WO2003081035A1 - Wind power generator for vehicle - Google Patents

Wind power generator for vehicle Download PDF

Info

Publication number
WO2003081035A1
WO2003081035A1 PCT/JP2002/009443 JP0209443W WO03081035A1 WO 2003081035 A1 WO2003081035 A1 WO 2003081035A1 JP 0209443 W JP0209443 W JP 0209443W WO 03081035 A1 WO03081035 A1 WO 03081035A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
wind
rotor
guide plate
cabin roof
Prior art date
Application number
PCT/JP2002/009443
Other languages
French (fr)
Japanese (ja)
Inventor
Hareyuki Nishida
Original Assignee
Kanki, Kenzou
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanki, Kenzou filed Critical Kanki, Kenzou
Priority to AU2002332177A priority Critical patent/AU2002332177A1/en
Publication of WO2003081035A1 publication Critical patent/WO2003081035A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K16/00Arrangements in connection with power supply of propulsion units in vehicles from forces of nature, e.g. sun or wind
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/30Wind motors specially adapted for installation in particular locations
    • F03D9/32Wind motors specially adapted for installation in particular locations on moving objects, e.g. vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/94Mounting on supporting structures or systems on a movable wheeled structure
    • F05B2240/941Mounting on supporting structures or systems on a movable wheeled structure which is a land vehicle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/728Onshore wind turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Definitions

  • the present invention relates to a wind power generator for a vehicle.
  • Electricity usage in vehicles is on the rise due to an increase in various electrical components such as car air conditioners.
  • various electrical components such as car air conditioners.
  • a wind power generator to a vehicle roof, for example, so that the alternator does not need to be large.
  • the windmill rotates due to the airflow that is relatively generated as the vehicle travels, and the rotation of the windmill generates power.
  • the wind turbine be installed so as to suppress the increase in air resistance.
  • the wind turbine be installed so as to suppress an increase in vehicle width, vehicle height, etc.
  • a truck described in German Patent No. 3611750 is provided with a solar panel 91 and a wind power generator 92 as shown in FIG.
  • the solar power generation panel 91 is attached to an air deflector 93 that covers the entire cabin roof, and the wind power generator 92 is installed between the air deflector 93 and the cabin roof.
  • An air inlet 94 is formed in the air deflector 93, and the windmill 95 of the wind power generator 92 is rotated by the air flowing from the inlet 94. With the rotation of the windmill 95, the generator 96 rotates to generate electricity.
  • the conventional wind turbine generator 92 when the wind turbine 95 is disposed at a position away from the inlet 94, the airflow to the wind turbine 95 becomes weak. Therefore, the wind turbine 95 must be located near the inlet 94. Near the inlet 9 4 Due to the lack of space, a small windmill 95 must be used.
  • the air deflector 93 is large enough to cover the entire cabin roof, and its production cost is high.
  • An object of the present invention is to provide a vehicle wind power generator that can reduce air resistance and improve power generation efficiency.
  • a vehicle wind power generator installed on a cabin roof of a vehicle.
  • the vehicle includes a cargo box having a top surface that is higher than the cabin roof.
  • the wind power generator for a vehicle is provided on a cabin roof and reduces the air resistance of the vehicle.
  • a wind power generator is provided on the cabin roof between the wind guide plate and the packing box.
  • a wind turbine having a generator that generates power with rotation.
  • the rotor is arranged to extend in the vehicle width direction of the vehicle, and has a plurality of blades arranged on the surface thereof. When the vehicle travels, the rotor rotates by receiving air flowing along the air guide plate.
  • the generator is preferably arranged inside the rotor.
  • the vehicle wind power generator further includes a driving unit that changes the inclination of the wind guide plate.
  • the drive means includes a cylinder.
  • each of the plurality of blades be curved along the rotation direction of the windmill, or be curved along the direction opposite to the rotation direction of the windmill.
  • the rotor preferably includes a plurality of auxiliary members 44 provided between the tip of one adjacent blade and the base of the other blade to reduce the air resistance of the windmill.
  • the windmill may be one of a plurality of windmills provided in series in the vehicle width direction.
  • a vehicle including: a cabin roof; a packing box having an upper surface higher than the cabin roof; and a wind turbine generator installed on the cabin roof.
  • the wind turbine is installed on the cabin roof and reduces the air resistance of the vehicle.
  • the rotor is arranged to extend in the vehicle width direction of the vehicle, and has a plurality of blades arranged on the surface thereof. When the vehicle runs, the rotor rotates by receiving air flowing along the baffle plate.
  • a method of generating electric power by a wind turbine generator provided in a vehicle.
  • the vehicle includes a cabin roof and a cargo box having a top surface that is higher than the cabin roof.
  • the wind power generator includes a wind guide plate having a wind guide plate for reducing the air resistance of the vehicle, and a wind turbine having a rotor and a generator for generating electric power according to the rotation of the rotor, wherein the rotor extends in the vehicle width direction of the vehicle.
  • a plurality of vanes are arranged and arranged on its surface.
  • the power generation method includes a step of disposing a wind guide plate on a cabin roof of a vehicle, a step of disposing a wind turbine on a cabin roof between a wind guide plate and a packing box, and running the vehicle. And rotating the rotor by receiving air flowing along the air guide plate by the plurality of blades.
  • FIG. 1 is a schematic perspective view of a conventional vehicle wind power generator.
  • FIG. 2A is a schematic partial side view of a truck to which the vehicle wind power generator according to one embodiment of the present invention is attached.
  • FIG. 2B is a schematic partial cutaway view of the rotor of the wind turbine generator of FIG. 2A.
  • FIG. 3A is a schematic side view of the experimental apparatus of the wind power generator of FIG. 2A.
  • FIG. 3B is a schematic partial side view of another experimental apparatus.
  • FIG. 3C is a schematic partial side view of another experimental apparatus.
  • FIG. 4 is a schematic partial cutaway view of another rotor.
  • FIG. 5A is a schematic partial side view of another vehicle wind power generator.
  • FIG. 5B is a schematic partial side view of another vehicle wind power generator.
  • FIG. 6A is a schematic partial side view of another vehicle wind power generator.
  • FIG. 6B is a schematic partial side view of another vehicle wind power generator.
  • FIG. 7A is a schematic partial side view of another vehicle wind power generator.
  • FIG. 7B is a schematic partial cutaway view of a rotor of another wind power generator.
  • FIG. 8 is a schematic front view of a rotor of another wind power generator.
  • FIG. 2A is a schematic partial side view of a truck 11 to which a vehicle wind power generator 23 is attached
  • FIG. 2B is a schematic partial cutaway view of a rotor 26 of the vehicle wind power generator 23. is there.
  • the position of the upper surface 14 of the packing box 12 of the truck 11 is higher than that of the cabin roof 15.
  • a wind guide plate 21 and a windmill 22 are attached to the cabin roof 15.
  • the windmill 22 is mounted behind the wind guide plate 21.
  • the vehicle wind power generator 23 includes a wind guide plate 21 and a windmill 22.
  • a pair of support members 24 that support the windmill 22 are attached to the cabin roof 15.
  • Each support member 24 supports a support shaft 25 along the vehicle width direction.
  • a bottomed cylindrical rotor 26 is rotatably supported.
  • the rotor 26 has plate portions 27 at both ends, and a bearing 28 is attached to the center of each plate portion 27.
  • the rotor 26 has a blade 29 attached thereto. In the present embodiment, six blades 29 are attached to the rotor 26.
  • a generator 30 is provided inside the rotor 26.
  • the generator 30 has a cylindrical portion 31 formed rotatably with respect to the support shaft 32.
  • a magnet (not shown) is attached to the inner peripheral surface of the cylindrical portion 31, and a coil (not shown) is attached to the support shaft 32.
  • the support shaft 32 of the generator 30 rotates at both ends connected to the support shaft 25, respectively. Absent.
  • the cylindrical portion 31 of the generator 30 is attached to the inner peripheral surface of the rotor 26 so as to be integrally rotatable.
  • the coil of the generator 30 is connected to a battery 33 provided in the truck 11 via wiring 34, and the electricity generated by the generator 30 is stored in the battery 33.
  • the air guide plate 21 is attached to the front end of the cabin roof 15 and is inclined rearward and upward.
  • the air guide plate 21 is formed slightly curved rearward.
  • the length from the lower end to the upper end of the baffle plate 21 is the predetermined length, and the height from the cabin roof 15 to the upper end of the baffle plate 21 is the predetermined height h.
  • a baffle plate 21 is formed.
  • the predetermined length and the predetermined height h of the wind guide plate 21 are set according to the size of the truck 11 and the windmill 22, the vehicle speed, the power generation amount of the vehicle wind power generation device 23, and the like by wind tunnel experiments and the like. Is done.
  • the vehicle speed is a speed in a normal running state of the truck 11.
  • the vehicle speed is, for example, the speed when the truck 11 runs on a public road that is not a highway, and is, for example, 40 km / h to 50 km / h.
  • FIG. 3A is a schematic side view of the experimental apparatus 100 according to the vehicle wind power generator 23.
  • the experimental apparatus 100 includes a truck model 41. No.
  • the model 41 is arranged so as to be able to move smoothly in the front-back direction.
  • a blower (not shown) is provided in front of the model 41.
  • a load cell 43 is disposed behind the model 41 via a support part 42, and a support shaft 41a extending rearward from the rear surface of the model 41 is attached to the load cell 43. .
