WO2021017942A1 - 信号传输方法、装置、网络设备及存储介质 - Google Patents

信号传输方法、装置、网络设备及存储介质 Download PDF

Info

Publication number
WO2021017942A1
WO2021017942A1 PCT/CN2020/103194 CN2020103194W WO2021017942A1 WO 2021017942 A1 WO2021017942 A1 WO 2021017942A1 CN 2020103194 W CN2020103194 W CN 2020103194W WO 2021017942 A1 WO2021017942 A1 WO 2021017942A1
Authority
WO
WIPO (PCT)
Prior art keywords
harq
signal
pdcch
grant
ack
Prior art date
Application number
PCT/CN2020/103194
Other languages
English (en)
French (fr)
Inventor
苟伟
郝鹏
韩祥辉
李儒岳
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US17/631,609 priority Critical patent/US20220279569A1/en
Priority to JP2022506549A priority patent/JP2022542465A/ja
Priority to EP20846957.7A priority patent/EP4007416A4/en
Priority to KR1020227004259A priority patent/KR20220031094A/ko
Publication of WO2021017942A1 publication Critical patent/WO2021017942A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1893Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1614Details of the supervisory signal using bitmaps
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1664Details of the supervisory signal the supervisory signal being transmitted together with payload signals; piggybacking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0457Variable allocation of band or rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers

Definitions

  • This application relates to the field of communications, for example, to signal transmission methods, devices, network equipment, and storage media.
  • 5GNR 5th-Generation New Radio
  • OFDM Orthogonal Frequency Division Multiplexing
  • OFDM Orthogonal Frequency Division Multiplexing
  • eMBB Enhanced Mobile Broadband
  • the codebook also has a higher priority, which is higher than the HARQ-ACK codebook corresponding to the eMBB service.
  • the PUCCH (Physical Uplink Control Channel) of the HARQ-ACK codebook corresponding to an eMBB service and the PUCCH of the HARQ-ACK codebook corresponding to a URLLC service are between
  • a reliable method needs to be provided, which can ensure that the transmission of low-priority resources does not affect the reliability and reliability of high-priority resources.
  • Timeliness can also ensure that low-priority resources are transmitted in an appropriate manner.
  • the embodiment of the present application provides a signal transmission method, including:
  • the UL grant is used to indicate that the transmission mechanism of the signal and/or the resource of the signal is changed.
  • the embodiment of the present application provides a signal transmission method, including:
  • the UL grant is used to indicate that the transmission mechanism of the signal and/or the resource of the signal is changed.
  • the embodiment of the present application provides a signal transmission method, including:
  • PDCCH Physical Downlink Control Channel, physical downlink control channel
  • the first PDCCH is used to indicate that the resource of the signal is changed.
  • the embodiment of the present application provides a signal transmission method, including:
  • the first PDCCH is used to indicate that the resource of the signal is changed.
  • the embodiment of the application provides a signal transmission device, including:
  • the first sending module used to send uplink authorization UL grant
  • the UL grant is used to indicate that the transmission mechanism of the signal and/or the resource of the signal is changed.
  • the embodiment of the application provides a signal transmission device, including:
  • the first receiving module used to receive UL grant
  • the first transmission module used to transmit the signal according to the UL grant
  • the UL grant is used to indicate that the transmission mechanism of the signal and/or the resource of the signal is changed.
  • the embodiment of the application provides a signal transmission device, including:
  • the second sending module used to send the first PDCCH
  • the first PDCCH is used to indicate that the resource of the signal is changed.
  • the embodiment of the application provides a signal transmission device, including:
  • the second receiving module used to receive the first PDCCH
  • the second transmission module is configured to transmit the resource according to the signal transmission mode indication in the first PDCCH;
  • the first PDCCH is used to indicate that the resource of the signal is changed.
  • the embodiment of the present application provides a signal transmission system, including the signal transmission device provided in any one of the embodiments of the present application.
  • the embodiment of the present application provides a communication system, and the system includes the terminal provided in the embodiment of the present application and the base station provided in the embodiment of the present application.
  • the embodiment of the present application provides a storage medium that stores a computer program, and the computer program implements any of the methods provided in the embodiments of the present application when the computer program is executed by a processor.
  • the embodiment of the application can use parameters to modify the signal transmission mechanism or resources, thereby improving the reliability of a single signal transmission. For multiple signal transmissions that may conflict, the embodiment of the application can also avoid signal discarding caused by conflict avoidance. .
  • FIG. 1 is a schematic flowchart of a signal transmission method according to an embodiment of the application
  • FIG. 2 is a schematic flowchart of a signal transmission method according to another embodiment of this application.
  • FIG. 3 is a schematic flowchart of a signal transmission method according to another embodiment of the application.
  • FIG. 4 is a schematic flowchart of a signal transmission method according to another embodiment of the application.
  • FIG. 5 is a schematic structural diagram of a signal transmission device according to an embodiment of the application.
  • FIG. 6 is a schematic structural diagram of a signal transmission device according to another embodiment of the application.
  • FIG. 7 is a schematic structural diagram of a signal transmission device according to another embodiment of the application.
  • FIG. 8 is a schematic structural diagram of a signal transmission device according to another embodiment of the application.
  • FIG. 9 is a schematic structural diagram of a terminal according to an embodiment of the application.
  • FIG. 10 is a schematic structural diagram of a base station according to an embodiment of the application.
  • FIG. 11 is a schematic structural diagram of a communication system according to an embodiment of the application.
  • FIG. 1 is a schematic flowchart of a signal transmission method according to an embodiment of the application. As shown in FIG. 1, the method may include:
  • Step S11 Send uplink authorization UL grant.
  • the UL grant is used to indicate that the transmission mechanism of the signal and/or the resource of the signal is changed.
  • the resource of the signal is a resource used for signal transmission, such as a time domain resource, a frequency domain resource, and so on.
  • the UL grant may be a PDCCH or DCI (Downlink Control Information, downlink control information) for scheduling a physical uplink shared channel (Physical Uplink Shared Channel, PUSCH).
  • DCI Downlink Control Information, downlink control information
  • the UL grant is used to indicate that the transmission mechanism of the signal is changed.
  • the UL grant is used to indicate that the resource for transmitting the signal is changed.
  • the UL grant is used to indicate that the signal transmission mechanism and the signal transmission resource are changed.
  • the transmission channel of the signal and the transmission channel of another signal overlap in time domain or partially overlap in time domain, and the priority of the signal is lower than that of the other signal.
  • the transmission channel of the signal does not overlap in the time domain or part of the time domain overlap with the transmission channels of other signals.
  • the transmission mechanism of the signal and the resources for transmitting the signal are configured by the base station.
  • the parameter uplink shared channel indicator information UL-SCH indicator (Up Link Shared Channel indicator) in the UL grant is 0, and the parameter channel status in the UL grant Information request CSI request (Channel State Information request, channel state request) is 0.
  • the parameter uplink shared channel indicator UL-SCH indicator in the UL grant is 0, and the parameter channel state information request CSI request in the UL grant is 0, and the UL grant
  • the cyclic redundancy check (Cyclic Redundancy Check, CRC) check bit is scrambled by the non-semi-persistent CSI wireless network temporary identity (Semi-Persistent Channel State Information Radio Network Tempory Identity, SP-CSI-RNTI).
  • the parameter UL-SCH indicator in the UL grant is 0 and the parameter CSI request is 0 (and the CRC check bit of the UL grant is scrambled by the non-semi-persistent CSI wireless network temporary identifier SP-CSI-RNTI), it means An error condition, this setting is prohibited.
  • the value of the parameter forbidden by UL grant is used to indicate that the signal transmission mechanism and/or the signal transmission resource is changed, and does not affect the function of the original parameter in the UL grant, so that it has no impact on related technologies. This is because the above-mentioned values do not appear for the above-mentioned parameters in related technologies.
  • the parameter CSI request includes multiple bits. The parameter CSI request is 0, which means that all bits of the parameter are set to 0.
  • RV Redundancy Version, redundancy version
  • HARQ-ID Hybrid Automatic Repeat request Identity Document, hybrid automatic repeat request
  • the parameter combination in the UL grant may be redefined, and the redefined parameter combination is used to indicate that the signal transmission mechanism and/or the signal transmission resource has changed.
  • the parameter RV and the parameter UL-SCH indicator in the UL grant may be redefined to indicate that the signal transmission mechanism and/or the signal transmission resource has changed.
  • the length of the parameter RV is 2 bits, it is agreed to use one or more bits in the parameter RV, and it is agreed to use one of the multiple value states of the bits, which means that the UL grant requires at least the modification to be transmitted
  • the length of the parameter RV is 2bit, and it is agreed to use one of the four states "00", "01", "10” or "11” for the value of the parameter RV, which means that UL grant at least indicates the original transmission mechanism of the modified signal And/or the resources to transmit the signal.
  • the parameter UL-SCH indicator and the parameter HARQ-ID in the UL grant may be redefined to indicate that the signal transmission mechanism and/or the signal transmission resource has changed.
  • the length of the parameter HARQ-ID is 4 bits, it is agreed to use one or more bits in the HARQ-ID, and it is agreed to use one of the multiple value states of the bits, which means that the UL grant requires at least modification The original transmission mechanism and/or the resources of the signal to be transmitted.
  • the parameter UL-SCH indicator, the parameter RV, and the parameter HARQ-ID in the UL grant may be redefined to indicate that the signal transmission mechanism and/or the signal transmission resource has changed.
  • the parameters RV and HARQ-ID together are 6 bits, it is agreed to use one or more of the 6 bits, and it is agreed to use one of the multiple value states of the bits, which means that UL grants at least Indicate to modify the original transmission mechanism and/or resources of the signal.
  • the parameters other than the aforementioned reinterpreted parameters in the DCI for scheduling PUSCH can also be the original meaning, and it is effective, without reinterpretation.
  • the UE transmits the signal in the manner indicated by other valid parameters in the UL grant according to the indication of the remaining valid parameters in the UL grant. At this time, the signal is transmitted through the PUSCH indicated by the UL grant (and there is no uplink data in the PUSCH). The original PUCCH transmission mechanism and PUCCH resources of the signal are discarded.
  • the transmission mechanism includes at least one of the following: the signal is transmitted through the physical uplink control channel PUCCH, and the signal is transmitted through the physical uplink shared channel PUSCH;
  • the resource includes at least one of the following: a time domain resource used by the signal, a frequency domain resource used by the signal, a code word resource used by the signal, and a beam resource used by the signal;
  • the time domain resource includes at least one of the following: a slot position, a sub-slot position, and a symbol position;
  • the frequency domain resource includes at least one of the following: a physical resource block (PRB) Block) position, BWP (Bandwidth part, partial bandwidth) position, carrier position.
  • PRB physical resource block
  • BWP Bandwidth part, partial bandwidth
  • the signal includes one of the following: hybrid automatic repeat request acknowledgement/negative acknowledgement HARQ-ACK codebook, scheduling request SR (Scheduling Request, scheduling request), channel state information CSI, user equipment UE (User Equipment) data.
  • scheduling request SR Scheduling Request, scheduling request
  • channel state information CSI channel state information CSI
  • user equipment UE User Equipment
  • the signal transmission method provided in the embodiments of this application is applicable to scenarios where two channels overlap in time domain, and also to scenarios where there is only a single channel.
  • the essence is to modify the original transmission mechanism and/or transmission resources of a signal, regardless of the reason for the modification. how is it like.
  • the signal is a HARQ-ACK codebook
  • the UL grant is used to indicate that the HARQ-ACK codebook transmitted through PUCCH is modified to transmit the HARQ through the PUSCH scheduled by the UL grant -ACK codebook.
  • FIG. 2 is a schematic flowchart of a signal transmission method according to another embodiment of the application, as shown in FIG. 2, including:
  • Step S21 Receive UL grant.
  • Step S22 According to the UL grant, transmit the signal.
  • the UL grant is used to indicate that the transmission mechanism of the signal and/or the resource of the signal is changed.
  • the parameter UL-SCH indicator in the UL grant is 0, and the parameter CSI request in the UL grant is 0.
  • the parameter UL-SCH indicator in the UL grant is 0, and the parameter CSI request in the UL grant is 0, and the CRC check bit of the UL grant is temporarily used by the non-semi-persistent CSI wireless network. Identifies SP-CSI-RNTI scrambling.
  • the transmission mechanism includes at least one of the following: the signal is transmitted through PUCCH, and the signal is transmitted through PUSCH;
  • the resource includes at least one of the following: a time domain resource used by the signal, a frequency domain resource used by the signal, a code word resource used by the signal, and a beam resource used by the signal;
  • the time domain resource includes at least one of the following: slot position, sub-slot position, and symbol position; the frequency domain resource includes at least one of the following: PRB position, BWP position, and carrier position.
  • the signal includes one of the following: HARQ-ACK codebook, SR, CSI, UE data.
  • the signal is a HARQ-ACK codebook
  • the UL grant is used to indicate that the HARQ-ACK codebook transmitted through PUCCH is modified to transmit the HARQ through the PUSCH scheduled by the UL grant -ACK codebook.
  • FIG. 3 is a schematic flowchart of a signal transmission method provided by another embodiment of the application. As shown in FIG. 3, the signal transmission method includes:
  • Step S31 Send the first PDCCH.
  • the first PDCCH is used to indicate that the resource of the signal is changed.
  • the signal resource may refer to the resource used to transmit the signal.
  • the transmission channel of the signal overlaps or partially overlaps the transmission channel of another signal.
  • the resource includes at least one of the following: time domain resources used by the signal, frequency domain resources used by the signal, codeword resources used by the signal, The beam resources used;
  • the time domain resource includes at least one of the following: slot position, sub-slot position, and symbol position; the frequency domain resource includes at least one of the following: PRB position, BWP position, and carrier position.
  • the signal includes one of the following: HARQ-ACK codebook, SR, CSI, UE data.
  • the signal is a HARQ-ACK codebook
  • the downlink assignment index counter value DAI counter (Downlink Assignment Index counter, downlink assignment index counter) of the first PDCCH is set to second The value of the DAI counter of the PDCCH
  • the second PDCCH is the PDCCH at the end of the PDCCH corresponding to at least one PDSCH corresponding to the HARQ-ACK codebook.
  • a new resource for signal transmission is given in the first PDCCH.
  • the first PDCCH gives the uplink slot (UL slot) position (or uplink sub-slot) and/or PUCCH resource where the HARQ-ACK codebook is transmitted.
  • the receiving end when the receiving end receives a PDCCH, and the DAI counter value in the PDCCH is equal to the last PDCCH corresponding to the HARQ-ACK codebook (here, the HARQ-ACK codebook
  • the corresponding last PDCCH is a simple description of the last PDCCH in the PDCCH corresponding to at least one PDSCH corresponding to the HARQ-ACK codebook, the same below)
  • the receiving end considers the PDCCH to be the first PDCCH, it The resource used to modify the HARQ-ACK codebook.
  • the signal is a HARQ-ACK codebook
  • the transmission mode of HARQ-ACK information corresponding to the PDSCH scheduled by the first PDCCH is: HARQ-ACK corresponding to the PDSCH scheduled by the first PDCCH
  • the information is concatenated at the end of the HARQ-ACK codebook
  • the signal is a HARQ-ACK codebook and includes HARQ-ACK information corresponding to a semi-persistent scheduling physical downlink shared channel (Semi-Persistent Scheduling Physical Downlink Shared Channel, SPS PDSCH)
