WO2021019087A1 - Trennvorrichtung und betriebsverfahren - Google Patents

Trennvorrichtung und betriebsverfahren Download PDF

Info

Publication number
WO2021019087A1
WO2021019087A1 PCT/EP2020/071701 EP2020071701W WO2021019087A1 WO 2021019087 A1 WO2021019087 A1 WO 2021019087A1 EP 2020071701 W EP2020071701 W EP 2020071701W WO 2021019087 A1 WO2021019087 A1 WO 2021019087A1
Authority
WO
WIPO (PCT)
Prior art keywords
separating
bulk material
elements
mounting shaft
shaft
Prior art date
Application number
PCT/EP2020/071701
Other languages
English (en)
French (fr)
Inventor
César Carrasco
Original Assignee
A O Ideas Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by A O Ideas Gmbh filed Critical A O Ideas Gmbh
Priority to EP20746234.2A priority Critical patent/EP4003613B1/de
Priority to JP2022506370A priority patent/JP2022543031A/ja
Priority to BR112022001489A priority patent/BR112022001489A2/pt
Priority to CA3145588A priority patent/CA3145588A1/en
Priority to CN202080067463.3A priority patent/CN114521157B/zh
Priority to AU2020319853A priority patent/AU2020319853A1/en
Priority to US17/631,326 priority patent/US11786936B2/en
Publication of WO2021019087A1 publication Critical patent/WO2021019087A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B1/00Sieving, screening, sifting, or sorting solid materials using networks, gratings, grids, or the like
    • B07B1/28Moving screens not otherwise provided for, e.g. swinging, reciprocating, rocking, tilting or wobbling screens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B1/00Sieving, screening, sifting, or sorting solid materials using networks, gratings, grids, or the like
    • B07B1/28Moving screens not otherwise provided for, e.g. swinging, reciprocating, rocking, tilting or wobbling screens
    • B07B1/40Resonant vibration screens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/05Stirrers
    • B01F27/11Stirrers characterised by the configuration of the stirrers
    • B01F27/112Stirrers characterised by the configuration of the stirrers with arms, paddles, vanes or blades
    • B01F27/1123Stirrers characterised by the configuration of the stirrers with arms, paddles, vanes or blades sickle-shaped, i.e. curved in at least one direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/05Stirrers
    • B01F27/11Stirrers characterised by the configuration of the stirrers
    • B01F27/114Helically shaped stirrers, i.e. stirrers comprising a helically shaped band or helically shaped band sections
    • B01F27/1141Helically shaped stirrers, i.e. stirrers comprising a helically shaped band or helically shaped band sections having holes in the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/05Stirrers
    • B01F27/11Stirrers characterised by the configuration of the stirrers
    • B01F27/115Stirrers characterised by the configuration of the stirrers comprising discs or disc-like elements essentially perpendicular to the stirrer shaft axis
    • B01F27/1151Stirrers characterised by the configuration of the stirrers comprising discs or disc-like elements essentially perpendicular to the stirrer shaft axis with holes on the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/05Stirrers
    • B01F27/11Stirrers characterised by the configuration of the stirrers
    • B01F27/117Stirrers provided with conical-shaped elements, e.g. funnel-shaped
    • B01F27/1171Stirrers provided with conical-shaped elements, e.g. funnel-shaped having holes in the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/05Stirrers
    • B01F27/11Stirrers characterised by the configuration of the stirrers
    • B01F27/19Stirrers with two or more mixing elements mounted in sequence on the same axis
    • B01F27/191Stirrers with two or more mixing elements mounted in sequence on the same axis with similar elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/80Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis
    • B01F27/93Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis with rotary discs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/80Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis
    • B01F27/94Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis with rotary cylinders or cones
    • B01F27/941Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis with rotary cylinders or cones being hollow, perforated or having special stirring elements thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F31/00Mixers with shaking, oscillating, or vibrating mechanisms
    • B01F31/40Mixers with shaking, oscillating, or vibrating mechanisms with an axially oscillating rotary stirrer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F31/00Mixers with shaking, oscillating, or vibrating mechanisms
    • B01F31/44Mixers with shaking, oscillating, or vibrating mechanisms with stirrers performing an oscillatory, vibratory or shaking movement
    • B01F31/441Mixers with shaking, oscillating, or vibrating mechanisms with stirrers performing an oscillatory, vibratory or shaking movement performing a rectilinear reciprocating movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F31/00Mixers with shaking, oscillating, or vibrating mechanisms
    • B01F31/44Mixers with shaking, oscillating, or vibrating mechanisms with stirrers performing an oscillatory, vibratory or shaking movement
    • B01F31/449Stirrers constructions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F31/00Mixers with shaking, oscillating, or vibrating mechanisms
    • B01F31/80Mixing by means of high-frequency vibrations above one kHz, e.g. ultrasonic vibrations
    • B01F31/83Mixing by means of high-frequency vibrations above one kHz, e.g. ultrasonic vibrations comprising a supplementary stirring element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B1/00Sieving, screening, sifting, or sorting solid materials using networks, gratings, grids, or the like
    • B07B1/06Cone or disc shaped screens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B1/00Sieving, screening, sifting, or sorting solid materials using networks, gratings, grids, or the like
    • B07B1/42Drive mechanisms, regulating or controlling devices, or balancing devices, specially adapted for screens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B1/00Sieving, screening, sifting, or sorting solid materials using networks, gratings, grids, or the like
    • B07B1/46Constructional details of screens in general; Cleaning or heating of screens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B1/00Sieving, screening, sifting, or sorting solid materials using networks, gratings, grids, or the like
    • B07B1/46Constructional details of screens in general; Cleaning or heating of screens
    • B07B1/4609Constructional details of screens in general; Cleaning or heating of screens constructional details of screening surfaces or meshes
    • B07B1/469Perforated sheet-like material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B1/00Sieving, screening, sifting, or sorting solid materials using networks, gratings, grids, or the like
    • B07B1/46Constructional details of screens in general; Cleaning or heating of screens
    • B07B1/50Cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B2201/00Details applicable to machines for screening using sieves or gratings
    • B07B2201/04Multiple deck screening devices comprising one or more superimposed screens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B2230/00Specific aspects relating to the whole B07B subclass
    • B07B2230/04The screen or the screened materials being subjected to ultrasonic vibration

