WO2021019917A1 - Vehicle-mounted wind-powered electricity generating device - Google Patents

Vehicle-mounted wind-powered electricity generating device Download PDF

Info

Publication number
WO2021019917A1
WO2021019917A1 PCT/JP2020/022635 JP2020022635W WO2021019917A1 WO 2021019917 A1 WO2021019917 A1 WO 2021019917A1 JP 2020022635 W JP2020022635 W JP 2020022635W WO 2021019917 A1 WO2021019917 A1 WO 2021019917A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
rotational force
power generation
wind power
airflow
Prior art date
Application number
PCT/JP2020/022635
Other languages
French (fr)
Japanese (ja)
Inventor
浩威 西野
修平 金原
聡 畑原
智彰 中野
Original Assignee
ミネベアミツミ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ミネベアミツミ株式会社 filed Critical ミネベアミツミ株式会社
Publication of WO2021019917A1 publication Critical patent/WO2021019917A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L8/00Electric propulsion with power supply from forces of nature, e.g. sun or wind
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/04Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/30Wind motors specially adapted for installation in particular locations
    • F03D9/32Wind motors specially adapted for installation in particular locations on moving objects, e.g. vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/728Onshore wind turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Definitions

  • the present invention relates to an in-vehicle wind power generator that is mounted on a vehicle and generates power by using the running wind when the vehicle is running.
  • an in-vehicle wind power generator that is mounted on a vehicle and generates power by using the running wind when the vehicle is running has been proposed (see, for example, Patent Document 1).
  • a wide pipe extends in the front-rear direction between two front wheels on the lower side of the front wheel axle of the automobile, and is inside the pipe from an inflow port that opens in front of the front of the automobile.
  • the running wind can flow into the car.
  • the running wind that has flowed into the pipe flows backward and hits the blade, which is a receiver, and pushes the blade to rotate the shaft. Then, the rotational force of the blade is transmitted to the dynamo connected to the shaft, and the dynamo generates electricity.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide an in-vehicle wind power generator capable of suppressing variation in the flow velocity of an air flow guided to a wind receiver. ..
  • the in-vehicle wind power generation device is an in-vehicle wind power generation device mounted on a vehicle and generating power by using the running wind when the vehicle is running, and is a rotational force generating unit.
  • a housing unit provided in the vehicle for forming a space for rotatably accommodating the rotational force generation unit and a power generation unit connected to the rotational force generation unit are provided, and the rotational force generation unit is the said.
  • the accommodating portion has a shaft rotatably supported around an axis and at least one wind receiver formed to receive an air flow and transmit a rotational force to the shaft, and the accommodating portion has the vehicle. It is characterized by having an inflow port that opens into the space from the lower surface of the vehicle that faces the traveling surface and forms a space between the traveling surface and the vehicle.
  • the accommodating portion is provided in the rear overhang portion of the vehicle, and the inflow port opens from the lower surface of the vehicle in the rear overhang portion. It is provided on the front side of the vehicle with respect to the rotational force generating portion.
  • the accommodating portion is provided in the wheelbase portion of the vehicle, and the inflow port is opened from the lower surface of the vehicle in the wheelbase portion. , It is provided on the front side of the vehicle with respect to the rotational force generating portion.
  • the longitudinal direction of the inflow port extends along the width direction orthogonal to the front-rear direction of the vehicle.
  • the axis of the shaft extends along the longitudinal direction of the inflow port.
  • the in-vehicle wind power generator According to the in-vehicle wind power generator according to the present invention, it is possible to suppress the occurrence of variation in the rotational force of the receiver.
  • FIGS. 1 and 2 are views showing a vehicle equipped with the in-vehicle wind power generation device 1 for showing a schematic configuration of the in-vehicle wind power generation device 1 according to the first embodiment of the present invention. Is a side view of this vehicle, and FIG. 2 is a conceptual view of this vehicle as viewed from the rear.
  • the in-vehicle wind power generation device (hereinafter, also referred to as a wind power generation device) 1 according to the first embodiment of the present invention is mounted on a vehicle, and the airflow during traveling of the vehicle ( It is a wind power generator that uses running wind) to generate electricity.
  • the wind power generation device 1 is mounted on the automobile 100 as a vehicle.
  • the vehicle on which the wind power generation device 1 is mounted is not limited to an automobile.
  • the wind power generation device 1 includes a rotational force generating unit 10, an accommodating unit 20 provided in the automobile 100 that forms a space for rotatably accommodating the rotational force generating unit 10, and a power generation unit connected to the rotational force generating unit 10. It is provided with a unit 30.
  • the rotational force generating unit 10 includes a shaft 11 rotatably supported around the axis x in the accommodating unit 20, and at least one wind receiver 12 formed so as to receive an air flow and transmit the rotational force to the shaft 11. doing.
  • the accommodating portion 20 has an inflow port 21 that opens into the space S from the lower surface 101 of the automobile that faces the traveling surface G of the automobile 100 and forms a space S with the traveling surface G.
  • the configuration of the wind power generation device 1 will be specifically described.
  • FIG. 3 is a diagram for showing a specific example of the rotational force generating unit 10.
  • the wind receiver 12 of the rotational force generating unit 10 is, for example, a cross flow fan
  • the cross flow fan 12 is supported by the shaft 11 and extends in the axis x direction.
  • a plurality of impellers 13 extending in the axis x direction are fixed to the shaft 11 to form a cross flow fan 12.
  • a plurality of cross flow fans 12 may be provided on the shaft 11 side by side in the axis x direction.
  • the accommodating portion 20 is provided in the rear overhang portion 102 of the automobile 100.
  • the inflow port 21 is opened from the lower surface 101 of the automobile 100 at the rear overhang portion 102, and is provided on the front side of the automobile 100 with respect to the rotational force generating portion 10.
  • the rear overhang portion 102 is a portion of the vehicle body of the automobile 100 that is cantilevered and is supported so as to extend to the rear side of the rear wheel 103 of the automobile 100.
  • the accommodating portion 20 has a casing 22 that forms a space that can accommodate the cross flow fan 12.
  • the cross flow fan 12 is rotatably supported around the axis x via the shaft 11 in the casing 22.
  • the axis x extends parallel to or substantially parallel to the width direction, which is a direction orthogonal to the front-rear direction (hereinafter, also simply referred to as the front-back direction) of the automobile 100.
  • the axis x may extend at an angle with respect to the width direction of the automobile 100.
  • the width direction of the automobile 100 is a direction that defines the width of the automobile 100.
  • the accommodating portion 20 includes an inflow pipe portion 23 that forms an airflow passage between the casing 22 and the inflow port 21, and an outlet pipe portion that extends from the casing 22 and forms an airflow passage that opens to the rear of the automobile 100. It has 24 and.
  • the inflow pipe portion 23 communicates with the inside of the casing 22, and in the casing 22 and the inflow pipe portion 23, the airflow flowing in from the inflow port 21 flows into the cross flow fan 12 so that the cross flow fan 12 rotates in a predetermined rotation direction. It is formed so that it can be sprayed on.
  • the casing 22 and the blowout pipe portion 24 are formed so as to blow out the airflow discharged from the rotating cross-flow fan 12 from the rear portion of the automobile 100.
  • the inflow pipe portion 23 has a shape such that an air flow is blown to the cross flow fan 12 over the entire width of the cross flow fan 12 in the axis x direction.
  • the width of the connection portion of the inflow pipe portion 23 with the casing 22 in the axis x direction is the same as or larger than the width of the cross flow fan 12 in the axis x direction.
  • the inflow pipe portion 23 may be shaped so that the airflow is blown to the crossflow fan 12 at a part of the width of the crossflow fan 12 in the axis x direction.
  • the width of the inflow pipe portion 23 in the axis x direction is uniform in the extension direction of the inflow pipe portion 23.
  • the extension direction of the inflow pipe portion 23 is a direction in which the inflow pipe portion 23 extends between the inflow port 21 and the connection portion between the inflow pipe portion 23 and the casing 22.
  • the width of the inflow pipe portion 23 in the axis x direction does not have to be uniform in the extension direction of the inflow pipe portion 23.
  • the width of the inflow pipe portion 23 in the axis x direction may become smaller as it approaches the casing 22.
  • the width of the inflow pipe portion 23 in the front-rear direction of the automobile 100 is not uniform in the extending direction of the inflow pipe portion 23, and becomes smaller as it approaches the casing 22, for example.
  • the width of the inflow pipe portion 23 in the front-rear direction may be uniform in the extending direction of the inflow pipe portion 23, or may be increased as it approaches the casing 22.
  • the shape of the cross section orthogonal to the extending direction of the inflow pipe portion 23 is, for example, a shape similar to or substantially similar to the shape of the inflow port 21.
  • the shape of the cross section orthogonal to the extending direction of the inflow pipe portion 23 may be another shape.
  • the shape of the inflow pipe portion 23 is preferably a shape that allows the air flow to flow inside the inflow pipe portion 23 at a uniform flow velocity.
  • the inflow port 21 extends in the width direction of the automobile 100 and has a shape having a longitudinal direction L.
  • the inflow port 21 is, for example, a rectangle or a substantially rectangular shape.
  • the longitudinal direction L of the inflow port 21 extends along the axis x direction of the shaft 11.
  • the longitudinal direction L of the inflow port 21 extends parallel to or substantially parallel to the axis x direction of the shaft 11.
