WO2002016767A1 - Fuel consumption improving structure of running body - Google Patents

Fuel consumption improving structure of running body Download PDF

Info

Publication number
WO2002016767A1
WO2002016767A1 PCT/JP2001/007232 JP0107232W WO0216767A1 WO 2002016767 A1 WO2002016767 A1 WO 2002016767A1 JP 0107232 W JP0107232 W JP 0107232W WO 0216767 A1 WO0216767 A1 WO 0216767A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
shaft
propeller
blade shaft
traveling
Prior art date
Application number
PCT/JP2001/007232
Other languages
French (fr)
Japanese (ja)
Inventor
Nobuyoshi Okazaki
Original Assignee
Nobuyoshi Okazaki
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nobuyoshi Okazaki filed Critical Nobuyoshi Okazaki
Priority to JP2002521830A priority Critical patent/JPWO2002016767A1/en
Priority to US10/362,787 priority patent/US20040202543A1/en
Publication of WO2002016767A1 publication Critical patent/WO2002016767A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/002Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  the axis being horizontal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D15/00Transmission of mechanical power
    • F03D15/10Transmission of mechanical power using gearing not limited to rotary motion, e.g. with oscillating or reciprocating members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/30Wind motors specially adapted for installation in particular locations
    • F03D9/32Wind motors specially adapted for installation in particular locations on moving objects, e.g. vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/94Mounting on supporting structures or systems on a movable wheeled structure
    • F05B2240/941Mounting on supporting structures or systems on a movable wheeled structure which is a land vehicle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/728Onshore wind turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Definitions

