WO2021019627A1 - コンピュータビジョンシステムのキャリブレーション方法及びこれに用いる基準立体物 - Google Patents

コンピュータビジョンシステムのキャリブレーション方法及びこれに用いる基準立体物 Download PDF

Info

Publication number
WO2021019627A1
WO2021019627A1 PCT/JP2019/029529 JP2019029529W WO2021019627A1 WO 2021019627 A1 WO2021019627 A1 WO 2021019627A1 JP 2019029529 W JP2019029529 W JP 2019029529W WO 2021019627 A1 WO2021019627 A1 WO 2021019627A1
Authority
WO
WIPO (PCT)
Prior art keywords
dimensional
robot
coordinate system
measurement
unit
Prior art date
Application number
PCT/JP2019/029529
Other languages
English (en)
French (fr)
Inventor
嘉典 小西
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Priority to US17/621,405 priority Critical patent/US20220357153A1/en
Priority to JP2021536471A priority patent/JP7180783B2/ja
Priority to EP19939259.8A priority patent/EP3974767A4/en
Priority to CN201980097798.7A priority patent/CN114026384B/zh
Priority to PCT/JP2019/029529 priority patent/WO2021019627A1/ja
Publication of WO2021019627A1 publication Critical patent/WO2021019627A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/02Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
    • G01B21/04Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness by measuring coordinates of points
    • G01B21/042Calibration or calibration artifacts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1679Programme controls characterised by the tasks executed
    • B25J9/1692Calibration of manipulator
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1694Programme controls characterised by use of sensors other than normal servo-feedback from position, speed or acceleration sensors, perception control, multi-sensor controlled systems, sensor fusion
    • B25J9/1697Vision controlled systems

Definitions

  • the present invention relates to a method for calibrating a computer vision system and a reference three-dimensional object used therein.
  • Patent Document 1 in order to investigate the wear due to the use of the tread portion of the tire, the position on the circumference of the tire tread portion and the position in the width direction of the tire are accurately positioned with respect to the three-dimensional measurement data of the tire before and after use.
  • the technology to match is disclosed.
  • a reference three-dimensional object consisting of three spheres is fixedly arranged in the measurement space from a fixed support portion that the tire rotatably holds via a rod.
  • a coordinate transformation is obtained in which the center position coordinates of these spheres move to predetermined target coordinates, and the three-dimensional measurement data of the tire, which is the target object, is aligned using this coordinate transformation.
  • a certain number of measurement points or more are required.
  • a large sphere must be used as the reference solid object, but if the size is increased, the target object will be hidden by the reference solid object, the proportion of the area occupied by the reference solid object will increase, and the imaging size will be relative.
  • the measurement of the target object is hindered, such as becoming smaller.
  • Patent Document 2 a reference three-dimensional object composed of a plurality of planes has also been proposed (see, for example, Patent Document 2), and since the position of the plane is not determined in the tangent plane, the position and orientation of the measurement viewpoint are recognized with high accuracy. It's difficult.
  • the present invention has been made in view of the above circumstances, and proposes a reference three-dimensional object capable of recognizing a position and orientation with high accuracy during three-dimensional measurement, and uses this to calibrate three-dimensional measurement in a computer vision system.
  • the purpose is to provide a technique for improving the accuracy of the computer.
  • the present invention for solving the above problems
  • a 3D measurement unit that performs 3D measurement and A measurement control unit that controls the three-dimensional measurement unit In a computer vision system having the above, a reference three-dimensional object having a shape that does not have symmetry when viewed from any direction, having a predetermined size, and serving as a reference for position / orientation recognition by the three-dimensional measurement is used. This is the calibration method to be performed.
  • a step of three-dimensionally measuring the reference three-dimensional object by the three-dimensional measuring unit Based on the data regarding the three-dimensional shape of the reference three-dimensional object and the three-dimensional measurement data obtained by the three-dimensional measurement of the reference three-dimensional object, the said to the measurement unit coordinate system defined for the three-dimensional measurement unit.
  • Steps to calculate the position and orientation of the reference three-dimensional object Based on the position and orientation of the reference solid object with respect to the measurement unit coordinate system, a reference / measurement unit conversion matrix representing the coordinate conversion between the reference coordinate system defined in the reference solid object and the measurement unit coordinate system is calculated. Steps to do and It is a calibration method including.
  • the computer vision system A robot with an arm and A robot control unit that controls the robot and Have more
  • the arm holding the reference three-dimensional object is controlled to change the position and orientation of the reference three-dimensional object with respect to the three-dimensional measuring unit. It may include a step of three-dimensionally measuring the reference solid object.
  • the computer vision system A robot with an arm and A robot control unit that controls the robot and Have more
  • the step of three-dimensionally measuring the reference three-dimensional object by the three-dimensional measuring unit controls the arm holding the three-dimensional measuring unit to change the position and orientation of the three-dimensional measuring unit with respect to the reference three-dimensional object. It may include a step of three-dimensionally measuring the reference three-dimensional object.
  • coordinate conversion between the robot coordinate system defined for the base end portion of the robot and the tool coordinate system defined for the arm based on the reference / measurement unit conversion matrix.
  • a robot / tool transformation matrix representing the above, a tool / reference transformation matrix representing the coordinate transformation between the tool coordinate system and the reference coordinate system, and a robot representing the coordinate transformation between the robot coordinate system and the measuring unit coordinate system. ⁇ Measurement unit The steps to calculate the transformation matrix and May be further included.
  • the reference / measurement unit conversion matrix representing the coordinate conversion between the reference coordinate system and the measurement unit coordinate system can be accurately obtained.
  • the robot / measurement unit conversion matrix representing the coordinate conversion between the robot coordinate system and the measurement unit coordinate system is equal to the product of the robot / tool conversion matrix, the tool / reference conversion matrix, and the reference / measurement unit conversion matrix.
  • An unknown robot based on this relational expression, the transformation matrix calculated earlier, and the transformation matrix that can be calculated from known information such as the detection value of the sensor indicating the position and orientation of the arm in the robot. Since the transformation matrix of the measuring unit can be calculated, highly accurate calibration between the robot and the three-dimensional measuring unit can be performed.
  • the computer vision system It is a table on which one or more of the reference three-dimensional objects are arranged, and has a table on which at least one of the position and orientation of the reference three-dimensional object with respect to the three-dimensional measuring unit can be changed.
  • the step of three-dimensionally measuring the reference three-dimensional object by the three-dimensional measuring unit is a step of three-dimensionally measuring by changing at least one of the position and the posture of the reference three-dimensional object with respect to the three-dimensional measuring unit by the table. It may be included.
  • At least one of the position and the orientation of the reference three-dimensional object with respect to the three-dimensional measuring unit can be changed by controlling the table, so that the reference three-dimensional object has a different position with respect to the three-dimensional measuring unit.
  • the position and orientation of the reference three-dimensional object with respect to the coordinate system of the measuring unit are calculated based on a plurality of three-dimensional measurement data in the posture. Therefore, the accuracy of calculating the position and orientation of the reference solid object with respect to the coordinate system of the measuring unit is further improved. Therefore, in such a computer vision system, highly accurate three-dimensional measurement calibration becomes possible.
  • the reference solid object may have a shape in which one ends of three cylinders having both ends in the axial direction formed hemispherically are connected.
  • the calculation accuracy of the position and orientation of the reference solid object with respect to the coordinate system of the measurement unit based on the three-dimensional measurement data by the three-dimensional measurement unit is further improved. Therefore, the accuracy of each transformation matrix calculated based on this is further improved. That is, the accuracy of calibration of three-dimensional measurement in a computer vision system is further improved.
  • the present invention This is a reference three-dimensional object used in the calibration method.
  • the position and orientation can be recognized with high accuracy during three-dimensional measurement, so that the accuracy of calibration of three-dimensional measurement in a computer vision system can be improved.
  • FIG. 1A is an overall perspective view of a reference solid object
  • FIG. 1B is a perspective view showing components of the reference solid object.
  • FIG. 2 is a diagram showing a state in which a reference three-dimensional object is arranged on the calibration board.
  • FIG. 3 is a diagram showing a state in which a reference three-dimensional object is arranged on a turntable.
  • FIG. 4 is a diagram showing a three-dimensional object to be compared.
  • FIG. 5 is a diagram showing the overall configuration of the robot vision system.
  • FIG. 6 is a functional block diagram of the information processing device.
  • FIG. 7 is a flowchart showing the calibration procedure.
  • FIG. 8 is a diagram showing the overall configuration of another robot vision system.
  • 9A to 9E are diagrams showing three-dimensional measurement data from different viewpoints of the table in which the reference three-dimensional object and the target object are arranged.
  • the reference three-dimensional object 1 according to the present invention is shown in FIG. 1A.
  • the reference three-dimensional object 1 has no symmetry when viewed from any direction, and has a shape in which the posture is uniquely determined.
  • a three-dimensional measuring means such as a 3D sensor.
  • the reference three-dimensional object 1 in such three-dimensional measurement can be used in the following modes.
  • a calibration board 25 on which the reference three-dimensional object 1 is arranged is attached to the hand portion of the robot arm 212, and three-dimensional measurement is performed by the sensor unit 20 capable of three-dimensional measurement.
  • the sensor unit 20 attached to the hand portion of the robot arm 212 may be used to measure the reference three-dimensional object 1 on the table 28 arranged in the work space in three dimensions. Even with such a configuration, since the position and orientation of the reference solid object 1 can be recognized with high accuracy, an unknown transformation matrix between the robot and the sensor can be calculated with high accuracy.
  • four reference three-dimensional objects 1-1, 1-2, 1-3, 1-4 are arranged at intervals of 90 degrees in the circumferential direction around the center of the turntable 27. Then, the target object is placed in the center of the turntable on which the reference three-dimensional objects 1-1 to 1-4 are placed, and three-dimensional measurement is performed by the sensor. The three-dimensional shape of the target object is restored by using the position / orientation recognition results of the reference three-dimensional objects 1-1 to 1-4 based on the three-dimensional measurement data obtained in this way.
  • the recognition accuracy is improved by using the average value of the position / orientation recognition results.
  • the position and orientation of the reference three-dimensional object 1-1, 1-2, 1-3, 1-4 with respect to the sensor can be changed.
  • four reference three-dimensional objects are arranged as one or more reference three-dimensional objects 1, but the number and arrangement of the reference three-dimensional objects are not limited to this.
  • the turntable 27 corresponds to the platform of the present invention.
  • FIG. 1A The shape of the reference three-dimensional object 1 of this embodiment is shown in FIG. 1A.
  • the reference three-dimensional object 1 includes many curved surfaces having a large curvature, has no symmetry when viewed from any direction, and has a shape in which the posture is uniquely determined.
  • an object 10 (see FIG. 1B) in which hemispherical spherical portions 10b and 10c having a radius of 12 mm are arranged at both ends of a cylinder 10a having a radius of 12 mm and a length of 30 mm is placed so that the spherical portions at one ends overlap. It is a combined shape.
  • FIG. 1B an object 10 in which hemispherical spherical portions 10b and 10c having a radius of 12 mm are arranged at both ends of a cylinder 10a having a radius of 12 mm and a length of 30 mm is placed so that the spherical portions at one ends overlap. It is a combined shape.
  • the x-axis and the y-axis are taken parallel to the paper surface, and the z-axis is taken toward the front side perpendicular to the paper surface.
  • the first branch 11 of the reference three-dimensional object 1 has an angle of 23 degrees with respect to the extension direction (y-axis direction) of the second branch 12, and the third branch 13 is tilted 40 degrees with respect to the z-axis.
  • the second branch 12 is tilted 7 degrees around the x-axis.
  • the size and angle shown here are examples, and the size and angle of each branch can be appropriately changed according to the size of the measurement field of view of the 3D sensor, and is not limited thereto.
  • the surface of the reference three-dimensional object 1 is preferably processed into a diffuse reflection surface in order to facilitate three-dimensional measurement.
  • a diffuse reflection surface can be realized by selecting a material, painting, or performing a rough surface finish.
  • a pattern is formed on the surface of the reference three-dimensional object 1, it becomes an obstacle when projecting the pattern light and performing three-dimensional measurement, so it is preferable to make it plain.
  • the surface of the reference three-dimensional object 1 is preferably white.
  • the reference three-dimensional object 1 has a shape in which its posture is uniquely determined from any viewpoint.
  • the size is also known in advance. Therefore, the position and orientation of the reference three-dimensional object 1 can be recognized with high accuracy based on the three-dimensional measurement data obtained by three-dimensionally measuring the reference three-dimensional object 1.
  • FIG. 4 shows a reference three-dimensional object 50 of the comparative example.
  • the reference three-dimensional object 50 has a shape having a hollow portion penetrating in the height direction in the central portion of the disk.
  • the reference three-dimensional object 50 and the reference three-dimensional object 1 in a stationary state are three-dimensionally measured 15 times in succession by a sensor, and the standard deviations of the recognized positions and orientations in each direction are shown in the table below.
  • x translation indicates translation in the x direction
  • x rotation indicates rotation around the x axis (the same applies to other directions and angles).
  • the robot vision system 100 is installed on a production line that assembles and processes articles, and is attached to the tip of an arm of the robot 21 with respect to an object loaded on a tray or the like based on data captured from the sensor unit 20. It is a system that recognizes the gripping position and posture by the multi-fingered hand and suction pad.
  • the robot vision system 100 corresponds to the computer vision system of the present invention.
  • FIG. 5 shows a state in which a calibration board 25 holding a calibration target 26 is attached to the hand portion of the arm 212 in the robot vision system 100, and calibration is performed between the robot and the sensor unit.
  • the robot vision system 100 is roughly composed of a sensor unit 20, an information processing device 22, a PLC (programmable logic controller) 24, and a robot 21.
  • the sensor unit 20 and the information processing device 22 are connected by wire or wirelessly, and the output of the sensor unit 20 is taken into the information processing device 22.
  • the information processing device 22 is a device that performs various processes using the data captured from the sensor unit 20.
  • the processing of the information processing device 22 may include, for example, distance measurement (distance measurement), three-dimensional shape recognition, object recognition, scene recognition, and the like.
  • the processing result of the information processing device 22 is output to, for example, a PLC 24 or a display 23, and is used for controlling the robot 21.
  • the sensor unit 20 has at least a camera for capturing an optical image of the target object. Further, the sensor unit 20 may include a configuration (sensor, lighting device, floodlight device, etc.) necessary for performing three-dimensional measurement of the target object. For example, when measuring the depth distance by stereo matching (also called stereo vision, stereo camera method, etc.), a plurality of cameras are provided in the sensor unit 20. Further, in the case of active stereo, the sensor unit 20 is provided with a floodlight device that projects structured light because it has a random dot pattern on the target object. When three-dimensional measurement is performed by the space-coded pattern projection method, a floodlight device and a camera for projecting pattern light are provided in the sensor unit 20.
  • a configuration sensor, lighting device, floodlight device, etc.
  • any method such as an illuminance difference stereo method, a TOF (time of flight) method, and a phase shift method may be used as long as it can acquire three-dimensional information of the target object.
  • the sensor unit 20 is fixedly arranged at a predetermined position.
  • the sensor unit 20 corresponds to the three-dimensional measuring unit of the present invention.
  • the information processing device 22 is composed of, for example, a computer including a CPU (processor), a RAM (memory), a non-volatile storage device (hard disk, SSD, etc.), an input device, an output device, and the like.
  • the CPU expands the program stored in the non-volatile storage device into the RAM and executes the program to realize various configurations described later.
  • the configuration of the information processing device 22 is not limited to this, and all or a part of the configurations described later may be realized by a dedicated circuit such as FPGA or ASIC, or realized by cloud computing or distributed computing. You may.
  • the robot 21 has an arm 212 which is connected to the robot base 211 via a plurality of joints and has a predetermined degree of freedom. As described above, when gripping the target object, a multi-finger hand having a plurality of fingers or a suction hand having a suction pad is attached to the tip of the arm 212.
  • the robot base 211 is installed on the floor surface or a predetermined installation site.
  • a calibration board 25 for holding the calibration target 26 is attached to the hand portion of the arm 212.
  • the robot base 211 corresponds to the base end portion of the robot of the present invention.
  • the reference three-dimensional object 1 having the shape shown in FIG. 1A and having a known size is used as the calibration target 26.
  • FIG. 6 is a functional block diagram including the configuration of the information processing device 22.
  • the information processing device 22 includes a sensor unit control unit 221, a robot control instruction unit 222, a storage unit 223, a position / orientation calculation unit 224, a calibration execution unit 225, and a calibration result output unit 226.
  • the sensor unit control unit 221 controls the sensor unit 20 and instructs the execution of the three-dimensional measurement and the output of the three-dimensional measurement result.
  • the robot control instruction unit 222 outputs a control instruction to the robot control unit 30 composed of the PLC 24 and the like, and acquires the detection value by the sensor such as the rotation angle of the joints constituting the arm 212 of the robot 21. It is stored in a predetermined area of the storage unit 223.
  • the robot control instruction unit 222 outputs control information to the robot control unit 30, and the arm 212 is moved to change the position of the reference solid object 1 with respect to the sensor unit 20.
  • the storage unit 223 is a storage means composed of a predetermined area of the non-volatile storage device, and is a storage unit that is detected by a sensor such as a rotation angle of a joint constituting the arm 212 of the robot 21 described above, or an arm from a robot base 211 described later. Dimension data of each part such as a link leading to the tip of 212, three-dimensional shape data of the reference solid object 1, and the like are stored.
  • the position / orientation calculation unit 224 calculates the position / orientation of the reference solid object based on the three-dimensional measurement data obtained by three-dimensionally measuring the reference solid object 1 with the sensor unit 20 and the three-dimensional shape data of the reference solid object 1. To do.
  • the calibration execution unit 225 executes a calibration process described later.
  • the calibration result output unit 226 outputs the result of the executed calibration to an external device or stores it in a predetermined area of the storage unit 223. The result of the calibration is used for the gripping position recognition process of the target object by the robot vision system.
  • the robot-sensor unit calibration is to calculate a transformation matrix representing a coordinate transformation between the coordinate system defined in the robot 21 and the coordinate system defined in the sensor unit 20.
  • the camera coordinate system defined for the camera of the sensor unit 20 shown in FIG. 5 is ⁇ cam
  • the target coordinate system defined for the calibration target 26 is ⁇ cal
  • the tool coordinate system defined for the tip of the arm 212. Is represented by ⁇ tool
  • the robot coordinate system defined for the robot base 211 is represented by ⁇ base.
  • the transformation matrix from the target coordinate system ⁇ cal to the camera coordinate system ⁇ cam is defined as cam H cal .
  • the transformation matrix from the target coordinate system ⁇ cal to the tool coordinate system ⁇ tool be tool H cal .
  • a transformation matrix from the tool coordinate system ⁇ tool to the robot coordinate system ⁇ base the base H tool.
  • cam H base cam H base , base H tool , tool H cal ...
  • the camera coordinate system ⁇ cam is the measurement unit coordinate system of the present invention
  • the transformation matrix cam H cal correspond respectively to the reference and measurement unit conversion matrix of the present invention.
  • the transformation matrix base H tool becomes the robot / tool transformation matrix of the present invention
  • the transformation matrix tool H cal becomes the tool / reference transformation matrix of the present invention
  • the transformation matrix cam H base becomes the robot / measurement unit transformation matrix of the present invention. Corresponds to each.
  • the calibration target 26 arranged on the calibration board 25 attached to the hand portion of the arm 212 of the robot 21 is three-dimensionally measured by the sensor unit 20 (step S1).
  • the three-dimensional measurement data is data acquired by the three-dimensional measurement and composed of a plurality of points each having three-dimensional information. Data in a format in which each point has a three-dimensional coordinate value in the camera coordinate system, such as point cloud data, may be used, or a depth value (depth distance information) is associated with each point (each pixel) of the two-dimensional image. The data may be in a format.
  • point cloud data is used as the three-dimensional measurement data.
  • the positional relationship between the target coordinate system ⁇ cal defined for the calibration target 26 and the camera coordinate system ⁇ cam can be specified, so that the target coordinate system ⁇ cal can be specified.
  • the conversion matrix cam H cal from the camera coordinate system to the camera coordinate system ⁇ cam can be calculated (step S3).
  • the position and angle of the hand portion of the arm 212 with respect to the robot base 211 are based on the dimensional data of each part such as the link from the robot base 211 to the hand portion of the arm 212 and each degree of freedom such as the rotation angle of each joint. It can be calculated from the detection value of the sensor that detects the amount of movement.
  • the transformation matrix base H tool from the tool coordinate system ⁇ tool to the robot coordinate system ⁇ base may calculated (step S4).
  • the mounting position and posture of the calibration board 25 with respect to the hand portion of the arm 212 are set in advance, and the position and posture in which the calibration target 26 should be arranged are set with respect to the calibration board 25. .. Then, since the position of the calibration target 26 with respect to the hand portion of the arm 212 is known in advance, the transformation matrix tool H cal from the target coordinate system ⁇ cal to the tool coordinate system ⁇ tool can also be calculated (step S4).
  • the transformation matrix from the target coordinate system ⁇ cal to the tool coordinate system ⁇ tool tool H cal transformation matrix from the tool coordinate system Shigumatool to the robot coordinate system ⁇ base base H tool transformation matrix cam from the target coordinate system ⁇ cal to the camera coordinate system ⁇ cam H cal
  • the transformation matrix cam H base from the robot coordinate system to the camera coordinate system ⁇ cam has the relationship shown in the equation (1).
  • the transformation matrix cam H cal of the camera coordinate system is calculated from the target coordinate system ⁇ cal by recognizing the position and orientation of the calibration target 26. If the mounting position and posture of the calibration board 25 with respect to the hand portion of the arm 212 are preset, and the position and posture in which the calibration target 26 should be arranged with respect to the calibration board 25 are set, the arm The position of the calibration target 26 with respect to the hand portion of 212 is known in advance. Therefore, the transformation matrix tool H cal from the target coordinate system ⁇ cal to the tool coordinate system ⁇ tool can also be calculated.
  • the position of the hand portion of the arm 212 with respect to the robot base 211 can be calculated from the dimensional data of the link from the robot base 211 to the hand portion of the arm 212 and the detection value of the sensor that detects the rotation angle of each joint. since, the transformation matrix from the tool coordinate system ⁇ tool to the robot coordinate system ⁇ base base H tool can be calculated.
  • the transformation matrix other than the right side of cam H base of the formula (1) can be calculated, it is possible to calculate the cam H base from equation (1). That is, the transformation matrix from the camera coordinate system ⁇ cam to the robot coordinate system ⁇ base can be calculated, and the robot-sensor unit calibration can be performed (step S5). The result of the calibration is output to an external device or stored in a predetermined area of the storage unit 30 (step S6).
  • the robot 21 is controlled so that the calibration target 26 has a different position and posture with respect to the sensor unit 20, and the calibration target 26 at a plurality of positions and postures is three-dimensionally measured by the sensor unit 20. In this way, even if the position and orientation of the calibration target 26 are changed, the relative relationship of the calibration target 26 with respect to the tool coordinate system ⁇ tool is kept constant. Therefore, the transformation matrix tool H cal from the target coordinate system ⁇ cal to the tool coordinate system ⁇ tool can be calculated from the plurality of equations (1) for each position and orientation of the calibration target 26.
  • Example 2> (Overall configuration of robot vision system)
  • the robot vision system 200 according to the second embodiment of the present invention will be described with reference to FIG.
  • the same reference numerals are used for the configurations common to those in the first embodiment, and detailed description thereof will be omitted.
  • the robot vision system 200 corresponds to the computer vision system of the present invention.
  • the sensor unit 20 is attached to the hand portion of the arm 212 of the robot 21.
  • the robot vision system 200 has the same configuration as the robot vision system 100 except for the mounting position of the sensor unit 20.
  • the reference three-dimensional object 1 is arranged on the table 28 arranged in the work space where the robot 21 is arranged.
  • the camera coordinate system ⁇ cam, the target coordinate system ⁇ cal defined for the reference solid object 1 which is the calibration target, the tool coordinate system ⁇ tool, and the robot coordinate system ⁇ base are the same as those in the first embodiment. Further, the transformation matrices cam H cal , tool H cal , base H tool and cam H base between these coordinate systems are the same as in Example 1. Equation (1) holds similarly between these transformation matrices.
  • the robot-sensor unit calibration is performed in the same procedure as the flowchart shown in FIG.
  • the sensor unit 20 is attached to the hand portion of the arm 212. Therefore, the relative positional relationship between the camera coordinate system ⁇ cam and the tool coordinate system ⁇ tool does not change regardless of the movement of the robot.
  • the transformation matrix tool H cam instead of the transformation matrix between the target coordinate system ⁇ cal and the tool coordinate system ⁇ tool, the transformation matrix tool H cam from the camera coordinate system to the tool coordinate system may be used.
  • one reference three-dimensional object 1 is arranged on the table 28, but as shown in FIG. 3, a plurality of (here, four) reference three-dimensional objects 1-1 as calibration targets.
  • a turntable 27 on which 1-2, 1-3, 1-4 are arranged may be arranged in the work space.
  • Example 3> (Alignment of 3D measurement data of the target object using the reference solid object)
  • the reference three-dimensional object 1 in addition to the calibration between the robot and the sensor unit as described above, the reference three-dimensional object 1 can be used as described below.
  • 9A to 9E show a substantially square table 29 in which the target object 30 is arranged in the center and the reference three-dimensional objects 1-5, 1-6, 1-7, and 1-8 are arranged in the four corners, respectively, from different viewpoints. The three-dimensional measurement data obtained by measurement is shown. When the target object 30 is measured three-dimensionally from a certain viewpoint, the three-dimensional measurement data of all the surfaces cannot be obtained because the target object 30 has a three-dimensional shape.
  • Three-dimensional measurement data of the shadow of the target object 30 when viewed from the viewpoint of the camera cannot be obtained.
  • the upper surface of the target object 30 in FIG. 9A, the front surface of the paper surface is referred to as the front surface, and the target is based on FIG. 3A.
  • Three-dimensional measurement data (which determines the top, bottom, left, and right of the object 30) can be obtained, but three-dimensional data of the top, bottom, left, and right sides of the target object 30 cannot be obtained.
  • 9B, 9C, 9D and 9E are three-dimensional measurement data obtained by three-dimensional measurement by a camera from the viewpoints of the lower surface side, the upper surface side, the right side surface side and the left side surface side of the target object 30, respectively. is there. As shown in FIGS. 9A to 9E, by changing the relative position of the target object 30 with respect to the viewpoint of the camera, three-dimensional measurement data of various parts of the target object 30 can be obtained.
  • the three-dimensional shape of the target object 30 can be restored more accurately.
  • the three-dimensional measurement data measured three-dimensionally from different viewpoints are integrated to restore the three-dimensional shape of the target object 30, it is necessary to accurately align the three-dimensional measurement data with each other. For this purpose, it is necessary to accurately recognize the position and orientation of the target object 30 with respect to the camera when the target object 30 is measured three-dimensionally.
  • the reference three-dimensional object 1-5, 1-6, 1-7, 1-8 has no symmetry from any viewpoint, and its posture is fixed in its position, and its size is large. Since it is also known, the position and orientation can be accurately recognized by using the reference three-dimensional objects 1-5, 1-6, 1-7, 1-8 for the three-dimensional measurement. By arranging such reference three-dimensional objects 1-5, 1-6, 1-7, 1-8 on the table 29 on which the target object 30 is arranged, the position and orientation of the target object 30 during three-dimensional measurement can be accurately determined. Can be recognized.
  • the reference three-dimensional objects 1-5, 1-6, 1-7, 1-8 can be prevented from hiding. Furthermore, by averaging the position / orientation recognition results of the four reference solid objects 1-5, 1-6, 1-7, 1-8, the position / orientation of the target object 30 can be recognized more accurately. ..
  • the arrangement position and the number of the reference three-dimensional objects 1 with respect to the target object 30 are not limited to this, and can be appropriately set depending on the shape of the target object 30, the field of view of the camera, and the like.
  • the three-dimensional model data of the target object 30 is generated from the three-dimensional measurement data by three-dimensionally measuring the target object 30. Then, based on the three-dimensional shape model data of the target object 30 generated in this way, the gripping position of the target object 30 such as picking is recognized, and the robot is controlled based on the recognition result to perform operations such as picking. Do.
  • the target object 30 and the reference three-dimensional object 1-5 are placed on the hand portion of the arm 212 of the robot 21 shown in FIG. 2 instead of the calibration board 25.
  • 1-6, 1-7, 1-8 are attached to the table 29 to control the robot 21 and change the position and orientation of the target object 30 with respect to the sensor unit 20 to perform three-dimensional measurement.
  • a table 29 in which the target object 30 and the reference three-dimensional objects 1-5, 1-6, 1-7, 1-8 are arranged is arranged in the work space of the robot 21, and the arm of the robot 21 shown in FIG. 8 is arranged. The position and orientation of the sensor unit 20 attached to the hand portion may be changed to perform three-dimensional measurement.
  • either the position or orientation of the sensor or the target object 30 may be changed, but the sensor unit is fixed and the target object 30 is fixed.
  • the position and orientation of may be changed.
  • the reference for the sensor unit is obtained by performing three-dimensional measurement using the reference three-dimensional object 1 having a shape that is not symmetric when viewed from any direction and having a predetermined size.
  • the position and orientation of the three-dimensional object 1 can be accurately recognized. This makes it possible to provide a technique for improving the accuracy of calibration between the robot and the sensor unit.
  • -Measuring unit The step (S3) of calculating the transformation matrix and Calibration method including.
  • Reference three-dimensional object 20 Sensor unit 21: Robot 27: Turntable 30: Robot control unit 211: Base end portion 212: Arm 221: Sensor unit control unit 100, 200: Robot vision system

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Manipulator (AREA)

Abstract

コンピュータビジョンシステムにおいて、いかなる方向から見ても対称性を有しない形状であり、かつ、所定の大きさを有する基準立体物を用いて行うキャリブレーション方法であって、基準立体物の3次元形状データと3次元計測によって得られた3次元計測データとに基づいて、3次元計測部に対して定義された計測部座標系に対する基準立体物の位置姿勢を算出するステップと、計測部座標系と基準立体物に定義された基準座標系との間の座標変換を表する基準・計測部変換行列を算出するステップと、を含む。

Description

コンピュータビジョンシステムのキャリブレーション方法及びこれに用いる基準立体物
 本発明は、コンピュータビジョンシステムのキャリブレーション方法及びこれに用いる基準立体物に関する。
 従来、対象物体を3次元計測することにより得られた3次元計測データの位置合わせの精度を向上させるために、対象物体が配置された測定空間に設置された立体物(以下、「基準立体物」ともいう。)を3次元計測することにより得られた3次元計測データを用いる技術が提案されている。
 例えば、特許文献1にはタイヤのトレッド部分の使用による摩耗を調べるために、使用前後のタイヤの3次元計測データについて、タイヤトレッド部の周上の位置及びタイヤの幅方向の位置を正確に位置合わせする技術が開示されている。
 ここでは、タイヤが回転可能に保持する固定支持部からロッドを介して、3つの球体からなる基準立体物が測定空間に固定配置されている。これらの球体の中心位置座標が予め定めた目標座標に移動する座標変換を求め、この座標変換を用いて対象物体であるタイヤの3次元計測データの位置合わせを行っている。
 このような基準立体物に対して十分な認識精度を得るためには一定数以上の計測点が必要となる。そのためにはサイズの大きな球を基準立体物として用いなければならないが、サイズを大きくすると、対象物体が基準立体物に隠れたり、基準立体物の占める領域の割合が大きくなり、撮像サイズが相対的に小さくなったりするなど、対象物体の計測が阻害される。
 また、複数の平面から構成される基準立体物も提案されている(例えば、特許文献2参照)、平面はその接平面において位置が定まらないために、高精度で計測視点の位置姿勢を認識することは難しい。
特許第4956960号公報 特許第4423811号公報
 本発明は、上記実情に鑑みてなされたものであり、3次元計測時に位置姿勢を高精度で認識し得る基準立体物を提案するとともに、これを用いてコンピュータビジョンシステムにおける3次元計測のキャリブレーションの精度を向上させる技術を提供することを目的とする。
 上記の課題を解決するための本発明は、 
 3次元計測を行う3次元計測部と、
 前記3次元計測部を制御する計測制御部と、
を有するコンピュータビジョンシステムにおいて、いかなる方向から見ても対称性を有しない形状であり、かつ、所定の大きさを有し、前記3次元計測による位置姿勢認識の基準となる基準立体物を用いて行うキャリブレーション方法であって、
 前記3次元計測部により前記基準立体物を3次元計測するステップと、
 前記基準立体物の3次元形状に関するデータと、前記基準立体物の3次元計測によって得られた3次元計測データとに基づいて、前記3次元計測部に対して定義された計測部座標系に対する前記基準立体物の位置姿勢を算出するステップと、
 前記計測部座標系に対する前記基準立体物の位置姿勢に基づいて、前記基準立体物に定義された基準座標系と前記計測部座標系との間の座標変換を表す基準・計測部変換行列を算出するステップと、
を含むキャリブレーション方法である。
 このように、いかなる方向から見ても対称性を有しない形状であり、かつ、所定の大きさを有し、前記3次元計測による位置姿勢認識の基準となる基準立体物を用いることにより、3次元計測部に定義された計測部座標系に対する基準立体物の位置姿勢を高精度で算出することができる。また、計測部座標系に対する基準立体物の位置姿勢の算出精度が向上するので、基準座標系と計測部座標系との間の座標変換を表する基準・計測部変換行列を精度よく算出することができる。このため、このような3次元計測部を用いたコンピュータビジョンシステムにおいて精度の高いキャリブレーションが可能となる。
 また、本発明において、
 前記コンピュータビジョンシステムは、
 アームを有するロボットと、
 前記ロボットを制御するロボット制御部と、
をさらに有し、
 前記3次元計測部により前記基準立体物を3次元計測するステップは、前記基準立体物を保持させた前記アームを制御して、前記3次元計測部に対する前記基準立体物の位置姿勢を変更して該基準立体物を3次元計測するステップを含むようにしてもよい。
 このようにすれば、アームを有するロボットに適用されるコンピュータビジョンシステムにおいて、基準立体物をアームに保持させることにより、基準立体物が3次元計測部に対して異なる位置姿勢にある場合の複数の3次元計測データに基づいて、計測部座標系に対する基準立体物の位置姿勢が算出されるので、計測部座標系に対する基準立体物の位置姿勢の算出精度がさらに向上する。従って、このようなコンピュータビジョンシステムにおいて精度の高い3次元計測のキャリブレーションが可能となる。
 また、本発明において、
 前記コンピュータビジョンシステムは、
 アームを有するロボットと、
 前記ロボットを制御するロボット制御部と、
をさらに有し、
 前記3次元計測部により前記基準立体物を3次元計測するステップは、前記3次元計測部を保持させた前記アームを制御して、前記基準立体物に対する前記3次元計測部の位置姿勢を変更して該基準立体物を3次元計測するステップを含むようにしてもよい。
 このようにすれば、アームを有するロボットに適用されるコンピュータビジョンシステムにおいて、3次元計測部をアームに保持させることにより、基準立体物が3次元計測部に対して異なる位置姿勢にある場合の複数の3次元計測データに基づいて、計測部座標系に対する基準立体物の位置姿勢が算出されるので、計測部座標系に対する基準立体物の位置姿勢の算出精度がさらに向上する。従って、このようなコンピュータビジョンシステムにおいて精度の高い3次元計測のキャリブレーションが可能となる。
 また、本発明において、前記基準・計測部変換行列に基づいて、前記ロボットの基端部に対して定義されたロボット座標系と前記アームに対して定義されたツール座標系との間の座標変換を表すロボット・ツール変換行列、前記ツール座標系と前記基準座標系との間の座標変換を表すツール・基準変換行列及び前記ロボット座標系と前記計測部座標系との間の座標変換を表すロボット・計測部変換行列を算出するステップと、
を、さらに含むようにしてもよい。
 このように、計測部座標系に対する基準立体物の位置姿勢の算出精度が向上することにより、基準座標系と計測部座標系との間の座標変換を表する基準・計測部変換行列を精度よく算出することができる。ロボット座標系と計測部座標系の間の座標変換を表すロボット・計測部変換行列は、ロボット・ツール変換行列と、ツール・基準変換行列と、基準・計測部変換行列との積に等しい。この関係式と、先に算出した基準・計測部変換行列と、ロボットにおけるアームの位置姿勢を示すセンサの検出値等の既知の情報とから算出し得る変換行列とに基づいて、未知のロボット・計測部変換行列を算出することができるので、ロボット‐3次元計測部間の精度の高いキャリブレーションができる。
 また、本発明において、
 前記コンピュータビジョンシステムは、
 一つ以上の前記基準立体物を配置した台であって、前記3次元計測部に対する前記基準立体物の位置及び姿勢の少なくともいずれか一方を変更可能な台を有し、
 前記3次元計測部により前記基準立体物を3次元計測するステップは、前記台によって前記3次元計測部に対する前記基準立体物の位置及び姿勢の少なくともいずれか一方を変更して3次元計測するステップを含むようにしてもよい。
 このようにすれば、台を制御することによって3次元計測部に対する基準立体物の位置及び姿勢の少なくともいずれか一方を変更することができるので、基準立体物が3次元計測部に対して異なる位置姿勢にある場合の複数の3次元計測データに基づいて、計測部座標系に対する基準立体物の位置姿勢が算出される。このため、計測部座標系に対する基準立体物の位置姿勢の算出精度がさらに向上する。従って、このようなコンピュータビジョンシステムにおいて精度の高い3次元計測のキャリブレーションが可能となる。
 また、本発明において、
 前記基準立体物は、軸方向の両端部を半球状に形成した3つの円柱の一端を結合した形状を有するようにしてもよい。
 このようにすれば、基準立体物が曲率の大きな曲面を多く含むので、3次元計測部による3次元計測データによる計測部座標系に対する基準立体物の位置姿勢の算出精度がさらに向上する。従って、これに基づいて算出される各変換行列の精度もさらに向上する。すなわち、コンピュータビジョンシステムにおける3次元計測のキャリブレーションの精度がさらに向上する。
 また、本発明は、
 前記キャリブレーション方法に用いる基準立体物である。
 このような基準立体物を用いると3次元計測時に位置姿勢を高精度で認識し得るので、コンピュータビジョンシステムにおける3次元計測のキャリブレーションの精度を向上することができる。
 本発明によれば、3次元計測時に位置姿勢を高精度で認識し得る基準立体物を提案するとともに、これを用いてコンピュータビジョンシステムにおける3次元計測のキャリブレーションの精度を向上させることが可能となる。
図1Aは基準立体物の全体斜視図であり、図1Bは基準立体物の構成要素を示す斜視図である。 図2は基準立体物をキャリブレーションボード上に配置した状態を示す図である。 図3は基準立体物をターンテーブル上に配置した状態を示す図である。 図4は比較対象の立体物を示す図である。 図5はロボットビジョンシステムの全体構成を示す図である。 図6は情報処理装置の機能ブロック図である。 図7はキャリブレーションの手順を示すフローチャートである。 図8は他のロボットビジョンシステムの全体構成を示す図である。 図9A~Eは、基準立体物と対象物体を配置したテーブルの異なる視点から3次元計測データを示す図である。
〔適用例〕
 以下、本発明の適用例について、図面を参照しつつ説明する。
 本発明に係る基準立体物1を図1Aに示す。基準立体物1は、どのような方向から見ても対称性がなく、姿勢が一意に定まる形状を有する。
 予め大きさが分かっている基準立体物1を準備し、3次元計測を行い、得られた3次元計測データを処理することにより、3Dセンサ等の3次元計測手段に対する基準立体物1の位置姿勢を高精度で認識することができる。
 このような3次元計測のおける基準立体物1は以下のような態様での利用が可能である。例えば、図2に示すように、基準立体物1を配置したキャリブレーションボード25をロボットアーム212の手先部分に取り付け、3次元計測可能なセンサユニット20によって3次元計測を行い、基準立体物1の位置姿勢を高精度で認識することにより、ロボット‐センサ間の未知の変換行列を高精度で算出することができる。また、図8に示すように、ロボットアーム212の手先部分に取り付けたセンサユニット20により、作業空間に配置されたテーブル28上の基準立体物1を3次元計測するようにしてもよい。このような構成でも、同様に、基準立体物1の位置姿勢を高精度で認識することができるので、ロボット‐センサ間の未知の変換行列を高精度で算出することができる。
 また、図3に示すように、ターンテーブル27の中央を中心として周方向に90度間隔で4つの基準立体物1‐1,1-2,1-3,1-4を配置する。そして、基準立体物1‐1~1‐4が配置されたターンテーブルの中央に対象物体を配置し、センサにより3次元計測する。このようにして得られた3次元計測データに基づく基準立体物1‐1~1‐4の位置姿勢認識結果を用いて、対象物体の3次元形状を復元する。基準立体物1‐1~1‐4をターンテーブルに対して上述のように配置することにより、対象物体による隠れを防止することができるとともに、4つの基準立体物1‐1~1‐4の位置姿勢認識結果の平均値を用いることにより、認識精度が向上する。ターンテーブル27を、中央を回転中心として回転させることにより、センサに対する基準立体物1‐1,1-2,1-3,1-4の位置及び姿勢を変更することができる。ターンテーブル27には、一つ以上の基準立体物1として4つの基準立体物を配置しているが、基準立体物の数及び配置はこれに限られない。ここでは、ターンテーブル27が本発明の台に対応する。
 また、図9のように、対象物体30を様々な相対位置から3次元計測する場合に、対象物体30を配置したテーブル29の四隅に4つの基準立体物1‐5~1‐8を配置することにより、対象物体30の位置姿勢を精度よく認識することができる。これにより、様々な相対位置からの3次元計測データ相互の位置合わせを正確に行うことができる。
 <実施例1>
 (基準立体物)
 本実施例の基準立体物1の形状を図1Aに示す。基準立体物1は、曲率の大きな曲面を多く含み、どのような方向から見ても対称性がなく、姿勢が一意に定まる形状を有する。具体的には、半径12mm、長さ30mmの円柱10aの両端部に半径12mmの半球状の球面部10b,10cを配置した物体10(図1B参照)を、一端の球面部が重なるように3つ結合させた形状である。図1Aでは、紙面に平行にx軸とy軸をとり、紙面に垂直に手前側にz軸をとっている。基準立体物1の第1枝11は第2枝12の延長方向(y軸方向)に対して23度の角度をなしており、第3枝13はz軸に対して40度傾いている。第2枝12はx軸回りに7度傾いている。ここに示した大きさ及び角度は、一例であり、各枝の大きさや角度は、3Dセンサの計測視野の大きさに応じて適宜変更することができ、これに限られるものではない。
 基準立体物1は、3次元計測しやすくするために、表面を拡散反射面に加工することが好ましい。このような拡散反射面は、材質を選択したり、塗装や粗い表面仕上げを行ったりすることにより実現することができる。
 また、基準立体物1の表面に模様を形成すると、パターン光を投影して3次元計測を行う場合に障害となるので、無地とすることが好ましい。
 また、3次元計測時に可視光を投影する場合を考慮し、基準立体物1の表面は白色であることが好ましい。
 基準立体物1は、上述のように、いかなる視点に対しても、その姿勢が一意に定まる形状を有している。また、その大きさも予め分かっている。従って、基準立体物1を3次元計測して得られた3次元計測データに基づいて基準立体物1の位置姿勢を高精度で認識することができる。図4は、比較例の基準立体物50を示す。基準立体物50は、円板の中央部に高さ方向に貫通する中空部を有する形状である。静止させた状態の基準立体物50と基準立体物1とを、センサで15回連続して3次元計測し、認識された位置姿勢のそれぞれの方向での標準偏差を下表に示す。x並進はx方向の並進、x回転はx軸回りの回転を示す(他の方向及び角度も同様)。
[表1]
Figure JPOXMLDOC01-appb-I000001
 上述の表に示すように、基準立体物50では方向により位置姿勢認識結果の変動が大きいが、基準立体物1によると、方向にかかわらず精度良く位置姿勢を認識することができる。
 (ロボットビジョンシステムの全体構成)
 図5を参照して、本発明の実施例に係るロボットビジョンシステム100について説明する。
 ロボットビジョンシステム100は、物品の組み立てや加工などを行う生産ラインに設置され、センサユニット20から取り込まれたデータに基づいて、トレイ等に積載された物体に対して、ロボット21のアーム先端に取り付けられる多指ハンドや吸着パッドによる把持位置・姿勢を認識するシステムである。ここでは、ロボットビジョンシステム100が本発明のコンピュータビジョンシステムに対応する。
 図5は、ロボットビジョンシステム100において、アーム212手先部分にキャリブレーションターゲット26を保持するキャリブレーションボード25を取り付けており、ロボット‐センサユニット間キャリブレーションを行う状態を示す。
 ロボットビジョンシステム100は、概略、センサユニット20、情報処理装置22、PLC(プログラマブルロジックコントローラ)24及びロボット21から構成される。センサユニット20と情報処理装置22のあいだは有線又は無線で接続されており、センサユニット20の出力は情報処理装置22に取り込まれる。情報処理装置22は、センサユニット20から取り込まれたデータを用いて各種の処理を行うデバイスである。情報処理装置22の処理としては、例えば、距離計測(測距)、3次元形状認識、物体認識、シーン認識などが含まれてもよい。情報処理装置22の処理結果は、例えばPLC24やディスプレイ23などに出力され、ロボット21の制御に利用される。
 (センサユニット)
 センサユニット20は、対象物体の光学像を撮影するためのカメラを少なくとも有する。さらに、センサユニット20は、対象物体の3次元計測を行うために必要な構成(センサ、照明装置、投光装置など)を含んでもよい。例えば、ステレオマッチング(ステレオビジョン、ステレオカメラ方式などとも呼ばれる。)によって奥行き距離を計測する場合には、センサユニット20に複数台のカメラが設けられる。アクティブステレオの場合はさらに、対象物体にランダムドットパターンなので構造化光を投射する投光装置がセンサユニット20に設けられる。空間コード化パターン投影方式により3次元計測を行う場合には、パターン光を投射する投光装置とカメラがセンサユニット20に設けられる。他にも、照度差ステレオ法、TOF(タイムオブフライト)法、位相シフト法など、対象物体の3次元情報を取得可能な方法であればいかなる方式を用いてもよい。ここでは、センサユニット20は、所定の位置に固定配置される。ここでは、センサユニット20が、本発明の3次元計測部に対応する。
 (情報処理装置)
 情報処理装置22は、例えば、CPU(プロセッサ)、RAM(メモリ)、不揮発性記憶装置(ハードディスク、SSDなど)、入力装置、出力装置などを備えるコンピュータにより構成される。この場合、CPUが、不揮発性記憶装置に格納されたプログラムをRAMに展開し、当該プログラムを実行することによって、後述する各種の構成が実現される。ただし、情報処理装置22の構成はこれに限られず、後述する構成のうちの全部又は一部を、FPGAやASICなどの専用回路で実現してもよいし、クラウドコンピューティングや分散コンピューティングにより実現してもよい。
 ロボット21は、ロボットベース211上に複数の関節を介して連結され、所定の自由度を有するアーム212を有する。上述のように、対象物体を把持する場合には、アーム212の先端には、複数の指を有する多指ハンドや吸着パッドを有する吸着ハンドが装着される。ロボットベース211は床面又は所定の設置部位に設置される。ここでは、アーム212の手先部分には、キャリブレーションターゲット26を保持するキャリブレーションボード25が取り付けられている。ここでは、ロボットベース211が、本発明のロボットの基端部に対応する。
 本実施例では、図1Aに示した形状を有し、大きさが既知である基準立体物1をキャリブレーションターゲット26として用いる。
 図6は、情報処理装置22の構成を含む機能ブロック図である。
 情報処理装置22は、センサユニット制御部221、ロボット制御指示部222、記憶部223、位置姿勢算出部224、キャリブレーション実行部225、キャリブレーション結果出力部226を含む。
 センサユニット制御部221は、センサユニット20を制御し、3次元計測の実施及び3次元計測結果の出力等を指示する。
 ロボット制御指示部222は、PLC24等により構成されるロボット制御部30に対して、制御指示を出力するとともに、ロボット21のアーム212を構成する関節の回転角度等のセンサによる検出値を取得し、記憶部223の所定領域に格納する。キャリブレーション実行時には、ロボット制御指示部222から、ロボット制御部30に対して制御情報を出力し、アーム212を動かして、センサユニット20に対する基準立体物1の位置を変更する。
 記憶部223は、不揮発性記憶装置の所定領域により構成される記憶手段であり、上述のロボット21のアーム212を構成する関節の回転角度等のセンサによる検出値や、後述するロボットベース211からアーム212の先端に至るまでのリンク等の各部の寸法データ、基準立体物1の3次元形状データ等が格納される。
 位置姿勢算出部224は、センサユニット20により基準立体物1を3次元計測して得られた3次元計測データと、基準立体物1の3次元形状データに基づき、基準立体物の位置姿勢を算出する。
 キャリブレーション実行部225は、後述するキャリブレーション処理を実行する。
 キャリブレーション結果出力部226は、実行されたキャリブレーションの結果を外部装置に出力し、又は、記憶部223の所定領域に格納する。キャリブレーションの結果は、ロボットビジョンシステムによる対象物体の把持位置認識処理等に利用される。
 (キャリブレーション処理)
 図7のフローチャートを参照して、キャリブレーション方法としてのキャリブレーション処理の一例を説明する。
 ロボット‐センサユニット間キャリブレーションとは、ロボット21に定義される座標系とセンサユニット20に定義される座標系の間での座標変換を表す変換行列を算出することである。
 図5に示すセンサユニット20のカメラに対して定義されるカメラ座標系をΣcam、キャリブレーションターゲット26に対して定義されるターゲット座標系をΣcal、アーム212の先端に対して定義されるツール座標系をΣtool、ロボットベース211に対して定義されるロボット座標系をΣbaseで表す。このとき、ターゲット座標系Σcalからカメラ座標系Σcamへの変換行列をcamcalとする。ターゲット座標系Σcalからツール座標系Σtoolへの変換行列をtoolcalとする。ツール座標系Σtoolからロボット座標系Σbaseへの変換行列をbasetoolとする。そして、ロボット座標系Σbaseからカメラ座標系Σcamへの変換行列をcambaseとする。このとき、それらの変換行列は以下の式(1)で示す関係にある。
[数1]
camcalcambasebasetooltoolcal・・・(1)
 ここで、カメラ座標系Σcamが本発明の計測部座標系に、ターゲット座標系Σcalが本発明の基準座標系に、変換行列camcalが本発明の基準・計測部変換行列にそれぞれ対応する。また、変換行列basetoolが本発明のロボット・ツール変換行列に、変換行列toolcalが本発明のツール・基準変換行列に、変換行列cambaseが本発明のロボット・計測部変換行列にそれぞれ対応する。
 図5に示すように、ロボット21のアーム212の手先部分に取り付けられたキャリブレーションボード25上に配置されたキャリブレーションターゲット26をセンサユニット20によって3次元計測する(ステップS1)。
 センサユニット20によってキャリブレーションターゲット26を3次元計測することによって得られた3次元計測データに対して、キャリブレーションターゲット26の3DCADデータ等の3次元形状モデルを用いてフィッティングを行う。これにより、カメラ座標系Σcamにおけるキャリブレーションターゲット26の位置姿勢を算出することができる(ステップS2)。3次元計測データは、3次元計測によって取得される、各点が3次元情報をもつ複数の点から構成されるデータである。点群データのように、各点がカメラ座標系における3次元座標値をもつ形式のデータでもよいし、2次元画像の各点(各画素)にデプス値(奥行き距離の情報)が関連づけられた形式のデータでもよい。ここでは、3次元計測データとして点群データを用いる。
 カメラ座標系Σcamにおけるキャリブレーションターゲット26の位置姿勢を認識することにより、キャリブレーションターゲット26に対して定義されたターゲット座標系Σcalとカメラ座標系Σcamとの位置関係が特定できるので、ターゲット座標系Σcalからカメラ座標系Σcamへの変換行列camcalを算出することができる(ステップS3)。
 また、ロボットベース211に対するアーム212の手先部分の位置及び角度は、ロボットベース211からアーム212の手先部分に至るまでのリンク等の各部の寸法データと、各関節の回転角度等の各自由度における移動量を検出するセンサの検出値とから算出できる。従って、ツール座標系Σtoolからロボット座標系Σbaseへの変換行列basetoolも算出できる(ステップS4)。
 このとき、アーム212の手先部分に対するキャリブレーションボード25の取付位置及び姿勢が予め設定されており、キャリブレーションボード25に対してキャリブレーションターゲット26を配置すべき位置及び姿勢が設定されているとする。そうすれば、アーム212の手先部分に対するキャリブレーションターゲット26の位置は、予め分かっているので、ターゲット座標系Σcalからツール座標系Σtoolへの変換行列toolcalも算出できる(ステップS4)。
 ここで、ターゲット座標系Σcalからツール座標系Σtoolへの変換行列toolcal、ツール座標系Σtoolからロボット座標系Σbaseへの変換行列basetoolターゲット座標系Σcalからカメラ座標系Σcamへの変換行列camcal、ロボット座標系からカメラ座標系Σcamへの変換行列cambaseは式(1)に示す関係にある。
 上述のように、キャリブレーションターゲット26の位置姿勢の認識により、ターゲット座標系Σcalからカメラ座標系の変換行列camcalは算出されている。そして、アーム212の手先部分に対するキャリブレーションボード25の取付位置及び姿勢が予め設定されており、キャリブレーションボード25に対してキャリブレーションターゲット26を配置すべき位置及び姿勢が設定されていれば、アーム212の手先部分に対するキャリブレーションターゲット26の位置は、予め分かっている。従って、ターゲット座標系Σcalからツール座標系Σtoolへの変換行列toolcalも算出できる。また、ロボットベース211に対するアーム212の手先部分の位置は、ロボットベース211からアーム212の手先部分に至るまでのリンクの寸法データと、各関節の回転角度を検出するセンサの検出値とから算出できるので、ツール座標系Σtoolからロボット座標系Σbaseへの変換行列basetoolも算出できる。
 このように式(1)のうち右辺のcambase以外の変換行列が算出できることから、式(1)からcambaseを算出することができる。すなわち、カメラ座標系Σcamからロボット座標系Σbaseへの変換行列を算出することができ、ロボット‐センサユニット間キャリブレーションを行うことができる(ステップS5)。
 キャリブレーションの結果は外部装置に出力され、又は、記憶部30の所定領域に格納される(ステップS6)。
 上述の処理では、ツール座標系Σtoolに対するキャリブレーションターゲット26の位置姿勢が分かっており、ターゲット座標系Σcalからツール座標系Σtoolへの変換行列toolcalが算出できる場合について説明した。ここでは、ツール座標系Σtoolに対するキャリブレーションターゲット26の位置姿勢が分かっていない場合について説明する。この場合には、キャリブレーションターゲット26がセンサユニット20に対して異なる位置姿勢となるようにロボット21を制御し、複数の位置姿勢におけるキャリブレーションターゲット26をセンサユニット20により3次元計測する。このように、キャリブレーションターゲット26の位置姿勢を変更しても、ツール座標系Σtoolに対するキャリブレーションターゲット26の相対関係は一定に保たれる。このため、キャリブレーションターゲット26のそれぞれの位置姿勢に対する複数の式(1)から、ターゲット座標系Σcalからツール座標系Σtoolへの変換行列toolcalを算出することができる。
 <実施例2>
 (ロボットビジョンシステムの全体構成)
 図8を参照して、本発明の実施例2に係るロボットビジョンシステム200について説明する。
 実施例1と共通する構成については同一の符号を用いて詳細な説明を省略する。ここでは、ロボットビジョンシステム200が本発明のコンピュータビジョンシステムに対応する。
 ロボットビジョンシステム200では、センサユニット20が、ロボット21のアーム212の手先部分に取り付けられている。ロボットビジョンシステム200は、センサユニット20の取付位置を除いて、ロボットビジョンシステム100と共通の構成を備える。
 ロボットビジョンシステム200では、ロボット21が配置された作業空間に配置されたテーブル28に基準立体物1が配置される。
 カメラ座標系Σcam、キャリブレーションターゲットである基準立体物1に対して定義されるターゲット座標系Σcal、ツール座標系Σtool、ロボット座標系をΣbaseは、実施例1と同様である。また、これらの座標系の間の変換行列camcaltoolcalbasetool及びcambaseについても実施例1と同様である。
 これらの変換行列の間には式(1)が同様に成り立つ。
 ここでも図7に示すフローチャート同様の手順で、ロボット‐センサユニット間キャリブレーションを行う。
 本実施例では、センサユニット20がアーム212の手先部分に取り付けられている。このため、ロボットの動作に関わらず、カメラ座標系Σcamとツール座標系Σtoolとの相対的な位置関係は変わらない。キャリブレーションに、ターゲット座標系Σcalとツール座標系Σtoolとの間の変換行列に代えて、カメラ座標系からツール座標系への変換行列toolcamを用いてもよい。
 また、図8に示す例では、テーブル28に基準立体物1を一つ配置しているが、図3に示すようにキャリブレーションターゲットとして複数(ここでは4つ)の基準立体物1‐1,1‐2,1‐3,1‐4を配置したターンテーブル27を作業空間に配置してもよい。複数の基準立体物1‐1,1‐2,1‐3,1‐4を用いることにより、より正確にキャリブレーションを行うことができる。
 <実施例3>
 (基準立体物を用いた対象物体の3次元計測データの位置合わせ)
 基準立体物1については、上述したようにロボット‐センサユニット間のキャリブレーションの他に、以下に説明するような利用が可能である。
 図9A~Eは、中央に対象物体30を配置し、四隅にそれぞれ基準立体物1‐5,1‐6,1‐7,1‐8を配置した略正方形のテーブル29を異なる視点から3次元計測して得られた3次元計測データを示す。
 ある視点から対象物体30の3次元計測を行う場合に、対象物体30が3次元形状を有するために、全ての面の3次元計測データが得られるわけではない。カメラの視点から見て対象物体30の影になる部分の3次元計測データは得られない。図9Aに示すように、テーブル29に正対する位置からカメラにより3次元計測した場合には、対象物体30の上面(図9Aにおいて紙面の手前側の面を前面といい、図3Aを基準に対象物体30の上下左右を定める)の3次元計測データは得られるが、対象物体30の上下左右の側面の3次元データは得られない。
 図9B,図9C,図9D及び図9Eは、それぞれ対象物体30の下面側、上面側、右側面側及び左側面側の視点から、カメラによって3次元計測して得られた3次元計測データである。図9A~Eに示すように、カメラの視点に対する対象物体30の相対位置を変更することにより、対象物体30の様々な部位の3次元計測データを得ることができる。
 このように、対象物体30の複数の異なる視点からの3次元計測データを取得することにより、当該対象物体30の3次元形状をより正確に復元することができる。異なる視点から3次元計測した3次元計測データを統合して、対象物体30の3次元形状を復元する場合には、3次元計測データ相互の位置合わせを正確に行う必要がある。このためには、対象物体30を3次元計測する際の、カメラに対する対象物体30の位置姿勢を正確に認識する必要がある。
 本実施例に係る基準立体物1‐5,1‐6,1‐7,1‐8は、どのような視点から見ても対称性がなく、その姿勢が位置に定まる形状であり、その大きさも分かっているので、基準立体物1‐5,1‐6,1‐7,1‐8を3次元計測に用いることにより、その位置姿勢を正確に認識することができる。このような基準立体物1‐5,1‐6,1‐7,1‐8を対象物体30が配置されたテーブル29に配置することにより、3次元計測時の対象物体30の位置姿勢を正確に認識することができる。また、基準立体物1‐5,1‐6,1‐7,1‐8をテーブル29の四隅に配置することにより、基準立体物の1‐5,1‐6,1‐7,1‐8の隠れを防止することができる。さらに、4つの基準立体物の1‐5,1‐6,1‐7,1‐8による位置姿勢認識結果を平均化することにより、対象物体30の位置姿勢をより正確に認識することができる。但し、対象物体30に対する基準立体物1の配置位置、個数はこれに限られるわけではなく、対象物体30の形状や、カメラの視野等により適宜設定することができる。
 ロボット21のアーム先端に多指ハンドや吸着パッドを装着して、ピッキング等の対象物体30を把持する動作を行わせる場合に、対象物体30の3DCADデータがない場合や実際の対象物体30との差異が大きい場合のように、3DCADデータを用いることができない、又は適切でない場合がある。このような場合には、対象物体30を3次元計測することにより、3次元計測データから対象物体30の3次元モデルデータを生成する。そして、このようにして生成された対象物体30の3次元形状モデルデータに基づいて、ピッキング等の対象物体30の把持位置認識を行い、認識結果に基づいてロボットを制御してピッキング等の動作を行う。このような場合の対象物体30の3次元計測のためには、図2に示したロボット21のアーム212の手先部分に、キャリブレーションボード25に替えて、対象物体30と基準立体物1‐5,1‐6,1‐7,1‐8が配置されたテーブル29を取り付けて、ロボット21を制御し、センサユニット20に対する対象物体30の位置姿勢を変更して3次元計測するようにしてもよい。また、ロボット21の作業空間に対象物体30と基準立体物1‐5,1‐6,1‐7,1‐8が配置されたテーブル29を配置し、図8に示したロボット21のアームの手先部分に取り付けたセンサユニット20の位置姿勢を変更して3次元計測するようにしてもよい。
 センサユニット20と対象物体30の位置姿勢を変更して、3次元計測を行う場合に、センサと対象物体30のいずれの位置姿勢を変更してもよいが、センサユニットを固定して対象物体30の位置姿勢を変更してもよい。
 (本実施形態の利点)
 以上述べた構成及び処理では、どのような方向から見ても対称性がない形状であり、かつ所定の大きさを有する基準立体物1を用いて3次元計測を行うことにより、センサユニットに対する基準立体物1の位置姿勢を正確に認識することができる。これにより、ロボット‐センサユニット間のキャリブレーションの精度を向上させる技術を提供することが可能となる。
 なお、以下には本発明の構成要件と実施例の構成とを対比可能とするために、本発明の構成要件を図面の符号付きで記載しておく。
<発明1>
 3次元計測を行う3次元計測部(20)と、
 前記3次元計測部(20)を制御する計測制御部(221)と、
を有するコンピュータビジョンシステムにおいて、いかなる方向から見ても対称性を有しない形状であり、かつ、所定の大きさを有し、前記3次元計測による位置姿勢認識の基準となる基準立体物(1)を用いて行うキャリブレーション方法であって、
 前記3次元計測部(20)により前記基準立体物(1)を3次元計測するステップ(S1)と、
 前記基準立体物(1)の3次元形状に関するデータと、前記基準立体物(1)の3次元計測によって得られた3次元計測データとに基づいて、前記3次元計測部(20)に対して定義された計測部座標系に対する前記基準立体物の位置姿勢を算出するステップ(S2)と、
 前記計測部座標系に対する前記基準立体物(1)の位置姿勢に基づいて、前記基準立体物(1)に定義された基準座標系と前記計測部座標系との間の座標変換を表する基準・計測部変換行列を算出するステップ(S3)と、
を含むキャリブレーション方法。
1:基準立体物
20:センサユニット
21:ロボット
27:ターンテーブル
30:ロボット制御部
211:基端部
212:アーム
221:センサユニット制御部
100,200:ロボットビジョンシステム

Claims (7)

  1.  3次元計測を行う3次元計測部と、
     前記3次元計測部を制御する計測制御部と、
    を有するコンピュータビジョンシステムにおいて、いかなる方向から見ても対称性を有しない形状であり、かつ、所定の大きさを有し、前記3次元計測による位置姿勢認識の基準となる基準立体物を用いて行うキャリブレーション方法であって、
     前記3次元計測部により前記基準立体物を3次元計測するステップと、
     前記基準立体物の3次元形状に関するデータと、前記基準立体物の3次元計測によって得られた3次元計測データとに基づいて、前記3次元計測部に対して定義された計測部座標系に対する前記基準立体物の位置姿勢を算出するステップと、
     前記計測部座標系に対する前記基準立体物の位置姿勢に基づいて、前記基準立体物に定義された基準座標系と前記計測部座標系との間の座標変換を表す基準・計測部変換行列を算出するステップと、
    を含むキャリブレーション方法。
  2.  前記コンピュータビジョンシステムは、
     アームを有するロボットと、
     前記ロボットを制御するロボット制御部と、
    をさらに有し、
     前記3次元計測部により前記基準立体物を3次元計測するステップは、前記基準立体物を保持させた前記アームを制御して、前記3次元計測部に対する前記基準立体物の位置姿勢を変更して該基準立体物を3次元計測するステップを含む請求項1に記載のキャリブレーション方法。
  3.  前記コンピュータビジョンシステムは、
     アームを有するロボットと、
     前記ロボットを制御するロボット制御部と、
    をさらに有し、
     前記3次元計測部により前記基準立体物を3次元計測するステップは、前記3次元計測部を保持させた前記アームを制御して、前記基準立体物に対する前記3次元計測部の位置姿勢を変更して該基準立体物を3次元計測するステップを含む請求項1に記載のキャリブレーション方法。
  4.  前記基準・計測部変換行列に基づいて、前記ロボットの基端部に対して定義されたロボット座標系と前記アームに対して定義されたツール座標系との間の座標変換を表すロボット・ツール変換行列、前記ツール座標系と前記基準座標系との間の座標変換を表すツール・基準変換行列及び前記ロボット座標系と前記計測部座標系との間の座標変換を表すロボット・計測部変換行列を算出するステップと、
    を、さらに含む請求項2又は3に記載のキャリブレーション方法。
  5.  前記コンピュータビジョンシステムは、
     一つ以上の前記基準立体物を配置した台であって、前記3次元計測部に対する前記基準立体物の位置及び姿勢の少なくともいずれか一方を変更可能な台を有し、
     前記3次元計測部により前記基準立体物を3次元計測するステップは、前記台によって前記3次元計測部に対する前記基準立体物の位置及び姿勢の少なくともいずれか一方を変更して3次元計測するステップを含むことを特徴とする請求項1に記載のキャリブレーション方法。
  6.  前記基準立体物は、軸方向の両端部を半球状に形成した3つの円柱の一端を結合した形状を有することを特徴とする請求項1乃至5のいずれか1項に記載のキャリブレーション方法。
  7.  請求項1乃至6のいずれか1項に記載のキャリブレーション方法に用いる基準立体物。
PCT/JP2019/029529 2019-07-26 2019-07-26 コンピュータビジョンシステムのキャリブレーション方法及びこれに用いる基準立体物 WO2021019627A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/621,405 US20220357153A1 (en) 2019-07-26 2019-07-26 Calibration method for computer vision system and three-dimensional reference object for use in same
JP2021536471A JP7180783B2 (ja) 2019-07-26 2019-07-26 コンピュータビジョンシステムのキャリブレーション方法及びこれに用いる基準立体物
EP19939259.8A EP3974767A4 (en) 2019-07-26 2019-07-26 CALIBRATION PROCEDURE FOR COMPUTER VISION SYSTEM AND THREE-DIMENSIONAL REFERENCE OBJECT THEREFOR
CN201980097798.7A CN114026384B (zh) 2019-07-26 2019-07-26 计算机视觉系统的校准方法及用于该方法的基准立体物
PCT/JP2019/029529 WO2021019627A1 (ja) 2019-07-26 2019-07-26 コンピュータビジョンシステムのキャリブレーション方法及びこれに用いる基準立体物

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/029529 WO2021019627A1 (ja) 2019-07-26 2019-07-26 コンピュータビジョンシステムのキャリブレーション方法及びこれに用いる基準立体物

Publications (1)

Publication Number Publication Date
WO2021019627A1 true WO2021019627A1 (ja) 2021-02-04

Family

ID=74229418

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/029529 WO2021019627A1 (ja) 2019-07-26 2019-07-26 コンピュータビジョンシステムのキャリブレーション方法及びこれに用いる基準立体物

Country Status (5)

Country Link
US (1) US20220357153A1 (ja)
EP (1) EP3974767A4 (ja)
JP (1) JP7180783B2 (ja)
CN (1) CN114026384B (ja)
WO (1) WO2021019627A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022144040A (ja) * 2021-03-18 2022-10-03 Jfeスチール株式会社 モジュールブロック形状測定方法、モジュールブロック形状測定システム、および、炉建設方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11908100B2 (en) * 2021-03-15 2024-02-20 Qualcomm Incorporated Transform matrix learning for multi-sensor image capture devices

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003042726A (ja) * 2001-08-03 2003-02-13 Topcon Corp 校正用被写体
JP2008164493A (ja) * 2006-12-28 2008-07-17 Pulstec Industrial Co Ltd 3次元形状測定方法および校正用物体
JP4423811B2 (ja) 2001-04-27 2010-03-03 コニカミノルタセンシング株式会社 三次元形状測定システム及び三次元形状測定方法
JP4956960B2 (ja) 2005-10-28 2012-06-20 横浜ゴム株式会社 3次元形状測定装置及び3次元形状測定方法
JP2015001465A (ja) * 2013-06-17 2015-01-05 キヤノン株式会社 三次元位置計測装置、及び三次元位置計測装置のキャリブレーションずれ判定方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04203907A (ja) * 1990-11-29 1992-07-24 Sanyo Mach Works Ltd 位置、姿勢測定装置用指示具
JP4429503B2 (ja) * 2000-08-21 2010-03-10 三洋機工株式会社 仮想稜線の三次元測定方法
BE1014137A6 (nl) * 2001-04-24 2003-05-06 Krypton Electronic Eng Nv Werkwijze en inrichting voor de verificatie en identificatie van een meetinrichting.
DE102006021063B3 (de) * 2006-05-03 2007-09-06 Aicon 3D Systems Gmbh Markierungskörper für eine dreidimensionale photogrammetrische Vermessung eines Objekts
CN105026885B (zh) * 2013-01-09 2018-06-19 卡尔蔡司工业测量技术有限公司 用于求取旋转装置旋转误差的检验体
TWI578269B (zh) * 2015-12-14 2017-04-11 財團法人工業技術研究院 三維座標縫合方法及應用其之三維座標資訊縫合裝置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4423811B2 (ja) 2001-04-27 2010-03-03 コニカミノルタセンシング株式会社 三次元形状測定システム及び三次元形状測定方法
JP2003042726A (ja) * 2001-08-03 2003-02-13 Topcon Corp 校正用被写体
JP4956960B2 (ja) 2005-10-28 2012-06-20 横浜ゴム株式会社 3次元形状測定装置及び3次元形状測定方法
JP2008164493A (ja) * 2006-12-28 2008-07-17 Pulstec Industrial Co Ltd 3次元形状測定方法および校正用物体
JP2015001465A (ja) * 2013-06-17 2015-01-05 キヤノン株式会社 三次元位置計測装置、及び三次元位置計測装置のキャリブレーションずれ判定方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3974767A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022144040A (ja) * 2021-03-18 2022-10-03 Jfeスチール株式会社 モジュールブロック形状測定方法、モジュールブロック形状測定システム、および、炉建設方法
JP7363841B2 (ja) 2021-03-18 2023-10-18 Jfeスチール株式会社 モジュールブロック形状測定方法、モジュールブロック形状測定システム、および、炉建設方法

Also Published As

Publication number Publication date
CN114026384A (zh) 2022-02-08
EP3974767A1 (en) 2022-03-30
CN114026384B (zh) 2023-12-22
EP3974767A4 (en) 2023-01-11
US20220357153A1 (en) 2022-11-10
JPWO2021019627A1 (ja) 2021-02-04
JP7180783B2 (ja) 2022-11-30

Similar Documents

Publication Publication Date Title
JP6000579B2 (ja) 情報処理装置、情報処理方法
JP5854815B2 (ja) 情報処理装置、情報処理装置の制御方法、およびプログラム
JP6021533B2 (ja) 情報処理システム、装置、方法及びプログラム
JP6271953B2 (ja) 画像処理装置、画像処理方法
JP6180087B2 (ja) 情報処理装置及び情報処理方法
US20190193947A1 (en) Article transfer apparatus, robot system, and article transfer method
JP5602392B2 (ja) 情報処理装置、情報処理方法およびプログラム
CN107883831B (zh) 测量系统和测量方法
JP5365218B2 (ja) ロボットビジョンシステムおよび自動キャリブレーション方法
US20150127162A1 (en) Apparatus and method for picking up article randomly piled using robot
JP5815761B2 (ja) 視覚センサのデータ作成システム及び検出シミュレーションシステム
JP6067175B2 (ja) 位置測定装置及び位置測定方法
JP6520451B2 (ja) 外観撮影装置及び外観撮影方法
KR20140008262A (ko) 로봇 시스템, 로봇, 로봇 제어 장치, 로봇 제어 방법 및 로봇 제어 프로그램
JP6703812B2 (ja) 3次元物体検査装置
JP6885856B2 (ja) ロボットシステムおよびキャリブレーション方法
WO2020217878A1 (ja) 対象物の位置姿勢を検出する装置、方法およびプログラム
JP6758903B2 (ja) 情報処理装置、情報処理方法、プログラム、システム、および物品製造方法
WO2021019627A1 (ja) コンピュータビジョンシステムのキャリブレーション方法及びこれに用いる基準立体物
JPWO2018043524A1 (ja) ロボットシステム、ロボットシステム制御装置、およびロボットシステム制御方法
JP7439410B2 (ja) 画像処理装置、画像処理方法およびプログラム
WO2023013740A1 (ja) ロボット制御装置、ロボット制御システム、及びロボット制御方法
JP2017075891A (ja) 計測装置、計測方法および物品の製造方法
WO2021145304A1 (ja) 画像処理システム
JP7502343B2 (ja) 画像処理システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19939259

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021536471

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019939259

Country of ref document: EP

Effective date: 20211223

NENP Non-entry into the national phase

Ref country code: DE