  • the load cell 43 has a built-in strain gauge, and the load cell 43 detects a voltage corresponding to a load received via the support shaft 41a.
  • the load cell 43 detects the air resistance of the model 41 due to the wind from the blower.
  • the height from the ground contact surface of the tire to the cabin roof 15 is 110 mm, and the difference in height between the upper surface 14 and the cabin roof 15 is 55 mm.
  • the length of the cabin roof 15 in the front-rear direction is 8 O mm, and the length of the cabin roof 15 in the vehicle width direction is 9 O mm.
  • the length of the packing box 12 in the front-rear direction is 20 O mm.
  • the blower supplied a wind of 11.3 mZ s to the model 41.
  • the air resistance C of the model 41 is obtained from the voltage value E obtained by the load cell 43.
  • the air resistance coefficient C D commonly used to represent air resistance is
  • the air drag coefficient C D was calculated by
  • Wind guide plates 21 with lengths of 3 O mm and 5 O mm from the upper end to the lower end were used. In each case, the inclination of the air guide plate 21 was changed to The height h to the upper end of the plate 21 was changed.
  • the 3 Omm air guide plate 21 is not curved, and the 5 Omm air guide plate 21 is slightly curved backward.
  • FIG. 3A Three types of windmills 22, 22, 22A and 45 shown in Figs. 3A to 3C were used.
  • the diameter of the rotor 26 is 25 mm
  • the length of the blade 29 in the radial direction is 8 mm
  • the motor shaft was mounted on the support shaft 25, and the main body of the motor was mounted on the rotor 26 so as to be integrally rotatable. When the windmill 22 rotates, the main body of the motor rotates integrally with the rotor 26 with respect to the motor shaft.
  • Axle 25 of wind turbine 22 25 forces 55 mm behind the front end of cabin roof 15 (25 mm before the front of packing box 12) and 33 mm above cabin roof 15 (top surface of packing box 1 2) (22 mm below 4).
  • the wind turbine 22 A shown in FIG. 3B has an auxiliary member 44 that covers the rotation direction side of each blade 29. Both ends of the auxiliary member 44 are attached to the tip of each blade 29 and the base end of the adjacent blade 29 on the rotation direction side.
  • the auxiliary member 44 is formed of aluminum tape.
  • the windmill 22 shown in FIG. 3A is referred to as six blades A, and the windmill 22A shown in FIG. 3B to which the auxiliary member 44 is attached is referred to as six blades B.
  • the windmill 45 shown in FIG. 3C has two blades 46.
  • the diameter of the rotor 47 is 1 Omm
  • the radial length of the blade 46 is 15 mm
  • the center axis of the windmill 45 is a rotating shaft 48 attached to the rotor 47 and rotating integrally with the rotor 47, and is rotatably supported by the support member 24 via a bearing 49.
  • the rotating shaft 48 is arranged at the same position as the support shaft 25 (see FIG. 2B) of the wind turbine 22 shown in FIG. 3A.
  • Table 1 shows the results when the wind turbine 45 shown in Fig. 3C is used
  • Table 2 shows the results when the wind turbines 22 and 22A shown in Figs. 3A and 3B are used.
  • Tables 1 and 2 show that model 41 has wind guide plate 21 and windmill The rate at which the air resistance coefficient C D was reduced compared to the case where 22, 22, A, and 45 were not installed (resistance reduction rate) is also shown. The rotation of the wind turbines 22, 22A, 45 was visually evaluated.
  • the wind turbine rotation evaluation was “ ⁇ ”, and the resistance reduction rates were 22.0 7% and 23.5 3%, respectively.
  • the resistance reduction rate without the windmill 22 was 24.43%.
  • the reason why the windmill 22 rotated very well by attaching the auxiliary member 44 is considered as follows. In the upper part of the windmill 22, the airflow flows upward from the blade 29 to the rear, so that the space (the portion indicated by A in FIG. 3B) on the rotational direction side of the blade 29 has an airflow. It is considered that a vortex is generated due to the peeling of the glass. It is considered that the region where the vortex exists was reduced by the auxiliary member 44, and it is considered that the windmill 22 rotated very well. Both ends of the auxiliary member 44 are attached to the tip of each blade 29 and the base end of the adjacent blade 29 on the rotation direction side, and the auxiliary member 44 is slanted. It is thought that the air resistance of 2 will decrease.
  • the vehicle wind power generator according to the present embodiment has the following advantages.
  • a wind guide plate 2 1 is arranged on the cabin roof 15 of the truck 1 1, and a windmill 22 is arranged between the wind guide plate 2 1 and the packing box 1 2. It is rotated by the airflow flowing along the plate 21. Further, since the windmill 22 is disposed between the wind guide plate 21 and the packing box 12, the windmill 22 can protrude above the wind guide plate 21, and the size of the wind turbine 22 can be increased as compared with the related art. Therefore, the wind guide plate 21 can secure a predetermined amount of the effect of reducing the air resistance of the truck 11, and the power generation efficiency can be improved by the wind turbine 22 larger than the conventional technology.
  • wind power can be generated with substantially the same air resistance as without the windmill 22.
  • the generator 30 is mounted inside the rotor 26, the blades 29 of the wind turbine 22 can be formed over the entire cabin roof 15 in the vehicle width direction. As a result, the area of the blade 29 receiving the wind is increased, and the power generation efficiency can be improved, as compared with a conventional power generator having a generator in the vehicle width direction and next to the wind turbine. Note that the embodiment is not limited to the above-described embodiment, and may be modified as follows, for example.
  • the auxiliary member 4 is not limited to being formed of aluminum tape.
  • the auxiliary member 44 may be formed so as to be curved outward in the radial direction of the windmill.
  • a plurality of generators may be stored inside the rotor 26.
  • the generators 30 may be mounted inside both ends of the rotor 26, and the support shafts 32 of the generators 30 may be directly mounted on the support members 24, respectively.
  • the blade 50a may be formed to be curved along the rotation direction of the windmill.
  • the air resistance is more likely to be reduced than when the flat blades are formed to extend in the radial direction of the rotor.
  • the relative speed of windmills that the vehicle travels is relatively higher than the natural wind that windmills that are fixed on the ground receive. Therefore, the blade 50a can sufficiently obtain the wind power required for rotation.
  • the blade 5 Ob may be formed to bend along the direction opposite to the rotation direction of the windmill. Since the blade 50b is more susceptible to wind power than the non-curved blade 29, the blade 50b is preferably used when emphasizing wind power generation.
  • the auxiliary member 44 may be attached to the blades 50a and 50b in FIGS. 5A and 5B.
  • the lower end 21 a of the air guide plate 21 may be rotatably supported by the cabin roof 15.
  • the cylinder 51 is attached to the cabin roof 15, and the piston rod 51 a of the cylinder 51 is attached to the upper end 21 b of the air guide plate 21.
  • the air guide plate 21 It is also possible to adjust the height of the wind guide plate 21 by changing the inclination and adjust the air flow to the windmill 22.
  • the height h of the wind guide plate 21 is set higher than when the rotation evaluation of the windmill 22 is “ ⁇ ”, the rotation of the windmill 22 decreases, but the reduction rate of the air resistance is higher.
  • the height h of the baffle plate 21 is set at a position where the windmill 22 can rotate most easily (see FIG. 6A).
  • the height of the air guide plate 21 is increased by the operation of the cylinder 51 (see FIG. 6B).
  • the cylinder 51 is contracted to increase the amount of air flowing to the windmill 22 to facilitate power generation.
  • the cylinder 51 is contracted to increase the amount of air flowing to the windmill 22 to facilitate power generation.
  • the height h of the wind guide plate 21 is increased and the wind turbine 2 is increased. Reduce the amount of air going to 2, and lower the air resistance of the entire truck 1 1.
  • the power generation by the windmill 22 can be kept.
  • the cylinder 51 is formed so that the driver operates by operating a switch in the cab.
  • the cylinder 51 is formed so as to automatically change the height h of the baffle plate 21 to a preset height according to the vehicle speed in accordance with a signal from the vehicle speed sensor of the truck 11. You can.
  • the power generator may include a plurality of wind turbines 55, 56 in the vehicle width direction, for example, as shown in FIG. 7A.
  • a support member 24 is additionally provided between the plurality of wind turbines 55, 56.
  • the blades 57 of the windmill 55 on the end side in the vehicle width direction may be mounted obliquely such that the end side 57 b is located on the rotation direction side from the inner side 57 a in the vehicle width direction. In this case, the airflow toward the end portion in the vehicle width direction easily flows toward the side surface of the packing box 12.
  • the coil 61 may be attached to the support shaft 25, and the magnet 62 may be attached to the inner peripheral surface of the rotor 26.
  • the windmill Electric power is generated by the magnet 62 rotating integrally with the magnet 22 rotating around the coil 61.
  • a generator 63 may be installed next to the windmill 45 in the vehicle width direction.
  • the generator 63 includes a rotating shaft 65 rotatable with respect to the cylindrical portion 64.
  • a coil (not shown) is attached to the inner peripheral surface of the cylindrical portion 64, and a magnet (not shown) is attached to the rotating shaft 65.
  • the generator 63 generates electricity when the rotating shaft 65 rotates with respect to the cylindrical portion 64.
  • the tubular portion 64 of the generator 63 is supported by the cabin roof 15 via a support member 66.
  • the rotating shaft 65 is connected to the rotating shaft 48 that rotates integrally with the rotor 47 so as to be integrally rotatable.
  • the wind power generator for vehicle 23 may be applied to a hybrid drive truck that can be driven by both gasoline and electricity, and the generated electricity may be used to drive a hybrid drive truck.
  • Vehicles to which the vehicle wind turbines 23 are mounted are not limited to trucks 11.
  • the air guide plate 21 may be formed in a flat shape without being curved.
  • the number of rotor blades is not limited to two or six, but may be three, four, five, or eight, for example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Wind Motors (AREA)