  • the present invention relates to a structure for improving the fuel efficiency of a traveling body for improving the fuel efficiency of the traveling body, and is suitable for a traveling vehicle such as a truck, a ship, and the like.
  • Examples of the structure of this type of traveling body include, for example, Japanese Utility Model Publication No. Showa 51-135 399, Japanese Patent Publication No. Heisei 141-121, Japanese Patent Publication No. The one disclosed in the official gazette of Heisei 10-339392 is known.
  • a propeller is mounted on a propeller shaft provided along the running direction. It has a blower, and the propeller of this blower receives the wind to rotate the propeller shaft, and transmits this rotational force to the underwater propulsion propeller or propulsion axle to obtain propulsion. It was a thing.
  • Example 2 the structure described in Japanese Patent Application Publication No. Heisei 9-124241 (hereinafter referred to as Conventional Example 2) is a front part of a motorcycle as a vehicle.
  • a wind vent is provided in the (wind shield panel), this wind vent is connected to one end of the flexible hose, and an impeller is provided at the other end of the flexible hose, and the rotating shaft of the impeller is driven by a driving sprocket. To obtain rotational driving force by wind power.
  • a wind path pipe opening is provided in a front part which is a front part of a vehicle as a body, a wind path pipe is provided continuously from the wind path pipe, and a windmill is provided inside the wind path pipe, and the windmill is provided. It is probable that a wind power generator is installed on the shore.
  • the present invention has been made in order to solve the above-mentioned conventional drawbacks, and an object of the present invention is to provide a structure capable of efficiently improving the fuel efficiency of a traveling body. Disclosure of the invention The invention of the present application has been made in order to solve the above-mentioned problems, and a fuel efficiency improvement structure of a traveling body according to the invention of the present application is a fuel efficiency improvement structure attached to a traveling body 1 such as a vehicle, and is provided in a traveling direction (X).
  • a blade shaft 23 arranged substantially perpendicular to the blade shaft, and a blade 21 fixed to the blade shaft 23 and rotating the blade shaft 23 in response to an opposing wind during traveling. It is characterized by
  • the vane 21 when the traveling body 1 travels, the vane 21 receives an opposing wind from the front, the vane shaft 23 rotates, and the traveling body Fuel efficiency can be improved.
  • the blade shaft is arranged substantially perpendicular to the running direction as described above, it is easy to provide a wide wind receiving surface of the blade, and sufficient rotation can be performed.
  • a plurality of blades 21 are radially protruded from the blade shaft 23 in the outer circumferential direction and fixed. It is preferable to adopt a configuration in which the front surface 22 a of the upper blade 21 in the running direction with respect to 3 is provided as a wind receiving surface for receiving the opposing wind. By employing this configuration, the blade shaft 23 rotates in the direction in which the upper blade 21 is directed rearward in the traveling direction and the lower blade 21 is directed forward in the traveling direction.
  • the invention of the present application is a fuel efficiency improvement structure of a traveling body according to the invention of the present application, which is a fuel efficiency improvement structure attached to a traveling body 1 such as a vehicle, and is substantially in the traveling direction (X).
  • a traveling direction (X) With respect to the traveling direction (X), a vertically arranged blade shaft 23 and a blade 21 fixed to the blade shaft 23 and rotating the blade shaft 23 when receiving an opposing wind during traveling.
  • a transmission mechanism 30 that connects the propeller shaft 43 arranged in a substantially parallel direction with the blade shaft 23 and the propeller shaft 43 to transmit the rotational force of the blade shaft 23 to the propeller shaft 43.
  • a propeller 41 fixed to the propeller shaft 43.
  • the blade shaft 23 rotates. Further, the propeller shaft 43 is transmitted to the propeller shaft 43 via the transmission mechanism 30 together with the rotation of the blade shaft 23, so that the propeller 41 rotates in a direction to send the wind to the rear side (Y) in the traveling direction.
  • the blade fixed to the blade shaft arranged in a direction substantially perpendicular to the traveling direction rotates in response to the opposing wind during traveling, so that the fuel efficiency of the traveling body can be improved.
  • the blade shafts are arranged in a direction substantially perpendicular to the traveling direction as described above, it is easy to provide a wide wind receiving surface for the blades, and it is possible to obtain a sufficient rotational force.
  • the propeller 41 is provided so as to rotate in a direction in which the wind is sent rearward in the traveling direction (Y) by the rotational force transmitted from the blade shaft 23 to the propeller shaft 43.
  • the blade 21 is curved so that the rear surface in the rotation direction becomes the wind receiving surface 22a, and the blade shaft 23 It is preferable to adopt a configuration in which a large number are fixed to each other.
  • the structure for improving fuel efficiency of a traveling body according to claim 4 which adopts the above configuration, when an opposing wind during traveling hits the wind receiving surface 2 2a of the blade 21, the blade 21 is accurately rotated. 23 can be rotated in the rotational direction, and a sufficient rotational force can be obtained.
  • the transmission mechanism 30 includes the blade shaft gear 32 fixed to the blade shaft 23 and the propeller shaft 43. It is preferable that it is composed of a propeller shaft gear 34 that is fixed and engages with the blade shaft gear 32. Further, in the structure for improving fuel efficiency of a traveling body according to claim 5 having such a configuration, as described in claim 6, the blade shaft gears 32 are provided at both ends of the blade shaft 23. A pair of the propeller shafts 43 is provided on both sides of the blade shaft 23, and the propeller shaft gears 34 are fixed to each of them, so that one blade shaft gear 32 and one side propeller are provided.
  • a configuration is provided in which the propeller shaft gear 34 of the shaft 43 is connected and the blade shaft gear 32 of the other side is connected to the propeller shaft gear 34 of the other propeller shaft 43. It is preferable to employ it.
  • a pair of propeller shafts 43 are provided on both sides of the blade shaft 23, and the pair of propeller shafts 43 rotate, The propellers 41 on both sides rotate similarly.
  • one of the propeller shaft gears 34 engages with the blade shaft gear 32 on the forward side in the traveling direction of the traveling body 1 and the other side has the other side. It is preferable to adopt a configuration in which the propeller shaft gear 34 is provided so as to mesh with the blade shaft gear 32 on the rear side in the traveling direction. By adopting this configuration, the rotation of the blade shafts 23 is transmitted as rotations of the respective propeller shaft gears 34 engaging with these via the blade shaft gears 32 on both sides in the same direction. The rotation directions of the propellers 4 1 on both sides can be matched. For this reason, the propeller shafts 43 and the propellers 41 on both sides can be designed inexpensively with the same structure without employing a complicated connection structure. BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a front view of a traveling body 1 equipped with a fuel efficiency improvement structure according to a first embodiment of the present invention
  • FIG. 2 is a plan view of the traveling body
  • FIG. 3 is a partially omitted plan view of the fuel efficiency improvement structure of the embodiment.
  • Figure 4 shows the same FIG. 4 is an explanatory view of a blade in the fuel efficiency improving structure of the embodiment, and is an enlarged sectional perspective view of a main part.
  • FIG. 5 shows an experimental result in which the fuel efficiency improvement structure of the embodiment is mounted.
  • FIG. 6 is a front view of the traveling body 1 equipped with the fuel efficiency improvement structure according to the second embodiment of the present invention
  • FIG. 7 is a plan view of the fuel efficiency improvement structure of the embodiment with a part omitted.
  • FIG. 8 is a front view of a traveling body 1 equipped with a fuel efficiency improvement structure according to another embodiment.
  • FIG. 9 is an explanatory view of a blade in a fuel efficiency improving structure of another embodiment, and is an enlarged sectional perspective view of a main part.
  • FIG. 10 is an explanatory view of a blade in a fuel efficiency improvement structure of another embodiment, and is an enlarged sectional side view of a main part.
  • FIG. 11 is an enlarged explanatory view of a main part of a fuel efficiency improvement structure of another embodiment, in which (a) is a side view and (b) is a plan view.
  • FIG. 12 is an enlarged side view of a main part of a fuel efficiency improvement structure of another embodiment.
  • the fuel efficiency improvement structure according to the first embodiment will be described by taking, as an example of a traveling body, one mounted on a truck 1 (traveling vehicle).
  • the structure for improving fuel efficiency can be mounted on other traveling vehicles such as automobiles such as mini cars, motorcycles such as motorcycles, and further mounted on traveling vessels such as motor ports. It is also possible.
  • the truck 1 as a traveling body of the present embodiment includes a traveling drive source (not shown) such as a driving engine for applying a propulsion force, and is provided on a front side in a traveling direction.
  • (X) and driven to rotate by the traveling drive source It comprises an operating unit 5 having wheels 3 and a loading unit 7 located on the rear side (Y) of the operating unit.
  • the fuel efficiency improving structure of the present embodiment is mounted above the traveling body 1, and specifically, is mounted above the driving section 5. More specifically, the fuel efficiency improving structure is fixed (ported) to a screwed portion (not shown) provided on an internal frame (not shown) of the driving section 5.
  • the fuel efficiency improving structure of the present embodiment is a wind receiving mechanism having a frame 10 fixed (ported) to the truck 1 (driving unit 5) and a blade shaft 23 that rotates by receiving an opposing wind during traveling. 20 and the blade axis of wind receiving mechanism 20
  • the frame 10 of this fuel efficiency improving structure is composed of a blade shaft support 10a for rotatably supporting the blade shaft 23 of the wind receiving mechanism 20 and a propeller shaft 43 of the propeller mechanism 40 for rotation. And a propeller shaft supporting portion 1 Ob for supporting the propeller shaft.
  • the frame 10 will be described in more detail.
  • the frame 10 is composed of four legs 11 fixed to the truck 1 (the inner frame of the driving section 5), and a connection connecting the legs 11 to each other.
  • Frame vertical connection frame 13a and horizontal connection frame 13b
  • this connection frame horizontal connection frame 1
  • the supporting frames 15 are provided as a pair on both left and right sides.
  • Each of the pair of supporting frames 15 is provided with the blade shaft supporting portion 10a for supporting one end of the blade shaft 23. This support is provided through bearings.
  • the pair of support frames 15 A pair of propeller shaft support portions 10b for supporting the front and rear of the propeller shaft 43 are respectively provided before and after the blade shaft support portion 10a in the traveling direction. This support is provided via bearings.
  • the propeller shaft support portions 10b are provided so as to protrude outward from the support frame 15 respectively.
  • the wind receiving mechanism 20 is rotatably supported by (the blade shaft support 10 a of) the frame 10.
  • the wind receiving mechanism 20 has a blade shaft 23 arranged substantially perpendicularly to the traveling direction (X), and a blade shaft fixed to the blade shaft 23 and receiving an opposing wind during traveling. And blades 21 provided to rotate 23.
  • Blade shaft gear 32 as a transmission mechanism 30 described later is fixed to the blade shaft 23 outside the supported portion (at the end of the blade shaft 23).
  • Blade shaft gear 3 2 This is still t are fixed respectively to both ends of the blade shaft 2 3, the blade shaft gear 3 2, faces each other seen ⁇ is consists of bevel gears or inclined.
  • a plurality of blades 21 are radially protruded from the blade shaft 23 in the outer peripheral direction and are fixed (welded) to the blade shaft 23.
  • the blade 21 is curved so that the rear surface in the rotational direction becomes the wind receiving surface 22 a, and the front surface 22 a of the upper blade 21 in the traveling direction is opposed to the blade shaft 23. It is provided to be a wind receiving surface for receiving wind.
  • the substantially flat blade 21 has its outer end 21 a on the rear side in the rotational direction from the halfway portion 21 b (clockwise side shown in FIG. 4). It is curved so that it is located at For this reason, the other side 2 2b (the front side in the rotation direction) of the wind receiving surface 2 2a is shaped to allow the counter wind to escape.
  • the blade 21 is formed in a shape of a circular cross section formed by cutting a circle into about one third.
  • the blades 21 are provided across the width direction of the traveling body 1. Specifically, the blades 21 are provided between the pair of support frames 15 (blade shaft support portions 10a). The blade is protruded from the blade shaft 23.
  • the propeller mechanism 40 includes a propeller shaft 43 arranged substantially parallel to the traveling direction (X), a propeller shaft 43 fixed to the propeller shaft 43, and a transmission mechanism 30 from the blade shaft 23.
  • the propeller 41 sends wind to the rear side (Y) in the traveling direction by the rotational force transmitted to the propeller shaft 43.
  • the propeller mechanism 40 and the wind receiving mechanism 20 are connected by the transmission mechanism 30 so as to rotate in desired directions when receiving the opposing wind.
  • the propeller 41 starts rotating by receiving the opposing wind particularly at the start of rotation. In this way, the propeller 41 rotates by receiving the opposing wind, thereby
  • the rotation of the propeller mechanism 40 is provided so as to rotate the wind receiving mechanism 20 in a desired direction via the transmission mechanism 30.
  • the propeller shaft 4 3, the t specifically are disposed a pair on both sides of the upper portion of the traveling body 1, a pair of propeller shafts 4 3, respectively opposite sides of the frame 1 0 of the support frame Ichimu 1 5 (propeller It is rotatably supported by the shaft support 10 b).
  • Each propeller shaft 43 is supported by the pair of propeller shaft support portions 10b.
  • a propeller shaft gear 34 as a transmission mechanism 30 described later is fixed between the portions supported by the propeller shaft 43.
  • the propeller shaft gears 34 are provided so as to mesh with the blade shaft gears 32, respectively.
  • the propeller shaft gear 34 is composed of a bevel gear having a mating surface inclined.
  • the propeller shaft gear 34 has a propeller shaft gear 34 on one side (the right side in FIG. 3) meshed with the blade shaft gear 32 on the front side (X) in the traveling direction of the traveling body 1 and the other side.
  • the propeller shaft gear 34 (on the left side in FIG. 3) is provided so as to mesh with the blade shaft gear 32 on the rear side (Y) in the traveling direction.
  • each of the propeller shafts 43 is an extension of the blade shaft 23 and is arranged in a direction orthogonal to the blade shaft 23. Then, the propeller shaft gear 32 is fixed to one end of the blade shaft 23 so that the front portion of the propeller shaft gear 34 is engaged with the propeller shaft gear 34 of the propeller shaft 43 on one side.
  • the gear 34 is slightly fixed on the front side.
  • the propeller shaft gear 34 is fixed such that the rear portion of the blade shaft gear 32 fixed to the other end of the blade shaft 23 and the propeller shaft gear 34 of the other side of the propeller shaft 43 engage with each other.
  • the shaft gear 34 is fixed slightly behind.
  • the propeller shaft gear 34 is formed of a bevel gear having an inclined mating surface.
  • the transmission mechanism 30 is a mechanism that connects the blade shaft 23 and the propeller shaft 43 to transmit the rotational force of the blade shaft 23 to the propeller shaft 43.
  • the transmission mechanism 30 includes a pair of blade shaft gears 32 fixed to both ends of the blade shaft 23 described above, and a pair of propeller shaft gears meshing with the blade shaft gear 32. It consists of 3 and 4. In other words, a pair of the transmission mechanisms 30 is provided on both sides of the blade shaft 23.
  • this pair of transmission mechanisms 30 is configured such that one of the propeller shaft gears 34 engages with the blade shaft gear 32 on the front side (X) in the traveling direction of the traveling body 1, and
  • the propeller shaft gear 34 on the side is provided so as to mesh with the blade shaft gear 32 on the rear side (Y) in the traveling direction, so that the rotational force of one blade shaft 23 is allocated to both sides.
  • rotational force for example, rotational force counterclockwise in front view
  • the blade shaft 23 and the propeller shaft 43 serving as the transmission mechanism 30 are connected so that the rotation ratio of the rotation of the blade shaft 23 makes the propeller shaft 43 rotate four times.
  • the connection between the blade shaft 23 and the pair of propeller shafts 43 is such that the pair of propeller shafts 43 are respectively rotated so as to rotate at the same rotation speed.
  • the rotation ratio may be set so that the propeller shaft 43 rotates six times with respect to one rotation of the blade shaft 23, and may be, for example, three or more rotations, or four or more rotations. It is also possible to set the rotation to eight or less, or seven or less. Furthermore, the propeller shaft 43 may be provided so as to make one rotation with respect to one rotation of the blade shaft 23.
  • the above-described rotation ratio is obtained by the gear ratio between the propeller shaft gear 34 and the blade shaft gear 32.
  • the traveling body 1 travels in the forward direction (X) by the driving of the traveling drive source
  • the opposing wind wind in the Y direction
  • the first wind receiving surface 22a receives the blade shaft 23 by this. At the start of this rotation, it is considered that not only the wind receiving surface 22a receives the opposing wind but also the prober 41 starts rotating by receiving the opposing wind.
  • the blade shaft 23 rotates, and this rotation is transmitted to the propeller shaft 43 via the transmission mechanism 30.
  • the propeller 41 Will rotate in the direction that sends the wind to the rear side (Y) in the traveling direction.
  • the counter wind is received by the wind receiving surface 22a.
  • the propeller 41 rotates in response to the opposing wind, and the rotation of the propeller 41 causes the blade shaft 23 to rotate.
  • the blades 21 can be provided across the width direction of the traveling body 1, the area of the wind receiving surface 22a of the blade 21 can be widened, and the air receiving surface 22a can be provided. Since the area can be increased, a larger rotational force of the blade shaft 23 can be obtained.
  • the blade 21 is provided so as to be curved so that the rear surface in the rotation direction becomes the wind receiving surface 22 a, the wind receiving surface 22 a can receive the counter wind more accurately, and The rotating force of the blade shaft 23 can be obtained.
  • the blades 21 are formed by bending a flat plate, the other surface 22 b (the front surface in the rotation direction) of the wind receiving surface 22 a is formed in a shape that allows the counter wind to escape. However, it is possible to accurately prevent the opposing wind from acting in the direction of the reaction force of the rotational force, so that the rotational force of the blade shaft 23 can be increased.
  • the propellers 41 on both sides rotate at the same rotation speed, they can rotate in a more balanced manner.
  • the propellers 41 are provided so as to rotate in the same direction, the same members can be used.
  • a screwing means is employed as a connecting means between the propeller shaft 43 and the propeller 41, if the pair of propeller shafts 43 rotates in the other direction, one of the propeller shafts 43 and the propeller 41 is rotated. It is necessary to use a screw means that rotates in the other direction for connection with, and this may increase the manufacturing cost.
  • the pair of propeller shafts 43 are provided so as to rotate in the same direction. Even when the propeller 41 is fixed, screw means in the same direction can be employed for fixing the propeller shaft 43 and the propeller 41, thereby facilitating manufacturing and reducing costs. It has the advantage of being
  • the propeller 41 sends the wind to the rear to obtain the propulsion force.However, the wind is sent to the rear side based on the rotation of the blades 21 and the opposing wind is generated. It is probable that the resistance of the vehicle based on the vehicle was reduced, thereby improving fuel economy. In other words, a negative pressure is generated on the rear side of the traveling body due to the oncoming wind, and the traveling body generates resistance that is drawn to the rear side.However, it is considered that the wind is sent by the blade 21 here. .
  • the mileage per liter of gasoline was about 7.54 km
  • the mileage per liter of gasoline was approximately 9.84 km.
  • FIG. 5 shows other experimental results.
  • FIG. 5 shows the results of nine experimental examples equipped with the above fuel efficiency improving structure and three comparative examples not equipped. In each case, the vehicle traveled mainly on a highway, and the travel distance and fuel consumption were measured.
  • the column of "Propeller: Blade” the rotation ratio of the propeller shaft and the blade shaft of the installed fuel efficiency improving structure is shown.
  • the column “whether or not there is luggage” indicates whether or not luggage is loaded on the bed during the experiment.
  • the fuel efficiency improvement structure of the second embodiment includes a frame 10 fixed (ported) to the truck 1 (driving unit 5), and a blade shaft that rotates by receiving an opposing wind during traveling. And a wind receiving mechanism 20 having 23. Note that the propeller mechanism and the transmission mechanism of the first embodiment are not provided.
  • the frame 10 has a blade shaft supporting portion 10a that rotatably supports the blade shaft 23 of the wind receiving mechanism 20.
  • the wind receiving mechanism 20 is rotatably supported by (the blade shaft supporting portion 10a) of the frame 10 (a blade shaft supporting portion 10a), and is arranged in a direction substantially perpendicular to the traveling direction (X).
  • the blade 21 is fixed to the blade shaft 23 and is provided to rotate the blade shaft 23 in response to an opposing wind during traveling.
  • the shape of the blades 23 is the same as in the first embodiment.
  • the traveling body 1 travels in the forward direction (X) by driving of the traveling drive source, the oncoming wind (wind in the Y direction) accompanying the traveling is reduced.
  • the wind receiving surface 22 a of the blade 21 receives the rotation, and thereby the blade shaft 23 rotates. Then, based on the rotation of the blade 21, the wind is sent to the rear side, so that the resistance of the traveling body is reduced, and it is considered that the fuel efficiency is improved.
  • a blade shaft gear 32 fixed to the blade shaft 23 and a propeller shaft gear 34 fixed to the propeller shaft 43 are directly engaged.
  • adopting a method of connecting the both via a reduction mechanism or the like including a plurality of reduction gears is a matter that can be appropriately changed in design.
  • the design can be appropriately changed such that the engaged portion is covered with an oil case or the like.
  • propeller 41 has been described as having four propellers protruding from the propeller shaft 43, but any propeller 41 capable of sending wind to the rear side can be employed.
  • a truck has been described as an example of the traveling body 1 on which the fuel efficiency improving structure of the above embodiment is mounted, but the present invention is not limited to this. Further, even when mounted on a traveling vehicle such as a truck, the vehicle is not directly fixed to the traveling vehicle as in the above-described embodiment. For example, as shown in FIG. It is also possible to fix the mounting table 6 above the part 5) and mount and fix the fuel efficiency improving structure on the upper surface of the mounting table 6.
  • the shape of the blades 21 of the wind receiving mechanism 20 is not limited to that of the above-described embodiment.
  • the shape shown in FIG. 9 can be adopted.
  • a plurality of blades 21 of this illustrated example are radially arranged from the blade shaft 23 in the same manner as in the above-described embodiment. And is fixed (welded) to the blade shaft 23 so as to protrude in the outer circumferential direction, and the blade 21 is provided so as to be curved so that the rear surface in the rotation direction becomes the wind receiving surface 22 a.
  • the end 2 la of 21 is bent toward the outer periphery.
  • the end 2 la is bent toward the outer periphery (radial direction) with respect to the blade shaft 23.
  • the method of fixing the blade 21 to the blade shaft 23 is not limited to welding, and a fixing method using a port, for example, can be adopted.
  • the blade shaft 23 and the blade 21 are fixed by a port 25a and a nut 25b.
  • the opposing blades 21 are fixed to the blade shaft 23 by a pair of ports 25a and nuts 25b.
  • the blade shaft 23 is provided with a substantially planar mounting portion with which the blade 21 is brought into contact, and is provided as a whole in a square cross section (square shape). The one end of the blade 21 is arranged so as to abut on the mounting portion of the blade shaft 23.
  • a port 25a is inserted into this portion, and a nut 25b is screwed into the port 25a.
  • the blade 21 is fixed to the blade shaft 23.
  • the port 25a and the nut 25b are provided in three pairs in the axial direction of the blade shaft 23.
  • the blade shaft 23 can be manufactured by, for example, shaving a square pillar steel material into a circle centered on the center of gravity at both ends, and supporting the frame 10 at the cut both ends.
  • a safety device 50 provided on the outer peripheral side of the blade 21 so as to allow the flow of the wind and to cover the outside of the blade 21.
  • the safety device 50 in the illustrated example is composed of a semicircular steel member 51 provided integrally with the frame 10, and the steel member 51 covers the outer peripheral side of the blade 21 so that the frame 10. Fixed (welded).
  • the propeller mechanism 40 may be provided with a safety device on the outer peripheral side of the propeller 41 and / or on the front side in the traveling direction.
  • a windproof member 60 for preventing a counter wind from flowing to the blade 21 below the blade shaft 23. Is fixed (welded) to the frame 10, and the upper side is provided so that the horizontal position is substantially at the height of the blade shaft 23 and is inclined rearward in the traveling direction.
  • the structure for improving fuel efficiency of a traveling body according to the present invention is mounted on, for example, a traveling body such as a traveling vehicle, and is suitably used for improving the fuel efficiency of the traveling vehicle.

Abstract

A structure capable of efficiently improving the fuel consumption of a running body such as a running vehicle, comprising a fan shaft (23) disposed generally in vertical direction relative to the running direction (X) of the running body (1), fans (21) fixed to the fan shaft (23) and rotating the fan shaft (23) by receiving a head wind, propeller shafts (43) disposed generally in parallel direction relative to the running direction (X), transmission mechanisms (30) connecting the fan shaft (23) to the propeller shafts (43) and transmitting the rotating force of the fan shaft (23) to the propeller shafts (43), and propellers (41) fixed to the propeller shafts (43).

Description

明 細 書  Specification
走行体の燃費向上構造 技術分野  Structure for improving fuel efficiency of the vehicle
この発明は、 走行体の燃費の向上を図るための走行体の燃費向上構 造に関し、 トラック等の走行車両、 船舶等に適したものである。 背景技術  The present invention relates to a structure for improving the fuel efficiency of a traveling body for improving the fuel efficiency of the traveling body, and is suitable for a traveling vehicle such as a truck, a ship, and the like. Background art
この種の走行体の構造として、 例えば、 日本国実用新案公開公報昭 和 5 1 — 1 3 5 3 9 9号公報、 日本国特許公開公報平成 9一 1 4 1 2 1号公報、 日本国特許公開公報平成 1 0— 3 3 9 2 6 0号公報所載の ものが公知である。  Examples of the structure of this type of traveling body include, for example, Japanese Utility Model Publication No. Showa 51-135 399, Japanese Patent Publication No. Heisei 141-121, Japanese Patent Publication No. The one disclosed in the official gazette of Heisei 10-339392 is known.
日本国実用新案公開公報昭和 5 1 — 1 3 5 3 9 9号公報所載の構造 (以下、 従来例 1 という) にあっては、 走行方向に沿って設けられた プロペラ軸にプロペラを取り付けた受風装置を有し、 この受風装置の プロペラが風を受けてプロペラ軸を回転させ、 この回転力を水中の推 進プロペラ又は推進用の車軸に伝達して、 推進力を得んとするもので あった。  In the structure described in Japanese Utility Model Publication No. 5 1-1 3 5 3 9 9 (hereinafter referred to as Conventional Example 1), a propeller is mounted on a propeller shaft provided along the running direction. It has a blower, and the propeller of this blower receives the wind to rotate the propeller shaft, and transmits this rotational force to the underwater propulsion propeller or propulsion axle to obtain propulsion. It was a thing.
しかしながら、 この従来例 1記載の構造にあっては、 受風装置のプ 口ペラ軸は走行方向に対して平行方向に設けられているので、 受風に よっても十分な駆動のための回転力が得られないと考えられる。 また、 その回転力を直接、 推進力を得るための水中の推進プロペラ等に伝達 するものであるため、 その抵抗力等より走行体の推進力を得るための 十分な回転を得られないと考えられる。  However, in the structure described in the conventional example 1, since the spout shaft of the blower is provided in a direction parallel to the traveling direction, the rotational force for sufficient driving even by the wind is received. It is thought that is not obtained. In addition, since the rotational force is transmitted directly to the underwater propulsion propeller etc. for obtaining the propulsion, it is considered that sufficient rotation for obtaining the propulsion of the traveling body cannot be obtained from the resistance etc. Can be
また、 日本国特許公開公報平成 9— 1 2 4 2 1号公報所載の構造 (以下、 従来例 2 という) は、 走行体としてのオートバイの前面部 (風防パネル) に採風口を設けて、 この採風口と可撓ホースの一端と を連結し、 この可撓ホースの他端側に羽根車を設けて、 この羽根車の 回転軸を駆動スプロケッ トに連結して、 風力により回転駆動力を得る ものである。 In addition, the structure described in Japanese Patent Application Publication No. Heisei 9-124241 (hereinafter referred to as Conventional Example 2) is a front part of a motorcycle as a vehicle. A wind vent is provided in the (wind shield panel), this wind vent is connected to one end of the flexible hose, and an impeller is provided at the other end of the flexible hose, and the rotating shaft of the impeller is driven by a driving sprocket. To obtain rotational driving force by wind power.
しかしながら、 この従来例 2記載の構造にあっては、 オートバイ内 部構造に設けられるものであるので、 その設計、 設置が困難であり、 また、 可撓ホース内を空気が通過する際に走行体の後方側に押し戻す 推進反力として作用すると考えられる。 さらに、 上記従来例 1 と同様 に、 羽根車の回転力を直接推進力を得るための駆動スプロケッ トに連 結するものであるので、 その抵抗力等より走行体の推進力を得るため の十分な回転を得られないと考えられる。  However, in the structure described in the conventional example 2, since it is provided in the internal structure of the motorcycle, it is difficult to design and install the structure. It is thought to act as a propulsion reaction force. In addition, as in the above-described conventional example 1, since the rotational force of the impeller is directly linked to the drive sprocket for obtaining the propulsion force, it is sufficient to obtain the propulsion force of the traveling body from the resistance force and the like. It is considered that no proper rotation can be obtained.
また、 日本国特許公開公報平成 1 0— 3 3 9 2 6 0号公報所載の構 造 (以下、 従来例 3 ) は、 その公報の記載からはその詳細構造が不明 確ではあるが、 走行体としての自動車の前面部であるフロント部分に 風道パイプ口を設けて、 この風道パイプロから連設して風道パイプを 設けて、 この風道パイプの内部に風車を設けて、 この風車に風力発電 機を取付けているものと考えられる。  In addition, although the detailed structure of the structure described in Japanese Patent Publication No. Hei 10-339392 (hereinafter referred to as Conventional Example 3) is not clear from the description of the publication, A wind path pipe opening is provided in a front part which is a front part of a vehicle as a body, a wind path pipe is provided continuously from the wind path pipe, and a windmill is provided inside the wind path pipe, and the windmill is provided. It is probable that a wind power generator is installed on the shore.
しかしながら、 この従来例 3記載の構造にあっては、 上記従来例 2 と同様に、 自動車内部構造に設けられるものであるので、 その設計、 設置が困難であり、 また、 風道パイプを空気が通過する際に走行反力 が作用するもの考えられる。  However, in the structure described in Conventional Example 3, it is difficult to design and install it, because it is provided in the internal structure of the car, as in Conventional Example 2 above. It is considered that a running reaction force acts when passing.
この発明は上記従来の欠点を解決するためになされたものであって、 この発明の課題は、 効率良く走行体の燃費を向上できる構造を提供す ることにある。 発明の開示 本願発明は上記の課題を解決すべくなされたものであり、 本願発明 に係る走行体の燃費向上構造は、 車両等の走行体 1 に取り付けられる 燃費向上構造であって、 走行方向 (X ) に対して略垂直方向に配され た羽根軸 2 3 と、 この羽根軸 2 3に固定されてなり走行の際の対向風 を受けて羽根軸 2 3を回転する羽根 2 1 とを備えてなることを特徴と する。 The present invention has been made in order to solve the above-mentioned conventional drawbacks, and an object of the present invention is to provide a structure capable of efficiently improving the fuel efficiency of a traveling body. Disclosure of the invention The invention of the present application has been made in order to solve the above-mentioned problems, and a fuel efficiency improvement structure of a traveling body according to the invention of the present application is a fuel efficiency improvement structure attached to a traveling body 1 such as a vehicle, and is provided in a traveling direction (X). A blade shaft 23 arranged substantially perpendicular to the blade shaft, and a blade 21 fixed to the blade shaft 23 and rotating the blade shaft 23 in response to an opposing wind during traveling. It is characterized by
該構成からなる本願発明に係る走行体の燃費向上構造にあっては、 走行体 1の走行に際して前方からの対向風を羽根 2 1が受けると、 羽 根軸 2 3が回転して、 走行体の燃費を向上することができる。 特に、 上記のように羽根軸は走行方向に対して略垂直方向に配されているの で、 羽根の受風面を広く設けることが容易であり、 十分な回転を行う ことができる。  In the structure for improving fuel efficiency of a traveling body according to the present invention having the above configuration, when the traveling body 1 travels, the vane 21 receives an opposing wind from the front, the vane shaft 23 rotates, and the traveling body Fuel efficiency can be improved. In particular, since the blade shaft is arranged substantially perpendicular to the running direction as described above, it is easy to provide a wide wind receiving surface of the blade, and sufficient rotation can be performed.
また、 本願発明に係る走行体の燃費向上構造においては、 請求項 2 記載のように、 羽根 2 1は、 羽根軸 2 3から複数枚、 放射状に外周方 向に突出して固定され、 羽根軸 2 3に対して上部の羽根 2 1の走行方 向前方面 2 2 aが対向風を受ける受風面となるように設けられている 構成を採用することが好ましい。 該構成を採用することにより、 上部 の羽根 2 1が走行方向後方側に、 下部の羽根 2 1が走行方向前方側に 向かう方向に羽根軸 2 3が回転することになる。  Further, in the fuel efficiency improvement structure for a traveling body according to the present invention, as described in claim 2, a plurality of blades 21 are radially protruded from the blade shaft 23 in the outer circumferential direction and fixed. It is preferable to adopt a configuration in which the front surface 22 a of the upper blade 21 in the running direction with respect to 3 is provided as a wind receiving surface for receiving the opposing wind. By employing this configuration, the blade shaft 23 rotates in the direction in which the upper blade 21 is directed rearward in the traveling direction and the lower blade 21 is directed forward in the traveling direction.
また、 本願発明は上記の課題を解決すべく、 本願発明に係る走行体 の燃費向上構造は、 車両等の走行体 1に取り付けられる燃費向上構造 であって、 走行方向 (X ) に対して略垂直方向に配された羽根軸 2 3 と、 この羽根軸 2 3に固定されてなり走行の際の対向風を受けて羽根 軸 2 3 を回転する羽根 2 1 と、 走行方向 (X ) に対して略平行方向に 配されたプロペラ軸 4 3 と、 前記羽根軸 2 3及びプロペラ軸 4 3を連 結して羽根軸 2 3の回転力をプロペラ軸 4 3 に伝達する伝達機構 3 0 と、 前記プロペラ軸 4 3 に固定されるプロペラ 4 1 とを備えてなるこ とを特徴としている。 Further, in order to solve the above-mentioned problems, the invention of the present application is a fuel efficiency improvement structure of a traveling body according to the invention of the present application, which is a fuel efficiency improvement structure attached to a traveling body 1 such as a vehicle, and is substantially in the traveling direction (X). With respect to the traveling direction (X), a vertically arranged blade shaft 23 and a blade 21 fixed to the blade shaft 23 and rotating the blade shaft 23 when receiving an opposing wind during traveling. A transmission mechanism 30 that connects the propeller shaft 43 arranged in a substantially parallel direction with the blade shaft 23 and the propeller shaft 43 to transmit the rotational force of the blade shaft 23 to the propeller shaft 43. And a propeller 41 fixed to the propeller shaft 43.
該構成からなる本願発明に係る走行体の燃費向上構造にあっては、 走行体 1の走行に際して前方からの対向風を羽根 2 1が受けると、 羽 根軸 2 3が回転する。 また、 羽根軸 2 3の回転とともに伝達機構 3 0 を介してプロペラ軸 4 3に伝達され、 このため、 プロペラ 4 1は走行 方向後方側 (Y ) に風を送る方向に回転することになる。 上述のよう に、 走行方向に対して略垂直方向に配された羽根軸に固定された羽根 が、 走行時の対向風を受けて回転して、 走行体の燃費を向上すること ができる。 特に、 上記のように羽根軸は走行方向に対して略垂直方向 に配されているので、 羽根の受風面を広く設けることが容易であり、 十分な回転力を得ることができる。 また、 プロペラ 4 1 は、 羽根軸 2 3からプロペラ軸 4 3に伝達される回転力によって走行方向後方側 ( Y ) に風を送る方向に回転するように設けられている。  In the structure for improving fuel efficiency of the traveling body according to the present invention having the above-mentioned configuration, when the traveling wind of the traveling body 1 receives the opposing wind from the front, the blade shaft 23 rotates. Further, the propeller shaft 43 is transmitted to the propeller shaft 43 via the transmission mechanism 30 together with the rotation of the blade shaft 23, so that the propeller 41 rotates in a direction to send the wind to the rear side (Y) in the traveling direction. As described above, the blade fixed to the blade shaft arranged in a direction substantially perpendicular to the traveling direction rotates in response to the opposing wind during traveling, so that the fuel efficiency of the traveling body can be improved. In particular, since the blade shafts are arranged in a direction substantially perpendicular to the traveling direction as described above, it is easy to provide a wide wind receiving surface for the blades, and it is possible to obtain a sufficient rotational force. Further, the propeller 41 is provided so as to rotate in a direction in which the wind is sent rearward in the traveling direction (Y) by the rotational force transmitted from the blade shaft 23 to the propeller shaft 43.
また、 本願発明に係る走行体の燃費向上構造においては、 請求項 4 記載のように、 羽根 2 1が、 回転方向後面が受風面 2 2 aとなるよう に湾曲して、 羽根軸 2 3 に多数枚固定されている構成を採用すること が好ましい。 該構成を採用した請求項 4記載の走行体の燃費向上構造 にあっては、 走行に際しての対向風が羽根 2 1 の受風面 2 2 aに当る と、 該羽根 2 1が的確に羽根軸 2 3を回転方向に回転させることがで き、 十分な回転力を得ることができる。  Further, in the fuel efficiency improvement structure of the traveling body according to the present invention, as described in claim 4, the blade 21 is curved so that the rear surface in the rotation direction becomes the wind receiving surface 22a, and the blade shaft 23 It is preferable to adopt a configuration in which a large number are fixed to each other. In the structure for improving fuel efficiency of a traveling body according to claim 4, which adopts the above configuration, when an opposing wind during traveling hits the wind receiving surface 2 2a of the blade 21, the blade 21 is accurately rotated. 23 can be rotated in the rotational direction, and a sufficient rotational force can be obtained.
