WO2021018808A1 - Dispositif lumineux indicateur de changement de direction a surface generatrice de caustique controlee formant un motif sur une surface cible - Google Patents

Dispositif lumineux indicateur de changement de direction a surface generatrice de caustique controlee formant un motif sur une surface cible Download PDF

Info

Publication number
WO2021018808A1
WO2021018808A1 PCT/EP2020/071062 EP2020071062W WO2021018808A1 WO 2021018808 A1 WO2021018808 A1 WO 2021018808A1 EP 2020071062 W EP2020071062 W EP 2020071062W WO 2021018808 A1 WO2021018808 A1 WO 2021018808A1
Authority
WO
WIPO (PCT)
Prior art keywords
generating surface
rays
pattern
light
given
Prior art date
Application number
PCT/EP2020/071062
Other languages
English (en)
Inventor
Marine Courcier
Eric Moisy
Jérôme LE CORRE
Stefan NAMYSLO
Original Assignee
Valeo Vision
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Vision filed Critical Valeo Vision
Priority to EP20744043.9A priority Critical patent/EP4004435A1/fr
Priority to CN202080054772.7A priority patent/CN114207352A/zh
Publication of WO2021018808A1 publication Critical patent/WO2021018808A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S43/00Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights
    • F21S43/30Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by reflectors
    • F21S43/31Optical layout thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S43/00Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights
    • F21S43/10Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by the light source
    • F21S43/13Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by the light source characterised by the type of light source
    • F21S43/14Light emitting diodes [LED]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S43/00Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights
    • F21S43/20Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by refractors, transparent cover plates, light guides or filters
    • F21S43/26Refractors, transparent cover plates, light guides or filters not provided in groups F21S43/235 - F21S43/255
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S43/00Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights
    • F21S43/30Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by reflectors
    • F21S43/33Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by reflectors characterised by their material, surface treatment or coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q2400/00Special features or arrangements of exterior signal lamps for vehicles
    • B60Q2400/50Projected symbol or information, e.g. onto the road or car body
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2103/00Exterior vehicle lighting devices for signalling purposes
    • F21W2103/20Direction indicator lights
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2103/00Exterior vehicle lighting devices for signalling purposes
    • F21W2103/60Projection of signs from lighting devices, e.g. symbols or information being projected onto the road
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2107/00Use or application of lighting devices on or in particular types of vehicles
    • F21W2107/10Use or application of lighting devices on or in particular types of vehicles for land vehicles