  • the PDSCH scheduled by the first PDCCH The corresponding HARQ-ACK information transmission mode is: the HARQ-ACK information corresponding to the PDSCH scheduled by the first PDCCH is concatenated after the first type of HARQ-ACK information and before the second type of HARQ-ACK information;
  • the HARQ-ACK-like information is the HARQ-ACK information corresponding to the PDSCH scheduled by the PDCCH in the HARQ-ACK codebook;
  • the second-type HARQ-ACK information is the HARQ corresponding to the SPS PDSCH corresponding to the HARQ-ACK codebook -ACK information.
  • FIG. 4 is a schematic flowchart of a signal transmission method according to another embodiment provided by this application. As shown in FIG. 4, the signal transmission method includes:
  • Step S41 Receive the first PDCCH.
  • Step S42 According to the signal transmission mode indication in the first PDCCH, transmit the resource.
  • the first PDCCH is used to indicate that the resource of the signal is changed.
  • the resource includes at least one of the following: time domain resources used by the signal, frequency domain resources used by the signal, codeword resources used by the signal, and The beam resources used;
  • the time domain resource includes at least one of the following: slot position, sub-slot position, and symbol position; the frequency domain resource includes at least one of the following: PRB position, BWP position, and carrier position.
  • the signal includes one of the following: HARQ-ACK codebook, SR, CSI, UE data.
  • the signal is a HARQ-ACK codebook
  • the DAI counter of the first PDCCH is set to the value of the DAI counter of the second PDCCH
  • the second PDCCH is the PDCCH at the end of the PDCCH corresponding to at least one PDSCH corresponding to the HARQ-ACK codebook.
  • other parameters are all valid parameters (for example, the DCI used to schedule PDSCH in the TS38.212Vf50 version except for the aforementioned reinterpreted parameters , Especially the parameter PUCCH resource indicator, and the parameter PDSCH-to-HARQ_feedback timing indicator).
  • the signal is a HARQ-ACK codebook
  • the transmission mode of HARQ-ACK information corresponding to the PDSCH (Physical Downlink Shared Channel) scheduled by the first PDCCH is:
  • the HARQ-ACK information corresponding to the PDSCH scheduled by the first PDCCH is concatenated at the end of the HARQ-ACK codebook.
  • the signal is a HARQ-ACK codebook and contains HARQ-ACK information corresponding to SPS PDSCH (Semi-Persistent Scheduling PDSCH, semi-persistent scheduling PDSCH), then the PDSCH scheduled by the first PDCCH corresponds to
  • the sending method of HARQ-ACK information is:
  • the first type of HARQ-ACK information is the HARQ-ACK information
  • the second type of HARQ-ACK information is the HARQ-ACK information corresponding to the SPS PDSCH corresponding to the HARQ-ACK codebook.
  • HARQ-ACK codebook 0 is instructed by the base station to be transmitted through a PUCCH in slot n, and for ease of description, it is recorded as PUCCH0.
  • PUCCH1 for ease of description, denoted as PUCCH1
  • HARQ-ACK codebook 1 overlap in the time domain, and the time domain overlap here includes partial time domain overlap.
  • the HARQ-ACK codebook 0 corresponds to the PDSCH transmitted by the eMBB service, or is considered a low priority HARQ-ACK codebook that requires modification of the transmission mechanism and/or resources.
  • HARQ-ACK codebook 1 corresponds to the PDSCH transmitted by the URLLC service, or is regarded as a high-priority HARQ-ACK codebook that does not need to modify the transmission mechanism and/or resources. According to the above assumptions, the HARQ-ACK codebook 0 needs to be modified in transmission mechanism and/or resources, then the operation is performed according to the method described in this embodiment.
  • the base station can transmit an uplink grant (UL grant) before transmission of HARQ-ACK codebook 0, and use the agreed parameter values in this UL grant to instruct to modify the HARQ-ACK codebook 0
  • UL grant uplink grant
  • the original transmission mechanism and/or resources enable the HARQ-ACK codebook 0 to be transmitted according to the UL grant.
  • the UE After the UE detects the UL grant, the UE considers that the HARQ-ACK codebook with low priority among the two HARQ-ACK codebooks that will overlap in the time domain, that is, HARQ-ACK codebook 0, will need to follow the UL grant. In the indicated transmission mechanism and/or resources, the originally planned transmission mechanism and/or resources are abandoned; or after the UE side receives the UL grant, it considers that there is a HARQ-ACK codebook that needs to follow the transmission mechanism indicated by the UL grant And/or transmission in resources, the originally planned transmission mechanism and/or resources of the HARQ-ACK codebook are abandoned.
  • the transmission mechanism of the HARQ-ACK codebook may include transmission of the HARQ-ACK codebook through PUCCH or transmission through PUSCH.
  • the resources of the HARQ-ACK codebook may include the UL slot position and/or PUCCH resources of the uplink time slot where the HARQ-ACK codebook is transmitted.
  • the UL slot of a low-priority HARQ-ACK codebook may be modified, such as changing to another slot; it is also possible that the UL slot of a low-priority HARQ-ACK codebook may not be modified, but only the PUCCH resources.
  • the new PUCCH used to transmit the low-priority codebook and the PUCCH of the high-priority HARQ-ACK codebook are in one UL slot but will not overlap in the time domain.
  • the UL slot and PUCCH resources of the low-priority HARQ-ACK codebook can also be modified at the same time. Specifically, it can be executed according to the instructions expressed by the parameters in this UL grant.
  • the UL grant can be identified in the following two ways.
  • the UL grant is used to indicate the modification of the transmission mechanism and/or resource of a HARQ-ACK codebook.
  • the first method the base station and the UE agree to use the parameter value in the UL grant. For example, reinterpret the parameter value of the UL-SCH indicator and CSI request in the UL grant. For example, when the value of the UL-SCH indicator is 0 and When the value of the CSI request is all 0s, it means that the UL grant has at least one purpose, that is, requiring modification of the original transmission mechanism and/or resources of the HARQ-ACK codebook 0. In this way, the UE can transmit the HARQ-ACK codebook 0 in the PUSCH resource configured in the UL grant and in the UL slot where the PUSCH resource is located.
  • the HARQ-ACK codebook 0 is transmitted in a PUSCH, and there is no UE data in the PUSCH at this time.
  • the second way the base station and the UE agree to identify the UL grant through the parameter values in the UL grant.
  • the following four explanation methods are used to reinterpret the relevant parameter settings UL Grant.
  • the parameter RV is 2bit, and it is agreed to use one of the four states “00", “01”, “10” or “11” for the value of the parameter RV, indicating that the UL grant requires at least the HARQ to be modified -ACK codebook 0 original transmission mechanism and/or resources.
  • a bit is agreed in the parameter RV of the UL grant, and it is agreed to use one of the two states "1" or "0" of the value of the bit, which means that the UL grant requires at least the HARQ to be modified -ACK codebook 0 original transmission mechanism and/or resources.
  • the parameter HARQ-ID is 4 bits, it is agreed to use one or more bits in HARQ-ID, and it is agreed to use one of the multiple value states of the bits, which means that the UL grant is at least It is required to modify the original transmission mechanism and/or resources of the HARQ-ACK codebook 0.
  • Interpretation method 4 The parameters RV and HARQ-ID are combined into 6 bits, agreed to use one or more of the 6 bits, and agreed to use one of the multiple value states of the bits, It means that the UL grant at least requires modification of the original transmission mechanism and/or resources of the HARQ-ACK codebook 0.
  • the UE transmits the HARQ-ACK codebook 0 through the UL grant according to the instructions in the UL grant.
  • the HARQ-ACK codebook 0 is transmitted through the PUSCH indicated by the UL grant and there is no uplink data.
  • the original transmission mechanism and resources of HARQ-ACK codebook 0 through PUCCH0 are discarded.
  • the PUCCH time domain overlap corresponding to two HARQ-ACK codebooks is taken as an example, and the transmission mechanism and/or resources corresponding to the HARQ-ACK codebook that is planned to be discarded are modified.
  • This method is also applicable to only one In the case of the HARQ-ACK codebook, the originally planned transmission mechanism and/or resources of the HARQ-ACK codebook can also be modified in the manner described in the foregoing specific embodiment 1. This method is also applicable to the situation where the PUCCHs corresponding to more than two HARQ-ACK codebooks overlap in the time domain.
  • the PUCCH channel of the HARQ-ACK codebook of a UE overlaps with other channels of the UE, or the PUCCH cannot be sent due to the frame structure change.
  • the PUCCH channel and the PUSCH channel of the HARQ-ACK codebook of the same UE overlap, or the uplink or downlink attributes of the slot or symbol are dynamically adjusted and the PUCCH cannot be sent.
  • this method can also be used to modify the transmission of the HARQ-ACK codebook Mechanism and/or resources, thereby adopting the modified transmission mechanism or resource to transmit the HARQ-ACK codebook.
  • the signal transmission method provided in Embodiment 1 is also suitable for modifying the transmission mechanism and/resources of other data or channels (such as PUSCH or PDSCH, etc.) originally planned to be transmitted.
  • the codebook is instructed by the base station to be transmitted through a PUCCH in slot n.
  • this HARQ-ACK codebook is marked as HARQ-ACK codebook 0
  • the PUCCH is marked as PUCCH0.
  • Another HARQ-ACK codebook of the UE is also instructed by the base station to transmit via a PUCCH in slot n.
  • the other HARQ-ACK codebook is marked as HARQ-ACK codebook 1, and the corresponding PUCCH is marked as PUCCH1.
  • PUCCH0 and PUCCH1 overlap in the time domain.
  • the HARQ-ACK codebook 0 may correspond to the PDSCH transmitted by the eMBB service, or may be a HARQ-ACK codebook that is considered to be of low priority and requires resource modification.
  • the HARQ-ACK codebook 1 may correspond to the PDSCH transmitted by the URLLC service, or may be a HARQ-ACK codebook that is considered high priority and does not require resource modification. According to the above assumption, the HARQ-ACK codebook 0 needs to be modified resources, then the modification is performed according to the method provided in this specific embodiment.
  • the base station can transmit the first PDCCH before the transmission of HARQ-ACK codebook 0.
  • the first PDCCH is a PDCCH corresponding to a scheduled PDSCH and passes the first PDCCH.
  • the value of the agreed parameter in the PDCCH indicates to modify the original resource of HARQ-ACK codebook 0, so that HARQ-ACK codebook 0 is transmitted according to the indication of the PDCCH.
  • the UE side After the UE side detects the first PDCCH, the UE thinks that among the two HARQ-ACK codebooks that will overlap in the time domain, HARQ-ACK codebook 0 needs to be transmitted in the resources indicated by the first PDCCH, and the originally planned resources are abandoned Or after receiving the first PDCCH, the UE side considers that a HARQ-ACK codebook needs to be transmitted in the resources indicated by the first PDCCH, and the resources originally planned for the HARQ-ACK codebook are abandoned.
  • the resource of the HARQ-ACK codebook may include the UL slot position and/or PUCCH resource of the uplink time slot where the HARQ-ACK codebook is transmitted.
  • the UL slot of a low-priority HARQ-ACK codebook may be modified and replaced with another UL slot.
  • the PUCCH of the HARQ-ACK codebook is in one UL slot, but there is no time domain overlap.
  • the UL slot and PUCCH resources of the HARQ-ACK codebook can also be modified at the same time. Specifically, it can be executed according to the instruction in the first PDCCH.
  • the base station and the UE agree to use the parameter value in the first PDCCH, for example 1, to set the value of the parameter DAI counter in the first PDCCH to indicate that at least one purpose of the first PDCCH is to modify a HARQ-
  • the original resources of the ACK codebook, and the new resources are also subject to the indication of the first PDCCH.
  • the above purpose is expressed by setting the value of DAI counter in the first PDCCH to be equal to the value of DAI counter in the second PDCCH at the end corresponding to the HARQ-ACK codebook of the resource to be modified.
  • the first PDCCH allows one PDSCH to be scheduled, and the PDSCH may be data with or without data.
  • the UE side when the UE side receives a PDCCH and the value of the DAI counter in the PDCCH is equal to the value of the DAI counter in the last PDCCH corresponding to a HARQ-ACK codebook, the UE considers the PDCCH as the first PDCCH.
  • the resource used to modify the HARQ-ACK codebook For example, if the UE receives the first PDCCH and finds that the value of the DAI counter of the first PDCCH is equal to the value of the DAI counter in the second PDCCH at the end corresponding to HARQ-ACK codebook 0, the UE considers that the resources of HARQ-ACK codebook 0 have been modified. And the new resource of HARQ-ACK codebook 0 is based on the indication of the received first PDCCH.
  • the HARQ-ACK information corresponding to the PDSCH scheduled by the first PDCCH is combined with the HARQ-ACK codebook 0 to serve as a new HARQ-ACK code This is transmitted in the PUCCH resource indicated by the first PDCCH. If the PDSCH scheduled in the first PDCCH has no data, only the HARQ-ACK codebook 0 is transmitted in the PUCCH resource indicated by the first PDCCH.
  • the HARQ-ACK information corresponding to the PDSCH scheduled by the first PDCCH is combined with the HARQ-ACK codebook 0 to serve as a new HARQ-ACK code This is transmitted in the PUCCH resource indicated by the first PDCCH.
  • the specific operation mode may be: the HARQ-ACK information of the PDSCH scheduled by the first PDCCH is concatenated at the end of the HARQ-ACK information corresponding to the PDSCH dynamically scheduled by the PDCCH in the HARQ-ACK codebook 0. It does not matter whether there is HARQ-ACK information corresponding to SPS PDSCH in HARQ-ACK codebook 0.
  • the HARQ-ACK information corresponding to the PDSCH scheduled by the first PDCCH is combined with the HARQ-ACK codebook 0 to serve as a new HARQ-ACK code This is transmitted in the PUCCH resource indicated by the first PDCCH.
  • the specific operation mode may also be: if the HARQ-ACK codebook 0 has the HARQ-ACK information corresponding to the SPS PDSCH, the HARQ-ACK information corresponding to the PDSCH scheduled by the first PDCCH is in the HARQ-ACK codebook 0 After the HARQ-ACK information corresponding to the PDSCH dynamically scheduled by the PDCCH, and before the HARQ-ACK information corresponding to the SPS PDSCH in the HARQ-ACK codebook 0.
  • the base station uses the agreed value of a parameter in a downlink PDCCH to indicate to the UE that the resource of a HARQ-ACK codebook has changed, and at the same time, new resources are given in the PDCCH.
  • the UE transmits the HARQ-ACK codebook 0 in the PUCCH resource indicated by the first PDCCH according to the indication in the first PDCCH.
  • the original PUCCH0 resource of HARQ-ACK codebook 0 is discarded.
  • Specific embodiment 2 takes the PUCCH time domain overlap corresponding to two HARQ-ACK codebooks as an example to describe, and modifies the transmission mechanism and/or resources corresponding to the HARQ-ACK codebook that is scheduled to be discarded.
  • This method is also applicable to only one HARQ -In the case of an ACK codebook, that is, there is no time domain overlap with other HARQ-ACK codebook transmissions, the original planned transmission mechanism and/or resources of the HARQ-ACK codebook can also be modified through the method of this document.
  • This method is also applicable to the case where the PUCCH corresponding to more than two HARQ-ACK codebooks overlaps in the time domain.
  • the PUCCH channel of the HARQ-ACK codebook of a UE overlaps with other channels of the UE, or the PUCCH cannot be sent due to the frame structure change.
  • the PUCCH channel and the PUSCH channel of the HARQ-ACK codebook of the same UE overlap, or the uplink or downlink attributes of the slot or symbol are dynamically adjusted and the PUCCH cannot be sent.
  • this method can also be used to modify the transmission of the HARQ-ACK codebook Mechanism and/or resource, thereby adopting the modified transmission mechanism or resource to transmit the HARQ-ACK codebook.
  • the signal transmission method provided in Embodiment 1 is also suitable for modifying the transmission mechanism and/resources of other data or channels (such as PUSCH or PDSCH, etc.) originally planned to be transmitted.
  • beta_offsets when transmitting in the physical uplink shared channel PUSCH
  • UCI Uplink Control Information
  • beta_offsets specifically includes dynamic parameters dynamic (dynamic) or semi-static parameters semiStatic (semiStatic), both of which can only be selected One to configure.
  • dynamic dynamic
  • semi-static parameters semiStatic semiStatic
  • DCI0-0 corresponds to a small number of bits, and generally corresponds to a higher value during transmission. Reliability, the actual bit rate is low, and the main usage scenarios include the cell edge. Therefore, the parameter beta_offset indication field is not set in DCI0-0. Relatively speaking, DCI0-1 has a larger total number of bits and a higher intensive bit rate. The parameter beta_offset indication field is set in DCI0-1.
  • beta_offsets configured by the high-level signaling is semiStatic, there is only one value at this time, and the UE can directly use it. If the beta_offsets configured by higher layer signaling is dynamic, and there are 4 values at this time, the UE can use one of the following solutions to determine the value:
  • the base station and the UE agree that for the PUSCH scheduled by DCI0-0, the UE uses the default or predefined betaoffset value as the UCI transmitted on the PUSCH. For example, regardless of whether the betaoffsets configured in RRC (Radio Resource Control) signaling are dynamic or semi-static, if the UE wants to transmit UCI on the PUSCH scheduled by DCI0-0, the UE uses the default or predefined betaoffset.
  • the base station also considers that the UE uses the default or predefined betaoffset when transmitting UCI on the PUSCH scheduled by DCI0-0. The advantage of this is that even when the RRC configuration signaling is ambiguous, if the UE transmits UCI in the PUSCH scheduled by DCI0-0, the determined betaoffset value can be used.
  • the betaoffset value will not change. In different scenarios, such as the edge of the cell and the center of the cell, only the same betaoffset value can be used. Obviously, the flexibility of the betaoffset value is very poor, which will lead to low UCI transmission efficiency.
  • the base station and the UE agree that when the RRC signaling configuration beta_offsets is dynamic and four beta_offset values are configured, if the UE transmits UCI in the PUSCH scheduled by DCI0-0, then one of the four dynamic beta_offset values will be used.
  • a value is used as the value of beta_offset for UCI transmission in the PUSCH.
  • the base station and the UE agree to use the first of the four dynamic beta_offset values, or the largest one of the four dynamic beta_offset values, or use the four dynamic betaoffset values The second largest median value. Use the beta_offset with the largest value. In doing so, we mainly consider DCI0-0.
  • One use scenario is cell edge coverage.
  • beta_offset is used for beta_offset, that is, when the RRC is fuzzy, the previous and recently used beta_offset value is used. At this time, the UE needs to save the previously recently used beta_offset value to use when the RRC is blurred.
  • the base station and the UE agree that when the beta_offsets configured by the RRC signaling are dynamic and configured to the value of 4 beta_offsets, if the UE transmits UCI in the PUSCH scheduled by DCI0-0, the UE uses the default or predefined beta_offset value Is the UCI transmitted on the PUSCH. For example, regardless of whether the beta_offsets configured by the RRC signaling are dynamic or semi-static, if the UE wants to transmit UCI on the PUSCH scheduled by DCI0-0, the UE uses the default or predefined beta_offset. The base station also considers that the UE uses the default or predefined beta_offset when transmitting UCI on the PUSCH scheduled by DCI0-0.
  • this scheme means that if the betaoffsets configured by the RRC signaling are semi-static, when the UE transmits UCI in the PUSCH scheduled by DCI0-0, the semi-static betaoffset value configured by the RRC can be used.
  • the value of beta_offset can be modified semi-statically to achieve certain flexibility of the value of beta_offset. Based on this scheme, if the RRC is ambiguous, the default or predefined beta_offset value is directly used.
  • FIG. 5 is a schematic structural diagram of a signal transmission device according to an embodiment of the application.
  • the signal transmission device includes:
  • the first sending module 51 used to send uplink authorization UL grant
  • the UL grant is used to indicate that the transmission mechanism of the signal and/or the resource of the signal is changed.
  • the parameter uplink shared channel indicator UL-SCH indicator in the UL grant is 0, and the parameter channel state information request CSI request in the UL grant is 0.
  • the transmission mechanism includes at least one of the following: the signal is transmitted through the physical uplink control channel PUCCH, and the signal is transmitted through the physical uplink shared channel PUSCH;
  • the resource includes at least one of the following: a time domain resource used by the signal, a frequency domain resource used by the signal, a code word resource used by the signal, and a beam resource used by the signal;
  • the time domain resource includes at least one of the following: slot position, sub-slot position, symbol position;
  • the frequency domain resource includes at least one of the following: physical resource block PRB position, partial bandwidth BWP position, Carrier position.
  • the signal includes one of the following: hybrid automatic repeat request acknowledgement/negative acknowledgement HARQ-ACK codebook, scheduling request SR, channel state information CSI, and user equipment UE data.
  • the signal is a HARQ-ACK codebook
  • the UL grant is used to indicate that the HARQ-ACK codebook transmitted through PUCCH is modified to transmit the HARQ through the PUSCH scheduled by the UL grant -ACK codebook.
  • FIG. 6 is a schematic structural diagram of a signal transmission device according to an embodiment of the application, including:
  • the first receiving module 61 used to receive UL grant
  • the first transmission module 62 is configured to transmit the signal according to the UL grant
  • the UL grant is used to indicate that the transmission mechanism of the signal and/or the resource of the signal is changed.
  • the parameter UL-SCH indicator in the UL grant is 0, and the parameter CSI request in the UL grant is 0.
  • the transmission mechanism includes at least one of the following: the signal is transmitted through PUCCH, and the signal is transmitted through PUSCH;
  • the resource includes at least one of the following: a time domain resource used by the signal, a frequency domain resource used by the signal, a code word resource used by the signal, and a beam resource used by the signal;
  • the time domain resource includes at least one of the following: slot position, sub-slot position, and symbol position; the frequency domain resource includes at least one of the following: PRB position, BWP position, and carrier position.
  • the signal includes one of the following: HARQ-ACK codebook, SR, CSI, UE data.
  • the signal is a HARQ-ACK codebook
  • the UL grant is used to indicate that the HARQ-ACK codebook transmitted through PUCCH is modified to transmit the HARQ through the PUSCH scheduled by the UL grant -ACK codebook.
  • FIG. 7 is a schematic structural diagram of a signal transmission device according to an embodiment of the application, including:
  • the second sending module 71 used to send the first PDCCH
  • the first PDCCH is used to indicate that the resource of the signal is changed.
  • the resource includes at least one of the following: time domain resources used by the signal, frequency domain resources used by the signal, codeword resources used by the signal, The beam resources used;
  • the time domain resource includes at least one of the following: slot position, sub-slot position, and symbol position; the frequency domain resource includes at least one of the following: PRB position, BWP position, and carrier position.
  • the signal includes one of the following: HARQ-ACK codebook, SR, CSI, UE data.
  • the signal is a HARQ-ACK codebook
  • the downlink allocation index counter value DAI counter of the first PDCCH is set to the value of the DAI counter of the second PDCCH
  • the second PDCCH is the PDCCH at the end of the PDCCH corresponding to at least one PDSCH corresponding to the HARQ-ACK codebook.
  • the signal is a HARQ-ACK codebook
  • the transmission mode of HARQ-ACK information corresponding to the PDSCH scheduled by the first PDCCH is: HARQ-ACK corresponding to the PDSCH scheduled by the first PDCCH
  • the information is concatenated at the end of the HARQ-ACK codebook
  • the signal is a HARQ-ACK codebook and contains HARQ-ACK information corresponding to the semi-persistent scheduled SPS PDSCH
  • the transmission mode of the HARQ-ACK information corresponding to the PDSCH scheduled by the first PDCCH is: the first PDCCH
  • the HARQ-ACK information corresponding to the scheduled PDSCH is concatenated after the first type of HARQ-ACK information and before the second type of HARQ-ACK information
  • the first type of HARQ-ACK information is the PDCCH in the HARQ-ACK codebook HARQ-ACK information corresponding to the scheduled PDSCH
  • the second type of HARQ-ACK information is HARQ-ACK information corresponding to the SPS PDSCH corresponding to the HARQ-ACK codebook.
  • FIG. 8 is a schematic structural diagram of a signal transmission device according to an embodiment of the application, as shown in FIG. 8, including:
  • the second receiving module 81 is configured to receive the first PDCCH
  • the second transmission module 82 is configured to transmit the resource according to the signal transmission mode indication in the first PDCCH;
  • the first PDCCH is used to indicate that the resource of the signal is changed.
  • the resource includes at least one of the following: time domain resources used by the signal, frequency domain resources used by the signal, codeword resources used by the signal, The beam resources used;
  • the time domain resource includes at least one of the following: slot position, sub-slot position, and symbol position; the frequency domain resource includes at least one of the following: PRB position, BWP position, and carrier position.
  • the signal includes one of the following: HARQ-ACK codebook, SR, CSI, UE data.
  • the signal is a HARQ-ACK codebook
  • the DAI counter of the first PDCCH is set to the value of the DAI counter of the second PDCCH
  • the second PDCCH is the PDCCH at the end of the PDCCH corresponding to at least one PDSCH corresponding to the HARQ-ACK codebook.
  • the HARQ-ACK information corresponding to the PDSCH scheduled by the first PDCCH is sent in a manner that the HARQ-ACK information corresponding to the PDSCH scheduled by the first PDCCH is concatenated in the HARQ-ACK codebook end.
  • the second sending module has been described in the above embodiment.
  • the signal is a HARQ-ACK codebook and contains HARQ-ACK information corresponding to the SPS PDSCH
  • the HARQ-ACK information corresponding to the PDSCH scheduled by the first PDCCH is sent in the following manner:
  • the HARQ-ACK information corresponding to the PDSCH scheduled by a PDCCH is concatenated after the first type of HARQ-ACK information and before the second type of HARQ-ACK information;
  • the first type of HARQ-ACK information is in the HARQ-ACK codebook HARQ-ACK information corresponding to the PDSCH scheduled by the PDCCH;
  • the second type of HARQ-ACK information is HARQ-ACK information corresponding to the SPS PDSCH corresponding to the HARQ-ACK codebook.
  • the second sending module 71 has been described in the above embodiment.
  • FIG. 9 is a schematic structural diagram of a terminal according to an embodiment of the application.
  • the terminal 130 provided in an embodiment of the application includes a memory 1303 and a processor 1304.
  • the terminal 130 may also include an interface 1301 and a bus 1302.
  • the interface 1301, the memory 1303 and the processor 1304 are connected through a bus 1302.
  • the memory 1303 is used to store instructions.
  • the processor 1304 is configured to read the instructions to execute the technical solutions of the foregoing method embodiments applied to the terminal. The implementation principles and technical effects are similar, and will not be repeated here.
  • FIG. 10 is a schematic structural diagram of a base station according to an embodiment of the application.
  • the base station 140 provided in the embodiment of the application includes a memory 1403 and a processor 1404.
  • the base station may further include an interface 1401 and a bus 1402.
  • the interface 1401, the memory 1403 and the processor 1404 are connected through a bus 1402.
  • the memory 1403 is used to store instructions.
  • the processor 1404 is configured to read the instructions to execute the technical solutions of the foregoing method embodiments applied to the base station. The implementation principles and technical effects are similar, and details are not described herein again.
  • Fig. 11 is a schematic structural diagram of a communication system according to an embodiment of the application.
  • the system includes: a terminal 130 as in the foregoing embodiment and a base station 140 in the foregoing embodiment.
  • the communication system of the embodiment of the application includes, but is not limited to: Long Term Evolution (LTE) system, LTE Frequency Division Duplex (FDD) system, LTE Time Division Duplex (TDD), general Mobile communication system (Universal Mobile Telecommunication System, UMTS), or 5G system, etc.
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • 5G system etc.
  • the various embodiments of the present application can be implemented in hardware or dedicated circuits, software, logic or any combination thereof.
  • some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software that may be executed by a controller, microprocessor or other computing device, although the application is not limited thereto.
  • the embodiments of the present application may be implemented by executing computer program instructions by a data processor of a mobile device, for example, in a processor entity, or by hardware, or by a combination of software and hardware.
  • Computer program instructions can be assembly instructions, Industry Subversive Alliance (ISA) instructions, machine instructions, machine-related instructions, microcode, firmware instructions, status setting data, or written in any combination of one or more programming languages Source code or object code.
  • ISA Industry Subversive Alliance
  • the block diagram of any logical flow in the drawings of the present application may represent program steps, or may represent interconnected logic circuits, modules, and functions, or may represent a combination of program steps and logic circuits, modules, and functions.
  • the computer program can be stored on the memory.
  • the memory can be of any type suitable for the local technical environment and can be implemented using any suitable data storage technology.
  • the memory in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory, etc.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM can include many forms, such as static random access memory (Static RAM, SRAM), dynamic random access memory (Dynamic RAM, DRAM), synchronous dynamic random access memory (Synchronous DRAM, SDRAM), double data rate synchronization Dynamic random access memory (Double Data Rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (Enhanced SDRAM, ESDRAM), synchronous connection dynamic random access memory (Synchlink DRAM, SLDRAM) and direct memory bus random access Memory (Direct Rambus RAM, DR RAM).
  • Static RAM, SRAM static random access memory
  • DRAM dynamic random access memory
  • synchronous dynamic random access memory Synchronous DRAM, SDRAM
  • Double data rate synchronization Dynamic random access memory Double Data Rate SDRAM, DDR SDRAM
  • Enhanced SDRAM, ESDRAM enhanced synchronous dynamic random access memory
  • Synchlink DRAM, SLDRAM synchronous connection dynamic random access memory
  • Direct Rambus RAM Direct Rambus RAM
  • the processor of the embodiment of the present application may be of any type suitable for the local technical environment, such as but not limited to general-purpose computers, special-purpose computers, microprocessors, digital signal processors (Digital Signal Processor, DSP), and application specific integrated circuits (Application Specific Integrated Circuits). Integrated Circuit, ASIC), Field-Programmable Gate Array (FGPA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, or processors based on multi-core processor architecture.
  • the general-purpose processor may be a microprocessor or any conventional processor.
  • the foregoing processor may implement or execute the steps of each method disclosed in the embodiments of the present application.
  • the software module can be located in storage media such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • storage media such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

本申请提出一种信号传输方法及装置。所述信号传输方法包括:将上行授权UL grant发送到终端;所述UL grant用于指示信号的传输机制和/或信号的资源发生变更。

Description

信号传输方法、装置、网络设备及存储介质
本申请要求在2019年07月31日提交中国专利局、申请号为201910706591.7的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,例如涉及信号传输方法、装置、网络设备及存储介质。
背景技术
5GNR(5th-Generation New Radio,第五代移动通信技术新空口)是基于OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用技术)的全新空口设计的全球性5G标准,也是下一代非常重要的蜂窝移动技术基础。在NR中,引入了URLLC(Ultra Reliable Low Latency Communication,超可靠、低时延通信)业务,这类业务要求高的传输可靠性以及及时性。eMBB(Enhanced Mobile Broadband,增强移动宽带)业务对于传输可靠性和及时性的要求低于URLLC业务。所以在传输中,相对于eMBB业务,对于URLLC业务赋有更高的优先级传输,同样的,对于URLLC业务对应的HARQ-ACK(Hybrid Automatic Repeat reQuest Acknowledgement,混合自动重传请求肯定应答/否定应答)码本也具有更高的优先级,高于eMBB业务对应的HARQ-ACK码本。
因此,如果在一个UL slot中,一个eMBB业务对应的HARQ-ACK码本的PUCCH(Physical Uplink Control Channel,物理上行链路控制信道)和一个URLLC业务对应的HARQ-ACK码本的PUCCH之间时域重叠时(包括部分时域重叠),为了保证两种码本资源的传输,需要提供一种可靠的方法,既能够保证低优先级的资源的传输不影响高优先级的资源的可靠性和及时性,也能够保证低优先级的资源通过适当的方式进行传输。
发明内容
本申请实施例提供了一种信号传输方法,包括:
发送上行授权UL grant(Up Link grant,上行授权);
所述UL grant用于指示所述信号的传输机制和/或所述信号的资源发生变更。
本申请实施例提供了一种信号传输方法,包括:
接收UL grant;
根据所述UL grant,传输所述信号;
所述UL grant用于指示所述信号的传输机制和/或所述信号的资源发生变更。
本申请实施例提供了一种信号传输方法,包括:
发送第一物理下行控制信道PDCCH(Physical Downlink Control Channel,物理下行控制信道);
所述第一PDCCH用于指示所述信号的资源发生变更。
本申请实施例提供了一种信号传输方法,包括:
接收第一PDCCH;
根据所述第一PDCCH中的信号传输方式指示,传输所述资源;
所述第一PDCCH用于指示所述信号的资源发生变更。
本申请实施例提供了一种信号传输装置,包括:
第一发送模块:用于发送上行授权UL grant;
所述UL grant用于指示所述信号的传输机制和/或所述信号的资源发生变更。
本申请实施例提供了一种信号传输装置,包括:
第一接收模块:用于接收UL grant;
第一传输模块:用于根据所述UL grant,传输所述信号;
所述UL grant用于指示所述信号的传输机制和/或所述信号的资源发生变更。
本申请实施例提供了一种信号传输装置,包括:
第二发送模块:用于发送第一PDCCH;
所述第一PDCCH用于指示所述信号的资源发生变更。
本申请实施例提供了一种信号传输装置,包括:
第二接收模块:用于接收第一PDCCH;
第二传输模块:用于根据所述第一PDCCH中的信号传输方式指示,传输所述资源;
所述第一PDCCH用于指示所述信号的资源发生变更。
本申请实施例提供了一种信号传输系统,包括本申请任意一项实施例所提供的信号传输装置。
本申请实施例提供了一种通信系统,所述系统包括本申请实施例提供的终端及本申请实施例提供的的基站。
本申请实施例提供了一种存储介质,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现本申请实施例提供的任一项所述的方法。
本申请实施例能够利用参数修改信号的发送机制或资源,从而能够提高单个信号传输的可靠性,对于多个可能发生冲突的信号传输,本申请实施例也能够避免为了规避冲突而造成的信号丢弃。
附图说明
图1为本申请实施例的信号传输方法的流程示意图;
图2为本申请另一实施例的信号传输方法的流程示意图;
图3为本申请另一实施例的信号传输方法的流程示意图;
图4为本申请另一实施例的信号传输方法的流程示意图;
图5为本申请实施例的信号传输装置的结构示意图;
图6为本申请另一实施例的信号传输装置的结构示意图;
图7为本申请另一实施例的信号传输装置的结构示意图;
图8为本申请另一实施例的信号传输装置的结构示意图;
图9为本申请实施例的终端的结构示意图;
图10为本申请实施例的基站的结构示意图;
图11为本申请实施例的通信系统的结构示意图。
具体实施方式
下文中将结合附图对本申请的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
图1为本申请一实施例的信号传输方法的流程示意图,如图1所示,该方法可以包括:
步骤S11:发送上行授权UL grant。
所述UL grant用于指示所述信号的传输机制和/或所述信号的资源发生变更。
在一种实施方式中,所述信号的资源为传输信号所使用的资源,例如时域资源、频域资源等。
在一种实施方式中,UL grant可以是一个调度物理上行共享信道(Physical Uplink Shared Channel,PUSCH)的PDCCH或DCI(Downlink Control Information,下行控制信息)。
在一种实施方式中,UL grant用于指示所述信号的传输机制发生变更。
在一种实施方式中,UL grant用于指示传输所述信号的资源发生变更。
在一种实施方式中,UL grant用于指示信号的传输机制和传输信号的资源发生变更。
在具体示例中,所述信号的传输信道与另一信号的传输信道发生时域重叠或部分时域重叠,且所述信号的优先级低于另一信号。
在另一种具体示例中,所述信号的传输信道未与其它信号的传输信道发生时域重叠或部分时域重叠。
在具体示例中,所述信号的传输机制和传输所述信号的资源为基站配置。
在具体示例中,通过设置UL grant中的一个或多个参数为特定值,指示信号的传输机制发生变更。
在具体示例中,通过设置UL grant中的一个或多个参数为特定值,指示传输所述信号的资源发生变更。
在具体示例中,通过设置UL grant中的一个或多个参数为特定值,指示信号的传输机制和传输信号的资源发生变更。
在一种实施方式中,所述UL grant中的参数上行链路共享信道指示信息UL-SCH indicator(Up Link Shared Channel indicator,上行共享信道指示)为0,且所述UL grant中的参数信道状态信息请求CSI request(Channel State Information request,信道状态请求)为0。
在一种实施例方式中,所述UL grant中的参数上行链路共享信道指示信息UL-SCH indicator为0,且所述UL grant中的参数信道状态信息请求CSI request为0,且UL grant的循环冗余校验(Cyclic Redundancy Check,CRC)校验比特被非半持续CSI无线网络临时标识(Semi-Persistent Channel State Information Radio Network Tempory Identity,SP-CSI-RNTI)加扰。
相关技术中,UL grant中的参数UL-SCH indicator为0且参数CSI request为0(且UL grant的CRC校验比特被非半持续CSI无线网络临时标识SP-CSI-RNTI加扰)时,表示一种错误状况,这种设置被禁止。在本申请实施例中,利用UL grant被禁止的参数取值来指示信号的传输机制和/或传输信号的资源发生变更,不影响UL grant中原有参数的功能,这样,对于相关技术无影响,因为相关技术中上述参数不会出现上述取值。参数CSI request包括有多位,参数CSI request为0,可以是指该参数的各位全部设置为0。
在一种实施方式中,所述UL grant中除了参数冗余版本RV(RedundancyVersion,冗余版本)和参数混合自动重传请求身份识别号HARQ-ID(Hybrid Automatic Repeat request Identity Document,混合自动重传请求身份识别号)外,其它参数均为有效参数。
在具体示例中,可以通过对UL grant中的参数组合进行重定义,重定义后的参数组合用于指示信号的传输机制和/或传输信号的资源发生变化。
在一种实施方式中,可以通过重定义UL grant中的参数RV和参数UL-SCH indicator,指示信号的传输机制和/或传输信号的资源发生变更。例如,参数RV的长度为2bit,约定使用参数RV中的一个或多个比特位,且约定使用所述比特位的多种取值状态中的一种状态,表示UL grant至少要求修改待传输的信号的原本的传输机制和/或传输信号的资源。例如,参数RV的长度为2bit,约定使用参数RV取值的4种状态“00”,“01”,“10”或“11”中一种状态,表示UL grant至少指示修改信号原本的传输机制和/或传输信号的资源。
在一种实施方式中,可以通过重定义UL grant中的参数UL-SCH indicator和参数HARQ-ID,指示信号的传输机制和/或传输信号的资源发生变更。例如,参数HARQ-ID的长度为4bit,约定使用HARQ-ID中的一个或多个比特位,且约定使用所述比特位的多种取值状态中的一种状态,表示UL grant至少要求修改待传输的信号的原本的传输机制和/或传输信号的资源。
在一种实施方式中,可以通过重定义UL grant中的参数UL-SCH indicator、参数RV和参数HARQ-ID,指示信号的传输机制和/或传输信号的资源发生变更。参数RV和HARQ-ID合起来为6比特,约定使用所述6比特中的一个或多个比特位,且约定使用所述比特位的多种取值状态中的一种状态,表示UL grant至少指示修改所述信号原本的传输机制和/或传输信号的资源。
在UL grant中,除了可以通过重定义来表示UL grant指示修改信号的传输机制和/或传输信号的资源发生变更的参数以外,对于这个UL grant中其它参数(例如,TS38.212Vf50版本中用于调度PUSCH的DCI中除了前述的被重新解释的参数之外的参数,尤其是参数Modulation and coding scheme(调制与编码策 略),参数beta_offset indicator(贝塔偏置指示值),参数Time domain resource assignment(时域资源分配))也可以是原本的含义,且是有效的,不需要重解释。UE就按照这个UL grant中其余有效参数的指示,将信号通过UL grant中的其它有效参数指示的方式进行传输,此时信号通过UL grant指示的PUSCH进行传输(且该PUSCH中没有上行数据)。该信号原本的PUCCH传输的机制和PUCCH资源被丢弃。
在一种实施方式中,所述传输机制包括下述至少之一:所述信号通过物理上行控制信道PUCCH传输,所述信号通过物理上行共享信道PUSCH传输;
所述资源包括下述至少之一:所述信号所使用的时域资源,所述信号所使用的频域资源,所述信号所使用的码字资源,所述信号所使用的波束资源;
其中,所述时域资源包括下述至少之一:时隙slot位置,子时隙位置,符号位置;所述频域资源包括下述至少之一:物理资源块PRB(Physical Resource Block,物理资源块)位置,部分带宽BWP(Bandwidth part,部分带宽)位置,载波位置。
在一种实施方式中,所述信号包括下述之一:混合自动重传请求肯定应答/否定应答HARQ-ACK码本,调度请求SR(Scheduling Request,调度请求),信道状态信息CSI,用户设备UE(User Equipment,用户设备)的数据。
本申请实施例提供的信号传输方法既适用于两个信道时域重叠的场景,也适用于只有单个信道的场景,本质是修改一个信号原来的传输机制和/或传输资源,不管修改的原因是什么样的。
在一种实施方式中,所述信号为HARQ-ACK码本,则所述UL grant用于指示将通过PUCCH传输所述HARQ-ACK码本修改为通过所述UL grant调度的PUSCH传输所述HARQ-ACK码本。
图2为本申请另一实施例的信号传输方法的流程示意图,如图2所示,包括:
步骤S21:接收UL grant。
步骤S22:根据所述UL grant,传输所述信号。
所述UL grant用于指示所述信号的传输机制和/或所述信号的资源发生变更。
在一种实施方式中,所述UL grant中的参数UL-SCH indicator为0,且所述UL grant中的参数CSI request为0。
在一种实施方式中,所述UL grant中的参数UL-SCH indicator为0,且所述 UL grant中的参数CSI request为0,且UL grant的CRC校验比特被非半持续CSI无线网络临时标识SP-CSI-RNTI加扰。
在一种实施方式中,所述UL grant中除了参数RV和参数HARQ-ID外,其它参数均为有效参数。
在一种实施方式中,所述传输机制包括下述至少之一:所述信号通过PUCCH传输,所述信号通过PUSCH传输;
所述资源包括下述至少之一:所述信号所使用的时域资源,所述信号所使用的频域资源,所述信号所使用的码字资源,所述信号所使用的波束资源;
其中,所述时域资源包括下述至少之一:slot位置,子时隙位置,符号位置;所述频域资源包括下述至少之一:PRB位置,BWP位置,载波位置。
在一种实施方式中,所述信号包括下述之一:HARQ-ACK码本,SR,CSI,UE的数据。
在一种实施方式中,所述信号为HARQ-ACK码本,则所述UL grant用于指示将通过PUCCH传输所述HARQ-ACK码本修改为通过所述UL grant调度的PUSCH传输所述HARQ-ACK码本。
图3为本申请另一实施例提供的信号传输方法的流程示意图,如图3所示,信号传输方法包括:
步骤S31:发送第一PDCCH。
所述第一PDCCH用于指示所述信号的资源发生变更。
在一种实施方式中,信号的资源,可以是指用于传输信号的资源。
在一种实施方式中,所述信号的传输信道与另一个信号的传输信道发生重叠或部分重叠。
在一种实施方式中,所述资源包括下述至少之一:所述信号所使用的时域资源,所述信号所使用的频域资源,所述信号所使用的码字资源,所述信号所使用的波束资源;
其中,所述时域资源包括下述至少之一:slot位置,子时隙位置,符号位置;所述频域资源包括下述至少之一:PRB位置,BWP位置,载波位置。
在一种实施方式中,所述信号包括下述之一:HARQ-ACK码本,SR,CSI,UE的数据。
在一种实施方式中,所述信号为HARQ-ACK码本,则所述第一PDCCH的下行链路分配索引计数器值DAI counter(Downlink Assignment Index counter, 下行链路分配索引计数器)设置为第二PDCCH的DAI counter的取值;
其中,第二PDCCH为所述HARQ-ACK码本对应的至少一个PDSCH对应的PDCCH中末尾的PDCCH。
在一种实施方式中,在第一PDCCH中给出用于传输信号的新的资源。
信号为HARQ-ACK码本,则第一PDCCH中给出所述HARQ-ACK码本传输时所在的上行时隙(UL slot)位置(或上行子时隙)和/或PUCCH资源。
在信号为HARQ-ACK码本的情况下,当接收端接收到一个PDCCH,且该PDCCH中的DAI counter取值等于所述HARQ-ACK码本对应的末尾PDCCH(这里所述HARQ-ACK码本对应的末尾PDCCH是所述HARQ-ACK码本对应的至少一个PDSCH对应的PDCCH中末尾的PDCCH的简单描述,下同)中DAI counter的取值,则接收端认为该PDCCH为第一PDCCH,它被用来修改所述HARQ-ACK码本的资源。
在一种实施方式中,所述第一PDCCH中除了参数DAI counter外,其它参数均为有效参数。
第一PDCCH中其它有效参数仍然可以起到原有的指示作用。
在一种实施方式中,所述信号为HARQ-ACK码本,则所述第一PDCCH调度的PDSCH对应的HARQ-ACK信息的传输方式为:所述第一PDCCH调度的PDSCH对应的HARQ-ACK信息串接在所述HARQ-ACK码本末尾;
或者,当所述信号为HARQ-ACK码本且包含半静态调度物理下行共享信道(Semi-Persistent Scheduling Physical Downlink Shared Channel,SPS PDSCH)对应的HARQ-ACK信息,则所述第一PDCCH调度的PDSCH对应的HARQ-ACK信息的传输方式为:所述第一PDCCH调度的PDSCH对应的HARQ-ACK信息串接在第一类HARQ-ACK信息之后、第二类HARQ-ACK信息之前;所述第一类HARQ-ACK信息为所述HARQ-ACK码本中由PDCCH调度的PDSCH对应的HARQ-ACK信息;所述第二类HARQ-ACK信息为所述HARQ-ACK码本对应的SPS PDSCH对应的HARQ-ACK信息。
图4为本申请提供的另一实施例的信号传输方法的流程示意图,如图4所示,信号传输方法包括:
步骤S41:接收第一PDCCH。
步骤S42:根据所述第一PDCCH中的信号传输方式指示,传输所述资源。
所述第一PDCCH用于指示所述信号的资源发生变更。
在一种实施方式中,所述资源包括下述至少之一:所述信号所使用的时域 资源,所述信号所使用的频域资源,所述信号所使用的码字资源,所述信号所使用的波束资源;
其中,所述时域资源包括下述至少之一:slot位置,子时隙位置,符号位置;所述频域资源包括下述至少之一:PRB位置,BWP位置,载波位置。
在一种实施方式中,所述信号包括下述之一:HARQ-ACK码本,SR,CSI,UE的数据。
在一种实施方式中,所述信号为HARQ-ACK码本,则所述第一PDCCH的DAI counter设置为第二PDCCH的DAI counter的取值;
其中,第二PDCCH为所述HARQ-ACK码本对应的至少一个PDSCH对应的PDCCH中末尾的PDCCH。
在一种实施方式中,所述第一PDCCH中除了参数DAI counter外,其它参数均为有效参数(例如,TS38.212Vf50版本中用于调度PDSCH的DCI中除了前述的被重新解释的参数之外的参数,尤其是参数PUCCH resource indicator,参数PDSCH-to-HARQ_feedback timing indicator)。
在一种实施方式中,所述信号为HARQ-ACK码本,则所述第一PDCCH调度的PDSCH(Physical Downlink Shared Channel,物理下行共享信道)对应的HARQ-ACK信息的发送方式为:
将所述第一PDCCH调度的PDSCH对应的HARQ-ACK信息串接在所述HARQ-ACK码本末尾。
在一种实施方式中,所述信号为HARQ-ACK码本且包含SPS PDSCH(Semi-Persistent Scheduling PDSCH,半静态调度PDSCH)对应的HARQ-ACK信息,则所述第一PDCCH调度的PDSCH对应的HARQ-ACK信息的发送方式为:
将所述第一PDCCH调度的PDSCH对应的HARQ-ACK信息串接在第一类HARQ-ACK信息之后、第二类HARQ-ACK信息之前;所述第一类HARQ-ACK信息为所述HARQ-ACK码本中由PDCCH调度的PDSCH对应的HARQ-ACK信息;所述第二类HARQ-ACK信息为所述HARQ-ACK码本对应的SPS PDSCH对应的HARQ-ACK信息。
以下为本申请的实施方式。
具体实施例1
假设,一个UE需要传输一个HARQ-ACK码本,为了便于描述,该码本记为HARQ-ACK码本0。HARQ-ACK码本0被基站指示在slot n中通过一个 PUCCH传输,为便于描述,记为PUCCH0。且另一个HARQ-ACK码本也被基站指示在slot n中通过一个PUCCH(为便于描述,记为PUCCH1)传输,为了便于描述,记为HARQ-ACK码本1。且PUCCH0和PUCCH1在时域重叠,此处所述时域重叠包括部分时域重叠。假设HARQ-ACK码本0对应eMBB业务传输的PDSCH,或者是被认为低优先级的需要修改传输机制和/或资源的HARQ-ACK码本。HARQ-ACK码本1对应URLLC业务传输的PDSCH,或者是被认为高优先级的不需要修改传输机制和/或资源的HARQ-ACK码本。根据上述假设,HARQ-ACK码本0需要被修改传输机制和/或资源,那么按照本实施方式中所述的方法进行操作。
基站侧,由于所有HARQ-ACK码本的传输机制和资源都是基站配置的,所以,在基站使用了用于HARQ-ACK码本1的资源时,基站就已经获知它将会与HARQ-ACK码本0发生时域重叠,所以,基站可以在HARQ-ACK码本0传输之前传输一个上行授权(UL grant),利用这个UL grant中的约定的参数取值,指示修改HARQ-ACK码本0原本的传输机制和/或资源,使得HARQ-ACK码本0按照该UL grant的指示被传输。UE侧检测到该UL grant后,UE认为在将发生时域重叠的两个HARQ-ACK码本中低优先级的HARQ-ACK码本,即HARQ-ACK码本0,将需要按照该UL grant指示的传输机制和/或资源中传输,原本计划的传输机制和/或资源被放弃;或者UE侧接收到该UL grant后,认为有一个HARQ-ACK码本需要按照此UL grant指示的传输机制和/或资源中传输,该HARQ-ACK码本原本计划的传输机制和/或资源被放弃。
在本实施例中,HARQ-ACK码本的传输机制可以包括,HARQ-ACK码本通过PUCCH传输,或通过PUSCH传输。HARQ-ACK码本的资源可以包括,HARQ-ACK码本传输时所在的上行时隙UL slot位置和/或PUCCH资源。例如,一个低优先级的HARQ-ACK码本的UL slot可能会被修改,例如更换到另一个slot;也可能不修改低优先级的HARQ-ACK码本的UL slot,只是修改一下PUCCH资源,这样用于传输低优先级的码本的新的PUCCH,和高优先级的HARQ-ACK码本的PUCCH在一个UL slot中但不会时域重叠。再如,还可以同时修改低优先级的HARQ-ACK码本的UL slot和PUCCH资源。具体的可以依据这个UL grant中参数所表达的指示来执行。
在具体示例中,可通过下述两种方式识别UL grant,UL grant是用于指示修改一个HARQ-ACK码本的传输机制和/或资源的。
第一种方式:基站和UE约定,通过UL grant中的参数取值,例如,重解释UL grant中的参数UL-SCH indicator和CSI request组合取值,例如当UL-SCH indicator取值为0且CSI request取值为全0时,表示该UL grant至少有一个目 的,即要求修改所述HARQ-ACK码本0原本的传输机制和/或资源。这样,UE能够传输HARQ-ACK码本0在该UL grant中的配置的PUSCH资源以及在该PUSCH资源所在的UL slot中传输。这里即HARQ-ACK码本0被传输在一个PUSCH中,且此时PUSCH中没有UE数据。
第二种方式:基站和UE约定,通过UL grant中的参数取值来识别这个UL grant。例如,通过下述四种解释方式重解释相关参数设置UL grant。
解释方式一:参数RV为2bit,约定使用参数RV取值的4种状态“00”,“01”,“10”或“11”中一种状态,表示所述UL grant至少要求修改所述HARQ-ACK码本0原本的传输机制和/或资源。
解释方式二:UL grant的参数RV中约定一个比特位,且约定使用该比特位取值的2种状态“1”或“0”中一种状态,表示所述UL grant至少要求修改所述HARQ-ACK码本0原本的传输机制和/或资源。
解释方式三:参数HARQ-ID为4bit,约定使用HARQ-ID中的一个或多个比特位,且约定使用所述比特位的多种取值状态中的一种状态,表示所述UL grant至少要求修改所述HARQ-ACK码本0原本的传输机制和/或资源。
解释方式四:参数RV和HARQ-ID合起来为6比特,约定使用所述6比特中的一个或多个比特位,且约定使用所述比特位的多种取值状态中的一种状态,表示所述UL grant至少要求修改所述HARQ-ACK码本0原本的传输机制和/或资源。
对于这个UL grant中其它参数仍然是原本的含义,且是有效的,不需要重解释。然后,UE就按照这个UL grant中的指示,将HARQ-ACK码本0通过UL grant中指示的进行传输,此时HARQ-ACK码本0通过UL grant指示的PUSCH进行传输且没有上行数据。HARQ-ACK码本0原本的通过PUCCH0传输的机制和资源被丢弃。
上述具体实施例1中的UL slot可以替换为UL subslot(UL子时隙)时,该实施例中所述的信号传输方法仍然适用。
具体实施例1中以2个HARQ-ACK码本对应的PUCCH时域重叠作为例子描述,修改了计划被丢弃的HARQ-ACK码本对应的传输机制和/或资源,该方法也适用于只有一个HARQ-ACK码本的情况下,也可以通过上述具体实施例1中所述的方式修改该HARQ-ACK码本原本计划的传输机制和/或资源。该方法也适用于2个以上的HARQ-ACK码本对应的PUCCH时域重叠的情况。且也适用于,一UE的HARQ-ACK码本的PUCCH信道和该UE的其它信道重叠,或帧结构变化导致PUCCH不能被发送的情况。例如同一UE的HARQ-ACK码本 的PUCCH信道和PUSCH信道重叠,或者动态调整了slot或符号的上行或下行属性导致PUCCH不能发送,这些情况下也可以使用本方法修改HARQ-ACK码本的传输机制和/或资源,从而采用修改后的传输机制或资源传输所述HARQ-ACK码本。同样的,具体实施例1所提供的信号传输方法也适用于修改原本计划传输的其它数据或信道(例如PUSCH或PDSCH等)的传输机制和/资源。
具体实施例2
假设,UE需要传输一个HARQ-ACK码本,该码本被基站指示在slot n中通过一个PUCCH传输,为便于描述,这个HARQ-ACK码本记为HARQ-ACK码本0,该PUCCH记为PUCCH0。UE的另一个HARQ-ACK码本也被基站指示在slot n中通过一个PUCCH传输,为了便于描述,另一个HARQ-ACK码本记为HARQ-ACK码本1,相应的PUCCH记为PUCCH1。PUCCH0和PUCCH1在时域重叠。HARQ-ACK码本0可以对应eMBB业务传输的PDSCH,或者可以是被认为低优先级的需要修改资源的HARQ-ACK码本。HARQ-ACK码本1可以对应URLLC业务传输的PDSCH,或者可以是被认为高优先级的不需要修改资源的HARQ-ACK码本。根据上述假设,HARQ-ACK码本0需要被修改资源,那么按照本具体实施例中所提供的方法进行修改。
由于所有HARQ-ACK码本的资源都是基站配置的,所以,在基站传输了HARQ-ACK码本1的资源时,基站就已经获知它将会与HARQ-ACK码本0发生时域重叠,或者是由于其它原因基站要调整HARQ-ACK码本0的资源,所以,基站能在HARQ-ACK码本0传输之前传输第一PDCCH,第一PDCCH为对应一个调度PDSCH的PDCCH,且通过第一PDCCH中的约定的参数取值,指示修改HARQ-ACK码本0原本的资源,使得HARQ-ACK码本0按照该PDCCH的指示被传输。UE侧检测到第一PDCCH后,UE认为在将发生时域重叠的两个HARQ-ACK码本中,HARQ-ACK码本0需要按照第一PDCCH指示的资源中传输,原本计划的资源被放弃;或者UE侧接收到第一PDCCH后,认为一个HARQ-ACK码本需要按照该第一PDCCH指示的资源中传输,该HARQ-ACK码本原本计划的资源被放弃。
这里,HARQ-ACK码本的资源可以包括,HARQ-ACK码本传输时所在的上行时隙UL slot位置和/或PUCCH资源。例如,一个低优先级的HARQ-ACK码本的UL slot可能会被修改并更换到另一个UL slot。再如,也可能不修改低优先级的HARQ-ACK码本的UL slot,只是修改一下传输该码本的PUCCH资源,这样使得传输低优先级的HARQ-ACK码本的新的PUCCH和高优先级的 HARQ-ACK码本的PUCCH在一个UL slot中但不会发生时域重叠。再如,还可以同时修改HARQ-ACK码本的UL slot和PUCCH资源。具体可以依据第一PDCCH中的指示来执行。
在本具体实施例中,基站和UE约定,通过第一PDCCH中的参数取值,例如1,设置第一PDCCH中的参数DAI counter取值来表示第一PDCCH至少一个目的是要求修改一个HARQ-ACK码本原本的资源,且新的资源也是按照第一PDCCH指示的为准。具体的,通过设置第一PDCCH中DAI counter取值等于要被修改资源的HARQ-ACK码本对应的末尾第二PDCCH中DAI counter取值来表示上述目的。这里,第一PDCCH允许调度一个PDSCH,该PDSCH可以是有数据的,或没有数据的。
也就是说,UE侧,当接收到一个PDCCH且该PDCCH中的DAI counter取值等于一个HARQ-ACK码本对应的末尾PDCCH中DAI counter的取值,则UE认为该PDCCH为第一PDCCH,它被用来修改所述HARQ-ACK码本的资源。例如,UE接收第一PDCCH,发现第一PDCCH的DAI counter取值等于HARQ-ACK码本0对应的末尾第二PDCCH中DAI counter取值,则UE认为HARQ-ACK码本0的资源被修改,且HARQ-ACK码本0的新资源是按照接收的第一PDCCH指示的为准。
在一实施例中,如果第一PDCCH中调度的PDSCH是有数据的,那么第一PDCCH调度的PDSCH对应的HARQ-ACK信息和所述HARQ-ACK码本0合并,作为一个新HARQ-ACK码本在所述第一PDCCH指示的PUCCH资源中传输。如果第一PDCCH中调度的PDSCH没有数据,那么只是将HARQ-ACK码本0在所述第一PDCCH指示的PUCCH资源中传输。
在一实施例中,如果第一PDCCH中调度的PDSCH是有数据的,那么第一PDCCH调度的PDSCH对应的HARQ-ACK信息和所述HARQ-ACK码本0合并,作为一个新HARQ-ACK码本在所述第一PDCCH指示的PUCCH资源中传输。具体的操作方式可以是:第一PDCCH调度的PDSCH的HARQ-ACK信息串接在所述HARQ-ACK码本0中被PDCCH动态调度的PDSCH对应的HARQ-ACK信息的末尾。这里不管HARQ-ACK码本0中是否有SPS PDSCH对应的HARQ-ACK信息。
在一实施例中,如果第一PDCCH中调度的PDSCH是有数据的,那么第一PDCCH调度的PDSCH对应的HARQ-ACK信息和所述HARQ-ACK码本0合并,作为一个新HARQ-ACK码本在所述第一PDCCH指示的PUCCH资源中传输。具体的操作方式还可以是:如果所述HARQ-ACK码本0中有SPS PDSCH对应的HARQ-ACK信息,则第一PDCCH调度的PDSCH对应的HARQ-ACK信息 在所述HARQ-ACK码本0中被PDCCH动态调度的PDSCH对应的HARQ-ACK信息之后,且在所述HARQ-ACK码本0中SPS PDSCH对应的HARQ-ACK信息之前。
本实施例中,基站利用一个下行PDCCH中的参数的约定取值来为UE指示一个HARQ-ACK码本的资源发生变化,且在该PDCCH中同时给出新的资源。
对于第一PDCCH中其它参数仍然是原本的含义,且是有效的,不需要重解释。然后,UE就按照第一PDCCH中的指示,将HARQ-ACK码本0在第一PDCCH指示的PUCCH资源中传输。HARQ-ACK码本0原本的PUCCH0资源被丢弃。
上述具体实施例2中的UL slot可以替换为UL subslot(UL子时隙)时,该实施例中所述的信号传输方法仍然适用。
具体实施例2以2个HARQ-ACK码本对应的PUCCH时域重叠作为例子描述,修改了计划被丢弃的HARQ-ACK码本对应的传输机制和/或资源,该方法也适用于只有一个HARQ-ACK码本的情况下,即没有和其它HARQ-ACK码本的传输发生时域重叠,也可以通过本文的方式修改该HARQ-ACK码本原本计划的传输机制和/或资源。该方法也适用于2个以上HARQ-ACK码本对应的PUCCH时域重叠的情况。且也适用于,一UE的HARQ-ACK码本的PUCCH信道和该UE的其它信道重叠,或帧结构变化导致PUCCH不能被发送的情况。例如同一UE的HARQ-ACK码本的PUCCH信道和PUSCH信道重叠,或者动态调整了slot或符号的上行或下行属性导致PUCCH不能发送,这些情况下也可以使用本方法修改HARQ-ACK码本的传输机制和/或资源,从而采用修改后的传输机制或资源传输所述HARQ-ACK码本。同样的,具体实施例1所提供的信号传输方法也适用于修改原本计划传输的其它数据或信道(例如PUSCH或PDSCH等)的传输机制和/资源。