Definitions

  • the invention relates to a separating device with a holding device by means of which a separating element, preferably a sieve, is held, and to an operating method for this separating device.
  • intermediate products are often required which are present in particle form, ie "atomized" in the form of separate particles.
  • the intermediate product can be precisely dosed and used efficiently. Incorrect dosages, which could cause undesirable taste, stabilization, financial or medical errors, are avoided.
  • Bulk material can be required atomized in a uniform particle size or also in different particle sizes.
  • Separating devices therefore allow particles of a bulk material to be separated from one another and, if necessary, also to provide the bulk material in a largely uniform particle size.
  • the bulk material is transported from a starting position to a target position in which it should be in the desired shape. This transport usually takes place under the action of gravity, mechanical movements and, in screening technology, possibly also with the supply of ultrasonic energy.
  • separating devices in the form of a sieve device comprise a sieve lining which, as a separating medium, contains a large number of openings of the same size.
  • the size of the openings is called the mesh size. Larger grains remain above the openings (sieve overflow), smaller grains fall down (sieve passage).
  • a grain that is roughly the same size as the mesh size is called a border grain.
  • a sieve can consist of one or more sieve linings lying on top of one another, the sieve lining with the largest mesh size being on top in the sieve stack. For the efficiency of a sieve is The cleanliness of the screen lining is important.
  • the clogging of the sieve openings by boundary grains must be carried out by suitable measures (e.g. brushes, balls, chains, rubber cubes that "run” on or under the sieve or by increasing the diameter of the holes downwards, e.g. with conical or double-cylindrical holes) be avoided.
  • suitable measures e.g. brushes, balls, chains, rubber cubes that "run” on or under the sieve or by increasing the diameter of the holes downwards, e.g. with conical or double-cylindrical holes
  • screen linings are excited by a drive to make certain movements to improve screening performance.
  • the movement of the screen lining serves to transport the feed material further in the longitudinal direction of the screen, to eject the boundary grain from the mesh openings and to ensure the sustainability of the separation (screen efficiency).
  • Tumbler screening machines are known (see e.g. EP0943374A2) which have a screen structure that can be brought into a tumbling movement (throwing and oscillating movement), a support device that elastically supports the screen structure, and an assembly shaft driven in rotation by an electric motor, which drives a sloping pin that is adjustable in inclination and eccentricity, on which the sieve structure is mounted.
  • the screen lining is thus set in a predetermined and always the same movement by the assembly shaft and the inclined pin.
  • Such systems are complex and cause considerable building vibrations and noise and require a relatively high level of maintenance.
  • WO2018219840A1 describes a sieve device with a support device, by which a sieve is held, which has a sieve lining which is held by a sieve frame which is connected to a drive device.
  • the Drive device which is controlled by a control unit, comprises at least three actuators, which are connected on the one hand via a first swivel joint to the support device and on the other hand each via a second swivel joint to the screen frame, so that the screen is held solely by the actuators and within a Working volume is displaceable and optionally rotatable.
  • the screen lining is also preferably subjected to ultrasonic energy so that the screening process is accelerated.
  • This separating device which delivers very good results, is also designed in a complex manner and requires a relatively large amount of space. The supply of the bulk material through a conveying container, however, is not easy or can only be implemented with great effort.
  • a sieve device which has a sieve lining which is held by an outer frame and against which a metallic diaphragm rests, via which ultrasonic energy is transmitted to the sieve lining from an ultrasonic source.
  • a sieve lining which is held by an outer frame and against which a metallic diaphragm rests, via which ultrasonic energy is transmitted to the sieve lining from an ultrasonic source.
  • particles of the bulk material with a diameter smaller than the mesh size of the screen lining can pass through the screen lining more quickly as a sieve passage.
  • Particles of the bulk material, the diameter of which is larger than the mesh size of the sieve lining are carried away to the outside as sieve overflow via the outer frame.
  • This separating device with a sieve lining and a diaphragm resting thereon is also relatively complex.
  • DE4448017B4 discloses a device for sieving, classifying, sifting, filtering or sorting dry solids or solids in liquids, with a sieve surface provided in a sieve frame and an ultrasonic transducer assigned to this, through which vibrations can be fed to the sieve surface.
  • the ultrasonic transducer is assigned at least one resonator which rests on the screen surface and is tuned to the resonance of the ultrasonic transducer and can be set to oscillate by the latter. If the sieve is to be subjected to mechanical vibrations, it is built into a vibrating sieve machine, for example. Installation in a Vibrating screening machine causes correspondingly high expenses. Furthermore, the mechanical movements that can be exerted by the vibrating screening machine on the screen are limited in the forms of movement and only effective slowly.
  • the present invention is therefore based on the object of creating an improved device for separating particles of a bulk material, which, using ultrasonic energy, allows particles of the bulk material to be separated from one another.
  • the device according to the invention is intended to achieve better distribution of the bulk material on the separating element, such as a separating plate, more quickly using simple means.
  • the particles of the bulk material should be able to be provided in different or similar particle sizes or in an at least approximately uniform particle size.
  • an operating method for this improved separating device is to be specified, by means of which various processes, such as processes for loading, separating, mixing, ventilating, venting, unloading the bulk material, can advantageously be carried out. Furthermore, processes for cleaning and maintaining the separating device should be able to be carried out advantageously.
  • the separating device should have a simple and compact design and can be maintained with little effort.
  • the separation device should have a high efficiency and a correspondingly reduced energy requirement. Vibrations and shocks, as occur in known separating devices, should be avoided or significantly reduced without reducing the efficiency of the separating device.
  • the bulk material should be able to be processed within the shortest possible path between a starting point and a destination in order to avoid bulky devices.
  • the processed bulk material should be made available in high quality with a high degree of separation, so that incorrect dosages are avoided when using the processed bulk material.
  • the separating device and supply channels and / or discharge channels should be designed largely independently of the type of bulk material and be able to be implemented with small dimensions. Residues of bulk material and corresponding changes in the cross-section of the transport routes, in particular dead zones, should be avoided during operation of the separating device.
  • the operating method should allow optimal working parameters for the separating device to be set so that the bulk material present in each case can be optimally separated.
  • the device which is used to separate particles of a bulk material, which can be supplied at an initial location and processed at a target location in different or similar particle sizes or in an at least approximately uniform particle size, comprises at least one separating element, which is a metal separating plate with openings provided therein has which can be acted upon with ultrasonic energy and is connected to an ultrasonic transducer and which is held by a holding device.
  • the holding device is a mounting shaft which is fixed or movable, in particular rotatable and / or axially displaceable, at one end or at both ends, and which is connected at one end or at both ends to an ultrasonic transducer through which Ultrasonic energy can be coupled into the separating element via the assembly shaft, which is designed to be dimensionally stable.
  • the mounting shaft is preferably provided with a contacting device.
  • the contacting device preferably comprises slip rings and sliding contacts attached to them, via which AC voltage signals and / or DC voltage signals, possibly control signals, can be transmitted to the ultrasonic transducer or a control device provided there and / or an ultrasonic transducer connected to the assembly shaft, which in turn feeds the ultrasonic transducer.
  • the ultrasonic transducer preferably has a piezoelectric transducer, which preferably comprises a plurality of piezoelectric elements.
  • the piezoelectric elements are preferably clamped between two metal plates, which are positively or non-positively connected or welded to the assembly shaft, and connected jointly or individually to the ultrasonic generator by connecting contacts. Vibrations of the piezoelectric elements are transmitted via the metal plates to the mounting shaft and further to the at least one separating element.
  • the metal plates can each be arranged as screw nuts on a thread of the mounting shaft. By tightening the nuts, the piezo elements are tensioned and at the same time there is an optimal connection between the nuts and the assembly shaft. It is also advantageously possible to use only one screw nut, by means of which the piezo elements can be pressed against a metal plate firmly connected to the assembly shaft.
  • the mounting shaft can be made from one or more pieces.
  • the mounting shaft is integral or connected to the motor shaft of the drive motor by a coupling.
  • the piezoelectric elements are ring-shaped so that they can enclose the mounting shaft. This configuration results in a compact structure with maximum effect. Preferably five to twenty piezo elements provided.
  • the piezo elements are preferably separated from one another by contact elements and, if appropriate, insulation plates.
  • the piezo elements can be excited to vibrate by alternating voltages in the ultrasonic range, which vibrations are transmitted to the at least one separating element.
  • the ultrasonic vibrations cause the particles of the bulk material to be detached from one another and to pass through the separating element if they have a correspondingly small diameter. Furthermore, it is prevented that a firm contact between the separating element and the bulk material results. The static friction and / or sliding friction and thus the frictional forces that result between the separating element and the bulk material are thus significantly reduced so that the bulk material is kept flowing and not blocked.
  • any types of bulk material, homogeneous bulk material or non-homogeneous bulk material, as well as bulk material with any particle sizes can be processed.
  • the bulk material can be subjected to processes in which it is thermally treated and / or ventilated and / or cleaned and / or its composition is changed.
  • the separating plate can have a lattice structure or wire mesh structure, which is connected to the mounting shaft by at least one mounting element, such as a connecting sleeve or by at least two connecting rods that have the same or different diameters.
  • the separating plate can be enclosed, for example, by a ring that is connected to the mounting shaft by the connecting rods or to a mounting sleeve that surrounds the mounting shaft.
  • the separating element is held by a preferably centrally arranged assembly shaft and is designed to be dimensionally stable, larger assembly devices, in particular separating elements with a mounting frame, can be dispensed with. At the same time, there is the possibility of acting more directly and flexibly on the bulk material.
  • the bulk material can optionally be exposed to any mechanical and acoustic effects in order to optimize the separation process.
  • the separation process can also be carried out more efficiently with reduced energy consumption.
  • At least one separating element or at least one separating plate can be subjected to any axial movements and rotary movements and any ultrasonic waves via the mounting shaft. If the bearing devices by means of which the assembly shaft is held are also rotatably mounted, further rotary movements can be carried out.
  • the separating device Since the at least one separating element is not held peripherally, but rather centrally by the assembly shaft, the separating device is made more flexible.
  • the connecting elements By avoiding connecting elements by means of which the separating element is connected peripherally, e.g. to a housing, with brackets or other assembly elements, the parts that are now independent of the separating element can be realized with higher degrees of freedom.
  • the properties of the separating device can essentially be determined by the operating parameters of the control device, which is why the construction of the separating device requires less attention and effort.
  • the partition plate can protrude, for example, peripherally between flanges, which form a seal with respect to a housing, for example, and ensure that bulk material can only pass through the partition element.
  • the mounting of the mounting shaft can also be supported or replaced by mounting the separating element.
  • the separating device 1 can be adapted to a bulk material and the objectives specified by the user with simple measures or the selection of operating parameters.
  • the separating device according to the invention can thus optimally process different types of bulk material. For example, chemical powders, food particles, crystals, mechanical small parts and the like can be processed with the same separating device. If, on the other hand, the same bulk material is always processed, it is advisable to provide separating devices with appropriately adapted dimensions.
  • the dimensions of the separating device and the separating elements can therefore differ from one another by orders of magnitude.
  • the operating parameters, in particular the rotational speeds of rotatably mounted separating elements and switching frequencies, can differ from one another by orders of magnitude.
  • the separating device including the supply channels and / or discharge channels can be designed largely independently of the type of bulk material with regard to the possibility of setting significantly different operating parameters.
  • the cost of producing the separating devices is advantageously shifted from the structural level to the software level.
  • the separating device has a simple but very flexible structure, which allows the implementation of new processes for treating the bulk material.
  • the bulk material can be processed within a short distance between the starting point and the destination, so that separating devices according to the invention, which are provided for processing bulk material in the industrial areas mentioned, can generally be implemented with reduced dimensions.
  • the separation of the particles can be carried out more efficiently not only in the area of the separating element or the separating elements, but over the entire transport path of the bulk material. Due to the flexibility of the separation device and the With a more advantageous effect on the bulk material, residues with changes in the cross section of the transport routes, in particular dead zones, are advantageously avoided.
  • the optimal operation of the separating device can therefore be maintained over a longer period of time and the effort for maintaining the separating device is significantly reduced.
  • the flexibilization of the separating device also enables at least partial self-cleaning of the device.
  • the separating elements can be moved at the required speeds, for example to remove a sieve overflow.
  • cleaning agents can be injected or sprayed in (see FIG. 4a), for example via the same channels via which work processes are influenced.
  • the flexibilization of the separating device thus enables not only the optimal realization of the separating process, but also the realization of further processes, in particular mixing processes and cleaning processes.
  • additional materials e.g. additional materials, substances and media can easily be fed in at any point or at any separation elements and / or intermediate processed bulk material can be removed.
  • the bulk material can also be processed in a closed chamber under any gas pressure, possibly vacuum.
  • the processed bulk material can be provided in high quality with a high degree of separation, so that incorrect dosing when using the processed bulk material is avoided.
  • qualitative changes in the bulk material can occur in the work processes be made advantageous.
  • a mixed material is optimally distributed and integrated into the bulk material.
  • the separating element or the separating plate preferably forms a body of revolution.
  • the partition plate has a basic structure and is, for example, flat, cone-shaped, helical, spiral-shaped, wave-shaped, helical, sawtooth-shaped or provided with steps or bevels.
  • the partition plate is designed in the shape of a spherical wave.
  • the ultrasonic waves can propagate particularly advantageously over the surface of the partition plate.
  • At least one of the separating plates can also be provided with an additional three-dimensional surface structure which overlays the basic structure and which engages in the bulk material and can move it.
  • a surface structure in the form of radially or inclined indentations or formations is preferably used, which are arranged at regular or irregular intervals.
  • the partition plate can therefore have a first basic shape or basic structure which favors the uniform propagation of the ultrasonic waves and which is optionally overlaid by a surface structure which serves for mechanical interaction with the bulk material.
  • the partition plate can have a uniform thickness or taper gradually or continuously from the center to the periphery, for example in the manner of a blade. In the thinned periphery, vibrations with a greater amplitude can develop. Otherwise, the dimensions of the partition plate are selected depending on the required strength with regard to the bulk material and the diameter of the partition plate.
  • a material thickness in the range from 1 mm to 50 mm can be. If the separating plate tapers outwards, the material thickness can be reduced by 10-100 times exist.
  • the diameters of the partition plates can range from 10 mm to 1000 mm or more. Again, the properties, in particular the specific weight of the bulk material, are decisive.
  • Separation plates made of metal which conducts ultrasound, such as aluminum, steel, in particular stainless steel, copper, brass, titanium or an alloy, for example with such metals, are preferably used. Separating plates that are provided with a resistant protective layer, such as a noble metal layer, can also advantageously be used.
  • the partition plate is made, for example, by primary molding from granular, powdery or liquefied material; by forming, such as rolling, forging, bending, pressing or deep drawing; by thermal ablation, such as spark erosion, die sinking, laser cutting; or by machining e.g. by turning, drilling, milling, grinding.
  • the passage openings in the partition plates can also be realized by the processes mentioned.
  • the diameter of the passage openings is e.g. in the range of 1 micron - 1000 micron for powdery bulk material.
  • the diameter of the passage openings can be in the range of e.g. 1mm-15mm.
  • the diameter of the passage openings of all separating elements can be the same size or also change gradually, so that the partition plate passing through first has the largest passage openings and the partition plate passing through last has the smallest passage openings.
  • the separating element has a central axis and is designed to be rotationally symmetrical with respect to this central axis.
  • the mounting shaft is preferably aligned coaxially or preferably only slightly eccentrically to the central axis of the separating element. If the assembly shaft is arranged eccentrically to the central axis, oscillations and vibrations result that facilitate the separation process.
  • the partition plates are rotatably or displaceably arranged so that they are of a coaxial position can be rotated or shifted and fixed in an eccentric position. It is particularly advantageous that in this arrangement the at least one separating element can optionally be rotated in one direction or the other at a desired switching frequency and preferably optionally accelerated.
  • the separating element can be connected to the mounting shaft in various ways.
  • the partition plate comprises a mounting element in the form of a connecting sleeve or at least two connecting rods, which preferably have different diameters.
  • four connecting rods with different diameters are provided crosswise.
  • the coupling can advantageously take place, in particular in a circularly rotating manner. Standing waves are avoided or reduced. Instead, different waves are superimposed, which activates the entire surface of the partition plate.
  • the one-piece or multi-part assembly shaft made of metal is elongated and preferably rod-shaped or cylindrical.
  • the assembly shaft preferably has several shaft elements that can be connected to one another, each of which is connected fixedly or rotatably and optionally releasably to an associated separating element.
  • the individual shaft elements can preferably be connected to one another in a form-fitting manner, screwed to one another or welded to one another. If the individual shaft elements can be detached from one another, the separating device can be configured as required and adapted to a specific bulk material.
  • the one-piece or multi-piece assembly shaft is connected to a drive motor at one end or at both ends.
  • the assembly shaft or the shaft elements can be driven individually in one or the other direction or alternately in one and the other direction about their longitudinal axis by the drive motor or the drive motors.
  • the assembly shaft is fixedly or rotatably mounted at one end or at both ends in a bearing device and is preferably connected to an assembly body, possibly a conveying container, by means of radially aligned connecting bodies.
  • the assembly shaft with the at least one separating element is preferably arranged in a conveying container in which the bulk material is trapped and in which different conditions, such as overpressure or underpressure or a vacuum, spray mist or the like and thus different treatment processes can be implemented are.
  • the conveying container is provided with an open or optionally lockable passage channel through which the bulk material can be transported from the starting point to the destination.
  • the conveying container preferably has an outlet opening for at least one of the separating elements through which bulk material fractions, such as processed or separated bulk material fractions or an overflow, can be discharged.
  • the outlet openings are preferably optionally lockable.
  • the conveying container preferably has an inlet channel and / or an outlet channel for each of the separating elements, which are implemented, for example, by tubular elements.
  • an energy supply device which is connected to the drive motor or the drive motors and possibly with one or more ultrasonic transducers, and a control unit with a control program are provided, by means of which the process for separating the particles of the bulk material and possibly further processes, such as cleaning processes or Maintenance processes are controllable.
  • Various process phases can be implemented by setting the parameters.
  • the bulk material can be rotated continuously or alternately over a few revolutions or a larger fraction of the at least one separating element a rotation of, for example, 45 ° - 180 °.
  • the bulk material can be subjected to mechanical vibration by alternately rotating the at least one separating element over a small fraction of a rotation of, for example, 0.5 ° -5 °, which separates the particles from one another and allows them to pass through the openings of the separating elements.
  • a rotation of, for example, 0.5 ° -5 ° which separates the particles from one another and allows them to pass through the openings of the separating elements.
  • remaining bulk material or a sieve overflow can be thrown outwards at high speed and removed by rotating the at least one separating element.
  • the parameters can change over a wide range and are not least dependent on the ultrasonic energy that is coupled into the separating elements.
  • the rotational speeds can be in the range from one to several 1000 revolutions and are essentially dependent on the size, shape and specific weight of the particles of the bulk material and the design of the separating elements.
  • the level of the accelerations is also particularly important. Due to high accelerations over a fraction of a revolution, e.g. in the range from 5 ° to 180 °, the layers of the bulk material are shifted and mixed against each other in the mixing phase. This effect can be increased accordingly by incorporating surface structures in the partition plates.
  • the bulk material is already relatively well mixed and at least partially separated on the separating elements.
  • the bulk material particles are completely separated from one another and conveyed through the passage openings of the separating elements.
  • the assembly shaft is moved back and forth over small rotational ranges in the range of, for example, 0.5 ° -5 ° with a switching frequency that is preferably in the range of 10 Hz-1000 Hz or more.
  • the separating elements are therefore subjected to mechanical vibrations in the range of 10 Hz - 1000 Hz and ultrasonic vibrations in the range of typically 10 kHz - 40 kHz.
  • the switching frequency for the mechanical vibrations during the Work phase changed continuously or suddenly.
  • the frequency of the ultrasonic oscillations is preferably also changed continuously or abruptly.
  • the frequencies of the switching frequency and the ultrasonic vibrations are keyed over, that is to say continuously changed between certain, possibly predetermined or randomly selected frequency values.
  • the frequencies of the switching frequency and the ultrasonic vibrations are continuously changed or are each subjected to a so-called scan; the frequency changes can run against each other or in the same direction. It is also possible that one of the frequencies is keyed and the other is subjected to a scan.
  • the unloading phase bulk material can be removed from the separating elements at high revolutions, e.g. in the range of 25 to 1000 revolutions per second.
  • a cleaning liquid is then preferably introduced into the separating device, for example sprayed, in order to clean the separating elements.
  • a gaseous medium such as air, can be admitted to dry the separating device.
  • the separating device can therefore be transferred to a cleaning phase by the operating software, in which the separating device is returned to its initial state.
  • the separating device can therefore be operated with minimal maintenance effort, particularly with regard to this self-cleaning function.
  • alternating forces or vibrations can be coaxially coupled into the assembly shaft in the mixing phase and / or the working phase and / or the unloading phase, so that forces can also act parallel or anti-parallel to gravity on the bulk material particles.
  • Such force effects with a selectable frequency can be coupled into the assembly shaft in a simple manner, for example according to the moving coil principle of acoustic loudspeakers.
  • the mounting shaft is held elastically or vertically displaceable and Provided on the bottom or top with a, for example, cylindrical magnet, which is immersed in a coil to which an alternating current in the range of 5 Hz - 15 kHz is fed. All of the above-mentioned effects on the assembly shaft can take place simultaneously or alternately or only sporadically.
  • the ultrasonic generator is provided for emitting alternating voltage signals, preferably in the frequency range of preferably 15 kHz to 45 kHz.
  • the ultrasonic generator is preferably designed for continuous change and / or for keying of the frequency and / or for changing the amplitude of the alternating voltage signals.
  • the frequency of the output signal which is in the frequency range mentioned, is preferably changed with a keying frequency which is in the range from 10 Hz to 2 kHz.
  • the output signal of the ultrasonic generator is repeatedly keyed with a keying frequency of 10 Hz ten times per second between the ultrasonic frequencies of 25 kHz and 35 kHz. With the keying frequency, a whole sequence of ultrasonic frequencies of e.g.
  • 25 kHz, 30 kHz and 35 kHz can be run through.
  • a continuous frequency change can also be carried out. For example, a scan between two or more ultrasonic frequencies is carried out ten times per second with a change frequency of 10 Hz.
  • the described changes in the ultrasonic frequencies ensure that no stationary wave nodes occur on the separating plate and that the effect of the ultrasonic signals occurs without any gaps.
  • Fig. la an inventive separating device 1 with optional drive devices 8, 80 in an elementary configuration with only one separating element 3, the one conically shaped partition plate 31 with
  • FIG. 1b shows the separating device 1 from FIG. 1a with an exemplary device for supplying the rotatably mounted separating element 3 with ultrasonic energy;
  • FIG. 3 shows a separating device 1 according to the invention with six separating elements 3A, 3B, 3C, 3D, 3E, 3F which are arranged in a conveying container 5 and which are made up of a multi-part
  • Mounting shaft 2, into which ultrasonic energy can be coupled, are held rotatably;
  • Fig. 4a a separating device 1 according to the invention with six separating elements 3A, 3B,... Which are held rotatably by an assembly shaft 2 and which additionally allow the machined
  • FIG. 4b shows part of the separating device 1 from FIG. 4a;
  • FIG. 5a shows a separating device 1 according to the invention with spiral-shaped separating elements 3A,.
  • FIG. 5b shows a part of the separating device 1 from FIG. 5a;
  • Fig. 6 shows the separating device of FIG. 2a in a preferred manner
  • Fig. 7 a separating element 3 with a spherically wave-shaped separating plate 31, as used in the device of FIG. 4;
  • Fig. 1 shows a device 1 according to the invention for separating particles of a process material or bulk material S, which can be supplied at a starting point A and removed after processing in the separating device 1 at a destination B in different or similar particle sizes or in an at least approximately uniform particle size is.
  • the separating device 1 comprises only one separating element 3 with a metal separating plate 31, which forms a rotational body or a cone, which has passage openings 30, preferably of the same size.
  • the separating element 3 or the conical separating plate 31 has a central mounting element 32 which is held by a mounting shaft 2 in a fixed or rotatable and / or axially displaceable manner.
  • the assembly shaft 2 is aligned with its longitudinal axis x coaxially to the axis of rotation of the separating element 3, preferably parallel to the axis of gravity. Bulk material is therefore preferred by gravitational force through the
  • Separating device 1 promoted. This funding process is preferably promoted and accelerated by the measures described below.
  • the separating element 3 is acted upon at least in phases with ultrasonic waves, which are typically in the frequency range from 15 kHz to 40 kHz.
  • the underside of the mounting shaft 2 is connected to an ultrasonic transducer 6, to which electrical signals 71A from an ultrasonic generator 70 can be fed.
  • the ultrasonic generator 70 is preferably controllable by a control device 9 or the control program 99 implemented therein, so that ultrasonic frequencies can be set and changed as desired.
  • the separating element 3 can be subjected to mechanical vibrations in a frequency range from a few Hertz to, for example, 1 kHz.
  • a drive motor 8 is provided, by means of which the assembly shaft 2 can be rotated in one and / or in the other direction.
  • the range of rotation, the acceleration and the speed of rotation and the switching frequency for changing the direction of rotation can in turn be controlled by the control device 9 or the control program 99 implemented therein.
  • a high frequency vibration motor which can be used in the separating device according to the invention is known, for example, from CN105827059A.
  • the separating device 1 can also be subjected to a vibratory movement with forces acting along the longitudinal axis x of the mounting shaft 2. Such vibrations can easily be generated by motors whose motor shafts are eccentrically loaded.
  • the assembly shaft 2 can be coupled to such a motor 80, which in turn can be controlled by the control device 9 or the control program 99 implemented therein. Depending on the speed of the motor 80, any frequency of the vibration can in turn be set.
  • the assembly rod 2 can be connected to a preferably cylindrical magnet 28 which is arranged within a coil 88 to which an alternating current can be fed from a frequency generator 800.
  • the ones for switching and disconnection as well the frequency of the alternating current can in turn be controlled by the control device 9 or the control program 99 implemented therein.
  • the separation device is controlled in the mixing phase and / or the working phase and / or the discharging phase, taking into account sensor signals which are emitted by sensors 95.
  • the bulk material lying on the separating element 3 is optically monitored
  • the options described for vertical or rotary vibration and for coupling in ultrasonic energy of the separating element 3 can be used alone or optionally in combination.
  • the vibration frequencies and / or the vibration amplitudes can be the same or different.
  • the mounting shaft 2 which serves as a holding device for the separating element 3, is held by a mounting device 52 and a bearing device 58 in a fixed or rotatable and / or axially displaceable manner as far as required by the amplitudes for an axial displacement or vibration.
  • the mounting shaft 2 is only held on one side.
  • the ultrasonic transducer is also mounted, preferably with a positive fit and a force fit, preferably screwed, e.g. clamped or welded by a press fit.
  • Fig. lb shows the separating device 1 from FIG. la with a device shown as an example for supplying the rotatably mounted separating element 3 with ultrasonic energy.
  • Electrical energy is supplied to the ultrasonic transducer 6 from the ultrasonic generator 70 via a multi-core cable 71B and a contacting device 4, which has sliding contacts 41, 43 that rest on slip rings 42, 44 that are rotatably connected to the assembly shaft 2.
  • the multi-core cable 71B is connected to the sliding contacts 41, 43.
  • AC voltages in the frequency range of the ultrasonic waves are transmitted via the sliding contacts 41.
  • the corresponding slip rings 42 are on Connecting cable 77 is connected, via which the alternating voltages are transmitted to piezo elements 631 or, if appropriate, to a control unit 60 in which the alternating voltages are output to piezo elements 631 via switches.
  • the ultrasonic transducer 6 preferably comprises a plurality of piezo elements 631 separated from one another by contact elements 64 (only one shown), each of which has a transfer opening through which the assembly shaft 2 is guided.
  • the piezo elements 631 are pressed together by two locking elements 632 connected to the assembly rod 2, via which ultrasonic vibrations are transmitted to the assembly shaft 2.
  • the locking elements 632 are, for example, screw nuts, which are each rotatably held by a thread that is incorporated into the mounting shaft.
  • the piezo elements 631 can therefore be fixed in a simple manner and supplied with electrical voltages via the contact elements 64 in between.
  • a control unit 60 which is connected to the central control device 9, is arranged in the ultrasonic converter 6. Control signals are sent via the cable 71B to the further sliding contacts 43, which are in contact with the further slip rings 44. The control signals are transmitted via control lines 78 to the control unit 60, which then controls the output of alternating voltages to the piezo elements 631 or the connection contacts 64.
  • the control unit 60 can also comprise an ultrasonic generator to which a supply voltage can be fed via the contacting device 4 and which is provided for emitting the ultrasonic signals.
  • the ultrasonic generator 70 shown is integrated in the control unit 60 in this case.
  • FIGS. 1 a and 1 b illustrate the significant advantages of the separating device 1 according to the invention. It can be seen that the separating element 3 can be acted on mechanically and / or with ultrasonic energy in different ways via the assembly shaft 2 with minimal structural effort. Mechanical and Acoustic vibrations, rotations and axial displacements can be transmitted with simple means to the assembly shaft 2, which in turn can be rotatably and / or displaceably mounted in a simple manner. The mechanical movements and / or ultrasonic waves acting on the assembly shaft 2 can be transmitted centrally from the assembly shaft 2 to the at least one separating element 3.
  • the separating device shown in a simple embodiment from FIG. la and lb can be constructed in a simple manner.
  • FIG. 2 shows a separating device 1 according to the invention with a mounting shaft 2 which comprises three shaft elements 2A, 2B, 2C, each of which has a separating element 3A; 3B; 3C is connected.
  • the shaft elements 2A, 2B, 2C comprise coupling elements 21, 22 on both sides, which can be pushed into one another or screwed together.
  • the assembly shaft 2 can thus be expanded as required, so that a separating device 1 with the desired number of separating elements 3A, 3B, 3C results.
  • the shaft elements 2A, 2B, 2C are preferably designed identically, but can also differ in their dimensions, in particular in length, for example in order to be able to hold separating elements 3 of different sizes.
  • An ultrasonic transducer 6 is positively connected to the lowermost shaft element 2C, possibly screwed.
  • Mounting shafts 2 of all separating devices 1 according to the invention can thus either be formed in one piece or consist of several shaft elements.
  • the separating elements 3A, 3B, 3C have openings of different sizes, so that individual particles can be separated not only from one another but also in terms of size or grouped on each of the separating elements.
  • the particles of the bulk material in different sizes are separated from one another on the separating elements 3A, 3B, 3C ready for removal.
  • the separating elements 3A, 3B, 3C can be rotated to remove the separated bulk material fractions by means of centrifugal force through outlet channels 5A, 5B and 5C.
  • the individual separating elements 3A, 3B, 3C have passage openings 30 of different sizes. This is typically provided if particles of different sizes are to be separated from one another. However, passage openings 30 of different sizes can also be provided when lumps of bulk material are broken up in upper separating elements 3A, 3B and only then are the individual particles of the same size separated from one another.
  • Fig. 3 shows a separating device 1 according to the invention with six separating elements 3A,..., 3F arranged in a conveying container 5, which are supported by a multi-part mounting shaft 2, which is aligned with its longitudinal axis x parallel to the conveying axis of the separating device 1.
  • the mounting shaft 2 has a lower shaft element 2A and an upper shaft element 2B, which are aligned coaxially to one another and rotatably connected to one another at the ends facing away from one another by a coupling element 26, possibly a coupling sleeve, and which are connected to one another at the ends facing away from one another in storage devices 58A; 58B are rotatably mounted.
  • the ultrasonic transducers 6A, 6B held by the shaft elements 2A, 2B are integrated in the bearing devices 58A, 58B. Subsequent to the bearing devices 58A, 58B, the contacting devices 4A, 4B, which are connected to at least one ultrasonic generator 70, are connected to the shaft elements 2A, 2B, which are further connected to an associated drive motor 8A and 8B via an associated coupling 85A and 85B are connected .
  • the lower three separating elements 3A, 3B, 3C can therefore, controlled by the control program 99, be rotated by the lower drive motor 8A, while the upper three separating elements 3D, 3E, 3F, controlled by the control program 99, can be rotated by the upper drive motor 8B.
  • Control signals and AC voltage signals can also be transmitted individually via the lower and upper contacting device 4A and 4B to the lower and upper ultrasonic transducer 6A, 6B.
  • the separating device 1 shown therefore comprises two smaller separating devices 1 ′, 1 ′′, each with three separating elements 3A, 3B, 3C or 3D, 3E, 3F.
  • the lower separating device 1 'with the three separating elements 3A, 3B, 3C and the upper separating device 1' 'with the three separating elements 3D, 3E, 3F can be operated autonomously in the same or in different process phases.
  • a program of the work phase can be used in the upper separating device 1 ′′, while a program of the mixing phase is used in the lower separating device 1 ′.
  • a program of the work phase can be used in the lower and the upper separating device 1 ′, 1 ′′.
  • a program for the unloading phase can be used in the upper separating device 1 ′′, while the lower separating device 1 'is still being operated in the working phase.
  • the assembly shaft 2 with the six separating elements 3A, ..., 3F is arranged in a conveying container 5 which is open at the top and the bottom and which has a conveying channel 50 through which the bulk material S is transported by means of gravity.
  • the conveying container 5 also has outlet openings or outlet channels 50A, ..., 50F in the side wall through which an overflow or an intermediate product Sa, Sb, Sc, Sd, Se, Sf of the bulk material S is separated from the assigned separating elements 3A, .. ., 3F can be conveyed to the outside and carried away, as shown symbolically.
  • the speed of rotation of the separating elements 3A, ..., 3F is increased in such a way that the intermediate products Sa, Sb, Sc, Sd, Se, Sf are carried away by centrifugal force.
  • the energy supply device 90 shown is activated by the control unit 9 in order to output energy for the motors 8A, 8B and, if necessary, the ultrasonic generator 70, which can also be integrated into the energy supply device 90.
  • Fig. 4a shows a separating device 1 according to the invention with six separating elements 3A,..., 3F which are held rotatably by a mounting shaft 2 and which have a flat spherical wave shape.
  • a spherical waveform is a waveform that results in the water after a stone is thrown into it.
  • the spherical wave shape promotes optimal distribution of the ultrasonic waves so that the bulk material can be divided up particularly efficiently.
  • the frequency of the ultrasonic waves is preferably keyed between the resonance frequencies so that the most intense and changing influences on the bulk material result and the bulk material is quickly separated into its particles.
  • the separating elements 3A, ..., 3F are connected to one another by a mounting shaft 2, which is formed in one piece or can also have several shaft elements which are firmly connected to one another.
  • the assembly shaft 2 is connected via a coupling 85B to an upper drive motor 8B, to which control signals 81B from the control unit 9 or an energy supply device 90 connected to it can be fed.
  • the mounting shaft 2 is rotatably held with the upper ultrasonic transducer 6b in an upper bearing device 58 and is practically suspended.
  • the conveying container 5 is attached to the floor, wall or ceiling of a building by means of a bracket, for example.
  • a closing cone 55 is provided, in which the particles of the bulk material that have been processed up to the last are collected.
  • the conveying container 5 has for each of the separating elements 3A, ..., 3F a tubular inlet channel 500A, ..., 500F and an outlet channel 501A, ..., 501F. At least one powdery solid material, at least one liquid or at least one gaseous medium can preferably be fed to the bulk material through the inlet channels 500A,..., 500F. Through the output channels 501A, ..., 501F, material can be removed from the individual separating elements 3A, ..., 3F or from the closing cone 55.
  • the conveying container 5 in the present form is preferably sealed so that the processing of the bulk material can be carried out under overpressure or underpressure.
  • Bulk material or bulk material components can be supplied through inlet pipes 5S1, 5S2.
  • the processed bulk material can be removed through one or two exit pipes 5X, 5Y.
  • the illustrated embodiment of the separating device 1 thus allows various intermediate treatments to be carried out on the bulk material and to ventilate or de-aerate it in a simple manner.
  • any desired mixing processes can therefore be carried out at the level of each separating element 3A,..., 3F in order to achieve a specific mixed product or to accelerate the separating processes at this level.
  • Fig. 4b shows part of the separating device 1 from FIG. 4a in an enlarged view.
  • the output channels 501A, ..., 501F, like the input channels 500A, ..., 500F are cut at an angle on the front.
  • Other shapes can also advantageously be used, e.g. shovel shapes pointing to the side, in which material can easily be grasped and transported away, if necessary sucked off.
  • FIG. 5a shows a separating device 1 according to the invention with spiral-shaped separating elements 3A,..., 3L, which are rotatably supported by means of the associated assembly shaft 2 and can be acted upon with ultrasonic energy.
  • the separating elements 3A, ..., 3L are directed in pairs towards one another and vertically displaced towards one another.
  • An arrangement is also possible in which the separating elements 3A,..., 3L run continuously in the same direction in a helical or helical manner.
  • this separating device 1 all the particles of the bulk material pass through the entire conveying container 5 and are completely separated from one another.
  • This separator 1 is preferred used when the particles of the bulk material are to be separated from one another but not grouped according to their size.
  • Fig. 5b shows part of the separating device 1 from FIG. 5a in an enlarged view.
  • FIG. 6 shows the separating device from FIG. 2a in a preferred embodiment with four connecting rods 321, 322, 323, 324 of different thicknesses, by means of which the metal plate 31 is connected to the mounting shaft 2.
  • the change in the diameter of the connecting rods 321, 322, 323, 324 takes place in accordance with an arithmetic or a geometric series.
  • wave images can be generated in which wave nodes are reduced.
  • a surface structure in the form of radial waves is drawn in, by means of which an interaction with the bulk material is to take place in order to move and distribute it.
  • FIG. 7 shows a separating element 3 as used in the device of FIG.
  • the separating element 3 or the separating plate 31 is formed in the shape of a spherical wave.
  • Fig. 8 shows a separating element 3 with a separating plate 31, which comprises a lattice structure or a wire mesh 319 and which is enclosed by a ring 320, which is connected by connecting rods 321, 322, 323, 324 to the mounting shaft 2 or a mounting shaft 32, which the Mounting shaft 2 encloses, is connected.
  • This separating element 3 can also be used in all devices 1 according to the invention.
  • Partition plate 31 can be conical, as in FIG. 6, or flat or corrugated, as in FIG. 7.
  • the separating elements 3 are dimensionally stable in such a way that their function is maintained under load and the material to be screened or bulk material is held securely.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)
  • Combined Means For Separation Of Solids (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Mixers With Rotating Receptacles And Mixers With Vibration Mechanisms (AREA)
  • Accessories For Mixers (AREA)

Abstract

Die Vorrichtung (1), die dem Trennen von Partikeln eines Schüttguts dient, welches an einem Ausgangsort zuführbar und an einem Zielort bearbeitet in unterschiedlichen oder ähnlichen Partikelgrössen oder in einer zumindest annähernd einheitlichen Partikelgrösse entnehmbar ist, umfasst wenigstens ein Trennelement (3), das eine metallene Trennplatte (31) mit darin vorgesehenen Durchtrittsöffnungen (30) aufweist, das mit Ultraschallenergie beaufschlagbar und dazu mit einem Ultraschallwandler (6) verbunden ist und das von einer Haltevorrichtung (2) gehalten ist. Erfindungsgemäss ist vorgesehen, dass die Haltevorrichtung (2) eine Montagewelle (2) ist, die an einem Ende oder an beiden Enden fest oder bewegbar, insbesondere drehbar und/oder axial verschiebbar gehalten ist und die an einem Ende oder an beiden Enden mit einem Ultraschallwandler verbunden ist, durch den Ultraschallenergie über die Montagewelle (2) in das Trennelement (3) einkoppelbar ist, das formbeständig ausgebildet ist.

Description

Trennvorrichtung und Betriebsverfahren
Die Erfindung betrifft eine Trennvorrichtung mit einer Haltevorrichtung, mittels der ein Trennelement, vorzugsweise ein Sieb, gehalten ist, sowie ein Betriebsverfahren für diese Trennvorrichtung .
In zahlreichen Industriebereichen, wie der Nahrungsmittelindustrie, der chemischen Industrie, der Pharmaindustrie und der Baustoffindustrie werden oft Zwischenprodukte benötigt, die in Partikelform, d.h. „atomisiert" in Form voneinander getrennter Partikel vorliegen. In dieser Form kann das Zwischenprodukt präzise dosiert und effizient eingesetzt werden. Fehldosierungen, die unerwünschte geschmackliche, festigungstechnische, finanzielle oder medizinische Fehler verursachen könnten, werden vermieden. Schüttgut kann atomisiert in einer einheitlichen Partikelgrösse oder auch in unterschiedlichen Partikelgrössen benötigt werden.
Trennvorrichtungen erlauben daher Partikel eines Schüttguts voneinander zu trennen und das Schüttgut gegebenenfalls auch in einer weitgehend einheitlichen Partikelgrösse bereitzustellen. Das Schüttgut wird von einer Ausgangsposition zu einer Zielposition transportiert, in der es in der gewünschten Form vorliegen soll. Dieser Transport erfolgt in der Regel unter Einwirkung von Schwerkraft, mechanischen Bewegungen und in der Siebtechnik gegebenenfalls auch unter Zufuhr von Ultraschallenergie.
Trennvorrichtung in der Ausgestaltung einer Siebvorrichtung umfassen gemäss https://en.wikipedia.org/wiki/Sieve einen Siebbelag, der als Trennmedium eine Vielzahl gleich grosser Öffnungen enthält. Die Grösse der Öffnungen wird als Maschenweite bezeichnet. Grössere Körner verbleiben oberhalb der Öffnungen (Siebüberlauf), kleinere Körner fallen nach unten (Siebdurchgang) . Ein Korn, das in etwa gleich gross ist wie die Maschenweite, nennt man Grenzkorn. Ein Sieb kann aus einem oder mehreren übereinanderliegenden Siebbelägen bestehen, wobei der Siebbelag mit der grössten Maschenweite im Siebstapel oben liegt. Für den Wirkungsgrad eines Siebs ist die Sauberkeit des Siebbelags von Bedeutung. Insbesondere die Verstopfung der Sieböffnungen durch Grenzkorn muss durch geeignete Massnahmen (z.B. Bürsten, Kugeln, Ketten, Gummiwürfel, die auf oder unter dem Sieb mit „laufen" oder durch eine Vergrösserung der Lochdurchmessers nach unten, wie z.B. bei konisch oder doppelt zylindrisch gebohrten Löchern) vermieden werden.
Bei grosstechnischen Anwendungen werden Siebbeläge zur Verbesserung der Siebleistung durch einen Antrieb zu bestimmten Bewegungen erregt. Die Bewegung des Siebbelags dient dem Weitertransport des Aufgabeguts in Sieblängsrichtung, dem Hinauswurf des Grenzkorns aus den Maschenöffnungen und der Nachhaltigkeit der Trennung (Siebwirkungsgrad) .
Bekannt sind Taumelsiebmaschinen (siehe z.B. die EP0943374A2 ) , die einen in eine Taumelbewegung (Wurf- und Schwingbewegung) verbringbaren Siebaufbau, eine den Siebaufbau elastisch abstützende Stützeinrichtung und eine von einem Elektromotor drehangetriebene Montagewelle aufweisen, die einen in seiner Neigung und Exzentrizität verstellbaren Schiefzapfen antreibt, auf dem der Siebaufbau gelagert ist. Durch die Montagewelle und den Schiefzapfen wird der Siebbelag somit in eine vorbestimmte und stets gleiche Bewegung versetzt. Derartige Anlagen sind aufwendig ausgestaltet und verursachen erhebliche Gebäudeerschütterungen und Geräusche und erfordern einen relativ hohen Wartungsaufwand.
Beim Transport, der Lagerung, Mischung, Entmischung, Dosierung Handhabung von Pulvern und Schüttgütern spielen deren Fliesseigenschaften eine wichtige Rolle. Bei der Siebung des Schüttguts ist es von Bedeutung, dass deren Partikel vereinzelt zum Siebbelag gelangen und durch die Sieböffnungen hindurch treten können .
Die WO2018219840A1 beschreibt eine Siebvorrichtung mit einer Tragvorrichtung, von der ein Sieb gehalten ist, welches einen Siebbelag aufweist, der von einem Siebrahmen gehalten ist, welcher mit einer AntriebsvVorrichtung verbunden ist. Die Antriebsvorrichtung, die von einer Steuereinheit gesteuert wird, umfasst wenigstens drei Aktuatoren, die einerseits je über ein erstes Drehgelenk mit der Tragvorrichtung und die andererseits je über ein zweites Drehgelenk mit dem Siebrahmen verbunden sind, so dass das Sieb allein von den Aktuatoren gehalten und innerhalb eines Arbeitsvolumens verschiebbar und gegebenenfalls drehbar ist. Der Siebbelag wird zudem vorzugsweise mit Ultraschallenergie beaufschlagt, sodass der Siebprozess beschleunigt wird. Auch diese Trennvorrichtung, die sehr gute Ergebnisse liefert, ist aufwendig ausgestaltet und erfordert relativ viel Raum. Die Zufuhr des Schüttguts durch einen Förderbehälter ist hingegen nicht einfach bzw. nur mit grossem Aufwand realisierbar.
Aus der JP2011245446A ist eine Siebvorrichtung bekannt, die einen Siebbelag aufweist, der von einem äusseren Rahmen gehalten ist und an dem ein metallisches Diaphragma anliegt, über das von einer Ultraschallquelle Ultraschallenergie auf den Siebbelag übertragen wird. Unter dem Einfluss der Ultraschallenergie können Partikel des Schüttguts, deren Durchmesser geringer ist als die Maschenweite des Siebbelags, als Siebdurchgang rascher durch den Siebbelag hindurch treten. Partikel des Schüttguts, deren Durchmesser grösser ist als die Maschenweite des Siebbelags, werden als Siebüberlauf über den äusseren Rahmen nach aussen weggeführt. Auch diese Trennvorrichtung mit einem Siebbelag und einem daran anliegenden Diaphragma ist relativ aufwendig ausgestaltet.
Die DE4448017B4 offenbart eine Vorrichtung zum Sieben, Klassieren, Sichten, Filtern oder Sortieren trockener fester Stoffe oder fester Stoffe in Flüssigkeiten, mit in einem Siebrahmen vorgesehener Siebfläche, und dieser zugeordnetem Ultraschallwandler, durch welchen der Siebfläche Schwingungen zuleitbar sind. Dem Ultraschallwandler ist wenigstens ein an der Siebfläche anliegender Resonator zugeordnet, der auf die Resonanz des Ultraschallwandlers abgestimmt und von letzterem in Schwingungen versetzbar ist. Sofern das Sieb mechanischen Schwingungen unterworfen werden soll, so wird es z.B. in eine Schwingsiebmaschine eingebaut. Der Einbau in eine Schwingsiebmaschine verursacht entsprechend hohe Aufwendungen. Ferner sind die mechanischen Bewegungen, die von der Schwingsiebmaschine auf das Sieb ausgeübt werden können, in den Bewegungsformen beschränkt und nur langsam wirksam.
Dietmar Schulze, Pulver und Schüttgüter, Fliesseigenschaften und Handhabung, 3. Auflage, Springer-Verlag Berlin 2014, Kapitel 1, beschreibt häufig auftretende Probleme mit Schüttgütern. Ist die AuslaufÖffnung zu klein, kann sich ein stabiles Gewölbe (Brücke) bilden, so dass der Schüttgutfluss zum Erliegen kommt. Ein weiteres Problem kann Kernfluss sein, der auftritt, wenn die Trichterwände nicht steil oder glatt genug sind. In diesem Fall kann das Schüttgut im gefüllten Silo nicht unmittelbar auf den Trichterwänden nach unten gleiten. Es bilden sich tote Zonen, die gegebenenfalls asymmetrisch ausgebildet sind und in denen das Schüttgut nicht mehr allein aufgrund der Schwerkraft ausfliessen kann. Kernfluss kann auch dazu führen, dass Teile des Produktes extrem kurze Verweilzeiten haben, so dass frisch eingefülltes Produkt sofort wieder abgezogen wird und im Silo nicht zwischenbehandelt und nicht entlüftet werden kann. Die beschriebenen Probleme resultieren zum einen aus apparativen Gegebenheiten, zum anderen aus den Eigenschaften des Schüttgutes (Festigkeit, Reibung). Bei der Gestaltung von Silos, Zuführtrichtern, Behältern etc. oder bei der Optimierung von Pulvern und Schüttgütern ist also zuerst das Verhalten des Schüttgutes zu bestimmen. Dieses führt dann über die Anwendung fundierter Auslegungsverfahren zu einer geometrischen Form (Trichter, Auslaufgrosse ) .
Bekannte Vorrichtungen sind daher regelmässig an die Bearbeitung einer bestimmten Art eines Schüttguts gebunden, weshalb der flexible Einsatz dieser Vorrichtungen nicht möglich ist.
Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, eine verbesserte Vorrichtung zum Trennen von Partikeln eines Schüttguts zu schaffen, die es unter Anwendung von Ultraschallenergie erlaubt, Partikel des Schüttguts voneinander zu trennen. Mittels der erfindungsgemässen Vorrichtung soll mit einfachen Mitteln eine bessere Verteilung des Schüttguts auf dem Trennelement, wie einer Trennplatte, rascher erreicht werden.
Die Partikel des Schüttguts sollen in unterschiedlichen oder ähnlichen Partikelgrössen oder in einer zumindest annähernd einheitlichen Partikelgrösse bereitgestellt werden können.
Ferner ist ein Betriebsverfahren für diese verbesserte Trennvorrichtung anzugeben, mittels dessen verschiedene Prozesse, wie Prozesse zum Beladen, Trennen, Mischen, Belüften, Entlüften, Entladen des Schüttguts, vorteilhaft durchführbar sind. Ferner sollen Prozesse für die Reinigung und Wartung der Trennvorrichtung vorteilhaft durchführbar sein.
Die Trennvorrichtung soll einfach und kompakt aufgebaut sein und mit geringem Aufwand gewartet werden können. Die Trennvorrichtung soll eine hohe Effizienz und einen entsprechend reduzierten Energiebedarf aufweisen. Vibrationen und Erschütterungen, wie sie bei bekannten Trennvorrichtungen auftreten, sollen vermieden oder wesentlich reduziert werden können, ohne dass die Effizienz der Trennvorrichtung reduziert wird.
Das Schüttgut soll innerhalb einer möglichst kurzen Weglänge zwischen einem Ausgangsort und einem Zielort bearbeitet werden können, um voluminöse Vorrichtungen zu vermeiden.
Das bearbeitete Schüttgut soll in hoher Qualität mit einem hohen Trennungsgrad bereitgestellt werden, sodass Fehldosierungen bei der Anwendung des bearbeiteten Schüttguts vermieden werden.
Während der Bearbeitung des Schüttguts sollen weitere Prozesse in einfacher Weise durchführbar sein. Insbesondere soll die Entnahme des Schüttguts in einem bestimmten Bearbeitungszustand in einfacher Weise möglich sein. Ferner soll dem Schüttgut wenigstens ein weiteres Material vorteilhaft zumischbar sein, wonach das Mischprodukt ebenfalls in der gewünschten Partikelform bereitgestellt wird. Die Bearbeitung des Schüttguts soll unter erhöhtem oder reduziertem Druck der Luft oder einer Flüssigkeit vorteilhaft möglich sein.
Die Trennvorrichtung sowie Zufuhrkanäle und/oder Abfuhrkanäle sollen weitgehend unabhängig von der Art des Schüttguts gestaltet und mit geringen Dimensionen realisiert werden können. Rückstände von Schüttgut und entsprechende Veränderungen des Querschnitts der Transportwege, insbesondere Totzonen, sollen während des Betriebs der Trennvorrichtung vermieden werden.
Durch das Betriebsverfahren sollen optimale Arbeitsparameter für die Trennvorrichtung einstellbar sein, sodass das jeweils vorliegende Schüttgut optimal aufgetrennt werden kann.
Diese Aufgabe wird mit einer Trennvorrichtung und einem Betriebsverfahren gelöst, welche die in Anspruch 1 bzw. 14 angegebenen Merkmale aufweisen. Vorteilhafte Ausgestaltungen der Erfindung sind in weiteren Ansprüchen angegeben.
Die Vorrichtung, die dem Trennen von Partikeln eines Schüttguts dient, welches an einem Ausgangsort zuführbar und an einem Zielort bearbeitet in unterschiedlichen oder ähnlichen Partikelgrössen oder in einer zumindest annähernd einheitlichen Partikelgrösse entnehmbar ist, umfasst wenigstens ein Trennelement, das eine metallene Trennplatte mit darin vorgesehenen Durchtrittsöffnungen aufweist, das mit Ultraschallenergie beaufschlagbar und dazu mit einem Ultraschallwandler verbunden ist und das von einer Haltevorrichtung gehalten ist.
Erfindungsgemäss ist vorgesehen, dass die Haltevorrichtung eine Montagewelle ist, die an einem Ende oder an beiden Enden fest oder bewegbar, insbesondere drehbar und/oder axial verschiebbar, gehalten ist und die an einem Ende oder an beiden Enden mit einem Ultraschallwandler verbunden ist, durch den Ultraschallenergie über die Montagewelle in das Trennelement einkoppelbar ist, das formbeständig ausgebildet ist. Zur Übertragung elektrischer Energie, insbesondere einer Wechselspannung von einem Ultraschallgenerator zum Ultraschallwandler ist die Montagewelle vorzugsweise mit einer Kontaktierungsvorrichtung versehen. Die Kontaktierungsvorrichtung umfasst vorzugsweise Schleifringe und daran anliegende Schleifkontakte, über die Wechselspannungsignale und/oder Gleichspannungssignale, gegebenenfalls Steuersignale, zum Ultraschallwandler oder einer gegebenenfalls dort vorgesehenen Steuervorrichtung und/oder einem mit der Montagewelle verbundenen Ultraschallwandler übertragbar sind, der seinerseits den Ultraschallwandler speist.
Der Ultraschallwandler weist vorzugsweise einen piezoelektrischen Wandler auf, der vorzugsweise mehrere piezoelektrische Elemente umfasst. Die piezoelektrischen Elemente sind vorzugsweise zwischen zwei Metallplatten, die mit der Montagewelle formschlüssig oder kraftschlüssig verbunden oder verschweisst sind, eingespannt, und durch Anschlusskontakte gemeinsam oder individuell mit dem Ultraschallgenerator verbunden. Schwingungen der piezoelektrischen Elemente werden über die Metallplatten auf die Montagewelle und weiter zum wenigstens einen Trennelement übertragen. Die Metallplatten können als Schraubenmuttern je auf einem Gewinde der Montagewelle angeordnet sein. Durch Festziehen der Schraubenmuttern werden die Piezoelementen verspannt und gleichzeitig resultiert eine optimale Verbindung zwischen Schraubenmuttern und der Montagewelle. Vorteilhaft möglich ist auch die Verwendung nur einer Schraubenmutter, mittels der die Piezoelemente gegen eine fest mit der Montagewelle verbundene Metallplatte pressbar sind.
Die Montagewelle kann aus einem oder mehreren Stücken gefertigt sein. Die Montagewelle ist einstückig oder durch eine Kupplung mit der Motorwelle des Antriebsmotors verbunden.
In einer bevorzugten Ausgestaltung sind die piezoelektrischen Elemente ringförmig ausgebildet, sodass sie die Montagewelle umschliessen können. In dieser Ausgestaltung resultiert ein kompakter Aufbau mit maximaler Wirkung. Vorzugsweise sind fünf bis zwanzig Piezoelemente vorgesehen. Die Piezoelemente sind vorzugsweise durch Kontaktelemente und gegebenenfalls Isolationsplatten voneinander getrennt.
Durch Wechselspannungen im Ultraschallbereich können die Piezoelemente zu Schwingungen angeregt werden, die auf das wenigstens eine Trennelement übertragen werden. Durch die Ultraschallschwingungen wird bewirkt, die Partikel des Schüttguts voneinander gelöst werden und durch das Trennelement hindurch treten können, falls Sie einen entsprechenden kleinen Durchmesser aufweisen. Ferner wird verhindert, dass ein fester Kontakt zwischen dem Trennelement und dem Schüttgut resultiert. Die Haftreibung und/oder Gleitreibung und somit die Reibungskräfte, die zwischen dem Trennelement und dem Schüttgut resultieren, werden somit wesentlich reduziert, sodass das Schüttgut im Fluss gehalten wird und nicht blockiert .
Mittels des erfindungsgemässen Trennelements können beliebige Arten von Schüttgut, homogenes Schüttgut oder nicht homogenes Schüttgut, sowie Schüttgut mit beliebigen Partikelgrössen bearbeitet werden. Innerhalb der Trennvorrichtung kann das Schüttgut Prozessen unterworfen werden, in denen es thermisch behandelt und/oder belüftet und/oder gereinigt und/oder in der Zusammensetzung verändert wird.
Die Trennplatte kann eine Gitterstruktur oder Drahtgeflechtstruktur aufweisen, die durch wenigstens ein Montageelement, wie eine Anschlusshülse oder durch wenigstens zwei Anschlussstäbe, die gleiche oder unterschiedliche Durchmesser aufweisen, mit der Montagewelle verbunden ist. Die Trennplatte kann z.B. von einem Ring umschlossen sein, der durch die Anschlussstäbe mit der Montagewelle oder mit einer Montagehülse, welche die Montagewelle umschliesst, verbunden sein.
Durch die Verwendung eines formbeständigen Trennelements und dessen Verbindung mit einer langgestreckten, z.B. stabförmigen oder zylindrischen Montagewelle aus Metall, in die Ultraschallenergie einkoppelbar ist, resultiert eine Trennvorrichtung mit zahlreichen Vorteilen .
Da das Trennelement von einer vorzugsweise zentral angeordneten Montagewelle gehalten und formstabil ausgebildet ist, kann auf grössere Montagevorrichtungen, insbesondere Trennelemente mit Montagerahmen, verzichtet werden. Gleichzeitig resultiert die Möglichkeit, direkter und flexibler auf das Schüttgut einzuwirken. Das Schüttgut kann wahlweise beliebigen mechanischen und akustischen Einwirkungen ausgesetzt werden, um den Trennprozess optimal zu gestalten. Der Trennprozess kann zudem mit reduziertem Energiebedarf effizienter ausgeführt werden. Über die Montagewelle kann wenigstens ein Trennelement bzw. wenigstens eine Trennplatte beliebigen axialen Bewegungen und Drehbewegungen sowie beliebigen Ultraschallwellen unterworfen werden. Sofern die Lagervorrichtungen, mittels denen die Montagewelle gehalten ist, ebenfalls drehbar gelagert sind, so können weitere Drehbewegungen ausgeführt werden.
Indem das wenigstens eine Trennelement nicht peripher, sondern durch die Montagewelle zentral gehalten wird, erfolgt eine Flexibilisierung der Trennvorrichtung. Durch die Vermeidung von Verbindungselementen, mittels denen das Trennelement peripher z.B. mit einem Gehäuse, mit Halterungen oder weiteren Montageelementen verbunden wird, können die nun vom Trennelement unabhängigen Teile mit höheren Freiheitsgraden realisiert werden.
Aufgrund der Flexibilisierung der Vorrichtung können die Eigenschaften der Trennvorrichtung wesentlich durch die Operationsparameter der Steuervorrichtung bestimmt werden, weshalb die Konstruktion der Trennvorrichtung weniger Beachtung und Aufwand erfordert. Die Trennplatte kann z.B. peripher zwischen Flansche hineinragen, die einen Abschluss z.B. gegenüber einem Gehäuse bilden und sicherstellen, dass Schüttgut nur durch das Trennelement hindurch treten kann. Grundsätzlich kann die Lagerung der Montagewelle auch durch Lagerung des Trennelements unterstützt oder ersetzt werden. Die Trennvorrichtung 1 kann mit einfachen Massnahmen bzw. der Selektion von Betriebsparametern an ein Schüttgut und die vom Anwender vorgegebenen Ziele angepasst werden. Somit kann die erfindungsgemässe Trennvorrichtung verschiedene Arten von Schüttgut optimal bearbeiten. Beispielsweise können chemische Pulver, Nahrungsmittelpartikel, Kristalle, mechanische Kleinteile und dergleichen mit derselben Trennvorrichtung bearbeitet werden. Sofern hingegen stets dasselbe Schüttgut bearbeitet wird, so empfiehlt es sich, Trennvorrichtungen mit entsprechend angepassten Dimensionen bereit zu stellen.
Die Dimensionen der Trennvorrichtung und der Trennelemente können daher um Grössenordnungen voneinander abweichen. Ebenso können die Betriebsparameter, insbesondere Drehgeschwindigkeiten drehbar gelagerter Trennelemente und Umschaltfrequenzen um Grössenordnungen voneinander abweichen.
Die Trennvorrichtung einschliesslich der Zufuhrkanäle und/oder Abfuhrkanäle kann hinsichtlich der Möglichkeit zur Einstellung wesentlich unterschiedlicher Betriebsparameter weitgehend unabhängig von der Art des Schüttguts gestaltet werden. Der Aufwand zur Herstellung der Trennvorrichtungen verlagert sich dabei vorteilhaft von der konstruktiven Ebene zur Softwareebene. Die Trennvorrichtung weist einen einfachen aber sehr flexiblen Aufbau auf, welcher die Realisierung neuer Prozesse zur Behandlung des Schüttguts erlaubt.
Das Schüttgut kann innerhalb einer kurzen Weglänge zwischen dem Ausgangsort und dem Zielort bearbeitet werden, sodass erfindungsgemässe Trennvorrichtungen, die zur Bearbeitung von Schüttgut in den genannten Industriebereichen vorgesehen sind, generell mit reduzierten Dimensionen realisiert werden können.
Durch die vorteilhaften Möglichkeiten zur Einwirkung auf das Schüttgut kann die Vereinzelung der Partikel nicht nur im Bereich des Trennelements oder der Trennelemente, sondern über den gesamten Transportweg des Schüttguts effizienter durchgeführt werden. Aufgrund der Flexibilisierung der Trennvorrichtung und der vorteilhafteren Einwirkung auf das Schüttgut werden Rückstände mit Veränderungen des Querschnitts der Transportwege, insbesondere Totzonen, vorteilhaft vermieden. Der optimale Betrieb der Trennvorrichtung kann daher über eine längere Zeit aufrechterhalten werden und der Aufwand zur Wartung der Trennvorrichtung wird wesentlich reduziert. Die Flexibilisierung der Trennvorrichtung ermöglicht zudem zumindest eine teilweise Selbstreinigung der Vorrichtung. Die Trennelemente können dazu mit den erforderlichen Geschwindigkeiten bewegt werden, um beispielsweise einen Siebüberlauf zu entfernen. In vorzugsweisen Ausgestaltungen können Reinigungsmittel eingespritzt oder eingesprüht werden (siehe Fig . 4a), dies z.B. über dieselben Kanäle, über die Arbeitsprozesse beeinflusst werden.
Die Flexibilisierung der Trennvorrichtung ermöglicht somit nicht nur die optimale Realisierung des Trennprozesses, sondern auch die Realisierung weiterer Prozesse, insbesondere von Mischprozessen und Reinigungsprozessen. Während der Bearbeitung des Schüttguts können z.B. in einfacher Weise zusätzliche Materialien, Stoffe und Medien an beliebigen Stellen bzw. an beliebigen Trennelementen zugeführt und/oder zwischenbearbeitetes Schüttgut entnommen werden.
Das Schüttgut kann auch in einer geschlossenen Kammer unter beliebigem Gasdruck, gegebenenfalls Vakuum, bearbeitet werden.
Aufgrund der vorteilhaften direkten Einwirkung auf das Schüttgut kann der Energiebedarf gesenkt werden. Vibrationen und Erschütterungen, wie sie bei bekannten Trennvorrichtungen auftreten werden wesentlich reduziert. Mit reduzierter Energie kann direkter und somit intensiver auf das Schüttgut eingewirkt werden. Vibrationen der Trennvorrichtung, die zu Erschütterungen des Gebäudes führen könnten, werden vorteilhaft vermieden.
Das bearbeitete Schüttgut kann in hoher Qualität mit einem hohen Trennungsgrad bereitgestellt werden, sodass Fehldosierungen bei der Anwendung des bearbeiteten Schüttguts vermieden werden. Wie erwähnt, können in den Arbeitsprozessen qualitative Änderungen des Schüttguts vorteilhaft vorgenommen werden. Ein gemischtes Material wird optimal verteilt in das Schüttgut integriert.
Das Trennelement bzw. die Trennplatte bildet vorzugsweise einen Rotationskörper .
In vorzugsweisen Ausgestaltungen weist die Trennplatte eine Grundstruktur auf und ist z.B. eben, konusförmig, wendelförmig, spiralförmig, wellenförmig, schneckenförmig, sägezahnförmig ausgebildet oder mit Abstufungen oder Abkantungen versehen. In einer besonders bevorzugten Ausgestaltung ist die Trennplatte kugelwellenförmig ausgebildet. In dieser Ausgestaltung können sich die Ultraschallwellen besonders vorteilhaft über die Oberfläche der Trennplatte ausbreiten.
Wenigstens eine der Trennplatten kann auch mit einer zusätzlichen dreidimensionalen Oberflächenstruktur versehen sein, die der Grundstruktur überlagert und die in das Schüttgut eingreift und dieses bewegen kann. Vorzugsweise wird eine Oberflächenstruktur in Form radial oder geneigt verlaufender Einformungen oder Ausformungen verwendet, die in regelmässigen oder unregelmässigen Abständen angeordnet sind. Die Trennplatte kann daher eine erste Grundform oder Grundstruktur aufweisen, die die gleichmässige Ausbreitung der Ultraschallwellen begünstigt und die gegebenenfalls von einer Oberflächenstruktur überlagert ist, die der mechanischen Interaktion mit dem Schüttgut dient.
Die Trennplatte kann eine einheitliche Dicke aufweisen oder sich vom Zentrum zur Peripherie z.B. in der Art einer Klinge graduell oder kontinuierlich verjüngen. In der verdünnten Peripherie können sich Schwingungen mit grösserer Amplitude ausbilden. Ansonsten werden die Abmessungen der Trennplatte in Abhängigkeit der erforderlichen Festigkeit hinsichtlich des Schüttguts sowie des Durchmessers der Trennplatte gewählt. An der Stelle, an der die Trennplatte mit der Montagewelle verbunden ist kann eine Materialdicke im Bereich von 1 mm bis 50 mm liegen. Sofern sich die Trennplatte nach aussen verjüngt, kann dort eine um das 10-100-fach reduzierte Materialdicke vorliegen. Die Durchmesser der Trennplatten können im Bereich von 10 mm bis 1000 mm oder mehr liegen. Wiederum sind die Eigenschaften, insbesondere das spezifische Gewicht des Schüttguts entscheidend.
Vorzugsweise werden Trennplatten aus Metall, welches Ultraschall leitet, wie Aluminium, Stahl, insbesondere rostfreier Stahl, Kupfer, Messing, Titan oder eine Legierung z.B. mit solchen Metallen verwendet. Vorteilhaft können auch Trennplatten verwendet werden, die mit einer widerstandsfähigen Schutzschicht, wie einer Edelmetallschicht versehen sind.
Die Trennplatte wird z.B. durch Urformen aus körnigem, pulverförmigem oder verflüssigtem Material; durch Umformen, wie Walzen, Schmieden, Biegen, Pressen oder Tiefziehen; durch thermisches Abtragen, wie Funkenerodieren, Senkerodieren, Laserschneiden; oder durch Zerspanung z.B. durch Drehen, Bohren, Fräsen, Schleifen, gefertigt.
Die Durchtrittsöffnungen in den Trennplatten können ebenfalls durch die genannten Prozesse realisiert werden. Der Durchmesser der Durchtrittsöffnungen liegt z.B. im Bereich von 1 Mikron - 1000 Mikron für pulverförmiges Schüttgut. Für Schüttgut mit grösseren mechanischen Partikeln kann der Durchmesser der Durchtrittsöffnungen im Bereich von z.B. lmm-15mm liegen. Der Durchmesser der Durchtrittsöffnungen aller Trennelemente kann gleich gross sein oder auch graduell ändern, sodass die zuerst durchlaufende Trennplatte die grössten Durchtrittsöffnungen und die zuletzt durchlaufende Trennplatte die kleinsten Durchtrittsöffnungen aufweist.
In bevorzugten Ausgestaltungen weist das Trennelement eine Zentralachse auf und ist bezüglich dieser Zentralachse rotationssymmetrisch ausgebildet. Die Montagewelle ist vorzugsweise koaxial oder vorzugsweise nur wenig exzentrisch zur Zentralachse des Trennelements ausgerichtet. Sofern die Montagewelle exzentrisch zur Zentralachse angeordnet ist, resultieren Schwingungen und Vibrationen, die den Trennprozess erleichtern. Vorzugsweise sind die Trennplatten drehbar oder verschiebbar angeordnet, sodass sie von einer koaxialen Lage in eine exzentrische Lage gedreht oder verschoben und fixiert werden können. Besonders vorteilhaft ist, dass das wenigstens eine Trennelement bei dieser Anordnung wahlweise mit einer gewünschten Umschaltfrequenz in die eine oder andere Richtung gedreht und vorzugsweise wahlweise beschleunigt werden kann .
Das Trennelement kann auf verschiedene Weise mit der Montagewelle verbunden werden. Beispielsweise umfasst die Trennplatte ein Montageelement in der Ausgestaltung einer Anschlusshülse oder wenigstens zwei Anschlussstäbe, die vorzugsweise unterschiedliche Durchmesser aufweisen. Beispielsweise sind vier Anschlussstäbe mit unterschiedlichen Durchmessern kreuzweise vorgesehen. Durch die Verwendung derartiger Anschlussstäbe kann die Einkopplung vorteilhaft, insbesondere zirkular drehend erfolgen. Stehende Wellen werden vermieden oder reduziert. Stattdessen erfolgt eine Überlagerung unterschiedlicher Wellen, wodurch die gesamte Fläche der Trennplatte aktiviert wird.
Die aus Metall gefertigte einstückige oder mehrteilige Montagewelle ist langgestreckt und vorzugsweise stabförmig oder zylinderförmig ausgebildet. Vorzugsweise weist die Montagewelle mehrere miteinander verbindbare Wellenelemente auf, von denen jedes fest oder drehbar und gegebenenfalls lösbar mit einem zugehörigen Trennelement verbunden ist. Die einzelnen Wellenelemente sind vorzugsweise formschlüssig miteinander verbindbar, miteinander verschraubt oder miteinander verschweisst . Sofern die einzelnen Wellenelemente voneinander lösbar sind, kann die Trennvorrichtung beliebig konfiguriert und an ein bestimmtes Schüttgut angepasst werden.
In besonders bevorzugten Ausgestaltungen ist die einteilige oder mehrteilige Montagewelle an einem Ende oder an beiden Enden mit einem Antriebsmotor verbunden. Durch den Antriebsmotor oder die Antriebsmotoren kann die Montagewelle oder können die Wellenelemente individuell in die eine oder andere Richtung oder abwechslungsweise in die eine und die andere Richtung um deren Längsachse angetrieben werden . Die Montagewelle wird an einem Ende oder an beiden Enden in einer Lagervorrichtung fest oder drehbar gelagert und ist vorzugsweise durch radial ausgerichtete Verbindungskörper mit einem Montagekörper, gegebenenfalls einem Förderbehälter verbunden.