Abstract

An wind power generator for vehicle in which generation efficiency is enhanced by reducing air resistance. The wind power generator is installed on the cabin roof (15) of a vehicle. The vehicle includes a baggage box (12) having an upper surface (14) higher than the cabin roof. The wind power generator comprises a wind guide plate (21) disposed on the cabin roof and reducing air resistance of the vehicle, and a wind mill (22) disposed between the wind guide plate and the baggage box on the cabin roof and comprising a rotor (26) and a generator (30) generating power as the rotor rotates. The rotor (26) is disposed to extend in the widthwise direction of the vehicle and comprises a plurality of blades (29) arranged on the surface thereof. When the vehicle is traveling, the plurality of blades (29) receive air flowing along the wind guide plate (21) thus rotating the rotor (26).

Description

明細書  Specification
車両用風力発電装置  Wind power generator for vehicles
[技術分野]  [Technical field]
本発明は、 車両用風力発電装置に関するものである。  The present invention relates to a wind power generator for a vehicle.
[背景技術] [Background technology]
カーエアコン等の各種電装品の増加により、 車両における電気使用量は増加傾 向にある。 電気使用量の増加に対応するために、 例えばオルタネータを大型化し て車両における発電量を増加することが考えられる。  Electricity usage in vehicles is on the rise due to an increase in various electrical components such as car air conditioners. In order to cope with the increase in the amount of electricity used, for example, it is conceivable to increase the size of the alternator to increase the amount of power generated by the vehicle.
また、 オルタネータを大型化しなくてすむように、 例えば風力発電装置を車両 の屋根に取り付けることが提案されている。 この場合、 車両の走行に伴って相対 的に生じる空気流れにより風車が回転し、 風車の回転により発電が行われる。 風 車は、 空気抵抗の増加を抑えるように取り付けられることが望ましい。 また、 風 車は、 車幅や車高等の増加を抑えるように取り付けられることが望ましい。  In addition, it has been proposed to attach a wind power generator to a vehicle roof, for example, so that the alternator does not need to be large. In this case, the windmill rotates due to the airflow that is relatively generated as the vehicle travels, and the rotation of the windmill generates power. It is desirable that the wind turbine be installed so as to suppress the increase in air resistance. In addition, it is desirable that the wind turbine be installed so as to suppress an increase in vehicle width, vehicle height, etc.
その上面がキャビンルーフより高い荷箱を有するトラック等の車両では、 走行 中において、 相対的な空気流れが荷箱の前面で受け止められて、 空気抵抗が増加 する。 そのため、 空気抵抗の増加を低減するように、 キャビンルーフにエアデフ レクター (導風板) が取り付けられる。  In a vehicle such as a truck having a packing box whose upper surface is higher than the cabin roof, the relative airflow is caught by the front of the packing box during traveling, and the air resistance increases. For this reason, an air deflector is installed on the cabin roof to reduce the increase in air resistance.
例えばドイツ特許 3 6 1 1 7 5 0号公報に示されるトラックには、 図 1に示す ように、 太陽光発電パネル 9 1と、 風力発電装置 9 2とが備えられている。 太陽 光発電パネル 9 1は、 キャビンルーフ全体を覆うエアデフレクタ一 9 3に取り付 けられており、 風力発電装置 9 2は、 エアデフレクタ一 9 3とキャビンルーフと の間に取り付けられている。 エアデフレクター 9 3には空気の流入口 9 4が形成 されており、 風力発電装置 9 2の風車 9 5は、 流入口 9 4から流入する空気流に より回転する。 風車 9 5の回転に伴なつて、 発電機 9 6が回転し、 発電する。 しかしながら、 従来の風力発電装置 9 2では、 流入口 9 4から離れた位置に風 車 9 5が配置された場合、 風車 9 5に対する空気流れが弱くなる。 そのため、 風 車 9 5は流入口 9 4の近くに配置する必要がある。 流入口 9 4の近くでは充分に スペースが取れないため、 小さい風車 9 5を使用する必要がある。 エアデフレク タ一 9 3は、 キャビンルーフ全体を覆うために大型であり、 その製作コス トが高 レ、。 For example, a truck described in German Patent No. 3611750 is provided with a solar panel 91 and a wind power generator 92 as shown in FIG. The solar power generation panel 91 is attached to an air deflector 93 that covers the entire cabin roof, and the wind power generator 92 is installed between the air deflector 93 and the cabin roof. An air inlet 94 is formed in the air deflector 93, and the windmill 95 of the wind power generator 92 is rotated by the air flowing from the inlet 94. With the rotation of the windmill 95, the generator 96 rotates to generate electricity. However, in the conventional wind turbine generator 92, when the wind turbine 95 is disposed at a position away from the inlet 94, the airflow to the wind turbine 95 becomes weak. Therefore, the wind turbine 95 must be located near the inlet 94. Near the inlet 9 4 Due to the lack of space, a small windmill 95 must be used. The air deflector 93 is large enough to cover the entire cabin roof, and its production cost is high.
[発明の開示] [Disclosure of the Invention]
本発明の目的は、 空気抵抗を低減するとともに、 発電効率を向上できる車両用 風力発電装置を提供することにある。  An object of the present invention is to provide a vehicle wind power generator that can reduce air resistance and improve power generation efficiency.
上記目的を達成するために、 本発明の第 1の態様では、 車両のキャビンルーフ に設置される車両用風力発電装置が提供される。 車両は、 キャビンルーフより高 い上面を有する荷箱を含む。 車両用風力発電装置は、 キャビンルーフ上に設けら れ、 車両の空気抵抗を低減する導風板と、 キャビンルーフ上であって導風板と荷 箱との間に設けられ、 ロータとロータの回転に伴って発電する発電機とを有する 風車とを備える。 ロータは、 車両の車幅方向に延びるように配置され、 その表面 に配設される複数の羽根を有する。 ロータは、 車両が走行するとき、 複数の羽根 が導風板に沿って流れる空気を受けることにより回転する。  In order to achieve the above object, according to a first aspect of the present invention, there is provided a vehicle wind power generator installed on a cabin roof of a vehicle. The vehicle includes a cargo box having a top surface that is higher than the cabin roof. The wind power generator for a vehicle is provided on a cabin roof and reduces the air resistance of the vehicle. A wind power generator is provided on the cabin roof between the wind guide plate and the packing box. And a wind turbine having a generator that generates power with rotation. The rotor is arranged to extend in the vehicle width direction of the vehicle, and has a plurality of blades arranged on the surface thereof. When the vehicle travels, the rotor rotates by receiving air flowing along the air guide plate.
発電機は、 ロータの内部に配設されることが好ましい。  The generator is preferably arranged inside the rotor.
車両用風力発電装置は、 さらに、 導風板の傾きを変更する駆動手段を備えるこ とが好ましい。  It is preferable that the vehicle wind power generator further includes a driving unit that changes the inclination of the wind guide plate.
駆動手段は、 シリンダを含むことが好ましい。  Preferably, the drive means includes a cylinder.
複数の羽根の各々は、 風車の回転方向に沿って湾曲形成されているか、 あるい は、 風車の回転方向とは反対方向に沿って湾曲形成されていることが好ましい。 ロータは、 隣接する一方の羽根の先端と他方の羽根の基端との間に設けられ、 風車の空気抵抗を低減する複数の補助部材 4 4を含むことが好ましい。  It is preferable that each of the plurality of blades be curved along the rotation direction of the windmill, or be curved along the direction opposite to the rotation direction of the windmill. The rotor preferably includes a plurality of auxiliary members 44 provided between the tip of one adjacent blade and the base of the other blade to reduce the air resistance of the windmill.
風車は、 車幅方向に直列して設けられた複数の風車のうちの 1つであってもよ レ、。  The windmill may be one of a plurality of windmills provided in series in the vehicle width direction.
本発明の第 2の態様では、 キャビンルーフと、 キャビンルーフより高い上面を 有する荷箱と、 キャビンルーフ上に設置された風力発電装置と、 を備えた車両が 提供される。 風力発電装置は、 キャビンルーフ上に設けられ、 車両の空気抵抗を 低減する導風板と、 キャビンルーフ上であって導風板と荷箱との間に設けられ、 ロータとロータの回転に伴って発電する発電機とを有する風車とを含む。 ロータ は、 車両の車幅方向に延びるように配置され、 その表面に配設される複数の羽根 を有する。 ロータは、 車両が走行するとき、 複数の羽根が導風板に沿って流れる 空気を受けることにより回転する。 According to a second aspect of the present invention, there is provided a vehicle including: a cabin roof; a packing box having an upper surface higher than the cabin roof; and a wind turbine generator installed on the cabin roof. The wind turbine is installed on the cabin roof and reduces the air resistance of the vehicle. A wind guide plate to be reduced, and a wind turbine provided on the cabin roof between the wind guide plate and the packing box, the wind turbine having a rotor and a generator that generates power as the rotor rotates. The rotor is arranged to extend in the vehicle width direction of the vehicle, and has a plurality of blades arranged on the surface thereof. When the vehicle runs, the rotor rotates by receiving air flowing along the baffle plate.
さらに、 導風板の傾きを変更する駆動手段を備えることが好ましい。  Further, it is preferable to provide a driving means for changing the inclination of the air guide plate.