Definitions

  • TITLE DIRECTION CHANGE INDICATOR LUMINOUS DEVICE WITH CONTROLLED CAUSTIC GENERATING SURFACE FORMING A PATTERN ON A TARGET SURFACE
  • the present invention relates to the field of light devices emitting patterns on a given surface, in particular on the road and more.
  • Document WO2016184721 A1 discloses vehicle lighting devices comprising two plates of transparent material, the front and rear diopters of which each have a surface forming a matrix of optical lenses. Between the two plates, a cover is placed. The cover and optical lenses of each array are plated together and arranged to together form a given light pattern on a target surface.
  • EP2543542A1 a vehicle with a flasher system comprising a flasher installed in a headlight housing, which comprises a first lamp unit configured to emit a light forming a blinking pattern and a second lamp unit configured to emit a flashing pattern. light forming a pattern on the road to indicate the change in direction of travel, wherein the second lamp unit comprises a plurality of light source portions having a linear arrangement disposed adjacent to an outer edge of the headlight housing.
  • the technical problem which the invention aims to solve is therefore to simplify a light device indicating the change of direction of a vehicle making it possible to produce light patterns in order to project them onto a movement surface of the vehicle, in particular the road.
  • the applicant had the idea of using caustics.
  • Caustics are an optical phenomenon known for a long time. They can, for example, be observed at the bottom of a swimming pool lit by the sun. They form there fluctuating patterns forming overall a mesh of more concentrated and therefore brighter lines of light, with darker areas between the meshes. These dark lines and areas are due to different fluctuations in the surface of the water. These fluctuations locally form variations in orientation around the generally planar shape of the water surface. Thus, depending on the local variations encountered, the rays will be deflected differently, some approaching and forming the more concentrated and therefore brighter lines, and others moving away and forming the dark areas. The mesh varies depending on the agitation of the surface.
  • this pattern physically corresponds to a distorted image of the pattern raised by local variations, called object pattern.
  • the invention relates to luminous devices indicating
  • a controlled caustic generating surface deflects light rays from a light source, this generating surface exhibiting local variations arranged in so as to form a determined pattern on a given surface outside the vehicle, in particular the surface on which it is moving, generally the road.
  • a first object of the invention is a light device indicating the change of direction of a vehicle comprising:
  • an optical element having a controlled caustic generating surface this generating surface being a reflecting or refracting surface, extending in a given overall shape and exhibiting local variations in shape around this given overall shape, these local variations being distributed over l 'whole of said generating surface so that they impart to the whole of the generating surface a relief forming an object pattern, these different local variations being arranged so that the majority of said generating surface is smooth and so as to that for a beam of rays incident on the whole of said generating surface, these rays having a given distribution, said generating surface deflects the rays according to different orientations depending on the local variations which they encounter, thus forming a deflected beam propagating an identifiable propagated pattern over a useful interval extending upstream from and to the mo ins up to an optimal finite given propagation distance, this propagated pattern
  • the optical element being arranged so that the propagated pattern can be projected onto a target surface, which is visible from outside the light device and which is located within the useful interval and / or at a distance substantially equal to this said optimum distance.
  • the term “smooth” is understood to mean a zone that can be differentiated at any point, in other words a zone without a projecting or re-entrant edge. A portion is smooth when the set of points forming it obeys this definition.
  • a light beam generator such as a light source or a light source and a set of one or more optical elements, making it possible to generate rays according to a given distribution, this assembly being done so that these rays are incident on the optical element. Therefore, turning on the light beam generator will allow the generation of the propagated pattern, which will propagate until it encounters a surface, in particular the target surface on which the vehicle is traveling.
  • Projecting the propagated pattern onto the targeted surface forms the target pattern.
  • These beam generators can be simple.
  • the optical element in itself is enough to modify the beam into a pattern.
  • this pattern propagates over a finite given distance, namely over the useful interval comprising the distance where the sharpness is optimum, namely the optimum propagation distance, which allows a certain freedom over the distance between the element optics and target surface.
  • the direction change indicator light device according to the invention is simpler to assemble.
  • This optimum propagation distance hereinafter referred to as the optimum distance, is the distance at which the majority of the deflected rays forming the target pattern intersect and therefore at which this pattern has the best sharpness.
  • the generating surface can thus be easily designed with respect to this definition.
  • the light device in the light device according to this first object, most, if not all, of the light rays encountering the generating surface are deflected and form the target pattern.
  • the brightness of the target pattern is therefore greater with the luminous device indicating the change of direction of a vehicle according to this first object.
  • the light device according to the invention can optionally include one or more of the following characteristics: - the given distribution is substantially such that for any transverse plane, in particular perpendicular, to the direction of propagation, at a given point of this plane, the ray (s) incident (s) at this point come from (nen) t d 'a single direction;
  • the rays are approximately parallel or approximately distributed in an emission cone
  • the light device comprises the ray beam generator according to the given distribution; the luminous device is thus ready to transmit;
  • the generating surface comprises at least one smooth portion, the surface of which represents the majority of the generating surface, the passage from one local variation to the other being smooth within this smooth portion;
  • each local variation deflects the rays so as to form one and only one portion of the target pattern which is distinct from the portions of the target pattern formed by the other local variations, and for the majority of the target pattern, each potion of the target pattern receives light rays from one and only one local variation; there is thus, for this majority of the generating surface and this majority of the target pattern, a one-to-one relationship between each smooth portion of the object pattern and each portion of the target pattern without marked discontinuity in luminosity; this simplifies the calculation and therefore the production of the generating surface;
  • the entire generating surface is smooth, the passage from one local variation to another being smooth; this furthermore makes it possible to deform the image of the parts upstream of the optical element less; it is thus possible either to distinguish these parts through the optical element, when the optical element is a transparent element refracting the rays emitted by said beam generator, or by observing the image of these parts on the optical element , when the latter is a reflector reflecting the rays emitted by said beam generator; this thus makes it possible to work on the style of the beam generator;
  • each local variation deflects the rays so as to form one and only one portion of the target pattern which is distinct from the portions of the target pattern formed by the other local variations, and for the entire target pattern, each potion of the target pattern receives the light rays of 'one and only one local variation; there is thus a one-to-one relationship between the entire object motif and each potion of the target motif without any marked discontinuity in luminosity; this simplifies the calculation and therefore the production of the generating surface;
  • the local variations are arranged in such a way that the rays of the deflected beam do not intersect up to said optimum distance; thus the target pattern remains sharp on a target surface positioned upstream of or at the optimum distance;
  • the pattern may also be a minimum distance below which the pattern is not formed; in this case, the pattern is clear in an interval, corresponding to the useful interval going from this minimum distance to at least up to the optimal distance; for example, this interval represents more than half of the optimal distance;
  • each local variation has, at each of its points, an amplitude defined as the distance between the local variation and said global shape according to the normal at a given point of the global shape;
  • the optical element is circumscribed in a rectangle, one side of which extending in a direction parallel to this direction of propagation is at least four times greater, in particular six times greater than that of the amplitude of each local variation with respect to the global shape given at the level of this local variation;
  • the beam generator comprises a light source, in particular a light emitting diode; light-emitting diodes are particularly suitable for being coupled to a controlled generator surface;
  • the beam generator includes a light emitting diode
  • the generator can be formed only from one or more incessant light-emitting diodes
  • the beam generator comprises a light source, in particular a light-emitting diode, and an optic arranged with the light source so as to generate a beam of substantially parallel rays;
  • the optical element comprises a reflecting surface of which at least a portion is formed by the generating surface; in other words, the generating surface is reflective;
  • the optical element can be a mask, in particular metallized; in this case the generating surface can form a portion of the surface of this mask; it is thus possible to confer another function on the mask, than that of masking certain parts of the lighting device;
  • the optical element is made of a transparent material and is arranged with the beam generator so as to form the beam deflected by refraction of the rays emitted by the beam generator; this allows a simple arrangement;
  • the optical element comprises an entry face of said rays arranged vis-à-vis the beam generator and an exit face of these rays arranged opposite to said entry face, the generating surface being formed on the entry face or on the exit face;
  • the optical element comprises two surfaces
  • first generator surface being formed on the input face and a second generator surface being formed on the output face, these two generator surfaces being arranged together so as to form the target pattern and ensure its propagation over the optimum distance ; this allows more freedom on the slopes to be given to local variations; moreover it can also make it possible to obtain a better contrast, or to increase the depth of field, even tend towards an infinite depth of field;
  • the luminous device comprises a housing and a housing closing glass through which the rays emitted by the lighting device exit, the closing glass forming the optical element, the generating surface being formed on the surface of a portion of the closing glass, the deflected beam being formed by refraction of the rays emitted by the beam generator; this allows to propagate the pattern target outside the vehicle and without adding a new part; for example, the lighting device can be arranged so that, once mounted on the vehicle, the distance between the generating surface and the road according to the direction of propagation of the target pattern, corresponds to the useful interval or is close to the optimal distance, according to a given orientation of the vehicle; this thus makes it possible to project the light pattern on the road; this distance between the closing glass and / or the generating surface may be equal to half the optimum distance, when the road is horizontal; in the latter case, this makes it possible to have a clear pattern visible regardless of the orientation of the vehicle, uphill, downhill, in the event of braking or in the event of acceleration;
  • the light device indicating the change of direction of a vehicle according to the invention can be a dedicated device or, for example, be integrated into:
  • a road lighting device in particular a front headlight, in particular emitting a low beam and / or a long-range light, or a fog light;
  • a signaling device in particular a rear position light, a daytime running light (or DRL, for "Day Running Light") a direction indicator, a brake light, a raised stop light, a rear fog light, a light recoil.
  • the invention also relates to a vehicle comprising a light device indicating the change of direction of said vehicle according to the invention, in particular connected to the vehicle's power supply.
  • upstream and downstream refer to the meaning of
  • FIG. 1 is a schematic view of a beam generator and an optical element of a light device according to a first embodiment of the invention
  • FIG. 2 is an enlarged view of a portion of Figure 1;
  • FIG. 3 is a schematic view of a beam generator and an optical element of a light device according to a second embodiment of the invention
  • FIG. 4 shows schematically the propagation of a target pattern by a beam generator and an optical element of a light device according to the invention
  • FIG. 5 schematically represents a target pattern formed by a
  • FIG. 7 shows a first example of a lighting device according to
  • FIG. 8 shows schematically a third embodiment according to the invention.
  • FIGS. 1 and 2 illustrate an example of a light device 1 indicating the change of direction of a vehicle according to the invention. These figures also make it possible to illustrate the general principle of the invention.
  • the light device 1 indicating the change of direction of a vehicle comprises an optical element 10 having a generating surface 12 of controlled caustic.
  • This generating surface 12 can be a reflecting surface or a refracting surface, as illustrated in FIGS. 1 and 2.
  • This optical element is hereinafter referred to as the caustic generator 10.
  • the generating surface 12 extends in a given overall shape 13, represented by the vertical dotted line in Figures 1 and 2.
  • the caustic generator 10 is a transparent plate having an inlet face 11 and an outlet face.
  • the input face 11 is arranged vis-à-vis a beam generator 3 of light rays so as to receive the rays h, G2, G3 emitted by the beam generator 3.
  • the output face is arranged to so as to receive the rays h, G2, G3 refracted by the entry face 11.
  • the exit face can be formed, in particular entirely, by the generating surface 12.
  • the generating surface 12 exhibits local variations in shape around the given overall shape 13. These local variations are distributed over the whole of the generating surface 12, so that they give the whole of the generating surface 12 a relief forming an object pattern.
  • these different local variations are arranged so that the majority of said generating surface 12 is smooth.
  • this surface is derivable at any point. In other words, on smooth areas, it has no protruding or re-entrant ridge.
  • these different local variations are arranged so that for the beam of rays h, G2, G3 incident on the assembly of this said generating surface 12, these rays p, G2, G3 having a known given distribution, the generating surface 12 deflects the rays h, G2, G3 according to different orientations depending on the local variations which they encounter, thus forming a beam deviated propagating a light pattern over a useful interval extending upstream of and at least up to a finite given optimum propagation distance, called the optimum distance, this propagated pattern
  • This generating surface 12 corresponds to a controlled caustic generating surface.
  • these local variations create local convergences and divergences of the rays. Since these variations are local, a majority of rays move apart or approach each other without crossing before a certain distance. Thus, in the same way that the surface of a swimming pool crossed by the rays of the sun creates a light pattern propagating and projecting itself on the bottom of a swimming pool, the generating surface 12 creates a light pattern which propagates, the pattern spread.
  • this pattern In the case of a swimming pool, this pattern usually spreads over a distance of 3 meters.
  • the propagated pattern can therefore be observed by projecting onto the bottom of the pool, whether the bottom is at 1, 5 m or at 2 m.
  • This background therefore forms the screen on which the caustic forming the propagated pattern can be observed.
  • the light pattern propagates at least over a given optimum distance. Beyond this optimum distance Dp, the rays of the deflected beam cross.
  • the optimum distance Dp is finite. If a screen is interposed at an intermediate distance Di or at another intermediate distance D2, which are less than the optimum distance D P , the same more or less distorted pattern will be observed. Note that this optimum distance Dp is the one at which the pattern will have the best sharpness.
  • the generating surface can thus be designed with respect to this definition.
  • This minimum distance Do may also be a minimum distance Do below which the pattern is not formed. This minimum distance Do is generally quite small. This minimum distance Do can be a few centimeters, or even a few millimeters, depending on the application, such as an application to an automobile lighting device. In the latter case it may be less than 1 centimeter (cm).
  • the pattern is not lost as soon as the rays cross but afterwards, at a maximum distance (not shown) greater.
  • this ray crossing distance is therefore called the optimum propagation distance or optimum distance.
  • the useful interval comprises a downstream portion, ranging from the optimum distance Dp to this maximum distance, and an upstream portion, ranging from the minimum distance Do to the optimum distance Dp.
  • the pattern observable at the optimum distance D P, if a screen is placed there, remains identifiable within these upstream and downstream portions.
  • this downstream portion may have a value different from that of the upstream portion. In particular, it can be more than half lower.
  • the value of the upstream portion would be 19 cm, and the downstream portion could be less than 9.5 cm.
  • said caustic generator 10 and its local variations are arranged so that the propagated pattern is projected onto a surface.
  • target which forms the screen, to form a light pattern thereon, called the target pattern.
  • This target surface is visible from the outside of the lighting device 1 and is located at a distance included in the useful interval.
  • the target surface can be around or at the optimum distance Dp, which improves sharpness.
  • the target surface corresponds to the surface of movement of the vehicle, in particular a portion of the road.
  • the generating surface 12 is in particular calculated taking into account the target pattern that is to be displayed, the shape of the target surface and its arrangement with respect to the light rays forming the target pattern, as well as the given distribution of the rays n, G2, G3 on emission by the beam generator 3, in particular their incidence on said caustic generator 10.
  • the given distribution may correspond to rays h, G2, G3 which are substantially parallel, as illustrated in FIG. 3, or, in particular, as illustrated in FIGS. 1 and 2, substantially distributed globally along an emission cone 14, especially as with a divergent light source, such as an LED.
  • a divergent light source such as an LED
  • the given distribution is such that for any plane perpendicular to the direction of propagation, at a given point of this plane, the ray (s) incident (s) at this point come from (nen ) t from a single direction.
  • the distribution of the rays emitted by an LED corresponds substantially to such a given distribution.
  • the light device 1 indicating the change of direction of a vehicle can be delivered without the beam generator 3, but has a mounting part 2 on which it is intended to be mounted, so that the rays h, G2, G3 are incident on said generating surface 12.
  • this assembly part 2 and the beam generator 3 can be arranged so that, on assembly, the beam emitted by the beam generator 3 has a given overall direction with respect to said caustic generator 10. Thus, it does not. there is no need for assembly to adjust this
  • the beam generator 3 is mounted on the mounting part 2.
  • the beam generator 3 can as here be formed by a light-emitting diode or LED.
  • Figure 1 is shown schematically a light emitting element 4 of the LED with, attached to it, a transparent protective dome 5.
  • the target surface is a surface outside the vehicle, such as the road.
  • step E 1 in a step, called the upstream step E 1, illustrated in FIG. 9a, establish the relationship defining the angle of incidence of the rays h, G2, G3,, rs and their distribution at each point of the given overall shape 13, in taking into account the given distribution of the rays h, G2, G3, in other words making it possible to also define the luminosity of each point at the level of the given overall shape 13 on said caustic generator 10, called object point pi, p2, p3, p4 , ps,
  • downstream step E2 which can be performed before, after or at the same time as said upstream step E1, define the light distribution on the target surface making it possible to obtain the target pattern, and therefore define the brightness of each point of the target surface 19, said target point p'i, p'2, p'3, p'4, - then, in a correlation step E3, illustrated in FIG.
  • the upstream step E1 takes into account the distribution of the rays when they arrive at the level of the given overall shape 13.
  • the simplest case, not shown, is that of an optical element 10, such as that illustrated in FIGS. 1 and 9a, formed of a transparent plate whose entry face 11 and the given overall shape 13 of the generating surface 12 are flat, and with a beam generator 3, such as that of FIG. 3, emitting parallel rays.
  • the beam generator 3 and said caustic generator 10 are arranged so that the rays are
  • Figures 1 and 2 and Figures 9a to 9f is an intermediate case where the rays are distributed in an initial cone 14 at the exit of the beam generator 3, then refracted by the flat entry face, thus remaining inscribed in a cone, allowing easy determination of the angle of incidence of rays h, G2, G3,, rs with the overall shape 13, and therefore easy determination of the angle of incidence of rays h, G2, G3,, rs with the surface
  • FIG. 3 is another intermediate case where the distribution of the rays p, G2, G3 is initially simpler, since they are parallel at the output of the beam generator 3. On the other hand, they are then refracted differently by the entry face 11 because it is curved, for example cylindrical with a circular or elliptical section. However, this curvature being defined, it makes it possible to determine the orientation of the rays h, G2,
  • the optical element is a plate
  • the entry face 11 and the overall shape 13 of the generating surface 12 are cylindrical.
  • the beam generator 3 can include a light source 6, such as a light-emitting diode, and a collimating lens 7 whose diopters allow the rays to be oriented parallel.
  • a light source 6 such as a light-emitting diode
  • a collimating lens 7 whose diopters allow the rays to be oriented parallel.
  • the simplest case is when the target surface 19 is flat and perpendicular to the overall direction of emission of the rays on arrival at the level of the overall shape 13 of the generating surface 12 to be calculated.
  • the target pattern then corresponds to the propagated pattern.
  • the propagated pattern if it is defined in a plane perpendicular to the direction of propagation thereof, differs from the target pattern.
  • this correlation step makes it possible to determine which object points pi, p2, p3, p4, ps of the given overall shape 13 are associated with which target points p'i, p'2, p'3, p'4 of the target surface 19.
  • the orientation of the rays h, G2, G3,, rs on arrival at the level of the given overall shape 13 of the generating surface 12 is known.
  • a sub-step E4 illustrated in FIGS. 9c and 9e, for an object point pi, p2, p3, p4, p5 of the given overall shape 13 or of the generating surface calculated previously, with the direction of arrival and the direction of departure of the rays p, G2, G3,, rs, we can determine the tangent F and the normal n of the exit surface at this point so that it deflects each ray p, G2, G3,, rs incident on arrival according to the corresponding direction of refraction.
  • FIGS. 9c and 9d illustrate the implementation of these two sub-steps in an enlargement at the level of the object points p1, p2, p3, not referenced in FIGS. 9c and 9d for greater clarity.
  • FIGS. 9e and 9f illustrate the realization of these two sub-steps in an enlargement at the level of the object points p4, ps not referenced in FIGS. 9e and 9f for greater clarity.
  • the norms n and tangents t have only been represented here for three points of the generating surface 12, the normal and / or the tangent are however calculated for all the points.
  • the amplitude of a local variation can in this application be defined as the distance between the local variation and said global shape 13 according to the normal at a given point of the global shape 13.
  • any point of the given overall shape can be defined by a dimension in a single z direction perpendicular to this overall shape 13.
  • a minimum amplitude a1 is observed, by convention negative because it is located upstream of the generating surface 12, and a maximum amplitude a2 downstream of the generating surface 12, by positive convention.
  • Figure 5 illustrates the propagated pattern 16, as it will be seen on a flat screen, perpendicular to the direction of propagation and at a distance equal to or close to the distance of propagation. If the target surface is also planar and oriented in this way, then this propagated pattern 16 will also be the target pattern 16 ’seen in Figure 5. Otherwise, it will be distorted.
  • the generating surface 12 which made it possible to produce this propagated pattern 16 is illustrated in FIG. 6. Due to the reliefs formed on this surface 12, the object pattern 15 formed by this relief and therefore the local variations can be observed. This object pattern 15, symbolized in FIG. 6, corresponds to a distorted shape of the propagated pattern 16.
  • the pattern in FIG. 5 In a case where it would also be desirable for the pattern in FIG. 5 to be the target pattern 16 ′ observed by a driver or a third party observing the roadway, the target pattern being formed by rays grazing with respect to the roadway because coming for example headlight, tail light or direction indicator, the propagated pattern should then be distorted from the target pattern, to observe the star on the road as shown in Figure 5.
  • the generating surface 12 can be arranged, and therefore calculated, so that, for the majority of the generating surface 12, namely on smooth portions representing the majority of this surface, the passage from one local variation to another is smooth. This is in particular the case of the portion illustrated in figure 2.
  • the generating surface 12 can moreover be arranged so that, for these smooth portions, the local variations are smooth.
  • one of the smooth portions may have a surface representing the majority of the generating surface.
  • a first example of a calculation method can be used to calculate this generating surface 12. This is the method disclosed in the document Yue et al. [1]. This document indicates in particular the different steps to construct the generating surface 12 from a given example, in particular to establish the relationship between the points of the generating surface 12 and those of the target surface.
  • This first example of a method makes it possible to obtain a completely smooth generating surface 12.
  • the transition from one local variation to another is smooth.
  • each local variation deflects the incident light rays so as to form one and only one portion of the target pattern 16 'which is distinct from the portions of the target pattern formed by the other local variations
  • each portion of the target pattern receives light rays from one and only one local variation.
  • This method allows good gradients of brightness and good resolution. It can for example be used to produce the generating surface 12 of FIG. 1. According to other methods, to improve the contrast and have darker areas and areas with maximum brightness, it is possible to arrange the local variations so that the generating surface 12 has one or more ridges.
  • the generating surface 12 comprises:
  • At least one edge delimiting portions of the generating surface with different orientations so as to generate a convergence such that certain zones of the target pattern receive the radii of several local variations and / or of several portions of this generating surface.
  • this second method no bijection constraint is used in the correlation step.
  • This method is more complex but allows to obtain a contrast, ie a ratio between the light area and the dark area, higher.
  • This method makes it possible to obtain darker areas than those of the method of Yue et Al, mentioned previously.
  • this second method it is possible with this second method to obtain more marked demarcations between dark area and bright area.
  • the portions outside the edges are smooth, the passage from one local variation to another being smooth.
  • the method used does not impose a bijection constraint to establish the target pattern.
  • several object points p4, ps correspond to a single target point p.
  • the result is that the generating surface 12 has a slope variation discontinuity, corresponding to an outgoing ridge 18 on the generating surface 12, and therefore re-entering in the direction of the incident rays.
  • the local variations on either side of this stop 18 make it possible to concentrate the rays r4, r5 on a line of the target surface, for example to form a sharp intense line.
  • the correlation step E3 resulted, without having constrained it, in a one-to-one relationship between the corresponding object points pi, p2, p3 and the points corresponding targets p'i, p'2, p'3.
  • each point of the generating surface 12 is therefore associated with an amplitude which corresponds to a deviation from the overall shape 13, this amplitude being defined in a direction parallel to the normal to the overall shape 13 at this point .
  • this rectangle 17 may have a side at least four times greater, in particular six times greater than that of the amplitude of each local variation with respect to the overall shape given 13 at the level of this local variation, therefore greater than six times the maximum amplitude.
  • the local variations may present a tangent t forming an angle a with the given overall shape of between -60 and 60 degrees, in particular between -30 and 30 degrees.
  • the side of rectangle 17 in which the generator is circumscribed of caustic 10 may be at least ten times greater, in particular thirty times, than that on one side of this light source 3, 6, in particular when this source is a light-emitting diode.
  • Figures 1 to 3 are directed to caustic generators 10 operating by refraction.
  • the generating surface 12 is formed on an optical element 10 specially dedicated for this purpose. However, it can also be formed on elements having other functions, such as a window for closing the lighting device or a vehicle lighting and / or signaling device in which the lighting device according to the invention is integrated, an optical lens, a mask.
  • mask denotes the cover intended to hide certain elements, such as cables, the bottom of the case. It is also called “bezel” in English.
  • FIGS. 1 to 3 illustrate cases where the generating surface 12 is on the outlet face of the caustic generator 10.
  • the optical element can have a surface. generator on the entry face and / or on the exit face.
  • Figure 8 illustrates a third embodiment, in which the optical element 10 "or caustic generator 10" operates by reflection.
  • the caustic generator 10 is here a mirror, the reflecting surface of which forms the generating surface 12’, exhibiting local variations around its overall planar shape 13 ’.
  • This mirror 10 ' can have one or more edges.
  • a re-entrant ridge 18 ' namely forming the bottom of a hollow, delimiting portions of surfaces with an orientation vis-à-vis one another, these portions thus making it possible to create an intense luminous line of particular shape on the target motif, not shown.
  • the same construction methods can be applied to this reflecting generating surface 12 ', taking into account during the various stages that it is a reflection and not a refraction.
  • the upstream step is simplified because the rays h, G2, G3, arrive directly on the generating surface 12 according to the given distribution and also leave directly.
  • FIG. 7 illustrates a first example of a light device according to the invention.
  • a vehicle 20 with a longitudinal axis X is equipped with two lighting devices according to the invention, which are here integrated respectively into a right rear light 21 and a left rear light 22.
  • these rear lights 21, 22 each comprise a housing and a glass for closing the corresponding housing.
  • Each closing lens includes a portion whose dioptre between the lens and the outside forms the generating surface.
  • Each of these generating surfaces receives part of the light rays from a light source of the rear light 21, 22
  • the generating surface of the right rear light 21 is arranged to generate a target pattern 23 on the road forming a pattern composed of three triangles, here indicating to the following vehicles a change of direction to the right, with respect to the direction of movement of the vehicle illustrated by the X arrow.
  • Figure 7 being an aerial view, this pattern is stretched but will be perceived by following vehicles as less stretched.
  • the object pattern, not shown, formed by the relief of the corresponding generating surface has a distorted shape of this target pattern composed of a set of three triangles.
  • the distance of the pattern between the generating surface and the target surface, namely the road will vary as a function of the attitude of the vehicle 20, for example if it is loaded or not.
  • the generating surface is arranged so that when the attitude of the vehicle 20 is horizontal on a horizontal road, the optimum distance Dp given is greater, for example double, than the distance between the generating surface and the road in the direction of
  • the generating surface of the right rear light 21 receives the light rays from the light source to generate a direction indicator signal.
  • the lights could also be constructed according to the principle illustrated in FIGS. 1 and 3.
  • the generating surface being formed on the closing glass 9, closing the housing 8, the latter is, as described above formed on a transparent plate 10, specially designed to present the generating surface.
  • the target pattern forms a logo, a pictogram, a geometric pattern or a set of several logos, pictograms or geometric patterns as well as their combination, such as for example a pictogram associated with one or more geometric patterns.
  • a geometric pattern will be chosen, the shape of which is well recognized, such as chevrons, triangles or disks.
  • the pictogram represents a straight or curved arrow.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Lighting Device Outwards From Vehicle And Optical Signal (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

