斜部6aに圧入することによって形成される。そのため、傾斜接触部51における傾斜部4a,6aの密着度は、平面接触部52における平面部4b,6bの密着度より高い。すなわち、傾斜接触部51のシール性は、平面接触部52のシール性より高い。また、上記したように、第1ケーシング部4の径方向端部には、かしめ部46aによって上方に力が加えられている。接合部50eは、かしめ部46aから加わる力がシール性の高い傾斜接触部51に加わり易く、ポンプ内空間8aのシール性がさらに維持され易くなる。 In the joint portion 50e shown in FIG. 8, a part of the surface of the first casing portion 4 also serves as the first flat surface portion 4b, and the first inclined portion 4a is provided radially outside the first flat surface portion 4b. .. The first inclined portion 4a is inclined downward from the surface of the first casing portion 4 toward the outer side in the radial direction. The second casing portion 9 (side wall portion 6) has a second flat surface portion 6b on the inner side in the radial direction, and has a second inclined portion 6a protruding downward in the radial direction from the second flat surface portion 6b. In the joint portion 50e, the inclined contact portion 51 is provided radially outside the plane contact portion 52. As described above, the inclined contact portion 51 is formed by press-fitting the first inclined portion 4a of the first casing portion 4 into the second inclined portion 6a of the side wall portion 6. Therefore, the degree of adhesion of the inclined portions 4a and 6a in the inclined contact portion 51 is higher than the degree of adhesion of the flat portions 4b and 6b in the planar contact portion 52. That is, the sealing property of the inclined contact portion 51 is higher than the sealing property of the flat contact portion 52. Further, as described above, a force is applied upward by the caulking portion 46a to the radial end portion of the first casing portion 4. In the joint portion 50e, the force applied from the caulking portion 46a is likely to be applied to the inclined contact portion 51 having a high sealing property, and the sealing property of the pump inner space 8a is more easily maintained.
 図9に示す接合部50fは、第1平面部4bが第1ケーシング部4の表面(ポンプ内空間8aの下面)より上方に位置している。接合部50fでは、側壁部6の第2傾斜部6aを第1ケーシング部4の第1傾斜部4aに圧入する。 In the joint portion 50f shown in FIG. 9, the first plane portion 4b is located above the surface of the first casing portion 4 (the lower surface of the pump inner space 8a). At the joint portion 50f, the second inclined portion 6a of the side wall portion 6 is press-fitted into the first inclined portion 4a of the first casing portion 4.
 図10に示す接合部50gは、第1ケーシング部4の表面の一部が第1平面部4bを兼ねており、第1平面部4bより径方向外側に第1傾斜部4aが設けられている。第1傾斜部4aは、径方向外側に向かうに従って、第1ケーシング部4の表面より上方に向けて傾斜している。第2ケーシング部9(側壁部6)は、径方向内側に第2平面部6bが設けられ、径方向外側に第2傾斜部6aが設けられている。第2傾斜部6aは、径方向外側に向かうに従って、第2平面部6bより上方に向けて傾斜している。接合部50gでは、接合部50eと同様に、平面接触部52より径方向外側に傾斜接触部51が設けられる(図8も参照)。そのため、接合部50gも、かしめ部46aから加わる力がシール性の高い傾斜接触部51に加わり易く、ポンプ内空間8aのシール性がさらに維持され易くなる。 In the joint portion 50g shown in FIG. 10, a part of the surface of the first casing portion 4 also serves as the first flat surface portion 4b, and the first inclined portion 4a is provided radially outside the first flat surface portion 4b. .. The first inclined portion 4a is inclined upward from the surface of the first casing portion 4 toward the outer side in the radial direction. The second casing portion 9 (side wall portion 6) is provided with a second flat surface portion 6b on the inner side in the radial direction and a second inclined portion 6a on the outer side in the radial direction. The second inclined portion 6a is inclined upward from the second plane portion 6b toward the outer side in the radial direction. Similar to the joint portion 50e, the joint portion 50g is provided with the inclined contact portion 51 radially outward from the plane contact portion 52 (see also FIG. 8). Therefore, also in the joint portion 50g, the force applied from the caulking portion 46a is likely to be applied to the inclined contact portion 51 having a high sealing property, and the sealing property of the pump inner space 8a is further easily maintained.
 図11に示す接合部50hは、接合部50aと同様に、傾斜接触部51と、第1平面接触部52aと、第2平面接触部52bを備えている(図4も参照)。但し、第1平面接触部52aが、第2平面接触部52bより上方に位置している。接合部50hも、第1ケーシング部4と第2ケーシング部9(側壁部6)が3箇所で接触しており、ポンプ内空間8aを良好にシールすることができる。 The joint portion 50h shown in FIG. 11 includes an inclined contact portion 51, a first plane contact portion 52a, and a second plane contact portion 52b, similarly to the joint portion 50a (see also FIG. 4). However, the first plane contact portion 52a is located above the second plane contact portion 52b. In the joint portion 50h, the first casing portion 4 and the second casing portion 9 (side wall portion 6) are in contact with each other at three points, so that the pump internal space 8a can be satisfactorily sealed.
(他の実施形態)
 上記実施形態では、第2ケーシング部に側壁部(ポンプ内空間の側面を構成する部材)が設けられた燃料ポンプについて説明した。しかしながら、側壁部は、第1ケーシング部(流体吸入口が設けられている部材)に設けてもよい。
(Other embodiments)
In the above embodiment, the fuel pump in which the side wall portion (member forming the side surface of the pump inner space) is provided in the second casing portion has been described. However, the side wall portion may be provided on the first casing portion (a member provided with the fluid suction port).
 また、ハウジングに設けられているかしめ部に代え、例えば、クランプ部材等で第1ケーシング部と第2ケーシング部を挟むことにより第1ケーシング部に対して上方に力を加えてもよい(第1ケーシング部と第2ケーシング部が分離することを防止する力を付与してもよい)。 Further, instead of the caulking portion provided on the housing, for example, a force may be applied upward to the first casing portion by sandwiching the first casing portion and the second casing portion with a clamp member or the like (first). A force may be applied to prevent the casing portion and the second casing portion from separating).
 以上、本発明の実施形態について詳細に説明したが、これらは例示に過ぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。また、本明細書または図面に説明した技術要素は、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時請求項記載の組合せに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成するものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。 Although the embodiments of the present invention have been described in detail above, these are merely examples and do not limit the scope of claims. The techniques described in the claims include various modifications and modifications of the specific examples illustrated above. In addition, the technical elements described in the present specification or the drawings exhibit technical usefulness alone or in various combinations, and are not limited to the combinations described in the claims at the time of filing. In addition, the techniques illustrated in the present specification or drawings achieve a plurality of objectives at the same time, and achieving one of the objectives itself has technical usefulness.

Claims (3)

  1.  モータによって駆動されるインペラと、
     インペラを収容しているポンプケーシングと、を備えており、
     ポンプケーシングは、ポンプケーシング内に流体を吸入するための流体吸入口が設けられている第1ケーシング部と、ポンプケーシング内から流体を吐出するための流体吐出口が設けられている第2ケーシング部と、を有し、
     第1ケーシング部に、モータの回転軸に直交する方向に広がる第1平面部と、第1平面部に対して傾斜している第1傾斜部が設けられており、
     第2ケーシング部に、モータの回転軸に直交する方向に広がる第2平面部と、第2平面部に対して傾斜している第2傾斜部が設けられており、
     第1平面部と第2平面部が接触し、第1傾斜部と第2傾斜部が接触することによって、インペラが配置されるポンプケーシング内空間が画定されている流体ポンプ。
    The impeller driven by the motor and
    Equipped with a pump casing that houses the impeller,
    The pump casing has a first casing portion in which a fluid suction port for sucking fluid is provided in the pump casing and a second casing portion in which a fluid discharge port for discharging fluid from the inside of the pump casing is provided. And have
    The first casing portion is provided with a first flat portion extending in a direction orthogonal to the rotation axis of the motor and a first inclined portion inclined with respect to the first flat portion.
    The second casing portion is provided with a second flat portion extending in a direction orthogonal to the rotation axis of the motor and a second inclined portion inclined with respect to the second flat portion.
    A fluid pump in which the space inside the pump casing in which the impeller is arranged is defined by the contact between the first flat surface portion and the second flat surface portion and the contact between the first inclined portion and the second inclined portion.
  2.  請求項1に記載の流体ポンプであって、
     前記回転軸に直交する方向に、ポンプケーシングの外周を囲うハウジングが設けられており、
     ハウジングは、第1ケーシング部及び第2ケーシング部に、両者が前記回転軸方向に分離することを防止するための力を付与している流体ポンプ。
    The fluid pump according to claim 1.
    A housing that surrounds the outer circumference of the pump casing is provided in a direction orthogonal to the rotation axis.
    The housing is a fluid pump that applies a force to the first casing portion and the second casing portion to prevent them from separating in the rotation axis direction.
  3.  請求項1または2に記載の流体ポンプであって、
     第1傾斜部と第2傾斜部が平行である流体ポンプ。
    The fluid pump according to claim 1 or 2.
    A fluid pump in which the first inclined portion and the second inclined portion are parallel.
PCT/JP2020/024935 2019-07-31 2020-06-25 Fluid pump WO2021019976A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-141460 2019-07-31
JP2019141460A JP2021025431A (en) 2019-07-31 2019-07-31 Fluid pump

Publications (1)

Publication Number Publication Date
WO2021019976A1 true WO2021019976A1 (en) 2021-02-04

Family

ID=74228680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/024935 WO2021019976A1 (en) 2019-07-31 2020-06-25 Fluid pump

Country Status (2)

Country Link
JP (1) JP2021025431A (en)
WO (1) WO2021019976A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0710500U (en) * 1993-07-28 1995-02-14 株式会社川本製作所 Synthetic resin pump casing
JP2010249099A (en) * 2009-04-20 2010-11-04 Mitsubishi Electric Corp Fuel pump

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0710500U (en) * 1993-07-28 1995-02-14 株式会社川本製作所 Synthetic resin pump casing
JP2010249099A (en) * 2009-04-20 2010-11-04 Mitsubishi Electric Corp Fuel pump

Also Published As

Publication number Publication date
JP2021025431A (en) 2021-02-22

Similar Documents

Publication Publication Date Title
EP1845603A2 (en) Axial fan motor
US5607283A (en) Westco-type fuel pump having improved impeller
JP2019124209A (en) Impeller
WO2021019976A1 (en) Fluid pump
US11359642B2 (en) Electric compressor
JP2014126005A (en) Electric oil pump
JP6361561B2 (en) Fluid pump
US20200149466A1 (en) Bearing system
US10539146B2 (en) Centrifugal pump
US10557468B2 (en) Fuel pump
JP6879667B2 (en) Split housing positioning structure, scroll compressor with this
WO2019208073A1 (en) Motor unit and electric oil pump
WO2019208078A1 (en) Electric oil pump
JP6430557B2 (en) Electric oil pump
WO2022075087A1 (en) Blower
US10451062B2 (en) Vane pump device
JP7222289B2 (en) Coupling structure of shaft members and fluid machinery
CN113958510B (en) Pump device
CN114320937B (en) Pump device
US20170184105A1 (en) Vane pump device
US11560902B2 (en) Self-priming assembly for use in a multi-stage pump
JP2018150840A (en) Fuel pump
JP2021139353A (en) Fuel pump
JP2004324490A (en) Turbine type fuel feed pump
JPH0223093Y2 (en)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20847674

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20847674

Country of ref document: EP

Kind code of ref document: A1