また、 本願発明に係る走行体の燃費向上構造においては、 請求項 5 記載のように、 伝達機構 3 0が、 羽根軸 2 3に固着された羽根軸ギヤ 3 2 と、 前記プロペラ軸 4 3 に固着され羽根軸ギヤ 3 2 と嚙み合うプ 口ペラ軸ギヤ 3 4とから構成されている-ことが好ましい。 さらに、 かかる構成からなる請求項 5記載の走行体の燃費向上構造 にあっては、 請求項 6記載のように、 羽根軸ギヤ 3 2が、 羽根軸 2 3 の両端側にそれぞれ設けられており、 前記プロペラ軸 4 3は、 羽根軸 2 3の両側に一対設けられるとともに、 そのそれぞれに前記プロペラ 軸ギヤ 3 4が固着されており、 一方側の羽根軸ギヤ 3 2 と一方側のプ 口ペラ軸 4 3のプロペラ軸ギヤ 3 4とが連結され、 他方側の羽根軸ギ ャ 3 2 と他方側のプロペラ軸 4 3のプロペラ軸ギヤ 3 4とが連結され るように設けられている構成を採用することが好ましい。 該構成から なる請求項 6記載の走行体の燃費向上構造にあっては、 羽根軸 2 3の 両側に一対のプロペラ軸 4 3が設けられ、 その一対のプロペラ軸 4 3 が回転することにより、 両側のプロペラ 4 1が同様に回転する。 Further, in the fuel consumption improvement structure of the traveling body according to the present invention, as described in claim 5, the transmission mechanism 30 includes the blade shaft gear 32 fixed to the blade shaft 23 and the propeller shaft 43. It is preferable that it is composed of a propeller shaft gear 34 that is fixed and engages with the blade shaft gear 32. Further, in the structure for improving fuel efficiency of a traveling body according to claim 5 having such a configuration, as described in claim 6, the blade shaft gears 32 are provided at both ends of the blade shaft 23. A pair of the propeller shafts 43 is provided on both sides of the blade shaft 23, and the propeller shaft gears 34 are fixed to each of them, so that one blade shaft gear 32 and one side propeller are provided. A configuration is provided in which the propeller shaft gear 34 of the shaft 43 is connected and the blade shaft gear 32 of the other side is connected to the propeller shaft gear 34 of the other propeller shaft 43. It is preferable to employ it. In the fuel consumption improving structure for a traveling body according to claim 6 having the above configuration, a pair of propeller shafts 43 are provided on both sides of the blade shaft 23, and the pair of propeller shafts 43 rotate, The propellers 41 on both sides rotate similarly.
また、 請求項 6記載の走行体の燃費向上構造にあっては、 一方側の プロペラ軸ギヤ 3 4が、 羽根軸ギヤ 3 2 と走行体 1の進行方向前方側 で嚙み合い、 他方側のプロペラ軸ギヤ 3 4が、 羽根軸ギヤ 3 2 と進行 方向後方側で嚙み合うように設けられている構成を採用することが好 ましい。 該構成を採用することで、 羽根軸 2 3の回転は、 両側の羽根 軸ギヤ 3 2 を介してこれらと嚙み合うそれぞれのプロペラ軸ギヤ 3 4 の同一方向の回転として伝達されることになり、 両側のプロペラ 4 1 の回転方向を一致させることができる。 このため、 複雑な連結構造を 採用することなく、 両側のプロペラ軸 4 3及びプロペラ 4 1 を同一構 造のもので安価で設計することができる。 図面の簡単な説明  Further, in the structure for improving fuel efficiency of the traveling body according to claim 6, one of the propeller shaft gears 34 engages with the blade shaft gear 32 on the forward side in the traveling direction of the traveling body 1 and the other side has the other side. It is preferable to adopt a configuration in which the propeller shaft gear 34 is provided so as to mesh with the blade shaft gear 32 on the rear side in the traveling direction. By adopting this configuration, the rotation of the blade shafts 23 is transmitted as rotations of the respective propeller shaft gears 34 engaging with these via the blade shaft gears 32 on both sides in the same direction. The rotation directions of the propellers 4 1 on both sides can be matched. For this reason, the propeller shafts 43 and the propellers 41 on both sides can be designed inexpensively with the same structure without employing a complicated connection structure. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本願発明の第一実施形態における燃費向上構造を搭載した 走行体 1の正面図であり、 図 2は、 同走行体の平面図である。 図 3は、 同実施形態の燃費向上構造の一部省略した平面図である。 図 4は、 同 実施形態の燃費向上構造における羽根の説明図で、 要部拡大断面斜視 図である。 図 5 は、 同実施形態の燃費向上構造を搭載した実験結果を 示すものである。 また、 図 6は、 本願発明の第二実施形態における燃 費向上構造を搭載した走行体 1の正面図であり、 図 7は、 実施形態の 燃費向上構造の一部省略した平面図である。 図 8は、 他の実施形態に おける燃費向上構造を搭載した走行体 1の正面図である。 図 9は、 他 の実施形態の燃費向上構造における羽根の説明図で、 要部拡大断面斜 視図である。 図 1 0は、 他の実施形態の燃費向上構造における羽根の 説明図で、 要部拡大断面側面図である。 図 1 1は、 他の実施形態の燃 費向上構造の要部拡大説明図であり、 ( a ) は側面図、 (b ) は平面 図である。 図 1 2は、 他の実施形態の燃費向上構造の要部拡大側面図 である。 発明を実施するための最良の形態 FIG. 1 is a front view of a traveling body 1 equipped with a fuel efficiency improvement structure according to a first embodiment of the present invention, and FIG. 2 is a plan view of the traveling body. FIG. 3 is a partially omitted plan view of the fuel efficiency improvement structure of the embodiment. Figure 4 shows the same FIG. 4 is an explanatory view of a blade in the fuel efficiency improving structure of the embodiment, and is an enlarged sectional perspective view of a main part. FIG. 5 shows an experimental result in which the fuel efficiency improvement structure of the embodiment is mounted. FIG. 6 is a front view of the traveling body 1 equipped with the fuel efficiency improvement structure according to the second embodiment of the present invention, and FIG. 7 is a plan view of the fuel efficiency improvement structure of the embodiment with a part omitted. FIG. 8 is a front view of a traveling body 1 equipped with a fuel efficiency improvement structure according to another embodiment. FIG. 9 is an explanatory view of a blade in a fuel efficiency improving structure of another embodiment, and is an enlarged sectional perspective view of a main part. FIG. 10 is an explanatory view of a blade in a fuel efficiency improvement structure of another embodiment, and is an enlarged sectional side view of a main part. FIG. 11 is an enlarged explanatory view of a main part of a fuel efficiency improvement structure of another embodiment, in which (a) is a side view and (b) is a plan view. FIG. 12 is an enlarged side view of a main part of a fuel efficiency improvement structure of another embodiment. BEST MODE FOR CARRYING OUT THE INVENTION
<第一実施形態 > <First embodiment>
以下、 本願発明の第一実施形態について、 図 1乃至図 5を参酌しつ つ、 以下説明する。  Hereinafter, the first embodiment of the present invention will be described with reference to FIGS. 1 to 5.
第一実施形態の燃費向上構造は、 走行体の一例として、 トラック 1 (走行車両) に装着されているものを例にとり説明する。  The fuel efficiency improvement structure according to the first embodiment will be described by taking, as an example of a traveling body, one mounted on a truck 1 (traveling vehicle).
なお、 この燃費向上構造は、 例えば軽自動車等の自動車、 オートバ ィ等の二輪車等、 その他の走行車両に装着することも可能であり、 さ らにはモーターポー卜等の走行船舶等に装着することも可能である。 本実施形態の走行体としてのトラック 1 は、 推進力を与える駆動ェ ンジン等の走行駆動源 (図示省略) を備えており、 走行方向前方側 The structure for improving fuel efficiency can be mounted on other traveling vehicles such as automobiles such as mini cars, motorcycles such as motorcycles, and further mounted on traveling vessels such as motor ports. It is also possible. The truck 1 as a traveling body of the present embodiment includes a traveling drive source (not shown) such as a driving engine for applying a propulsion force, and is provided on a front side in a traveling direction.
( X ) に位置するとともに前記走行駆動源により回転駆動される駆動 車輪 3 を有する運転部 5 と、 この運転部の後方側 (Y ) に位置する荷 台部 7 とから構成されているものである。 (X) and driven to rotate by the traveling drive source It comprises an operating unit 5 having wheels 3 and a loading unit 7 located on the rear side (Y) of the operating unit.
本実施形態の燃費向上構造は、 走行体 1の上方に装着されるもので あり、 具体的には前記運転部 5の上部に搭載されている。 より具体的 には、 この燃費向上構造は、 運転部 5の内部フレーム (図示省略) に 設けられているネジ止め部 (図示省略) に固定 (ポルト止め) されて いる。  The fuel efficiency improving structure of the present embodiment is mounted above the traveling body 1, and specifically, is mounted above the driving section 5. More specifically, the fuel efficiency improving structure is fixed (ported) to a screwed portion (not shown) provided on an internal frame (not shown) of the driving section 5.
本実施形態の燃費向上構造は、 前記卜ラック 1 (運転部 5 ) に固定 (ポルト止め) されるフレーム 1 0 と、 走行時の対向風を受けて回転 する羽根軸 2 3を有する風受け機構 2 0 と、 風受け機構 2 0 の羽根軸 The fuel efficiency improving structure of the present embodiment is a wind receiving mechanism having a frame 10 fixed (ported) to the truck 1 (driving unit 5) and a blade shaft 23 that rotates by receiving an opposing wind during traveling. 20 and the blade axis of wind receiving mechanism 20
2 3の回転力が伝達機構 3 0を介して伝達されるプロペラ機構 4 0 と から構成されている。 And a propeller mechanism 40 to which the torque of 23 is transmitted via the transmission mechanism 30.
この燃費向上構造のフレーム 1 0は、 風受け機構 2 0の羽根軸 2 3 を回転自在に支持する羽根軸支持部 1 0 aと、 プロペラ機構 4 0のプ 口ペラ軸 4 3を回転自在に支持するプロペラ軸支持部 1 O bとを有し ている。  The frame 10 of this fuel efficiency improving structure is composed of a blade shaft support 10a for rotatably supporting the blade shaft 23 of the wind receiving mechanism 20 and a propeller shaft 43 of the propeller mechanism 40 for rotation. And a propeller shaft supporting portion 1 Ob for supporting the propeller shaft.
このフレーム 1 0についてより詳述すると、 該フレーム 1 0は、 ト ラック 1 (の運転部 5の内部フレーム) に固定される四本の脚部 1 1 と、 この脚部 1 1 を連結する連結フレーム (縦連結フレーム 1 3 a及 び横連結フレーム 1 3 b ) と、 この連結フレーム (横連結フレーム 1 The frame 10 will be described in more detail. The frame 10 is composed of four legs 11 fixed to the truck 1 (the inner frame of the driving section 5), and a connection connecting the legs 11 to each other. Frame (vertical connection frame 13a and horizontal connection frame 13b) and this connection frame (horizontal connection frame 1
3 b ) に固定立脚され前記支持部 1 0 a, 1 0 bが固定される支持フ レーム 1 5 とを備えており、 該支持フレーム 1 5は左右両側に一対設 けられている。 3b) and a supporting frame 15 fixed to the supporting portions 10a and 10b. The supporting frames 15 are provided as a pair on both left and right sides.
この一対の支持フレ一ム 1 5には、 それぞれ、 羽根軸 2 3の一端を 支持する前記羽根軸支持部 1 0 aが設けられる。 この支持は、 ベアリ ングを介して行われている。 また、 一対の支持フレーム 1 5には、 そ れぞれ、 前記プロペラ軸 4 3の前後を支持する一対のプロペラ軸支持 部 1 0 bが、 羽根軸支持部 1 0 aの走行方向前後に設けられている。 この支持は、 ベアリングを介して行われている。 このプロペラ軸支持 部 1 0 bは、 それぞれ前記支持フレーム 1 5から外側方向に突設して 設けられている。 Each of the pair of supporting frames 15 is provided with the blade shaft supporting portion 10a for supporting one end of the blade shaft 23. This support is provided through bearings. In addition, the pair of support frames 15 A pair of propeller shaft support portions 10b for supporting the front and rear of the propeller shaft 43 are respectively provided before and after the blade shaft support portion 10a in the traveling direction. This support is provided via bearings. The propeller shaft support portions 10b are provided so as to protrude outward from the support frame 15 respectively.
前記風受け機構 2 0は、 前記フレーム 1 0 (の羽根軸支持部 1 0 a ) に回転自在に支持されている。 この風受け機構 2 0は、 走行方向 ( X ) に対して略垂直方向に配された羽根軸 2 3 と、 この羽根軸 2 3 に固定されてなり走行の際の対向風を受けて羽根軸 2 3を回転するよ う設けられた羽根 2 1 とから構成されている。  The wind receiving mechanism 20 is rotatably supported by (the blade shaft support 10 a of) the frame 10. The wind receiving mechanism 20 has a blade shaft 23 arranged substantially perpendicularly to the traveling direction (X), and a blade shaft fixed to the blade shaft 23 and receiving an opposing wind during traveling. And blades 21 provided to rotate 23.
前記羽根軸 2 3は、 前記フレーム 1 0の一対の羽根軸支持部 1 0 a によって両端部付近が支持されている。 この羽根軸 2 3 は、 この支持 されている部位よりも外側において (羽根軸 2 3の端部において) 、 後述する伝達機構 3 0としての羽根軸ギヤ 3 2が固定されている。 こ の羽根軸ギヤ 3 2は、 羽根軸 2 3の両端部にそれぞれ固着されている t なお、 この羽根軸ギヤ 3 2は、 嚙み合い面が傾斜したかさ歯車から構 成されている。 The vicinity of both ends of the blade shaft 23 is supported by a pair of blade shaft support portions 10 a of the frame 10. A blade shaft gear 32 as a transmission mechanism 30 described later is fixed to the blade shaft 23 outside the supported portion (at the end of the blade shaft 23). Blade shaft gear 3 2 This is still t are fixed respectively to both ends of the blade shaft 2 3, the blade shaft gear 3 2, faces each other seen嚙is consists of bevel gears or inclined.
また、 前記羽根 2 1は、 羽根軸 2 3から複数枚 (図示例では 4枚) 、 放射状に外周方向に突出して羽根軸 2 3に固定 (溶接) されている。 この羽根 2 1は、 回転方向後面が受風面 2 2 aとなるように湾曲して 設けられており、 羽根軸 2 3に対して上部の羽根 2 1の走行方向前方 面 2 2 aが対向風を受ける受風面となるように設けられている。  A plurality of blades 21 (four in the illustrated example) are radially protruded from the blade shaft 23 in the outer peripheral direction and are fixed (welded) to the blade shaft 23. The blade 21 is curved so that the rear surface in the rotational direction becomes the wind receiving surface 22 a, and the front surface 22 a of the upper blade 21 in the traveling direction is opposed to the blade shaft 23. It is provided to be a wind receiving surface for receiving wind.
具体的には、 図 4に示すように、 略平板状の羽根 2 1が、 その外端 側 2 1 aが中途部分 2 1 bよりも回転方向後方側 (図 4に示す時計方 向側) に位置するように、 湾曲せしめられている。 このため、 受風面 2 2 aの他面 2 2 b (回転方向前面) は対向風を逃すような形状に形 成されている。 なお、 図示例では、 この羽根 2 1は、 円を三分の一程 度にカツ 卜してなる断面円弧状になるような形状に形成されている。 More specifically, as shown in FIG. 4, the substantially flat blade 21 has its outer end 21 a on the rear side in the rotational direction from the halfway portion 21 b (clockwise side shown in FIG. 4). It is curved so that it is located at For this reason, the other side 2 2b (the front side in the rotation direction) of the wind receiving surface 2 2a is shaped to allow the counter wind to escape. Has been established. In the illustrated example, the blade 21 is formed in a shape of a circular cross section formed by cutting a circle into about one third.
さらに、 該羽根 2 1は、 走行体 1の幅方向に亘つて設けられている 具体的には、 羽根 2 1は、 前記一対の支持フレーム 1 5 (羽根軸支持 部 1 0 a ) の間で前記羽根軸 2 3から突設されている。  Further, the blades 21 are provided across the width direction of the traveling body 1. Specifically, the blades 21 are provided between the pair of support frames 15 (blade shaft support portions 10a). The blade is protruded from the blade shaft 23.
前記プロペラ機構 4 0は、 走行方向 (X ) に対して略平行方向に配 されたプロペラ軸 4 3 と、 このプロペラ軸 4 3に固定されるとともに 前記羽根軸 2 3から伝達機構 3 0を介してプロペラ軸 4 3に伝達され る回転力によって走行方向後方側 ( Y ) に風を送るプロペラ 4 1 とか らなるものである。 換言すると、 プロペラ機構 4 0、 及び、 前記風受 け機構 2 0は、 対向風を受けた際に、 それぞれ所望方向に回転するよ うに伝達機構 3 0によって連結されている。 つまり、 後述するように. 特に回転の開始に際してはプロペラ 4 1が対向風を受けて回転し始め るものと考えられ、 このように、 プロペラ 4 1が対向風を受けて回転 することにより、 このプロペラ機構 4 0の回転が伝達機構 3 0を介し て風受け機構 2 0を所望方向に回転させるように設けられている。  The propeller mechanism 40 includes a propeller shaft 43 arranged substantially parallel to the traveling direction (X), a propeller shaft 43 fixed to the propeller shaft 43, and a transmission mechanism 30 from the blade shaft 23. The propeller 41 sends wind to the rear side (Y) in the traveling direction by the rotational force transmitted to the propeller shaft 43. In other words, the propeller mechanism 40 and the wind receiving mechanism 20 are connected by the transmission mechanism 30 so as to rotate in desired directions when receiving the opposing wind. In other words, as will be described later, it is considered that the propeller 41 starts rotating by receiving the opposing wind particularly at the start of rotation. In this way, the propeller 41 rotates by receiving the opposing wind, thereby The rotation of the propeller mechanism 40 is provided so as to rotate the wind receiving mechanism 20 in a desired direction via the transmission mechanism 30.
このプロペラ軸 4 3は、 走行体 1 の上部の両側に一対配されている t 具体的には、 一対のプロペラ軸 4 3は、 それぞれ前記フレーム 1 0の 両側の支持フレ一ム 1 5 (プロペラ軸支持部 1 0 b ) に回転自在に支 持されている。 各プロペラ軸 4 3は、 前記一対のプロペラ軸支持部 1 0 bによって支持されている。 各プロペラ軸 4 3は、 その支持されて いる部位の間に、 後述する伝達機構 3 0 としてのプロペラ軸ギヤ 3 4 が固定されている。 このプロペラ軸ギヤ 3 4は、 それぞれ前記羽根軸 ギヤ 3 2 と嚙み合うように設けられている。 プロペラ軸ギヤ 3 4は、 嚙み合い面が傾斜したかさ歯車から構成されている。 また、 このプロペラ軸ギヤ 3 4は、 一方側 (図 3における右側) の プロペラ軸ギヤ 3 4が、 羽根軸ギヤ 3 2 と走行体 1 の走行方向前方側 ( X ) で嚙み合い、 他方側 (図 3 における左側) のプロペラ軸ギヤ 3 4が、 羽根軸ギヤ 3 2と走行方向後方側 (Y ) で嚙み合うように設け られている。 The propeller shaft 4 3, the t specifically are disposed a pair on both sides of the upper portion of the traveling body 1, a pair of propeller shafts 4 3, respectively opposite sides of the frame 1 0 of the support frame Ichimu 1 5 (propeller It is rotatably supported by the shaft support 10 b). Each propeller shaft 43 is supported by the pair of propeller shaft support portions 10b. In each propeller shaft 43, a propeller shaft gear 34 as a transmission mechanism 30 described later is fixed between the portions supported by the propeller shaft 43. The propeller shaft gears 34 are provided so as to mesh with the blade shaft gears 32, respectively. The propeller shaft gear 34 is composed of a bevel gear having a mating surface inclined. In addition, the propeller shaft gear 34 has a propeller shaft gear 34 on one side (the right side in FIG. 3) meshed with the blade shaft gear 32 on the front side (X) in the traveling direction of the traveling body 1 and the other side. The propeller shaft gear 34 (on the left side in FIG. 3) is provided so as to mesh with the blade shaft gear 32 on the rear side (Y) in the traveling direction.
より詳述すると、 プロペラ軸 4 3は、 何れも羽根軸 2 3の延長線上 であって、 羽根軸 2 3 と直交方向に配されている。 そして、 前記羽根 軸 2 3の一端部に固着された羽根軸ギヤ 3 2の前方部分と、 一方側の プロペラ軸 4 3 のプロペラ軸ギヤ 3 4とが嚙み合うように、 該プロべ ラ軸ギヤ 3 4はやや前方側に固着されている。 また、 前記羽根軸 2 3 の他端部に固着された羽根軸ギヤ 3 2の後方部分と、 他方側のプロべ ラ軸 4 3のプロペラ軸ギヤ 3 4とが嚙み合うように、 該プロペラ軸ギ ャ 3 4はやや後方側に固着されている。 なお、 このプロペラ軸ギヤ 3 4は、 嚙み合い面が傾斜したかさ歯車から構成されている。  More specifically, each of the propeller shafts 43 is an extension of the blade shaft 23 and is arranged in a direction orthogonal to the blade shaft 23. Then, the propeller shaft gear 32 is fixed to one end of the blade shaft 23 so that the front portion of the propeller shaft gear 34 is engaged with the propeller shaft gear 34 of the propeller shaft 43 on one side. The gear 34 is slightly fixed on the front side. Further, the propeller shaft gear 34 is fixed such that the rear portion of the blade shaft gear 32 fixed to the other end of the blade shaft 23 and the propeller shaft gear 34 of the other side of the propeller shaft 43 engage with each other. The shaft gear 34 is fixed slightly behind. The propeller shaft gear 34 is formed of a bevel gear having an inclined mating surface.
前記伝達機構 3 0は、 羽根軸 2 3及びプロペラ軸 4 3 を連結して羽 根軸 2 3の回転力をプロペラ軸 4 3に伝達する機構である。 本実施形 態において、 伝達機構 3 0は、 既述の羽根軸 2 3の両端に固着された 一対の羽根軸ギヤ 3 2 と、 この羽根軸ギヤ 3 2 に嚙み合う一対のプロ ペラ軸ギヤ 3 4とから構成されている。 換言すれば、 この伝達機構 3 0は、 羽根軸 2 3の両側に一対設けられている。  The transmission mechanism 30 is a mechanism that connects the blade shaft 23 and the propeller shaft 43 to transmit the rotational force of the blade shaft 23 to the propeller shaft 43. In this embodiment, the transmission mechanism 30 includes a pair of blade shaft gears 32 fixed to both ends of the blade shaft 23 described above, and a pair of propeller shaft gears meshing with the blade shaft gear 32. It consists of 3 and 4. In other words, a pair of the transmission mechanisms 30 is provided on both sides of the blade shaft 23.
ここで、 この一対の伝達機構 3 0は、 前述のように一方側のプロべ ラ軸ギヤ 3 4が羽根軸ギヤ 3 2 と走行体 1 の走行方向前方側 (X ) で 嚙み合い、 他方側のプロペラ軸ギヤ 3 4が羽根軸ギヤ 3 2 と走行方向 後方側 (Y ) で嚙み合うように設けられているため、 一の羽根軸 2 3 の回転力を、 その両側に配された一対のプロペラ軸 4 3へ同一方向の 回転力 (例えば正面視反時計方向の回転力) として伝達できるように 構成されている。 Here, as described above, this pair of transmission mechanisms 30 is configured such that one of the propeller shaft gears 34 engages with the blade shaft gear 32 on the front side (X) in the traveling direction of the traveling body 1, and The propeller shaft gear 34 on the side is provided so as to mesh with the blade shaft gear 32 on the rear side (Y) in the traveling direction, so that the rotational force of one blade shaft 23 is allocated to both sides. In the same direction to a pair of propeller shafts 4 3 It is configured so that it can be transmitted as rotational force (for example, rotational force counterclockwise in front view).
また、 この伝達機構 3 0 としての羽根軸 2 3 とプロペラ軸 4 3 とは 回転比が羽根軸 2 3の一回転に対してプロペラ軸 4 3が四回転するよ うに連結されている。 ここで、 この羽根軸 2 3 と一対のプロペラ軸 4 3 との連結とは、 それぞれ一対のプロペラ軸 4 3が同一の回転数で回 転するように連結されている。  Further, the blade shaft 23 and the propeller shaft 43 serving as the transmission mechanism 30 are connected so that the rotation ratio of the rotation of the blade shaft 23 makes the propeller shaft 43 rotate four times. Here, the connection between the blade shaft 23 and the pair of propeller shafts 43 is such that the pair of propeller shafts 43 are respectively rotated so as to rotate at the same rotation speed.
なお、 この回転比は、 羽根軸 2 3の一回転に対してプロペラ軸 4 3 が、 六回転するように設けることもでき、 例えば三回転以上、 又は四 回転以上とすることも可能である。 また、 八回転以下、 又は七回転以 下とすることも可能である。 さらには、 羽根軸 2 3の一回転に対して プロペラ軸 4 3がー回転するように設けることもできる。  The rotation ratio may be set so that the propeller shaft 43 rotates six times with respect to one rotation of the blade shaft 23, and may be, for example, three or more rotations, or four or more rotations. It is also possible to set the rotation to eight or less, or seven or less. Furthermore, the propeller shaft 43 may be provided so as to make one rotation with respect to one rotation of the blade shaft 23.
なお、 上記実施形態において、 上述の回転比はプロペラ軸ギヤ 3 4 と羽根軸ギヤ 3 2 とのギヤ比によって得られている。  In the above embodiment, the above-described rotation ratio is obtained by the gear ratio between the propeller shaft gear 34 and the blade shaft gear 32.
上記構成からなる本実施形態の燃費向上構造にあっては、 走行体 1 が走行駆動源の駆動によって前方方向 (X ) に走行すると、 その走行 に伴う対向風 (Y方向の風) を羽根 2 1の受風面 2 2 aが受け、 これ により羽根軸 2 3が回転することになる。 なお、 この回転の開始に際 しては、 受風面 2 2 aにより対向風を受けることのみならず、 プロべ ラ 4 1が対向風を受けて回転し始めるものとも考えられる。  In the fuel efficiency improvement structure of the present embodiment having the above-described configuration, when the traveling body 1 travels in the forward direction (X) by the driving of the traveling drive source, the opposing wind (wind in the Y direction) accompanying the traveling is caused by the blade 2. The first wind receiving surface 22a receives the blade shaft 23 by this. At the start of this rotation, it is considered that not only the wind receiving surface 22a receives the opposing wind but also the prober 41 starts rotating by receiving the opposing wind.
そして、 上述のように走行に際して対向風を羽根 2 1が受けると、 羽根軸 2 3が回転し、 この回転が伝達機構 3 0を介してプロペラ軸 4 3に伝達され、 このため、 プロペラ 4 1は走行方向後方側 (Y ) に風 を送る方向に回転することになる。 なお、 この回転に際しても、 上記 回転開始時と同様に、 受風面 2 2 aにより対向風を受けることのみな らず、 プロペラ 4 1が対向風を受けて回転し、 このプロペラ 4 1の回 転によって、 羽根軸 2 3を回転させているものとも考えられる。 When the blade 21 receives the opposing wind during traveling as described above, the blade shaft 23 rotates, and this rotation is transmitted to the propeller shaft 43 via the transmission mechanism 30. As a result, the propeller 41 Will rotate in the direction that sends the wind to the rear side (Y) in the traveling direction. In this rotation, as in the above-mentioned rotation start, it is considered that the counter wind is received by the wind receiving surface 22a. Instead, it is considered that the propeller 41 rotates in response to the opposing wind, and the rotation of the propeller 41 causes the blade shaft 23 to rotate.
ここで、 羽根 2 1 は、 走行体 1の幅方向に亘つて設けることができ るので、 羽根 2 1 の受風面 2 2 aの面積を広く設けることができ、 受 風面 2 2 aの面積を広くできることにより、 より大きな羽根軸 2 3の 回転力を得ることができる。  Here, since the blades 21 can be provided across the width direction of the traveling body 1, the area of the wind receiving surface 22a of the blade 21 can be widened, and the air receiving surface 22a can be provided. Since the area can be increased, a larger rotational force of the blade shaft 23 can be obtained.
また、 羽根 2 1は、 回転方向後面が受風面 2 2 aとなるように湾曲 して設けられているので、 より的確に対向風を受風面 2 2 aが受ける ことができ、 より大きな羽根軸 2 3の回転力を得ることができる。  In addition, since the blade 21 is provided so as to be curved so that the rear surface in the rotation direction becomes the wind receiving surface 22 a, the wind receiving surface 22 a can receive the counter wind more accurately, and The rotating force of the blade shaft 23 can be obtained.
しかも、 羽根 2 1 は平板を湾曲して設けられることにより、 この受 風面 2 2 aの他面 2 2 b側 (回転方向前面) は対向風を逃すような形 状に形成されているので、 対向風が回転力の反力方向に作用すること を的確に防止でき、 このため羽根軸 2 3の回転力を大きなものとする ことができる。  Moreover, since the blades 21 are formed by bending a flat plate, the other surface 22 b (the front surface in the rotation direction) of the wind receiving surface 22 a is formed in a shape that allows the counter wind to escape. However, it is possible to accurately prevent the opposing wind from acting in the direction of the reaction force of the rotational force, so that the rotational force of the blade shaft 23 can be increased.
また、 プロペラ 4 1は、 走行体 1の両側に一対設けられているので. 後方側へバランス良く風を送ることができる。  Also, since a pair of propellers 41 are provided on both sides of the traveling body 1, the wind can be sent to the rear side in a well-balanced manner.
しかも、 両側のプロペラ 4 1は同一の回転数で回転するため、 より バランス良く回転することができる。  In addition, since the propellers 41 on both sides rotate at the same rotation speed, they can rotate in a more balanced manner.
また、 前記プロペラ 4 1は同一方向に回転するように設けられてい るので、 同一の部材を用いることができる。 つまり、 プロペラ軸 4 3 とプロペラ 4 1 との連結手段としてネジ止め手段を採用した場合には、 一対のプロペラ軸 4 3が他方向に回転するならば、 一方のプロペラ軸 4 3 とプロペラ 4 1 との連結について他方向に回転するネジ手段を用 いることを要し、 このため製造コストの増加が考えられることになる。 これに対して、 上記実施形態にあっては、 一対のプロペラ軸 4 3が同 一方向に回転するように設けられているので、 ネジ手段によってプロ ペラ 4 1 を固定する場合にあっても、 それぞれのプロペラ軸 4 3及び プロペラ 4 1 との固定に関して同一方向のネジ手段を採用することが できることとなり、 製造の容易化、 コス トの低減が図られるという利 点を有する。 Further, since the propellers 41 are provided so as to rotate in the same direction, the same members can be used. In other words, when a screwing means is employed as a connecting means between the propeller shaft 43 and the propeller 41, if the pair of propeller shafts 43 rotates in the other direction, one of the propeller shafts 43 and the propeller 41 is rotated. It is necessary to use a screw means that rotates in the other direction for connection with, and this may increase the manufacturing cost. On the other hand, in the above-described embodiment, the pair of propeller shafts 43 are provided so as to rotate in the same direction. Even when the propeller 41 is fixed, screw means in the same direction can be employed for fixing the propeller shaft 43 and the propeller 41, thereby facilitating manufacturing and reducing costs. It has the advantage of being
このように構成されてなる燃費向上構造を搭載した走行体 1 を走行 せしめた燃費と、 搭載しない場合の燃費とを比較した場合に、 ガソリ ン 1 リ ッ トルあたりの走行距離の向上を図ることができた。 これは、 前述のように、 プロペラ 4 1が後方へ風を送ることにより、 推進力が 得られると考えることもできるが、 羽根 2 1 の回転に基づいて後方側 に風を送り こみ、 対向風に基づく走行体の抵抗が減少し、 このため燃 費の向上が図られたものと思われる。 つまり、 対向風によって走行体 の後方側が負圧となり、 走行体には後方側に引かれるような抵抗が生 じるのであるが、 ここに羽根 2 1によって風を送り込んでいるものと も考えられる。  When comparing the fuel efficiency of the vehicle 1 equipped with the fuel efficiency improvement structure configured as described above and the fuel efficiency without the vehicle, the mileage per liter of gasoline should be improved. Was completed. As described above, it can be considered that the propeller 41 sends the wind to the rear to obtain the propulsion force.However, the wind is sent to the rear side based on the rotation of the blades 21 and the opposing wind is generated. It is probable that the resistance of the vehicle based on the vehicle was reduced, thereby improving fuel economy. In other words, a negative pressure is generated on the rear side of the traveling body due to the oncoming wind, and the traveling body generates resistance that is drawn to the rear side.However, it is considered that the wind is sent by the blade 21 here. .
具体的には、 上記燃費向上構造を搭載しないで高速道路を走行した 場合には、 ガソリン 1 リッ トルあたり走行距離が 7 . 5 4 k m程度で あつたが、 上記構造を搭載して高速道路を走行した場合には、 ガソリ ン 1 リ ッ トルあたり走行距離が 9 . 8 4 k m程度となった。  Specifically, when traveling on an expressway without the above fuel efficiency improvement structure, the mileage per liter of gasoline was about 7.54 km, When the vehicle ran, the mileage per liter of gasoline was approximately 9.84 km.
また、 その他の実験結果を図 5に示す。 図 5においては、 上記燃費 向上構造を搭載した実験例 9例と、 搭載しない比較例 3例の結果を示 している。 何れの例においても、 高速道路を主に走行して、 その走行 距離及び消費燃料を測定したものである。 なお、 「プロペラ : 羽根」 の欄においては、 搭載した燃費向上構造のプロペラ軸と羽根軸との回 転'比を示している。 また、 「荷物搭載の有無」 の欄においては、 実験 時に荷台に荷物を搭載しているか否かを示している。  Fig. 5 shows other experimental results. FIG. 5 shows the results of nine experimental examples equipped with the above fuel efficiency improving structure and three comparative examples not equipped. In each case, the vehicle traveled mainly on a highway, and the travel distance and fuel consumption were measured. In the column of "Propeller: Blade", the rotation ratio of the propeller shaft and the blade shaft of the installed fuel efficiency improving structure is shown. The column “whether or not there is luggage” indicates whether or not luggage is loaded on the bed during the experiment.
<第二実施形態 > 次に、 本願発明の第二の実施形態について、 図 6及び図 7 を参酌し つつ、 以下説明する。 なお、 第一実施形態と同一の構成及び機能を有 するものについては、 同一の図番を用い、 詳細な説明は省略する。 第二実施形態の燃費向上構造は、 第一実施形態と同様に、 トラック 1 (運転部 5 ) に固定 (ポルト止め) されるフレーム 1 0 と、 走行時 の対向風を受けて回転する羽根軸 2 3を有する風受け機構 2 0 とから 構成されている。 なお、 第一実施形態のプロペラ機構及び伝達機構は 設けられていない。 <Second embodiment> Next, a second embodiment of the present invention will be described below with reference to FIGS. The components having the same configurations and functions as those of the first embodiment are denoted by the same reference numerals, and detailed description is omitted. Similar to the first embodiment, the fuel efficiency improvement structure of the second embodiment includes a frame 10 fixed (ported) to the truck 1 (driving unit 5), and a blade shaft that rotates by receiving an opposing wind during traveling. And a wind receiving mechanism 20 having 23. Note that the propeller mechanism and the transmission mechanism of the first embodiment are not provided.
第二実施形態は、 第一実施形態と同様に、 フレーム 1 0は、 風受け 機構 2 0の羽根軸 2 3を回転自在に支持する羽根軸支持部 1 0 aを有 している。 風受け機構 2 0は、 前記フレーム 1 0 (の羽根軸支持部 1 0 a ) に回転自在に支持され、 走行方向 (X ) に対して略垂直方向に 配された羽根軸 2 3 と、 この羽根軸 2 3に固定されてなり走行の際の 対向風を受けて羽根軸 2 3を回転するよう設けられた羽根 2 1 とから 構成されている。 また、 羽根 2 3の形状等は第一実施形態と同様であ る。  In the second embodiment, similarly to the first embodiment, the frame 10 has a blade shaft supporting portion 10a that rotatably supports the blade shaft 23 of the wind receiving mechanism 20. The wind receiving mechanism 20 is rotatably supported by (the blade shaft supporting portion 10a) of the frame 10 (a blade shaft supporting portion 10a), and is arranged in a direction substantially perpendicular to the traveling direction (X). The blade 21 is fixed to the blade shaft 23 and is provided to rotate the blade shaft 23 in response to an opposing wind during traveling. The shape of the blades 23 is the same as in the first embodiment.
上記構成からなる第二実施形態の燃費向上構造にあっては、 走行体 1が走行駆動源の駆動によって前方方向 (X ) に走行すると、 その走 行に伴う対向風 (Y方向の風) を羽根 2 1の受風面 2 2 aが受け、 こ れにより羽根軸 2 3が回転することになる。 そして、 この羽根 2 1の 回転に基づいて後方側に風を送り、 走行体の抵抗が減少し、 このため 燃費の向上が図られると考えられる。  In the fuel efficiency improving structure of the second embodiment having the above configuration, when the traveling body 1 travels in the forward direction (X) by driving of the traveling drive source, the oncoming wind (wind in the Y direction) accompanying the traveling is reduced. The wind receiving surface 22 a of the blade 21 receives the rotation, and thereby the blade shaft 23 rotates. Then, based on the rotation of the blade 21, the wind is sent to the rear side, so that the resistance of the traveling body is reduced, and it is considered that the fuel efficiency is improved.
ぐその他の実施形態 > Other embodiments>
上記各実施形態の燃費向上構造は上述の構成により上述の利点を有 するものであつたが、 本願発明はこれに限定するものではなく、 各請 求項記載の範囲内において適宜設計変更可能である。 つまり、 上記第一実施形態においては、 羽根軸 2 3の両側に一対の プロペラ軸 4 3 を設けたものについて説明したが、 本願発明はこれに 限定されるものではない。 また、 プロペラ軸 4 3を設ける場合も、 一 方側のみにプロペラ 4 1 を設けたり、 三つ以上のプロペラ 4 1 を設け ることも本願発明の意図する範囲内である。 Although the fuel efficiency improvement structure of each of the above embodiments has the above-described advantages due to the above-described configuration, the present invention is not limited to this, and the design can be appropriately changed within the scope of each claim. is there. That is, in the above-described first embodiment, the case where the pair of propeller shafts 43 are provided on both sides of the blade shaft 23 has been described, but the present invention is not limited to this. Also, when the propeller shaft 43 is provided, it is within the scope of the present invention to provide the propeller 41 only on one side or to provide three or more propellers 41.
また、 第一実施形態においては、 伝達機構 3 0 として、 羽根軸 2 3 に固着した羽根軸ギヤ 3 2 と、 プロペラ軸 4 3 に固着したプロペラ軸 ギヤ 3 4とを直接嚙み合わせてなるものについて説明した。 しかし、 本願発明において、 例えば、 複数の減速ギヤからなる減速機構等を介 して両者を連結する方法を採用することも適宜設計変更可能な事項で ある。 さらに、 上記実施形態のようにギヤ同士を直接嚙み合わせた場 合にあっても、 この嚙み合い部分をオイルケース等で覆うように設け ることも適宜設計変更可能な事項である。  Further, in the first embodiment, as the transmission mechanism 30, a blade shaft gear 32 fixed to the blade shaft 23 and a propeller shaft gear 34 fixed to the propeller shaft 43 are directly engaged. Was explained. However, in the invention of the present application, for example, adopting a method of connecting the both via a reduction mechanism or the like including a plurality of reduction gears is a matter that can be appropriately changed in design. Further, even in the case where the gears are directly engaged with each other as in the above-described embodiment, it is also a matter that the design can be appropriately changed such that the engaged portion is covered with an oil case or the like.
さらに、 プロペラ 4 1 もプロペラ軸 4 3に四枚突設されているもの について説明したが、 後方側に風を送ることのできる任意のプロペラ 4 1 を採用することができる。  Furthermore, the propeller 41 has been described as having four propellers protruding from the propeller shaft 43, but any propeller 41 capable of sending wind to the rear side can be employed.
また、 上記実施形態の燃費向上構造を搭載する走行体 1 の例として、 トラックを例にとり説明したが、 本願発明はこれに限定されるもので はない。 さらに、 トラック等の走行車両に搭載される場合にあっても、 上記実施形態のように走行車両に直接固定されるものでなく、 例えば, 図 8 に示すように、 走行車両 (トラック 1 の運転部 5 ) の上方に載置 台 6 を固定して、 この載置台 6の上面に前記燃費向上構造を載置固定 することも可能である。  Also, a truck has been described as an example of the traveling body 1 on which the fuel efficiency improving structure of the above embodiment is mounted, but the present invention is not limited to this. Further, even when mounted on a traveling vehicle such as a truck, the vehicle is not directly fixed to the traveling vehicle as in the above-described embodiment. For example, as shown in FIG. It is also possible to fix the mounting table 6 above the part 5) and mount and fix the fuel efficiency improving structure on the upper surface of the mounting table 6.
さらに、 風受け機構 2 0の羽根 2 1の形状も上記実施形態のものに 限定されず、 例えば図 9に示すものも採用可能である。 この図示例の 羽根 2 1 は、 上記実施形態と同様に、 羽根軸 2 3から複数枚、 放射状 に外周方向に突出して羽根軸 2 3に固定 (溶接) されて、 この羽根 2 1 は、 回転方向後面が受風面 2 2 aとなるように湾曲して設けられる ものであり、 さらに、 羽根 2 1の端部 2 l aが外周方向に向けて屈曲 されているものである。 この端部 2 l aの屈曲は、 羽根軸 2 3に対し て外周方向 (径方向) に向けて屈曲されている。 Further, the shape of the blades 21 of the wind receiving mechanism 20 is not limited to that of the above-described embodiment. For example, the shape shown in FIG. 9 can be adopted. A plurality of blades 21 of this illustrated example are radially arranged from the blade shaft 23 in the same manner as in the above-described embodiment. And is fixed (welded) to the blade shaft 23 so as to protrude in the outer circumferential direction, and the blade 21 is provided so as to be curved so that the rear surface in the rotation direction becomes the wind receiving surface 22 a. The end 2 la of 21 is bent toward the outer periphery. The end 2 la is bent toward the outer periphery (radial direction) with respect to the blade shaft 23.
また、 羽根軸 2 3に対する羽根 2 1 の固定方法も溶接に限られず、 例えばポルトによる固定方法も採用できる。 図 1 0に示す例にあって は、 羽根軸 2 3 と羽根 2 1 とをポルト 2 5 a及びナッ ト 2 5 bによつ て固定している。 図示例にあっては、 対向する部分の羽根 2 1 は、 一 対のポルト 2 5 a及びナツ ト 2 5 bによって羽根軸 2 3に固定されて いる。 羽根軸 2 3には、 羽根 2 1が当接される略平面状の取付部が設 けられ、 全体として断面方形状 (正方形状) に設けられている。 この 羽根軸 2 3の取付部に、 羽根 2 1の一端側が当接するように配されて. この部位にポルト 2 5 aが挿着されて、 このポルト 2 5 aにナッ ト 2 5 bを螺合されて、 羽根 2 1は羽根軸 2 3に固定されている。 なお、 このポルト 2 5 a及びナッ ト 2 5 bは、 羽根軸 2 3 の軸方向に三対設 けられている。 また、 羽根軸 2 3は、 例えば、 四角柱の鋼材を両端部 において重心を中心とする円形に削ることによって製造でき、 その削 られた両端部においてフレーム 1 0に支持させることが可能である。 また、 図 1 1 に示すように、 羽根 2 1の外周側に、 風の流れを許容 するとともに、 羽根 2 1 の外側を覆うように設けられた安全装置 5 0 を備えることも可能である。 図示例の安全装置 5 0は、 フレーム 1 0 に一体的に設けられた半円状の鋼材 5 1から構成されており、 該鋼材 5 1が羽根 2 1の外周側を覆うようにフレーム 1 0に固定 (溶接) さ れている。 また、 同様に、 プロペラ機構 4 0にも、 プロペラ 4 1の外 周側及び/又は走行方向前面側に安全装置を設けることも可能である。 さらに、 図 1 2 に示すように、 羽根軸 2 3の下方側の羽根 2 1 に対 向風が流れることを防止する防風部材 6 0を設けることも可能である この図示例の防風部材 6 0は、 フレーム 1 0に固定 (溶接) され、 上 方側が、 水平位置が略羽根軸 2 3の高さに位置し、 走行方向後方側に 傾斜するように設けられている。 産業上の利用可能性 In addition, the method of fixing the blade 21 to the blade shaft 23 is not limited to welding, and a fixing method using a port, for example, can be adopted. In the example shown in FIG. 10, the blade shaft 23 and the blade 21 are fixed by a port 25a and a nut 25b. In the illustrated example, the opposing blades 21 are fixed to the blade shaft 23 by a pair of ports 25a and nuts 25b. The blade shaft 23 is provided with a substantially planar mounting portion with which the blade 21 is brought into contact, and is provided as a whole in a square cross section (square shape). The one end of the blade 21 is arranged so as to abut on the mounting portion of the blade shaft 23. A port 25a is inserted into this portion, and a nut 25b is screwed into the port 25a. As a result, the blade 21 is fixed to the blade shaft 23. The port 25a and the nut 25b are provided in three pairs in the axial direction of the blade shaft 23. Further, the blade shaft 23 can be manufactured by, for example, shaving a square pillar steel material into a circle centered on the center of gravity at both ends, and supporting the frame 10 at the cut both ends. Further, as shown in FIG. 11, it is possible to provide a safety device 50 provided on the outer peripheral side of the blade 21 so as to allow the flow of the wind and to cover the outside of the blade 21. The safety device 50 in the illustrated example is composed of a semicircular steel member 51 provided integrally with the frame 10, and the steel member 51 covers the outer peripheral side of the blade 21 so that the frame 10. Fixed (welded). Similarly, the propeller mechanism 40 may be provided with a safety device on the outer peripheral side of the propeller 41 and / or on the front side in the traveling direction. Further, as shown in FIG. 12, it is also possible to provide a windproof member 60 for preventing a counter wind from flowing to the blade 21 below the blade shaft 23. Is fixed (welded) to the frame 10, and the upper side is provided so that the horizontal position is substantially at the height of the blade shaft 23 and is inclined rearward in the traveling direction. Industrial applicability
以上のように、 本願発明に係る走行体の燃費向上構造は、 例えば走 行車両等の走行体に装着され、 その走行車両の燃費を向上するために 好適に用いられる。  As described above, the structure for improving fuel efficiency of a traveling body according to the present invention is mounted on, for example, a traveling body such as a traveling vehicle, and is suitably used for improving the fuel efficiency of the traveling vehicle.

Claims

請 求 の 範 囲 The scope of the claims
1. 車両等の走行体 ( 1 ) に取り付けられる燃費向上構造であって、 走行方向 (X) に対して略垂直方向に配された羽根軸 ( 2 3 ) と、 この羽根軸 ( 2 3 ) に固定されてなり走行の際の対向風を受けて羽 根軸 ( 2 3 ) を回転する羽根 ( 2 1 ) とを備えてなることを特徴とす る走行体の燃費向上構造。 1. A fuel efficiency improving structure attached to a vehicle (1) such as a vehicle, the blade axis (2 3) being arranged substantially perpendicular to the traveling direction (X), and the blade axis (2 3) And a vane (21) rotating the blade shaft (23) in response to an oncoming wind during traveling.
2. 前記羽根 ( 2 1 ) は、 羽根軸 ( 2 3 ) から複数枚、 放射状に外周 方向に突出して固定され、 羽根軸 ( 2 3 ) に対して上部の羽根 ( 2 2. A plurality of the blades (21) are radially projected outward from the blade shaft (23) and are fixed to the blade shaft (23).
1 ) の走行方向前方面 ( 2 2 a) が対向風を受ける受風面となるよう に設けられていることを特徴とする請求項 1記載の走行体の燃費向上 構造。 2. The structure for improving fuel efficiency of a traveling body according to claim 1, wherein the front surface (2 2a) in the traveling direction of (1) is provided as a wind receiving surface for receiving an opposing wind.
3. 車両等の走行体 ( 1 ) に取り付けられる燃費向上構造であって、 走行方向 (X) に対して略垂直方向に配された羽根軸 ( 2 3 ) と、 この羽根軸 ( 2 3 ) に固定されてなり走行の際の対向風を受けて羽 根軸 ( 2 3 ) を回転する羽根 ( 2 1 ) と、  3. A fuel efficiency improving structure attached to a vehicle (1) such as a vehicle, the blade shaft (2 3) being arranged substantially perpendicular to the running direction (X), and the blade shaft (2 3) A blade (2 1), which is fixed to and rotates a blade shaft (2 3) in response to an oncoming wind during traveling;
走行方向 (X) に対して略平行方向に配されたプロペラ軸 ( 4 3 ) と、  A propeller shaft (43) arranged substantially parallel to the traveling direction (X);
前記羽根軸 ( 2 3 ) 及びプロペラ軸 ( 4 3 ) を連結して羽根軸 ( 2 By connecting the blade shaft (23) and the propeller shaft (43), the blade shaft (2
3 ) の回転力をプロペラ軸 (4 3 ) に伝達する伝達機構 ( 3 0 ) と、 前記プロペラ軸 (4 3 ) に固定されるプロペラ ( 4 1 ) とを備えて なることを特徴とする走行体の燃費向上構造。 A traveling mechanism comprising: a transmission mechanism (30) for transmitting the rotational force of (3) to a propeller shaft (43); and a propeller (41) fixed to the propeller shaft (43). Structure for improving fuel efficiency of the body.
4. 前記羽根 ( 2 1 ) は、 回転方向後面が受風面 ( 2 2 a) となるよ うに湾曲して、 羽根軸 ( 2 3 ) に多数枚固定されていることを特徴と する請求項 3記載の走行体の燃費向上構造。 4. The blade (21) is characterized by being curved so that the rear surface in the rotation direction becomes a wind receiving surface (22a), and is fixed to a plurality of blade shafts (23). 3. Structure for improving fuel efficiency of the running body described in 3.
5. 前記伝達機構 ( 3 0 ) は、 羽根軸 ( 2 3 ) に固着された羽根軸ギ ャ ( 3 2 ) と、 前記プロペラ軸 ( 4 3 ) に固着され羽根軸ギヤ ( 3 2 ) と嚙み合うプロペラ軸ギヤ ( 3 4 ) とから構成されていることを 特徴とする請求項 3又は 4記載の走行体の燃費向上構造。 5. The transmission mechanism (30) has a blade shaft gear (32) fixed to the blade shaft (23) and a blade shaft gear (32) fixed to the propeller shaft (43). The structure for improving fuel efficiency of a traveling body according to claim 3 or 4, wherein the structure comprises a propeller shaft gear (34) that meshes with the propeller shaft gear.
6. 前記羽根軸ギヤ ( 3 2 ) は、 羽根軸 ( 2 3 ) の両端側にそれぞれ 設けられており、  6. The blade shaft gears (32) are provided at both ends of the blade shaft (23), respectively.
前記プロペラ軸 (4 3 ) は、 羽根軸 ( 2 3 ) の両側に一対設けられ るとともに、 そのそれぞれに前記プロペラ軸ギヤ ( 3 4 ) が固着され ており、  The propeller shaft (43) is provided in a pair on both sides of the blade shaft (23), and the propeller shaft gear (34) is fixed to each of them.
一方側の羽根軸ギヤ ( 3 2 ) と一方側のプロペラ軸 ( 4 3 ) のプロ ペラ軸ギヤ ( 3 4) とが連結され、 他方側の羽根軸ギヤ ( 3 2 ) と他 方側のプロペラ軸 (4 3 ) のプロペラ軸ギヤ ( 3 4) とが連結される ように設けられていることを特徴とする請求項 5記載の走行体の燃費 向上構造。  One blade shaft gear (32) is connected to the propeller shaft gear (34) of one propeller shaft (43), and the other blade shaft gear (32) is connected to the other propeller shaft. The fuel efficiency improvement structure for a traveling body according to claim 5, wherein the structure is provided so as to be connected to the propeller shaft gear (34) of the shaft (43).
7. 前記一方側のプロペラ軸ギヤ ( 3 4 ) は、 羽根軸ギヤ ( 3 2 ) と 走行体 ( 1 ) の進行方向前方側で嚙み合い、 他方側のプロペラ軸ギヤ ( 3 4 ) は、 羽根軸ギヤ ( 3 2 ) と進行方向後方側で嚙み合うように 設けられていることを特徴とする請求項 6記載の走行体の燃費向上構 造。  7. The propeller shaft gear (34) on the one side engages with the blade shaft gear (32) on the front side in the traveling direction of the traveling body (1), and the propeller shaft gear (34) on the other side 7. The fuel consumption improving structure for a traveling body according to claim 6, wherein the structure is provided so as to mesh with the blade shaft gear (32) on the rear side in the traveling direction.
PCT/JP2001/007232 2000-08-25 2001-08-23 Fuel consumption improving structure of running body WO2002016767A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002521830A JPWO2002016767A1 (en) 2000-08-25 2001-08-23 Structure for improving fuel efficiency of the vehicle
US10/362,787 US20040202543A1 (en) 2000-08-25 2001-08-23 Fuel consumption improving structure of running body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000255690 2000-08-25
JP2000-255690 2000-08-25

Publications (1)

Publication Number Publication Date
WO2002016767A1 true WO2002016767A1 (en) 2002-02-28

Family

ID=18744425

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/007232 WO2002016767A1 (en) 2000-08-25 2001-08-23 Fuel consumption improving structure of running body

Country Status (3)

Country Link
US (1) US20040202543A1 (en)
JP (1) JPWO2002016767A1 (en)
WO (1) WO2002016767A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003081035A1 (en) * 2002-03-25 2003-10-02 Kanki, Kenzou Wind power generator for vehicle
JP2007536454A (en) * 2004-05-03 2007-12-13 ウインド エナジー グループ,インク. Wind turbine for power generation

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100006352A1 (en) * 2008-07-11 2010-01-14 Fabio Agostini Cannon-shaped wind turbines for electric vehicles
GB2461918A (en) * 2008-07-18 2010-01-20 Trevor Knight Vehicle mounted wind turbine
CN101830168A (en) * 2009-03-11 2010-09-15 郝升华 Device for performing wind power generation by using movement of object such as motor vehicle and the like
US8541897B2 (en) * 2009-09-01 2013-09-24 University Of Southern California Generation of electric energy using cable-supported windmills
US20180069454A1 (en) * 2016-09-07 2018-03-08 Oran Wiley Greene Perpetutek

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0828431A (en) * 1994-07-11 1996-01-30 Hidenobu Omote Fan driven generating device in running vehicle
JPH08261134A (en) * 1995-03-20 1996-10-08 Tatsuo Yonede Wind power generating set for vehicle

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3876925A (en) * 1974-01-02 1975-04-08 Christian Stoeckert Wind turbine driven generator to recharge batteries in electric vehicles
US4424452A (en) * 1982-01-19 1984-01-03 Francis Paul T Fluid-driven power generator
US5746283A (en) * 1996-04-24 1998-05-05 Brighton; Everett W. Electric propulsion system for a vehicle
US5920127A (en) * 1996-08-19 1999-07-06 Damron; Philip C. Propeller wind charging system for electrical vehicle
US6138781A (en) * 1997-08-13 2000-10-31 Hakala; James R. System for generating electricity in a vehicle
US6703720B1 (en) * 2000-09-28 2004-03-09 Michael Ferraro Wind powered generator device
US6700215B2 (en) * 2001-09-21 2004-03-02 Shiang-Huei Wu Multiple installation varie gated generators for fossil fuel-and electric-powered vehicles
US7135786B1 (en) * 2006-02-11 2006-11-14 Edward Deets Wind driven generator for powered vehicles

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0828431A (en) * 1994-07-11 1996-01-30 Hidenobu Omote Fan driven generating device in running vehicle
JPH08261134A (en) * 1995-03-20 1996-10-08 Tatsuo Yonede Wind power generating set for vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003081035A1 (en) * 2002-03-25 2003-10-02 Kanki, Kenzou Wind power generator for vehicle
JP2007536454A (en) * 2004-05-03 2007-12-13 ウインド エナジー グループ,インク. Wind turbine for power generation

Also Published As

Publication number Publication date
JPWO2002016767A1 (en) 2004-01-15
US20040202543A1 (en) 2004-10-14

Similar Documents

Publication Publication Date Title
US9592732B2 (en) Vehicle powertrain with dual-independent transmissions
PT1035995E (en) Vehicle drive wheel assembly
US6766708B2 (en) Gear ratio multiplier
US7090611B2 (en) Power transmission device
WO2002016767A1 (en) Fuel consumption improving structure of running body
US20020040613A1 (en) Gear ratio multiplier
US20190078675A1 (en) Input Gear Set for Mounting to an Axle Assembly Housing
JP5085425B2 (en) Power unit for vehicle
JP4379867B2 (en) Power unit for electric vehicles
JPS6329646B2 (en)
CN114194326A (en) Multi-stage chain transmission structure for all-terrain kart
JP2005306056A (en) Power train
WO2012169411A1 (en) Wind power utilization system
JP5248255B2 (en) Drive unit
CN219214727U (en) Driving axle and vehicle with same
CN214928965U (en) Motor-driven loading equipment and trailing arm transmission case thereof
CN218948916U (en) Chassis for vehicle and fire engine
JPS58164432A (en) Power transmission for front wheel drive car
CN116588182A (en) Large-angle low-floor steering mechanism
KR19980082366A (en) Differential case support structure of the car
JP3641828B2 (en) Car water traveling device
JPH02124308A (en) Amphibian vehicle
JP2012066751A (en) Seal cap for wheel bearing device
JP2003164014A (en) Vehicle driving device
JPH0834254A (en) Transfer device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2002521830

Country of ref document: JP

122 Ep: pct application non-entry in european phase
WWE Wipo information: entry into national phase

Ref document number: 10362787

Country of ref document: US