本発明の第 3の態様では、 車両に設けられた風力発電装置によって発電する方 法が提供される。 車両は、 キャビンルーフと、 キャビンルーフより高い上面を有 する荷箱を含む。 風力発電装置は、 車両の空気抵抗を低減する導風板と、 ロータ とロータの回転に伴って発電する発電機とを有する風車とを含み、 ロータは、 車 両の車幅方向に延びるように配置され、 その表面に配設される複数の羽根をする 。 発電方法は、 導風板を、 車両のキャビンルーフ上に配設する工程と、 風車を、 キャビンルーフ上であって導風板と荷箱との間に配設する工程と、 車両を走行す る工程と、 複数の羽根が導風板に沿って流れる空気を受けることによって、 ロー タを回転させる工程と、 を備える。  According to a third aspect of the present invention, there is provided a method of generating electric power by a wind turbine generator provided in a vehicle. The vehicle includes a cabin roof and a cargo box having a top surface that is higher than the cabin roof. The wind power generator includes a wind guide plate having a wind guide plate for reducing the air resistance of the vehicle, and a wind turbine having a rotor and a generator for generating electric power according to the rotation of the rotor, wherein the rotor extends in the vehicle width direction of the vehicle. A plurality of vanes are arranged and arranged on its surface. The power generation method includes a step of disposing a wind guide plate on a cabin roof of a vehicle, a step of disposing a wind turbine on a cabin roof between a wind guide plate and a packing box, and running the vehicle. And rotating the rotor by receiving air flowing along the air guide plate by the plurality of blades.
さらに、 導風板の傾きを変更する工程、 あるいは、 発電する工程によって発電 された電気をバッテリに蓄電する工程を備えることが好ましい。  Further, it is preferable to include a step of changing the inclination of the air guide plate, or a step of storing electricity generated in the power generation step in a battery.
[図面の簡単な説明] [Brief description of drawings]
図 1は、 従来の車両用風力発電装置の模式的な斜視図である。  FIG. 1 is a schematic perspective view of a conventional vehicle wind power generator.
図 2 Aは、 本発明の一実施の形態にかかる車両用風力発電装置が取り付けられ たトラックの模式的な部分側面図である。  FIG. 2A is a schematic partial side view of a truck to which the vehicle wind power generator according to one embodiment of the present invention is attached.
図 2 Bは、 図 2 Aの風力発電装置のロータの模式的な部分破断図である。  FIG. 2B is a schematic partial cutaway view of the rotor of the wind turbine generator of FIG. 2A.
図 3 Aは、 図 2 Aの風力発電装置の実験装置の模式的な側面図である。  FIG. 3A is a schematic side view of the experimental apparatus of the wind power generator of FIG. 2A.
図 3 Bは、 別の実験装置の模式的な部分側面図である。  FIG. 3B is a schematic partial side view of another experimental apparatus.
図 3 Cは、 別の実験装置の模式的な部分側面図である。  FIG. 3C is a schematic partial side view of another experimental apparatus.
図 4は、 別のロータの模式的な部分破断図である。  FIG. 4 is a schematic partial cutaway view of another rotor.
図 5 Aは 別の車両用風力発電装置の模式的な部分側面図である。 図 5 Bは、 別の車両用風力発電装置の模式的な部分側面図である。 図 6 Aは、 別の車両用風力発電装置の模式的な部分側面図である。 FIG. 5A is a schematic partial side view of another vehicle wind power generator. FIG. 5B is a schematic partial side view of another vehicle wind power generator. FIG. 6A is a schematic partial side view of another vehicle wind power generator.
図 6 Bは、 別の車両用風力発電装置の模式的な部分側面図である。  FIG. 6B is a schematic partial side view of another vehicle wind power generator.
図 7 Aは、 別の車両用風力発電装置の模式的な部分側面図である。  FIG. 7A is a schematic partial side view of another vehicle wind power generator.
図 7 Bは、 別の風力発電装置のロータの模式的な部分破断図である。  FIG. 7B is a schematic partial cutaway view of a rotor of another wind power generator.
図 8は、 別の風力発電装置のロータの模式的な正面図である。  FIG. 8 is a schematic front view of a rotor of another wind power generator.
[発明を実施するための最良の形態] [Best Mode for Carrying Out the Invention]
以下、 本発明の一実施の形態にかかる車両用風力発電装置 2 3を図 2及び図 3 に従って説明する。 図 2 Aは車両用風力発電装置 2 3を取り付けたトラック 1 1 の模式的な部分側面図であり、 図 2 Bは車両用風力発電装置 2 3のロータ 2 6の 模式的な部分破断図である。  Hereinafter, a vehicle wind power generator 23 according to an embodiment of the present invention will be described with reference to FIGS. FIG. 2A is a schematic partial side view of a truck 11 to which a vehicle wind power generator 23 is attached, and FIG. 2B is a schematic partial cutaway view of a rotor 26 of the vehicle wind power generator 23. is there.
図 2 Aに示すように、 トラック 1 1の荷箱 1 2の上面 1 4の位置は、 キャビン ルーフ 1 5のそれより高い。 キヤビンルーフ 1 5には、 導風板 2 1と、 風車 2 2 とが取り付けられている。 風車 2 2は導風板 2 1より後ろに取り付けられている 。 車両用風力発電装置 2 3は、 導風板 2 1と風車 2 2とを含む。  As shown in FIG. 2A, the position of the upper surface 14 of the packing box 12 of the truck 11 is higher than that of the cabin roof 15. A wind guide plate 21 and a windmill 22 are attached to the cabin roof 15. The windmill 22 is mounted behind the wind guide plate 21. The vehicle wind power generator 23 includes a wind guide plate 21 and a windmill 22.
キャビンルーフ 1 5には、 図 2 Bに示されるように、 風車 2 2を支持する一対 の支持部材 2 4が取り付けられている。 各支持部材 2 4には、 支軸 2 5が車幅方 向に沿って支持されている。 支軸 2 5には、 有底筒状のロータ 2 6が回動可能に 支持されている。 ロータ 2 6は両端部に板部 2 7を有し、 各板部 2 7の中央部に は、 ベアリング 2 8が取り付けられている。 ロータ 2 6には羽根 2 9が取り付け られている。 本実施形態では、 6枚の羽根 2 9がロータ 2 6に取りつけられてい る。  As shown in FIG. 2B, a pair of support members 24 that support the windmill 22 are attached to the cabin roof 15. Each support member 24 supports a support shaft 25 along the vehicle width direction. On the support shaft 25, a bottomed cylindrical rotor 26 is rotatably supported. The rotor 26 has plate portions 27 at both ends, and a bearing 28 is attached to the center of each plate portion 27. The rotor 26 has a blade 29 attached thereto. In the present embodiment, six blades 29 are attached to the rotor 26.
ロータ 2 6の内部には発電機 3 0が設けられている。 発電機 3 0は、 支軸 3 2 に対して回転可能に形成された筒部 3 1を有する。 筒部 3 1の内周面に図示しな いマグネットが取り付けられ、 支軸 3 2には図示しないコイルが取り付けられて いる。 筒部 3 1が支軸 3 2に対して回転することにより、 発電機 3 0は発電する 。 発電機 3 0の支軸 3 2は、 その両端部がそれぞれ支軸 2 5に接続されて回転し ない。 発電機 3 0の筒部 3 1は、 ロータ 2 6の内周面に一体回転可能に取り付け られている。 発電機 3 0のコイルは、 トラック 1 1に備えられているバッテリ 3 3に配線 3 4を介して接続されており、 発電機 3 0で発電された電気はバッテリ 3 3に蓄電される。 A generator 30 is provided inside the rotor 26. The generator 30 has a cylindrical portion 31 formed rotatably with respect to the support shaft 32. A magnet (not shown) is attached to the inner peripheral surface of the cylindrical portion 31, and a coil (not shown) is attached to the support shaft 32. When the cylindrical portion 31 rotates with respect to the support shaft 32, the generator 30 generates electricity. The support shaft 32 of the generator 30 rotates at both ends connected to the support shaft 25, respectively. Absent. The cylindrical portion 31 of the generator 30 is attached to the inner peripheral surface of the rotor 26 so as to be integrally rotatable. The coil of the generator 30 is connected to a battery 33 provided in the truck 11 via wiring 34, and the electricity generated by the generator 30 is stored in the battery 33.
導風板 2 1は、 キャビンルーフ 1 5の前端に取り付けられ、 後ろ上方に向けて 傾斜している。 導風板 2 1は、 後方にわずかに湾曲して形成されている。 導風板 2 1の下端から上端までの長さが所定の長さであるように、 また、 キャビンルー フ 1 5から導風板 2 1の上端までの高さが所定高さ hであるように、 導風板 2 1 は形成されている。  The air guide plate 21 is attached to the front end of the cabin roof 15 and is inclined rearward and upward. The air guide plate 21 is formed slightly curved rearward. The length from the lower end to the upper end of the baffle plate 21 is the predetermined length, and the height from the cabin roof 15 to the upper end of the baffle plate 21 is the predetermined height h. In addition, a baffle plate 21 is formed.
導風板 2 1の所定の長さ及び所定高さ hは、 風洞実験等により、 トラック 1 1 や風車 2 2の大きさや、 車速、 車両用風力発電装置 2 3の発電量等に応じて設定 される。 本実施の形態では、 車速はトラック 1 1の通常の走行状態での速度であ る。 車速は、 例えばトラック 1 1が高速道路ではない公道を走るときの速度であ り、 例えば 4 0 k m/ h〜5 0 k m/ hである。  The predetermined length and the predetermined height h of the wind guide plate 21 are set according to the size of the truck 11 and the windmill 22, the vehicle speed, the power generation amount of the vehicle wind power generation device 23, and the like by wind tunnel experiments and the like. Is done. In the present embodiment, the vehicle speed is a speed in a normal running state of the truck 11. The vehicle speed is, for example, the speed when the truck 11 runs on a public road that is not a highway, and is, for example, 40 km / h to 50 km / h.
次に、 車両用風力発電装置 2 3の作用について説明する。  Next, the operation of the vehicle wind power generator 23 will be described.
トラック 1 1の走行状態では、 相対的にトラック 1 1の前方から後方へ向かう 空気流が生じる。 キャビンルーフ 1 5の上方では、 空気流は導風板 2 1により、 風車 2 2の上部の羽根 2 9に向かうように案内される。 風車 2 2の上部の羽根 2 9は、 空気流によって後方に向かう力を受ける。 風車 2 2の下部の羽根 2 9は、 導風板 2 1にさえぎられて空気流を受けないか、 空気流を受けても上部の羽根 2 9に比べて受ける量が少ない。 従って、 風車 2 2は、 上部が後側に移動するとと もに下部が前方に移動するように、 回転する。 図 2 Aにおいて、 風車 2 2の回転 方向は時計方向である。 空気流は、 風車 2 2を回転させた後、 荷箱 1 2の上面 1 4へ移動する。 ノくッテリ 3 3に蓄えられた電気は、 トラック 1 1の照明などに使 用される。  In the running state of the truck 11, an airflow is relatively generated from the front to the rear of the truck 11. Above the cabin roof 15, the airflow is guided by the air guide plate 21 toward the upper blade 29 of the windmill 22. The upper blades 29 of the windmill 22 receive a backward force due to the airflow. The lower blades 29 of the windmill 22 are interrupted by the baffle plate 21 and do not receive airflow, or receive less airflow than the upper blades 29 when receiving airflow. Therefore, the windmill 22 rotates such that the upper part moves rearward and the lower part moves forward. In FIG. 2A, the rotation direction of the windmill 22 is clockwise. After rotating the windmill 22, the airflow moves to the upper surface 14 of the packing box 12. The electricity stored in the battery 33 is used for lighting the truck 11 and so on.