La présente invention se rapporte à un dispositif lumineux (1) indicateur de changement de direction d'un véhicule comprenant : - un élément optique (10) présentant une surface génératrice (12) de caustique contrôlée de manière à propager un motif sur un intervalle utile, - une partie de montage (2) sur laquelle est destiné à être monté un générateur de faisceau (3) de rayons incidents sur ladite surface génératrice, l'élément optique étant agencé de manière à ce que le motif propagé soit projeté sur une surface cible, visible depuis l'extérieur du dispositif lumineux et située dans l'intervalle utile.

Description

DESCRIPTION
TITRE : DISPOSITIF LUMINEUX INDICATEUR DE CHANGEMENT DE DIRECTION A SURFACE GENERATRICE DE CAUSTIQUE CONTROLEE FORMANT UN MOTIF SUR UNE SURFACE CIBLE
La présente invention se rapporte au domaine des dispositifs lumineux émettant des motifs sur une surface donnée, notamment sur la route et plus
particulièrement des dispositifs lumineux indicateur de changement de direction de déplacement d’un véhicule.
Le document WO2016184721 A1 divulgue des dispositifs lumineux de véhicule comprenant deux plaques de matériau transparent dont les dioptres avant et arrière présentent chacun une surface formant une matrice de lentilles optiques. Entre les deux plaques, un cache est disposé. Le cache et les lentilles optiques de chaque matrice sont plaqués ensemble et agencés de manière à former ensemble un motif lumineux donné sur une surface cible.
Il est connu du document EP2543542A1 un véhicule avec un système de clignotant comprenant un clignotant installé dans un boîtier de phare, qui comprend une première unité de lampe configurée pour émettre une lumière formant un motif de clignotement et une deuxième unité de lampe configurée pour émettre une lumière formant un motif sur la route pour indiquer le changement de la direction de déplacement, dans lequel la deuxième unité de lampe comprend une pluralité de parties de source de lumière ayant un agencement linéaire disposé de manière adjacente à un bord extérieur du boîtier de phare.
Cependant une telle conception est complexe et relativement coûteuse.
Le problème technique que vise à résoudre l’invention est donc de simplifier un dispositif lumineux indicateur de changement de direction d’un véhicule permettant de réaliser des motifs lumineux pour les projeter sur une surface de déplacement du véhicule, notamment la route. Pour résoudre ce problème, la demanderesse a eu l’idée d’utiliser des caustiques.
Les caustiques sont un phénomène optique connu depuis longtemps. Elles sont par exemple observables au fond d’une piscine éclairée par le soleil. Elles y forment des motifs fluctuant formant globalement un maillage de lignes de lumière plus concentrées et donc plus lumineuses, avec entre les mailles des zones plus sombres. Ces lignes et zones sombres sont dues aux différentes fluctuations de la surface de l’eau. Ces fluctuations forment localement des variations d’orientation autour de la forme globalement plane de la surface de l’eau. Ainsi, en fonction des variations locales rencontrées, les rayons vont être déviés différemment, certains se rapprochant et formant les lignes plus concentrées et donc plus lumineuses, et d’autres s’écartant et formant les zones sombres. Le maillage varie en fonction de l’agitation de la surface.
Depuis quelques années, des chercheurs se sont intéressés à des méthodes pour utiliser ce phénomène sur des surfaces fixes présentant des variations locales, de manière à générer des caustiques complexes de forme contrôlée. Notamment, ils ont développé différentes méthodes pour calculer des surfaces réfractrices formées d’un matériau transparent avec une distribution et un agencement de variations locales, de manière à ce que, lorsque ces surfaces réfractrices sont éclairées, celles-ci permettent, à partir d’une source de lumière donnée, de former un motif sur un écran.
Dans certains travaux, ce motif, dit motif cible, correspond physiquement à une image distordue du motif que forment en relief les variations locales, dit motif objet.
La demanderesse c’est aperçu que de telles surfaces pouvaient être utilisées dans des dispositifs lumineux indicateur de changement de direction d’un véhicule.
Ainsi, l’invention se rapporte à des dispositifs lumineux indicateur de
changement de direction d’un véhicule, dans lesquels une surface génératrice de caustique contrôlée dévie les rayons lumineux d’une source de lumière, cette surface génératrice présentant des variations locales agencées de manière à former un motif déterminé sur une surface donnée extérieure au véhicule, notamment la surface sur laquelle il se déplace, généralement la route.
A cet effet, un premier objet de l’invention est un dispositif lumineux indicateur de changement de direction d’un véhicule comprenant :
un élément optique présentant une surface génératrice de caustique contrôlée, cette surface génératrice étant une surface réfléchissante ou réfractrice, s’étendant selon une forme globale donnée et présentant des variations locales de forme autour de cette forme globale donnée, ces variations locales étant réparties sur l’ensemble de ladite surface génératrice de sorte qu’elles confèrent à l’ensemble de la surface génératrice un relief formant un motif objet, ces différentes variations locales étant agencées de manière à ce que la majorité de ladite surface génératrice soit lisse et de manière à ce que pour un faisceau de rayons incidents sur l’ensemble de cette dite surface génératrice, ces rayons ayant une répartition donnée, ladite surface génératrice dévie les rayons selon des orientations différentes en fonction des variations locales qu’ils rencontrent, formant ainsi un faisceau dévié propageant un motif propagé identifiable sur un intervalle utile s’étendant en amont de et au moins jusqu’à une distance optimale de propagation donnée finie, ce motif propagé
correspondant à une projection distordue du motif objet,
une partie de montage sur laquelle est destiné à être monté un générateur de faisceau de rayons selon la répartition donnée, de manière à ce que les rayons soient incidents sur ladite surface génératrice,
l’élément optique étant agencé de manière à ce que le motif propagé puisse être projeté sur une surface cible, qui est visible depuis l’extérieur du dispositif lumineux et qui est située à l’intérieur de l’intervalle utile et/ou à une distance sensiblement égale à cette dite distance optimale.
Par « identifiable », on entend que l’on reconnaît le motif comme celui qui serait observé à la distance optimale.
Le résultat le meilleur est observé lorsque la surface cible est située à une distance sensiblement égale à cette dite distance optimale. Dans la demande, on entend par « lisse » une zone dérivable en tout point, autrement dit une zone dépourvue d’arête saillante ou rentrante. Une portion est lisse lorsque l’ensemble des points formant celle-ci obéit à cette définition.
Ainsi, il est possible de monter un générateur de faisceau lumineux, tel qu’une source de lumière ou une source de lumière et un ensemble d’un ou plusieurs éléments optiques, permettant de générer des rayons selon une répartition donnée, ce montage se faisant de manière à ce que ces rayons soient incidents sur l’élément optique. De ce fait, l’allumage du générateur de faisceau lumineux permettra la génération du motif propagé, qui se propagera jusqu’à rencontrer une surface, en particulier la surface cible sur laquelle le véhicule se déplace.
La projection du motif propagé sur la surface ciblée forme le motif cible.
Ces générateurs de faisceau peuvent être simples. L’élément optique suffit en lui-même à modifier le faisceau pour en faire un motif.
Par ailleurs, ce motif se propage sur une distance donnée finie, à savoir sur l’intervalle utile comprenant la distance où la netteté est optimale, à savoir la distance optimale de propagation, ce qui permet une certaine liberté sur la distance entre l’élément optique et la surface cible. Le dispositif lumineux indicateur de changement de direction selon l’invention est plus simple à assembler. Cette distance optimale de propagation, dite ci-après distance optimale, est la distance à laquelle la majorité des rayons déviés et formant le motif cible se croisent et donc à laquelle ce motif a la meilleure netteté. La surface génératrice peut ainsi être conçue aisément par rapport à cette définition.
De plus, contrairement aux solutions avec caches, dans le dispositif lumineux selon ce premier objet, l’essentiel, voire la totalité, des rayons lumineux rencontrant la surface génératrice sont déviés et forment le motif cible. La luminosité du motif cible est donc supérieure avec le dispositif lumineux indicateur de changement de direction d’un véhicule selon ce premier objet.
Le dispositif lumineux selon l’invention peut optionnellement comprendre une ou plusieurs des caractéristiques suivantes : - la répartition donnée est sensiblement telle que pour tout plan transversal, notamment perpendiculaire, à la direction de propagation, en un point donné de ce plan, le ou les rayon(s) incident(s) en ce point provien(nen)t d’une unique direction ;
- selon la répartition donnée, les rayons sont sensiblement parallèles ou sensiblement répartis dans un cône d’émission ;
- la répartition donnée correspond à celle d’une diode électroluminescente ;
- le dispositif lumineux comprend le générateur de faisceau de rayons selon la répartition donnée ; le dispositif lumineux est ainsi prêt à émettre ;
- la surface génératrice comprend au moins une portion lisse dont la surface représente la majorité de la surface génératrice, le passage d’une variation locale à l’autre étant lisse à l’intérieur de cette portion lisse ;
- la majorité de la surface génératrice est agencée de manière à ce que chaque variation locale dévie les rayons de manière à former une et une seule portion du motif cible qui soit distincte des portions du motif cible formées par les autres variations locales, et pour la majorité du motif cible, chaque potion du motif cible reçoit les rayons lumineux d’une et d’une seule variation locale ; on a ainsi, pour cette majorité de la surface génératrice et cette majorité du motif cible, une relation bijective entre chaque portion lisse du motif objet et chaque portion du motif cible sans discontinuité marquée de luminosité ; cela simplifie le calcul et donc la réalisation de la surface génératrice ;
- toute la surface génératrice est lisse, le passage d’une variation locale à l’autre étant lisse ; cela permet de plus de moins déformer l’image des pièces en amont de l’élément optique ; il est ainsi possible soit de distinguer ces pièces au travers de l’élément optique, lorsque l’élément optique est un élément transparent réfractant les rayons émis par ledit générateur de faisceau, soit en observant l’image de ces pièces sur l’élément optique, lorsque ce dernier est un réflecteur réfléchissant les rayons émis par ledit générateur de faisceau ; cela permet ainsi de travailler le style du générateur de faisceau ;
- la totalité de la surface génératrice est agencée de manière à ce que
chaque variation locale dévie les rayons de manière à former une et une seule portion du motif cible qui soit distincte des portions du motif cible formées par les autres variations locales, et pour tout le motif cible, chaque potion du motif cible reçoit les rayons lumineux d’une et d’une seule variation locale ; on a ainsi une relation bijective entre la totalité du motif objet et chaque potion du motif cible sans discontinuité marquée de luminosité ; cela simplifie le calcul et donc la réalisation de la surface génératrice ;
- le passage entre certaines variations locales est délimité par une arête ; un tel passage crée une discontinuité dans les variations de pente sur la surface génératrice ; cela permet de créer des zones très sombres voire noires et des zones très lumineuses et étroites, tel qu’une écriture nette ;
- les variations locales sont agencées de manières à ce que les rayons du faisceau dévié ne se croisent pas jusqu’à ladite distance optimale ; ainsi le motif cible reste net sur une surface cible positionnée en amont de ou à la distance optimale ;
- selon l’alinéa précédent, il peut exister également une distance minimale en dessous de laquelle le motif n’est pas formé ; dans ce cas, le motif est net dans un intervalle, correspondant à l’intervalle utile allant de cette distance minimale à au moins jusqu’à la distance optimale ; par exemple, cet intervalle représente plus de la moitié de la distance optimale ;
- les variations locales présentent une tangente à la forme globale donnée formant un angle compris entre -60 et 60 degrés, notamment entre -30 et 30 degrés ; cela permet d’avoir une bonne transmission des rayons lumineux ; - chaque variation locale présente, en chacun de ses points, une amplitude définie comme la distance entre la variation locale et ladite forme globale selon la normale en un point donné de la forme globale ;
- l’amplitude maximale de chaque variation locale est comprise dans un intervalle compris entre 0,001 millimètre et 1 millimètre ; cela confère un aspect plus lisse à la surface génératrice ;
- selon une direction globale de propagation du faisceau, l’élément optique est circonscrit dans un rectangle, dont un côté s’étendant selon une direction parallèle à cette direction de propagation est au moins quatre fois supérieur, notamment six fois supérieur à celui de l’amplitude de chaque variation locale par rapport à la forme globale donnée au niveau de cette variation locale ;
- selon une direction globale de propagation du faisceau, la surface
génératrice est circonscrite dans un rectangle, dont un côté s’étendant selon une direction parallèle à cette direction de propagation est au moins dix fois supérieur, notamment trente fois, à celui d’un des côtés d’une source de lumière du générateur de faisceau ;
- le générateur de faisceau comprend une source de lumière, notamment une diode électroluminescente ; les diodes électroluminescentes sont particulièrement adaptées pour être couplées à une surface de génératrice contrôlée ;
- le générateur de faisceau comprend une diode électroluminescente
émettant ses rayons globalement selon un cône ; par exemple, le générateur peut être formé uniquement d’une ou plusieurs diodes électrolum inescentes
- le générateur de faisceau comprend une source de lumière, notamment une diode électroluminescente, et une optique agencée avec la source de lumière de manière à générer un faisceau de rayons sensiblement parallèles ; - l’élément optique comprend une surface réfléchissante dont au moins une portion est formée par la surface génératrice ; autrement dit la surface génératrice est réfléchissante ; notamment, l’élément optique peut être un masque, notamment métallisé ; dans ce cas la surface génératrice peut former une portion de la surface de ce masque ; on peut ainsi conférer une autre fonction au masque, que celle de masquer certaines pièces du dispositif lumineux ;
- l’élément optique est en un matériau transparent et est agencé avec le générateur de faisceau de manière à former le faisceau dévié par réfraction des rayons émis par le générateur de faisceau ; cela permet un agencement simple;
- selon l’alinéa précédent, l’élément optique comprend une face d’entrée desdits rayons agencée en vis-à-vis du générateur de faisceau et une face de sortie de ces rayons agencée à l’opposé de ladite face d’entrée, la surface génératrice étant formée sur la face d’entrée ou sur la face de sortie ;
- selon l’alinéa précédent, l’élément optique comprend deux surfaces
génératrices, une première surface génératrice étant formée sur la face d’entrée et une deuxième surface génératrice étant formée sur la face de sortie, ces deux surfaces génératrices étant agencées ensemble de manière à former le motif cible et à assurer sa propagation sur la distance optimale ; cela permet de laisser plus de liberté dans les pentes à conférer aux variation locales ; de plus cela peut également permettre d’obtenir un meilleur contraste, ou bien d’augmenter la profondeur de champ, voire tendre vers une profondeur de champ infinie ;
- le dispositif lumineux comprend un boîtier et une glace de fermeture du boîtier au travers de laquelle sortent les rayons émis par le dispositif lumineux, la glace de fermeture formant l’élément optique, la surface génératrice étant formée en surface d’une portion de la glace de fermeture, le faisceau dévié étant formé par réfraction des rayons émis par le générateur de faisceau ; cela permet ainsi de propager le motif cible à l’extérieur du véhicule et sans ajout d’une nouvelle pièce ; par exemple le dispositif lumineux peut être agencé de manière à ce qu’une fois monté sur le véhicule, la distance entre la surface génératrice et la route selon la direction de propagation du motif cible, corresponde à l’intervalle utile ou soit voisine de la distance optimale, selon une orientation donnée du véhicule ; cela permet ainsi de projeter le motif lumineux sur la route ; cette distance entre la glace de fermeture et/ou la surface génératrice peut être égale à la moitié de la distance optimale, lorsque la route est horizontale ; dans ce dernier cas, cela permet d’avoir un motif net visible qu’elle que soit l’orientation du véhicule, en montée, en descente, en cas de freinage ou en cas d’accélération ;
Le dispositif lumineux indicateur de changement de direction d’un véhicule selon l’invention peut être un dispositif dédié ou par exemple être intégré à :
- un dispositif d’éclairage de la route, notamment un projecteur avant, notamment émettant un feu de croisement et/ou un feu longue portée, ou encore un projecteur antibrouillard ;
- un dispositif de signalisation, notamment un feu arrière de position, un feu de position diurne (ou DRL, pour « Day Running Light ») un indicateur de direction, un feu stop, un feu stop surélevé, un feu arrière antibrouillard, un feu de recul.
L’invention a également pour objet un véhicule comprenant un dispositif lumineux indicateur de changement de direction dudit véhicule selon l’invention, notamment connecté à l’alimentation électrique du véhicule.
Les termes « amont » et « aval » se réfèrent par rapport au sens de
propagation des rayons lumineux dans le dispositif lumineux et à l’extérieur de celui-ci.
Sauf indication contraire, les termes « avant », « arrière », « inférieur »,
« supérieur », « côté », « transversal » se réfèrent au sens d’émission de lumière hors du dispositif lumineux indicateur de changement de direction correspondant. D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description détaillée des exemples non limitatifs qui suivent, pour la compréhension de laquelle on se reportera aux dessins annexés, parmi lesquels :
- [Fig. 1] est une vue schématique d’un générateur de faisceau et d’un élément optique d’un dispositif lumineux selon un premier mode de réalisation de l’invention ;
- [Fig. 2] est une vue agrandie d’une portion de la figure 1 ;
- [Fig. 3] est une vue schématique d’un générateur de faisceau et d’un élément optique d’un dispositif lumineux selon un deuxième mode de réalisation de l’invention ;
- [Fig. 4] représente schématiquement la propagation d’un motif cible par un générateur de faisceau et un élément optique d’un dispositif lumineux selon l’invention ;
- [Fig. 5] représente schématiquement un motif cible formé par un
générateur de faisceau et un élément optique d’un dispositif lumineux selon l’invention ;
- [Fig. 6] représente schématiquement le motif objet de la surface
génératrice permettant de générer le motif cible de la figure 5 ;
- [Fig. 7] représente un premier exemple de dispositif lumineux selon
l’invention ;
- [Fig. 8] schématise un troisième mode de réalisation selon l’invention ;
- [Fig. 9a], [Fig. 9b], [Fig. 9c], [Fig. 9d], [Fig. 9e], [Fig. 9f] schématisent les différentes étapes de calcul de la surface génératrice.
Les figures 1 et 2 illustrent un exemple de dispositif lumineux 1 indicateur de changement de direction d’un véhicule selon l’invention. Ces figures permettent également d’illustrer le principe général de l’invention. Selon l’invention, le dispositif lumineux 1 indicateur de changement de direction d’un véhicule comprend un élément optique 10 présentant une surface génératrice 12 de caustique contrôlée. Cette surface génératrice 12 peut être une surface réfléchissante ou une surface réfractrice, comme illustré en figure 1 et 2. Cet élément optique est appelé ci-après générateur de caustique 10.
La surface génératrice 12 s’étend selon une forme globale donnée 13, représentée par la ligne verticale en pointillés en figures 1 et 2.
Plus particulièrement, dans le mode de réalisation de la figure 1 , le générateur de caustique 10 est une plaque transparente présentant une face d’entrée 11 et une face de sortie. La face d’entrée 11 est agencée en vis-à-vis d’un générateur de faisceau 3 de rayons lumineux de manière à recevoir les rayons h, G2, G3 émis par le générateur de faisceau 3. La face de sortie est agencée de manière à recevoir les rayons h, G2, G3 réfractés par la face d’entrée 11.
Comme dans l’exemple illustré, la face de sortie peut être formée, notamment entièrement, par la surface génératrice 12.
D’une manière générale, la surface génératrice 12 présente des variations locales de forme autour de la forme globale donnée 13. Ces variations locales sont réparties sur l’ensemble de la surface génératrice 12, de sorte qu’elles confèrent à l’ensemble de la surface génératrice 12 un relief formant un motif objet.
Par exemple, comme illustré en figures 1 et 2, ces variations locales forment des creux et des bosses sur la face de sortie de ledit générateur de caustique 10.
D’une manière générale, ces différentes variations locales sont agencées de manière à ce que la majorité de ladite surface génératrice 12 soit lisse. Ainsi pour la majorité de la surface génératrice 12, cette surface est dérivable en tout point. Autrement dit, sur les zones lisses, elle est dépourvue d’arête saillante ou rentrante.
D’une manière générale, ces différentes variations locales sont agencées de manière à ce que pour le faisceau de rayons h, G2, G3 incidents sur l’ensemble de cette dite surface génératrice 12, ces rayons p, G2, G3 ayant une répartition donnée connue, la surface génératrice 12 dévie les rayons h, G2, G3 selon des orientations différentes en fonction des variations locales qu’ils rencontrent, formant ainsi un faisceau dévié propageant un motif lumineux sur un intervalle utile s’étendant en amont de et au moins jusqu’à une distance optimale de propagation donnée finie, dite distance optimale, ce motif propagé
correspondant à une projection distordue du motif objet.
Cette surface génératrice 12, avec ses variations locales, correspond à une surface génératrice de caustique contrôlée.
En effet, ces variations locales créent des convergences et des divergences locales des rayons. Comme ces variations sont locales, une majorité de rayons s’écartent ou se rapprochent sans se croiser avant une certaine distance. Ainsi, de la même manière que la surface d’une piscine traversée par les rayons du soleil crée un motif lumineux se propageant et se projetant sur le fond d’une piscine, la surface génératrice 12 crée un motif lumineux qui se propage, le motif propagé.
Dans le cas d’une piscine, ce motif se propage en général sur une distance de 3 mètres. Le motif propagé est donc observable en se projetant sur le fond de la piscine, que le fond soit à 1 ,5 m ou à 2 m. Ce fond forme donc l’écran sur lequel est observable la caustique formant le motif propagé.
Dans le cas d’une surface génératrice de caustique contrôlé, comme selon l’invention, en fonction des variations locales le motif lumineux se propage au moins sur une distance optimale donnée. Au-delà de cette distance optimale Dp, les rayons du faisceau dévié se croisent.
Dans le cadre de l’invention, et comme on peut l’observer sur le schéma de principe en figure 4, la distance optimale Dp est finie. Si l’on interpose un écran à une distance intermédiaire Di ou à une autre distance intermédiaire D2, qui sont inférieures à la distance optimale DP, on observera le même motif plus ou moins distordu. A noter que cette distance optimale Dp est celle à laquelle le motif va avoir la meilleure netteté. La surface génératrice peut ainsi être conçue par rapport à cette définition.
Il peut exister également une distance minimale Do en dessous de laquelle le motif n’est pas formé. Cette distance minimale Do est en général assez faible. Cette distance minimale Do peut être de quelques centimètres, voire de quelques millimètres selon les applications, telle qu’une application à un dispositif lumineux d’automobile. Dans ce dernier cas elle peut être inférieure à 1 centimètre (cm).
Egalement, le motif n’est pas perdu dès que les rayons se croisent mais après, à une distance maximale (non représentée) supérieure. Il est cependant plus aisé de concevoir la surface génératrice par rapport à la distance de croisement des rayons, qui se définit plus précisément que la distance à laquelle on considère que le motif est perdu. Dans la présente demande, cette distance de croisement des rayons est donc appelée distance optimale de propagation ou distance optimale.
Autrement dit, l’intervalle utile comprend une portion aval, allant de la distance optimale Dp à cette distance maximale, et une portion amont, allant de la distance minimale Do à la distance optimale Dp. Le motif observable à la distance optimale DP, si l’on y place un écran, reste identifiable à l’intérieur de ces portions amont et aval.
D’une manière générale dans l’invention, cette portion aval peut être d’une valeur différente de celle de la portion amont. Notamment, il peut lui être inférieur de plus de la moitié.
Par exemple, dans un projecteur avec une portion diffusante de glace de fermeture, avec une distance optimale DP de 20 cm, une distance minimale Do de 1 cm, la valeur de la portion amont serait de 19 cm, et la portion aval pourrait être inférieure à 9,5 cm.
En particulier, ledit générateur de caustique 10 et ses variations locales sont agencés de manière à ce que le motif propagé soit projeté sur une surface cible, qui forme l’écran, pour y former un motif lumineux, dit motif cible. Cette surface cible est visible depuis l’extérieur du dispositif lumineux 1 et est située à une distance comprise dans l’intervalle utile. La surface cible peut être aux environ de ou à la distance optimale Dp, ce qui améliore la netteté. La surface cible correspond à la surface de déplacement du véhicule, notamment une portion de la route.
D’une manière générale, pour fabriquer la surface génératrice 12, celle-ci est notamment calculée en tenant compte du motif cible que l’on souhaite afficher, de la forme de la surface cible et de son agencement par rapport aux rayons lumineux formant le motif cible, ainsi que de la répartition donnée des rayons n, G2, G3 à l’émission par le générateur de faisceau 3, en particulier leur incidence sur ledit générateur de caustique 10.
Selon l’invention, la répartition donnée peut correspondre à des rayons h, G2, G3 sensiblement parallèles, comme illustré en figure 3, ou, notamment, comme illustré en figures 1 et 2, sensiblement répartis globalement selon un cône d’émission 14, notamment comme avec une source lumineuse divergente, telle qu’une DEL. Cela permet d’établir plus simplement l’angle d’incidence des rayons sur ledit générateur de caustique 10, simplifiant ainsi le calcul de la surface génératrice 12.
Pour cela, il est possible de considérer que la répartition donnée est telle que pour tout plan perpendiculaire à la direction de propagation, en un point donné de ce plan, le ou les rayon(s) incident(s) en ce point provien(nen)t d’une unique direction. En effet, la répartition des rayons émis par une LED correspond sensiblement à une telle répartition donnée.
Pour simplifier le calcul, il est possible de discrétiser la surface en de
nombreuses surfaces élémentaires et d’assimiler ces dernières aux points mentionnés au paragraphe précédent.
Le dispositif lumineux 1 indicateur de changement de direction d’un véhicule peut être livré sans le générateur de faisceau 3, mais dispose d’une partie de montage 2 sur laquelle il est destiné à être monté, de manière à ce que les rayons h, G2, G3 soient incidents sur ladite surface génératrice 12. En particulier, cette partie de montage 2 et le générateur de faisceau 3 peuvent être agencés pour qu’au montage, le faisceau émis par le générateur de faisceau 3 ait une direction globale donnée par rapport audit générateur de caustique 10. Ainsi, il n’y a pas besoin à l’assemblage de régler cette
orientation pour qu’elle corresponde à l’agencement permettant de générer le motif cible.
Il est à noter que ces surfaces génératrices de caustique ne nécessitent pas une grande précision quant au positionnement du générateur de faisceau 3. L’assemblage est donc simplifié.
Dans l’exemple illustré en figure 1 , le générateur de faisceau 3 est monté sur la partie de montage 2.
Le générateur de faisceau 3 peut comme ici être formé par une diode électroluminescente ou DEL. En figure 1 , est schématisé un élément photoémetteur 4 de la DEL avec, accolé dessus, un dôme de protection 5 transparent.
La surface cible est une surface extérieure au véhicule, telle que la route.
Les méthodes de calcul de cette surface génératrice 12 peuvent suivre le procédé suivant, dont un exemple est illustré aux figures 9a à 9f:
- dans une étape, dite étape amont E 1 , illustrée en figure 9a, établir la relation définissant l’angle d’incidence des rayons h, G2, G3, , rs et leur répartition en chaque point de la forme globale 13 donnée, en tenant compte de la répartition donnée des rayons h, G2, G3, permettant autrement dit de définir également la luminosité de chaque point au niveau de la forme globale donnée 13 sur ledit générateur de caustique 10, dit point objet pi, p2, p3, p4, ps,
- dans une étape, dite étape aval E2, qui peut être réalisée avant, après ou en même temps que ladite étape amont E1 , définir la répartition lumineuse sur la surface cible permettant d’obtenir le motif cible, et donc définir la luminosité de chaque point de la surface cible 19, dit point cible p’i, p’2, p’3, p'4, - ensuite, dans une étape de corrélation E3, illustrée en figure 9b, établir une relation entre chaque point objet pi, p2, p3, p4, ps et chaque point cible p’i, p’2, p’3, p'4, notamment de manière à ce que chaque point cible p’1, p’2, p’3, p'4 recevant de la lumière soit associé à un seul ou à un ensemble de points objet pi, p2, p3, p4, p5 permettant d’obtenir la luminosité requise en ces points pour la formation du motif,
- ensuite, dans une étape d’orientation E4/E5 des variations locales, illustrée en figures 9c à 9f, en fonction des points cibles et des points objets associés par la relation établie dans l’étape de corrélation E3, déterminer l’orientation des variations locales à appliquer à la forme globale de manière à ce que les rayons n, G2, G3, G4, G5 incidents sur les points objets pi, p2, p3, p4, ps soient déviés de manière à avoir l’orientation leur permettant d’atteindre les points cibles p’1, p’2, p’3, p'4 associé par cette relation.
L’étape amont E1 tient compte de la répartition des rayons à leur arrivée au niveau de la forme globale donnée 13. Le cas le plus simple, non représenté, est celui d’un élément optique 10, tel que celui illustré en figures 1 et 9a, formé d’une plaque transparente dont la face d’entrée 11 et la forme globale donnée 13 de la surface génératrice 12 sont planes, et avec un générateur de faisceau 3, tel que celui de la figure 3, émettant des rayons parallèles.
Dans ce cas simple, le générateur de faisceau 3 et ledit générateur de caustique 10 sont agencés de manière à ce que les rayons soient
perpendiculaires à la face d’entrée 11. Ces rayons ne sont donc pas déviés avant de rencontrer la surface de sortie sur laquelle est formée la surface génératrice.
Le mode de réalisation des figures 1 et 2 et des figures 9a à 9f est un cas intermédiaire où les rayons sont répartis dans un cône initial 14 à la sortie du générateur de faisceau 3, puis réfractés par la face d’entrée plane, restant ainsi inscrit dans un cône, permettant une détermination aisée de l’angle d’incidence des rayons h, G2, G3, , rs avec la forme globale 13, et donc une détermination aisée de l’angle d’incidence des rayons h, G2, G3, , rs avec la surface
génératrice 12. Le mode de réalisation de la figure 3 est un autre cas intermédiaire où la répartition des rayons p, G2, G3 est initialement plus simple, puisqu’ils sont parallèles en sortie du générateur de faisceau 3. En revanche, ils sont ensuite réfractés différemment par la face d’entrée 11 car celle-ci est courbe, par exemple cylindrique de section circulaire ou elliptique. Cependant, cette courbure étant définie, elle permet de déterminer l’orientation des rayons h, G2,
G3 à leur arrivée au niveau de la forme globale donnée 13 de la surface génératrice 12, qui elle aussi est courbe.
Dans l’exemple illustré en figure 3, l’élément optique est une plaque
transparente courbée, dont la face d’entrée 11 et la forme globale 13 de la surface génératrice 12 sont cylindriques.
De manière à avoir des rayons parallèles, le générateur de faisceau 3 peut comprendre une source de lumière 6, telle qu’une diode électroluminescente, et une lentille de collimation 7 dont les dioptres permettent d’orienter les rayons parallèlement.
Des cas plus compliqués peuvent cependant être envisagés, avec :
- des rayons répartis dans un cône d’émission,
- une surface d’entrée courbée, notamment cylindrique, et
- une surface génératrice de forme globale donnée courbée.
Il est également possible d’envisager d’autres répartitions données des rayons.
Concernant l’étape aval E2, le cas le plus simple est lorsque la surface cible 19 est plane et perpendiculaire à la direction globale d’émission des rayons à l’arrivée au niveau de la forme globale 13 de la surface génératrice 12 à calculer. Le motif cible correspond alors au motif propagé.
Dans des cas plus complexes, il faut tenir compte de l’orientation de la surface cible plane, présentant un angle avec la direction globale d’émission des rayons à l’arrivée au niveau de la surface génératrice. Néanmoins une telle
détermination reste simple. C’est plus compliqué, mais réalisable, lorsque la surface cible n’est pas plane. Il faut alors tenir compte de sa forme, notamment la définir par une équation pour déterminer la répartition lumineuse, pour pouvoir observer en projection le motif cible. Dans tous ces cas plus
complexes, le motif propagé, si on le définit selon un plan perpendiculaire à la direction de propagation de celui-ci, diffère du motif cible.
Ensuite, différentes méthodes peuvent être utilisées pour réaliser l’étape de corrélation E3 entre les rayons incidents sur la forme globale 13 de la surface génératrice 12 et la répartition lumineuse sur la surface cible 19.
Comme expliqué précédemment, cette étape de corrélation permet de déterminer quels points objets pi, p2, p3, p4, ps de la forme globale donnée 13 sont associés avec quels points cibles p’i, p’2, p’3, p'4 de la surface cible 19.
Grâce à l’étape amont E1 on connaît l’orientation des rayons h, G2, G3, , rs à l’arrivée au niveau de la forme globale donnée 13 de la surface génératrice 12. Par ailleurs, grâce à la corrélation entre points cibles p’1, p’2, p’3, p'4 et points objet pi, p2, p3, p4, ps, on détermine l’orientation des rayons h, G2, G3, , rs au départ de cette forme globale donnée 13 pour joindre les points objets pi, p2,
P3, p4, ps aux points cibles p’1, p’2, p’3, p'4 avec lesquels ils sont corrélés.
Cela permet donc de réaliser l’étape d’orientation E4/E5, en calculant la variation à attribuer à la surface de sortie par rapport à cette forme globale donnée 13 en tout point de celle-ci, ce qui permet de définir la surface génératrice 12.
Une fois ce calcul réalisé, on observe donc en fonction des amplitudes des variations locales, que la surface génératrice 12 est à une distance plus ou moins grande de la forme globale donnée 13. Pour affiner le calcul de la surface génératrice 12, on peut donc réitérer les étapes amont et aval ainsi que l’étape de définition, en considérant l’arrivée des rayons et leur départ par rapport à la forme de la surface génératrice obtenue précédemment et non plus par rapport à la forme globale donnée. La précision de cette surface et donc la netteté de l’image seront améliorées avec le nombre d’itérations. Par ailleurs, cela permet également de lisser la surface génératrice. Pour réaliser l’étape d’orientation, il est possible d’utiliser les lois de Descartes, connue également sous le nom de lois de Snell dans certains pays
anglophones, ou encore sous le nom de lois de Snell-Descartes.
Ainsi, dans une sous-étape E4, illustrée en figures 9c et 9e, pour un point objet pi , p2, p3, p4, p5 de la forme globale donnée 13 ou de la surface génératrice calculée précédemment, avec la direction d’arrivée et la direction de départ des rayons p , G2, G3, , rs, on peut déterminer la tangente F et la normale n de la surface de sortie en ce point pour que celle-ci dévie chaque rayon p, G2, G3, , rs incident à l’arrivée selon la direction de réfraction correspondante.
En déterminant, l’ensemble des normales n, encore appelé champs des normales, on détermine dans une sous-étape E5, illustrée en figures 9d et 9f, la surface génératrice 12 ayant ces normales.
Les figures 9c et 9d illustrent la réalisation de ces deux sous-étapes dans un agrandissement au niveau des points objets pi, p2, p3, non référencés sur les figures 9c et 9d pour plus de clarté.
Les figures 9e et 9f illustrent la réalisation de ces deux sous-étapes dans un agrandissement au niveau des points objets p4, ps non référencés sur les figures 9e et 9f pour plus de clarté.
Sur la figure 2, on peut observer les variations locales de la surface génératrice 12 par rapport à la forme globale donnée 13, plane dans cette exemple. Ces variations locales correspondent à des changements de pente, définis par la normale n et/ou la tangente t à la surface génératrice 12 au niveau de ces variations locales. Il en résulte que cette surface génératrice 12 comprend des écarts par rapport à la forme globale 13 et forme des creux et des bosses.
Pour plus de clarté les normales n et tangentes t n’ont ici été représentées que pour trois points de la surface génératrice 12, la normale et/ou la tangente sont cependant calculées pour l’ensemble des points. L’amplitude d’une variation locale peut dans cette demande être définie comme la distance entre la variation locale et ladite forme globale 13 selon la normale en un point donné de la forme globale 13.
Si la forme globale est plane, comme en figures 1 et 2, tout point de la forme globale donnée peut être défini par une cote selon une unique direction z perpendiculaire à cette forme globale 13.
On observe, en figure 2, une amplitude minimale ai, par convention négative car située en amont de la surface génératrice 12, et une amplitude maximale a2 en aval de la surface génératrice 12, par convention positive.
A noter que dans le procédé illustré, il est possible de discrétiser la surface en de nombreuses surfaces élémentaires et d’assimiler ces dernières aux points mentionnés pi, p2, p3, p4, ps, p’i, p’2, p’3, p'4.
La figure 5 illustre le motif propagé 16, tel qu’il sera vu sur un écran plan, perpendiculaire à la direction de propagation et à une distance égale à ou voisine de la distance de propagation. Si la surface cible est également plane et orientée ainsi, alors ce motif propagé 16 sera également le motif cible 16’ observé sur la figure 5. Sinon, il sera déformé.
La surface génératrice 12 ayant permis de réaliser ce motif propagé 16 est illustrée en figure 6. En raison des reliefs formés sur cette surface 12, on peut observer le motif objet 15 formé par ce relief et donc les variations locales. Ce motif objet 15, symbolisé en figure 6, correspond à une forme distordue du motif propagé 16.
Dans un cas où l’on souhaiterait également que le motif en figure 5 soit le motif cible 16’ observé par un conducteur ou un tiers observant la chaussée, le motif cible étant formé par des rayons rasants par rapport à la chaussée car provenant par exemple d’un projecteur avant, d’un feu arrière ou d’un indicateur de direction, le motif propagé devrait alors être distordu par rapport au motif cible, pour observer l’étoile sur la route telle qu’elle est représentée en figure 5.
Selon l’invention, comme sur les figures 1 et 2, la surface génératrice 12 peut être agencée, et donc calculée, de manière à ce que, pour la majorité de la surface génératrice 12, à savoir sur des portions lisses représentant la majorité de cette surface, le passage d’une variation locale à l’autre soit lisse. C’est notamment le cas de la portion illustrée en figure 2. Dans un cas où pour le calcul, les variations locales ne sont pas considérées comme des points mais comme une petite zone de la surface génératrice, notamment une zone infinitésimale, la surface génératrice 12 peut être de plus agencée de manière à ce que, pour ces portions lisses, les variations locales soient lisses.
Notamment, une des portions lisses peut avoir une surface représentant la majorité de la surface génératrice.
Un premier exemple de méthode de calcul peut être utilisé pour calculer cette surface génératrice 12. Il s’agit de la méthode divulguée dans le document Yue et al. [1 ]. Ce document indique notamment les différentes étapes pour construire la surface génératrice 12 à partir d’un exemple donné, en particulier pour établir la relation entre les points de la surface génératrice 12 et ceux de la surface cible.
Ce premier exemple de méthode permet d’obtenir une surface génératrice 12 totalement lisse. Le passage d’une variation locale à l’autre est lisse.
Pour établir la relation de l’étape de corrélation, notamment comme dans cette première méthode, il est fixé comme condition d’établir une bijection entre les points objets et les points cibles. Ainsi, la totalité de la surface génératrice 12 est agencée de manière à ce que :
- chaque variation locale dévie les rayons lumineux incidents de manière à former une et une seule portion du motif cible 16’ qui soit distincte des portions du motif cible formées par les autres variations locales, et
- pour tout le motif cible, chaque portion du motif cible reçoit les rayons lumineux issus d’une et d’une seule variation locale.
Cette méthode permet de bons gradients de luminosité et une bonne résolution. Elle peut par exemple être utilisée pour réaliser la surface génératrice 12 de la figure 1. Selon d’autres méthodes, pour améliorer le contraste et avoir des zones davantage sombres et des zones avec une luminosité maximale, il est possible d’agencer les variations locales pour que la surface génératrice 12 présente une ou plusieurs arêtes.
Selon le cas, la surface génératrice 12 comprend :
- au moins une arête délimitant des portions de la surface génératrice avec des orientations différentes de manière à générer une divergence telle que certaines zones du motif cible ne reçoivent quasiment pas de rayons, voire pas du tout, formant ainsi des zones sombres, et/ou
- au moins une arête délimitant des portions de la surface génératrice avec des orientations différentes de manière à générer une convergence telle que certaines zones du motif cible reçoivent les rayons de plusieurs variations locales et/ou de plusieurs portions de cette surface génératrice.
Cela permet notamment de réaliser des motifs avec des traits lumineux ou des écritures très nets.
Pour cela, on peut par exemple utiliser une deuxième méthode de calcul pour calculer la surface génératrice 12, divulguée dans le document Schwartzburg et al. [2]
Dans cette deuxième méthode, aucune contrainte de bijection n’est utilisée dans l’étape de corrélation. Cette méthode est plus complexe mais permet d’obtenir un contraste, à savoir un ratio entre la zone claire et la zone sombre, plus élevé. Cette méthode permet en effet d’obtenir des zones plus sombres que celles de la méthode de Yue et Al, mentionnée précédemment. Ainsi, il est possible avec cette deuxième méthode d’obtenir des démarcations entre zone sombre et zone lumineuse plus marquées. Les portions en dehors des arêtes sont lisses, le passage d’une variation locale à l’autre y étant lisse.
Par exemple, dans les figures 9a à 9f, la méthode utilisée n’impose pas une contrainte de bijection pour établir le motif cible. A certains endroits, plusieurs points objets p4, ps correspondent à un seul point cible p . Il en résulte que la surface génératrice 12 présente une discontinuité de variation de pente, correspondant à une arrête sortante 18 sur la surface génératrice 12, et donc rentrante en direction des rayons incidents. Les variations locales de part et d’autre de cette arrête 18 permettent de concentrer les rayons r4, r5 sur une ligne de la surface cible, par exemple pour former un trait intense net.
En dehors de cette arrête 18, notamment au-dessus et au-dessous, l’étape de corrélation E3 a abouti, sans pour autant l’avoir contrainte, à une relation bijective entre les points objets correspondants pi, p2, p3 et les points cibles correspondants p’i, p’2, p’3.
Quelle que soit la méthode utilisée, chaque point de la surface génératrice 12 est donc associé à une amplitude qui correspond à un écart à la forme globale 13, cette amplitude étant définie selon une direction parallèle à la normale à la forme globale 13 en ce point.
Par exemple comme illustré en figure 1 et 3, on considère un plan comprenant la direction globale du faisceau de rayons incidents. On considère dans ce plan, le rectangle 17, dans lequel est circonscrite le générateur de caustique 10, ce rectangle 17 peut présenter un côté au moins quatre fois supérieur, notamment six fois supérieur à celui de l’amplitude de chaque variation locale par rapport à la forme globale donnée 13 au niveau de cette variation locale, donc supérieur à six fois l’amplitude maximale.
Par ailleurs, les variations locales peuvent présenter une tangente t formant un angle a avec la forme globale donnée compris entre -60 et 60 degrés, notamment entre -30 et 30 degrés.
En cumulant ces conditions de pente et d’amplitude on arrive à des résultats optimaux, notamment en termes de contraste et de netteté, permettant notamment une propagation du motif propagé sur l’intervalle utile, en particulier à la distance optimale Dp.
A noter que plus la taille de la source lumineuse 4, 6 du générateur de faisceau 3 est faible par rapport à la surface génératrice 12, plus le motif projeté est proche du motif souhaité utilisé pour la construction de la surface génératrice. Par exemple, le côté du rectangle 17 dans lequel est circonscrite le générateur de caustique 10 peut être au moins dix fois supérieur, notamment trente fois, à celui d’un côté de cette source de lumière 3, 6, notamment lorsque cette source est une diode électroluminescente.
Les deux modes de réalisation des figures 1 à 3 visent des générateurs de caustique 10 fonctionnant par réfraction.
Ici la surface génératrice 12 est formée sur un élément optique 10 spécialement dédié à cet effet. Cependant elle peut également être formée sur des éléments ayant d’autres fonctions, tels qu’une glace de fermeture du dispositif lumineux ou d’un dispositif d’éclairage et/ou de signalisation automobile auquel le dispositif lumineux selon l’invention est intégré, une lentille optique, un masque.
Dans la demande, on désigne par « masque » l’enjoliveur destiné à masquer certains éléments, tel que des câbles, le fond du boîtier. Il est également appelé « bezel » en anglais.
Par ailleurs, les figures 1 à 3 illustrent des cas où la surface génératrice 12 est sur la face de sortie du générateur de caustique 10. Cependant cela n’est pas limitatif et d’une manière générale, l’élément optique peut présenter une surface génératrice sur la face d’entrée et/ou sur la face de sortie.
La figure 8 illustre un troisième mode de réalisation, selon lequel l’élément optique 10’ ou générateur de caustique 10’ fonctionne par réflexion.
Le générateur de caustique 10’ est ici un miroir dont la surface réfléchissante forme la surface génératrice 12’, présentant des variations locales autour de sa forme globale plane 13’.
Ce miroir 10’ peut présenter une ou plusieurs arêtes. Ici, il y a une arête rentrante 18’, à savoir formant le fond d’un creux, délimitant des portions de surfaces avec une orientation en vis-à-vis l’une de l’autre, ces portions-ci permettant ainsi de créer un trait lumineux intense de forme particulière sur le motif cible, non représenté. Les mêmes méthodes de construction peuvent être appliquées à cette surface génératrice 12’ réfléchissante, en tenant compte au cours des différentes étapes qu’il s’agit d’une réflexion et non d’une réfraction.
Dans un tel cas, l’étape amont est simplifiée car les rayons h, G2, G3, arrivent directement sur la surface génératrice 12 selon la répartition donnée et en repartent également directement.
La figure 7 illustre un premier exemple de dispositif lumineux selon l’invention. Dans le cas illustré, un véhicule 20 d’axe longitudinal X est équipé de deux dispositifs lumineux selon l’invention, qui sont ici intégrés respectivement à un feu arrière droit 21 et un feu arrière gauche 22.
Par exemple, ces feux arrières 21 , 22 comprennent chacun un boîtier et une glace de fermeture du boîtier correspondant. Chaque glace de fermeture comprend une portion dont le dioptre entre la glace et l’extérieur forme la surface génératrice. Chacune de ces surfaces génératrices reçoit une partie des rayons lumineux d’une source lumineuse du feu arrière 21 , 22
correspondant. On pourrait également prévoir une source lumineuse
spécialement dédiée à cette surface génératrice.
La surface génératrice du feu arrière droit 21 est agencée pour générer un motif cible 23 sur la route formant un motif composé de trois triangles, ici indiquant aux véhicules suivants un changement de direction vers la droite, par rapport au sens de déplacement du véhicule illustré par la flèche X .
La figure 7 étant une vue aérienne, ce motif est étiré mais sera perçu par les véhicules suivant comme moins étiré. Le motif objet, non représenté, formé par le relief de la surface génératrice correspondante présente une forme distordue de ce motif cible composé d’un ensemble de trois triangles.
Dans cet exemple, on comprend que, selon la direction de propagation, la distance du motif entre la surface génératrice et la surface cible, à savoir la route, va varier en fonction de l’assiette du véhicule 20, par exemple s’il est chargé ou non. Ici, la surface génératrice est agencée de manière à ce que lorsque l’assiette du véhicule 20 est horizontale sur une route horizontale, la distance optimale Dp donnée est supérieure, par exemple le double, à la distance entre la surface génératrice et la route selon la direction de
propagation du motif propagé. Cela permet d’avoir un motif cible net visible, quelle que soit l’orientation du véhicule 20, notamment de son assiette. Le motif cible reste donc visible en montée, en descente, en cas de freinage ou en cas d’accélération, et quelle que soit sa charge.
Dans cet exemple, la surface génératrice du feu arrière droit 21 reçoit les rayons lumineux de la source de lumière permettant de générer un signal d’indicateur de direction.
A noter que les feux, pourraient également être construits selon le principe illustré en figure 1 et 3. Dans ce cas, au lieu que la surface génératrice soit formé sur la glace de fermeture 9, fermant le boîtier 8, celle-ci est, comme décrit précédemment formée sur une plaque transparente 10, spécialement conçue pour présenter la surface génératrice.
Dans la présente invention, le motif cible forme un logo, un pictogramme, un motif géométrique ou un ensemble de plusieurs logos, pictogrammes ou motifs géométriques ainsi que leur combinaison, comme par exemple un pictogramme associé à un ou plusieurs motifs géométriques. Avantageusement, on choisira un motif géométrique dont la forme est bien reconnue, comme des chevrons, des triangles ou des disques. Avantageusement, le pictogramme représente une flèche droite ou courbe.
Liste des références
[1] Yonghao Yue, Kei Iwasaki, Bing-Yu Chen, Yoshinori Dobashi, Tomoyuki Nishita. Poisson-Based Continuous Surface Génération for Goal-Based
Caustics, ACM Transactions on Graphics, Vol. 31 , No. 3, Article 31 (May 2014).
[2] Yuliy Schwartzburg, Romain Testuz, Andrea Tagliasacchi, Mark Pauly.
High-contrast Computational Caustic Design, ACM Transactions on Graphics (Proceedings of ACM SIGGRAPH 2014), Vol. 33, Issue 4, Article No. 74 (July 2014)

Claims

REVENDICATIONS
1. Dispositif lumineux (1 ) indicateur de changement de direction d’un véhicule comprenant :
un élément optique (10 ; 10’) présentant une surface génératrice (12 ; 12’) de caustique contrôlée, cette surface génératrice étant une surface réfléchissante ou réfractrice, s’étendant selon une forme globale donnée (13 ; 13’) et présentant des variations locales de forme autour de cette forme globale donnée, ces variations locales étant réparties sur l’ensemble de ladite surface génératrice de sorte qu’elles confèrent à l’ensemble de la surface génératrice un relief formant un motif objet (15), ces différentes variations locales étant agencées de manière à ce que la majorité de ladite surface génératrice soit lisse et de manière à ce que pour un faisceau de rayons incidents (h, G2, G3) sur l’ensemble de cette dite surface génératrice, ces rayons ayant une répartition donnée, ladite surface génératrice dévie les rayons selon des orientations différentes en fonction des variations locales qu’ils rencontrent, formant ainsi un faisceau dévié propageant un motif propagé (16) identifiable sur un intervalle utile s’étendant en amont de et au moins jusqu’à une distance optimale (Dp) de propagation donnée finie, ce motif propagé correspondant à une forme distordue du motif objet,
une partie de montage (2) sur laquelle est destiné à être monté un générateur de faisceau (3) de rayons selon la répartition donnée, de manière à ce que les rayons soient incidents sur ladite surface génératrice,
l’élément optique étant agencé de manière à ce que le motif propagé soit projeté sur une surface cible, qui est visible depuis l’extérieur du dispositif lumineux et qui est située à l’intérieur de l’intervalle utile et/ou à une distance (Di, D2) sensiblement égale à cette dite distance optimale.
2. Dispositif lumineux (1 ) selon la revendication 1 , dans lequel la répartition donnée est sensiblement telle que pour tout plan transversal à la direction de propagation, en un point donné de ce plan, le ou les rayon(s) (r1 , r2, r3) incident(s) en ce point provien(en)t d’une unique direction.
3. Dispositif lumineux (1 ) selon l’une quelconque des revendications précédentes, dans lequel la répartition donnée correspond à celle d’une diode électrolum inescente.
4. Dispositif lumineux (1 ) selon l’une quelconque des revendications précédentes, dans lequel le dispositif lumineux comprend le générateur de faisceau (3) de rayons (r1 , r2, r3) selon la répartition donnée.
5. Dispositif lumineux (1 ) selon l’une quelconque des revendications précédentes, dans lequel la surface génératrice comprend au moins une portion lisse dont la surface représente la majorité de la surface génératrice (12 ; 12’), le passage d’une variation locale à l’autre étant lisse à l’intérieur de cette portion lisse.
6. Dispositif lumineux (1 ) selon la revendication 5, dans lequel toute la surface génératrice (12) est lisse, le passage d’une variation locale à l’autre étant lisse
7. Dispositif lumineux (1 ) selon la revendication 5, dans lequel le passage entre certaines variations locales est formé par une arête (18, 18’)
8. Dispositif lumineux (1 ) selon l’une quelconque des revendications précédentes, dans lequel le générateur de faisceau (3) comprend une diode électroluminescente (4,5)
9. Dispositif lumineux (1 ) selon l’une quelconque des revendications précédentes, dans lequel le générateur de faisceau (3) comprend une source de lumière (6) et une optique (7) agencée avec la source de lumière de manière à générer un faisceau de rayons (h, G2, G3) sensiblement parallèles.
10. Dispositif lumineux (1 ) selon l’une quelconque des revendications précédentes, dans lequel l’élément optique (10’) comprend une surface réfléchissante dont au moins une portion est formée par la surface génératrice (12’).
11. Dispositif lumineux (1 ) selon la revendication 10, dans lequel l’élément optique (10’) est un masque.
12. Dispositif lumineux (1 ) selon l’une quelconque des revendications 1 à 9, comprenant un boîtier et une glace de fermeture du boîtier au travers de laquelle sortent les rayons lumineux émis par le dispositif lumineux, la glace de fermeture formant l’élément optique, la surface génératrice étant formée en surface d’une portion de la glace de fermeture, le faisceau dévié étant formé par réfraction des rayons émis par le générateur de faisceau.
PCT/EP2020/071062 2019-07-31 2020-07-24 Dispositif lumineux indicateur de changement de direction a surface generatrice de caustique controlee formant un motif sur une surface cible WO2021018808A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20744043.9A EP4004435A1 (fr) 2019-07-31 2020-07-24 Dispositif lumineux indicateur de changement de direction a surface generatrice de caustique controlee formant un motif sur une surface cible
CN202080054772.7A CN114207352A (zh) 2019-07-31 2020-07-24 转向指示发光装置中在目标表面上形成图案的受控的焦散产生器表面

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR1908799 2019-07-31
FR1908799A FR3099543A1 (fr) 2019-07-31 2019-07-31 Dispositif lumineux indicateur de changement de direction a surface generatrice de caustique controlee formant un motif sur une surface cible

Publications (1)

Publication Number Publication Date
WO2021018808A1 true WO2021018808A1 (fr) 2021-02-04

Family

ID=69190858

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2020/071062 WO2021018808A1 (fr) 2019-07-31 2020-07-24 Dispositif lumineux indicateur de changement de direction a surface generatrice de caustique controlee formant un motif sur une surface cible

Country Status (4)

Country Link
EP (1) EP4004435A1 (fr)
CN (1) CN114207352A (fr)
FR (1) FR3099543A1 (fr)
WO (1) WO2021018808A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023062249A1 (fr) * 2021-10-15 2023-04-20 Valeo Vision Système de projection de plusieurs faisceaux lumineux

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19530950A1 (de) * 1995-08-23 1997-02-27 Bosch Gmbh Robert Scheinwerfer für Fahrzeuge
US20020154515A1 (en) * 2001-04-24 2002-10-24 Koito Manufacturing Co., Ltd. Infrared irradiation lamp for automobile
EP2543542A1 (fr) 2011-07-08 2013-01-09 SL Corporation Feu de clignotant latéral automobile et son procédé de contrôle
DE102015100831A1 (de) * 2014-01-24 2015-07-30 Fuji Jukogyo Kabushiki Kaisha Nebelleuchte für Fahrzeuge
US20160327230A1 (en) * 2015-05-04 2016-11-10 Zizala Lichtsysteme Gmbh Optical structure for signal light
WO2016184721A1 (fr) 2015-05-15 2016-11-24 Hella Kgaa Hueck & Co. Feu de signalisation pour véhicules
EP3178699A1 (fr) * 2015-12-11 2017-06-14 Automotive Lighting Italia S.p.A. Feu d'un véhicule automobile
KR20180054286A (ko) * 2016-11-15 2018-05-24 에스엘 주식회사 차량용 램프
US20180328564A1 (en) * 2017-05-11 2018-11-15 Valeo Vision Lighting device with image projection and display

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207555511U (zh) * 2017-07-04 2018-06-29 南京星视光电科技有限公司 石墨烯阵列式光源漫射反光板

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19530950A1 (de) * 1995-08-23 1997-02-27 Bosch Gmbh Robert Scheinwerfer für Fahrzeuge
US20020154515A1 (en) * 2001-04-24 2002-10-24 Koito Manufacturing Co., Ltd. Infrared irradiation lamp for automobile
EP2543542A1 (fr) 2011-07-08 2013-01-09 SL Corporation Feu de clignotant latéral automobile et son procédé de contrôle
DE102015100831A1 (de) * 2014-01-24 2015-07-30 Fuji Jukogyo Kabushiki Kaisha Nebelleuchte für Fahrzeuge
US20160327230A1 (en) * 2015-05-04 2016-11-10 Zizala Lichtsysteme Gmbh Optical structure for signal light
WO2016184721A1 (fr) 2015-05-15 2016-11-24 Hella Kgaa Hueck & Co. Feu de signalisation pour véhicules
EP3178699A1 (fr) * 2015-12-11 2017-06-14 Automotive Lighting Italia S.p.A. Feu d'un véhicule automobile
KR20180054286A (ko) * 2016-11-15 2018-05-24 에스엘 주식회사 차량용 램프
US20180328564A1 (en) * 2017-05-11 2018-11-15 Valeo Vision Lighting device with image projection and display

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
YONGHAO YUEKEI IWASAKIBING-YU CHENYOSHINORI DOBASHITOMOYUKI NISHITA: "Poisson-Based Continuous Surface Génération for Goal-Based Caustics", ACM TRANSACTIONS ON GRAPHICS, vol. 31, no. 3, May 2014 (2014-05-01)
YULIY SCHWARTZBURGROMAIN TESTUZANDREA TAGLIASACCHIMARK PAULY: "High-contrast Computational Caustic Design", ACM TRANSACTIONS ON GRAPHICS (PROCEEDINGS OF ACM SIGGRAPH 2014, vol. 33, no. 4, July 2014 (2014-07-01), XP058052014, DOI: 10.1145/2601097.2601200

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023062249A1 (fr) * 2021-10-15 2023-04-20 Valeo Vision Système de projection de plusieurs faisceaux lumineux

Also Published As

Publication number Publication date
CN114207352A (zh) 2022-03-18
EP4004435A1 (fr) 2022-06-01
FR3099543A1 (fr) 2021-02-05

Similar Documents

Publication Publication Date Title
EP2476947B1 (fr) Dispositif d'éclairage ou de signalisation à guide optique pour véhicule automobile
EP3290777B1 (fr) Module optique pour éclairer des points de portique
EP3124854B1 (fr) Système d'éclairage pour projecteur de véhicule automobile
EP2679884A1 (fr) Dispositif optique de véhicule automobile à éléments dioptriques intégrés au conduit de lumière
EP2703852B1 (fr) Nappe de guidage de lumière avec couplage d'entrée et dioptre à surface de fresnel
EP2230446B1 (fr) Dispositif d'éclairage ou de signalisation pour véhicule automobile
FR3077363A1 (fr) Dispositif lumineux a surface generatrice de caustique controlee formant un motif sur une surface cible
EP2317214A1 (fr) Dispositif d'éclairage ou de signalisation pour véhicule automobile comprenant un guide de lumière
EP1801492A1 (fr) Dispositif d'éclairage ou de signalisation à guide optique pour véhicule automobile
FR2829224A1 (fr) Lampe de vehicule et son procede d'exploitation
FR2906345B1 (fr) Phare de vehicule a distribution de lumiere optimisee
EP2607778A1 (fr) Système d'éclairage pour projecteur notamment de véhicule automobile
EP4004435A1 (fr) Dispositif lumineux indicateur de changement de direction a surface generatrice de caustique controlee formant un motif sur une surface cible
EP3507542A1 (fr) Dispositif d'éclairage et/ou de signalisation, notamment pour véhicule automobile
WO2014187876A1 (fr) Guide optique a motif reflechissant pour la propagation d'un faisceau lumineux
EP3517830B1 (fr) Dispositif d'eclairage de la route a surface generatrice de caustique controlee formant un faisceau d'eclairage
WO2023062249A1 (fr) Système de projection de plusieurs faisceaux lumineux
FR3077364A1 (fr) Piece de vehicule a surface generatrice de caustique controlee formant un motif a partir des rayons solaires
FR3077117A1 (fr) Module lumineux pour vehicule automobile, et dispositif d'eclairage et/ou de signalisation muni d'un tel module
WO2022269095A1 (fr) Module optique d'un système lumineux d'un véhicule automobile
EP2148131A1 (fr) Module d'éclairage ou de signalisation d'aspect tridimensionnel amélioré
WO2022207937A1 (fr) Module optique d'un système lumineux d'un véhicule automobile
FR2912806A1 (fr) Feu de vehicule automobile.
FR3085738A1 (fr) Module lumineux
EP3271211A1 (fr) Système d'éclairage et/ou de signalisation pour véhicules automobiles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20744043

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020744043

Country of ref document: EP

Effective date: 20220228