Zur Realisierung verschiedener Arbeitsprozesse wird die Montagewelle mit dem wenigstens einen Trennelement vorzugsweise in einem Förderbehälter angeordnet, in dem das Schüttgut gefangen ist und in dem unterschiedliche Konditionen, wie ein Gasüberdruck oder ein Gasunterdruck bzw. ein Vakuum, ein Sprühnebel oder dergleichen und somit unterschiedliche Behandlungsprozesse realisierbar sind.
Der Förderbehälter ist dazu mit einem geöffneten oder wahlweise abschliessbaren Durchgangskanal versehen, durch den das Schüttgut vom Ausgangsort zum Zielort transportierbar ist.
Vorzugsweise weist der Förderbehälter für wenigstens eines der Trennelemente eine Austrittsöffnung auf, durch die Schüttgutanteile, wie bearbeitete bzw. abgetrennte Schüttgutanteile oder ein Überlauf, abgeführt werden können. Vorzugsweise sind die Austrittsöffnungen wahlweise abschliessbar .
In einer weiteren vorzugsweisen Ausgestaltung weist der Förderbehälter vorzugsweise für jedes der Trennelemente einen Eingangskanal und/oder einen Ausgangskanal auf, die z.B. durch röhrenförmige Elemente realisiert sind.
In vorzugsweisen Ausgestaltungen sind eine Energieversorgungsvorrichtung, die mit dem Antriebsmotor oder den Antriebsmotoren und gegebenenfalls mit einem oder mehreren Ultraschallwandlern verbunden ist, und eine Steuereinheit mit einem Steuerprogramm vorgesehen, mittels dessen der Prozess zum Trennen der Partikel des Schüttguts und gegebenenfalls weitere Prozesse, wie Reinigungsprozesse oder Wartungsprozesse steuerbar sind. Durch Einstellung der Parameter können verschiedene Prozessphasen realisiert werden. In einer Mischphase kann das Schüttgut durch kontinuierliche oder wechselseitige Drehung des wenigstens einen Trennelements über einige Umdrehungen oder einen grösseren Bruchteil einer Umdrehung von z.B. 45° - 180° grob verteilt werden. In einer Arbeitsphase kann das Schüttgut durch wechselseitige Drehung des wenigstens einen Trennelements über einen kleinen Bruchteil einer Umdrehung von z.B. 0,5° - 5° einer mechanischen Vibration unterworfen werden, welche die Partikel voneinander trennt und durch die Durchtrittsöffnungen der Trennelemente hindurch treten lässt. In einer Entladephase kann verbliebenes Schüttgut bzw. ein Siebüberlauf durch eine Drehung des wenigstens einen Trennelements mit hoher Geschwindigkeit nach aussen geschleudert und entfernt werden.
Die Parameter können über einen weiten Bereich ändern und sind nicht zuletzt auch von der Ultraschallenergie abhängig, die in die Trennelemente eingekoppelt wird.
Die Rotationsgeschwindigkeiten können im Bereich von einer bis einige 1000 Umdrehungen liegen und sind wesentlich von der Grösse, Form und dem spezifischen Gewicht der Partikel des Schüttguts und der Ausgestaltung der Trennelemente abhängig. Besonders wesentlich ist auch die Höhe der Beschleunigungen. Durch hohe Beschleunigungen über einen Bruchteil einer Umdrehung, z.B. im Bereich von 5° bis 180°, werden die Schichten des Schüttguts in der Mischphase gegeneinander verschoben und durchmischt. Dieser Effekt kann durch Einarbeitung von Oberflächenstrukturen in die Trennplatten entsprechend erhöht werden.
In der Arbeitsphase liegt das Schüttgut bereits relativ gut vermischt und zumindest teilweise aufgetrennt auf den Trennelementen. In dieser Phase erfolgt die vollständige Trennung der Schüttgutpartikel voneinander und die Förderung durch die Durchtrittsöffnungen der Trennelemente. Dazu wird die Montagewelle über geringe Drehbereiche im Bereich von beispielsweise 0.5° - 5° mit einer Umschaltfrequenz vor und zurück bewegt, die vorzugsweise im Bereich von 10 Hz - 1000 Hz oder mehr liegt. In der Arbeitsphase werden die Trennelemente daher mit mechanischen Vibrationen im Bereich von 10 Hz - 1000Hz und Ultraschallschwingungen im Bereich von typischerweise 10 kHz - 40 kHz beaufschlagt. Vorzugsweise wird die Umschaltfrequenz für die mechanischen Vibrationen während der Arbeitsphase kontinuierlich oder sprunghaft geändert. Vorzugsweise wird auch die Frequenz der Ultraschallschwingungen kontinuierlich oder sprunghaft geändert. Beispielsweise werden die Frequenzen der Umschaltfrequenz und der Ultraschallschwingungen umgetastet, d.h. stetig zwischen bestimmten, gegebenenfalls vorbestimmt oder zufällig gewählten Frequenzwerten geändert. Alternativ werden die Frequenzen der Umschaltfrequenz und der Ultraschallschwingungen kontinuierlich geändert oder je einem sogenannten Scan unterworfen, die Frequenzänderungen können dabei gegeneinander oder in dieselbe Richtung verlaufen. Möglich ist auch, dass eine der Frequenzen umgetastet und die andere einem Scan unterworfen wird.
Möglich sind ferner sporadische Wechsel von der Arbeitsphase zur Mischphase .
In der Entladephase können die Trennelemente bei hohen Umdrehungen, z.B. im Bereich von 25 bis 1000 Umdrehungen pro Sekunde von Schüttgut befreit werden. Anschliessend wird vorzugsweise eine Reinigungsflüssigkeit in die Trennvorrichtung eingebracht, z.B. gesprüht, um die Trennelemente zu reinigen. Abschliessend kann ein gasförmiges Medium, wie Luft, eingelassen werden, um die Trennvorrichtung zu trocknen. Die Trennvorrichtung kann daher nach einer Entladephase durch die Betriebssoftware in eine Reinigungsphase überführt werden, in der die Trennvorrichtung wieder in den Ausgangszustand zurückgeführt wird. Die Trennvorrichtung kann daher, insbesondere hinsichtlich dieser Selbstreinigungsfunktion, mit minimalem Wartungsaufwand betrieben werden.
In vorzugsweisen Ausgestaltungen können in der Mischphase und/oder der Arbeitsphase und/oder der Entladephase alternierende Krafteinwirkungen bzw. Vibrationen koaxial in die Montagewelle eingekoppelt werden, sodass Krafteinwirkungen auch parallel bzw. antiparallel zur Schwerkraft auf die Schüttgutpartikel einwirken können. Derartige Krafteinwirkungen mit wählbarer Frequenz können z.B. nach dem Tauchspulprinzip akustischer Lautsprecher in einfacher Weise in die Montagewelle eingekoppelt werden. Beispielsweise wird die Montagewelle elastisch bzw. vertikal verschiebbar gehalten und an der Unterseite oder Oberseite mit einem z.B. zylindrischen Magneten versehen, der in eine Spule eingetaucht ist, der ein Wechselstrom im Bereich von 5 Hz - 15 kHz zugeführt wird. Alle genannten Einwirkungen auf die Montagewelle können gleichzeitig oder abwechslungsweise oder auch nur sporadisch erfolgen.
Der Ultraschallgenerator ist zur Abgabe von Wechselspannungssignalen vorzugsweise im Frequenzbereich von vorzugsweise 15 kHz - 45 kHz vorgesehen. Vorzugsweise ist der Ultraschallgenerator zur kontinuierlichen Änderung und/oder zur Umtastung der Frequenz und/oder zur Änderung der Amplitude der der Wechselspannungssignale ausgelegt. Die Frequenz des Ausgangssignals, die im genannten Frequenzbereich liegt, wird vorzugsweise mit einer Umtastfrequenz geändert, die im Bereich von 10 Hz - 2 kHz liegt. Beispielsweise wird das Ausgangssignal des Ultraschallgenerators mit einer Umtastfrequenz von 10 Hz zehnmal pro Sekunde zwischen den Ultraschallfrequenzen von 25 kHz und 35 kHz repetitiv umgetastet. Mit der Umtastfrequenz kann auch eine ganze Sequenz von Ultraschallfrequenzen von z.B. 25 kHz, 30 kHz und 35 kHz durchlaufen werden. Anstelle der punktuellen Umtastung kann auch eine kontinuierliche Frequenzänderung vollzogen werden. Beispielsweise erfolgt mit einer Änderungsfrequenz von 10 Hz zehnmal pro Sekunde ein Scan zwischen zwei oder mehreren Ultraschallfrequenzen.
Durch die beschriebenen Änderungen der Ultraschallfrequenzen wird sichergestellt, dass an der Trennplatte keine stationären Wellenknoten auftreten und die Wirkung der Ultraschallsignale lückenlos eintritt .
Nachfolgend wird die Erfindung anhand von Zeichnungen näher erläutert. Dabei zeigt:
Fig . la eine erfindungsgemässe Trennvorrichtung 1 mit optionalen Antriebsvorrichtungen 8, 80 in elementarer Ausgestaltung mit nur einem Trennelement 3, das eine konisch geformte Trennplatte 31 mit
Durchtrittsöffnungen 30 aufweist und das von einer fest oder drehbar gelagerten Montagewelle 2 gehalten ist, an die ein Ultraschallwandler 6 angeschlossen ist, der von einem Ultraschallgenerator 70 gespeist wird;
Fig. lb die Trennvorrichtung 1 von Fig. la mit einer exemplarisch dargestellten Vorrichtung zur Versorgung des drehbar gelagerten Trennelements 3 mit Ultraschallenergie ;
Fig. 2 eine erfindungsgemässe Trennvorrichtung 1 in einem
Viertelschnitt mit drei Trennelementen 3A, 3B, 3C, welche von einer fest oder drehbar gelagerten mehrteiligen Montagewelle 2 gehalten sind, an die ein Ultraschallwandler 6 angeschlossen ist;
Fig. 3 eine erfindungsgemässe Trennvorrichtung 1 mit sechs in einem Förderbehälter 5 angeordneten Trennelementen 3A, 3B, 3C, 3D, 3E, 3F, die von einer mehrteiligen
Montagewelle 2, in die Ultraschallenergie einkoppelbar ist, drehbar gehalten sind;
Fig . 4a eine erfindungsgemässe Trennvorrichtung 1 mit sechs von einer Montagewelle 2 drehbar gehaltenen Trennelementen 3A, 3B, ... , die zusätzlich erlaubt, dem bearbeiteten
Schüttgut Material oder Gase zuzuführen und bearbeitetes Schüttgut an verschiedenen Stellen zu entnehmen;
Fig. 4b ein Teil der Trennvorrichtung 1 von Fig. 4a;
Fig. 5a eine erfindungsgemässe Trennvorrichtung 1 mit wendelförmig ausgebildeten Trennelementen 3A, ..., 3L, die mittels der zugehörigen Montagewelle 2 drehbar gelagert und mit Ultraschallenergie beaufschlagbar sind; Fig. 5b ein Teil der Trennvorrichtung 1 von Fig . 5a;
Fig . 6 die Trennvorrichtung von Fig. 2a in einer vorzugsweisen
Ausgestaltung des Trennelements 3 mit vier Anschlussstäben 321, 322, 323, 324 unterschiedlicher Dicke, mittels denen die Metallplatte 31 mit der Montagewelle 2 verbunden ist;
Fig . 7 ein Trennelement 3 mit einer kugelwellenförmig geformten Trennplatte 31, wie es in der Vorrichtung von Fig. 4 eingesetzt ist; und
Fig . 8 ein Trennelement 3 mit einer Trennplatte 31, die eine
Gitterstruktur oder einen Drahtgeflecht 319 umfasst und die von einem Ring 320 umschlossen ist, der durch Anschlussstäbe 321, 322, 323, 324 mit der Montagewelle 2 oder einer Montagewelle 32, welche die Montagewelle 2 umschliesst, verbunden ist.
Fig. 1 zeigt eine erfindungsgemässe Vorrichtung 1 zum Trennen von Partikeln eines Prozessmaterials bzw. Schüttguts S, welches an einem Ausgangsort A zuführbar und nach der Bearbeitung in der Trennvorrichtung 1 an einem Zielort B in unterschiedlichen oder ähnlichen Partikelgrössen oder in einer zumindest annähernd einheitlichen Partikelgrösse entnehmbar ist.
Die Trennvorrichtung 1 umfasst in dieser Ausgestaltung nur ein Trennelement 3 mit einer metallenen Trennplatte 31, die einen Rotationskörper bzw. einen Konus bildet, der Durchtrittsöffnungen 30 vorzugsweise gleicher Grösse aufweist. Das Trennelement 3 bzw. die konische Trennplatte 31 weist ein zentrales Montageelement 32 auf, welches von einer Montagewelle 2 fest oder drehbar und/oder axial verschiebbar gehalten ist. Die Montagewelle 2 ist mit seiner Längsachse x koaxial zur Rotationsachse des Trennelements 3 vorzugsweise parallel zur Gravitationsachse ausgerichtet. Schüttgut wird daher bevorzugt durch Gravitationskraft durch die
Trennvorrichtung 1 gefördert. Dieser Fördervorgang wird vorzugsweise durch Massnahmen begünstigt und beschleunigt, die nachstehend beschrieben sind. Das Trennelement 3 wird während der Bearbeitung zumindest phasenweise mit Ultraschallwellen, die typischerweise im Frequenzbereich von 15 kHz bis 40 kHz liegen, beaufschlagt. Dazu ist die Montagewelle 2 an der Unterseite mit einem Ultraschallwandler 6 verbunden, dem elektrische Signale 71A von einem Ultraschallgenerator 70 zuführbar sind. Der Ultraschallgenerator 70 ist vorzugsweise von einer Steuervorrichtung 9 bzw. dem darin implementierten Steuerprogramm 99 steuerbar, sodass Ultraschallfrequenzen beliebig einstellbar und änderbar sind.
Ferner kann das Trennelement 3 mechanischen Vibrationen in einem Frequenzbereich von wenigen Hertz bis z.B. 1 kHz unterworfen werden. Als erste Option ist ein Antriebsmotor 8 vorgesehen, mittels dessen die Montagewelle 2 in die eine und/oder in die andere Richtung drehbar ist. Der Drehbereich, die Beschleunigung und die Drehgeschwindigkeit sowie die Umschaltfrequenz zur Änderung der Drehrichtung sind wiederum von der Steuervorrichtung 9 bzw. dem darin implementierten Steuerprogramm 99 steuerbar. Ein Hochfrequenzvibrationsmotor, der in der erfindungsgemässen Trennvorrichtung eingesetzt werden kann, ist z.B. aus der CN105827059A bekannt.
Die Trennvorrichtung 1 kann ferner einer Vibrationsbewegung mit Krafteinwirkungen entlang der Längsachse x der Montagewelle 2 unterworfen werden. Solche Vibrationen können leicht durch Motoren erzeugt werden, deren Motorwellen exzentrisch belastet sind. Die Montagewelle 2 kann mit einem solchen Motor 80 gekoppelt werden, der wiederum von der Steuervorrichtung 9 bzw. dem darin implementierten Steuerprogramm 99 steuerbar ist. Entsprechend der Drehzahl des Motors 80 können wiederum beliebige Frequenzen der Vibration eingestellt werden.
Alternativ kann der Montagestab 2 mit einem vorzugsweise zylindrischen Magneten 28 verbunden sein, der innerhalb einer Spule 88 angeordnet ist, der von einem Frequenzgenerator 800 ein Wechselstrom zuführbar ist. Die zur Schaltung und Abschaltung sowie die Frequenz des Wechselstroms sind wiederum von der Steuervorrichtung 9 bzw. dem darin implementierten Steuerprogramm 99 steuerbar .
In vorzugsweisen Ausgestaltungen erfolgt die Steuerung der Trennvorrichtung in der Mischphase und/oder der Arbeitsphase und/oder der Entladephase unter Berücksichtigung von Sensorsignalen, die von Sensoren 95 abgegeben werden. Beispielsweise wird das auf dem Trennelement 3 aufliegende Schüttgut optisch überwacht
Die beschriebenen Optionen zum vertikalen oder rotativen Vibrieren sowie zur Einkopplung von Ultraschallenergie des Trennelements 3 sind für sich allein oder wahlweise in Kombination einsetzbar. Die Vibrationsfrequenzen und/oder die Vibrationsamplituden können gleich oder unterschiedlich sein.
Die Montagewelle 2, die als Haltevorrichtung für das Trennelement 3 dient, ist von einer Montagevorrichtung 52 und einer Lagervorrichtung 58 fest oder drehbar und/oder axial so weit verschiebbar gehalten, wie dies die Amplituden bei einer axialen Verschiebung bzw. Vibration erfordern. In dieser Ausgestaltung ist die Montagewelle 2 nur einseitig gehalten. An der Unterseite der Montagewelle 2 ist ferner der Ultraschallwandler vorzugsweise formschlüssig und kraftschlüssig montiert, vorzugsweise verschraubt, z.B. durch einen Presssitz verklemmt oder verschweisst .
Fig . lb zeigt die Trennvorrichtung 1 von Fig . la mit einer exemplarisch dargestellten Vorrichtung zur Versorgung des drehbar gelagerten Trennelements 3 mit Ultraschallenergie. Elektrische Energie wird dem Ultraschallwandler 6 vom Ultraschallgenerator 70 über ein mehradriges Kabel 71B und eine Kontaktierungsvorrichtung 4 zugeführt, welche Schleifkontakte 41, 43 aufweist, die an Schleifringen 42, 44 anliegen, die drehbar mit der Montagewelle 2 verbunden sind. Das mehraderige Kabel 71B ist mit den Schleifkontakten 41, 43 verbunden. Über die Schleifkontakte 41 werden Wechselspannungen im Frequenzbereich der Ultraschallwellen übertragen. Die korrespondierenden Schleifringe 42 sind an Verbindungskabel 77 angeschlossen, über die die Wechselspannungen zu Piezoelementen 631 oder gegebenenfalls zu einer Steuereinheit 60 übertragen werden, in der die Wechselspannungen über Schalter an die Piezoelementen 631 abgegeben werden.
Der Ultraschallwandler 6 umfasst vorzugsweise mehrere durch Kontaktelemente 64 (nur eines gezeigt) voneinander getrennte Piezoelemente 631, die je eine Transferöffnung aufweisen, durch die die Montagewelle 2 hindurch geführt ist. Die Piezoelemente 631 werden durch zwei mit dem Montagestab 2 verbundene Arretierelemente 632 zusammen gepresst, über die Ultraschallschwingungen auf die Montagewelle 2 übertragen werden. Die Arretierelemente 632 sind beispielsweise Schraubenmuttern, welche je von einem Gewinde drehbar gehalten sind, das in die Montagewelle eingearbeitet ist. Die Piezoelemente 631 können daher in einfacher Weise fixiert und über die dazwischenliegenden Kontaktelemente 64 mit elektrischen Spannungen versorgt werden.
In vorzugsweisen Ausgestaltungen ist im Ultrachallwandler 6 eine Steuereinheit 60 angeordnet, die mit der zentralen Steuervorrichtung 9 verbunden ist. Steuersignale werden über das Kabel 71B an die weiteren Schleifkontakte 43 abgegeben, die an den weiteren Schleifringen 44 anliegen. Die Steuersignale werden über Steuerleitungen 78 zur Steuereinheit 60 übertragen, welche in der Folge die Abgabe von Wechselspannungen an die Piezoelemente 631 bzw. die Anschlusskontakte 64 steuert. Die Steuereinheit 60 kann auch einen Ultraschallgenerator umfassen, dem über die Kontaktierungsvorrichtung 4 eine Versorgungsspannung zuführbar ist und der zur Abgabe der Ultraschallsignale vorgesehen ist. Der gezeigte Ultraschallgenerator 70 ist in diesem Fall in die Steuereinheit 60 integriert.
Die Figuren la und lb illustrieren die signifikanten Vorteile der erfindungsgemässen Trennvorrichtung 1. Es ist ersichtlich, dass mit minimalem konstruktivem Aufwand über die Montagewelle 2 auf unterschiedliche Weise mechanisch und/oder mit Ultraschallenergie auf das Trennelement 3 eingewirkt werden kann. Mechanische und akustische Schwingungen, Drehungen sowie axiale Verschiebungen können mit einfachen Mitteln auf die Montagewelle 2 übertragen werden, die ihrerseits in einfacher Weise drehbar und/oder verschiebbar gelagert werden kann. Die auf die Montagewelle 2 einwirkenden mechanischen Bewegungen und/oder Ultraschallwellen können von der Montagewelle 2 zentral an das wenigstens eine Trennelement 3 übertragen werden.
Besonders vorteilhaft ist auch, dass die in einer einfachen Ausgestaltung gezeigte Trennvorrichtung von Fig . la und lb in einfacher Weise aufgebaut werden kann.
Fig. 2 zeigt eine erfindungsgemässe Trennvorrichtung 1 mit einer Montagewelle 2, die drei Wellenelemente 2A, 2B, 2C umfasst, von denen jedes mit einem Trennelement 3A; 3B; 3C verbunden ist. Die Wellenelemente 2A, 2B, 2C umfassen beidseits Kopplungselemente 21, 22, die ineinander einschiebbar oder miteinander verschraubbar sind. Die Montagewelle 2 kann somit beliebig erweitert werden, sodass eine Trennvorrichtung 1 mit der gewünschten Anzahl von Trennelementen 3A, 3B, 3C resultiert. Die Wellenelemente 2A, 2B, 2C sind vorzugsweise identisch ausgebildet, können sich in ihren Dimensionen, insbesondere in der Länge, aber auch unterscheiden, so z.B., um Trennelemente 3 unterschiedlicher Grösse halten zu können. Mit dem untersten Wellenelement 2C ist ein Ultraschallwandler 6 formschlüssig verbunden, gegebenenfalls verschraubt. Montagewellen 2 aller erfindungsgemässen Trennvorrichtungen 1 können somit entweder einstückig ausgebildet sein oder aus mehreren Wellenelementen bestehen .
Die Trennelemente 3A, 3B, 3C weisen Öffnungen unterschiedlicher Grösse auf, sodass einzelne Partikel nicht nur voneinander, sondern auch in der Grösse separiert bzw. auf jedem der Trennelemente gruppiert werden können. Nach der Arbeitsphase, liegen die Partikel des Schüttguts in unterschiedlichen Grössen voneinander getrennt auf den Trennelementen 3A, 3B, 3C zur Entnahme bereit. In einer Entladephase können die Trennelemente 3A, 3B, 3C gedreht werden, um die voneinander separierten Schüttgutanteile mittels Zentrifugalkraft durch Austrittskanäle 5A, 5B und 5C wegzuführen.
Die einzelnen Trennelemente 3A, 3B, 3C weisen Durchtrittsöffnungen 30 unterschiedlicher Grösse auf. Dies ist typischerweise vorgesehen, falls Partikel unterschiedlicher Grösse voneinander getrennt werden sollen. Durchtrittsöffnungen 30 unterschiedlicher Grösse können jedoch auch dann vorgesehen werden, wenn Klumpen eines Schüttguts in oberen Trennelementen 3A, 3B zerkleinert und erst abschliessend die einzelnen gleich grossen Partikel voneinander getrennt werden.
Fig . 3 zeigt eine erfindungsgemässe Trennvorrichtung 1 mit sechs in einem Förderbehälter 5 angeordneten Trennelementen 3A, ..., 3F, die von einer mehrteiligen Montagewelle 2, die mit ihrer Längsachse x parallel zur Förderachse der Trennvorrichtung 1 ausgerichtet ist. In dieser vorzugsweisen Ausgestaltung weist die Montagewelle 2 ein unteres Wellenelement 2A und ein oberes Wellenelement 2B auf, die an den einander zugewandten Enden durch ein Kopplungselement 26, gegebenenfalls eine Kopplungshülse, koaxial zueinander ausgerichtet und gegeneinander drehbar miteinander verbunden sind und die an den voneinander abgewandten Enden in Lagervorrichtungen 58A; 58B drehbar gelagert sind. In den Lagervorrichtungen 58A, 58B sind die von den Wellenelementen 2A, 2B gehaltenen Ultraschallwandler 6A, 6B integriert. Anschliessend an die Lagervorrichtungen 58A, 58B sind die Kontaktierungsvorrichtungen 4A, 4B, die an wenigstens einen Ultraschallgenerator 70 angeschlossen sind, mit den Wellenelementen 2A, 2B verbunden, die weiter über eine zugehörige Kupplung 85A bzw. 85B je mit einem zugehörigen Antriebsmotor 8A bzw. 8B verbunden sind .
Die unteren drei Trennelemente 3A, 3B, 3C können daher, gesteuert durch das Steuerprogramm 99, vom unteren Antriebsmotor 8A gedreht werden, während die oberen drei Trennelemente 3D, 3E, 3F, gesteuert durch das Steuerprogramm 99, vom oberen Antriebsmotor 8B gedreht werden können. Ebenso können Steuersignale und Wechselspannungssignale individuell über die untere und obere Kontaktierungsvorrichtung 4A bzw. 4B zum unteren und oberen Ultraschallwandler 6A, 6B übertragen werden.
Die gezeigte Trennvorrichtung 1 umfasst daher zwei kleinere Trennvorrichtungen 1', 1'' mit je drei Trennelementen 3A, 3B, 3C bzw. 3D, 3E, 3F. Die untere Trennvorrichtung 1' mit den drei Trennelementen 3A, 3B, 3C und die obere Trennvorrichtung 1 ' ' mit den drei Trennelementen 3D, 3E, 3F können autonom in derselben oder in unterschiedlichen Prozessphasen betrieben werden. Während einer ersten Prozessphase kann in der oberen Trennvorrichtung 1 ' ' ein Programm der Arbeitsphase angewendet wird, während in der unteren Trennvorrichtung 1' ein Programm der Mischphase angewendet wird. In einer zweiten Prozessphase kann in der unteren und der oberen Trennvorrichtung 1', 1'' ein Programm der Arbeitsphase angewendet werden. In einer dritten Prozessphase kann in der oberen Trennvorrichtung 1 ' ' ein Programm der Entladephase angewendet werden, während die untere Trennvorrichtung 1 ' noch immer in der Arbeitsphase betrieben wird.
Die Montagewelle 2 mit den sechs Trennelementen 3A, ..., 3F ist in einem oben und unten geöffneten Förderbehälter 5 angeordnet, der einen Förderkanal 50 aufweist, durch den das Schüttgut S mittels Schwerkraft transportiert wird. Der Förderbehälter 5 weist in der Seitenwand zusätzlich Austrittsöffnungen oder Austrittskanäle 50A, ..., 50F auf, durch die je ein Überlauf oder ein Zwischenprodukt Sa, Sb, Sc, Sd, Se, Sf des Schüttguts S von den zugeordneten Trennelementen 3A, ..., 3F nach aussen gefördert und weggeführt werden kann, wie dies symbolisch gezeigt ist. In der Entladephase wird die Rotationsgeschwindigkeit der Trennelemente 3A, ..., 3F derart erhöht, dass die Zwischenprodukte Sa, Sb, Sc, Sd, Se, Sf durch Zentrifugalkraft weggeführt werden.
Die gezeigte Energieversorgungsvorrichtung 90 wird von der Steuereinheit 9 angesteuert, um Energie für die Motoren 8A, 8B und gegebenenfalls den Ultraschallgenerator 70 abzugeben, der auch in die Energieversorgungsvorrichtung 90 integriert werden kann. Fig . 4a zeigt eine erfindungsgemässe Trennvorrichtung 1 mit sechs von einer Montagewelle 2 drehbar gehaltenen Trennelementen 3A, ..., 3F die eine ebene Kugelwellenform aufweist. Eine Kugelwellenform ist eine Wellenform, die im Wasser resultiert, nachdem ein Stein hineingeworfen wurde. Die Kugelwellenform begünstigt eine optimale Verteilung der Ultraschallwellen, sodass die Aufteilung des Schüttguts besonders effizient gelingt. Die Trennelemente 3A, 3B, ... weisen vorzugsweise eine oder mehrere Resonanzfrequenzen auf, an denen mit minimaler Ultraschallenergie maximale Schwingungen erzeugt werden. Insbesondere in der Arbeitsphase wird vorzugsweise die Frequenz der Ultraschallwellen zwischen den Resonanzfrequenzen umgetastet, sodass möglichst intensive und sich ändernde Einflüsse auf das Schüttgut resultieren und dieses rasch in seine Partikel aufgetrennt wird.
Die Trennelemente 3A, ..., 3F sind durch eine Montagewelle 2 miteinander verbunden, die einstückig ausgebildet ist oder auch mehrere Wellenelemente aufweisen kann, die fest miteinander verbunden sind. Die Montagewelle 2 ist über eine Kupplung 85B mit einem oberen Antriebsmotor 8B verbunden, dem Steuersignale 81B von der Steuereinheit 9 oder einer damit verbundenen Energieversorgungsvorrichtung 90 zuführbar sind. Die Montagewelle 2 ist mit dem oberen Ultraschallwandler 6b in einer oberen Lagervorrichtung 58 drehbar gehalten und praktisch aufgehängt . Der Förderbehälter 5 ist z.B. mittels einer Halterung am Boden, der Wand oder Decke eines Gebäudes befestigt.
An der Unterseite der Trennvorrichtung 1, unterhalb des untersten Trennelements 3F, ist ein Abschlusskonus 55 vorgesehen, in dem die bis zuletzt bearbeiteten Partikel des Schüttguts gesammelt werden.
Der Förderbehälter 5 weist für jedes der Trennelemente 3A, ..., 3F einen röhrenförmigen Eingangskanal 500A, ..., 500F und einen Ausgangskanal 501A, ..., 501F auf. Durch die Eingangskanäle 500A, ..., 500F kann dem Schüttgut vorzugsweise wenigstens ein pulverförmiges Festmaterial, wenigstens eine Flüssigkeit oder wenigstens ein gasförmiges Medium zugeführt werden. Durch die Ausgangskanäle 501A, ..., 501F kann Material von den einzelnen Trennelementen 3A, ..., 3F bzw. aus dem Abschlusskonus 55 entnommen werden.
Der Förderbehälter 5 in der vorliegenden Form ist vorzugsweise dicht abgeschlossen, sodass die Bearbeitung des Schüttguts unter Überdruck oder Unterdrück durchführbar ist. Schüttgut oder Schüttgutkomponenten können durch Eingangsrohre 5S1, 5S2 zugeführt werden. Das bearbeitete Schüttgut kann durch eines oder zwei Ausgangsrohre 5X, 5Y entnommen werden.
Die gezeigte Ausgestaltung der Trennvorrichtung 1 erlaubt somit vielfältige Zwischenbehandlungen des Schüttguts vorzunehmen und dieses in einfacher Weise zu belüften oder zu entlüften.
Auf der Ebene jedes Trennelements 3A, ..., 3F können daher beliebige Mischprozesse durchgeführt werden, um ein bestimmtes Mischprodukt zu erreichen oder um die Trennprozesse auf dieser Ebene zu beschleunigen .
Fig . 4b zeigt einen Teil der Trennvorrichtung 1 von Fig . 4a in vergrösserter Darstellung. Die Ausgangskanäle 501A, ..., 501F sind, ebenso wie die Eingangskanäle 500A, ..., 500F frontseitig schräg angeschnitten. Vorteilhaft sind auch andere Formen einsetzbar, z.B. zur Seite gerichtete Schaufelformen, bei denen Material leicht erfasst und abtransportiert, gegebenenfalls abgesaugt werden kann.
Fig. 5a zeigt eine erfindungsgemässe Trennvorrichtung 1 mit wendelförmig ausgebildeten Trennelementen 3A, ..., 3L, die mittels der zugehörigen Montagewelle 2 drehbar gelagert und mit Ultraschallenergie beaufschlagbar sind. Die Trennelemente 3A, ..., 3L sind paarweise gegeneinander gerichtet und vertikal gegeneinander verschoben. Möglich ist auch eine Anordnung, bei der die Trennelemente 3A, ..., 3L durchgehend in derselben Richtung wendelförmig oder schneckenförmig verlaufen.
Bei dieser Trennvorrichtung 1 durchlaufen alle Partikel des Schüttguts den gesamten Förderbehälter 5 und werden vollständig voneinander getrennt. Diese Trennvorrichtung 1 wird vorzugsweise dann verwendet, wenn die Partikel des Schüttguts voneinander getrennt, aber nicht in ihrer Grösse gruppiert werden sollen.
Fig . 5b zeigt einen Teil der Trennvorrichtung 1 von Fig . 5a in vergrösserter Darstellung.
Fig. 6 zeigt die Trennvorrichtung von Fig. 2a in einer vorzugsweisen Ausgestaltung mit vier Anschlussstäben 321, 322, 323, 324 unterschiedlicher Dicke, mittels denen die Metallplatte 31 mit der Montagewelle 2 verbunden ist. Die Änderung der Durchmesser der Anschlussstäbe 321, 322, 323, 324 erfolgt entsprechend einer arithmetischen oder entsprechend einer geometrischen Reihe. Auf diese Weise kann die Einkopplung der Ultraschallenergie vorteilhaft beeinflusst werden. Insbesondere können Wellenbilder erzeugt werden, in denen Wellenknoten reduziert sind. Symbolisch, durch Striche ist eine Oberflächenstruktur in der Ausgestaltung radialer Wellen eingezeichnet, mittels denen eine Interaktion mit dem Schüttgut erfolgen soll, um dieses zu bewegen und zu verteilen.
Fig. 7 zeigt ein Trennelement 3, wie es in der Vorrichtung von Fig. 4 verwendet wird. Das Trennelement 3 bzw. die Trennplatte 31 ist kugelwellenförmig ausgebildet.
Fig. 8 zeigt ein Trennelement 3 mit einer Trennplatte 31, die eine Gitterstruktur oder einen Drahtgeflecht 319 umfasst und die von einem Ring 320 umschlossen ist, der durch Anschlussstäbe 321, 322, 323, 324 mit der Montagewelle 2 oder einer Montagewelle 32, welche die Montagewelle 2 umschliesst, verbunden ist. Auch dieses Trennelement 3 kann in allen erfindungsgemässen Vorrichtungen 1 eingesetzt werden. Trennplatte 31 kann konisch, wie in Fig. 6, oder eben oder gewellt, wie in Fig. 7, sein.
Wesentlich ist, dass die Trennelemente 3 derart formbeständig sind, dass deren Funktion unter Last erhalten bleibt und das Siebgut oder Schüttgut sicher gehalten wird.

Claims

Patentansprüche
1. Vorrichtung (1) zum Trennen von Partikeln eines Schüttguts, welches an einem Ausgangsort zuführbar und an einem Zielort bearbeitet in unterschiedlichen oder ähnlichen Partikelgrössen oder in einer zumindest annähernd einheitlichen Partikelgrösse entnehmbar ist, mit wenigstens einem Trennelement (3), das eine metallene Trennplatte (31) mit darin vorgesehenen Durchtrittsöffnungen (30) aufweist, das mit Ultraschallenergie beaufschlagbar und dazu mit einem Ultraschallwandler (6) verbunden ist und das von einer Haltevorrichtung (2) gehalten ist, dadurch gekennzeichnet, dass die Haltevorrichtung (2) eine Montagewelle (2) ist, die an einem Ende oder an beiden Enden fest oder bewegbar gehalten ist und die an einem Ende oder an beiden Enden mit einem Ultraschallwandler (6) verbunden ist, durch den Ultraschallenergie über die Montagewelle (2) in das Trennelement (3) einkoppelbar ist, das formbeständig ausgebildet ist, wobei die Montagewelle (2) drehbar gehalten ist oder dass die Montagewelle (2) entlang ihrer Längsachse verschiebbar oder dass die Montagewelle (2) drehbar und entlang ihrer Längsachse verschiebbar gehalten ist.
2. Trennvorrichtung (1) nach Anspruch 1, dadurch gekennzeichnet, dass die Trennplatte (31) eine ebene oder gekrümmte Oberfläche aufweist und/oder dass die Trennplatte (31) eine konstante oder eine sich zur Aussenseite hin reduzierende Dicke aufweist.
3. Trennvorrichtung (1) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Trennplatte (31) eine Gitterstruktur oder Drahtgeflechtstruktur (319) umfasst, die durch wenigstens ein Montageelement (32, 320), wie eine Anschlusshülse (32) oder durch wenigstens zwei Anschlussstäbe (321, 322), die gleiche oder unterschiedliche Durchmesser aufweisen, mit der Montagewelle (2) verbunden ist.
4. Trennvorrichtung (1) nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, dass das wenigstens eine Trennelement (3) eine Zentralachse (x) aufweist und bezüglich dieser Zentralachse (x) rotationssymmetrisch ausgebildet ist und dass die Montagewelle (2) zumindest annähernd koaxial zur Zentralachse (x) ausgerichtet ist.
5. Trennvorrichtung (1) nach einem der Ansprüche 1 - 4, dadurch gekennzeichnet, dass die Trennplatte (31) des wenigstens einen Trennelements (3) eine Grundstruktur, wie eine Konusform, Wellenform oder Kugelwellenform, Wendelform, Spiralform und gegebenenfalls eine der Grundstruktur überlagerte
Oberflächenstruktur aufweist, die zur mechanischen Interaktion mit dem Schüttgut vorgesehen ist.
6. Trennvorrichtung (1) nach einem der Ansprüche 1 - 5, dadurch gekennzeichnet, dass die Trennplatte (31) durch wenigstens ein Montageelement (32), wie eine Anschlusshülse oder durch wenigstens zwei Anschlussstäbe (321, 322), die gleiche oder unterschiedliche Durchmesser aufweisen, mit der Montagewelle (2) verbunden ist.
7. Trennvorrichtung (1) nach Anspruch 6, dadurch gekennzeichnet, dass die Montagewelle (2) mehrere Wellenelemente (2A, 2B, 2B) aufweist, von denen jedes fest oder lösbar mit einem der
Trennelemente (3A, 3B, 3B) verbunden ist und dass die
Wellenelemente (2A, 2B, 2B) vorzugsweise formschlüssig miteinander verbunden, drehbar miteinander verbunden, miteinander verschraubt oder miteinander verschweisst sind.
8. Trennvorrichtung (1) nach einem der Ansprüche 1 - 7, dadurch gekennzeichnet, dass die Montagewelle (2) an einem Ende oder an beiden Enden mit einem Antriebsmotor (8A; 8B) verbunden ist, durch den die Montagewelle (2) oder zwei Wellenelemente (2A, 2B) der Montagewelle (2) individuell in die eine oder andere Richtung oder abwechslungsweise in die eine und die andere Richtung um deren Längsachse antreibbar ist.
9. Trennvorrichtung (1) nach einem der Ansprüche 1 - 8, dadurch gekennzeichnet, dass die Montagewelle (2) mit einer Kontaktierungsvorrichtung (4) mit Schleifringen (42; 44) und
Schleifkontakten (41; 43) versehen ist, über die
Wechselspannungsignale und/oder Gleichspannungssignale, gegebenenfalls Steuersignale zum Ultraschallwandler (6) übertragbar sind, der vorzugsweise einen piezoelektrischen Wandler (61) mit wenigstens einem piezoelektrischen Element (611) umfasst, dem vom Ultraschallgenerator (70) Wechselspannungsignale mit einer konstanten oder variablen Frequenz vorzugsweise im Frequenzbereich von 20 kHz bis 45 kHz zuführbar sind.
10. Verdichtungsvorrichtung (1) nach Anspruch 9, dadurch gekennzeichnet, dass die vorzugsweise ringförmig ausgebildeten piezoelektrischen Elemente (631) zwischen zwei Metallelementen oder Metallplatten (632), die mit der Montagewelle (2) formschlüssig, schraubbar, kraftschlüssig oder einstückig verbunden sind, eingespannt sind, und durch Anschlusskontakte (64) und die Kontaktierungsvorrichtung (4) mit dem
Ultraschallgenerator (70) verbunden sind.
11. Trennvorrichtung (1) nach einer Ansprüche 1 - 10, dadurch gekennzeichnet, dass die Montagewelle (2) mit dem wenigstens einen damit verbundenen Trennelement (3) in einem Förderbehälter (5) angeordnet ist, der einen offenen oder abschliessbaren Durchgangskanal (50) aufweist, durch den das Schüttgut vom Ausgangsort zum Zielort transportierbar ist.
12. Trennvorrichtung (1) nach Anspruch 11, dadurch gekennzeichnet, dass der Förderbehälter (5) für wenigstens eines der
Trennelemente (3A, 3B, 3C) eine Austrittsöffnung (50A, 50B, 50C) aufweist und/oder dass der Förderbehälter (5) vorzugsweise für jedes der Trennelemente (3A, 3B, 3C) einen Eingangskanal
(500A, 500B, 500C) und/oder einen Ausgangskanal (501A, 501B,
501C) aufweist.
13. Trennvorrichtung (1) nach einem der Ansprüche 8 - 12, dadurch gekennzeichnet, dass eine Energieversorgungsvorrichtung (90), die mit dem Antriebsmotor (8A) oder den Antriebsmotoren (8A, 8B) verbunden ist, und eine Steuereinheit (9) mit einem Steuerprogramm, mittels dessen der Prozess zum Trennen der Partikel des Schüttguts steuerbar ist, vorgesehen sind.
14. Betriebsverfahren zur Steuerung der Trennvorrichtung (1) nach einem der Ansprüche 1 - 13, dadurch gekennzeichnet, dass der
Antriebsmotor (8A) oder die Antriebsmotoren (8A, 8B) derart steuerbar sind, dass die Montagewelle (2) in einer Mischphase mit einer Mischgeschwindigkeit um den Bruchteil einer Umdrehung entsprechend einer Umschaltfrequenz in die eine und wieder in die andere Richtung gedreht wird, oder dass die Montagewelle (2) in einer Entladephase mit einer Entladegeschwindigkeit um ein Mehrfaches einer Umdrehung in die eine oder andere Richtung gedreht wird, wobei die Mischgeschwindigkeit und die Umschaltfrequenz derart gewählt werden, dass das Schüttgut vermischt wird, und dass die Entladegeschwindigkeit derart gewählt wird, dass verbliebenes Schüttgut durch
Zentrifugalkraft vom wenigstens einen Trennelement (3) entfernt wird .
15. Betriebsverfahren zur Steuerung der Trennvorrichtung (1) nach
Anspruch 14, dadurch gekennzeichnet, dass in der Mischphase Schüttgut von wenigstens einem der Trennelemente (3) entnommen wird oder dass in der Mischphase Zusatzmaterialien zu wenigstens einem der Trennelemente (3) hinzugefügt werden.
PCT/EP2020/071701 2019-07-31 2020-07-31 Trennvorrichtung und betriebsverfahren WO2021019087A1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP20746234.2A EP4003613B1 (de) 2019-07-31 2020-07-31 Trennvorrichtung und betriebsverfahren
JP2022506370A JP2022543031A (ja) 2019-07-31 2020-07-31 分離デバイス及び動作方法
BR112022001489A BR112022001489A2 (pt) 2019-07-31 2020-07-31 Dispositivo de separação e método de operação
CA3145588A CA3145588A1 (en) 2019-07-31 2020-07-31 Separation device and method of operation
CN202080067463.3A CN114521157B (zh) 2019-07-31 2020-07-31 分离装置和操作方法
AU2020319853A AU2020319853A1 (en) 2019-07-31 2020-07-31 Separating device and method of operation
US17/631,326 US11786936B2 (en) 2019-07-31 2020-07-31 Separation device and method of operation

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP19189382.5 2019-07-31
EP19189382 2019-07-31
EP19194810.8A EP3771500A1 (de) 2019-07-31 2019-09-01 Trennvorrichtung und betriebsverfahren
EP19194810.8 2019-09-01

Publications (1)

Publication Number Publication Date
WO2021019087A1 true WO2021019087A1 (de) 2021-02-04

Family

ID=67514402

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2020/071701 WO2021019087A1 (de) 2019-07-31 2020-07-31 Trennvorrichtung und betriebsverfahren

Country Status (8)

Country Link
US (1) US11786936B2 (de)
EP (2) EP3771500A1 (de)
JP (1) JP2022543031A (de)
CN (1) CN114521157B (de)
AU (1) AU2020319853A1 (de)
BR (1) BR112022001489A2 (de)
CA (1) CA3145588A1 (de)
WO (1) WO2021019087A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113714092A (zh) * 2021-09-13 2021-11-30 合肥奥博特自动化设备有限公司 智能矿石分选机除尘装置
WO2023061847A1 (de) * 2021-10-12 2023-04-20 Hyperion Verwaltung Gmbh Verfahren und vorrichtung zum recyceln von polyurethan-schotter-verbünden

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3771500A1 (de) * 2019-07-31 2021-02-03 A O Ideas GmbH Trennvorrichtung und betriebsverfahren
CN113770024A (zh) * 2021-09-14 2021-12-10 广东邦普循环科技有限公司 一种超声波振动筛
CN115228738B (zh) * 2022-07-26 2023-12-08 晏谊 一种富硒麦芽粉的精细化筛分装置及筛分方法
CN116587480B (zh) * 2023-07-17 2023-09-15 山西宏辉新材料科技有限公司 一种橡胶颗粒多级筛分装置
CN116921214B (zh) * 2023-09-12 2023-11-17 壶关县耕耘种养专业合作社 一种动物饲料加工用筛分装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0943374A2 (de) 1998-03-18 1999-09-22 Gerald Kainz Taumelsiebmaschine
CN2435159Y (zh) * 2000-08-09 2001-06-20 北京有色金属研究总院 超声振动筛分机
US20100124716A1 (en) * 2008-11-17 2010-05-20 Richo Company, Ltd. Method of manufacturing toner, toner, screening device, and method of recycling toner
DE102009015352A1 (de) * 2009-03-27 2010-09-30 Sittel, Jürgen Vorrichtung zum Aussortieren von fehlerhaften, zylindrischen Medikamentenkapseln
DE4448017B4 (de) 1993-05-26 2011-05-05 Telsonic Ag Vorrichtung und Verfahren zum Sieben,Klassieren, Sichten, Filtern oder Sortieren von Stoffen
JP2011245446A (ja) 2010-05-28 2011-12-08 Tokyo Seifunki Seisakusho:Kk 篩装置
CN105827059A (zh) 2016-05-13 2016-08-03 陈浩骏 微型高频振动电机
WO2018219840A1 (de) 2017-05-29 2018-12-06 A O Ideas Gmbh Siebvorrichtung und betriebsverfahren

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2312829A (en) * 1940-01-03 1943-03-02 Battelle Memorial Institute Method and apparatus for separating liquids from solids
US2950819A (en) * 1956-06-18 1960-08-30 State Steel Products Inc Gyratory separator
GB1270971A (en) * 1968-04-15 1972-04-19 Nippon Steel Corp Method and apparatus for filtering or sifting out fine particles by utilizing supersonic vibration
US3481468A (en) * 1968-09-03 1969-12-02 Gilson Screen Co Gyratory and jarring sieve shake
DE3020211A1 (de) * 1980-05-28 1981-12-03 Krauss-Maffei AG, 8000 München Verfahren zum entwaessern von in suspensionen enthaltenen farbstoffen
US5149424A (en) * 1991-03-29 1992-09-22 Lundquist Lynn C Centrifuge apparatus for residual liquid waste removal from recyclable container material
DE4418175C5 (de) * 1993-05-26 2006-02-16 Telsonic Ag Vorrichtung und Verfahren zum Sieben, Klassieren, Sichten, Filtern oder Sortieren von Stoffen
CN101279318B (zh) * 2007-04-06 2011-01-26 广州市新栋力超声电子设备有限公司 一种超声弯曲振动装置
CN103999483B (zh) * 2012-04-19 2017-03-01 奥林巴斯株式会社 超声波产生装置的制造方法及超声波产生装置的组装系统
CN206356243U (zh) * 2016-12-07 2017-07-28 万年贡集团有限公司 一种可防止筛网孔洞堵塞的白米分筛机
EP3771500A1 (de) * 2019-07-31 2021-02-03 A O Ideas GmbH Trennvorrichtung und betriebsverfahren

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4448017B4 (de) 1993-05-26 2011-05-05 Telsonic Ag Vorrichtung und Verfahren zum Sieben,Klassieren, Sichten, Filtern oder Sortieren von Stoffen
EP0943374A2 (de) 1998-03-18 1999-09-22 Gerald Kainz Taumelsiebmaschine
CN2435159Y (zh) * 2000-08-09 2001-06-20 北京有色金属研究总院 超声振动筛分机
US20100124716A1 (en) * 2008-11-17 2010-05-20 Richo Company, Ltd. Method of manufacturing toner, toner, screening device, and method of recycling toner
DE102009015352A1 (de) * 2009-03-27 2010-09-30 Sittel, Jürgen Vorrichtung zum Aussortieren von fehlerhaften, zylindrischen Medikamentenkapseln
JP2011245446A (ja) 2010-05-28 2011-12-08 Tokyo Seifunki Seisakusho:Kk 篩装置
CN105827059A (zh) 2016-05-13 2016-08-03 陈浩骏 微型高频振动电机
WO2018219840A1 (de) 2017-05-29 2018-12-06 A O Ideas Gmbh Siebvorrichtung und betriebsverfahren

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113714092A (zh) * 2021-09-13 2021-11-30 合肥奥博特自动化设备有限公司 智能矿石分选机除尘装置
CN113714092B (zh) * 2021-09-13 2023-03-14 合肥奥博特自动化设备有限公司 智能矿石分选机除尘装置
WO2023061847A1 (de) * 2021-10-12 2023-04-20 Hyperion Verwaltung Gmbh Verfahren und vorrichtung zum recyceln von polyurethan-schotter-verbünden

Also Published As

Publication number Publication date
CN114521157A (zh) 2022-05-20
CA3145588A1 (en) 2021-02-04
EP4003613B1 (de) 2023-09-06
CN114521157B (zh) 2023-10-20
EP4003613A1 (de) 2022-06-01
AU2020319853A1 (en) 2022-03-03
US20220258207A1 (en) 2022-08-18
EP4003613C0 (de) 2023-09-06
EP3771500A1 (de) 2021-02-03
US11786936B2 (en) 2023-10-17
JP2022543031A (ja) 2022-10-07
BR112022001489A2 (pt) 2022-06-07

Similar Documents

Publication Publication Date Title
EP4003613B1 (de) Trennvorrichtung und betriebsverfahren
WO2002020182A1 (de) Vorrichtung und verfahren zum sieben, klassieren, sichten, filtern oder sortieren von stoffen
DE102017003699A1 (de) Siebeinrichtung mit Zuführeinrichtung, Fördereinrichtung und Förderverfahren
EP1468744B1 (de) Schubzentrifuge mit rotierbarem Trichter zur Vorbeschleunigung des Gemisches
EP3785813B1 (de) Schüttgutreinigungsvorrichtung mit einem hohlen tragrahmen
JP2014050798A (ja) 回転式圧力篩い処理装置
DE7214240U (de) Schwingmuehle zum mahlen homogenisieren und vermengen von feststoffen chemischen produkten und deren ausgangsstoffe
DE102011119615A1 (de) Klumpenbrecher und Verfahren zum Brechen von in einem Schüttgutstrom enthaltenen Klumpen
DE2753160A1 (de) Vibrations-antriebseinheit
EP2785462B1 (de) Vorrichtung und verfahren zum aufbereiten von materialien
DE1807711A1 (de) Vibrations-Siebmaschine
DE3839607A1 (de) Verfahren und vorrichtung zum trockensieben
DE3804190A1 (de) Vorrichtung zum klassieren eines stroms von partikeln und verwendung der vorrichtung
EP1468742B1 (de) Mehrstufige Schubzentrifuge
JP6235114B2 (ja) 回転式圧力篩い処理装置
EP4247568A1 (de) Siebwerkzeug und siebvorrichtung
DE102018113761B4 (de) Silo mit Brückenzerstörungsvorrichtung
DE102022201991B3 (de) Vorrichtung und Verfahren zum Sieben
WO2021255132A1 (de) Transportvorrichtung mit einem ultraschallgenerator und betriebsverfahren
US448189A (en) Separator
CH450366A (de) Verfahren und Vorrichtung zur kontinuierlichen Herstellung von pulverförmigen Aufsprüh- und Sprühmischprodukten
CN116747955A (zh) 一种中药药物碾磨机
EP1516680A1 (de) Anordnung und Verfahren zum Sieben oder Sortieren von Siebgut
DE1273962B (de) Siebmaschine mit einem in einer Siebkammer angeordneten, in Schwingungen versetzbaren zylindrischen Sieb
DE2701010B2 (de) Vorrichtung zum Dosieren von körnigem Gut für Strahlmittelbehandlungsanlagen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20746234

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3145588

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2022506370

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022001489

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2020319853

Country of ref document: AU

Date of ref document: 20200731

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020746234

Country of ref document: EP

Effective date: 20220228

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112022001489

Country of ref document: BR

Free format text: APRESENTAR, EM ATE 60 (SESSENTA) DIAS, A TRADUCAO SIMPLES DA FOLHA DE ROSTO DA CERTIDAO DE DEPOSITO DAS PRIORIDADES EP 19189382.5 DE 31/07/2019 E EP 19194810.8 DE 01/09/2019 OU DECLARACAO CONTENDO, OBRIGATORIAMENTE, TODOS OS DADOS IDENTIFICADORES DESTAS CONFORME O ART. 15 DA PORTARIA 39/2021. O DOCUMENTO APRESENTADO NAO ESTA TRADUZIDO E A DECLARACAO APRESENTADA NAO POSSUI TODOS OS DADOS IDENTIFICADORES NECESSARIOS.

ENP Entry into the national phase

Ref document number: 112022001489

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220126