次に、 実験例について説明する。  Next, an experimental example will be described.
図 3 Aは、 車両用風力発電装置 2 3にかかる実験装置 1 0 0の概略的な側面図 である。 図 3 Aに示されるように、 実験装置 1 0 0は、 トラックの模型 4 1を含 む。 模型 4 1は、 前後方向に滑らかに移動可能に配置されている。 模型 4 1の前 方には、 図示しない送風機が設けられている。 模型 4 1の後方には、 支持部 4 2 を介してロードセル 4 3が配置されており、 ロードセル 4 3には、 模型 4 1の後 面から後方に延びる支軸 4 1 aが取り付けられている。 ロードセル 4 3にはひず みゲージが内蔵されており、 ロードセル 4 3は支軸 4 1 aを介して受ける荷重に 対応する電圧を検出する。 ロードセル 4 3により、 送風機からの風による模型 4 1の空気抵抗が検出される。 FIG. 3A is a schematic side view of the experimental apparatus 100 according to the vehicle wind power generator 23. As shown in FIG. 3A, the experimental apparatus 100 includes a truck model 41. No. The model 41 is arranged so as to be able to move smoothly in the front-back direction. A blower (not shown) is provided in front of the model 41. A load cell 43 is disposed behind the model 41 via a support part 42, and a support shaft 41a extending rearward from the rear surface of the model 41 is attached to the load cell 43. . The load cell 43 has a built-in strain gauge, and the load cell 43 detects a voltage corresponding to a load received via the support shaft 41a. The load cell 43 detects the air resistance of the model 41 due to the wind from the blower.
模型 4 1では、 タイヤの接地面から荷箱 1 2の上面 1 4までの高さが 1 6 5 m mであり、 荷箱 1 2の幅が 1 0 0 mmである。 そのため、 模型 4 1の前方への投 影面積 Sは、 S = 1 6 5 mm X 1 0 0 mm= 0. 0 1 6 5 m2 である。 模型 4 1 では、 タイヤの接地面からキャビンルーフ 1 5までの高さが 1 1 0 mmで、 上面 1 4とキャビンルーフ 1 5との高さの差が 5 5 mmである。 キャビンルーフ 1 5 の前後方向の長さが 8 O mmであり、 キヤビンルーフ 1 5の車幅方向の長さが 9 O mmである。 荷箱 1 2の前後方向の長さは 2 0 O mmである。 In the model 41, the height from the ground contact surface of the tire to the upper surface 14 of the packing box 12 is 16.5 mm, and the width of the packing box 12 is 100 mm. Therefore, the projected area S of the front of the model 41 is S = 165 mm × 100 mm = 0.0165 m 2 . In the model 41, the height from the ground contact surface of the tire to the cabin roof 15 is 110 mm, and the difference in height between the upper surface 14 and the cabin roof 15 is 55 mm. The length of the cabin roof 15 in the front-rear direction is 8 O mm, and the length of the cabin roof 15 in the vehicle width direction is 9 O mm. The length of the packing box 12 in the front-rear direction is 20 O mm.
実験では、 送風機は風速 1 1. 3 mZ sの風を模型 4 1に供給した。 模型 4 1 の空気抵抗 Cは、 ロードセル 4 3によって得られる電圧値 Eから、  In the experiment, the blower supplied a wind of 11.3 mZ s to the model 41. The air resistance C of the model 41 is obtained from the voltage value E obtained by the load cell 43.
C = (0. 2 4 6 5 E + 0. 0 0 1 5 ) X 9. 8 ··· 式 ( 1 )  C = (0.24 6 5 E + 0 .0 0 1 5) X9.8 (1)
によって得られる。 Obtained by
空気抵抗を表すために一般的に用いられる空気抵抗係数 CDは、 The air resistance coefficient C D commonly used to represent air resistance is
CD= C/ ( 1 /2 P V2S) …式 (2) C D = C / (1/2 P V 2 S)… Equation (2)
によって求められる。 Required by
実験では、 空気密度 /0 = 1. 2 k g /m 風速 V= l l . S mZ s、 模 型 4 1の前方への投影面積 S = 0. 0 1 6 5 m2として、 In the experiment, the air density / 0 = 1. 2 kg / m wind speed V = ll. S mZ s, projected area S = 0. 0 1 6 5 m 2 to the front of the model type 4 1,
CD=C/ ( 1 / 2 X 1. 2 X 1 1. 32X 0. 0 1 6 5 ) …式 (3 ) C D = C / ( 1/2 X 1.2 X 1 1.3 2 X 0. 0 1 6 5)… Equation (3)
により、 空気抵抗係数 CDを計算した。 The air drag coefficient C D was calculated by
上端から下端までの長さが 3 O mmと 5 O mmの導風板 2 1が使用された。 そ れぞれにおいて、 導風板 2 1の傾きを変化させて、 キャビンルーフ 1 5から導風 板 2 1の上端までの高さ hを変化させた。 3 Ommの導風板 2 1は湾曲しておら ず、 5 Ommの導風板 2 1は、 後方に向けてわずかに湾曲する。 Wind guide plates 21 with lengths of 3 O mm and 5 O mm from the upper end to the lower end were used. In each case, the inclination of the air guide plate 21 was changed to The height h to the upper end of the plate 21 was changed. The 3 Omm air guide plate 21 is not curved, and the 5 Omm air guide plate 21 is slightly curved backward.
図 3 A〜 3 Cに示す 3種類の風車 2 2、 22A、 45が使用された。 図 3 Aに 示す風車 22では、 ロータ 26の直径が 25 mmであり、 羽根 29の径方向の長 さが 8mmであり、 風車 22の回転半径が 25 mmZ 2 + 8 mm= 20. 5 mm である。 ロータ 2 6の内部には、 発電機 30の代わりに小型のモータが格納され 、 モータの軸が支軸 2 5に取り付けられるとともに、 モータの本体がロータ 26 に一体回転可能に取り付けられた。 風車 22が回転すると、 モータの軸に対して 、 モータの本体がロータ 26と一体に回転する。  Three types of windmills 22, 22, 22A and 45 shown in Figs. 3A to 3C were used. In the wind turbine 22 shown in FIG. 3A, the diameter of the rotor 26 is 25 mm, the length of the blade 29 in the radial direction is 8 mm, and the turning radius of the wind turbine 22 is 25 mm Z 2 +8 mm = 20.5 mm. is there. Inside the rotor 26, a small motor was stored instead of the generator 30. The motor shaft was mounted on the support shaft 25, and the main body of the motor was mounted on the rotor 26 so as to be integrally rotatable. When the windmill 22 rotates, the main body of the motor rotates integrally with the rotor 26 with respect to the motor shaft.
風車 22の支軸 25力 キャビンルーフ 1 5の前端より 55 mm後ろ (荷箱 1 2の前面より 25 mm前) に位置し、 キャビンルーフ 1 5より 3 3 mm上 (荷箱 1 2の上面 1 4より 22 mm下) に位置している。  Axle 25 of wind turbine 22 25 forces 55 mm behind the front end of cabin roof 15 (25 mm before the front of packing box 12) and 33 mm above cabin roof 15 (top surface of packing box 1 2) (22 mm below 4).
図 3 Bに示す風車 2 2 Aは、 各羽根 29の回転方向側を覆う補助部材 44を有 する。 各羽根 29の先端と、 回転方向側の隣の羽根 29の基端とに、 補助部材 4 4の両端部が取り付けられている。 本実験では、 補助部材 44はアルミテープで 形成される。 図 3 Aに示す風車 22を 6枚羽根 Aと称し、 補助部材 44を取り付 けた図 3 Bに示す風車 22 Aを 6枚羽根 Bと称する。  The wind turbine 22 A shown in FIG. 3B has an auxiliary member 44 that covers the rotation direction side of each blade 29. Both ends of the auxiliary member 44 are attached to the tip of each blade 29 and the base end of the adjacent blade 29 on the rotation direction side. In this experiment, the auxiliary member 44 is formed of aluminum tape. The windmill 22 shown in FIG. 3A is referred to as six blades A, and the windmill 22A shown in FIG. 3B to which the auxiliary member 44 is attached is referred to as six blades B.
図 3 Cに示す風車 45は、 2枚の羽根 46を有する。 風車 45では、 ロータ 4 7の直径が 1 Ommであり、 羽根 46の径方向の長さが 1 5 mmであり、 風車 4 5の回転半径は 1 0 mmZ 2 + 1 5 mm= 20 mmである。 風車 45の中心軸は 、 ロータ 47に取り付けられてロータ 4 7と一体で回転する回転軸 48であり、 ベアリング 49を介して支持部材 24に回転可能に支持されている。 回転軸 48 は、 図 3 Aに示す風車 22の支軸 2 5 (図 2 B参照) と同じ位置に配置されてい る。  The windmill 45 shown in FIG. 3C has two blades 46. In the windmill 45, the diameter of the rotor 47 is 1 Omm, the radial length of the blade 46 is 15 mm, and the turning radius of the windmill 45 is 10 mmZ2 + 15 mm = 20 mm . The center axis of the windmill 45 is a rotating shaft 48 attached to the rotor 47 and rotating integrally with the rotor 47, and is rotatably supported by the support member 24 via a bearing 49. The rotating shaft 48 is arranged at the same position as the support shaft 25 (see FIG. 2B) of the wind turbine 22 shown in FIG. 3A.
実験装置 1 00を用いて、 導風板 2 1の傾きを変えることにより高さ hを変化 させて実験を行い、 表 1及び表 2に示す結果を得た。 図 3 Cに示す風車 45を使 用した場合の結果を表 1に示し、 図 3 A、 3 Bに示す風車 22, 22 Aを使用し た場合の結果を表 2に示す。 表 1及び表 2には、 模型 4 1に導風板 2 1及び風車 22、 22A、 45を取り付けなかった場合に比べて空気抵抗係数 CDが低減し た割合 (抵抗低減率) も示される。 風車 22, 22A, 45の回転は目視により 評価された。 表 1及び表 2において、 大変よく回る場合が評価符号 「◎」 で示さ れ、 よく回る場合が評価符号 「〇」 で示される。 よく回る場合に比べれば回転速 度が遅いが発電可能と考えられる場合が評価符号 「△」 で示され、 何度か実験を 繰り返して回る場合と回らない場合とが混在し、 回り出しが不安定な場合が評価 符号 「X」 で示される。 比較のため、 表 1に示すように、 キャビンルーフ 1 5の 前端から荷箱 1 2の上面 14の前端までを覆い、 且つ上端から下端まで約 1 00 mmの長さを有する板が取り付けられた場合の抵抗低減率も調べられた。 この場 合、 風車は取り付けられない。 Experiments were performed using the experimental apparatus 100 to change the height h by changing the inclination of the air guide plate 21, and the results shown in Tables 1 and 2 were obtained. Table 1 shows the results when the wind turbine 45 shown in Fig. 3C is used, and Table 2 shows the results when the wind turbines 22 and 22A shown in Figs. 3A and 3B are used. Tables 1 and 2 show that model 41 has wind guide plate 21 and windmill The rate at which the air resistance coefficient C D was reduced compared to the case where 22, 22, A, and 45 were not installed (resistance reduction rate) is also shown. The rotation of the wind turbines 22, 22A, 45 was visually evaluated. In Tables 1 and 2, the case where the motor rotates very well is indicated by an evaluation symbol “◎”, and the case where the motor rotates frequently is indicated by an evaluation symbol “〇”. The case where the rotation speed is slower than the case where it turns well is considered to be possible to generate power is indicated by the evaluation code “△”. The stable case is indicated by the evaluation code "X". For comparison, as shown in Table 1, a plate covering the front end of the cabin roof 15 to the front end of the upper surface 14 of the packing box 12 and having a length of about 100 mm from the upper end to the lower end was attached. The resistance reduction rate in the case was also examined. In this case, no windmill can be installed.
風車 導風板 導風板 cD 抵抗低減率 風車の回転 Windmill Guide plate Guide plate c D- resistance reduction rate Rotation of windmill
高さ h (%)  Height h (%)
風車なし 板なし 0.6630 0.00  Without windmill Without plate 0.6630 0.00
風車なし (100mm板) ( h二 55mm) 0.4702 29.08  Without windmill (100mm board) (h55mm) 0.4702 29.08
2枚羽根 板なし 0.6500 1.96 X  2 blades without board 0.6500 1.96 X
2枚羽根 h=13mm 0.6449 2.73 △  2 blades h = 13mm 0.6449 2.73 △
2枚羽根 30mm根 h=18mm 0.6006 9.41 〇  2 blades 30mm root h = 18mm 0.6006 9.41 〇
2枚羽根 30mmfe h=22mm 0.5585 15.76 ©  2 blades 30mmfe h = 22mm 0.5585 15.76 ©
2枚羽根 30mm根 h=25mm 0.5167 22.07 〇  2 blades 30mm root h = 25mm 0.5167 22.07 〇
2枚羽根 30mm板 h=28mm 0.5070 23.53 〇 風車なし 30nmi¾ji h=28niTi 0.5010 24.43  2 blades 30mm plate h = 28mm 0.5070 23.53 な し No wind turbine 30nmi¾ji h = 28niTi 0.5010 24.43
風車なし 50mm板 h=37mm 0.4980 24.89  Without windmill 50mm plate h = 37mm 0.4980 24.89
2枚羽根 50mmflji h=37mm 0.5023 24.24 Δ  2 blades 50mmflji h = 37mm 0.5023 24.24 Δ
2枚羽根 50mm板 h=38mm 0.4931 25.62 Δ  2 blades 50mm plate h = 38mm 0.4931 25.62 Δ
2枚羽根 50mm板 h=39mm 0.4903 26.05 △  2 blades 50mm board h = 39mm 0.4903 26.05 △
2枚羽根 50rran板 h=41mm 0.4965 25.11 △ 表 2 2 blades 50rran plate h = 41mm 0.4965 25.11 △ Table 2
Figure imgf000011_0001
表 1に示すように、 導風板 2 1の高さ hが風車 2 2の中心軸の高さ (3 3mm ) より低い場合、 導風板 2 1の高さ hが高いほど抵抗低減率が大きくなり、 導風 板 2 1の高さ hが風車 22の中心軸の高さより高い場合、 導風板 2 1の高さ hの 変化に対して抵抗低減率の極大値が得られた。
Figure imgf000011_0001
As shown in Table 1, when the height h of the wind guide plate 21 is lower than the height (33 mm) of the center axis of the wind turbine 22, the higher the height h of the wind guide plate 21, the lower the resistance reduction rate When the height h of the wind guide plate 21 was higher than the height of the center axis of the wind turbine 22, the maximum value of the resistance reduction rate was obtained with respect to the change in the height h of the wind guide plate 21.
上端から下端までの長さが 3 Ommの導風板 2 1の場合、 風車の回転の評価は 、 h = 22mmのときに、 「◎」 であり、 そのときの抵抗低減率は 1 5. 7 6% であった。 h = 25 mmや h = 28 mmでは、 風車の回転の評価は 「〇」 で、 抵 抗低減率はそれぞれ 22. 0 7%、 23. 5 3 %であった。 また、 h = 28 mm のとき、 風車 22がない場合の抵抗低減率は 24. 43%であった。  In the case of the wind guide plate 21 whose length from the upper end to the lower end is 3 Omm, the evaluation of the rotation of the windmill is “◎” when h = 22 mm, and the resistance reduction rate at that time is 15.7. 6%. At h = 25 mm and h = 28 mm, the wind turbine rotation evaluation was “〇”, and the resistance reduction rates were 22.0 7% and 23.5 3%, respectively. When h = 28 mm, the resistance reduction rate without the windmill 22 was 24.43%.
上端から下端までが 5 Ommの導風板 2 1の場合、 h = 39 mmのときに抵抗 低減率の極大値 26. 05%が得られた。 風車の回転の評価は、 それぞれの導風 板 2 1の高さ hにおいて 「△」 であった。 h = 3 7mmのとき、 風車 22がある 場合の抵抗低減率は 24. 24%で、 風車 22がない場合の抵抗低減率は 24. 8 9 %であった。 表 2にも示すように、 導風板 2 1及び風車 22のセットにより 、 風車 22がない場合とほぼ同程度の空気抵抗で風力発電を行うことができると 考えられる。  In the case of a wind guide plate 21 of 5 Omm from the upper end to the lower end, the maximum value of the resistance reduction rate of 26.05% was obtained when h = 39 mm. The evaluation of the rotation of the wind turbine was “△” at the height h of each wind guide plate 21. When h = 37 mm, the drag reduction rate with the windmill 22 was 24.24%, and the drag reduction rate without the windmill 22 was 24.89%. As shown in Table 2, it is considered that the set of the wind guide plate 21 and the wind turbine 22 enables wind power generation with substantially the same air resistance as the case where the wind turbine 22 is not provided.
表 2に示すように、 h = 3 3mmのとき、 補助部材 44がない 6枚羽根 Aの場 合の抵抗低減率が 2 3. 1 8%で、 風車の回転の評価は 「〇」 である。 補助部材 44を有する 6枚羽根 Bの場合の抵抗低減率が 23. 24%で、 風車の回転の評 価は 「◎」 であった。 よって、 補助部材 44を取り付けることにより、 補助部材 4 4を取り付けない場合と比較して、 同程度の抵抗低減率が得られ、 発電効率が 向上されると考えられる。 As shown in Table 2, when h = 33 mm, the resistance reduction rate in the case of 6 blades A without the auxiliary member 44 is 23.18%, and the evaluation of the rotation of the windmill is “〇”. . In the case of the six blades B having the auxiliary member 44, the resistance reduction rate was 23.24%, and the evaluation of the rotation of the windmill was “◎”. Therefore, by attaching the auxiliary member 44, the auxiliary member Compared to the case where 4 is not installed, the same degree of resistance reduction is obtained, and it is considered that the power generation efficiency is improved.
補助部材 4 4を取り付けることにより風車 2 2が大変よく回転した理由は以下 のように考えられる。 風車 2 2の上部においては、 空気流が羽根 2 9から後ろ上 方に向かって流れることにより、 羽根 2 9より回転方向側の空間 (図 3 Bの Aで 示される部分) には、 空気流の剥離による渦が発生していると考えられる。 渦が 存在する領域が、 補助部材 4 4によって減少されたと考えられるため、 風車 2 2 が大変よく回転したと考えられる。 補助部材 4 4の両端部が、 各羽根 2 9の先端 と、 回転方向側の隣の羽根 2 9の基端とに取り付けられて、 補助部材 4 4が斜め になっていることにより、 風車 2 2の空気抵抗が減ると考えられる。 特に、 導風 板 2 1の後ろに位置する風車 2 2の下部の羽根 2 9間 (例えば、 図 3 Bの Bで示 される部分) の空気から受ける空気抵抗が減ると考えられる。 そのため、 補助部 材 4 4により風車 2 2が大変よく回転したと考えられる。  The reason why the windmill 22 rotated very well by attaching the auxiliary member 44 is considered as follows. In the upper part of the windmill 22, the airflow flows upward from the blade 29 to the rear, so that the space (the portion indicated by A in FIG. 3B) on the rotational direction side of the blade 29 has an airflow. It is considered that a vortex is generated due to the peeling of the glass. It is considered that the region where the vortex exists was reduced by the auxiliary member 44, and it is considered that the windmill 22 rotated very well. Both ends of the auxiliary member 44 are attached to the tip of each blade 29 and the base end of the adjacent blade 29 on the rotation direction side, and the auxiliary member 44 is slanted. It is thought that the air resistance of 2 will decrease. In particular, it is considered that the air resistance received from the air between the lower blades 29 of the wind turbine 22 located behind the wind guide plate 21 (for example, the portion indicated by B in FIG. 3B) is reduced. Therefore, it is considered that the windmill 22 was rotated very well by the auxiliary member 4 4.
下端から上端までの長さが 1 0 O mmの板を取り付けてキャビンルーフ 1 5の 前端から荷箱 1 2の上面 1 4までを覆った場合の抵抗低減率は、 2 9 . 0 8 %で めった。  When a plate with a length of 10 O mm from the lower end to the upper end is attached and the front end of the cabin roof 15 is covered from the top surface 14 of the packing box 12, the drag reduction rate is 29.08%. I'm sorry.
本実施の形態の車両用風力発電装置は、 以下のような利点を有する。  The vehicle wind power generator according to the present embodiment has the following advantages.
( 1 ) トラック 1 1のキヤビンルーフ 1 5に導風板 2 1が配置され、 導風板 2 1と荷箱 1 2との間に風車 2 2が配置されており、 風車 2 2は、 導風板 2 1に 沿って流れる空気流により回転される。 また、 風車 2 2は導風板 2 1 と荷箱 1 2 との間に配置されているため、 導風板 2 1より上方にはみ出すことができ、 従来 と比べて風車 2 2を大きくできる。 よって、 導風板 2 1により、 トラック 1 1の 空気抵抗の低減効果を所定量確保できるとともに、 従来技術より大きな風車 2 2 によって発電効率を向上できる。  (1) A wind guide plate 2 1 is arranged on the cabin roof 15 of the truck 1 1, and a windmill 22 is arranged between the wind guide plate 2 1 and the packing box 1 2. It is rotated by the airflow flowing along the plate 21. Further, since the windmill 22 is disposed between the wind guide plate 21 and the packing box 12, the windmill 22 can protrude above the wind guide plate 21, and the size of the wind turbine 22 can be increased as compared with the related art. Therefore, the wind guide plate 21 can secure a predetermined amount of the effect of reducing the air resistance of the truck 11, and the power generation efficiency can be improved by the wind turbine 22 larger than the conventional technology.
( 2 ) 導風板 2 1とともに風車 2 2をキヤビンルーフ 1 5に取り付けること により、 風車 2 2がない場合とほぼ同程度の空気抵抗のもとに風力発電を行うこ とができる。 ( 3 ) 発電機 3 0がロータ 2 6の内部に取り付けられているため、 風車 2 2 の羽根 2 9を、 キャビンルーフ 1 5の車幅方向全体に渡って形成できる。 そのた め、 車幅方向であって風車の隣に発電機を備える従来の発電装置に比べて、 風を 受ける羽根 2 9の面積が拡大され、 発電効率を向上できる。 なお、 実施の形態は上記実施の形態に限定されるものではなく、 例えば以下の ように変更してもよレ、。 (2) By attaching the windmill 22 to the cabin roof 15 together with the wind guide plate 21, wind power can be generated with substantially the same air resistance as without the windmill 22. (3) Since the generator 30 is mounted inside the rotor 26, the blades 29 of the wind turbine 22 can be formed over the entire cabin roof 15 in the vehicle width direction. As a result, the area of the blade 29 receiving the wind is increased, and the power generation efficiency can be improved, as compared with a conventional power generator having a generator in the vehicle width direction and next to the wind turbine. Note that the embodiment is not limited to the above-described embodiment, and may be modified as follows, for example.
•補助部材 4 4は、 アルミテープで形成されることに限られない。  • The auxiliary member 4 is not limited to being formed of aluminum tape.
•補助部材 4 4は、 風車の径方向外側に湾曲するように形成してもよい。  • The auxiliary member 44 may be formed so as to be curved outward in the radial direction of the windmill.
• ロータ 2 6の内部に複数個の発電機が格納されてもよい。  • A plurality of generators may be stored inside the rotor 26.
•図 4に示すように、 ロータ 2 6の両端部の内側にそれぞれ発電機 3 0を取り 付け、 各発電機 3 0の支軸 3 2をそれぞれ支持部材 2 4に直接取り付けてもよい  • As shown in FIG. 4, the generators 30 may be mounted inside both ends of the rotor 26, and the support shafts 32 of the generators 30 may be directly mounted on the support members 24, respectively.
•図 5 Aに示すように、 羽根 5 0 aは、 風車の回転方向に沿って湾曲して形成 されてもよい。 この場合、 平板状の羽根をロータの径方向に延びるように形成す る場合に比べて、 空気抵抗が低減されやすい。 車両の走行により風車が相対的に 受ける風速は、 地上に固定された風車が受ける自然の風に比べて高速である。 そ のため、 羽根 5 0 aは、 回転に必要な風力を充分得ることができる。 • As shown in FIG. 5A, the blade 50a may be formed to be curved along the rotation direction of the windmill. In this case, the air resistance is more likely to be reduced than when the flat blades are formed to extend in the radial direction of the rotor. The relative speed of windmills that the vehicle travels is relatively higher than the natural wind that windmills that are fixed on the ground receive. Therefore, the blade 50a can sufficiently obtain the wind power required for rotation.
•図 5 Bに示すように、 羽根 5 O bは、 風車の回転方向と反対方向に沿って湾 曲して形成されてもよい。 羽根 5 0 bは湾曲していない羽根 2 9に比べて風力を 受けやすいため、 風力発電を重視する場合、 好ましくは羽根 5 0 bを用いる。  • As shown in FIG. 5B, the blade 5 Ob may be formed to bend along the direction opposite to the rotation direction of the windmill. Since the blade 50b is more susceptible to wind power than the non-curved blade 29, the blade 50b is preferably used when emphasizing wind power generation.
•図 5 A、 5 Bの羽根 5 0 a, 5 0 bに、 補助部材 4 4が取り付けられてもよ い。  • The auxiliary member 44 may be attached to the blades 50a and 50b in FIGS. 5A and 5B.
'図 6 A、 6 Bに示すように、 導風板 2 1の下端部 2 1 aをキャビンルーフ 1 5に回動可能に支持してもよい。 この場合、 例えば、 キャビンルーフ 1 5にシリ ンダ 5 1が取り付けられるとともに、 シリンダ 5 1のピストンロッド 5 1 aが導 風板 2 1の上端部 2 1 bに取り付けられる。 シリンダ 5 1により、 導風板 2 1の 傾きを変更して導風板 2 1の高さを調整し、 風車 2 2への風量調節を行ってもよ レ、。 'As shown in FIGS. 6A and 6B, the lower end 21 a of the air guide plate 21 may be rotatably supported by the cabin roof 15. In this case, for example, the cylinder 51 is attached to the cabin roof 15, and the piston rod 51 a of the cylinder 51 is attached to the upper end 21 b of the air guide plate 21. With the cylinder 51, the air guide plate 21 It is also possible to adjust the height of the wind guide plate 21 by changing the inclination and adjust the air flow to the windmill 22.
表 1に示されるように、 風車 2 2の回転評価が 「◎」 のときより導風板 2 1の 高さ hを高くすると、 風車 2 2の回転は低下するものの空気抵抗の低減率がより 向上し、 且つ風力発電を重視する場合は、 導風板 2 1の高さ hは、 風車 2 2が最 も回転しやすい位置に設定される (図 6 A参照) 。 空気抵抗の低減を重視する場 合は、 シリンダ 5 1の作動によって導風板 2 1の高さが増加される (図 6 B参照 ) 。  As shown in Table 1, when the height h of the wind guide plate 21 is set higher than when the rotation evaluation of the windmill 22 is “◎”, the rotation of the windmill 22 decreases, but the reduction rate of the air resistance is higher. In the case where the wind turbine is improved and the wind power generation is emphasized, the height h of the baffle plate 21 is set at a position where the windmill 22 can rotate most easily (see FIG. 6A). When importance is placed on reducing the air resistance, the height of the air guide plate 21 is increased by the operation of the cylinder 51 (see FIG. 6B).
例えば、 低速での走行時は、 高速での走行時に比べて空気抵抗の影響が少ない ため、 図 6 Aに示すようにシリンダ 5 1を縮めて風車 2 2に向かう風量を多く し て発電しやすくする。 例えば、 一般道から高速道路に移って車速が高速になった 場合には、 空気抵抗の影響が大きいため、 図 6 Bに示すように導風板 2 1の高さ hを増加して風車 2 2に向かう風量を少なくするとともに、 トラック 1 1全体と しての空気抵抗を下げる。 この場合、 少ない風量でも風車 2 2がよく回るため、 風車 2 2による発電量をキープできる。 導風板 2 1の高さ hを適宜変更すること により、 空気抵抗の低減と発電とのバランスをとることができる。  For example, when traveling at low speeds, the effect of air resistance is less than when traveling at high speeds, so as shown in Fig. 6A, the cylinder 51 is contracted to increase the amount of air flowing to the windmill 22 to facilitate power generation. I do. For example, when the vehicle speed is increased from a general road to an expressway, the effect of air resistance is large. Therefore, as shown in Fig. 6B, the height h of the wind guide plate 21 is increased and the wind turbine 2 is increased. Reduce the amount of air going to 2, and lower the air resistance of the entire truck 1 1. In this case, since the windmill 22 rotates well even with a small airflow, the power generation by the windmill 22 can be kept. By appropriately changing the height h of the wind guide plate 21, it is possible to balance the reduction of the air resistance and the power generation.
シリンダ 5 1は、 運転者が運転室内のスィッチを操作することによって作動す るように形成する。 シリンダ 5 1は、 トラック 1 1の車速センサからの信号に従 つて、 導風板 2 1の高さ hを車速に応じて予め設定された高さに自動的に変更す るように、 形成してもよレ、。  The cylinder 51 is formed so that the driver operates by operating a switch in the cab. The cylinder 51 is formed so as to automatically change the height h of the baffle plate 21 to a preset height according to the vehicle speed in accordance with a signal from the vehicle speed sensor of the truck 11. You can.
,発電装置は、 例えば図 7 Aに示すように、 車幅方向において、 複数の風車 5 5, 5 6を含んでもよい。 この場合、 複数の風車 5 5 , 5 6間に支持部材 2 4が 増設される。 車幅方向端部側の風車 5 5の羽根 5 7を、 車幅方向内側 5 7 aより 端部側 5 7 bの方が回転方向側に位置するように、 斜めに取り付けてもよい。 こ の場合、 車幅方向端部側への空気流が、 荷箱 1 2の側面に向けて流れやすくなる  The power generator may include a plurality of wind turbines 55, 56 in the vehicle width direction, for example, as shown in FIG. 7A. In this case, a support member 24 is additionally provided between the plurality of wind turbines 55, 56. The blades 57 of the windmill 55 on the end side in the vehicle width direction may be mounted obliquely such that the end side 57 b is located on the rotation direction side from the inner side 57 a in the vehicle width direction. In this case, the airflow toward the end portion in the vehicle width direction easily flows toward the side surface of the packing box 12.
•図 7 Bに示すように、 支軸 2 5にコイル 6 1を取り付けるとともに、 ロータ 2 6の内周面にマグネット 6 2を取り付けるようにしてもよレ、。 この場合、 風車 2 2と一体で回転するマグネッ ト 6 2がコィノレ 6 1の回りを回転することにより 、 発電が行われる。 • As shown in FIG. 7B, the coil 61 may be attached to the support shaft 25, and the magnet 62 may be attached to the inner peripheral surface of the rotor 26. In this case, the windmill Electric power is generated by the magnet 62 rotating integrally with the magnet 22 rotating around the coil 61.
•図 8に示すように、 ロータ 4 7の内部に発電機が設置できない場合、 車幅方 向で風車 4 5の隣に発電機 6 3が取り付けられてもよい。 この場合、 発電機 6 3 は、 その筒部 6 4に対して回転可能な回転軸 6 5を含む。 筒部 6 4の内周面には 図示しないコイルが取り付けられ、 回転軸 6 5には図示しないマグネッ トが取り 付けられている。 回転軸 6 5が筒部 6 4に対して回転することにより発電機 6 3 は発電する。 発電機 6 3の筒部 6 4は、 支持部材 6 6を介してキャビンルーフ 1 5に支持される。 回転軸 6 5は、 ロータ 4 7と一体で回転する回転軸 4 8と一体 回転可能に接続されている。  • As shown in FIG. 8, when a generator cannot be installed inside the rotor 47, a generator 63 may be installed next to the windmill 45 in the vehicle width direction. In this case, the generator 63 includes a rotating shaft 65 rotatable with respect to the cylindrical portion 64. A coil (not shown) is attached to the inner peripheral surface of the cylindrical portion 64, and a magnet (not shown) is attached to the rotating shaft 65. The generator 63 generates electricity when the rotating shaft 65 rotates with respect to the cylindrical portion 64. The tubular portion 64 of the generator 63 is supported by the cabin roof 15 via a support member 66. The rotating shaft 65 is connected to the rotating shaft 48 that rotates integrally with the rotor 47 so as to be integrally rotatable.
•車両用風力発電装置 2 3をガソリン及び電気の両方で駆動できるハイブリッ ド駆動のトラックに適用して、 発電された電気をハイブリッド駆動のトラックの 駆動に使用してもよい。  • The wind power generator for vehicle 23 may be applied to a hybrid drive truck that can be driven by both gasoline and electricity, and the generated electricity may be used to drive a hybrid drive truck.
• トラック 1 1の長距離走行等において、 車両用風力発電装置 2 3により発電 した電気が余った場合、 余った電気をバッテリ 3 3に蓄えて、 例えば、 ガソリン スタンドの買電所に販売してもよい。  • If there is excess electricity generated by the wind turbine generator 23 during long-distance running of the truck 1 1, etc., the excess electricity is stored in the battery 3 3 and sold to, for example, a gas station power station. Is also good.
•車両用風力発電装置 2 3が取り付けられる車両は、 トラック 1 1に限られな レ、。  • Vehicles to which the vehicle wind turbines 23 are mounted are not limited to trucks 11.
.導風板 2 1は、 湾曲せずに平板状に形成されてもよい。  The air guide plate 21 may be formed in a flat shape without being curved.
• ロータの羽根の枚数は 2枚や 6枚に限られず、 例えば 3枚、 4枚、 5枚、 8 枚であってもよい。  • The number of rotor blades is not limited to two or six, but may be three, four, five, or eight, for example.