具体实施例3
在相关技术中,如果基站配置了上行控制信息UCI(Uplink Control Information,上行控制信息)(包括HARQ-ACK、CSI和SR中一个或多个)在物理上行共享信道PUSCH中传输时使用的参数beta_offsets取值时,参考下面的高层信令结构(TS38.331中,UCI-OnPUSCH参数),beta_offsets具体为包括动态的参数dynamic(动态)或者半静态参数semiStatic(半静态),两者只能选择其一进行配置。其中当betaoffsets被配置为动态参数dynamic时,此时会给出4个取值。当betaoffsets被配置为半静态参数semiStatic时,此时只有1个取值。然后再通过PDCCH中的beta_offset指示域来指示具体使用4个取值中的 哪个。
另外,在PDCCH的定义中,主要包括2种类型的PDCCH为调度PUSCH,分别记为DCI0-0和DCI0-1,其中DCI0-0对应的总的比特较少,在传输时一般对应有较高的可靠性,实际码率较低,主要使用场景包括小区边缘。所以,DCI0-0中没有设置参数beta_offset指示域。DCI0-1相对于而言,总的比特数较多,密集码率较高。DCI0-1中设置有参数beta_offset指示域。
另外,相关技术中,也有规则,如果DCI0-0,或不带有beta_offset指示域的DCI0-1调度PUSCH时,此时UE使用高层信令配置的beta_offsets。
通过本文的分析,认为基于相关技术,会存在下面的问题,如果高层信令配置的beta_offsets是semiStatic的,此时只有1个取值,UE可以直接使用。如果高层信令配置的beta_offsets是dynamic的,此时有4个取值,那么UE确定取值可以采用的方案可以是下面之一:
基站和UE约定,对于DCI0-0调度的PUSCH,UE采用默认的或预定义的betaoffset值为该PUSCH上传输的UCI。例如,不管RRC(Radio Resource Control,无线资源控制)信令配置的betaoffsets是动态的,还是半静态的,如果UE要在DCI0-0调度的PUSCH上传输UCI,UE就是使用默认的或预定义的betaoffset。基站侧也是认为DCI0-0调度的PUSCH在传输UCI时,UE使用了默认的或预定义的betaoffset。这样的好处是,即使在RRC配置信令模糊时,如果UE在DCI0-0调度的PUSCH中传输UCI时,也能使用确定的betaoffset取值。这种方案下,betaoffset取值不会改变,在不同场景中,例如,小区边缘,小区中心时只能使用同一betaoffset值,显然,betaoffset取值灵活性很差,会导致UCI传输效率低。
基站和UE约定,当RRC信令配置beta_offsets为动态的且配置4个beta_offset的取值时,如果UE在DCI0-0调度的PUSCH中传输UCI,则采用所述动态的4个beta_offset取值中的一个取值作为beta_offset的取值来用于UCI在所述PUSCH中传输。具体的,基站和UE约定,使用所述4个动态beta_offset取值中的第一个,或者所述4个动态beta_offset取值中取值的最大的一个,或者使用所述4个动态betaoffset取值中数值倒数第2大的那个。使用beta_offset取值最大的一个,这样做,主要是考虑DCI0-0一种使用场景是小区边缘覆盖,所以使用最大值时可以保证UCI的信令,即UCI传输时码率最小,但是牺牲了PUSCH的性能,使得PUSCH性能最差。使用beta_offset取值倒数第二大的,这样做,主要是基于第一种方案下的一个折中考虑,使用的UCI性能仅次于最好的情况,使得PUSCH性能高于最差的情况,并且使用这种方案时,beta_offset都是采用下面这种方案,即在RRC模糊时,就使用之前的且是最近使用的 beta_offset取值。此时需要UE保存之前的最近使用的beta_offset取值,以在RRC模糊时使用。
基站和UE约定,当RRC信令配置的beta_offsets为动态的且配置为4个beta_offsets的取值时,如果UE在DCI0-0调度的PUSCH中传输UCI,则UE采用默认的或预定义的beta_offset值为该PUSCH上传输的UCI。例如,不管RRC信令配置的beta_offsets是动态的,还是半静态的,如果UE要在DCI0-0调度的PUSCH上传输UCI,UE就是使用默认的或预定义的beta_offset。基站侧也是认为DCI0-0调度的PUSCH在传输UCI时,UE使用了默认的或预定义的beta_offset。这样的好处是,即使在RRC配置信令模糊时,如果UE在DCI0-0调度的PUSCH中传输UCI时,也能使用确定的beta_offset取值。相对于第一种方案,这种方案下,意味着如果RRC信令配置的betaoffsets为半静态时,UE在DCI0-0调度的PUSCH中传输UCI时,可以使用RRC配置的半静态betaoffset取值。可以半静态的修改beta_offset取值,实现beta_offset取值的一定的灵活性。基于这种方案,如果RRC模糊时,则直接使用默认的或预定义的beta_offset取值。
图5为本申请实施例提供的信号传输装置的结构示意图,该信号传输装置,包括:
第一发送模块51:用于发送上行授权UL grant;
所述UL grant用于指示所述信号的传输机制和/或所述信号的资源发生变更。
在一种实施方式中,所述UL grant中的参数上行链路共享信道指示信息UL-SCH indicator为0,且所述UL grant中的参数信道状态信息请求CSI request为0。
在一种实施方式中,所述UL grant中除了参数冗余版本RV和参数混合自动重传请求身份识别号HARQ-ID外,其它参数均为有效参数。
在一种实施方式中,所述传输机制包括下述至少之一:所述信号通过物理上行控制信道PUCCH传输,所述信号通过物理上行共享信道PUSCH传输;
所述资源包括下述至少之一:所述信号所使用的时域资源,所述信号所使用的频域资源,所述信号所使用的码字资源,所述信号所使用的波束资源;
其中,所述时域资源包括下述至少之一:时隙slot位置,子时隙位置,符号位置;所述频域资源包括下述至少之一:物理资源块PRB位置,部分带宽BWP位置,载波位置。
在一种实施方式中,所述信号包括下述之一:混合自动重传请求肯定应答/ 否定应答HARQ-ACK码本,调度请求SR,信道状态信息CSI,用户设备UE的数据。
在一种实施方式中,所述信号为HARQ-ACK码本,则所述UL grant用于指示将通过PUCCH传输所述HARQ-ACK码本修改为通过所述UL grant调度的PUSCH传输所述HARQ-ACK码本。
图6为本申请实施例的信号传输装置的结构示意图,包括:
第一接收模块61:用于接收UL grant;
第一传输模块62:用于根据所述UL grant,传输所述信号;
所述UL grant用于指示所述信号的传输机制和/或所述信号的资源发生变更。
在一种实施方式中,所述UL grant中的参数UL-SCH indicator为0,且所述UL grant中的参数CSI request为0。
在一种实施方式中,所述UL grant中除了参数RV和参数HARQ-ID外,其它参数均为有效参数。
在一种实施方式中,所述传输机制包括下述至少之一:所述信号通过PUCCH传输,所述信号通过PUSCH传输;
所述资源包括下述至少之一:所述信号所使用的时域资源,所述信号所使用的频域资源,所述信号所使用的码字资源,所述信号所使用的波束资源;
其中,所述时域资源包括下述至少之一:slot位置,子时隙位置,符号位置;所述频域资源包括下述至少之一:PRB位置,BWP位置,载波位置。
在一种实施方式中,所述信号包括下述之一:HARQ-ACK码本,SR,CSI,UE的数据。
在一种实施方式中,所述信号为HARQ-ACK码本,则所述UL grant用于指示将通过PUCCH传输所述HARQ-ACK码本修改为通过所述UL grant调度的PUSCH传输所述HARQ-ACK码本。
图7为本申请实施例的信号传输装置的结构示意图,包括:
第二发送模块71:用于发送第一PDCCH;
所述第一PDCCH用于指示所述信号的资源发生变更。
在一种实施方式中,所述资源包括下述至少之一:所述信号所使用的时域资源,所述信号所使用的频域资源,所述信号所使用的码字资源,所述信号所使用的波束资源;
其中,所述时域资源包括下述至少之一:slot位置,子时隙位置,符号位置;所述频域资源包括下述至少之一:PRB位置,BWP位置,载波位置。
在一种实施方式中,所述信号包括下述之一:HARQ-ACK码本,SR,CSI,UE的数据。
在一种实施方式中,所述信号为HARQ-ACK码本,则所述第一PDCCH的下行链路分配索引计数器值DAI counter设置为第二PDCCH的DAI counter的取值;
其中,第二PDCCH为所述HARQ-ACK码本对应的至少一个PDSCH对应的PDCCH中末尾的PDCCH。
在一种实施方式中,所述第一PDCCH中除了参数DAI counter外,其它参数均为有效参数。
在一种实施方式中,所述信号为HARQ-ACK码本,则所述第一PDCCH调度的PDSCH对应的HARQ-ACK信息的传输方式为:所述第一PDCCH调度的PDSCH对应的HARQ-ACK信息串接在所述HARQ-ACK码本末尾;
或者,所述信号为HARQ-ACK码本且包含半静态调度SPS PDSCH对应的HARQ-ACK信息,则所述第一PDCCH调度的PDSCH对应的HARQ-ACK信息的传输方式为:所述第一PDCCH调度的PDSCH对应的HARQ-ACK信息串接在第一类HARQ-ACK信息之后、第二类HARQ-ACK信息之前;所述第一类HARQ-ACK信息为所述HARQ-ACK码本中由PDCCH调度的PDSCH对应的HARQ-ACK信息;所述第二类HARQ-ACK信息为HARQ-ACK码本对应的SPS PDSCH对应的HARQ-ACK信息。
图8为本申请实施例的信号传输装置的结构示意图,如图8所示,包括:
第二接收模块81:用于接收第一PDCCH;
第二传输模块82:用于根据所述第一PDCCH中的信号传输方式指示,传输所述资源;
所述第一PDCCH用于指示所述信号的资源发生变更。
在一种实施方式中,所述资源包括下述至少之一:所述信号所使用的时域资源,所述信号所使用的频域资源,所述信号所使用的码字资源,所述信号所使用的波束资源;
其中,所述时域资源包括下述至少之一:slot位置,子时隙位置,符号位置;所述频域资源包括下述至少之一:PRB位置,BWP位置,载波位置。
在一种实施方式中,所述信号包括下述之一:HARQ-ACK码本,SR,CSI, UE的数据。
在一种实施方式中,所述信号为HARQ-ACK码本,则所述第一PDCCH的DAI counter设置为第二PDCCH的DAI counter的取值;
其中,第二PDCCH为所述HARQ-ACK码本对应的至少一个PDSCH对应的PDCCH中末尾的PDCCH。
在一种实施方式中,所述第一PDCCH中除了参数DAI counter外,其它参数均为有效参数。
在一种实施方式中,所述第一PDCCH调度的PDSCH对应的HARQ-ACK信息的发送方式为:所述第一PDCCH调度的PDSCH对应的HARQ-ACK信息串接在所述HARQ-ACK码本末尾。第二发送模块在上述实施例中已经描述。
在一种实施方式中,所述信号为HARQ-ACK码本且包含SPS PDSCH对应的HARQ-ACK信息,则所述第一PDCCH调度的PDSCH对应的HARQ-ACK信息的发送方式为:所述第一PDCCH调度的PDSCH对应的HARQ-ACK信息串接在第一类HARQ-ACK信息之后、第二类HARQ-ACK信息之前;所述第一类HARQ-ACK信息为所述HARQ-ACK码本中由PDCCH调度的PDSCH对应的HARQ-ACK信息;所述第二类HARQ-ACK信息为HARQ-ACK码本对应的SPS PDSCH对应的HARQ-ACK信息。第二发送模块71在上述实施例中已经描述。
本申请实施例各装置中的各模块的功能可以参见上述方法实施例中的对应描述,在此不再赘述。
图9为本申请实施例的终端的结构示意图,如图9所示,本申请实施例提供的终端130包括:存储器1303与处理器1304。所述终端130还可以包括接口1301和总线1302。所述接口1301、存储器1303与处理器1304通过总线1302相连接。所述存储器1303用于存储指令。所述处理器1304被配置为读取所述指令以执行上述应用于终端的方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
图10为本申请实施例的基站的结构示意图,如图10所示,本申请实施例提供的基站140包括:存储器1403与处理器1404。所述基站还可以包括接口1401和总线1402。所述接口1401、存储器1403与处理器1404通过总线1402相连接。所述存储器1403用于存储指令。所述处理器1404被配置为读取所述指令以执行上述应用于基站的方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
图11为本申请实施例的通信系统的结构示意图,如图11所示,该系统包 括:如上述实施例的终端130、以及上述实施例的基站140。本申请实施例的通信系统包括但不限于:长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、或5G系统等。
以上所述,仅为本申请的示例性实施例而已,并非用于限定本申请的保护范围。
一般来说,本申请的多种实施例可以在硬件或专用电路、软件、逻辑或其任何组合中实现。例如,一些方面可以被实现在硬件中,而其它方面可以被实现在可以被控制器、微处理器或其它计算装置执行的固件或软件中,尽管本申请不限于此。
本申请的实施例可以通过移动装置的数据处理器执行计算机程序指令来实现,例如在处理器实体中,或者通过硬件,或者通过软件和硬件的组合。计算机程序指令可以是汇编指令、指令集架构(Industry Subversive Alliance,ISA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一种或多种编程语言的任意组合编写的源代码或目标代码。
本申请附图中的任何逻辑流程的框图可以表示程序步骤,或者可以表示相互连接的逻辑电路、模块和功能,或者可以表示程序步骤与逻辑电路、模块和功能的组合。计算机程序可以存储在存储器上。存储器可以具有任何适合于本地技术环境的类型并且可以使用任何适合的数据存储技术实现。本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存等。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。RAM可以包括多种形式,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。本申请描述的系统和方法的存储器包括但不限于这些和任意其它适合类型的存储器。
本申请实施例的处理器可以是任何适合于本地技术环境的类型,例如但不 限于通用计算机、专用计算机、微处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程逻辑器件(Field-Programmable Gate Array,FGPA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件、或者基于多核处理器架构的处理器。通用处理器可以是微处理器或者也可以是任何常规的处理器等。上述的处理器可以实现或者执行本申请实施例中的公开的各方法的步骤。软件模块可以位于随机存储器、闪存、只读存储器、可编程只读存储器或者电可擦写可编程存储器、寄存器等存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。

Claims (31)

  1. 一种信号传输方法,包括:
    发送上行授权UL grant;
    所述UL grant用于指示以下至少之一发生变更:信号的传输机制、信号的资源。
  2. 根据权利要求1所述的方法,其中,所述UL grant中的参数上行链路共享信道指示信息UL-SCH indicator为0,且所述UL grant中的参数信道状态信息请求CSI request为0。
  3. 根据权利要求2所述的方法,其中,所述UL grant中除了参数冗余版本RV和参数混合自动重传请求身份识别号HARQ-ID外,其它参数均为有效参数。
  4. 根据权利要求1所述的方法,其中,所述传输机制包括下述至少之一:所述信号通过物理上行控制信道PUCCH传输,所述信号通过物理上行共享信道PUSCH传输;
    所述资源包括下述至少之一:所述信号所使用的时域资源,所述信号所使用的频域资源,所述信号所使用的码字资源,所述信号所使用的波束资源;
    其中,所述时域资源包括下述至少之一:时隙slot位置,子时隙位置,符号位置,所述频域资源包括下述至少之一:物理资源块PRB位置,部分带宽BWP位置,载波位置。
  5. 根据权利要求1所述的方法,其中,所述信号包括下述之一:混合自动重传请求肯定应答/否定应答HARQ-ACK码本,调度请求SR,信道状态信息CSI,用户设备UE的数据。
  6. 根据权利要求1所述的方法,其中,在所述信号为HARQ-ACK码本的情况下,所述UL grant用于指示将通过PUCCH传输所述HARQ-ACK码本修改为通过所述UL grant调度的PUSCH传输所述HARQ-ACK码本。
  7. 一种信号传输方法,包括:
    接收上行授权UL grant;
    根据所述UL grant,传输信号;
    所述UL grant用于指示以下至少之一发生变更:所述信号的传输机制、所述信号的资源。
  8. 根据权利要求7所述的方法,其中,所述UL grant中的参数上行链路共享信道指示信息UL-SCH indicator为0,且所述UL grant中的参数信道状态信息请求CSI request为0。
  9. 根据权利要求7所述的方法,其中,所述UL grant中除了参数冗余版本RV和参数混合自动重传请求身份识别号HARQ-ID外,其它参数均为有效参数。
  10. 根据权利要求9所述的方法,其中,所述传输机制包括下述至少之一:所述信号通过物理上行控制信道PUCCH传输,所述信号通过物理上行共享信道PUSCH传输;
    所述资源包括下述至少之一:所述信号所使用的时域资源,所述信号所使用的频域资源,所述信号所使用的码字资源,所述信号所使用的波束资源;
    其中,所述时域资源包括下述至少之一:时隙slot位置,子时隙位置,符号位置,所述频域资源包括下述至少之一:物理资源块PRB位置,部分带宽BWP位置,载波位置。
  11. 根据权利要求7所述的方法,其中,所述信号包括下述之一:HARQ-ACK码本,调度请求SR,信道状态信息CSI,用户设备UE的数据。
  12. 根据权利要求7所述的方法,其中,在所述信号为HARQ-ACK码本的情况下,所述UL grant用于指示将通过PUCCH传输所述HARQ-ACK码本修改为通过所述UL grant调度的PUSCH传输所述HARQ-ACK码本。
  13. 一种信号传输方法,包括:
    发送第一物理下行控制信道PDCCH;
    所述第一PDCCH用于指示信号的资源发生变更。
  14. 根据权利要求13所述的方法,其中,所述资源包括下述至少之一:所述信号所使用的时域资源,所述信号所使用的频域资源,所述信号所使用的码字资源,所述信号所使用的波束资源;
    其中,所述时域资源包括下述至少之一:时隙slot位置,子时隙位置,符号位置,所述频域资源包括下述至少之一:物理资源块PRB位置,部分带宽BWP位置,载波位置。
  15. 根据权利要求13所述的方法,其中,所述信号包括下述之一:HARQ-ACK码本,调度请求SR,信道状态信息CSI,用户设备UE的数据。
  16. 根据权利要求15所述的方法,其中,在所述信号为所述HARQ-ACK码本的情况下,所述第一PDCCH的下行链路分配索引计数器值DAI counter设置为第二PDCCH的DAI counter的取值;
    其中,所述第二PDCCH为所述HARQ-ACK码本对应的至少一个物理下行共享信道PDSCH对应的PDCCH中最后的PDCCH。
  17. 根据权利要求16所述的方法,其中,所述第一PDCCH中除了参数DAI  counter外,其它参数均为有效参数。
  18. 根据权利要求15所述的方法,其中,在所述信号为所述HARQ-ACK码本的情况下,所述第一PDCCH调度的PDSCH对应的HARQ-ACK信息的传输方式为:所述第一PDCCH调度的PDSCH对应的HARQ-ACK信息串接在所述HARQ-ACK码本末尾;
    或者,在所述信号为所述HARQ-ACK码本且包含半静态调度物理下行共享信道SPS PDSCH对应的HARQ-ACK信息的情况下,所述第一PDCCH调度的PDSCH对应的HARQ-ACK信息的传输方式为:所述第一PDCCH调度的PDSCH对应的HARQ-ACK信息串接在第一类HARQ-ACK信息之后、以及第二类HARQ-ACK信息之前;其中,所述第一类HARQ-ACK信息为所述HARQ-ACK码本中由PDCCH调度的PDSCH对应的HARQ-ACK信息,所述第二类HARQ-ACK信息为所述HARQ-ACK码本对应的SPS PDSCH对应的HARQ-ACK信息。
  19. 一种信号传输方法,包括:
    接收第一物理下行控制信道PDCCH;
    根据所述第一PDCCH中的信号传输方式指示,传输资源;
    所述第一PDCCH用于指示信号的资源发生变更。
  20. 根据权利要求19所述的方法,其中,所述资源包括下述至少之一:所述信号所使用的时域资源,所述信号所使用的频域资源,所述信号所使用的码字资源,所述信号所使用的波束资源;
    其中,所述时域资源包括下述至少之一:时隙slot位置,子时隙位置,符号位置,所述频域资源包括下述至少之一:物理资源块PRB位置,部分带宽BWP位置,载波位置。
  21. 根据权利要求20所述的方法,其中,所述信号包括下述之一:HARQ-ACK码本,调度请求SR,信道状态信息CSI,用户设备UE的数据。
  22. 根据权利要求21所述的方法,其中,在所述信号为所述HARQ-ACK码本的情况下,所述第一PDCCH的下行链路分配索引计数器值DAI counter设置为第二PDCCH的DAI counter的取值;
    其中,所述第二PDCCH为所述HARQ-ACK码本对应的至少一个PDSCH对应的PDCCH中最后的PDCCH。
  23. 根据权利要求22所述的方法,其中,所述第一PDCCH中除了参数DAI counter外,其它参数均为有效参数。
  24. 根据权利要求21所述的方法,其中,在所述信号为所述HARQ-ACK码本的情况下,所述第一PDCCH调度的PDSCH对应的HARQ-ACK信息的发送方式为:所述第一PDCCH调度的PDSCH对应的HARQ-ACK信息串接在所述HARQ-ACK码本末尾;
    或者,在所述信号为所述HARQ-ACK码本且包含半静态调度物理下行共享信道SPS PDSCH对应的HARQ-ACK信息的情况下,所述第一PDCCH调度的PDSCH对应的HARQ-ACK信息的发送方式为:所述第一PDCCH调度的PDSCH对应的HARQ-ACK信息串接在第一类HARQ-ACK信息之后、以及第二类HARQ-ACK信息之前;其中,所述第一类HARQ-ACK信息为所述HARQ-ACK码本中由PDCCH调度的PDSCH对应的HARQ-ACK信息,所述第二类HARQ-ACK信息为所述HARQ-ACK码本对应的SPS PDSCH对应的HARQ-ACK信息。
  25. 一种信号传输装置,包括:
    第一发送模块:设置为发送上行授权UL grant;
    所述UL grant用于指示下述至少一项发生变更:
    信号的传输机制、信号的资源。
  26. 一种信号传输装置,包括:
    第一接收模块:设置为接收上行授权UL grant;
    第一传输模块:设置为根据所述UL grant,传输信号;
    所述UL grant用于指示下述至少一项发生变更:
    所述信号的传输机制、所述信号的资源。
  27. 一种信号传输装置,包括:
    第二发送模块:设置为将第一物理下行控制信道PDCCH发送给终端;
    所述第一PDCCH用于指示信号的资源发生变更。
  28. 一种信号传输装置,包括:
    第二接收模块:设置为接收第一物理下行控制信道PDCCH;
    第二传输模块:设置为根据所述第一PDCCH中的信号传输方式指示,传输资源;
    所述第一PDCCH用于指示信号的资源发生变更。
  29. 一种信号传输系统,所述信号传输系统包括权利要求25所述的信号传 输装置,以及权利要求26所述的信号传输装置。
  30. 一种信号传输系统,所述信号传输系统包括权利要求27所述的信号传输装置,以及权利要求28所述的信号传输装置。
  31. 一种存储介质,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现权利要求1至24中任一项所述的信号传输方法。
PCT/CN2020/103194 2019-07-31 2020-07-21 信号传输方法、装置、网络设备及存储介质 WO2021017942A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/631,609 US20220279569A1 (en) 2019-07-31 2020-07-21 Signal transmission method and device, network apparatus, and storage medium
JP2022506549A JP2022542465A (ja) 2019-07-31 2020-07-21 信号伝送方法、装置、ネットワーク機器および記憶媒体
EP20846957.7A EP4007416A4 (en) 2019-07-31 2020-07-21 SIGNAL TRANSMISSION METHOD AND DEVICE, NETWORK APPARATUS AND STORAGE MEDIUM
KR1020227004259A KR20220031094A (ko) 2019-07-31 2020-07-21 신호 전송 방법, 장치, 네트워크 장비 및 저장 매체

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910706591.7 2019-07-31
CN201910706591.7A CN111092704B (zh) 2019-07-31 2019-07-31 信号传输方法、装置、网络设备及存储介质

Publications (1)

Publication Number Publication Date
WO2021017942A1 true WO2021017942A1 (zh) 2021-02-04

Family

ID=70393415

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/103194 WO2021017942A1 (zh) 2019-07-31 2020-07-21 信号传输方法、装置、网络设备及存储介质

Country Status (6)

Country Link
US (1) US20220279569A1 (zh)
EP (1) EP4007416A4 (zh)
JP (1) JP2022542465A (zh)
KR (1) KR20220031094A (zh)
CN (2) CN116667989A (zh)
WO (1) WO2021017942A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116667989A (zh) * 2019-07-31 2023-08-29 中兴通讯股份有限公司 信号传输方法、装置、网络设备及存储介质
CN115380486B (zh) * 2020-04-10 2023-11-14 苹果公司 用于半持久调度(sps)传输的码本设计
EP4195839A4 (en) * 2020-08-06 2024-03-06 Ntt Docomo, Inc. TERMINAL, WIRELESS COMMUNICATION METHOD AND BASE STATION
CN114902602B (zh) * 2020-08-06 2024-06-21 Lg电子株式会社 在无线通信系统中发送和接收信号的方法和设备
US11902967B2 (en) * 2020-10-22 2024-02-13 Acer Incorporated Device of handling a HARQ retransmission

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107006003A (zh) * 2014-12-15 2017-08-01 瑞典爱立信有限公司 在多个时间实例中的上行链路资源调度
WO2018231728A1 (en) * 2017-06-14 2018-12-20 Idac Holdings, Inc. Reliable control signaling
WO2019032748A1 (en) * 2017-08-10 2019-02-14 Sharp Laboratories Of America, Inc. PROCEDURES, BASE STATION AND USER EQUIPMENT FOR UPLINK TRANSMISSION WITHOUT AUTHORIZATION
CN111092704A (zh) * 2019-07-31 2020-05-01 中兴通讯股份有限公司 信号传输方法、装置、网络设备及存储介质

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017027355A1 (en) * 2015-08-12 2017-02-16 Interdigital Patent Holdings, Inc. Methods, apparatus and systems for realizing vehicle to vehicle communications using long term evolution device to device communications
WO2017218749A1 (en) * 2016-06-15 2017-12-21 Intel IP Corporation Channel state and beam related information reporting
WO2018146229A1 (en) * 2017-02-10 2018-08-16 Sony Corporation Base station and user equipment
WO2019066630A1 (en) * 2017-09-29 2019-04-04 Samsung Electronics Co., Ltd. UPLINK TRANSMISSION METHOD AND CORRESPONDING EQUIPMENT
US20200145143A1 (en) * 2018-11-01 2020-05-07 Mediatek Singapore Pte. Ltd. Methods And Apparatus For HARQ Procedure And PUCCH Resource Selection In Mobile Communications
US11296849B2 (en) * 2018-11-02 2022-04-05 Lenovo (Singapore) Pte. Ltd. Method and apparatus for transmitting HARQ-ACK information

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107006003A (zh) * 2014-12-15 2017-08-01 瑞典爱立信有限公司 在多个时间实例中的上行链路资源调度
WO2018231728A1 (en) * 2017-06-14 2018-12-20 Idac Holdings, Inc. Reliable control signaling
WO2019032748A1 (en) * 2017-08-10 2019-02-14 Sharp Laboratories Of America, Inc. PROCEDURES, BASE STATION AND USER EQUIPMENT FOR UPLINK TRANSMISSION WITHOUT AUTHORIZATION
CN111092704A (zh) * 2019-07-31 2020-05-01 中兴通讯股份有限公司 信号传输方法、装置、网络设备及存储介质

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MEDIATEK INC.: "Multiple HARQ procedures and intra-UE UCI prioritization", 3GPP DRAFT; R1-1907724 MULTIPLE HARQ PROCEDURES AND INTRA-UE UCI PRIORITIZATION, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, Nevada, USA; 20190513 - 20190517, 16 May 2019 (2019-05-16), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051740004 *
OPPO: "Consideration on UL intra UE Tx prioritization and multiplexing", 3GPP DRAFT; R1-1808911, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Gothenburg, Sweden; 20180820 - 20180824, 10 August 2018 (2018-08-10), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051516282 *
See also references of EP4007416A4

Also Published As

Publication number Publication date
EP4007416A1 (en) 2022-06-01
KR20220031094A (ko) 2022-03-11
CN116667989A (zh) 2023-08-29
EP4007416A4 (en) 2023-09-06
CN111092704B (zh) 2024-10-18
US20220279569A1 (en) 2022-09-01
CN111092704A (zh) 2020-05-01
JP2022542465A (ja) 2022-10-03

Similar Documents

Publication Publication Date Title
WO2021017942A1 (zh) 信号传输方法、装置、网络设备及存储介质
US20240334438A1 (en) Method for Multiplexing Uplink Control Information and Apparatus
JP7512353B2 (ja) ワイヤレス通信システムのための高信頼性で低レイテンシの構成
US10873437B2 (en) Systems and methods for frequency-division duplex transmission time interval operation
RU2690767C1 (ru) Способ и устройство передачи информации управления восходящего канала при агрегации несущих
AU2018328285B2 (en) User equipments, base stations and methods for RNTI-based PDSCH downlink slot aggregation
WO2018082506A1 (zh) 混合自动重传请求harq码本的生成方法及相关设备
JP6159672B2 (ja) 基地局、送信方法、移動局及び再送制御方法
US20190342053A1 (en) Feedback Method, Device, and System
JP6501903B2 (ja) ネットワークノードユーザデバイス及びその方法
US20140211767A1 (en) Scheduling Communications
US20150103703A1 (en) Resource Allocation In Different TDD Configurations With Cross Carrier Scheduling
CN105743619A (zh) 混合自动重传请求(harq)传输的方法和设备
WO2021147823A1 (zh) 上行传输的方法、移动终端和网络设备
CN117793935A (zh) 上行传输方法和通信装置
WO2019161804A1 (en) Compact downlink control information design and operations in mobile communications
WO2020143813A1 (zh) 传输信息的方法和装置
WO2022147687A1 (en) Method and device for determining pucch of delayed harq-ack codebook
WO2023079980A1 (en) Joint operation of deferred sps harq-ack and repetitions
WO2023079981A1 (en) Joint operation of deferred sps harq-ack and cell switching
WO2020210991A1 (zh) 控制信息的传输方法、重传方法、装置、终端及存储介质
WO2021088047A1 (zh) 反馈信息生成方法、装置、终端和网络设备
CN117938323A (zh) Harq-ack生成方法、harq-ack接收方法、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20846957

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022506549

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20227004259

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020846957

Country of ref document: EP

Effective date: 20220228