  • the shape of the inflow port 21 is not limited to the above-mentioned shape, and may be another shape. Further, the longitudinal direction L of the inflow port 21 may be inclined with respect to the axis x.
  • the power generation unit 30 is connected to the shaft 11 holding the cross flow fan 12, and the rotational force of the shaft 11 is input.
  • the power generation unit 30 is, for example, a generator such as an alternator or a dynamo, and can generate power by using the rotational force input from the shaft 11.
  • the power generation unit 30 may be directly connected to the shaft 11 or may be connected via a transmission member such as a gear.
  • the traveling wind is an air flow that flows along the automobile 100 toward the opposite side in the traveling direction.
  • the traveling wind includes an air flow flowing along the lower surface 101 of the vehicle body and an air flow flowing along the upper surface 108 of the vehicle body.
  • the airflow F flowing in from the front overhang portion 104 at the front portion of the vehicle body flows through the space S formed between the lower surface 101 of the wheelbase portion 105 and the ground G which is the traveling surface G, and the lower surface 101 of the wheelbase portion 105. And flows backward along the lower surface 101 of the rear overhang portion 102.
  • the airflow F flowing in from the inflow port 21 is guided by the inflow pipe portion 23 and the casing 22 and blown onto the impeller 13 which is a part of the cross flow fan 12, the cross flow fan 12 rotates, and the shaft 11 rotates. Since the shaft 11 is coupled to, for example, a rotor (not shown) of the power generation unit 30, the rotational force of the shaft 11 is transmitted to the rotor, the rotor rotates, and the power generation unit 30 generates power.
  • the power generation unit 30 is electrically connected to, for example, the battery 106 mounted on the automobile 100, and the generated electricity is appropriately charged to the battery 106.
  • the air blown to the cross-flow fan 12 is guided to the blow-out pipe portion 24 as the cross-flow fan 12 rotates, passes through the blow-out pipe portion 24, and flows from the air outlet 24a formed at the rear of the automobile 100 to the outside of the vehicle body. It is blown out.
  • the flow velocity of the airflow flowing through the lower surface 101 is faster than the flow velocity of the airflow flowing along the upper surface 108 of the vehicle body.
  • the airflow F flowing rearward along the lower surface 101 is blown out of the vehicle body from the diffuser portion 107 arranged at the rear end of the rear overhang portion 102. Since the lower surface 101 of the wheelbase portion 105 and the rear overhang portion 102 has a structure that is flat, there is little variation in the flow velocity of the air flow F flowing along the lower surface 101 in the width direction, and the air flow F is It is blown out of the vehicle body without peeling from the lower surface 101 and the diffuser portion 107. Therefore, the flow velocity of the airflow F flowing along the lower surface 101 of the wheelbase portion 105 and the rear overhang portion 102 is higher than the flow velocity of the airflow flowing along the other outer surface of the vehicle body.
  • the airflow F flowing along the lower surface 101 of the wheelbase portion 105 and the rear overhang portion 102 is an airflow with little variation in the width direction of the automobile 100. Therefore, the airflow F flowing into the inflow port 21 from the lower surface 101 of the rear overhang portion 102 is also an airflow with little variation in the flow velocity in the width direction of the automobile 100. Therefore, the flow velocity of the airflow F in the inflow pipe portion 23 is made uniform in the axis x direction, the variation in the axis x direction is small, and the airflow F blown to the cross flow fan 12 is generated. It is possible to make the airflow with little variation in the axis x width direction of the flow velocity.
  • the airflow F can be efficiently used for the rotation of the power generation unit 30. This makes it possible to efficiently generate electricity using the air flow F, which is a running wind.
  • the airflow F flowing along the lower surface 101 of the wheelbase portion 105 and the rear overhang portion 102 becomes faster than the other running winds, so that the crossflow fan 12 can blow the airflow F having a high flow velocity. ..
  • the cross flow fan 12 can be rotated at a higher speed, a stronger rotational force can be input to the power generation unit 30, and more efficient power generation can be performed using the air flow F which is a running wind. Can be.
  • the wind power generation device 1 can generate more efficient power generation, and the wind power generation device 1 can be more preferably used in the electric vehicle. Further, when the wind power generation device 1 is used for an electric vehicle, the power generation of the wind power generation device 1 can be used to replenish the electric power of the motor of the electric vehicle.
  • the wind power generation device 1 when traveling on a flat road or a road capable of high-speed traveling, the wind power generation device 1 can generate more efficient power generation, and the wind power generation device 1 is capable of flat road or high-speed traveling. It can be used more preferably when traveling on a road.
  • the wind power generation device 1 As described above, according to the wind power generation device 1 according to the first embodiment of the present invention, it is possible to suppress the occurrence of variation in the flow velocity of the airflow F guided to the cross flow fan 12.
  • FIG. 4 and 5 are views showing a vehicle equipped with the in-vehicle wind power generation device 2 for showing a schematic configuration of the in-vehicle wind power generation device 2 according to the second embodiment of the present invention. Is a side view of this vehicle, and FIG. 5 is a conceptual view of this vehicle as viewed from the rear.
  • the wind power generation device 2 is different from the wind power generation device 1 in the mounting positions of the rotational force generating unit 10, the accommodating unit 20, and the power generation unit 30 on the automobile 100.
  • the wind power generation device 2 is provided in the wheelbase portion 105 of the automobile 100, and is provided, for example, in the rear portion of the wheelbase portion 105.
  • the accommodating portion 20 is provided in a portion on the rear side of the wheelbase portion 105, and the inflow port 21 is opened from the lower surface 101 of the automobile 100 in the wheelbase portion 105 to generate a rotational force. It is provided on the front side of the automobile 100 rather than the 10.
  • the wheelbase portion 105 is a portion of the vehicle body of the automobile 100 between the rear wheels 103 and the front wheels 109.
  • the outlet pipe portion 24 extending rearward from the casing 22 of the accommodating portion 20 extends beyond the rear wheels 103 to the outlet 24a at the rear of the automobile 100.
  • the airflow F flowing in from the inflow port 21 is guided by the inflow pipe portion 23 and the casing 22 and blown onto the impeller 13 of a part of the cross flow fan 12, the cross flow fan 12 rotates, the shaft 11 rotates, and the shaft The rotational force of 11 is transmitted to the rotor, the rotor rotates, and the power generation unit 30 generates power.
  • the airflow F flowing along the lower surface 101 of the wheelbase portion 105 is an airflow with little variation in the flow velocity in the width direction of the automobile 100. Therefore, the airflow F flowing into the inflow port 21 from the lower surface 101 of the wheelbase portion 105 is also an airflow with little variation in the flow velocity in the width direction of the automobile 100. Therefore, in the wind power generation device 2 as well as the wind power generation device 1, the flow velocity of the airflow F in the inflow pipe portion 23 is made uniform in the axis x direction, and the variation in the axis x direction is reduced. Therefore, the airflow F blown to the cross flow fan 12 can be an airflow with little variation in the axis x width direction of the flow velocity.
  • the airflow F can be efficiently used for the rotation of the power generation unit 30. This makes it possible to efficiently generate electricity using the air flow F, which is a running wind.
  • the airflow F flowing along the lower surface 101 of the wheelbase portion 105 becomes faster than the other running winds. Therefore, in the wind power generation device 2 as well as the wind power generation device 1, the flow velocity is faster due to the cross flow fan 12. Airflow F can be blown. As a result, the cross flow fan 12 can be rotated at a higher speed, a stronger rotational force can be input to the power generation unit 30, and more efficient power generation can be performed using the air flow F which is a running wind. Can be.
  • the wind power generation device 2 can also generate more efficient power generation in the electric vehicle, and the wind power generation device 2 can be more preferably used in the electric vehicle. Further, like the wind power generation device 1, the wind power generation device 2 can generate more efficient power when traveling on a flat road or a road capable of high-speed traveling, and the wind power generation device 2 is flat. It can be more preferably used when traveling on a road or a road capable of high-speed traveling.
  • each configuration may be selectively combined as appropriate so as to achieve at least a part of the above-mentioned problems and effects.
  • shape, material, arrangement, size, etc. of each configuration in the above embodiment can be appropriately changed depending on the specific usage mode of the present invention.
  • the rotational force generating unit 10 assumes that the cross flow fan 12 is used as the wind receiver, but the wind fan is not limited to the cross flow fan 12.
  • the receiver may be another fan such as a sirocco fan or a turbo fan, and may be any fan as long as it generates a rotational force for rotating the shaft 11 by blowing the airflow F flowing in from the inflow port 21.
  • the wind power generation device may have a control device for controlling the amount of power generated by the power generation unit.
  • a control device for example, there is one that can control the rotation speed (rotational force) of the receiver.
  • a control device there is a shutter capable of changing and controlling the opening area of the inflow port 21 according to the charging status of the battery 106 and the air volume of the airflow F blown to the cross flow fan 12. With this shutter, the amount of air flowing in from the inflow port 21 can be controlled according to the external environment and the vehicle speed, effective power generation can be performed, and the battery 106 can be efficiently charged. In addition, damage to the cross flow fan 12 can be prevented.
  • the inflow port 21 may open to the space S from the lower surface 101 of the wheelbase portion 105.

Abstract

A vehicle-mounted wind-powered electricity generating device (1) which is mounted in a vehicle (100) to generate electricity using an airflow that arises when the vehicle travels is provided with a rotational force generating unit (10), an accommodating unit (20) which is provided in the vehicle (100) and which forms a space for rotatably accommodating the rotational force generating unit (10), and an electricity generating unit (30) which is connected to the rotational force generating unit (10), wherein: the rotational force generating unit (10) includes a shaft (11) which is rotatably supported in the accommodating unit (20), and at least one wind receiving machine (12) formed in such a way as to be subjected to the airflow and to transmit a rotational force to the shaft (11); the accommodating unit (20) includes an inflow port (21) which opens into a space (S) from a lower surface (101) of the vehicle, the lower surface (101) facing a travel surface (G) for the vehicle (100), and the space (S) being formed between the lower surface (101) and the and the travel surface (G); and such a configuration makes it possible to suppress the occurrence of variability in the rotational force of the wind receiving machine.

Description

車載用風力発電装置In-vehicle wind power generator
 本発明は、車両に搭載され、車両の走行時の走行風を利用して発電する車載用風力発電装置に関する。 The present invention relates to an in-vehicle wind power generator that is mounted on a vehicle and generates power by using the running wind when the vehicle is running.
 従来から、車両に搭載され、車両の走行時の走行風を利用して発電する車載用風力発電装置が提案されている(例えば、特許文献1参照。)。特許文献1に記載の風力発電装置においては、自動車の前輪車軸の下側で2つの前輪の間に、幅広のパイプが前後方向に延びており、自動車前面の前方に開口する流入口からパイプ内に走行風が流入可能になっている。パイプ内に流入した走行風は後方に流れて受風機であるブレードに当たり、ブレードを押して軸を回転させる。そしてブレードの回転力が軸に接続されたダイナモに伝達され、ダイナモが発電をする。 Conventionally, an in-vehicle wind power generator that is mounted on a vehicle and generates power by using the running wind when the vehicle is running has been proposed (see, for example, Patent Document 1). In the wind power generator described in Patent Document 1, a wide pipe extends in the front-rear direction between two front wheels on the lower side of the front wheel axle of the automobile, and is inside the pipe from an inflow port that opens in front of the front of the automobile. The running wind can flow into the car. The running wind that has flowed into the pipe flows backward and hits the blade, which is a receiver, and pushes the blade to rotate the shaft. Then, the rotational force of the blade is transmitted to the dynamo connected to the shaft, and the dynamo generates electricity.
特開2001-180397号公報Japanese Unexamined Patent Publication No. 2001-180397
 特許文献1に記載の風力発電機のように従来の車載用風力発電装置においては、軸に複数設けられたブレードの夫々に当たる気流の流速にバラツキが生じた場合、複数のブレードが夫々軸に伝達する回転力の間にバラツキが生じる。これらの回転力の中には所望する大きさよりも小さな回転力となるものがあり、この場合、複数のブレードから軸に伝わる合計の回転力は所望の大きさを下回り、発電の効率が低下する。 In a conventional in-vehicle wind power generator such as the wind power generator described in Patent Document 1, when the flow velocity of the airflow that hits each of the plurality of blades provided on the shaft varies, the plurality of blades transmit to each shaft. There is a variation between the rotational forces. Some of these rotational forces are smaller than the desired magnitude, in which case the total rotational force transmitted from the plurality of blades to the shaft is less than the desired magnitude, reducing the efficiency of power generation. ..
 このように、従来の車載用風力発電装置においては、走行風に対して効率的な発電ができない場合があった。このため、従来の車載用風力発電装置に対しては、より効率的な発電を行うことを可能にするために、ブレードへ導かれる気流の流速にバラツキが生じることを抑制することができる構造が求められていた。 As described above, in the conventional in-vehicle wind power generation device, there was a case where efficient power generation could not be performed against the running wind. For this reason, in order to enable more efficient power generation with respect to the conventional in-vehicle wind power generation device, a structure capable of suppressing variation in the flow velocity of the airflow guided to the blade is provided. I was asked.
 本発明は、上記の課題に鑑みてなされたものであり、その目的は、受風機へ導かれる気流の流速にバラツキが生じることを抑制することができる車載用風力発電装置を提供することにある。 The present invention has been made in view of the above problems, and an object of the present invention is to provide an in-vehicle wind power generator capable of suppressing variation in the flow velocity of an air flow guided to a wind receiver. ..
 上記目的を達成するために、本発明に係る車載用風力発電装置は、車両に搭載され、車両の走行時の走行風を利用して発電する車載用風力発電装置であって、回転力発生部と、車両に設けられた、前記回転力発生部を回転可能に収容する空間を形成する収容部と、前記回転力発生部に接続された発電部とを備え、前記回転力発生部は、前記収容部において軸線周りに回転可能に支持された軸と、気流を受けて前記軸に回転力を伝えるように形成された少なくとも1つの受風機とを有しており、前記収容部は、前記車両の走行面に面して前記走行面との間に空間を形成する前記車両の下面から前記空間に開口する流入口を有していることを特徴とする。 In order to achieve the above object, the in-vehicle wind power generation device according to the present invention is an in-vehicle wind power generation device mounted on a vehicle and generating power by using the running wind when the vehicle is running, and is a rotational force generating unit. A housing unit provided in the vehicle for forming a space for rotatably accommodating the rotational force generation unit and a power generation unit connected to the rotational force generation unit are provided, and the rotational force generation unit is the said. The accommodating portion has a shaft rotatably supported around an axis and at least one wind receiver formed to receive an air flow and transmit a rotational force to the shaft, and the accommodating portion has the vehicle. It is characterized by having an inflow port that opens into the space from the lower surface of the vehicle that faces the traveling surface and forms a space between the traveling surface and the vehicle.
 本発明の一態様に係る車載用風力発電装置において、前記収容部は、前記車両のリヤオーバーハング部に設けられており、前記流入口は、前記リヤオーバーハング部において前記車両の下面から開口しており、前記回転力発生部よりも前記車両の前側に設けられている。 In the in-vehicle wind power generator according to one aspect of the present invention, the accommodating portion is provided in the rear overhang portion of the vehicle, and the inflow port opens from the lower surface of the vehicle in the rear overhang portion. It is provided on the front side of the vehicle with respect to the rotational force generating portion.
 本発明の一態様に係る車載用風力発電装置において、前記収容部は、前記車両のホイールベース部に設けられており、前記流入口は、前記ホイールベース部において前記車両の下面から開口しており、前記回転力発生部よりも前記車両の前側に設けられている。 In the in-vehicle wind power generator according to one aspect of the present invention, the accommodating portion is provided in the wheelbase portion of the vehicle, and the inflow port is opened from the lower surface of the vehicle in the wheelbase portion. , It is provided on the front side of the vehicle with respect to the rotational force generating portion.
 本発明の一態様に係る車載用風力発電装置において、前記流入口の長手方向は、前記車両の前後方向に直交する幅方向に沿って延びている。 In the in-vehicle wind power generator according to one aspect of the present invention, the longitudinal direction of the inflow port extends along the width direction orthogonal to the front-rear direction of the vehicle.
 本発明の一態様に係る車載用風力発電装置において、前記軸の軸線は、前記流入口の長手方向に沿って延びている。 In the in-vehicle wind power generator according to one aspect of the present invention, the axis of the shaft extends along the longitudinal direction of the inflow port.
 本発明に係る車載用風力発電装置によれば、受風機の回転力にバラツキが発生することを抑制することができる。 According to the in-vehicle wind power generator according to the present invention, it is possible to suppress the occurrence of variation in the rotational force of the receiver.
本発明の第1の実施の形態に係る車載用風力発電装置の概略構成を示すための、車載用風力発電装置が搭載された車両の側面を示す図である。It is a figure which shows the side surface of the vehicle which mounted on the vehicle-mounted wind power generation device for showing the schematic structure of the vehicle-mounted wind power generation device which concerns on 1st Embodiment of this invention. 本発明の第1の実施の形態に係る車載用風力発電装置の概略構成を示すための、車載用風力発電装置が搭載された車両の概念図である。It is a conceptual diagram of the vehicle equipped with the vehicle-mounted wind power generation device for showing the schematic configuration of the vehicle-mounted wind power generation device according to the first embodiment of the present invention. 図1に示す車載用風力発電装置における回転力発生部の概略構成を示すための図である。It is a figure for showing the schematic structure of the rotational force generation part in the vehicle-mounted wind power generation apparatus shown in FIG. 本発明の第2の実施の形態に係る車載用風力発電装置の概略構成を示すための、車載用風力発電装置が搭載された車両の側面を示す図である。It is a figure which shows the side surface of the vehicle which mounted the vehicle-mounted wind power generation device for showing the schematic structure of the vehicle-mounted wind power generation device which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施の形態に係る車載用風力発電装置の概略構成を示すための、車載用風力発電装置が搭載された車両の概念図である。It is a conceptual diagram of the vehicle equipped with the vehicle-mounted wind power generation device for showing the schematic configuration of the vehicle-mounted wind power generation device according to the second embodiment of the present invention.
 以下、本発明の実施の形態に係る車載用風力発電装置について図面を参照しながら説明する。 Hereinafter, the in-vehicle wind power generation device according to the embodiment of the present invention will be described with reference to the drawings.
 図1,2は、本発明の第1の実施の形態に係る車載用風力発電装置1の概略構成を示すための、車載用風力発電装置1が搭載された車両を示す図であり、図1はこの車両の側面図であり、図2はこの車両を背面から見た概念図である。図1,2に示すように、本発明の第1の実施の形態に係る車載用風力発電装置(以下、風力発電装置ともいう。)1は、車両に搭載され、車両の走行時の気流(走行風)を利用して発電する風力発電装置である。本実施の形態において、風力発電装置1は、車両としての自動車100に搭載されるものとする。風力発電装置1が搭載される車両は、自動車に限られない。 1 and 2 are views showing a vehicle equipped with the in-vehicle wind power generation device 1 for showing a schematic configuration of the in-vehicle wind power generation device 1 according to the first embodiment of the present invention. Is a side view of this vehicle, and FIG. 2 is a conceptual view of this vehicle as viewed from the rear. As shown in FIGS. 1 and 2, the in-vehicle wind power generation device (hereinafter, also referred to as a wind power generation device) 1 according to the first embodiment of the present invention is mounted on a vehicle, and the airflow during traveling of the vehicle ( It is a wind power generator that uses running wind) to generate electricity. In the present embodiment, the wind power generation device 1 is mounted on the automobile 100 as a vehicle. The vehicle on which the wind power generation device 1 is mounted is not limited to an automobile.
 風力発電装置1は、回転力発生部10と、自動車100に設けられた、回転力発生部10を回転可能に収容する空間を形成する収容部20と、回転力発生部10に接続された発電部30とを備えている。回転力発生部10は、収容部20において軸線x周りに回転可能に支持された軸11と、気流を受けて軸11に回転力を伝えるように形成された少なくとも1つの受風機12とを有している。収容部20は、自動車100の走行面Gに面して走行面Gとの間に空間Sを形成する自動車の下面101から空間Sに開口する流入口21を有している。以下、風力発電装置1の構成について具体的に説明する。 The wind power generation device 1 includes a rotational force generating unit 10, an accommodating unit 20 provided in the automobile 100 that forms a space for rotatably accommodating the rotational force generating unit 10, and a power generation unit connected to the rotational force generating unit 10. It is provided with a unit 30. The rotational force generating unit 10 includes a shaft 11 rotatably supported around the axis x in the accommodating unit 20, and at least one wind receiver 12 formed so as to receive an air flow and transmit the rotational force to the shaft 11. doing. The accommodating portion 20 has an inflow port 21 that opens into the space S from the lower surface 101 of the automobile that faces the traveling surface G of the automobile 100 and forms a space S with the traveling surface G. Hereinafter, the configuration of the wind power generation device 1 will be specifically described.
 図3は、回転力発生部10の具体例を示すための図である。図3に示すように、回転力発生部10の受風機12は、例えば、クロスフローファンであり、クロスフローファン12は、軸11に支持されており、軸線x方向に延びている。具体的には、軸線x方向に延びるインペラ13が軸11に複数固定されてクロスフローファン12が形成されている。軸11には、複数のクロスフローファン12が軸線x方向に並んで設けられていてもよい。 FIG. 3 is a diagram for showing a specific example of the rotational force generating unit 10. As shown in FIG. 3, the wind receiver 12 of the rotational force generating unit 10 is, for example, a cross flow fan, and the cross flow fan 12 is supported by the shaft 11 and extends in the axis x direction. Specifically, a plurality of impellers 13 extending in the axis x direction are fixed to the shaft 11 to form a cross flow fan 12. A plurality of cross flow fans 12 may be provided on the shaft 11 side by side in the axis x direction.
 図1に示すように、収容部20は、自動車100のリヤオーバーハング部102に設けられている。そして、流入口21は、リヤオーバーハング部102において自動車100の下面101から開口しており、回転力発生部10よりも自動車100の前側に設けられている。リヤオーバーハング部102は、自動車100の後輪103よりも後ろ側に延びている片持ち支持されている自動車100の車体の部分である。 As shown in FIG. 1, the accommodating portion 20 is provided in the rear overhang portion 102 of the automobile 100. The inflow port 21 is opened from the lower surface 101 of the automobile 100 at the rear overhang portion 102, and is provided on the front side of the automobile 100 with respect to the rotational force generating portion 10. The rear overhang portion 102 is a portion of the vehicle body of the automobile 100 that is cantilevered and is supported so as to extend to the rear side of the rear wheel 103 of the automobile 100.
 収容部20は、クロスフローファン12を収容可能な空間を形成するケーシング22を有している。自動車100において、クロスフローファン12は、ケーシング22内において、軸11を介して軸線x周りに回転可能に支持されている。また、軸線xは、自動車100の前後方向(以下単に、前後方向ともいう。)に直交する方向である幅方向に平行又は略平行に延びている。軸線xは、自動車100の幅方向に対して傾斜して延びていてもよい。なお、自動車100の幅方向は、自動車100の車幅を規定する方向である。 The accommodating portion 20 has a casing 22 that forms a space that can accommodate the cross flow fan 12. In the automobile 100, the cross flow fan 12 is rotatably supported around the axis x via the shaft 11 in the casing 22. Further, the axis x extends parallel to or substantially parallel to the width direction, which is a direction orthogonal to the front-rear direction (hereinafter, also simply referred to as the front-back direction) of the automobile 100. The axis x may extend at an angle with respect to the width direction of the automobile 100. The width direction of the automobile 100 is a direction that defines the width of the automobile 100.
 また、収容部20は、ケーシング22と流入口21との間に気流の通路を形成する流入管部23と、ケーシング22から延びて自動車100の後部に開口する気流の通路を形成する吹出管部24とを有している。流入管部23はケーシング22内に連通しており、ケーシング22及び流入管部23は、クロスフローファン12が所定の回転方向に回転するように、流入口21から流入した気流がクロスフローファン12に吹き付けられるように形成されている。また、ケーシング22及び吹出管部24は、回転するクロスフローファン12が吐き出す気流を自動車100の後部から吹き出すように形成されている。 Further, the accommodating portion 20 includes an inflow pipe portion 23 that forms an airflow passage between the casing 22 and the inflow port 21, and an outlet pipe portion that extends from the casing 22 and forms an airflow passage that opens to the rear of the automobile 100. It has 24 and. The inflow pipe portion 23 communicates with the inside of the casing 22, and in the casing 22 and the inflow pipe portion 23, the airflow flowing in from the inflow port 21 flows into the cross flow fan 12 so that the cross flow fan 12 rotates in a predetermined rotation direction. It is formed so that it can be sprayed on. Further, the casing 22 and the blowout pipe portion 24 are formed so as to blow out the airflow discharged from the rotating cross-flow fan 12 from the rear portion of the automobile 100.
 流入管部23は、軸線x方向におけるクロスフローファン12の幅全体に亘ってクロスフローファン12に気流が吹き付けられるような形状となっている。例えば、流入管部23のケーシング22との接続部の軸線x方向における幅は、クロスフローファン12の軸線x方向における幅と同じ又はそれよりも大きくなっている。流入管部23は、軸線x方向におけるクロスフローファン12の幅の一部においてクロスフローファン12に気流が吹き付けられるような形状となっていてもよい。 The inflow pipe portion 23 has a shape such that an air flow is blown to the cross flow fan 12 over the entire width of the cross flow fan 12 in the axis x direction. For example, the width of the connection portion of the inflow pipe portion 23 with the casing 22 in the axis x direction is the same as or larger than the width of the cross flow fan 12 in the axis x direction. The inflow pipe portion 23 may be shaped so that the airflow is blown to the crossflow fan 12 at a part of the width of the crossflow fan 12 in the axis x direction.
 流入管部23の軸線x方向における幅は、流入管部23の延び方向において一様である。なお、流入管部23の延び方向とは、流入口21と、流入管部23とケーシング22との接続部との間で流入管部23が延びる方向である。流入管部23の軸線x方向における幅は、流入管部23の延び方向において一様でなくてもよい。例えば、流入管部23の軸線x方向における幅は、ケーシング22に近づくに連れて小さくなるようになっていてもよい。また、流入管部23の自動車100の前後方向の幅は、流入管部23の延び方向において一様ではなく、例えば、ケーシング22に近づくに連れて小さくなるようになっている。流入管部23の前後方向の幅は、流入管部23の延び方向において一様であってもよく、また、ケーシング22に近づくに連れて大きくなるようになっていてもよい。また、流入管部23の延び方向に直交する断面の形状は、例えば、流入口21の形状と相似又は略相似する形状となっている。流入管部23の延び方向に直交する断面の形状は、他の形状であってもよい。流入管部23の形状は、流入管部23の内部を気流が一様の流速で流れるようにする形状が好ましい。 The width of the inflow pipe portion 23 in the axis x direction is uniform in the extension direction of the inflow pipe portion 23. The extension direction of the inflow pipe portion 23 is a direction in which the inflow pipe portion 23 extends between the inflow port 21 and the connection portion between the inflow pipe portion 23 and the casing 22. The width of the inflow pipe portion 23 in the axis x direction does not have to be uniform in the extension direction of the inflow pipe portion 23. For example, the width of the inflow pipe portion 23 in the axis x direction may become smaller as it approaches the casing 22. Further, the width of the inflow pipe portion 23 in the front-rear direction of the automobile 100 is not uniform in the extending direction of the inflow pipe portion 23, and becomes smaller as it approaches the casing 22, for example. The width of the inflow pipe portion 23 in the front-rear direction may be uniform in the extending direction of the inflow pipe portion 23, or may be increased as it approaches the casing 22. Further, the shape of the cross section orthogonal to the extending direction of the inflow pipe portion 23 is, for example, a shape similar to or substantially similar to the shape of the inflow port 21. The shape of the cross section orthogonal to the extending direction of the inflow pipe portion 23 may be another shape. The shape of the inflow pipe portion 23 is preferably a shape that allows the air flow to flow inside the inflow pipe portion 23 at a uniform flow velocity.
 流入口21は、図2に示すように、自動車100の幅方向に亘って広がっており、長手方向Lを有する形状となっている。流入口21は例えば矩形又は略矩形となっている。流入口21の長手方向Lは、軸11の軸線x方向に沿って延びている。例えば、流入口21の長手方向Lは、軸11の軸線x方向と平行に又は略平行に延びている。流入口21の形状は上述の形状に限られず、他の形状であってもよい。また、流入口21の長手方向Lは、軸線xに対して傾斜していてもよい。 As shown in FIG. 2, the inflow port 21 extends in the width direction of the automobile 100 and has a shape having a longitudinal direction L. The inflow port 21 is, for example, a rectangle or a substantially rectangular shape. The longitudinal direction L of the inflow port 21 extends along the axis x direction of the shaft 11. For example, the longitudinal direction L of the inflow port 21 extends parallel to or substantially parallel to the axis x direction of the shaft 11. The shape of the inflow port 21 is not limited to the above-mentioned shape, and may be another shape. Further, the longitudinal direction L of the inflow port 21 may be inclined with respect to the axis x.
 図2,3に示すように、発電部30は、クロスフローファン12を保持する軸11に接続されており、軸11の回転力が入力されるようになっている。発電部30は、例えばオルタネータやダイナモ等の発電機であり、軸11から入力された回転力を用いて発電可能なものである。発電部30は、軸11に直接接続されていてもよく、ギヤ等の伝達部材を介して接続されていてもよい。 As shown in FIGS. 2 and 3, the power generation unit 30 is connected to the shaft 11 holding the cross flow fan 12, and the rotational force of the shaft 11 is input. The power generation unit 30 is, for example, a generator such as an alternator or a dynamo, and can generate power by using the rotational force input from the shaft 11. The power generation unit 30 may be directly connected to the shaft 11 or may be connected via a transmission member such as a gear.
 次いで、上述の構成を有する風力発電装置1の作用について説明する。 Next, the operation of the wind power generation device 1 having the above configuration will be described.
 自動車100が走行すると走行風が発生する。走行風は、自動車100に沿って走行方向の反対側に向かって流れる気流である。走行風には、車体の下面101に沿って流れる気流と、車体の上面108に沿って流れる気流とがある。車体前部のフロントオーバーハング部104から流入した気流Fは、ホイールベース部105における下面101と走行面Gである地面Gとの間に形成された空間Sを流れ、ホイールベース部105における下面101及びリヤオーバーハング部102における下面101に沿って後方に向かって流れる。リヤオーバーハング部102における下面101に沿って流れる気流Fの一部は、リヤオーバーハング部102における下面101から空間Sに開口する流入口21に流入する。流入口21から流入した気流Fは、流入管部23及びケーシング22に導かれてクロスフローファン12の一部のインペラ13に吹き付けられ、クロスフローファン12が回転し、軸11が回転する。軸11は発電部30の例えば図示しないロータに結合しているため、軸11の回転力がロータに伝えられ、ロータが回転し、発電部30は発電をする。発電部30は、例えば、自動車100に搭載されたバッテリー106に電気的に接続されており、発電された電気は適宜バッテリー106に充電される。クロスフローファン12に吹き付けられた空気は、クロスフローファン12の回転に伴って吹出管部24に導かれ、吹出管部24を通って自動車100の後部に形成された吹出口24aから車体外部に吹き出される。 When the car 100 runs, a running wind is generated. The traveling wind is an air flow that flows along the automobile 100 toward the opposite side in the traveling direction. The traveling wind includes an air flow flowing along the lower surface 101 of the vehicle body and an air flow flowing along the upper surface 108 of the vehicle body. The airflow F flowing in from the front overhang portion 104 at the front portion of the vehicle body flows through the space S formed between the lower surface 101 of the wheelbase portion 105 and the ground G which is the traveling surface G, and the lower surface 101 of the wheelbase portion 105. And flows backward along the lower surface 101 of the rear overhang portion 102. A part of the airflow F flowing along the lower surface 101 of the rear overhang portion 102 flows into the inflow port 21 that opens into the space S from the lower surface 101 of the rear overhang portion 102. The airflow F flowing in from the inflow port 21 is guided by the inflow pipe portion 23 and the casing 22 and blown onto the impeller 13 which is a part of the cross flow fan 12, the cross flow fan 12 rotates, and the shaft 11 rotates. Since the shaft 11 is coupled to, for example, a rotor (not shown) of the power generation unit 30, the rotational force of the shaft 11 is transmitted to the rotor, the rotor rotates, and the power generation unit 30 generates power. The power generation unit 30 is electrically connected to, for example, the battery 106 mounted on the automobile 100, and the generated electricity is appropriately charged to the battery 106. The air blown to the cross-flow fan 12 is guided to the blow-out pipe portion 24 as the cross-flow fan 12 rotates, passes through the blow-out pipe portion 24, and flows from the air outlet 24a formed at the rear of the automobile 100 to the outside of the vehicle body. It is blown out.
 自動車100の下面101と地面Gとの間には所定の幅の空間Sが形成されるため、下面101を流れる気流の流速は、車体の上面108に沿って流れる気流の流速よりも速くなる。下面101に沿って後方に向かって流れる気流Fはリヤオーバーハング部102の後端に配置されたディフューザー部107から車体外部に吹き出される。ホイールベース部105及びリヤオーバーハング部102における下面101は平坦となるような構造となっているため、下面101に沿って流れる気流Fの流速の幅方向におけるバラツキは少なく、また、この気流Fは下面101及びディフューザー部107から剥離することなく車体外部に吹き出される。このため、ホイールベース部105及びリヤオーバーハング部102における下面101に沿って流れる気流Fの流速は、車体の他の外面に沿って流れる気流の流速よりも速くなる。 Since a space S having a predetermined width is formed between the lower surface 101 of the automobile 100 and the ground G, the flow velocity of the airflow flowing through the lower surface 101 is faster than the flow velocity of the airflow flowing along the upper surface 108 of the vehicle body. The airflow F flowing rearward along the lower surface 101 is blown out of the vehicle body from the diffuser portion 107 arranged at the rear end of the rear overhang portion 102. Since the lower surface 101 of the wheelbase portion 105 and the rear overhang portion 102 has a structure that is flat, there is little variation in the flow velocity of the air flow F flowing along the lower surface 101 in the width direction, and the air flow F is It is blown out of the vehicle body without peeling from the lower surface 101 and the diffuser portion 107. Therefore, the flow velocity of the airflow F flowing along the lower surface 101 of the wheelbase portion 105 and the rear overhang portion 102 is higher than the flow velocity of the airflow flowing along the other outer surface of the vehicle body.
 このように、ホイールベース部105及びリヤオーバーハング部102における下面101に沿って流れる気流Fは、流速の自動車100の幅方向におけるバラツキが少ない気流となっている。従って、リヤオーバーハング部102における下面101から流入口21に流入する気流Fも、流速の自動車100の幅方向におけるバラツキが少ない気流である。このため、流入管部23内の気流Fの流速は、軸線x方向において一様化が図られており、軸線x方向におけるバラツキが少なくなっており、クロスフローファン12に吹き付けられる気流Fを、流速の軸線x幅方向におけるバラツキが少ない気流とすることができる。このため、クロスフローファン12のインペラ13を押す気流Fの力の軸線x方向におけるバラツキを抑制することができ、軸線x方向において一様に所望の力でインペラ13を押すようにすることができ、気流Fを発電部30の回転に効率的に利用することができる。これにより、走行風である気流Fを用いて効率的な発電を行うことを可能にすることができる。 As described above, the airflow F flowing along the lower surface 101 of the wheelbase portion 105 and the rear overhang portion 102 is an airflow with little variation in the width direction of the automobile 100. Therefore, the airflow F flowing into the inflow port 21 from the lower surface 101 of the rear overhang portion 102 is also an airflow with little variation in the flow velocity in the width direction of the automobile 100. Therefore, the flow velocity of the airflow F in the inflow pipe portion 23 is made uniform in the axis x direction, the variation in the axis x direction is small, and the airflow F blown to the cross flow fan 12 is generated. It is possible to make the airflow with little variation in the axis x width direction of the flow velocity. Therefore, it is possible to suppress the variation of the force of the airflow F pushing the impeller 13 of the cross flow fan 12 in the axis x direction, and to push the impeller 13 uniformly with a desired force in the axis x direction. , The airflow F can be efficiently used for the rotation of the power generation unit 30. This makes it possible to efficiently generate electricity using the air flow F, which is a running wind.
 また、ホイールベース部105及びリヤオーバーハング部102における下面101に沿って流れる気流Fは、他の走行風よりも速くなり、このため、クロスフローファン12により速い流速の気流Fを吹き付けることができる。これにより、クロスフローファン12をより高速で回転させることができ、発電部30により強い回転力を入力することができ、走行風である気流Fを用いてより効率的な発電を行うことを可能にすることができる。 Further, the airflow F flowing along the lower surface 101 of the wheelbase portion 105 and the rear overhang portion 102 becomes faster than the other running winds, so that the crossflow fan 12 can blow the airflow F having a high flow velocity. .. As a result, the cross flow fan 12 can be rotated at a higher speed, a stronger rotational force can be input to the power generation unit 30, and more efficient power generation can be performed using the air flow F which is a running wind. Can be.
 電気自動車は車体の下面を、特にホイールベース部の下面を、内燃機関を原動機とする自動車に比べて、全面的に平坦化した構造を得やすい。また、電気自動車は、マフラーを設ける必要がないため、リヤオーバーハング部における下面も全面的に平坦化した構造を得やすい。このため、電気自動車において風力発電装置1は、より効率的な発電を行うことができ、風力発電装置1は、電気自動車により好適に用いることができる。また、風力発電装置1を電気自動車に用いた場合、電気自動車のモータの電力の補充のために、風力発電装置1の発電を用いることができる。 It is easier to obtain a structure in which the lower surface of the vehicle body, especially the lower surface of the wheelbase, of an electric vehicle is entirely flattened as compared with a vehicle using an internal combustion engine as a prime mover. Further, since it is not necessary to provide a muffler for an electric vehicle, it is easy to obtain a structure in which the lower surface of the rear overhang portion is also completely flattened. Therefore, in the electric vehicle, the wind power generation device 1 can generate more efficient power generation, and the wind power generation device 1 can be more preferably used in the electric vehicle. Further, when the wind power generation device 1 is used for an electric vehicle, the power generation of the wind power generation device 1 can be used to replenish the electric power of the motor of the electric vehicle.
 また、平坦な道路や高速走行の可能な道路における走行の際に、風力発電装置1は、より効率的な発電を行うことができ、風力発電装置1は、平坦な道路や高速走行の可能な道路における走行の際により好適に用いることができる。 Further, when traveling on a flat road or a road capable of high-speed traveling, the wind power generation device 1 can generate more efficient power generation, and the wind power generation device 1 is capable of flat road or high-speed traveling. It can be used more preferably when traveling on a road.
 このように、本発明の第1の実施の形態に係る風力発電装置1によれば、クロスフローファン12へ導かれる気流Fの流速にバラツキが生じることを抑制することができる。 As described above, according to the wind power generation device 1 according to the first embodiment of the present invention, it is possible to suppress the occurrence of variation in the flow velocity of the airflow F guided to the cross flow fan 12.
 次いで、本発明の第2の実施の形態に係る風力発電装置2について説明する。図4,5は、本発明の第2の実施の形態に係る車載用風力発電装置2の概略構成を示すための、車載用風力発電装置2が搭載された車両を示す図であり、図4はこの車両の側面図であり、図5はこの車両を背面から見た概念図である。風力発電装置2は、回転力発生部10、収容部20、及び発電部30の自動車100への搭載位置が風力発電装置1とは異なる。以下、風力発電装置2について、上述の本発明の第1の実施の形態に係る風力発電装置1と同一の構成又は類似する機能を有する構成については、同一の符号を付してその説明を省略し、異なる構成を説明する。 Next, the wind power generation device 2 according to the second embodiment of the present invention will be described. 4 and 5 are views showing a vehicle equipped with the in-vehicle wind power generation device 2 for showing a schematic configuration of the in-vehicle wind power generation device 2 according to the second embodiment of the present invention. Is a side view of this vehicle, and FIG. 5 is a conceptual view of this vehicle as viewed from the rear. The wind power generation device 2 is different from the wind power generation device 1 in the mounting positions of the rotational force generating unit 10, the accommodating unit 20, and the power generation unit 30 on the automobile 100. Hereinafter, with respect to the wind power generation device 2, the same components as those of the wind power generation device 1 according to the first embodiment of the present invention or the configurations having similar functions are designated by the same reference numerals and the description thereof will be omitted. And the different configurations will be explained.
 図4に示すように、風力発電装置2は、自動車100のホイールベース部105に設けられており、例えば、ホイールベース部105の後方側の部分に設けられている。具体的には、収容部20は、ホイールベース部105の後方側の部分に設けられており、流入口21は、ホイールベース部105において自動車100の下面101から開口しており、回転力発生部10よりも自動車100の前側に設けられている。ホイールベース部105は、後輪103と前輪109との間の自動車100の車体の部分である。収容部20のケーシング22から後方に延びる吹出管部24は、後輪103を超えて自動車100の後部の吹出口24aまで延びている。 As shown in FIG. 4, the wind power generation device 2 is provided in the wheelbase portion 105 of the automobile 100, and is provided, for example, in the rear portion of the wheelbase portion 105. Specifically, the accommodating portion 20 is provided in a portion on the rear side of the wheelbase portion 105, and the inflow port 21 is opened from the lower surface 101 of the automobile 100 in the wheelbase portion 105 to generate a rotational force. It is provided on the front side of the automobile 100 rather than the 10. The wheelbase portion 105 is a portion of the vehicle body of the automobile 100 between the rear wheels 103 and the front wheels 109. The outlet pipe portion 24 extending rearward from the casing 22 of the accommodating portion 20 extends beyond the rear wheels 103 to the outlet 24a at the rear of the automobile 100.
 次いで、上述の構成を有する風力発電装置2の作用について説明する。 Next, the operation of the wind power generation device 2 having the above configuration will be described.
 自動車100が走行すると走行風が発生し、フロントオーバーハング部104から流入した気流Fは、下面101と走行面Gとの間の空間Sを流れ、ディフューザー部107から車体外部に吹き出される。ホイールベース部105における下面101に沿って流れる気流Fの一部は、ホイールベース部105における下面101から空間Sに開口する流入口21に流入する。流入口21から流入した気流Fは、流入管部23及びケーシング22に導かれてクロスフローファン12の一部のインペラ13に吹き付けられ、クロスフローファン12が回転し、軸11が回転し、軸11の回転力がロータに伝えられ、ロータが回転し、発電部30は発電をする。 When the automobile 100 travels, a traveling wind is generated, and the airflow F flowing in from the front overhang portion 104 flows through the space S between the lower surface 101 and the traveling surface G, and is blown out from the diffuser portion 107 to the outside of the vehicle body. A part of the airflow F flowing along the lower surface 101 of the wheelbase portion 105 flows into the inflow port 21 that opens into the space S from the lower surface 101 of the wheelbase portion 105. The airflow F flowing in from the inflow port 21 is guided by the inflow pipe portion 23 and the casing 22 and blown onto the impeller 13 of a part of the cross flow fan 12, the cross flow fan 12 rotates, the shaft 11 rotates, and the shaft The rotational force of 11 is transmitted to the rotor, the rotor rotates, and the power generation unit 30 generates power.
 上述のように、ホイールベース部105における下面101に沿って流れる気流Fは、流速の自動車100の幅方向におけるバラツキが少ない気流となっている。従って、ホイールベース部105における下面101から流入口21に流入する気流Fも、流速の自動車100の幅方向におけるバラツキが少ない気流である。このため、風力発電装置1と同様に風力発電装置2においても、流入管部23内の気流Fの流速は、軸線x方向において一様化が図られており、軸線x方向におけるバラツキが少なくなっており、クロスフローファン12に吹き付けられる気流Fを、流速の軸線x幅方向におけるバラツキが少ない気流とすることができる。このため、クロスフローファン12のインペラ13を押す気流Fの力の軸線x方向におけるバラツキを抑制することができ、軸線x方向において一様に所望の力でインペラ13を押すようにすることができ、気流Fを発電部30の回転に効率的に利用することができる。これにより、走行風である気流Fを用いて効率的な発電を行うことを可能にすることができる。 As described above, the airflow F flowing along the lower surface 101 of the wheelbase portion 105 is an airflow with little variation in the flow velocity in the width direction of the automobile 100. Therefore, the airflow F flowing into the inflow port 21 from the lower surface 101 of the wheelbase portion 105 is also an airflow with little variation in the flow velocity in the width direction of the automobile 100. Therefore, in the wind power generation device 2 as well as the wind power generation device 1, the flow velocity of the airflow F in the inflow pipe portion 23 is made uniform in the axis x direction, and the variation in the axis x direction is reduced. Therefore, the airflow F blown to the cross flow fan 12 can be an airflow with little variation in the axis x width direction of the flow velocity. Therefore, it is possible to suppress the variation of the force of the airflow F pushing the impeller 13 of the cross flow fan 12 in the axis x direction, and to push the impeller 13 uniformly with a desired force in the axis x direction. , The airflow F can be efficiently used for the rotation of the power generation unit 30. This makes it possible to efficiently generate electricity using the air flow F, which is a running wind.
 また、ホイールベース部105における下面101に沿って流れる気流Fは、他の走行風よりも速くなり、このため、風力発電装置1と同様に風力発電装置2においても、クロスフローファン12により速い流速の気流Fを吹き付けることができる。これにより、クロスフローファン12をより高速で回転させることができ、発電部30により強い回転力を入力することができ、走行風である気流Fを用いてより効率的な発電を行うことを可能にすることができる。 Further, the airflow F flowing along the lower surface 101 of the wheelbase portion 105 becomes faster than the other running winds. Therefore, in the wind power generation device 2 as well as the wind power generation device 1, the flow velocity is faster due to the cross flow fan 12. Airflow F can be blown. As a result, the cross flow fan 12 can be rotated at a higher speed, a stronger rotational force can be input to the power generation unit 30, and more efficient power generation can be performed using the air flow F which is a running wind. Can be.
 このように、本発明の第2の実施の形態に係る風力発電装置2によれば、クロスフローファン12へ導かれる気流Fの流速にバラツキが生じることを抑制することができる。 As described above, according to the wind power generation device 2 according to the second embodiment of the present invention, it is possible to suppress the occurrence of variation in the flow velocity of the airflow F guided to the cross flow fan 12.
 なお、風力発電装置1と同様に風力発電装置2も、電気自動車において、より効率的な発電を行うことができ、風力発電装置2は、電気自動車により好適に用いることができる。また、風力発電装置1と同様に風力発電装置2も、平坦な道路や高速走行の可能な道路における走行の際に、より効率的な発電を行うことができ、風力発電装置2は、平坦な道路や高速走行の可能な道路における走行の際により好適に用いることができる。 Similar to the wind power generation device 1, the wind power generation device 2 can also generate more efficient power generation in the electric vehicle, and the wind power generation device 2 can be more preferably used in the electric vehicle. Further, like the wind power generation device 1, the wind power generation device 2 can generate more efficient power when traveling on a flat road or a road capable of high-speed traveling, and the wind power generation device 2 is flat. It can be more preferably used when traveling on a road or a road capable of high-speed traveling.
 以上、本発明の実施の形態について説明したが、本発明は上記本発明の実施の形態に係る風力発電装置1,2に限定されるものではなく、本発明の概念及び請求の範囲に含まれるあらゆる態様を含む。また、上述した課題及び効果の少なくとも一部を奏するように、各構成を適宜選択的に組み合わせてもよい。例えば、上記実施の形態における、各構成の形状、材料、配置、サイズ等は、本発明の具体的使用態様によって適宜変更され得る。 Although the embodiment of the present invention has been described above, the present invention is not limited to the wind power generators 1 and 2 according to the embodiment of the present invention, and is included in the concept and claims of the present invention. Including all aspects. In addition, each configuration may be selectively combined as appropriate so as to achieve at least a part of the above-mentioned problems and effects. For example, the shape, material, arrangement, size, etc. of each configuration in the above embodiment can be appropriately changed depending on the specific usage mode of the present invention.
 例えば、回転力発生部10は、受風機としてクロスフローファン12が用いられるものとしたが、受風機はクロスフローファン12に限られない。受風機は、シロッコファンやターボファン等の他のファンであってもよく、流入口21から流入した気流Fが吹き付けられることにより軸11を回転する回転力を発生するものであればよい。 For example, the rotational force generating unit 10 assumes that the cross flow fan 12 is used as the wind receiver, but the wind fan is not limited to the cross flow fan 12. The receiver may be another fan such as a sirocco fan or a turbo fan, and may be any fan as long as it generates a rotational force for rotating the shaft 11 by blowing the airflow F flowing in from the inflow port 21.
 また、本発明に係る風力発電装置は、発電部の発電量を制御するための制御装置を有していてもよい。このような制御装置としては、例えば、受風機の回転数(回転力)を制御することができるものがある。このような制御装置として、具体的には、バッテリー106の充電状況やクロスフローファン12に吹き付けられる気流Fの風量に応じて、流入口21の開口面積を変更制御可能なシャッターがある。このシャッターによって、外部環境や車速に応じて、流入口21から流入する空気量を制御することができ、効果的な発電を行うことができ、効率的にバッテリー106への充電ができる。また、クロスフローファン12の破損を防止することができる。 Further, the wind power generation device according to the present invention may have a control device for controlling the amount of power generated by the power generation unit. As such a control device, for example, there is one that can control the rotation speed (rotational force) of the receiver. Specifically, as such a control device, there is a shutter capable of changing and controlling the opening area of the inflow port 21 according to the charging status of the battery 106 and the air volume of the airflow F blown to the cross flow fan 12. With this shutter, the amount of air flowing in from the inflow port 21 can be controlled according to the external environment and the vehicle speed, effective power generation can be performed, and the battery 106 can be efficiently charged. In addition, damage to the cross flow fan 12 can be prevented.
 また、風力発電装置1において、流入口21は、ホイールベース部105における下面101から空間Sに開口していてもよい。 Further, in the wind power generation device 1, the inflow port 21 may open to the space S from the lower surface 101 of the wheelbase portion 105.
 1,2…車載用風力発電装置、10…回転力発生部、11…軸、12…受風機、13…インペラ、20…収容部、21…流入口、22…ケーシング、23…流入管部、24…吹出管部、24a…吹出口、30…発電部、100…自動車、101…下面、102…リヤオーバーハング部、103…後輪、104…フロントオーバーハング部、105…ホイールベース部、106…バッテリー、107…ディフューザー部、108…上面、109…前輪、F…気流、G…走行面、L…長手方向、S…空間、x…軸線 1,2 ... In-vehicle wind power generator, 10 ... Rotational force generator, 11 ... Shaft, 12 ... Blower, 13 ... Impeller, 20 ... Containment part, 21 ... Inflow port, 22 ... Casing, 23 ... Inflow pipe part, 24 ... Outlet pipe part, 24a ... Outlet, 30 ... Power generation part, 100 ... Automobile, 101 ... Bottom surface, 102 ... Rear overhang part, 103 ... Rear wheel, 104 ... Front overhang part, 105 ... Wheelbase part, 106 ... Battery, 107 ... Diffuser part, 108 ... Top surface, 109 ... Front wheel, F ... Airflow, G ... Running surface, L ... Longitudinal direction, S ... Space, x ... Axle

Claims (5)

  1.  車両に搭載され、車両の走行時の走行風を利用して発電する車載用風力発電装置であって、
     回転力発生部と、
     車両に設けられた、前記回転力発生部を回転可能に収容する空間を形成する収容部と、
     前記回転力発生部に接続された発電部とを備え、
     前記回転力発生部は、前記収容部において軸線周りに回転可能に支持された軸と、気流を受けて前記軸に回転力を伝えるように形成された少なくとも1つの受風機とを有しており、
     前記収容部は、前記車両の走行面に面して前記走行面との間に空間を形成する前記車両の下面から前記空間に開口する流入口を有していることを特徴とする車載用風力発電装置。
    It is an in-vehicle wind power generator that is mounted on a vehicle and generates electricity by using the running wind when the vehicle is running.
    Rotating force generator and
    An accommodating portion provided in the vehicle that forms a space for rotatably accommodating the rotational force generating portion,
    A power generation unit connected to the rotational force generating unit is provided.
    The rotational force generating portion includes a shaft rotatably supported around an axis in the accommodating portion, and at least one wind receiver formed so as to receive an air flow and transmit the rotational force to the shaft. ,
    The accommodating portion is characterized by having an inflow port that opens into the space from the lower surface of the vehicle that faces the traveling surface of the vehicle and forms a space between the accommodating portion and the traveling surface. Power generator.
  2.  前記収容部は、前記車両のリヤオーバーハング部に設けられており、
     前記流入口は、前記リヤオーバーハング部において前記車両の下面から開口しており、前記回転力発生部よりも前記車両の前側に設けられていることを特徴とする請求項1記載の車載用風力発電装置。
    The accommodating portion is provided in the rear overhang portion of the vehicle.
    The vehicle-mounted wind power according to claim 1, wherein the inflow port is opened from the lower surface of the vehicle at the rear overhang portion and is provided on the front side of the vehicle with respect to the rotational force generating portion. Power generator.
  3.  前記収容部は、前記車両のホイールベース部に設けられており、
     前記流入口は、前記ホイールベース部において前記車両の下面から開口しており、前記回転力発生部よりも前記車両の前側に設けられていることを特徴とする請求項1記載の車載用風力発電装置。
    The accommodating portion is provided on the wheelbase portion of the vehicle.
    The vehicle-mounted wind power generation according to claim 1, wherein the inflow port is opened from the lower surface of the vehicle at the wheelbase portion and is provided on the front side of the vehicle with respect to the rotational force generating portion. apparatus.
  4.  前記流入口の長手方向は、前記車両の前後方向に直交する幅方向に沿って延びていることを特徴とする請求項1乃至3のいずれか1項に記載の車載用風力発電装置。 The vehicle-mounted wind power generator according to any one of claims 1 to 3, wherein the longitudinal direction of the inflow port extends along a width direction orthogonal to the front-rear direction of the vehicle.
  5.  前記軸の軸線は、前記流入口の長手方向に沿って延びていることを特徴とする請求項4記載の車載用風力発電装置。 The vehicle-mounted wind power generator according to claim 4, wherein the axis of the shaft extends along the longitudinal direction of the inflow port.
PCT/JP2020/022635 2019-07-26 2020-06-09 Vehicle-mounted wind-powered electricity generating device WO2021019917A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-137979 2019-07-26
JP2019137979A JP2021023027A (en) 2019-07-26 2019-07-26 On-vehicle wind force power generator

Publications (1)

Publication Number Publication Date
WO2021019917A1 true WO2021019917A1 (en) 2021-02-04

Family

ID=74228671

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/022635 WO2021019917A1 (en) 2019-07-26 2020-06-09 Vehicle-mounted wind-powered electricity generating device

Country Status (2)

Country Link
JP (1) JP2021023027A (en)
WO (1) WO2021019917A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024065377A1 (en) * 2022-09-29 2024-04-04 刘安盛 Vehicle charging system and vehicle comprising same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7142178B1 (en) * 2022-03-31 2022-09-26 留美子 山田 Power generation and storage device for automobiles

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05168103A (en) * 1991-12-10 1993-07-02 Fuji Electric Co Ltd Auxiliary power supply for magnetic levitation vehicle
CN103144544A (en) * 2012-12-31 2013-06-12 宋树春 Renewable energy motor vehicle and vehicle-mounted wind driven generator
JP2015154535A (en) * 2014-02-12 2015-08-24 義昌 越野 Electric automobile
JP2018016218A (en) * 2016-07-28 2018-02-01 彦七 高橋 Vehicle equipped with wind power generator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05168103A (en) * 1991-12-10 1993-07-02 Fuji Electric Co Ltd Auxiliary power supply for magnetic levitation vehicle
CN103144544A (en) * 2012-12-31 2013-06-12 宋树春 Renewable energy motor vehicle and vehicle-mounted wind driven generator
JP2015154535A (en) * 2014-02-12 2015-08-24 義昌 越野 Electric automobile
JP2018016218A (en) * 2016-07-28 2018-02-01 彦七 高橋 Vehicle equipped with wind power generator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024065377A1 (en) * 2022-09-29 2024-04-04 刘安盛 Vehicle charging system and vehicle comprising same

Also Published As

Publication number Publication date
JP2021023027A (en) 2021-02-18

Similar Documents

Publication Publication Date Title
US6882059B1 (en) Vehical wind operated generator
JP4546624B2 (en) Wind generator for automobile
US9103317B2 (en) Wind operated electricity generating system
US5680032A (en) Wind-powered battery charging system
US8436485B1 (en) Wind powered turbine motor for motor vehicles
US20110037261A1 (en) System And Method For Producing Electrical Power
WO2021019917A1 (en) Vehicle-mounted wind-powered electricity generating device
US4132282A (en) Automotive electric generator
US20120085587A1 (en) Wind Power for Electric Cars
US5584355A (en) Electrical vehicle
JP5676540B2 (en) In-vehicle wind power generator
JPH0715803A (en) Wind-power charging equipment
JP2002359903A (en) On-vehicle battery charging generator
JP2011169297A (en) Wind power generation electric vehicle
US20200055403A1 (en) High Efficiency Aerodynamic Vehcular Power System
JPH11155203A (en) On-board car battery charger by wind power generation
JP2008074305A (en) On-vehicle wind power generator
US7763988B1 (en) Air turbine with recycled air or gear mechanism to increase internal velocity for engine power
WO2003081035A1 (en) Wind power generator for vehicle
WO1999001919A1 (en) System for drag reduction of vehicles and for battery charging
GB2271536A (en) Battery-electric vehicle.
JP2020535999A (en) Vehicle resistance reduction and power generation system
WO2011099379A1 (en) Power generation turbine
KR20100019209A (en) Hybrid propelled vehicle
KR20200015341A (en) Wind power generating system for electric vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20846527

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20846527

Country of ref document: EP

Kind code of ref document: A1