Claims

請求の範囲 The scope of the claims
1. 車両のキャビンルーフ (1 5) に設置される車両用風力発電装置であつ て、 前記車両は、 前記キャビンルーフより高い上面 (14) を有する荷箱 (1 2 ) を含み、 風力発電装置は、 1. A wind power generator for a vehicle installed on a cabin roof (15) of a vehicle, wherein the vehicle includes a packing box (12) having an upper surface (14) higher than the cabin roof. Is
前記キャビンルーフ上に設けられ、 車両の空気抵抗を低減する導風板 (2 1 ) と、  A baffle plate (2 1) provided on the cabin roof to reduce air resistance of the vehicle;
前記キャビンルーフ上であって前記導風板と前記荷箱との間に設けられ、 ロー タ (26) と前記ロータの回転に伴って発電する発電機 (30) とを有する風車 (2 2) とを備え、  A windmill (22) provided on the cabin roof and between the wind guide plate and the packing box, and having a rotor (26) and a generator (30) that generates power as the rotor rotates. With
前記ロータは、 前記車両の車幅方向に延びるように配置され、 その表面に配設 される複数の羽根 (29) を有し、  The rotor is arranged so as to extend in the vehicle width direction of the vehicle, and has a plurality of blades (29) arranged on the surface thereof.
前記ロータは、 前記車両が走行するとき、 前記複数の羽根 (2 9) が前記導風 板に沿って流れる空気を受けることにより回転する。  When the vehicle travels, the rotor is rotated by the plurality of blades (29) receiving air flowing along the air guide plate.
2. 請求項 1に記載の車両用風力発電装置において、 2. The vehicle wind power generator according to claim 1,
前記発電機は、 前記ロータの内部に配設される。  The generator is disposed inside the rotor.
3. 請求項 1または 2に記載の車両用風力発電装置は、 さらに、 3. The wind power generator for a vehicle according to claim 1 or 2, further comprises:
前記導風板の傾きを変更する駆動手段 (5 1) を備える。  A drive means (51) for changing the inclination of the air guide plate is provided.
4. 請求項 3に記載の車両用風力発電装置において、 4. The vehicle wind power generator according to claim 3,
前記駆動手段は、 シリンダを含む。  The driving means includes a cylinder.
5. 請求項 1〜 4の何れか 1項に記載の車両用風力発電装置において、 前記複数の羽根の各々は、 前記風車の回転方向に沿って湾曲形成されている。 5. The wind power generator for a vehicle according to any one of claims 1 to 4, wherein each of the plurality of blades is curved along a rotation direction of the windmill.
6. 請求項 1〜 4の何れか 1項に記載の車両用風力発電装置において、 前記複数の羽根の各々は、 前記風車の回転方向とは反対方向に沿って湾曲形成 されている。 6. The wind power generator for a vehicle according to any one of claims 1 to 4, Each of the plurality of blades is curved along a direction opposite to a rotation direction of the windmill.
7. 請求項 1〜 6の何れか 1項に記載の車両用風力発電装置において、 前記ロータは、 隣接する一方の羽根の先端と他方の羽根の基端との間に設けら れ、 風車の空気抵抗を低減する複数の補助部材 44を含む。 7. The wind turbine generator for a vehicle according to any one of claims 1 to 6, wherein the rotor is provided between a tip end of one adjacent blade and a base end of the other blade. Including a plurality of auxiliary members 44 for reducing air resistance.
8. 請求項 1〜 7の何れか 1項に記載の車両用風力発電装置において、 前記風車は、 車幅方向に直列して設けられた複数の風車のうちの 1つである。 8. The wind turbine generator according to any one of claims 1 to 7, wherein the wind turbine is one of a plurality of wind turbines provided in series in a vehicle width direction.
9. 風力発電装置を有する車両であって、 9. A vehicle having a wind power generator,
キヤビンルーフ (1 5) と、  Cabin roof (15)
前記キャビンルーフより高い上面 (14) を有する荷箱 (1 2) と、 前記キャビンルーフ上に設置された風力発電装置 (23) と、  A cargo box (1 2) having an upper surface (14) higher than the cabin roof, and a wind power generator (23) installed on the cabin roof;
を備え、  With
前記風力発電装置は、  The wind power generator,
前記キャビンルーフ上に設けられ、 車両の空気抵抗を低減する導風板 (2 1) と、  A baffle plate (21) provided on the cabin roof to reduce air resistance of the vehicle;
前記キャビンルーフ上であって前記導風板と前記荷箱との間に設けられ、 ロータ (26) とロータの回転に伴って発電する発電機 (30) とを有する 風車 (2 2) とを含み、  A wind turbine (22) provided on the cabin roof and between the wind guide plate and the packing box, and having a rotor (26) and a generator (30) that generates power as the rotor rotates. Including
前記ロータは、 前記車両の車幅方向に延びるように配置され、 その表 面に配設される複数の羽根 (29) を有し、  The rotor is arranged to extend in the vehicle width direction of the vehicle, and has a plurality of blades (29) arranged on a surface thereof.
前記ロータは、 前記車両が走行するとき、 前記複数の羽根 (29) が 前記導風板に沿って流れる空気を受けることにより回転する。  When the vehicle runs, the rotor rotates by receiving air flowing along the air guide plate from the plurality of blades (29).
1 0. 請求項 9に記載の車両は、 さらに、 10. The vehicle according to claim 9, further comprising:
前記導風板の傾きを変更する駆動手段 (5 1) を備える。 A driving means (51) for changing the inclination of the air guide plate is provided.
1 1. 車両に設けられた風力発電装置によって発電する方法であって、 前記 車両は、 キャビンルーフ (1 5) と、 前記キャビンルーフより高い上面 ( 1 4) を有する荷箱 (1 2) を含み、 前記風力発電装置ば、 車両の空気抵抗を低減する 導風板 (2 1) と、 ロータ (26) とロータの回転に伴って発電する発電機 (31 1. A method for generating electricity by a wind turbine generator provided in a vehicle, the vehicle comprising: a cabin roof (15); and a packing box (12) having a top surface (14) higher than the cabin roof. The wind power generator includes a wind guide plate (21) for reducing the air resistance of a vehicle, a rotor (26), and a generator (3) for generating power as the rotor rotates.
0) とを有する風車 (22) とを含み、 前記ロータ (26) は、 車両の車幅方向 に延びるように配置され、 その表面に配設される複数の羽根 (2 9) を有し、 該 発電方法は、 0), and the rotor (26) is disposed so as to extend in the vehicle width direction of the vehicle, and has a plurality of blades (29) disposed on the surface thereof. The power generation method is
前記導風板を、 前記車两のキャビンルーフ (1 5) 上に配設する工程と、 前記風車を、 前記キヤビンルーフ上であつて前記導風板と前記荷箱との間に配 設する工程と、  Disposing the wind guide plate on a cabin roof (15) of the vehicle; and disposing the wind turbine on the cabin roof between the wind guide plate and the packing box. When,
前記車両を走行する工程と、  Driving the vehicle;
前記複数の羽根が導風板に沿って流れる空気を受けることによって、 前記ロー タを回転させる工程と、  Rotating the rotor by receiving air flowing along the air guide plate by the plurality of blades;
を備える。  Is provided.
1 2. 請求項 1 1に記載の発電方法は、 さらに、 1 2. The power generation method according to claim 11 further includes:
前記導風板の傾きを変更する工程を備える。  A step of changing the inclination of the baffle plate.
1 3. 請求項 1 1または 1 2に記載の発電方法は、 さらに、 1 3. The power generation method described in claim 11 or 12
前記発電する工程によって発電された電気をバッテリに蓄電する工程を備える  A step of storing electricity generated by the power generation step in a battery
PCT/JP2002/009443 2002-03-25 2002-09-13 Wind power generator for vehicle WO2003081035A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2002332177A AU2002332177A1 (en) 2002-03-25 2002-09-13 Wind power generator for vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002083328A JP2003278641A (en) 2002-03-25 2002-03-25 Wind power generation device for vehicle
JP2002-83328 2002-03-25

Publications (1)

Publication Number Publication Date
WO2003081035A1 true WO2003081035A1 (en) 2003-10-02

Family

ID=28449177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/009443 WO2003081035A1 (en) 2002-03-25 2002-09-13 Wind power generator for vehicle

Country Status (3)

Country Link
JP (1) JP2003278641A (en)
AU (1) AU2002332177A1 (en)
WO (1) WO2003081035A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005106242A1 (en) * 2004-05-01 2005-11-10 Brian Ellis Vehicle comprises a wind turbine coupled to an electrical generator
DE102006023130A1 (en) * 2006-05-02 2007-11-22 Hiwin Technologies Corp. Wind generator for transporting medium, has housing, where current generating mechanism is provided with rotating wheel and fixing plate laterally attached to impeller
WO2010054488A2 (en) * 2008-11-17 2010-05-20 Brian Moore Moving fluid energy recovery system
CN107061152A (en) * 2017-04-02 2017-08-18 李德生 Ultrathin Denso is standby

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100610346B1 (en) * 2004-08-30 2006-08-10 오호섭 small size wind force generator
JP4934476B2 (en) * 2007-04-02 2012-05-16 有限会社ディーシークリエイトエンジニアリング In-vehicle wind power generator
SG152071A1 (en) * 2007-10-09 2009-05-29 Dragon Energy Pte Ltd Wind energy conversion system
JP5276897B2 (en) * 2008-05-23 2013-08-28 株式会社プロジェクト アイ Diesel vehicle power generator, emergency medical support electronic medical record system and control system
JP2011038468A (en) * 2009-08-11 2011-02-24 Global Energy Co Ltd Power generation vehicle
GB2597513A (en) * 2020-07-24 2022-02-02 Tempest Brannan Energy recovery unit for a vehicle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4237384A (en) * 1979-06-27 1980-12-02 Kennon Woodrow A Wind turbine means
US4375898A (en) * 1980-07-28 1983-03-08 Paccarinc. Air deflector assembly
US4437698A (en) * 1982-08-09 1984-03-20 Tantalo Anthony T Fuel saving device for increasing fuel mileage on a moving vehicle
JP2001182647A (en) * 1999-12-27 2001-07-06 G & M:Kk Electric energy storage system
WO2002016767A1 (en) * 2000-08-25 2002-02-28 Nobuyoshi Okazaki Fuel consumption improving structure of running body

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4237384A (en) * 1979-06-27 1980-12-02 Kennon Woodrow A Wind turbine means
US4375898A (en) * 1980-07-28 1983-03-08 Paccarinc. Air deflector assembly
US4437698A (en) * 1982-08-09 1984-03-20 Tantalo Anthony T Fuel saving device for increasing fuel mileage on a moving vehicle
JP2001182647A (en) * 1999-12-27 2001-07-06 G & M:Kk Electric energy storage system
WO2002016767A1 (en) * 2000-08-25 2002-02-28 Nobuyoshi Okazaki Fuel consumption improving structure of running body

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005106242A1 (en) * 2004-05-01 2005-11-10 Brian Ellis Vehicle comprises a wind turbine coupled to an electrical generator
DE102006023130A1 (en) * 2006-05-02 2007-11-22 Hiwin Technologies Corp. Wind generator for transporting medium, has housing, where current generating mechanism is provided with rotating wheel and fixing plate laterally attached to impeller
WO2010054488A2 (en) * 2008-11-17 2010-05-20 Brian Moore Moving fluid energy recovery system
WO2010054488A3 (en) * 2008-11-17 2010-07-15 Brian Moore Moving fluid energy recovery system
CN107061152A (en) * 2017-04-02 2017-08-18 李德生 Ultrathin Denso is standby

Also Published As

Publication number Publication date
JP2003278641A (en) 2003-10-02
AU2002332177A1 (en) 2003-10-08

Similar Documents

Publication Publication Date Title
US6882059B1 (en) Vehical wind operated generator
US5584355A (en) Electrical vehicle
US5986429A (en) Battery charging system for electric vehicles
US5680032A (en) Wind-powered battery charging system
US7808121B1 (en) Vehicle with electricity generating, braking wind turbine
US8436485B1 (en) Wind powered turbine motor for motor vehicles
US5287004A (en) Automobile air and ground effects power package
JP4546624B2 (en) Wind generator for automobile
US6838782B2 (en) Wind energy capturing device for moving vehicles
US9103317B2 (en) Wind operated electricity generating system
US8089168B2 (en) Tire actuated generator for use on cars
US20110133454A1 (en) Power generation device
WO2003081035A1 (en) Wind power generator for vehicle
KR20160083120A (en) Power generation system
US20210122249A1 (en) Wind Based Electrical Generation System for Vehicles.
JPH11155203A (en) On-board car battery charger by wind power generation
JP6571154B2 (en) Wind power generation rechargeable electric vehicle when stopped
GB2271536A (en) Battery-electric vehicle.
WO1999001919A1 (en) System for drag reduction of vehicles and for battery charging
JP2003269319A (en) Wind force power generating system
JP2014134100A (en) On-vehicle power generation unit and vehicle
KR102564413B1 (en) Generator For Vehicle
GB2288157A (en) Air turbine electricity generating apparatus eg for vehicles
JPH0426303A (en) Generator for electric automobile
CN109760756A (en) Windage power generator and electric car applied to electric car

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase