WO2021019631A1 - Communication device and communication method - Google Patents

Communication device and communication method Download PDF

Info

Publication number
WO2021019631A1
WO2021019631A1 PCT/JP2019/029555 JP2019029555W WO2021019631A1 WO 2021019631 A1 WO2021019631 A1 WO 2021019631A1 JP 2019029555 W JP2019029555 W JP 2019029555W WO 2021019631 A1 WO2021019631 A1 WO 2021019631A1
Authority
WO
WIPO (PCT)
Prior art keywords
amplification factor
communication device
signal
range
ru10b
Prior art date
Application number
PCT/JP2019/029555
Other languages
French (fr)
Japanese (ja)
Inventor
邦彦 手島
義嗣 島津
大輔 平塚
アニール ウメシュ
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2019/029555 priority Critical patent/WO2021019631A1/en
Priority to CN201980098606.4A priority patent/CN114128224B/en
Publication of WO2021019631A1 publication Critical patent/WO2021019631A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the present invention relates to a communication device and a communication method in a wireless communication system.
  • Non-Patent Document 1 NR (New Radio) (also called “5G”), which is the successor system to LTE (Long Term Evolution), the requirements are a large-capacity system, high-speed data transmission speed, low delay, and simultaneous operation of many terminals. Techniques that satisfy connection, low cost, power saving, etc. are being studied (for example, Non-Patent Document 1).
  • the O-RAN Alliance has been established for the purpose of promoting openness and intelligence in 5G RAN (Radio Access Network).
  • 5G RAN Radio Access Network
  • O-RAN In O-RAN, multiple architectures are being discussed, and one of them is an open fronthaul interface that realizes the interconnection between the baseband processing unit and the radio unit between different vendors. .. O-DU (O-RAN Distributed unit) and O-RU (O-RAN Radio unit) that separately realize layer 2 functions, baseband signal processing, and radio signal processing are defined as function groups in O-RAN. ing.
  • the front hall interface corresponds to the interface between O-DU and O-RU.
  • the transmission power of the RF signal transmitted from O-RU to the radio section is set from O-DU.
  • the O-DU transmits the set value of the amplification factor and the sample value of the signal to the O-RU.
  • the set value of the amplification factor transmitted from the O-DU is not within the range of the amplification factor that the power amplifier provided in the O-RU can operate properly, the linearity of the input / output signal of the power amplifier becomes There is a concern that the signal is not maintained and the signal is transmitted with a power different from the assumption or the transmission signal waveform is distorted, and as a result, the terminal cannot receive the downlink signal correctly and the downlink communication does not communicate correctly.
  • the present invention has been made in view of the above points, and an object of the present invention is to set an appropriate amplification factor in a wireless function unit provided with a power amplifier in a wireless communication system.
  • a transmitter that transmits information indicating an amplification factor range in which the amplifier of the own device can operate properly to another communication device, and OFDM of the amplification factor and the frequency domain set in the own device.
  • OFDM Orthogonal Frequency Division Multiplexing
  • a receiving unit that receives sampling sequences of in-phase components and orthogonal components of a signal from the other communication device, and sends out a radio signal to which an amplification factor set in the own device is applied based on the sampling sequence.
  • a communication device having a control unit is provided.
  • an appropriate amplification factor can be set in a wireless function unit provided with a power amplifier.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced and later methods (eg, NR) unless otherwise specified.
  • SS Synchronization signal
  • PSS Primary SS
  • SSS Secondary SS
  • PBCH Physical broadcast channel
  • PRACH Physical
  • NR-SS NR-SS
  • NR-PBCH Physical broadcast channel
  • PRACH Physical
  • the duplex system may be a TDD (Time Division Duplex) system, an FDD (Frequency Division Duplex) system, or other system (for example, Flexible Duplex, etc.). Method may be used.
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • Method may be used.
  • “configuring" the radio parameter or the like may mean that a predetermined value is set in advance (Pre-configure), or the base station 10 or The radio parameter notified from the terminal may be set.
  • FIG. 1 is a diagram showing a configuration example of the O-RAN architecture.
  • the network architecture has "Operation & Automation” as a function for realizing the operation management of the network.
  • “Orchestration & Automation” is, for example, ONAP (Open Networking Automation Platform), and realizes MANO (Management and Network Orchestration), NMS (Network Management System), and the like.
  • “Operation & Automation” is composed of functional parts such as “Design”, “Inventory”, “Police”, “Configuration” and “RAN Inventory Controller (RIC) non-RT”.
  • the networks that are operated and managed via interface A1 by "Orchestration & Automation” are "RAN Intelligent Controller (RIC) near-RT”, “Multi-RAT CU Protocol Stack”, “NFVI (Network functions virtualization Platform)”.
  • -It has functional parts such as “DU (O-RAN Distributed Unit)” and “O-RU (O-RAN Radio Unit)”.
  • RIC near-RT has functional parts such as "3rd party APP”, “Radio Connection Mgmt”, “mobility Mgmt”, “QoS Mgmt”, “Interference Mgmt” and “Trained Model” as application layers. Further, the “RIC near-RT” has a “Radio-Network Information Base”. The “RIC near-RT” is connected to the CU and DU via the interface E2.
  • Multi-RAT CU Protocol Stack is composed of "CU-CP (Control plane)” and "CU-UP (User plane)".
  • CU-CP has a protocol “RRC (Radio Resource Control)” and a protocol “PDCP (Packet Data Convergence Protocol) -C”
  • CU-UP is a protocol "SDAP (Service Data Adaptation Protocol)”.
  • SDAP Service Data Adaptation Protocol
  • NFVI Platform is a virtual layer and COTS (commercial off the shelf) platform.
  • O-DU is composed of "RLC (RadioLinkControl)", “MAC (MediaAccessControl)", and "PHY-high”.
  • the "O-DU” is connected to the "O-RU” via the interface "Open Front Haul (front hall)”.
  • O-RU is composed of "PHY-low” and "RF”.
  • FIG. 2 is a diagram showing a configuration example of gNB10.
  • the base station gNB10 is separated into CU10C, O-DU10A and O-RU10B.
  • CU10C includes RRC / SDAP and PDCP.
  • O-DU10A includes RLC, MAC and PHY-High.
  • O-RU10B includes PHY-Low & RF.
  • An IQ sample sequence of an OFDM (Orthogonal Frequency Division Multiplexing) signal in the frequency domain is transmitted and received between the O-DU 10A and the O-RU 10B.
  • the IQ sample sequence is a sampling series of in-phase components and orthogonal components of a complex digital signal.
  • the PHY-High functions of the O-DU 10A in the DL (Downlink) processing flow such as PDSCH (Physical Downlink Shared Channel) are "encoding”, “scramble”, and “modulation”. , “Layer mapping”, “Precoding” and “Resource element mapping”.
  • the PHY-Low & RF functions of the O-RU10B in the subsequent DL processing flow are "precoding”, “digital BF (BeamForming)”, “IFFT (Inverse Fast Fourier Transform)", “analog transformation”, and “analog BF”. ".
  • precoding is performed by O-RU10B, O-DU10A does not perform precoding.
  • the PHY-Low & RF functions of the O-RU10B in the UL (Uplink) processing flow such as PUSCH (Physical Uplink Shared Channel) include “analog BF", “digital conversion”, and “FFT”. (Fast Fourier Transform) ”,“ Digital BF ”.
  • the PHY-High functions of the O-DU10A are "resource element demapping", “equivalent processing / IDFT / channel estimation”, “demodulation”, “declaration” and “decoding”. ..
  • FIG. 3 is a diagram for explaining a signal between O-DU10A and O-RU10B. As shown in FIG. 3, a U-Plane signal, a C-Plane signal, an M-Plane signal, and an S-Plane signal are transmitted and received between the O-DU10A and the O-RU10B via the front hole.
  • the U-Plane signal is a DL signal transmitted by the O-RU10B to the radio section or a UL signal received from the radio section, and is exchanged by an IQ sample string of a digital IQ signal, that is, an OFDM signal in the frequency domain.
  • the C-Plane signal is a signal necessary for various controls related to transmission / reception of the U-Plane signal, and for example, notifies information related to radio resource mapping, beamforming, etc. of the U-Plane signal.
  • the C-Plane signal is transmitted from the O-DU10A to the O-RU10B in one direction.
  • LAA Local Area Network
  • a C-Plane signal may be transmitted from the O-RU10B to the O-DU10A.
  • the M-Plane signal is a signal necessary for the management of O-DU10A and O-RU10B.
  • the O-RU10B notifies the O-DU10A of various hardware capabilities of the O-RU10B via the M-Plane signal, and the O-DU10A notifies the O-RU10B of various setting values.
  • the S-Plane signal is a signal required for synchronous control between O-DU10A and O-RU10B.
  • FIG. 4 is a diagram for explaining an example of a method of determining the transmission power of the O-RU10B.
  • the downlink signal transmission power transmitted by the O-RU10B is determined by the following 1) and 2).
  • the desired transmission power is realized.
  • the magnitude of the digital power scaling (DL gain) setting value As shown in FIG. 4, the O-DU 10A to the O-RU 10B are set in advance at the timing such as when the device is started via the M-Plane.
  • the DL gain set value is used for adjusting the level of the power amplifier included in the O-RU10B.
  • the size of the sample value of the digital IQ signal Each DL signal transmission via the U-Plane is notified from the O-DU 10A to the O-RU 10B.
  • FIG. 5 is a sequence diagram for explaining signals between O-DU10A and O-RU10B.
  • the O-RU10B reports to the O-DU10A the maximum configurable DL gain.
  • the O-DU 10A notifies the O-RU 10B of the value to be set as the DL gain.
  • the range of amplification factor in which the linearity of the input / output signal is generally maintained is limited. Therefore, the range of amplification factors that can be operated properly is generally limited.
  • the information notified from the O-RU10B to the O-DU10A is only the "maximum value of the configurable amplification factor", and the O-DU10A has the "appropriately operable amplification factor”. I can't figure out the range of. Therefore, depending on the DL gain value set by the O-DU10A, the linearity of the input / output signals of the power amplifier may not be maintained, signal transmission with a power different from the assumption, distortion of the transmission signal waveform, etc.
  • the terminal may occur, and as a result, the terminal
  • the downlink signal cannot be received correctly and the downlink communication cannot be communicated correctly. Therefore, it is necessary for the O-DU 10A to be able to grasp the "range of amplification factor that operates properly".
  • FIG. 6 is a diagram for explaining an example (1) of setting the amplification factor in the embodiment of the present invention.
  • the O-RU10B notifies the O-DU10A of information indicating the range of DL gain in which the power amplifier operates properly. Based on this information, the O-DU10A can set the DL gain within the range of appropriate operation for the O-RU10B. For example, in step S1 shown in FIG. 5, information indicating a DL gain range in which the power amplifier operates appropriately may be notified from the O-RU 10B to the O-DU 10A.
  • Information indicating whether or not to notify the DL gain range may be notified from O-RU10B to O-DU10A, and information indicating whether or not to notify the DL gain range may be notified from O-DU10A to O. -The RU10B may be notified.
  • FIG. 6 is an example in which information indicating the upper and lower end values of the properly operating DL gain range is notified.
  • the O-RU 10B may notify the O-DU 10A of the upper limit value and the lower limit value of the DL gain.
  • the O-DU10A can set an appropriate DL gain to the O-RU10B based on the upper limit value and the lower limit value.
  • the upper end or the upper limit may be replaced with the maximum value, and the lower end or the lower limit may be replaced with the minimum value.
  • Information indicating whether or not to notify the lower limit of the DL gain may be notified from the O-RU 10B to the O-DU 10A, and information indicating whether or not to notify the lower limit of the DL gain may be notified to the O-DU 10A. May be notified to O-RU10B.
  • FIG. 7 is a diagram for explaining an example (2) of setting the amplification factor in the embodiment of the present invention.
  • FIG. 7 is an example in which information indicating the upper and lower end values of the properly operating DL gain range is notified.
  • the O-RU 10B may notify the O-DU 10A of the difference ⁇ based on the upper limit value with the upper limit value X and the lower limit value of the DL gain as X- ⁇ . That is, the O-RU10B may notify the O-DU10A of X and ⁇ .
  • the O-DU10A can set an appropriate DL gain to the O-RU10B based on the upper limit value and the lower limit value.
  • FIG. 8 is a diagram for explaining an example (3) of setting the amplification factor in the embodiment of the present invention.
  • FIG. 8 is an example in which information indicating a properly operating DL gain range is notified.
  • the O-RU10B may notify the O-DU10A of the upper limit value of the DL gain and the width based on the upper limit value.
  • the O-DU10A can set an appropriate DL gain to the O-RU10B based on the upper limit value and the width based on the upper limit value.
  • FIG. 9 is a diagram for explaining an example (4) of setting the amplification factor in the embodiment of the present invention.
  • FIG. 9 is an example in which information indicating a properly operating DL gain range is notified.
  • the O-RU 10B may notify the O-DU 10A of the combination of the upper limit value and the lower limit value of the DL gain.
  • the O-DU10A can set an appropriate DL gain to the O-RU10B based on the combination of the upper limit value and the lower limit value.
  • the information notified from the O-RU10B to the O-DU10A may include information indicating a plurality of appropriately operating DL gain ranges.
  • the O-DU 10A can set the appropriate DL gain to the O-RU 10B if the O-RU 10B has a plurality of properly operating DL gain ranges.
  • the method of notifying O-DU10A from O-RU10B may be any of the following methods 1) -4).
  • the Array of 1) -4) above is composed of one or a plurality of Array elements, and the Array element is composed of an element that emits one or a plurality of radio waves. Further, the methods 1) and 4) above are assumed to control the amount of signals flowing through the front hall. 1) has the largest amount of signal, and 2), 3), and 4) decrease in order. For example, when the communication status of the front hall is a situation in which the signal amount should be reduced, the method 4) may be used as the notification method.
  • FIG. 10 is a diagram showing an example (1) of a data model according to the embodiment of the present invention.
  • FIG. 10 is an example of an M-Plane signal using the data modeling language YANG (Yet Another Next Generation).
  • YANG Yet Another Next Generation
  • the M-Plane signal is notified.
  • the M-Plane signal includes an upper limit value "max-gain” and a lower limit value "min-gain", and is expressed in decibel unit signal64, that is, a 64-bit wide decimal floating-point format.
  • the M-Plane signal shown in FIG. 10 may have an identifier or a flag indicating whether or not to notify the lower limit of the DL gain.
  • FIG. 11 is a diagram showing an example (2) of a data model according to the embodiment of the present invention.
  • FIG. 11 is an example of an M-Plane signal using the data modeling language YANG.
  • the M-Plane signal is notified.
  • the M-Plane signal includes an upper limit value “max-gain” and a width “gain-range” based on the upper limit value, and each includes a decibel unit signal 64, that is, a 64-bit width decimal floating point number floating. Notated in decimal format.
  • the M-Plane signal shown in FIG. 11 may have an identifier or a flag indicating whether or not to notify the DL gain range.
  • FIG. 12 is a flowchart for explaining an example of the activation procedure according to the embodiment of the present invention.
  • a procedure (Startup procedure) for establishing an M-Plane connection of O-DU10A and O-RU10B is described in a client-server model based on NETCONF (Network Configuration Protocol) shown in FIG.
  • the NETCONF server supports O-RU10B.
  • the NETCONF client is a device that manages the O-RU, and the O-DU 10A may support it.
  • the startup procedure first executes the initialization of the transport layer. Subsequently, the O-RU10B starts synchronization with the primary reference clock. Subsequently, the O-RU10B calls the NETCONF client to establish a secure connection by SSH (Secure Shell). Subsequently, NETCONF capability discovery may be performed and a new management account may be supplied. Subsequently, management by NETCONF connection is executed, and the information of O-RU10B is searched. Here, the information of the O-RU 10B may be searched, and the information indicating the range of the DL gain that operates appropriately from the O-RU 10B to the O-DU 10A may be notified together with the upper limit value of the DL gain. The upper limit of the DL gain may be notified separately. Information indicating the range of DL gain that operates appropriately from O-RU10B to O-DU10A may be notified by a newly defined procedure.
  • SSH Secure Shell
  • NETCONF capability discovery may be performed and
  • Software management is then performed to check the CU plane connectivity between the O-DU10A and O-RU10B, set the U plane, recover the delay profile on the O-RU10B, and optionally measure the delay on the CU-plane. .. Subsequently, fault management and performance measurement are enabled. Subsequently, the state of the O-RU 10B including the synchronization information is searched. Subsequently, the operation parameters of the O-RU10B are set, and the service becomes available.
  • the O-RU 10B notifies the O-DU 10A of the appropriate amplification factor range corresponding to the power amplifier of the own device. By doing so, the O-DU10A can set an appropriate amplification factor to the O-RU10B.
  • an appropriate amplification factor can be set in a wireless function unit provided with a power amplifier.
  • the base station 10 includes a function of carrying out the above-described embodiment. However, the base station 10 may include only some of the functions in the embodiment.
  • FIG. 13 is a diagram showing an example of the functional configuration of the base station 10 according to the embodiment of the present invention.
  • the base station 10 has a transmission unit 110, a reception unit 120, a setting unit 130, and a control unit 140.
  • the functional configuration shown in FIG. 13 is only an example. Any function classification and name of the functional unit may be used as long as the operation according to the embodiment of the present invention can be executed.
  • the gNB10, O-DU10A, O-RU10B, and CU10C may have a part or all of the functional parts shown in FIG. 13 and realize the functions described in the examples.
  • the transmission unit 110 has a function of transmitting a message between network nodes to another network node. Further, the transmission unit 110 may have a function of generating a signal to be transmitted to the terminal side and transmitting the signal wirelessly.
  • the receiving unit 120 includes a function of receiving various signals transmitted from another network node or terminal and acquiring information of, for example, a higher layer from the received signals. In addition, the receiving unit 120 receives a message between network nodes from another network node. Further, the transmission unit 110 may have a function of transmitting NR-PSS, NR-SSS, NR-PBCH, DL / UL control signal, or the like to the terminal.
  • the setting unit 130 has a function of storing preset setting information and various setting information to be transmitted to a terminal or a network node.
  • the contents of the setting information are, for example, setting information related to communication between network nodes such as between O-DU and O-RU, setting information for DL transmission or UL reception, and the like.
  • control unit 140 controls communication between network nodes or communication with terminals.
  • the function unit related to signal transmission in the control unit 140 may be included in the transmission unit 110, and the function unit related to signal reception in the control unit 140 may be included in the reception unit 120.
  • each functional block may be realized by using one device that is physically or logically connected, or directly or indirectly (for example, by two or more devices that are physically or logically separated). , Wired, wireless, etc.) and may be realized using these plurality of devices.
  • the functional block may be realized by combining the software with the one device or the plurality of devices.
  • Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and assumption.
  • broadcasting notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc., but only these. I can't.
  • a functional block that functions transmission is called a transmitting unit (transmitting unit) or a transmitter (transmitter).
  • transmitting unit transmitting unit
  • transmitter transmitter
  • the base station 10 or the like in one embodiment of the present disclosure may function as a computer that processes the wireless communication method of the present disclosure.
  • FIG. 14 is a diagram showing an example of the hardware configuration of the base station 10 according to the embodiment of the present disclosure.
  • the base station 10 described above may be physically configured as a computer device including a processor 1001, a storage device 1002, an auxiliary storage device 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like.
  • the O-DU10A, O-RU10B, CU10C and the like may be composed of the hardware shown in FIG. 14 like the base station 10.
  • the word “device” can be read as a circuit, device, unit, etc.
  • the hardware configuration of the base station 10 may be configured to include one or more of the devices shown in the figure, or may be configured not to include some of the devices.
  • Each function in the base station 10 is performed by the processor 1001 performing calculations by loading predetermined software (program) on the hardware such as the processor 1001 and the storage device 1002, and controlling or storing the communication by the communication device 1004. It is realized by controlling at least one of reading and writing of data in the device 1002 and the auxiliary storage device 1003.
  • the processor 1001 operates, for example, an operating system to control the entire computer.
  • the processor 1001 may be composed of a central processing unit (CPU: Central Processing Unit) including an interface with a peripheral device, a control device, an arithmetic unit, a register, and the like.
  • CPU Central Processing Unit
  • control unit 140, control unit 240, and the like may be realized by the processor 1001.
  • the processor 1001 reads a program (program code), a software module, data, or the like from at least one of the auxiliary storage device 1003 and the communication device 1004 into the storage device 1002, and executes various processes according to these.
  • a program program that causes a computer to execute at least a part of the operations described in the above-described embodiment is used.
  • the control unit 140 of the base station 10 shown in FIG. 13 may be realized by a control program stored in the storage device 1002 and operated by the processor 1001.
  • Processor 1001 may be implemented by one or more chips.
  • the program may be transmitted from the network via a telecommunication line.
  • the storage device 1002 is a computer-readable recording medium, for example, by at least one of ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), RAM (Random Access Memory), and the like. It may be configured.
  • the storage device 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like.
  • the storage device 1002 can store a program (program code), a software module, or the like that can be executed to implement the communication method according to the embodiment of the present disclosure.
  • the auxiliary storage device 1003 is a computer-readable recording medium, and is, for example, an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, an optical magnetic disk (for example, a compact disk, a digital versatile disk, Blu).
  • -It may be composed of at least one of a ray® disk), a smart card, a flash memory (eg, a card, a stick, a key drive), a floppy® disk, a magnetic strip, and the like.
  • the storage medium described above may be, for example, a database, server or other suitable medium containing at least one of the storage device 1002 and the auxiliary storage device 1003.
  • the communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, and the like in order to realize at least one of frequency division duplex (FDD: Frequency Division Duplex) and time division duplex (TDD: Time Division Duplex). It may be composed of.
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • the transmission / reception unit may be physically or logically separated from each other in the transmission unit and the reception unit.
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that receives an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that outputs to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the storage device 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured by using a single bus, or may be configured by using a different bus for each device.
  • the base station 10 includes hardware such as a microprocessor, a digital signal processor (DSP: Digital Signal Processor), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), and an FPGA (Field Programmable Gate Array). It may be configured, and the hardware may realize a part or all of each functional block. For example, processor 1001 may be implemented using at least one of these hardware.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • the transmitter unit that transmits information indicating the range of the amplification factor at which the amplifier of the own device can operate appropriately to another communication device, and the own device.
  • a receiving unit that receives sampling sequences of in-phase components and orthogonal components of OFDM (Orthogonal Frequency Division Multiplexing) signals in the amplification factor and frequency domain set in the above from the other communication device, and the own device based on the sampling sequence.
  • a communication device including a control unit for transmitting a radio signal to which an amplification factor is applied is provided.
  • the O-RU 10B notifies the O-DU 10A of the appropriate amplification factor range corresponding to the power amplifier of the own device.
  • the O-DU10A can set an appropriate amplification factor to the O-RU10B. That is, in the wireless communication system, an appropriate amplification factor can be set in the wireless function unit including the power amplifier.
  • the information indicating the range of the amplification factor may include a width based on the upper limit value of the amplification factor and the lower limit value of the amplification factor, or the upper limit value of the amplification factor and the upper limit value of the amplification factor.
  • the information indicating the amplification factor range may include a plurality of amplification factor ranges.
  • the O-RU 10B can notify the O-DU 10A of a plurality of amplification factor ranges when there are a plurality of appropriate amplification factor ranges corresponding to the power amplifier of the own device.
  • the transmission unit may transmit information indicating the range of the amplification factor to the other communication device for each antenna of the communication device or for each communication device.
  • the O-RU10B can control the amount of signals flowing through the front hall.
  • the receiving unit that receives information indicating the range of the amplification factor at which the amplifier of the other communication device can operate appropriately from the other communication device, and the amplification factor. Based on the information indicating the range, the control unit that determines the amplification factor to be set in the other communication device and the sampling of the in-phase component and the orthogonal component of the OFDM (Orthogonal Frequency Division Multiplexing) signal in the determined amplification factor and frequency domain.
  • a communication device is provided that includes a transmitter that transmits a sequence to the other communication device.
  • the O-RU 10B notifies the O-DU 10A of the appropriate amplification factor range corresponding to the power amplifier of the own device.
  • the O-DU10A can set an appropriate amplification factor to the O-RU10B. That is, in the wireless communication system, an appropriate amplification factor can be set in the wireless function unit including the power amplifier.
  • the reception procedure for receiving the sampling sequence of the in-phase component and the orthogonal component of the OFDM (Orthogonal Frequency Division Multiplexing) signal in the frequency domain from the other communication device, and the amplification factor set in the own device based on the sampling sequence are applied.
  • a communication method is provided in which the communication device executes a control procedure for transmitting the radio signal.
  • the O-RU 10B notifies the O-DU 10A of the appropriate amplification factor range corresponding to the power amplifier of the own device.
  • the O-DU10A can set an appropriate amplification factor to the O-RU10B. That is, in the wireless communication system, an appropriate amplification factor can be set in the wireless function unit including the power amplifier.
  • the boundary of the functional unit or the processing unit in the functional block diagram does not always correspond to the boundary of the physical component.
  • the operation of the plurality of functional units may be physically performed by one component, or the operation of one functional unit may be physically performed by a plurality of components. With respect to the processing procedure described in the embodiment, the order of processing may be changed as long as there is no contradiction.
  • the software operated by the processor included in the base station 10 according to the embodiment of the present invention includes random access memory (RAM), flash memory, read-only memory (ROM), EPROM, EEPROM, register, hard disk (HDD), removable disk, and the like. It may be stored on a CD-ROM, database, server or any other suitable storage medium.
  • information notification includes physical layer signaling (for example, DCI (Downlink Control Information), UCI (Uplink Control Information)), higher layer signaling (for example, RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling, etc. Broadcast information (MIB (Master Information Block), SIB (System Information Block)), other signals, or a combination thereof may be used.
  • RRC signaling may be referred to as an RRC message, for example, RRC. It may be a connection setup (RRCConnectionSetup) message, an RRC connection reconfiguration (RRCConnectionReconfiguration) message, or the like.
  • Each aspect / embodiment described in the present disclosure includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G (4th generation mobile communication system), and 5G (5th generation mobile communication).
  • system FRA (Future Radio Access), NR (new Radio), W-CDMA (registered trademark), GSM (registered trademark), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark)) )), IEEE 802.16 (WiMAX®), IEEE 802.20, UWB (Ultra-WideBand), Bluetooth®, and other systems that utilize suitable systems and have been extended based on these. It may be applied to at least one of the next generation systems. Further, a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G).
  • the specific operation performed by the base station 10 in the present specification may be performed by its upper node (upper node).
  • various operations performed for communication with a terminal are performed by the base station 10 and other network nodes other than the base station 10 (for example,). , MME, S-GW, etc., but not limited to these).
  • the case where there is one network node other than the base station 10 is illustrated, but the other network node may be a combination of a plurality of other network nodes (for example, MME and S-GW). ..
  • the information, signals, etc. described in the present disclosure can be output from the upper layer (or lower layer) to the lower layer (or upper layer). Input / output may be performed via a plurality of network nodes.
  • the input / output information and the like may be stored in a specific location (for example, memory) or may be managed using a management table. Input / output information and the like can be overwritten, updated, or added. The output information and the like may be deleted. The input information or the like may be transmitted to another device.
  • the determination in the present disclosure may be made by a value represented by 1 bit (0 or 1), by a boolean value (Boolean: true or false), or by comparing numerical values (for example). , Comparison with a predetermined value).
  • Software is an instruction, instruction set, code, code segment, program code, program, subprogram, software module, whether called software, firmware, middleware, microcode, hardware description language, or another name.
  • Applications, software applications, software packages, routines, subroutines, objects, executables, execution threads, procedures, features, etc. should be broadly interpreted.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • a transmission medium For example, a website that uses at least one of wired technology (coaxial cable, fiber optic cable, twist pair, digital subscriber line (DSL: Digital Subscriber Line), etc.) and wireless technology (infrared, microwave, etc.) When transmitted from a server, or other remote source, at least one of these wired and wireless technologies is included within the definition of transmission medium.
  • the information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
  • a channel and a symbol may be a signal (signaling).
  • the signal may be a message.
  • the component carrier CC: Component Carrier
  • CC Component Carrier
  • system and “network” used in this disclosure are used interchangeably.
  • the information, parameters, etc. described in the present disclosure may be expressed using absolute values, relative values from predetermined values, or using other corresponding information. It may be represented.
  • the radio resource may be one indicated by an index.
  • base station Base Station
  • wireless base station base station
  • base station device fixed station
  • NodeB nodeB
  • eNodeB eNodeB
  • GNB nodeB
  • access point “ transmission point ”,“ reception point ”,“ transmission / reception point (transmission / reception point) ”,“ cell ”,“ sector ”
  • Terms such as “cell group,” “carrier,” and “component carrier” can be used interchangeably.
  • Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
  • the base station can accommodate one or more (for example, three) cells.
  • a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (RRH:)).
  • Communication services can also be provided by (Remote Radio Head).
  • the term "cell” or “sector” is a part or all of the coverage area of at least one of the base station and the base station subsystem that provides the communication service in this coverage. Point to.
  • MS Mobile Station
  • UE User Equipment
  • Mobile stations can be subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless, depending on the trader. It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a communication device, or the like.
  • At least one of the base station and the mobile station may be a device mounted on the mobile body, the mobile body itself, or the like.
  • the moving body may be a vehicle (eg, car, airplane, etc.), an unmanned moving body (eg, drone, self-driving car, etc.), or a robot (manned or unmanned). ) May be.
  • at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation.
  • at least one of the base station and the mobile station may be an IoT (Internet of Things) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read by the user terminal.
  • a configuration in which communication between a base station and a user terminal is replaced with communication between a plurality of terminals for example, it may be called D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc.).
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • the terminal may have the function of the base station 10 described above.
  • words such as "up” and “down” may be read as words corresponding to communication between terminals (for example, "side”).
  • the uplink, downlink, and the like may be read as side channels.
  • the user terminal in the present disclosure may be read as a base station.
  • the base station may have the functions of the user terminal described above.
  • determining and “determining” used in this disclosure may include a wide variety of actions.
  • “Judgment” and “decision” are, for example, judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry). It may include (eg, searching in a table, database or another data structure), ascertaining as “judgment” or “decision”.
  • judgment and “decision” are receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access. (Accessing) (for example, accessing data in memory) may be regarded as “judgment” or “decision”.
  • judgment and “decision” mean that “resolving”, “selecting”, “choosing”, “establishing”, “comparing”, etc. are regarded as “judgment” and “decision”. Can include. That is, “judgment” and “decision” may include considering some action as “judgment” and “decision”. Further, “judgment (decision)” may be read as “assuming”, “expecting”, “considering” and the like.
  • connection means any direct or indirect connection or connection between two or more elements, and each other. It can include the presence of one or more intermediate elements between two “connected” or “combined” elements.
  • the connection or connection between the elements may be physical, logical, or a combination thereof.
  • connection may be read as "access”.
  • the two elements use at least one of one or more wires, cables and printed electrical connections, and, as some non-limiting and non-comprehensive examples, the radio frequency domain. Can be considered to be “connected” or “coupled” to each other using electromagnetic energies having wavelengths in the microwave and light (both visible and invisible) regions.
  • the reference signal can also be abbreviated as RS (Reference Signal), and may be called a pilot (Pilot) depending on the applicable standard.
  • RS Reference Signal
  • Pilot Pilot
  • references to elements using designations such as “first”, “second”, etc. as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Thus, references to the first and second elements do not mean that only two elements can be adopted, or that the first element must somehow precede the second element.
  • the term "A and B are different” may mean “A and B are different from each other”.
  • the term may mean that "A and B are different from C”.
  • Terms such as “separate” and “combined” may be interpreted in the same way as “different”.
  • the notification of predetermined information (for example, the notification of "being X") is not limited to the explicit one, but is performed implicitly (for example, the notification of the predetermined information is not performed). May be good.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A communication device comprising: a transmission unit for transmitting, to other communication devices, information that indicates the range of amplification rates that the amplifier of the local device can operate properly; a reception unit for receiving, from the other communication devices, the sampling series of in-phase and orthogonal components of the orthogonal frequency division multiplexed (OFDM) signal of the amplification rate and frequency domain set to the local device; and a control unit for sending out a wireless signal to which the amplification rate set to the local device on the basis of the sampling series is applied.

Description

通信装置及び通信方法Communication device and communication method
 本発明は、無線通信システムにおける通信装置及び通信方法に関する。 The present invention relates to a communication device and a communication method in a wireless communication system.
 LTE(Long Term Evolution)の後継システムであるNR(New Radio)(「5G」ともいう。)においては、要求条件として、大容量のシステム、高速なデータ伝送速度、低遅延、多数の端末の同時接続、低コスト、省電力等を満たす技術が検討されている(例えば非特許文献1)。 In NR (New Radio) (also called "5G"), which is the successor system to LTE (Long Term Evolution), the requirements are a large-capacity system, high-speed data transmission speed, low delay, and simultaneous operation of many terminals. Techniques that satisfy connection, low cost, power saving, etc. are being studied (for example, Non-Patent Document 1).
 5GのRAN(Radio Access Network)におけるオープン化及びインテリジェント化の推進を目的とするO-RANアライアンスが設立されている。今日では多くの事業者及びベンダはO-RANアライアンスに加盟し、オープン化に係る議論が行われている。 The O-RAN Alliance has been established for the purpose of promoting openness and intelligence in 5G RAN (Radio Access Network). Today, many businesses and vendors have joined the O-RAN Alliance and are discussing openness.
 O-RANでは、複数のアーキテクチャが議論されており、その一つとして、異なるベンダ間のベースバンド処理部と無線部との相互接続を実現するオープンなフロントホール(Fronthaul)インタフェースが検討されている。O-RANにおける機能群として、レイヤ2機能、ベースバンド信号処理及び無線信号処理を分離して実現するO-DU(O-RAN Distributed unit)及びO-RU(O-RAN Radio unit)が定義されている。フロントホールインタフェースは、O-DUとO-RU間のインタフェースに該当する。 In O-RAN, multiple architectures are being discussed, and one of them is an open fronthaul interface that realizes the interconnection between the baseband processing unit and the radio unit between different vendors. .. O-DU (O-RAN Distributed unit) and O-RU (O-RAN Radio unit) that separately realize layer 2 functions, baseband signal processing, and radio signal processing are defined as function groups in O-RAN. ing. The front hall interface corresponds to the interface between O-DU and O-RU.
 O-RANにおいて、O-RUから無線区間に送出されるRF信号の送信電力は、O-DUから設定される。O-DUは、O-RUに増幅率の設定値及び信号のサンプル値を送信する。しかしながら、O-DUから送信される増幅率の設定値が、O-RUに備えられるパワーアンプが適切に動作可能な増幅率の範囲に含まれない場合、パワーアンプの入出力信号の線形性が保たれず、想定と異なる電力での信号送信又は送信信号波形の歪み等が生じ、結果として端末が下り信号を正しく受信できず下り通信が正しく疎通しない懸念が存在する。 In O-RAN, the transmission power of the RF signal transmitted from O-RU to the radio section is set from O-DU. The O-DU transmits the set value of the amplification factor and the sample value of the signal to the O-RU. However, if the set value of the amplification factor transmitted from the O-DU is not within the range of the amplification factor that the power amplifier provided in the O-RU can operate properly, the linearity of the input / output signal of the power amplifier becomes There is a concern that the signal is not maintained and the signal is transmitted with a power different from the assumption or the transmission signal waveform is distorted, and as a result, the terminal cannot receive the downlink signal correctly and the downlink communication does not communicate correctly.
 本発明は上記の点に鑑みてなされたものであり、無線通信システムにおいて、パワーアンプを備える無線機能部に適切な増幅率を設定することを目的とする。 The present invention has been made in view of the above points, and an object of the present invention is to set an appropriate amplification factor in a wireless function unit provided with a power amplifier in a wireless communication system.
 開示の技術によれば、自装置の増幅器が適切に動作することができる増幅率の範囲を示す情報を他の通信装置に送信する送信部と、自装置に設定する増幅率及び周波数領域のOFDM(Orthogonal Frequency Division Multiplexing)信号の同相成分及び直交成分のサンプリング系列を前記他の通信装置から受信する受信部と、前記サンプリング系列に基づいて前記自装置に設定する増幅率を適用した無線信号を送出する制御部とを有する通信装置が提供される。 According to the disclosed technology, a transmitter that transmits information indicating an amplification factor range in which the amplifier of the own device can operate properly to another communication device, and OFDM of the amplification factor and the frequency domain set in the own device. (Orthogonal Frequency Division Multiplexing) A receiving unit that receives sampling sequences of in-phase components and orthogonal components of a signal from the other communication device, and sends out a radio signal to which an amplification factor set in the own device is applied based on the sampling sequence. A communication device having a control unit is provided.
 開示の技術によれば、無線通信システムにおいて、パワーアンプを備える無線機能部に適切な増幅率を設定することができる。 According to the disclosed technology, in a wireless communication system, an appropriate amplification factor can be set in a wireless function unit provided with a power amplifier.
O-RANのアーキテクチャの構成例を示す図である。It is a figure which shows the configuration example of the architecture of O-RAN. gNB10の構成例を示す図である。It is a figure which shows the structural example of gNB10. O-DU10AとO-RU10B間の信号を説明するための図である。It is a figure for demonstrating the signal between O-DU10A and O-RU10B. O-RU10Bの送信電力の決定方法の例を説明するための図である。It is a figure for demonstrating an example of the method of determining the transmission power of O-RU10B. O-DU10AとO-RU10B間の信号を説明するためのシーケンス図である。It is a sequence diagram for demonstrating the signal between O-DU10A and O-RU10B. 本発明の実施の形態における増幅率を設定する例(1)を説明するための図である。It is a figure for demonstrating the example (1) of setting the amplification factor in embodiment of this invention. 本発明の実施の形態における増幅率を設定する例(2)を説明するための図である。It is a figure for demonstrating the example (2) of setting the amplification factor in embodiment of this invention. 本発明の実施の形態における増幅率を設定する例(3)を説明するための図である。It is a figure for demonstrating the example (3) of setting the amplification factor in embodiment of this invention. 本発明の実施の形態における増幅率を設定する例(4)を説明するための図である。It is a figure for demonstrating the example (4) of setting the amplification factor in embodiment of this invention. 本発明の実施の形態におけるデータモデルの例(1)を示す図である。It is a figure which shows the example (1) of the data model in embodiment of this invention. 本発明の実施の形態におけるデータモデルの例(2)を示す図である。It is a figure which shows the example (2) of the data model in embodiment of this invention. 本発明の実施の形態における起動手順の例を説明するためのフローチャートである。It is a flowchart for demonstrating the example of the activation procedure in Embodiment of this invention. 本発明の実施の形態における基地局10の機能構成の一例を示す図である。It is a figure which shows an example of the functional structure of the base station 10 in embodiment of this invention. 本発明の実施の形態における基地局10のハードウェア構成の一例を示す図である。It is a figure which shows an example of the hardware composition of the base station 10 in embodiment of this invention.
 以下、図面を参照して本発明の実施の形態を説明する。なお、以下で説明する実施の形態は一例であり、本発明が適用される実施の形態は、以下の実施の形態に限られない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The embodiments described below are examples, and the embodiments to which the present invention is applied are not limited to the following embodiments.
 本発明の実施の形態の無線通信システムの動作にあたっては、適宜、既存技術が使用される。ただし、当該既存技術は、例えば既存のLTEであるが、既存のLTEに限られない。また、本明細書で使用する用語「LTE」は、特に断らない限り、LTE-Advanced、及び、LTE-Advanced以降の方式(例:NR)を含む広い意味を有するものとする。 Existing technology is appropriately used in the operation of the wireless communication system according to the embodiment of the present invention. However, the existing technology is, for example, an existing LTE, but is not limited to the existing LTE. Further, the term "LTE" used in the present specification shall have a broad meaning including LTE-Advanced and LTE-Advanced and later methods (eg, NR) unless otherwise specified.
 また、以下で説明する本発明の実施の形態では、既存のLTEで使用されているSS(Synchronization signal)、PSS(Primary SS)、SSS(Secondary SS)、PBCH(Physical broadcast channel)、PRACH(Physical random access channel)、等の用語を使用する。これは記載の便宜上のためであり、これらと同様の信号、機能等が他の名称で呼ばれてもよい。また、NRにおける上述の用語は、NR-SS、NR-PSS、NR-SSS、NR-PBCH、NR-PRACH等に対応する。ただし、NRに使用される信号であっても、必ずしも「NR-」と明記しない。 Further, in the embodiment of the present invention described below, SS (Synchronization signal), PSS (Primary SS), SSS (Secondary SS), PBCH (Physical broadcast channel), PRACH (Physical) used in the existing LTE. Use terms such as random access channel). This is for convenience of description, and signals, functions, etc. similar to these may be referred to by other names. Further, the above-mentioned terms in NR correspond to NR-SS, NR-PSS, NR-SSS, NR-PBCH, NR-PRACH and the like. However, even if it is a signal used for NR, it is not always specified as "NR-".
 また、本発明の実施の形態において、複信(Duplex)方式は、TDD(Time Division Duplex)方式でもよいし、FDD(Frequency Division Duplex)方式でもよいし、又はそれ以外(例えば、Flexible Duplex等)の方式でもよい。 Further, in the embodiment of the present invention, the duplex system may be a TDD (Time Division Duplex) system, an FDD (Frequency Division Duplex) system, or other system (for example, Flexible Duplex, etc.). Method may be used.
 また、本発明の実施の形態において、無線パラメータ等が「設定される(Configure)」とは、所定の値が予め設定(Pre-configure)されることであってもよいし、基地局10又は端末から通知される無線パラメータが設定されることであってもよい。 Further, in the embodiment of the present invention, "configuring" the radio parameter or the like may mean that a predetermined value is set in advance (Pre-configure), or the base station 10 or The radio parameter notified from the terminal may be set.
 図1は、O-RANのアーキテクチャの構成例を示す図である。図1に示されるように、ネットワークアーキテクチャは、ネットワークの運用管理を実現する機能として、「Orchestration&Automation」を有する。「Orchestration&Automation」は、例えば、ONAP(Open Networking Automation Platform)であり、MANO(Management and Network Orchestration)又はNMS(Network Management System)等を実現する。「Orchestration&Automation」は、「Design」、「Inventory」、「Policy」、「Configuration」及び「RAN Intelligent Controller(RIC) non-RT」等の機能部から構成される。 FIG. 1 is a diagram showing a configuration example of the O-RAN architecture. As shown in FIG. 1, the network architecture has "Operation & Automation" as a function for realizing the operation management of the network. "Orchestration & Automation" is, for example, ONAP (Open Networking Automation Platform), and realizes MANO (Management and Network Orchestration), NMS (Network Management System), and the like. "Operation & Automation" is composed of functional parts such as "Design", "Inventory", "Police", "Configuration" and "RAN Inventory Controller (RIC) non-RT".
 「Orchestration&Automation」によってインタフェースA1を介して運用管理されるネットワークは、「RAN Intelligent Controller(RIC) near-RT」、「Multi-RAT CU Protocol Stack」、「NFVI(Network functions virtualization infrastructure) Platform」、「O-DU(O-RAN Distributed Unit)」及び「O-RU(O-RAN Radio Unit)」等の機能部を有する。 The networks that are operated and managed via interface A1 by "Orchestration & Automation" are "RAN Intelligent Controller (RIC) near-RT", "Multi-RAT CU Protocol Stack", "NFVI (Network functions virtualization Platform)". -It has functional parts such as "DU (O-RAN Distributed Unit)" and "O-RU (O-RAN Radio Unit)".
 「RIC near-RT」は、アプリケーションレイヤとして、「3rd party APP」、「Radio Connection Mgmt」、「Mobility Mgmt」、「QoS Mgmt」、「Interference Mgmt」及び「Trained Model」等の機能部を有する。また、「RIC near-RT」は、「Radio-Network Information Base」を有する。「RIC near-RT」は、インタフェースE2を介してCU及びDUと接続される。 "RIC near-RT" has functional parts such as "3rd party APP", "Radio Connection Mgmt", "mobility Mgmt", "QoS Mgmt", "Interference Mgmt" and "Trained Model" as application layers. Further, the "RIC near-RT" has a "Radio-Network Information Base". The "RIC near-RT" is connected to the CU and DU via the interface E2.
 「Multi-RAT CU Protocol Stack」は、「CU-CP(Control plane)」及び「CU-UP(User plane)」から構成される。「CU-CP」は、プロトコル「RRC(Radio Resource Control)」及びプロトコル「PDCP(Packet Data Convergence Protocol)-C」を有し、「CU-UP」は、プロトコル「SDAP(Service Data Adaptation Protocol)」及びプロトコル「PDCP-U」を有する。「Multi-RAT CU Protocol Stack」は、インタフェースF1を介して、「O-DU」と接続される。 "Multi-RAT CU Protocol Stack" is composed of "CU-CP (Control plane)" and "CU-UP (User plane)". "CU-CP" has a protocol "RRC (Radio Resource Control)" and a protocol "PDCP (Packet Data Convergence Protocol) -C", and "CU-UP" is a protocol "SDAP (Service Data Adaptation Protocol)". And has the protocol "PDCP-U". The "Multi-RAT CU Protocol Stack" is connected to the "O-DU" via the interface F1.
 「NFVI Platform」は、仮想レイヤ及びCOTS(commercial off the shelf)プラットフォームである。 "NFVI Platform" is a virtual layer and COTS (commercial off the shelf) platform.
 「O-DU」は、「RLC(Radio Link Control)」、「MAC(Media Access Control)」、「PHY-high」から構成される。「O-DU」は、インタフェース「Open Front Haul(フロントホール)」を介して、「O-RU」と接続される。「O-RU」は、「PHY-low」及び「RF」から構成される。 "O-DU" is composed of "RLC (RadioLinkControl)", "MAC (MediaAccessControl)", and "PHY-high". The "O-DU" is connected to the "O-RU" via the interface "Open Front Haul (front hall)". "O-RU" is composed of "PHY-low" and "RF".
 図2は、gNB10の構成例を示す図である。図2に示されるように、基地局gNB10は、CU10C、O-DU10A及びO-RU10Bに分離される。CU10Cは、RRC/SDAP及びPDCPを含む。O-DU10Aは、RLC、MAC及びPHY-Highを含む。O-RU10Bは、PHY-Low&RFを含む。O-DU10AとO-RU10Bとの間では、周波数領域のOFDM(Orthogonal Frequency Division Multiplexing)信号のIQサンプル列が送受信される。IQサンプル列とは、複素デジタル信号の同相成分及び直交成分のサンプリング系列である。 FIG. 2 is a diagram showing a configuration example of gNB10. As shown in FIG. 2, the base station gNB10 is separated into CU10C, O-DU10A and O-RU10B. CU10C includes RRC / SDAP and PDCP. O-DU10A includes RLC, MAC and PHY-High. O-RU10B includes PHY-Low & RF. An IQ sample sequence of an OFDM (Orthogonal Frequency Division Multiplexing) signal in the frequency domain is transmitted and received between the O-DU 10A and the O-RU 10B. The IQ sample sequence is a sampling series of in-phase components and orthogonal components of a complex digital signal.
 図2に示されるように、例えばPDSCH(Physical Downlink Shared Channel)等のDL(Downlink)の処理フローにおけるO-DU10Aが有するPHY-Highの機能は、「符号化」、「スクランブリング」、「変調」、「レイヤマッピング」、「プリコーディング」及び「リソースエレメントマッピング」である。続くDLの処理フローにおけるO-RU10Bが有するPHY-Low&RFの機能は、「プリコーディング」、「デジタルBF(Beam Forming)」、「IFFT(Inverse Fast Fourier Transform)」、「アナログ変換」、「アナログBF」である。なお、プリコーディングがO-RU10Bで実施される場合、O-DU10Aはプリコーディングを実施しない。 As shown in FIG. 2, the PHY-High functions of the O-DU 10A in the DL (Downlink) processing flow such as PDSCH (Physical Downlink Shared Channel) are "encoding", "scramble", and "modulation". , "Layer mapping", "Precoding" and "Resource element mapping". The PHY-Low & RF functions of the O-RU10B in the subsequent DL processing flow are "precoding", "digital BF (BeamForming)", "IFFT (Inverse Fast Fourier Transform)", "analog transformation", and "analog BF". ". When precoding is performed by O-RU10B, O-DU10A does not perform precoding.
 図2に示されるように、例えばPUSCH(Physical Uplink Shared Channel)等のUL(Uplink)の処理フローにおけるO-RU10Bが有するPHY-Low&RFの機能は、「アナログBF」、「デジタル変換」、「FFT(Fast Fourier Transform)」、「デジタルBF」である。続くULの処理フローにおける、O-DU10Aが有するPHY-Highの機能は、「リソースエレメントデマッピング」、「等価処理/IDFT/チャネル推定」、「復調」、「デスクランブリング」及び「復号」である。 As shown in FIG. 2, the PHY-Low & RF functions of the O-RU10B in the UL (Uplink) processing flow such as PUSCH (Physical Uplink Shared Channel) include "analog BF", "digital conversion", and "FFT". (Fast Fourier Transform) ”,“ Digital BF ”. In the subsequent UL processing flow, the PHY-High functions of the O-DU10A are "resource element demapping", "equivalent processing / IDFT / channel estimation", "demodulation", "declaration" and "decoding". ..
 図3は、O-DU10AとO-RU10B間の信号を説明するための図である。図3に示されるように、O-DU10AとO-RU10B間では、フロントホールを介しU-Planeシグナル、C-Planeシグナル、M-Planeシグナル、S-Planeシグナルが送受信される。 FIG. 3 is a diagram for explaining a signal between O-DU10A and O-RU10B. As shown in FIG. 3, a U-Plane signal, a C-Plane signal, an M-Plane signal, and an S-Plane signal are transmitted and received between the O-DU10A and the O-RU10B via the front hole.
 U-Planeシグナルは、O-RU10Bが無線区間に送信するDL信号又は無線区間から受信するUL信号であり、デジタルIQ信号すなわち周波数領域のOFDM信号のIQサンプル列でやり取りされる。 The U-Plane signal is a DL signal transmitted by the O-RU10B to the radio section or a UL signal received from the radio section, and is exchanged by an IQ sample string of a digital IQ signal, that is, an OFDM signal in the frequency domain.
 C-Planeシグナルは、U-Planeシグナルの送受信に関する各種制御のために必要な信号であり、例えば、U-Planeシグナルの無線リソースマッピング、ビームフォーミング等に係る情報を通知する。図3に示されるように、C-Planeシグナルは、O-DU10AからO-RU10Bに一方向で送信される。ただし、LAA(License-Assisted Access using LTE)の場合、O-RU10BからO-DU10AにC-Planeシグナルが送信されてもよい。 The C-Plane signal is a signal necessary for various controls related to transmission / reception of the U-Plane signal, and for example, notifies information related to radio resource mapping, beamforming, etc. of the U-Plane signal. As shown in FIG. 3, the C-Plane signal is transmitted from the O-DU10A to the O-RU10B in one direction. However, in the case of LAA (License-Assisted Access using LTE), a C-Plane signal may be transmitted from the O-RU10B to the O-DU10A.
 M-Planeシグナルは、O-DU10A及びO-RU10Bの管理のために必要な信号である。例えば、M-Planeシグナルを介して、O-RU10BからO-DU10AにO-RU10Bの各種ハードウェア能力が通知され、O-DU10AからO-RU10Bに各種設定値が通知される。 The M-Plane signal is a signal necessary for the management of O-DU10A and O-RU10B. For example, the O-RU10B notifies the O-DU10A of various hardware capabilities of the O-RU10B via the M-Plane signal, and the O-DU10A notifies the O-RU10B of various setting values.
 S-Planeシグナルは、O-DU10A及びO-RU10B間の同期制御のために必要な信号である。 The S-Plane signal is a signal required for synchronous control between O-DU10A and O-RU10B.
 図4は、O-RU10Bの送信電力の決定方法の例を説明するための図である。O-RU10Bが送信する下り信号送信電力は、次の1)及び2)によって決定される。O-DU10Aが1)及び2)の双方を設定又は通知することで、所望の送信電力が実現される。 FIG. 4 is a diagram for explaining an example of a method of determining the transmission power of the O-RU10B. The downlink signal transmission power transmitted by the O-RU10B is determined by the following 1) and 2). By setting or notifying both 1) and 2) of the O-DU10A, the desired transmission power is realized.
1)デジタルパワースケーリング(DLゲイン)設定値の大きさ。図4に示されるように、M-Planeを介して装置起動時等のタイミングで事前にO-DU10AからO-RU10Bに設定される。DLゲインの設定値は、O-RU10Bが備えるパワーアンプのレベル調整等に使用される。
2)デジタルIQシグナルのサンプル値の大きさ。U-Planeを介してDL信号送信ごとにO-DU10AからO-RU10Bに通知される。
1) The magnitude of the digital power scaling (DL gain) setting value. As shown in FIG. 4, the O-DU 10A to the O-RU 10B are set in advance at the timing such as when the device is started via the M-Plane. The DL gain set value is used for adjusting the level of the power amplifier included in the O-RU10B.
2) The size of the sample value of the digital IQ signal. Each DL signal transmission via the U-Plane is notified from the O-DU 10A to the O-RU 10B.
 図5は、O-DU10AとO-RU10B間の信号を説明するためのシーケンス図である。ステップS1において、O-RU10Bは、DLゲインの設定可能な最大値をO-DU10Aに報告する。続いて、ステップS2において、O-DU10Aは、DLゲインとして設定する値をO-RU10Bに通知する。 FIG. 5 is a sequence diagram for explaining signals between O-DU10A and O-RU10B. In step S1, the O-RU10B reports to the O-DU10A the maximum configurable DL gain. Subsequently, in step S2, the O-DU 10A notifies the O-RU 10B of the value to be set as the DL gain.
 ここで、O-RU10Bが備えるパワーアンプに関して、一般に入出力信号の線形性が保たれる増幅率の範囲は限られている。このため適切に動作可能な増幅率の範囲は一般に限定される。しかしながら、現在のO-RAN仕様では、O-RU10BからO-DU10Aに通知される情報は「設定可能な増幅率の最大値」のみであって、O-DU10Aが「適切に動作可能な増幅率の範囲」を把握することができない。したがって、O-DU10Aが設定するDLゲインの値によっては、パワーアンプの入出力信号の線形性が保たれず、想定と異なる電力での信号送信や送信信号波形の歪みなどが生じ、結果として端末が下り信号を正しく受信できず下り通信が正しく疎通しない懸念が存在する。そこで、O-DU10Aが、「適切に動作する増幅率の範囲」を把握できるようにする必要がある。 Here, regarding the power amplifier included in the O-RU10B, the range of amplification factor in which the linearity of the input / output signal is generally maintained is limited. Therefore, the range of amplification factors that can be operated properly is generally limited. However, in the current O-RAN specifications, the information notified from the O-RU10B to the O-DU10A is only the "maximum value of the configurable amplification factor", and the O-DU10A has the "appropriately operable amplification factor". I can't figure out the range of. Therefore, depending on the DL gain value set by the O-DU10A, the linearity of the input / output signals of the power amplifier may not be maintained, signal transmission with a power different from the assumption, distortion of the transmission signal waveform, etc. may occur, and as a result, the terminal However, there is a concern that the downlink signal cannot be received correctly and the downlink communication cannot be communicated correctly. Therefore, it is necessary for the O-DU 10A to be able to grasp the "range of amplification factor that operates properly".
 図6は、本発明の実施の形態における増幅率を設定する例(1)を説明するための図である。O-RU10Bは、O-DU10Aに、パワーアンプが適切に動作するDLゲインの範囲を示す情報を通知する。当該情報に基づいて、O-DU10Aは、O-RU10Bに適切に動作する範囲内のDLゲインを設定することができる。例えば、図5に示されるステップS1において、O-RU10BからO-DU10Aにパワーアンプが適切に動作するDLゲインの範囲を示す情報が通知されてもよい。なお、DLゲインの範囲を通知するか否かを示す情報がO-RU10BからO-DU10Aに通知されてもよいし、DLゲインの範囲を通知するか否かを示す情報がO-DU10AからO-RU10Bに通知されてもよい。 FIG. 6 is a diagram for explaining an example (1) of setting the amplification factor in the embodiment of the present invention. The O-RU10B notifies the O-DU10A of information indicating the range of DL gain in which the power amplifier operates properly. Based on this information, the O-DU10A can set the DL gain within the range of appropriate operation for the O-RU10B. For example, in step S1 shown in FIG. 5, information indicating a DL gain range in which the power amplifier operates appropriately may be notified from the O-RU 10B to the O-DU 10A. Information indicating whether or not to notify the DL gain range may be notified from O-RU10B to O-DU10A, and information indicating whether or not to notify the DL gain range may be notified from O-DU10A to O. -The RU10B may be notified.
 図6は適切に動作するDLゲインの範囲の上端及び下端の値を示す情報が通知される例である。図6に示されるように、O-RU10Bは、DLゲインの上限値及び下限値をO-DU10Aに通知してもよい。O-DU10Aは、上限値及び下限値に基づいて、適切なDLゲインをO-RU10Bに設定することができる。なお、上端又は上限は最大値と置換されてもよいし、下端又は下限は最小値と置換されてもよい。なお、DLゲインの下限値を通知するか否かを示す情報がO-RU10BからO-DU10Aに通知されてもよいし、DLゲインの下限値を通知するか否かを示す情報がO-DU10AからO-RU10Bに通知されてもよい。 FIG. 6 is an example in which information indicating the upper and lower end values of the properly operating DL gain range is notified. As shown in FIG. 6, the O-RU 10B may notify the O-DU 10A of the upper limit value and the lower limit value of the DL gain. The O-DU10A can set an appropriate DL gain to the O-RU10B based on the upper limit value and the lower limit value. The upper end or the upper limit may be replaced with the maximum value, and the lower end or the lower limit may be replaced with the minimum value. Information indicating whether or not to notify the lower limit of the DL gain may be notified from the O-RU 10B to the O-DU 10A, and information indicating whether or not to notify the lower limit of the DL gain may be notified to the O-DU 10A. May be notified to O-RU10B.
 図7は、本発明の実施の形態における増幅率を設定する例(2)を説明するための図である。図7は適切に動作するDLゲインの範囲の上端及び下端の値を示す情報が通知される例である。図7に示されるように、O-RU10Bは、DLゲインの上限値X及び下限値をX-αとして上限値を基準とした差分αをO-DU10Aに通知してもよい。すなわち、O-RU10Bは、X及びαをO-DU10Aに通知してもよい。O-DU10Aは、上限値及び下限値に基づいて、適切なDLゲインをO-RU10Bに設定することができる。 FIG. 7 is a diagram for explaining an example (2) of setting the amplification factor in the embodiment of the present invention. FIG. 7 is an example in which information indicating the upper and lower end values of the properly operating DL gain range is notified. As shown in FIG. 7, the O-RU 10B may notify the O-DU 10A of the difference α based on the upper limit value with the upper limit value X and the lower limit value of the DL gain as X-α. That is, the O-RU10B may notify the O-DU10A of X and α. The O-DU10A can set an appropriate DL gain to the O-RU10B based on the upper limit value and the lower limit value.
 図8は、本発明の実施の形態における増幅率を設定する例(3)を説明するための図である。図8は適切に動作するDLゲインの範囲を示す情報が通知される例である。図8に示されるように、O-RU10Bは、DLゲインの上限値及び上限値を基準とする幅をO-DU10Aに通知してもよい。O-DU10Aは、上限値及び上限値を基準とする幅に基づいて、適切なDLゲインをO-RU10Bに設定することができる。 FIG. 8 is a diagram for explaining an example (3) of setting the amplification factor in the embodiment of the present invention. FIG. 8 is an example in which information indicating a properly operating DL gain range is notified. As shown in FIG. 8, the O-RU10B may notify the O-DU10A of the upper limit value of the DL gain and the width based on the upper limit value. The O-DU10A can set an appropriate DL gain to the O-RU10B based on the upper limit value and the width based on the upper limit value.
 図9は、本発明の実施の形態における増幅率を設定する例(4)を説明するための図である。図9は適切に動作するDLゲインの範囲を示す情報が通知される例である。図9に示されるように、O-RU10Bは、DLゲインの上限値及び下限値の組み合わせをO-DU10Aに通知してもよい。O-DU10Aは、上限値及び下限値の組み合わせに基づいて、適切なDLゲインをO-RU10Bに設定することができる。 FIG. 9 is a diagram for explaining an example (4) of setting the amplification factor in the embodiment of the present invention. FIG. 9 is an example in which information indicating a properly operating DL gain range is notified. As shown in FIG. 9, the O-RU 10B may notify the O-DU 10A of the combination of the upper limit value and the lower limit value of the DL gain. The O-DU10A can set an appropriate DL gain to the O-RU10B based on the combination of the upper limit value and the lower limit value.
 例えば、O-RU10BからO-DU10Aに通知する情報に、複数の適切に動作するDLゲインの範囲を示す情報が含まれてもよい。当該情報により、O-RU10Bが複数の適切に動作するDLゲインの範囲を有する場合、O-DU10Aは適切なDLゲインをO-RU10Bに設定することができる。 For example, the information notified from the O-RU10B to the O-DU10A may include information indicating a plurality of appropriately operating DL gain ranges. With this information, the O-DU 10A can set the appropriate DL gain to the O-RU 10B if the O-RU 10B has a plurality of properly operating DL gain ranges.
 また、例えば、O-RU10BからO-DU10Aに通知する方法は、以下1)-4)のいずれかの方法であってもよい。 Further, for example, the method of notifying O-DU10A from O-RU10B may be any of the following methods 1) -4).
1)O-RU10BのArray carrier elementごとに通知する
2)O-RU10BのArray carrierごとに通知する
3)O-RU10BのArrayごとに通知する
4)O-RU10Bごとに通知する
1) Notify each O-RU10B Array carrier element 2) Notify each O-RU10B Array carrier 3) Notify each O-RU10B Array 4) Notify each O-RU10B
 上記1)-4)のArrayは、一つ乃至複数のArray elementから構成され、Array elementは一つ乃至複数の電波を放射する素子から構成される。また、上記1)-4)の方法は、フロントホールに流れる信号量を制御することを想定している。1)が最も信号量が多く、2)、3)、4)の順で信号量が少なくなる。例えば、フロントホールの通信状況が信号量を削減すべき状況である場合、通知方法は4)の方法が使用されてもよい。 The Array of 1) -4) above is composed of one or a plurality of Array elements, and the Array element is composed of an element that emits one or a plurality of radio waves. Further, the methods 1) and 4) above are assumed to control the amount of signals flowing through the front hall. 1) has the largest amount of signal, and 2), 3), and 4) decrease in order. For example, when the communication status of the front hall is a situation in which the signal amount should be reduced, the method 4) may be used as the notification method.
 図10は、本発明の実施の形態におけるデータモデルの例(1)を示す図である。図10は、データモデリング言語YANG(Yet Another Next Generation)を使用したM-Planeシグナルの例である。図6に示されるO-RU10BがDLゲインの上限値及び下限値をO-DU10Aに通知する場合に、当該M-Planeシグナルが通知される。図10に示される例では、当該M-Planeシグナルは、上限値「max-gain」、下限値「min-gain」を含み、それぞれデシベル単位のdecimal64すなわち64ビット幅10進数浮動小数点形式で表記される。なお、図10に示されるM-Planeシグナルは、DLゲインの下限値を通知するか否かを示す識別子又はフラグを有してもよい。 FIG. 10 is a diagram showing an example (1) of a data model according to the embodiment of the present invention. FIG. 10 is an example of an M-Plane signal using the data modeling language YANG (Yet Another Next Generation). When the O-RU10B shown in FIG. 6 notifies the O-DU10A of the upper limit value and the lower limit value of the DL gain, the M-Plane signal is notified. In the example shown in FIG. 10, the M-Plane signal includes an upper limit value "max-gain" and a lower limit value "min-gain", and is expressed in decibel unit signal64, that is, a 64-bit wide decimal floating-point format. To. The M-Plane signal shown in FIG. 10 may have an identifier or a flag indicating whether or not to notify the lower limit of the DL gain.
 図11は、本発明の実施の形態におけるデータモデルの例(2)を示す図である。図11は、データモデリング言語YANGを使用したM-Planeシグナルの例である。図8に示されるO-RU10BがDLゲインの上限値及び上限値を基準とする幅をO-DU10Aに通知する場合に、当該M-Planeシグナルが通知される。図11に示される例では、当該M-Planeシグナルは、上限値「max-gain」、上限値を基準とする幅「gain-range」を含み、それぞれデシベル単位のdecimal64すなわち64ビット幅10進数浮動小数点形式で表記される。なお、図11に示されるM-Planeシグナルは、DLゲインの範囲を通知するか否かを示す識別子又はフラグを有してもよい。 FIG. 11 is a diagram showing an example (2) of a data model according to the embodiment of the present invention. FIG. 11 is an example of an M-Plane signal using the data modeling language YANG. When the O-RU10B shown in FIG. 8 notifies the O-DU10A of the upper limit value of the DL gain and the width based on the upper limit value, the M-Plane signal is notified. In the example shown in FIG. 11, the M-Plane signal includes an upper limit value “max-gain” and a width “gain-range” based on the upper limit value, and each includes a decibel unit signal 64, that is, a 64-bit width decimal floating point number floating. Notated in decimal format. The M-Plane signal shown in FIG. 11 may have an identifier or a flag indicating whether or not to notify the DL gain range.
 図12は、本発明の実施の形態における起動手順の例を説明するためのフローチャートである。図12に示されるNETCONF(Network Configuration Protocol)によるクライアントサーバモデルでO-DU10A及びO-RU10BのM-Plane接続確立のための手順(Startup procedure)が記載される。NETCONFサーバがO-RU10Bに対応する。NETCONFクライアントは、O-RUを管理する機器でありO-DU10Aが対応してもよい。 FIG. 12 is a flowchart for explaining an example of the activation procedure according to the embodiment of the present invention. A procedure (Startup procedure) for establishing an M-Plane connection of O-DU10A and O-RU10B is described in a client-server model based on NETCONF (Network Configuration Protocol) shown in FIG. The NETCONF server supports O-RU10B. The NETCONF client is a device that manages the O-RU, and the O-DU 10A may support it.
 図12に示されるように起動手順は、最初にトランスポートレイヤの初期化を実行する。続いて、O-RU10Bはプライマリリファレンスクロックに同期を開始する。続いて、O-RU10Bは、NETCONFクライアントにコールし、SSH(Secure Shell)によるセキュアな接続を確立する。続いて、NETCONF能力ディスカバリが実行され、新たな管理アカウントが供給されてもよい。続いて、NETCONF接続による管理が実行され、O-RU10Bの情報が検索される。ここで、O-RU10Bの情報が検索されると共に、O-RU10BからO-DU10Aに適切に動作するDLゲインの範囲を示す情報が、DLゲインの上限値と併せて通知されてもよいし、DLゲインの上限値とは別途通知されてもよい。なお、O-RU10BからO-DU10Aに適切に動作するDLゲインの範囲を示す情報は、新たに定義されたプロシージャにて通知されてもよい。 As shown in FIG. 12, the startup procedure first executes the initialization of the transport layer. Subsequently, the O-RU10B starts synchronization with the primary reference clock. Subsequently, the O-RU10B calls the NETCONF client to establish a secure connection by SSH (Secure Shell). Subsequently, NETCONF capability discovery may be performed and a new management account may be supplied. Subsequently, management by NETCONF connection is executed, and the information of O-RU10B is searched. Here, the information of the O-RU 10B may be searched, and the information indicating the range of the DL gain that operates appropriately from the O-RU 10B to the O-DU 10A may be notified together with the upper limit value of the DL gain. The upper limit of the DL gain may be notified separately. Information indicating the range of DL gain that operates appropriately from O-RU10B to O-DU10A may be notified by a newly defined procedure.
 続いて、ソフトウェア管理が実行され、O-DU10AとO-RU10B間のCUプレーン接続性確認、Uプレーンの設定、O-RU10Bにおける遅延プロファイルのリカバリ及びオプションとしてCU-プレーンの遅延測定が実行される。続いて、障害管理及びパフォーマンス測定が有効化される。続いて、同期情報を含むO-RU10Bの状態が検索される。続いて、O-RU10Bの運用パラメータが設定され、サービスが可用となる。 Software management is then performed to check the CU plane connectivity between the O-DU10A and O-RU10B, set the U plane, recover the delay profile on the O-RU10B, and optionally measure the delay on the CU-plane. .. Subsequently, fault management and performance measurement are enabled. Subsequently, the state of the O-RU 10B including the synchronization information is searched. Subsequently, the operation parameters of the O-RU10B are set, and the service becomes available.
 上述の実施例により、gNB10の一部を分離する構成をとるO-DU10A及びO-RU10Bにおいて、O-RU10Bは、自装置のパワーアンプが対応する適切な増幅率の範囲をO-DU10Aに通知することで、O-DU10Aは、適切な増幅率をO-RU10Bに設定することができる。 In the O-DU 10A and O-RU 10B configured to separate a part of the gNB 10 according to the above embodiment, the O-RU 10B notifies the O-DU 10A of the appropriate amplification factor range corresponding to the power amplifier of the own device. By doing so, the O-DU10A can set an appropriate amplification factor to the O-RU10B.
 すなわち、無線通信システムにおいて、パワーアンプを備える無線機能部に適切な増幅率を設定することができる。 That is, in a wireless communication system, an appropriate amplification factor can be set in a wireless function unit provided with a power amplifier.
 (装置構成)
 次に、これまでに説明した処理及び動作を実行する基地局10の機能構成例を説明する。基地局10は上述した実施例を実施する機能を含む。ただし、基地局10は、実施例の中の一部の機能のみを備えることとしてもよい。
(Device configuration)
Next, a functional configuration example of the base station 10 that executes the processes and operations described so far will be described. The base station 10 includes a function of carrying out the above-described embodiment. However, the base station 10 may include only some of the functions in the embodiment.
 <基地局10>
 図13は、本発明の実施の形態における基地局10の機能構成の一例を示す図である。図13に示されるように、基地局10は、送信部110と、受信部120と、設定部130と、制御部140とを有する。図13に示される機能構成は一例に過ぎない。本発明の実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。gNB10、O-DU10A、O-RU10B、CU10Cは、図13に示される機能部を一部又は全部有し、実施例で説明した機能を実現してもよい。
<Base station 10>
FIG. 13 is a diagram showing an example of the functional configuration of the base station 10 according to the embodiment of the present invention. As shown in FIG. 13, the base station 10 has a transmission unit 110, a reception unit 120, a setting unit 130, and a control unit 140. The functional configuration shown in FIG. 13 is only an example. Any function classification and name of the functional unit may be used as long as the operation according to the embodiment of the present invention can be executed. The gNB10, O-DU10A, O-RU10B, and CU10C may have a part or all of the functional parts shown in FIG. 13 and realize the functions described in the examples.
 送信部110は、ネットワークノード間メッセージを他のネットワークノードに送信する機能を有する。また、送信部110は、端末側に送信する信号を生成し、当該信号を無線で送信する機能を有してもよい。受信部120は、他のネットワークノード又は端末から送信された各種の信号を受信し、受信した信号から、例えばより上位のレイヤの情報を取得する機能を含む。また、受信部120は、ネットワークノード間メッセージを他のネットワークノードから受信する。また、送信部110は、端末へNR-PSS、NR-SSS、NR-PBCH、DL/UL制御信号等を送信する機能を有してもよい。 The transmission unit 110 has a function of transmitting a message between network nodes to another network node. Further, the transmission unit 110 may have a function of generating a signal to be transmitted to the terminal side and transmitting the signal wirelessly. The receiving unit 120 includes a function of receiving various signals transmitted from another network node or terminal and acquiring information of, for example, a higher layer from the received signals. In addition, the receiving unit 120 receives a message between network nodes from another network node. Further, the transmission unit 110 may have a function of transmitting NR-PSS, NR-SSS, NR-PBCH, DL / UL control signal, or the like to the terminal.
 設定部130は、予め設定される設定情報、及び、端末又はネットワークノードに送信する各種の設定情報を格納する機能を有する。設定情報の内容は、例えば、O-DUとO-RU間のようにネットワークノード間の通信に係る設定情報、DL送信又はUL受信するための設定情報等である。 The setting unit 130 has a function of storing preset setting information and various setting information to be transmitted to a terminal or a network node. The contents of the setting information are, for example, setting information related to communication between network nodes such as between O-DU and O-RU, setting information for DL transmission or UL reception, and the like.
 制御部140は、実施例において説明したように、ネットワークノード間の通信又は端末との通信に係る制御を行う。制御部140における信号送信に関する機能部を送信部110に含め、制御部140における信号受信に関する機能部を受信部120に含めてもよい。 As described in the embodiment, the control unit 140 controls communication between network nodes or communication with terminals. The function unit related to signal transmission in the control unit 140 may be included in the transmission unit 110, and the function unit related to signal reception in the control unit 140 may be included in the reception unit 120.
 (ハードウェア構成)
 上記実施形態の説明に用いたブロック図(図13)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
(Hardware configuration)
The block diagram (FIG. 13) used in the description of the above embodiment shows a block of functional units. These functional blocks (components) are realized by any combination of at least one of hardware and software. Further, the method of realizing each functional block is not particularly limited. That is, each functional block may be realized by using one device that is physically or logically connected, or directly or indirectly (for example, by two or more devices that are physically or logically separated). , Wired, wireless, etc.) and may be realized using these plurality of devices. The functional block may be realized by combining the software with the one device or the plurality of devices.
 機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。たとえば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼称される。いずれも、上述したとおり、実現方法は特に限定されない。 Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and assumption. There are broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc., but only these. I can't. For example, a functional block (constituent unit) that functions transmission is called a transmitting unit (transmitting unit) or a transmitter (transmitter). As described above, the method of realizing each of them is not particularly limited.
 例えば、本開示の一実施の形態における基地局10等は、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図14は、本開示の一実施の形態に係る基地局10のハードウェア構成の一例を示す図である。上述の基地局10は、物理的には、プロセッサ1001、記憶装置1002、補助記憶装置1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。なお、O-DU10A、O-RU10B、CU10C等は、基地局10同様に図14に示されるハードウェアから構成されてもよい。 For example, the base station 10 or the like in one embodiment of the present disclosure may function as a computer that processes the wireless communication method of the present disclosure. FIG. 14 is a diagram showing an example of the hardware configuration of the base station 10 according to the embodiment of the present disclosure. The base station 10 described above may be physically configured as a computer device including a processor 1001, a storage device 1002, an auxiliary storage device 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. The O-DU10A, O-RU10B, CU10C and the like may be composed of the hardware shown in FIG. 14 like the base station 10.
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニット等に読み替えることができる。基地局10のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 In the following explanation, the word "device" can be read as a circuit, device, unit, etc. The hardware configuration of the base station 10 may be configured to include one or more of the devices shown in the figure, or may be configured not to include some of the devices.
 基地局10における各機能は、プロセッサ1001、記憶装置1002等のハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、記憶装置1002及び補助記憶装置1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。 Each function in the base station 10 is performed by the processor 1001 performing calculations by loading predetermined software (program) on the hardware such as the processor 1001 and the storage device 1002, and controlling or storing the communication by the communication device 1004. It is realized by controlling at least one of reading and writing of data in the device 1002 and the auxiliary storage device 1003.
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインタフェース、制御装置、演算装置、レジスタ等を含む中央処理装置(CPU:Central Processing Unit)で構成されてもよい。例えば、上述の制御部140、制御部240等は、プロセッサ1001によって実現されてもよい。 The processor 1001 operates, for example, an operating system to control the entire computer. The processor 1001 may be composed of a central processing unit (CPU: Central Processing Unit) including an interface with a peripheral device, a control device, an arithmetic unit, a register, and the like. For example, the above-mentioned control unit 140, control unit 240, and the like may be realized by the processor 1001.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール又はデータ等を、補助記憶装置1003及び通信装置1004の少なくとも一方から記憶装置1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、図13に示した基地局10の制御部140は、記憶装置1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよい。上述の各種処理は、1つのプロセッサ1001によって実行される旨を説明してきたが、2以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。 Further, the processor 1001 reads a program (program code), a software module, data, or the like from at least one of the auxiliary storage device 1003 and the communication device 1004 into the storage device 1002, and executes various processes according to these. As the program, a program that causes a computer to execute at least a part of the operations described in the above-described embodiment is used. For example, the control unit 140 of the base station 10 shown in FIG. 13 may be realized by a control program stored in the storage device 1002 and operated by the processor 1001. Although the above-mentioned various processes have been described as being executed by one processor 1001, they may be executed simultaneously or sequentially by two or more processors 1001. Processor 1001 may be implemented by one or more chips. The program may be transmitted from the network via a telecommunication line.
 記憶装置1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、RAM(Random Access Memory)等の少なくとも1つによって構成されてもよい。記憶装置1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)等と呼ばれてもよい。記憶装置1002は、本開示の一実施の形態に係る通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュール等を保存することができる。 The storage device 1002 is a computer-readable recording medium, for example, by at least one of ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), RAM (Random Access Memory), and the like. It may be configured. The storage device 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like. The storage device 1002 can store a program (program code), a software module, or the like that can be executed to implement the communication method according to the embodiment of the present disclosure.
 補助記憶装置1003は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)等の光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップ等の少なくとも1つによって構成されてもよい。上述の記憶媒体は、例えば、記憶装置1002及び補助記憶装置1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。 The auxiliary storage device 1003 is a computer-readable recording medium, and is, for example, an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, an optical magnetic disk (for example, a compact disk, a digital versatile disk, Blu). -It may be composed of at least one of a ray® disk), a smart card, a flash memory (eg, a card, a stick, a key drive), a floppy® disk, a magnetic strip, and the like. The storage medium described above may be, for example, a database, server or other suitable medium containing at least one of the storage device 1002 and the auxiliary storage device 1003.
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び時分割複信(TDD:Time Division Duplex)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、送受信アンテナ、アンプ部、送受信部、伝送路インターフェース等は、通信装置1004によって実現されてもよい。送受信部は、送信部と受信部とで、物理的に、または論理的に分離された実装がなされてもよい。 The communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like. The communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, and the like in order to realize at least one of frequency division duplex (FDD: Frequency Division Duplex) and time division duplex (TDD: Time Division Duplex). It may be composed of. For example, the transmission / reception antenna, the amplifier unit, the transmission / reception unit, the transmission line interface, and the like may be realized by the communication device 1004. The transmission / reception unit may be physically or logically separated from each other in the transmission unit and the reception unit.
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサ等)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプ等)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that receives an input from the outside. The output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that outputs to the outside. The input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
 また、プロセッサ1001及び記憶装置1002等の各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。 Further, each device such as the processor 1001 and the storage device 1002 is connected by a bus 1007 for communicating information. The bus 1007 may be configured by using a single bus, or may be configured by using a different bus for each device.
 また、基地局10は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)等のハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。 Further, the base station 10 includes hardware such as a microprocessor, a digital signal processor (DSP: Digital Signal Processor), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), and an FPGA (Field Programmable Gate Array). It may be configured, and the hardware may realize a part or all of each functional block. For example, processor 1001 may be implemented using at least one of these hardware.
 (実施の形態のまとめ)
 以上、説明したように、本発明の実施の形態によれば、自装置の増幅器が適切に動作することができる増幅率の範囲を示す情報を他の通信装置に送信する送信部と、自装置に設定する増幅率及び周波数領域のOFDM(Orthogonal Frequency Division Multiplexing)信号の同相成分及び直交成分のサンプリング系列を前記他の通信装置から受信する受信部と、前記サンプリング系列に基づいて前記自装置に設定する増幅率を適用した無線信号を送出する制御部とを有する通信装置が提供される。
(Summary of embodiments)
As described above, according to the embodiment of the present invention, the transmitter unit that transmits information indicating the range of the amplification factor at which the amplifier of the own device can operate appropriately to another communication device, and the own device. A receiving unit that receives sampling sequences of in-phase components and orthogonal components of OFDM (Orthogonal Frequency Division Multiplexing) signals in the amplification factor and frequency domain set in the above from the other communication device, and the own device based on the sampling sequence. A communication device including a control unit for transmitting a radio signal to which an amplification factor is applied is provided.
 上記の構成により、gNB10の一部を分離する構成をとるO-DU10A及びO-RU10Bにおいて、O-RU10Bは、自装置のパワーアンプが対応する適切な増幅率の範囲をO-DU10Aに通知することで、O-DU10Aは、適切な増幅率をO-RU10Bに設定することができる。すなわち、無線通信システムにおいて、パワーアンプを備える無線機能部に適切な増幅率を設定することができる。 In the O-DU 10A and O-RU 10B having a configuration in which a part of the gNB 10 is separated by the above configuration, the O-RU 10B notifies the O-DU 10A of the appropriate amplification factor range corresponding to the power amplifier of the own device. As a result, the O-DU10A can set an appropriate amplification factor to the O-RU10B. That is, in the wireless communication system, an appropriate amplification factor can be set in the wireless function unit including the power amplifier.
 前記増幅率の範囲を示す情報は、増幅率の上限値及び増幅率の下限値、又は増幅率の上限値及び増幅率の上限値を基準とする幅を含んでもよい。当該構成により、O-RU10Bは、自装置のパワーアンプが対応する適切な増幅率の範囲をO-DU10Aに通知することができる。 The information indicating the range of the amplification factor may include a width based on the upper limit value of the amplification factor and the lower limit value of the amplification factor, or the upper limit value of the amplification factor and the upper limit value of the amplification factor. With this configuration, the O-RU10B can notify the O-DU10A of the range of the appropriate amplification factor corresponding to the power amplifier of the own device.
 前記増幅率の範囲を示す情報は、増幅率の範囲を複数含んでもよい。当該構成により、O-RU10Bは、自装置のパワーアンプが対応する適切な増幅率の範囲が複数存在する場合に、複数の増幅率の範囲をO-DU10Aに通知することができる。 The information indicating the amplification factor range may include a plurality of amplification factor ranges. With this configuration, the O-RU 10B can notify the O-DU 10A of a plurality of amplification factor ranges when there are a plurality of appropriate amplification factor ranges corresponding to the power amplifier of the own device.
 前記送信部は、通信装置のアンテナごと又は通信装置ごとに前記増幅率の範囲を示す情報を前記他の通信装置に送信してもよい。当該構成により、O-RU10Bは、フロントホールを流れる信号量を制御することができる。 The transmission unit may transmit information indicating the range of the amplification factor to the other communication device for each antenna of the communication device or for each communication device. With this configuration, the O-RU10B can control the amount of signals flowing through the front hall.
 また、本発明の実施の形態によれば、他の通信装置の増幅器が適切に動作することができる増幅率の範囲を示す情報を前記他の通信装置から受信する受信部と、前記増幅率の範囲を示す情報に基づいて、前記他の通信装置に設定する増幅率を決定する制御部と、前記決定した増幅率及び周波数領域のOFDM(Orthogonal Frequency Division Multiplexing)信号の同相成分及び直交成分のサンプリング系列を前記他の通信装置に送信する送信部とを有する通信装置が提供される。 Further, according to the embodiment of the present invention, the receiving unit that receives information indicating the range of the amplification factor at which the amplifier of the other communication device can operate appropriately from the other communication device, and the amplification factor. Based on the information indicating the range, the control unit that determines the amplification factor to be set in the other communication device and the sampling of the in-phase component and the orthogonal component of the OFDM (Orthogonal Frequency Division Multiplexing) signal in the determined amplification factor and frequency domain. A communication device is provided that includes a transmitter that transmits a sequence to the other communication device.
 上記の構成により、gNB10の一部を分離する構成をとるO-DU10A及びO-RU10Bにおいて、O-RU10Bは、自装置のパワーアンプが対応する適切な増幅率の範囲をO-DU10Aに通知することで、O-DU10Aは、適切な増幅率をO-RU10Bに設定することができる。すなわち、無線通信システムにおいて、パワーアンプを備える無線機能部に適切な増幅率を設定することができる。 In the O-DU 10A and O-RU 10B having a configuration in which a part of the gNB 10 is separated by the above configuration, the O-RU 10B notifies the O-DU 10A of the appropriate amplification factor range corresponding to the power amplifier of the own device. As a result, the O-DU10A can set an appropriate amplification factor to the O-RU10B. That is, in the wireless communication system, an appropriate amplification factor can be set in the wireless function unit including the power amplifier.
 また、本発明の実施の形態によれば、自装置の増幅器が適切に動作することができる増幅率の範囲を示す情報を他の通信装置に送信する送信手順と、自装置に設定する増幅率及び周波数領域のOFDM(Orthogonal Frequency Division Multiplexing)信号の同相成分及び直交成分のサンプリング系列を前記他の通信装置から受信する受信手順と、前記サンプリング系列に基づいて前記自装置に設定する増幅率を適用した無線信号を送出する制御手順とを通信装置が実行する通信方法が提供される。 Further, according to the embodiment of the present invention, the transmission procedure for transmitting information indicating the range of the amplification factor at which the amplifier of the own device can operate appropriately to another communication device and the amplification factor set in the own device. And the reception procedure for receiving the sampling sequence of the in-phase component and the orthogonal component of the OFDM (Orthogonal Frequency Division Multiplexing) signal in the frequency domain from the other communication device, and the amplification factor set in the own device based on the sampling sequence are applied. A communication method is provided in which the communication device executes a control procedure for transmitting the radio signal.
 上記の構成により、gNB10の一部を分離する構成をとるO-DU10A及びO-RU10Bにおいて、O-RU10Bは、自装置のパワーアンプが対応する適切な増幅率の範囲をO-DU10Aに通知することで、O-DU10Aは、適切な増幅率をO-RU10Bに設定することができる。すなわち、無線通信システムにおいて、パワーアンプを備える無線機能部に適切な増幅率を設定することができる。 In the O-DU 10A and O-RU 10B having a configuration in which a part of the gNB 10 is separated by the above configuration, the O-RU 10B notifies the O-DU 10A of the appropriate amplification factor range corresponding to the power amplifier of the own device. As a result, the O-DU10A can set an appropriate amplification factor to the O-RU10B. That is, in the wireless communication system, an appropriate amplification factor can be set in the wireless function unit including the power amplifier.
 (実施形態の補足)
 以上、本発明の実施の形態を説明してきたが、開示される発明はそのような実施形態に限定されず、当業者は様々な変形例、修正例、代替例、置換例等を理解するであろう。発明の理解を促すため具体的な数値例を用いて説明がなされたが、特に断りのない限り、それらの数値は単なる一例に過ぎず適切な如何なる値が使用されてもよい。上記の説明における項目の区分けは本発明に本質的ではなく、2以上の項目に記載された事項が必要に応じて組み合わせて使用されてよいし、ある項目に記載された事項が、別の項目に記載された事項に(矛盾しない限り)適用されてよい。機能ブロック図における機能部又は処理部の境界は必ずしも物理的な部品の境界に対応するとは限らない。複数の機能部の動作が物理的には1つの部品で行われてもよいし、あるいは1つの機能部の動作が物理的には複数の部品により行われてもよい。実施の形態で述べた処理手順については、矛盾の無い限り処理の順序を入れ替えてもよい。処理説明の便宜上、基地局10は機能的なブロック図を用いて説明されたが、そのような装置はハードウェアで、ソフトウェアで又はそれらの組み合わせで実現されてもよい。本発明の実施の形態に従って基地局10が有するプロセッサにより動作するソフトウェアは、ランダムアクセスメモリ(RAM)、フラッシュメモリ、読み取り専用メモリ(ROM)、EPROM、EEPROM、レジスタ、ハードディスク(HDD)、リムーバブルディスク、CD-ROM、データベース、サーバその他の適切な如何なる記憶媒体に保存されてもよい。
(Supplement to the embodiment)
Although the embodiments of the present invention have been described above, the disclosed invention is not limited to such embodiments, and those skilled in the art can understand various modifications, modifications, alternatives, substitutions, and the like. There will be. Although explanations have been given using specific numerical examples in order to promote understanding of the invention, these numerical values are merely examples and any appropriate value may be used unless otherwise specified. The classification of items in the above description is not essential to the present invention, and the items described in two or more items may be used in combination as necessary, and the items described in one item may be used in combination with another item. It may be applied (as long as there is no contradiction) to the matters described in. The boundary of the functional unit or the processing unit in the functional block diagram does not always correspond to the boundary of the physical component. The operation of the plurality of functional units may be physically performed by one component, or the operation of one functional unit may be physically performed by a plurality of components. With respect to the processing procedure described in the embodiment, the order of processing may be changed as long as there is no contradiction. Although the base station 10 has been described with reference to functional block diagrams for convenience of processing description, such devices may be implemented in hardware, software, or a combination thereof. The software operated by the processor included in the base station 10 according to the embodiment of the present invention includes random access memory (RAM), flash memory, read-only memory (ROM), EPROM, EEPROM, register, hard disk (HDD), removable disk, and the like. It may be stored on a CD-ROM, database, server or any other suitable storage medium.
 また、情報の通知は、本開示で説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング、報知情報(MIB(Master Information Block)、SIB(System Information Block))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージ等であってもよい。 Further, the notification of information is not limited to the mode / embodiment described in the present disclosure, and may be performed by using another method. For example, information notification includes physical layer signaling (for example, DCI (Downlink Control Information), UCI (Uplink Control Information)), higher layer signaling (for example, RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling, etc. Broadcast information (MIB (Master Information Block), SIB (System Information Block)), other signals, or a combination thereof may be used. RRC signaling may be referred to as an RRC message, for example, RRC. It may be a connection setup (RRCConnectionSetup) message, an RRC connection reconfiguration (RRCConnectionReconfiguration) message, or the like.
 本開示において説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、NR(new Radio)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせ等)適用されてもよい。 Each aspect / embodiment described in the present disclosure includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G (4th generation mobile communication system), and 5G (5th generation mobile communication). system), FRA (Future Radio Access), NR (new Radio), W-CDMA (registered trademark), GSM (registered trademark), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark)) )), IEEE 802.16 (WiMAX®), IEEE 802.20, UWB (Ultra-WideBand), Bluetooth®, and other systems that utilize suitable systems and have been extended based on these. It may be applied to at least one of the next generation systems. Further, a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G).
 本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャート等は、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。 The order of the processing procedures, sequences, flowcharts, etc. of each aspect / embodiment described in the present specification may be changed as long as there is no contradiction. For example, the methods described in the present disclosure present elements of various steps using exemplary order, and are not limited to the particular order presented.
 本明細書において基地局10によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局10を有する1つ又は複数のネットワークノード(network nodes)からなるネットワークにおいて、端末との通信のために行われる様々な動作は、基地局10及び基地局10以外の他のネットワークノード(例えば、MME又はS-GW等が考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局10以外の他のネットワークノードが1つである場合を例示したが、他のネットワークノードは、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。 In some cases, the specific operation performed by the base station 10 in the present specification may be performed by its upper node (upper node). In a network consisting of one or more network nodes having a base station 10, various operations performed for communication with a terminal are performed by the base station 10 and other network nodes other than the base station 10 (for example,). , MME, S-GW, etc., but not limited to these). In the above example, the case where there is one network node other than the base station 10 is illustrated, but the other network node may be a combination of a plurality of other network nodes (for example, MME and S-GW). ..
 本開示において説明した情報又は信号等は、上位レイヤ(又は下位レイヤ)から下位レイヤ(又は上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。 The information, signals, etc. described in the present disclosure can be output from the upper layer (or lower layer) to the lower layer (or upper layer). Input / output may be performed via a plurality of network nodes.
 入出力された情報等は特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報等は、上書き、更新、又は追記され得る。出力された情報等は削除されてもよい。入力された情報等は他の装置へ送信されてもよい。 The input / output information and the like may be stored in a specific location (for example, memory) or may be managed using a management table. Input / output information and the like can be overwritten, updated, or added. The output information and the like may be deleted. The input information or the like may be transmitted to another device.
 本開示における判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:true又はfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 The determination in the present disclosure may be made by a value represented by 1 bit (0 or 1), by a boolean value (Boolean: true or false), or by comparing numerical values (for example). , Comparison with a predetermined value).
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software is an instruction, instruction set, code, code segment, program code, program, subprogram, software module, whether called software, firmware, middleware, microcode, hardware description language, or another name. , Applications, software applications, software packages, routines, subroutines, objects, executables, execution threads, procedures, features, etc. should be broadly interpreted.
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。 In addition, software, instructions, information, etc. may be transmitted and received via a transmission medium. For example, a website that uses at least one of wired technology (coaxial cable, fiber optic cable, twist pair, digital subscriber line (DSL: Digital Subscriber Line), etc.) and wireless technology (infrared, microwave, etc.) When transmitted from a server, or other remote source, at least one of these wired and wireless technologies is included within the definition of transmission medium.
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques. For example, data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(CC:Component Carrier)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。 Note that the terms explained in the present disclosure and the terms necessary for understanding the present disclosure may be replaced with terms having the same or similar meanings. For example, at least one of a channel and a symbol may be a signal (signaling). Also, the signal may be a message. Further, the component carrier (CC: Component Carrier) may be referred to as a carrier frequency, a cell, a frequency carrier, or the like.
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。 The terms "system" and "network" used in this disclosure are used interchangeably.
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。 In addition, the information, parameters, etc. described in the present disclosure may be expressed using absolute values, relative values from predetermined values, or using other corresponding information. It may be represented. For example, the radio resource may be one indicated by an index.
 上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。 The names used for the above parameters are not limited in any respect. Further, mathematical formulas and the like using these parameters may differ from those explicitly disclosed in this disclosure. Since the various channels (eg, PUCCH, PDCCH, etc.) and information elements can be identified by any suitable name, the various names assigned to these various channels and information elements are in any respect limited names. is not it.
 本開示においては、「基地局(BS:Base Station)」、「無線基地局」、「基地局装置」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。 In this disclosure, "base station (BS: Base Station)", "wireless base station", "base station device", "fixed station", "NodeB", "eNodeB (eNB)", "gNodeB" (GNB) ”,“ access point ”,“ transmission point ”,“ reception point ”,“ transmission / reception point (transmission / reception point) ”,“ cell ”,“ sector ”, Terms such as "cell group," "carrier," and "component carrier" can be used interchangeably. Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head)によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。 The base station can accommodate one or more (for example, three) cells. When a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (RRH:)). Communication services can also be provided by (Remote Radio Head). The term "cell" or "sector" is a part or all of the coverage area of at least one of the base station and the base station subsystem that provides the communication service in this coverage. Point to.
 本開示においては、「移動局(MS:Mobile Station)」、「ユーザ端末(user terminal)」、「ユーザ装置(UE:User Equipment)」、「端末」などの用語は、互換的に使用され得る。 In the present disclosure, terms such as "mobile station (MS: Mobile Station)", "user terminal", "user device (UE: User Equipment)", and "terminal" may be used interchangeably. ..
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、又はいくつかの他の適切な用語で呼ばれる場合もある。 Mobile stations can be subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless, depending on the trader. It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのIoT(Internet of Things)機器であってもよい。 At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a communication device, or the like. At least one of the base station and the mobile station may be a device mounted on the mobile body, the mobile body itself, or the like. The moving body may be a vehicle (eg, car, airplane, etc.), an unmanned moving body (eg, drone, self-driving car, etc.), or a robot (manned or unmanned). ) May be. It should be noted that at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation. For example, at least one of the base station and the mobile station may be an IoT (Internet of Things) device such as a sensor.
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数の端末間の通信(例えば、D2D(Device-to-Device)、V2X(Vehicle-to-Everything)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能を端末が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。 Further, the base station in the present disclosure may be read by the user terminal. For example, a configuration in which communication between a base station and a user terminal is replaced with communication between a plurality of terminals (for example, it may be called D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc.). Each aspect / embodiment of the present disclosure may be applied to the above. In this case, the terminal may have the function of the base station 10 described above. In addition, words such as "up" and "down" may be read as words corresponding to communication between terminals (for example, "side"). For example, the uplink, downlink, and the like may be read as side channels.
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末が有する機能を基地局が有する構成としてもよい。 Similarly, the user terminal in the present disclosure may be read as a base station. In this case, the base station may have the functions of the user terminal described above.
 本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。 The terms "determining" and "determining" used in this disclosure may include a wide variety of actions. "Judgment" and "decision" are, for example, judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry). It may include (eg, searching in a table, database or another data structure), ascertaining as "judgment" or "decision". Also, "judgment" and "decision" are receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access. (Accessing) (for example, accessing data in memory) may be regarded as "judgment" or "decision". In addition, "judgment" and "decision" mean that "resolving", "selecting", "choosing", "establishing", "comparing", etc. are regarded as "judgment" and "decision". Can include. That is, "judgment" and "decision" may include considering some action as "judgment" and "decision". Further, "judgment (decision)" may be read as "assuming", "expecting", "considering" and the like.
 「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。 The terms "connected", "coupled", or any variation thereof, mean any direct or indirect connection or connection between two or more elements, and each other. It can include the presence of one or more intermediate elements between two "connected" or "combined" elements. The connection or connection between the elements may be physical, logical, or a combination thereof. For example, "connection" may be read as "access". As used in the present disclosure, the two elements use at least one of one or more wires, cables and printed electrical connections, and, as some non-limiting and non-comprehensive examples, the radio frequency domain. Can be considered to be "connected" or "coupled" to each other using electromagnetic energies having wavelengths in the microwave and light (both visible and invisible) regions.
 参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。 The reference signal can also be abbreviated as RS (Reference Signal), and may be called a pilot (Pilot) depending on the applicable standard.
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 The phrase "based on" as used in this disclosure does not mean "based on" unless otherwise stated. In other words, the statement "based on" means both "based only" and "at least based on".
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみが採用され得ること、又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 Any reference to elements using designations such as "first", "second", etc. as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Thus, references to the first and second elements do not mean that only two elements can be adopted, or that the first element must somehow precede the second element.
 上記の各装置の構成における「手段」を、「部」、「回路」、「デバイス」等に置き換えてもよい。 The "means" in the configuration of each of the above devices may be replaced with "part", "circuit", "device" and the like.
 本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。 When "include", "including" and variations thereof are used in the present disclosure, these terms are as comprehensive as the term "comprising". Is intended. Furthermore, the term "or" used in the present disclosure is intended not to be an exclusive OR.
 本開示において、例えば、英語でのa, an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。 In the present disclosure, if articles are added by translation, for example, a, an and the in English, the disclosure may include that the nouns following these articles are in the plural.
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。 In the present disclosure, the term "A and B are different" may mean "A and B are different from each other". The term may mean that "A and B are different from C". Terms such as "separate" and "combined" may be interpreted in the same way as "different".
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。 Each aspect / embodiment described in the present disclosure may be used alone, in combination, or switched with execution. Further, the notification of predetermined information (for example, the notification of "being X") is not limited to the explicit one, but is performed implicitly (for example, the notification of the predetermined information is not performed). May be good.
 以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。 Although the present disclosure has been described in detail above, it is clear to those skilled in the art that the present disclosure is not limited to the embodiments described in the present disclosure. The present disclosure may be implemented as an amendment or modification without departing from the purpose and scope of the present disclosure, which is determined by the description of the scope of claims. Therefore, the description of this disclosure is for purposes of illustration only and does not have any restrictive meaning to this disclosure.
10    基地局
10A   O-DU
10B   O-RU
10C   CU
110   送信部
120   受信部
130   設定部
140   制御部
1001  プロセッサ
1002  記憶装置
1003  補助記憶装置
1004  通信装置
1005  入力装置
1006  出力装置
10 Base station 10A O-DU
10B O-RU
10C CU
110 Transmission unit 120 Reception unit 130 Setting unit 140 Control unit 1001 Processor 1002 Storage device 1003 Auxiliary storage device 1004 Communication device 1005 Input device 1006 Output device

Claims (6)

  1.  自装置の増幅器が適切に動作することができる増幅率の範囲を示す情報を他の通信装置に送信する送信部と、
     自装置に設定する増幅率及び周波数領域のOFDM(Orthogonal Frequency Division Multiplexing)信号の同相成分及び直交成分のサンプリング系列を前記他の通信装置から受信する受信部と、
     前記サンプリング系列に基づいて前記自装置に設定する増幅率を適用した無線信号を送出する制御部とを有する通信装置。
    A transmitter that transmits information indicating the range of amplification factor that the amplifier of the own device can operate properly to other communication devices,
    A receiving unit that receives sampling sequences of in-phase components and orthogonal components of OFDM (Orthogonal Frequency Division Multiplexing) signals in the amplification factor and frequency domain set in the own device from the other communication device.
    A communication device having a control unit that transmits a radio signal to which an amplification factor set in the own device is applied based on the sampling sequence.
  2.  前記増幅率の範囲を示す情報は、増幅率の上限値及び増幅率の下限値、又は増幅率の上限値及び増幅率の上限値を基準とする幅を含む請求項1記載の通信装置。 The communication device according to claim 1, wherein the information indicating the range of the amplification factor includes the upper limit value of the amplification factor and the lower limit value of the amplification factor, or the upper limit value of the amplification factor and the upper limit value of the amplification factor.
  3.  前記増幅率の範囲を示す情報は、増幅率の範囲を複数含む請求項1記載の通信装置。 The communication device according to claim 1, wherein the information indicating the amplification factor range includes a plurality of amplification factor ranges.
  4.  前記送信部は、通信装置のアンテナごと又は通信装置ごとに前記増幅率の範囲を示す情報を前記他の通信装置に送信する請求項1記載の通信装置。 The communication device according to claim 1, wherein the transmission unit transmits information indicating the range of the amplification factor for each antenna of the communication device or for each communication device to the other communication device.
  5.  他の通信装置の増幅器が適切に動作することができる増幅率の範囲を示す情報を前記他の通信装置から受信する受信部と、
     前記増幅率の範囲を示す情報に基づいて、前記他の通信装置に設定する増幅率を決定する制御部と、
     前記決定した増幅率及び周波数領域のOFDM(Orthogonal Frequency Division Multiplexing)信号の同相成分及び直交成分のサンプリング系列を前記他の通信装置に送信する送信部とを有する通信装置。
    A receiver that receives information from the other communication device indicating the range of amplification factor that the amplifier of the other communication device can operate properly.
    A control unit that determines the amplification factor to be set in the other communication device based on the information indicating the range of the amplification factor.
    A communication device having a transmission unit that transmits a sampling series of in-phase components and orthogonal components of an OFDM (Orthogonal Frequency Division Multiplexing) signal in the determined amplification factor and frequency domain to the other communication device.
  6.  自装置の増幅器が適切に動作することができる増幅率の範囲を示す情報を他の通信装置に送信する送信手順と、
     自装置に設定する増幅率及び周波数領域のOFDM(Orthogonal Frequency Division Multiplexing)信号の同相成分及び直交成分のサンプリング系列を前記他の通信装置から受信する受信手順と、
     前記サンプリング系列に基づいて前記自装置に設定する増幅率を適用した無線信号を送出する制御手順とを通信装置が実行する通信方法。
    A transmission procedure for transmitting information indicating the range of amplification factor that the amplifier of the own device can operate properly to other communication devices, and
    A reception procedure for receiving a sampling series of in-phase components and orthogonal components of an OFDM (Orthogonal Frequency Division Multiplexing) signal in the amplification factor and frequency domain set in the own device from the other communication device, and
    A communication method in which a communication device executes a control procedure for transmitting a radio signal to which an amplification factor set in the own device is applied based on the sampling sequence.
PCT/JP2019/029555 2019-07-26 2019-07-26 Communication device and communication method WO2021019631A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/029555 WO2021019631A1 (en) 2019-07-26 2019-07-26 Communication device and communication method
CN201980098606.4A CN114128224B (en) 2019-07-26 2019-07-26 Communication device and communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/029555 WO2021019631A1 (en) 2019-07-26 2019-07-26 Communication device and communication method

Publications (1)

Publication Number Publication Date
WO2021019631A1 true WO2021019631A1 (en) 2021-02-04

Family

ID=74228552

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/029555 WO2021019631A1 (en) 2019-07-26 2019-07-26 Communication device and communication method

Country Status (2)

Country Link
CN (1) CN114128224B (en)
WO (1) WO2021019631A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023079699A1 (en) * 2021-11-05 2023-05-11 富士通株式会社 Communication device and communication system
WO2023100385A1 (en) * 2021-12-03 2023-06-08 楽天モバイル株式会社 Virtualization base and wireless access network control by wireless access network node
WO2023157334A1 (en) * 2022-02-15 2023-08-24 楽天モバイル株式会社 Notification of o-ru power-saving information
WO2023157364A1 (en) * 2022-02-15 2023-08-24 楽天モバイル株式会社 O-ru power saving information notification

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7287569B2 (en) * 2020-03-11 2023-06-06 日本電気株式会社 Communication device, data recording method, and program

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016522628A (en) * 2013-05-08 2016-07-28 中国移▲動▼通信集▲団▼公司China Mobile Communications Corporation Information transmission method and equipment
WO2017183284A1 (en) * 2016-04-21 2017-10-26 株式会社Nttドコモ Overhang station and interference wave power report method
JP2019012937A (en) * 2017-06-30 2019-01-24 株式会社Nttドコモ Signal processing device, radio device, fronthaul multiplexer, beam control method and signal synthesis method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3170104B2 (en) * 1993-06-04 2001-05-28 松下電器産業株式会社 Automatic gain control device
JP4254245B2 (en) * 2003-01-15 2009-04-15 ソニー株式会社 Communication device
WO2006043592A1 (en) * 2004-10-20 2006-04-27 Matsushita Electric Industrial Co., Ltd. Booster
JP2015529408A (en) * 2012-08-17 2015-10-05 ▲華▼▲為▼▲終▼端有限公司 Wireless terminal for reducing power consumption and method for reducing power consumption of a wireless terminal
US10312974B2 (en) * 2014-09-03 2019-06-04 Ntt Docomo, Inc. MIMO transmission scheme using multiple antennas in a radio communication station
EP3272009B1 (en) * 2015-03-20 2020-01-15 Telefonaktiebolaget LM Ericsson (publ) Method for gain control and related wireless receivers and devices
TWI528171B (en) * 2015-04-23 2016-04-01 緯創資通股份有限公司 Power control method, mobile device, and power control system utilizing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016522628A (en) * 2013-05-08 2016-07-28 中国移▲動▼通信集▲団▼公司China Mobile Communications Corporation Information transmission method and equipment
WO2017183284A1 (en) * 2016-04-21 2017-10-26 株式会社Nttドコモ Overhang station and interference wave power report method
JP2019012937A (en) * 2017-06-30 2019-01-24 株式会社Nttドコモ Signal processing device, radio device, fronthaul multiplexer, beam control method and signal synthesis method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023079699A1 (en) * 2021-11-05 2023-05-11 富士通株式会社 Communication device and communication system
WO2023100385A1 (en) * 2021-12-03 2023-06-08 楽天モバイル株式会社 Virtualization base and wireless access network control by wireless access network node
WO2023157334A1 (en) * 2022-02-15 2023-08-24 楽天モバイル株式会社 Notification of o-ru power-saving information
WO2023157335A1 (en) * 2022-02-15 2023-08-24 楽天モバイル株式会社 Reconfiguration of o-ru communication circuit
WO2023157364A1 (en) * 2022-02-15 2023-08-24 楽天モバイル株式会社 O-ru power saving information notification

Also Published As

Publication number Publication date
CN114128224A (en) 2022-03-01
CN114128224B (en) 2023-08-29

Similar Documents

Publication Publication Date Title
US10966270B2 (en) User equipment and base station
WO2021019631A1 (en) Communication device and communication method
WO2020090098A1 (en) User device and base station device
US11770697B2 (en) Terminal, transmission method, and radio communication system
WO2021144976A1 (en) Communication device
WO2020230201A1 (en) User device and base station device
WO2021199415A1 (en) Terminal, and communication method
JP7369211B2 (en) Terminal, base station and communication method
WO2020100559A1 (en) User equipment and base station apparatus
WO2020100379A1 (en) User device and base station device
WO2020174549A1 (en) User device and communication method
WO2020095455A1 (en) User device and base station device
WO2021161477A1 (en) Terminal and communication method
WO2020246185A1 (en) Terminal and base station
WO2022009288A1 (en) Terminal, base station, and communication method
WO2020171182A1 (en) User device and base station device
JP7170842B2 (en) User equipment and base station equipment
WO2021019737A1 (en) Base station, communication method and information processing device
WO2020166028A1 (en) Network node
WO2020222269A1 (en) User device and communication method
WO2020161907A1 (en) User equipment
JP7427687B2 (en) Terminal, communication system, and communication method
WO2022085094A1 (en) Terminal and communication method
JP7438245B2 (en) Terminal and communication method
WO2020230623A1 (en) User equipment and base station device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19939615

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19939615

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP