WO2021017822A1 - 一种信息的交互方法,穿戴设备以及存储介质 - Google Patents

一种信息的交互方法,穿戴设备以及存储介质 Download PDF

Info

Publication number
WO2021017822A1
WO2021017822A1 PCT/CN2020/101923 CN2020101923W WO2021017822A1 WO 2021017822 A1 WO2021017822 A1 WO 2021017822A1 CN 2020101923 W CN2020101923 W CN 2020101923W WO 2021017822 A1 WO2021017822 A1 WO 2021017822A1
Authority
WO
WIPO (PCT)
Prior art keywords
wearable device
human body
information
target user
interacted
Prior art date
Application number
PCT/CN2020/101923
Other languages
English (en)
French (fr)
Inventor
张洵
龚建勇
龚树强
张俊宏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021017822A1 publication Critical patent/WO2021017822A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/3827Portable transceivers
    • H04B1/385Transceivers carried on the body, e.g. in helmets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B13/00Transmission systems characterised by the medium used for transmission, not provided for in groups H04B3/00 - H04B11/00
    • H04B13/005Transmission systems in which the medium consists of the human body

Definitions

  • This application relates to the field of communication technology, and in particular to an information interaction method, wearable devices and storage media.
  • the wearable devices can be smart bracelets, wireless earphones, glasses, etc.
  • the wearable devices provided in the prior art support Bluetooth and wireless fidelity (wireless fidelity, WIFI) communication, so the wearable devices can perform information interaction through Bluetooth, WIFI, etc.
  • Bluetooth and wireless fidelity wireless fidelity, WIFI
  • the wearable device limited by the size of the wearable device, the endurance of the wearable device is effective, and the power consumption of Bluetooth and WIFI is large, which enables information interaction through Bluetooth, WIFI, etc., and reduces the standby time of the wearable device.
  • Wearable devices for information interaction through Bluetooth Take wearable devices for information interaction through Bluetooth as an example. Because Bluetooth mainly uses 2.4G frequency band communication, the communication distance is long, resulting in many signals in airports, shopping malls, exhibitions and other places, which are susceptible to interference, and because Bluetooth and WIFI are in the same frequency band, this It will result in poor communication signal quality in airports, shopping malls, exhibitions and other places.
  • the present application provides an information interaction method, wearable device and storage medium, which can effectively improve the signal quality of information interaction and can effectively reduce power consumption.
  • the first aspect of the embodiments of the present application provides an information interaction method.
  • the method is used in a human body interaction system.
  • the human body interaction system includes a target user and multiple wearable devices worn by the target user.
  • the method includes : The first wearable device acquires information to be interacted, and the first wearable device is any one of the plurality of wearable devices worn by the target user; the first wearable device is capacitively coupled with the target user to enable The human body of the target user generates an electric field to determine a human body communication channel; the first wearable device sends the information to be interacted to the second wearable device through the human body communication channel.
  • the frequency and power consumption during the sending process are relatively low, so it is not harmful to the human body. It will cause harm, and using the human body as a capacitor for capacitive coupling, the interference from the environment is very limited, even if the Bluetooth signal and WIFI signal in the communication environment where the first wearable device is located, these signals will not affect the human body
  • the communication channel causes interference, so that the first wearable device sends the information to be interacted to the second wearable device through the human body communication channel, which can effectively guarantee the stability and quality of the information transmission, and because the human body communication channel transmits the information to be interacted,
  • the power consumption is relatively low, which effectively increases the standby time of the wearable device.
  • the first wearable device is capacitively coupled with the target user to enable the human body of the target user to generate an electric field to determine the human body
  • the method further includes: the first wearable device judging whether the distance between the first wearable device and the target user is greater than or equal to a first preset distance; if so, the first wearable device The device generates prompt information; if not, it triggers the execution of the step of capacitive coupling between the first wearable device and the target user to enable the human body of the target user to generate an electric field to determine the human body communication channel.
  • the first wearable device may predetermine a first preset distance, where the first preset distance refers to the distance between the first wearable device and the target user being greater than or equal to the first preset distance.
  • the first wearable device cannot determine the human body communication channel based on the human body. Specifically, if the target user does not normally wear the first wearable device, the first wearable device cannot communicate to the second wearable device through the human body communication channel.
  • the device sends the information to be interacted, and only when the distance between the first wearable device and the target user is less than the first preset value, will the information to be interacted be sent through the human body communication channel, which improves the waiting time through the human body communication channel.
  • the success rate of the interactive information transmission avoids the situation that the to-be-interactive information is not successfully transmitted to the second wearable device because the target user does not successfully wear the first wearable device.
  • the method further includes: the first wearable device detects the first wearable device and the second wearable device The target distance between wearable devices; the first wearable device judges whether the target distance is less than or equal to a second preset distance; if so, it triggers the capacitive coupling between the first wearable device and the target user to enable the target The step of generating an electric field from the user's human body to determine a human body communication channel; if not, the first wearable device sends the information to be interacted to the second wearable device through a short-distance communication network.
  • the first wearable device detects whether the distance between the first wearable device and the second wearable device is less than or equal to a second preset value, and only when the distance between the first wearable device and the second wearable device is less than When it is equal to or equal to the second preset value, the information to be interacted will be sent through the human body communication channel, which improves the success rate of sending the information to be interacted through the human body communication channel, and when the first wearable device and the second wearable device are detected When the distance between the wearable devices is greater than the second preset value, the first wearable device can send the information to be interacted through the short-range communication network, avoiding the situation that the information to be interacted is not successfully sent to the second wearable device .
  • the first wearable device sends the waiting device to the second wearable device through the human body communication channel.
  • the method further includes: if the first wearable device does not receive a response message through the human body communication channel, sending the first wearable device to the second wearable device through a short-range communication network. The information to be interacted, and the response message is used to indicate that the second wearable device has successfully received the information to be interacted.
  • the first wearable device determines that the response message sent by the second wearable device is not received through the human body communication channel, it means that the second wearable device has not successfully received all the response messages sent by the first wearable device.
  • the information to be interacted indicates that packet loss occurs in the information to be interacted transmitted via the human body communication channel, and the first wearable device may send the information to be interacted to the second wearable device through the short-range communication network to avoid In this way, the information to be interacted is not successfully sent to the second wearable device.
  • the frequency of the human body communication channel is any value in a target interval, and the minimum value of the target interval is 6 kHz, the maximum value of the target interval is 100 MHz.
  • the frequency of the human body communication channel is located within the target interval, so that the human body communication channel can improve the signal quality, safety and reliability of the transmitted information to be exchanged.
  • the human body interaction system further includes a terminal
  • the first wearable device acquiring information to be interacted includes: A wearable device obtains the information to be interacted from the terminal through a short-distance communication network.
  • the first wearable device can obtain the information to be interacted from the terminal through the short-range communication network. After the information to be interacted is successfully obtained, the first wearable device can forward the information to be interacted to the second wearable through the human body communication channel. equipment.
  • the first wearable device acquiring information to be interacted includes: the first wearable device is based on a virtual user identification card The SIM obtains the information to be interacted through the radio frequency communication network.
  • the first wearable device can obtain the information to be interacted from the base station through the virtual user identification card SIM. After successfully obtaining the information to be interacted, the first wearable device can forward the information to be interacted to the second through the human body communication channel. 2. Wearable equipment.
  • the first wearable device acquiring information to be interacted includes: the first wearable device uses an integrated sensor, Obtain the information to be interacted.
  • the sensor data includes, but is not limited to, the human body's heart rate, blood oxygen and other health information collected by the sensor integrated in the first wearable device.
  • the sensor may be one or more of the following sensors:
  • Low beam sensor ambient light sensor, Hall sensor, capacitance sensor, acceleration sensor or heart rate detection sensor, etc.
  • the second aspect of the embodiments of the present application provides a wearable device, the wearable device is a first wearable device, the first wearable device is used in a human body interaction system, and the human body interaction system includes a target user and the target user Multiple wearable devices worn by the target user, the first wearable device being any one of the multiple wearable devices worn by the target user, the first wearable device including: a receiving unit configured to obtain information to be interacted; The processing unit is configured to perform capacitive coupling with the target user to enable the human body of the target user to generate an electric field to determine the human body communication channel; the sending unit is configured to send the to-be-interacted device to the second wearable device through the human body communication channel information.
  • the wearable device shown in this aspect is used to execute the method shown in the first aspect.
  • the specific execution process and the description of the beneficial effects please refer to the above description for details, and details are not repeated.
  • the processing unit is further configured to detect that the first wearable device is separated from the target user , Generating prompt information, the prompt information being used to prompt the first wearable device to be separated from the target user.
  • the processing unit is further configured to: detect the relationship between the first wearable device and the second wearable device Determine whether the target distance is less than or equal to the preset distance; if yes, trigger the step of performing capacitive coupling between the first wearable device and the target user to enable the target user’s body to generate an electric field to determine the human body communication channel If not, send the information to be interacted to the second wearable device through a short-range communication network.
  • the processing unit is further configured to: if it is determined that the receiving unit does not receive a response through the human body communication channel Message, the sending unit is triggered to send the information to be interacted; the sending unit is further configured to send the information to be interacted to the second wearable device through a short-range communication network, and the response message is used to instruct all The second wearable device has successfully received the information to be interacted.
  • the human body interaction system further includes a terminal, and the receiving unit is further configured to: The terminal obtains the information to be interacted.
  • the receiving unit is further configured to obtain the waiting information through a radio frequency communication network based on a virtual user identification card SIM. Interactive information.
  • the receiving unit is further configured to obtain the information to be interacted through an integrated sensor.
  • the third aspect of the embodiments of the present application provides a wearable device, the wearable device is a first wearable device, the first wearable device is used in a human body interaction system, and the human body interaction system includes a target user and the target user Multiple wearable devices worn by the target user, the first wearable device being any one of the multiple wearable devices worn by the target user, the first wearable device including a low-frequency transceiver module and an antenna module; the antenna module Used to obtain information to be interacted; the low-frequency transceiver module is used to perform capacitive coupling with the target user to enable the human body of the target user to generate an electric field to determine a human body communication channel, and the human body communication channel includes the antenna module and the target User; The low-frequency transceiver module is used to send the information to be interacted to the second wearable device through the human body communication channel.
  • the wearable device shown in this aspect is used to execute the method shown in the first aspect above.
  • the low-frequency transceiver module and the antenna module are located on the same system-on-chip SOC, or the low-frequency transceiver The module and the antenna module are located on different chips.
  • the first wearable device further includes a processor, the processor is connected to the sensor, and the processor is configured to pass through The sensor acquires the information to be interacted.
  • the processor is connected to perform audio and video data Audio codec device for codec processing.
  • the first wearable device further includes a baseband processor, and the processor and the low-frequency transceiver module The connection is provided with the baseband processor.
  • the low-frequency transceiver module includes a low-frequency transmitting unit and a low-frequency receiving unit, and the low-frequency transmitting unit is used to control the passage
  • the frequency of the human body communication channel sending information the low-frequency receiving unit is used to control the frequency of receiving information through the human body communication channel, wherein the frequency of the human body communication channel is any value within a target interval, and the target interval
  • the minimum value of is 6 kHz, and the maximum value of the target interval is 100 MHz.
  • the first wearable device further includes a short-range communication module for short-range communication, and/or, The first wearable device also includes a radio frequency module for radio frequency communication.
  • the fourth aspect of the embodiments of the present application provides a chip including a communication interface, a memory, and a processor, the memory is used to store a computer program, and the processor is used to read and execute the computer program stored in the memory , To perform the method described in any one of the above-mentioned first aspects.
  • the fifth aspect of the embodiments of the present application provides a computer-readable storage medium in which a computer program is stored.
  • the computer program When the computer program is executed on a computer, the computer can execute the same as described in the first aspect. Any one of the methods shown.
  • a sixth aspect of the embodiments of the present application provides a human body interaction system, wherein the human body interaction system includes a target user and a plurality of wearable devices worn by the target user, and the plurality of wearable devices includes a first wearable device.
  • a device and a second wearable device the first wearable device is used for acquiring information to be interacted; the first wearable device is also used for capacitive coupling with a target user, enabling the target user's human body to generate an electric field to determine a human body communication channel;
  • the first wearable device is also configured to send the information to be interacted to the second wearable device through the human body communication channel.
  • the first wearable device is used to execute the method according to any one of the above-mentioned first aspects.
  • Figure 1 is a structural example diagram of an embodiment of the human body interaction system provided by this application.
  • FIG. 2 is a flowchart of an embodiment of the information interaction method provided by this application.
  • FIG. 3 is a flowchart of steps of another embodiment of the information interaction method provided by this application.
  • FIG. 5 is an example scene diagram of an embodiment of the information interaction method provided by this application.
  • FIG. 6 is an example scene diagram of another embodiment of the information interaction method provided by this application.
  • FIG. 7 is an example scene diagram of another embodiment of the information interaction method provided by this application.
  • FIG. 8 is an example scene diagram of another embodiment of the information interaction method provided by this application.
  • FIG. 9 is a structural example diagram of an embodiment of a wearable device provided by this application.
  • FIG. 10 is a structural example diagram of another embodiment of a wearable device provided by this application.
  • FIG. 11 is a structural example diagram of another embodiment of a wearable device provided by this application.
  • FIG. 12 is a structural example diagram of another embodiment of a wearable device provided by this application.
  • FIG. 13 is a structural example diagram of another embodiment of a wearable device provided by this application.
  • the embodiment of the present invention provides an information interaction method, which is used to effectively increase the standby time of the wearable device, and can effectively improve the signal quality of the information exchanged, so as to better understand the information provided by this application.
  • the following first illustrates the specific structure of the human body interaction system to which the information interaction method shown in this application is applied:
  • the human body interaction system includes a target user's human body 101, a terminal 102, and multiple wearable devices worn by the target user.
  • This embodiment does not limit the specific device type of the wearable device, as long as the wearable device can It is sufficient to realize the information interaction between different wearable devices, and/or realize the information interaction between the wearable device and the terminal 102;
  • the type of wearable device shown in this embodiment may be a wireless earphone 104.
  • the wireless earphone 104 may be any of the following:
  • Neck-mounted headsets that hang on the head and neck, headsets, in-ear Bluetooth headsets, semi-in-ear Bluetooth headsets, semi-open Bluetooth headsets, open Bluetooth headsets, single-ear Bluetooth headsets, true wireless stereo, TWS) Bluetooth headsets, and Bluetooth wired dual-use headsets with wires.
  • the type of wearable device may also be glasses 105.
  • the glasses 105 include glasses for augmented reality (AR), glasses for virtual reality (VR), and glasses for mixed reality (MR). Glasses, etc.; the type of wearable device can also be the smart bracelet 103, this embodiment does not limit the functions that the smart bracelet 103 can implement, for example, the hand expert bracelet 103 can display time and achieve goals
  • the wearable device shown in this embodiment may also be a smart watch or the like.
  • Step 201 The first wearable device obtains information to be interacted.
  • the first wearable device and the second wearable device shown in this embodiment are any two of the multiple wearable devices worn by the target user, and the first wearable device is used to send the acquired information to be interacted to the The second wearable device sends.
  • the first wearable device may be a smart bracelet, glasses, wireless earphones, etc. shown in FIG. 1, which is not specifically limited in this embodiment.
  • This embodiment does not limit the specific information type of the information to be interacted.
  • the information type of the information to be interacted will also be different; for example, In the case where the first wearable device is the master headset in the wireless headset, and the second wearable device is the slave headset in the wireless headset, the information to be interacted is audio information; for another example, if the first wearable device is If the smart hand is broken, and the second wearable device is a wireless headset, the information to be interacted may also be audio information.
  • the information to be interacted may be sensor data, and the sensor data includes, but is not limited to, the human body’s heart rate, blood oxygen and other health information collected by the sensor integrated in the first wearable device.
  • the to be interacted The information may also be device information, which includes, but is not limited to, the remaining power information of the terminal.
  • This embodiment does not limit the specific manner in which the first wearable device obtains the information to be interacted, as long as the first wearable device can send the obtained information to be interacted to the second wearable device, as follows:
  • Several optional ways for the first wearable device to obtain information to be interacted are exemplarily described:
  • the first wearable device obtains the information to be interacted from the terminal through a short-range communication network.
  • This embodiment does not limit the specific communication type of the short-range communication network.
  • the short-range communication network may One or more of the following:
  • Direct infrared direct-beamir
  • diffuse infrared diffuse infrared
  • omnidirectional infrared ominidirectionalir
  • Bluetooth WIFI
  • ZigBee protocol ZigBee
  • NFC near field communication
  • the master headset can obtain audio information from the terminal through the short-range communication network (that is, to be interacted with). Information), the master headset can send the audio information to the slave headset through the following steps.
  • the first wearable device obtains the information to be interacted through a radio frequency communication network based on a virtual user identification card.
  • the first wearable device shown in this manner integrates a virtual user identification module (SIM).
  • SIM virtual user identification module
  • the virtual SIM shown in this embodiment includes but is not limited to an embedded subscriber identification module (ESIM), a software SIM (soft SIM), or a virtual SIM (virtual SIM, vSIM).
  • the first wearable device may be a smart bracelet
  • the second wearable device may be a wireless headset.
  • the smart bracelet is used to obtain call data (i.e. information to be exchanged) from the base station through a radio frequency communication network based on a virtual SIM.
  • the smart bracelet can send the call data to the wireless headset as shown in the following steps.
  • the first wearable device obtains the information to be interacted through an integrated sensor.
  • This embodiment does not limit the specific type of the sensor integrated by the first wearable device.
  • the sensor may be as follows One or more sensors:
  • Low beam sensor ambient light sensor, Hall sensor, capacitance sensor, acceleration sensor or heart rate detection sensor, etc.
  • the first wearable device may be a wireless headset
  • the second wearable device may be a smart bracelet
  • the wireless headset can collect sensor data based on sensors (ie information to be interacted), and the sensor data may be The heart rate information of the target user
  • the wireless headset may send the heart rate information of the target user to the smart bracelet as shown in the following steps.
  • Step 202 The first wearable device determines a human body communication channel.
  • the first wearable device shown in this embodiment determines the human body communication channel based on a wireless body area network (wireless body area network, wban), which is established between multiple wearable devices worn by a target user
  • the information network is one level lower than the local area network in the network hierarchy.
  • the first wearable device shown in this embodiment can determine the human body communication channel based on the human body communication technology of the wireless body area network, where the human body communication technology refers to The feasibility of using the human body as an information channel to transmit information is based on the conductive ability of the human body. Specifically, because more than 60% of the human body’s tissue is composed of water containing conductive substances, the human body It's a conductor.
  • Human body communication technology is a communication method that uses the human body as a communication signal transmission medium.
  • the first wearable device is capacitively coupled with the target user based on the capacitive coupling method of human body communication technology, and enables the human body of the target user to generate an electric field to determine the human body communication channel.
  • the capacitive coupling method refers to .
  • the vibration of the first wearable device is used to generate an electric field by the human body, and the change of the electric field is detected by the second wearable device to realize communication.
  • the first wearable device may include two electrodes, one electrode is capacitively coupled with the human body, and the other electrode is capacitively coupled with the ground to determine the human body communication channel.
  • the frequency of the human body communication channel is any value within a target interval, the minimum value of the target interval is 6 kilohertz (6 kHz), and the maximum value of the target interval is 100 megahertz (MHz).
  • high-frequency signals greater than 10kHz can pass through high-impedance cell membranes, but because there are many human electrical signals with different frequencies below 50kHz in the human body, in order to maintain the safety and reliability of human body communication, the signal working frequency of human body communication should be Keep it above 50kHz. Since the transmission efficiency of 100kHz-100MHz radio frequency signals in the human body is higher than that in the air, the communication frequency needs to be limited between 100kHz-100MHz, and the communication speed of the human body communication channel is less than or equal to 10 megabits per second .
  • the bandwidth of sub-band coding (SBC), advanced audio coding (AAC) and other codec signals is between 100-300 kilobits per second (kbps)
  • high-definition 96kHz/24bit audio Signals such as lossless audio, require a bandwidth of more than 2 megabits per second (Mbps), plus other sensor signals and data acquisition signals, so the human body communication channel can be selected between 100kHz-100MHz. It should be clear that this embodiment does not limit the description of the frequency of the human body communication channel, as long as the first wearable device can send the information to be interacted through the human body communication channel.
  • Step 203 The first wearable device sends the information to be interacted to the second wearable device through the human body communication channel.
  • the first wearable device when the first wearable device obtains the information to be interacted, and the human body communication channel has been determined, the first wearable device can communicate to the human body through the human body communication channel.
  • the second wearable device sends the information to be interacted.
  • the frequency and power consumption during the sending process are relatively low, so it is not harmful to the human body.
  • causes damage, and uses the human body as a capacitor for capacitive coupling, and the interference from the environment is very limited.
  • the first wearable device Even if the first wearable device is in the communication environment of the Bluetooth signal and WIFI signal, these signals will not communicate with the human body
  • the channel causes interference, so that the first wearable device sends the information to be interacted to the second wearable device through the human body communication channel, which can effectively guarantee the stability and quality of information transmission, and the human body communication channel transmits the information to be interacted, which costs
  • the power consumption is relatively low, thereby effectively increasing the standby time of the wearable device.
  • Step 301 The first wearable device obtains information to be interacted.
  • step 301 For the specific execution process of step 301 shown in this embodiment, please refer to step 201 shown in FIG. 2 for details. The specific execution process will not be repeated.
  • Step 302 The first wearable device judges whether the distance between the first wearable device and the target user is greater than or equal to a first preset distance, if yes, execute step 303, if not, execute step 304.
  • the first wearable device may predetermine a first preset distance, where the first preset distance refers to the distance between the first wearable device and the target user being greater than or equal to this At the first preset distance, the first wearable device cannot determine the human body communication channel based on the human body. Specifically, if the target user does not wear the first wearable device normally, the first wearable device cannot communicate to the human body through the human body communication channel.
  • the second wearable device sends the information to be interacted. Specifically, for example, if the first wearable device is the main headset, when the target user takes off the main headset, the main headset that has been detached from the target user cannot communicate to the secondary headset through the human body communication channel.
  • the earphone sends the audio information to be interacted.
  • the first wearable device shown in this embodiment may obtain the distance between the first wearable device and the target user based on an integrated distance sensor, and this embodiment obtains the distance between the first wearable device and the target user.
  • the specific process of the distance between the first wearable device and the target user is not limited.
  • This embodiment does not limit the size of the first preset distance, as long as the distance between the first wearable device and the target user is greater than or equal to the first preset distance, the first wearable device cannot pass
  • the human body communication channel sends the information to be interacted to the second wearable device, and when the distance between the first wearable device and the target user is less than the first preset distance, the first wearable device can communicate to the second wearable device through the human body communication channel. The wearable device sends the information to be interacted.
  • Step 303 The first wearable device generates prompt information.
  • the first wearable device determines that it is unable to perform the to-be-interaction through the human body communication channel
  • the first wearable device can generate prompt information.
  • This embodiment does not limit the specific information type of the prompt information, as long as the prompt information is used to indicate that the human body communication channel cannot be communicated.
  • the prompt information may be audio information or character information.
  • the first wearable device may periodically execute step 302, so that after the target user adjusts the first wearable device, step 302 is executed so that the first wearable device determines the first wearable device When the distance to the target user is less than the first preset distance, step 304 is triggered.
  • Step 304 The first wearable device determines a human body communication channel.
  • Step 305 The first wearable device sends the information to be interacted to the second wearable device through the human body communication channel.
  • step 202 to step 203 shown in FIG. 2 For the execution process from step 304 to step 305 shown in this embodiment, please refer to step 202 to step 203 shown in FIG. 2 for details.
  • step 203 For the specific execution process, please refer to FIG. 2 for details, and details are not described in detail.
  • the first wearable device can periodically detect whether the distance between the first wearable device and the target user is less than a first preset value, and only when the first wearable device and the target user When the distance between them is less than the first preset value, the information to be interacted will be sent through the human body communication channel, which improves the success rate of sending the information to be interacted through the human body communication channel and avoids the failure of the target user to wear it. In the case of the first wearable device, the information to be interacted is not successfully sent to the second wearable device.
  • Step 401 The first wearable device obtains information to be interacted.
  • step 401 For the specific execution process of step 401 shown in this embodiment, please refer to step 201 shown in FIG. 2 for details, and the specific execution process will not be repeated in this embodiment.
  • Step 402 The first wearable device detects the target distance between the first wearable device and the second wearable device;
  • the first wearable device may first detect the connection between the first wearable device and the second wearable device The target distance.
  • the first wearable device may obtain the target distance between the first wearable device and the second wearable device based on an integrated distance sensor, and the specific process is not described in detail in this embodiment.
  • Step 403 The first wearable device determines whether the target distance is less than or equal to a second preset distance, if not, execute step 404, and if yes, execute step 405.
  • This embodiment does not limit the size of the second preset distance, as long as the target distance between the first wearable device and the second wearable device is greater than the second preset distance, the first wearable device cannot The information to be interacted is sent to the second wearable device through the human body communication channel, and when the target distance between the first wearable device and the second wearable device is less than or equal to the second preset distance, the first wearable device can pass through The human body communication channel sends the information to be interacted to the second wearable device.
  • Step 404 The first wearable device sends the information to be interacted to the second wearable device through a short-range communication network.
  • the first wearable device can determine that the first wearable device cannot communicate through the human body If the channel sends the information to be interacted to the second wearable device, the first wearable device can send the information to be interacted to the second wearable device through a short-range communication network, and a specific description of the short-range communication, Please refer to the above-mentioned embodiment for details, which will not be repeated in this embodiment.
  • Step 405 The first wearable device determines a human body communication channel.
  • the first wearable device can determine that the first wearable device can pass
  • step 405 can be executed.
  • Step 406 The first wearable device sends the information to be interacted to the second wearable device through the human body communication channel.
  • step 202 For the execution process from step 405 to step 406 shown in this embodiment, please refer to step 202 to step 203 shown in FIG. 2 for details.
  • step 203 For the specific execution process, please refer to FIG. 2 for details, and details are not described in detail.
  • Step 407 If the first wearable device does not receive a response message through the human body communication channel, the first wearable device sends the information to be interacted to the second wearable device through a short-range communication network.
  • the first wearable device may periodically detect whether a response message sent by the second wearable device is received, wherein, the response message is used to indicate that the second wearable device has successfully received the information to be interacted.
  • the first wearable device determines that the response message sent by the second wearable device is not received through the human body communication channel, it means that the second wearable device has not successfully received the waiting message sent by the first wearable device.
  • Interaction information indicates that there is packet loss in the information to be interacted transmitted via the human body communication channel, and the first wearable device may send the information to be interacted to the second wearable device through the short-range communication network, and
  • the short-distance communication network please refer to the above-mentioned embodiment for details, and details are not repeated in this embodiment.
  • the first wearable device detects whether the distance between the first wearable device and the second wearable device is less than or equal to a second preset value. Only when the distance between the wearable devices is less than or equal to the second preset value, the information to be interacted will be sent through the human body communication channel, which improves the success rate of sending the information to be interacted through the human body communication channel, and it is detected In the case that the distance between the first wearable device and the second wearable device is greater than the second preset value, the first wearable device can send the information to be interacted through the short-distance communication network, avoiding that the information to be interacted is not successfully sent to the second 2. The emergence of wearable devices.
  • the first wearable device is the main headset in the wireless headset
  • the second wearable device is the secondary headset in the wireless headset
  • the information to be interacted is audio information as an example; specifically, the wireless headset in this scenario is TWS headset;
  • TWS headsets Compared with the previous Bluetooth headsets, the product form and function of TWS headsets have achieved significant innovations. It not only gets rid of the traditional portable Bluetooth headset with only one ear and cannot enjoy stereo music, but also gets rid of the traditional neck-mounted or headphone.
  • the connecting cable causes inconvenience in sports scenes and difficulty in storage.
  • TWS headsets have set off a boom and ushered in a period of rapid growth. TWS headsets have driven the consumption boom of wireless headsets. They are a replacement for traditional Bluetooth headsets.
  • the market size is considerable. According to estimates, the market size is expected to exceed 15 billion by 2020. US dollars. From the above development, we can see that in the future, with the development trend of full-screen and non-porous mobile phones, TWS headsets are expected to become standard.
  • the main TWS headset 501 can first establish a connection with the terminal 502 through a short-range communication network such as Bluetooth or WIFI, so that the main TWS headset can obtain audio information from the terminal 502, where the audio information includes Audio information corresponding to the TWS headset 501 and audio information corresponding to the secondary TWS headset 503;
  • a short-range communication network such as Bluetooth or WIFI
  • the main TWS headset 501 encodes and decodes the received audio information locally, the audio information corresponding to the main TWS headset 501 and the audio information corresponding to the secondary TWS headset 503 are acquired;
  • the main TWS headset 501 sends audio information corresponding to the sub TWS headset 503 to the sub TWS headset 503 through the human body communication channel.
  • the main TWS headset 501 includes an electrode 602 for capacitive coupling with the human body 601, and the main TWS headset 501 can use the created human body communication channel to convert the audio information corresponding to the secondary TWS headset 503, Send to the secondary TWS headset 503.
  • the advantage of this is that the main TWS headset 501 sends audio information to the secondary TWS headset 503 through the human body communication channel.
  • the power consumption is low, the transmission efficiency is high, and the playback delay will not be large, so that in the scene of playing movies or games.
  • the transmission of audio information through the human body communication channel can effectively ensure the stability of the communication signal of the pair of TWS headset 503, and there will be no music jams and intermittent calls.
  • the main TWS headset 501 will directly send a message indicating packet loss to the terminal 502 to notify the terminal 502 that the main TWS headset 501 has packet loss.
  • the terminal 502 will retransmit the audio information to the main TWS headset 501.
  • the secondary TWS headset 503 needs to first send a message indicating packet loss to the main TWS headset 501, and the main TWS headset 501 then sends a message indicating packet loss to the terminal 502, and the terminal 502 then The audio information is retransmitted to the main TWS headset 501, and the main TWS headset 501 retransmits the audio information to the secondary TWS headset 503 through the human body communication channel.
  • the first wearable device 701 can be a smart bracelet
  • the second wearable device is the main TWS headset 702
  • the third wearable device is the secondary TWS headset 703;
  • the first wearable device 701 can establish a connection with the terminal 704 through a short-distance communication network such as Bluetooth and WIFI, and the terminal 704 can send audio information to the main TWS headset 702 and the secondary TWS headset 703.
  • a short-distance communication network such as Bluetooth and WIFI
  • the audio information below can also be the audio information for the call that the first wearable device obtains from the base station through the virtual SIM that has been set up.
  • the specific sending methods in this scenario are as follows:
  • the first wearable device 701 can send the audio information obtained from the terminal 704 to the main TWS headset 702 through the human body communication channel, where the audio information includes the audio information corresponding to the main TWS headset 702 and Audio information corresponding to the secondary TWS headset 703;
  • the main TWS headset 702 encodes and decodes the received audio information locally, the audio information corresponding to the main TWS headset 702 and the audio information corresponding to the secondary TWS headset 703 are obtained;
  • the main TWS headset 702 sends audio information corresponding to the secondary TWS headset 703 to the secondary TWS headset 703 through the human body communication channel.
  • the main TWS headset 702 will directly send a message indicating packet loss to the terminal 704 to notify the terminal 704 that the main TWS headset 702 has packet loss.
  • the terminal 704 will retransmit the audio information to the main TWS headset 702.
  • the secondary TWS headset 703 needs to first send a message indicating packet loss to the main TWS headset 702, and then the main TWS headset 702 sends a message indicating packet loss to the terminal 704, and the terminal 704 then The audio information is retransmitted to the main TWS headset 702, and the main TWS headset 702 retransmits the audio information to the secondary TWS headset 703 through the human body communication channel.
  • the first wearable device 701 can synchronously send the audio information acquired from the terminal 704 to the main TWS headset 702 and the secondary TWS headset 703 through the human body communication channel, so that the main TWS headset 702 and the secondary TWS headset 703 can achieve simultaneous binaural Receive audio information, and at the same time decode and play the received audio information locally.
  • the secondary TWS headset 703 loses the packet.
  • the message indicating the packet loss can be sent to the main TWS headset 702 through the human body communication channel.
  • the TWS headset 702 sends a message indicating packet loss to the first wearable device 701 through the human body communication channel; if the main TWS headset 702 has packet loss, the master TWS headset 702 sends the message indicating packet loss through the human body communication channel Send to the first wearable device 701.
  • the main TWS headset and the secondary TWS headset can be worn on the human body of the same target user, or on the human body of different target users.
  • the main TWS headset can be worn on the human body of the first target user
  • the secondary TWS headset can be worn on the human body of the first target user.
  • the TWS headset can be worn on the human body of the second target user.
  • the human body communication channel in this scenario includes the human body of the first target user and the human body of the second target user.
  • the human body of the first target user and the second target user are The human body of the target user is close enough, then the human body of the first target user and the human body of the second target user can be connected to form the human body communication channel, so that the main TWS headset can pass the audio information including the first
  • the human body of the target user and the human body of the second target user are sent to the secondary TWS headset, so that the first target user can receive the same audio information through the primary TWS headset and the second target user can receive the same audio information through the secondary TWS headset.
  • the first wearable device is a TWS headset, and the TWS headset is integrated with a sensor.
  • the first wearable device can collect sensor information through the integrated sensor.
  • the sensor information can be the heart rate and blood oxygen of the human body. Wait for information, the first wearable device can send the sensor information to the second wearable device through the human body communication channel, and the second wearable device in this scenario can be a smart bracelet;
  • the smart bracelet can analyze and process the received sensor information through the internal preset application, so as to detect and monitor the physical condition of the target user;
  • the smart bracelet can also send the sensor data to the terminal via a short-distance communication network, and an application preset by the terminal analyzes and processes the received sensor information, so as to check the physical condition of the target user. Detection, monitoring, etc.
  • the structure of the first wearable device will be exemplified from the perspective of functional modules as shown in FIG. 9 below.
  • the first wearable device shown in this embodiment is used to perform steps related to any of the above method embodiments, and the specific execution process is As well as the description of the beneficial effects, please refer to the above-mentioned embodiment for details, and the details will not be repeated.
  • the first wearable device shown in this embodiment includes:
  • the receiving unit 901 is configured to obtain information to be exchanged
  • the processing unit 902 is configured to perform capacitive coupling with the target user, and enable the human body of the target user to generate an electric field to determine the human body communication channel;
  • the sending unit 903 is configured to send the information to be interacted to the second wearable device through the human body communication channel.
  • the processing unit 902 is further configured to generate prompt information when it is detected that the first wearable device is separated from the target user, and the prompt information is used to prompt the first wearable device to contact the target user. The state in which the target user is separated.
  • the processing unit 902 is further configured to: detect the target distance between the first wearable device and the second wearable device; determine whether the target distance is less than or equal to a preset distance; if so, trigger Perform the step of capacitively coupling the first wearable device and the target user to enable the target user’s human body to generate an electric field to determine the human body communication channel; if not, send the standby device to the second wearable device through a short-range communication network Interactive information.
  • the processing unit 902 is further configured to: if it is determined that the receiving unit 901 has not received a response message through the human body communication channel, trigger the sending unit 903 to send the information to be interacted;
  • the sending unit 903 is further configured to send the information to be interacted to the second wearable device via a short-range communication network, and the response message is used to indicate that the second wearable device has successfully received the information to be interacted .
  • the human body interaction system further includes a terminal, and the receiving unit 901 is further configured to obtain the information to be interacted from the terminal through a short-distance communication network.
  • the receiving unit 901 is further configured to obtain the information to be interacted through a radio frequency communication network based on a virtual user identification card SIM.
  • the receiving unit 901 is further configured to obtain the information to be exchanged through an integrated sensor.
  • the specific structure of the first wearable device provided by this application will be exemplarily described below with reference to FIG. 10 from the perspective of physical hardware.
  • the first wearable device shown in this embodiment is used to perform any of the foregoing method embodiments.
  • the first wearable device 1000 includes:
  • Low frequency transceiver module 1001 and antenna module 1002 are low frequency transceiver module 1001 and antenna module 1002;
  • the antenna module 1002 is used to obtain information to be exchanged
  • the low-frequency transceiver module 1001 is used for capacitive coupling with a target user, enabling the human body of the target user to generate an electric field to determine a human body communication channel, and the human body communication channel includes the antenna module 1002 and the target user;
  • the low-frequency transceiver module 1001 is configured to send the information to be interacted to the second wearable device through the human body communication channel.
  • the first wearable device 1100 further includes a system-on-chip (SOC) 1101, and the SOC1101 may include a processor 1102, the low-frequency transceiver module 1103, and an antenna module 1104.
  • the processor 1102 may be one or more field-programmable gate arrays (FPGA), application specific integrated circuit (ASIC), and central processor unit (CPU) , Network processor (NP), digital signal processing circuit (digital signal processor, DSP), microcontroller (microcontroller unit, MCU), programmable logic device (PLD) or other integrated chips, Or any combination of the above chips or processors.
  • FPGA field-programmable gate arrays
  • ASIC application specific integrated circuit
  • CPU central processor unit
  • NP Network processor
  • DSP digital signal processing circuit
  • microcontroller microcontroller unit, MCU
  • PLD programmable logic device
  • the processor 1102 shown in this embodiment includes processing functions related to the physical layer and the protocol stack; the description of the setting method of the first wearable device in this embodiment is an optional example, and is not limited, and is optional.
  • the low frequency transceiver module 1103 and the SOC1100 can be set separately.
  • the antenna module 1104 and the SOC 1100 may be arranged separately from each other, which is not specifically limited in this embodiment.
  • the processor 1102 is configured to determine whether the distance between the first wearable device and the target user is greater than or equal to a first preset distance, and if so, generate prompt information; if not, trigger low frequency
  • the transceiver module 1103 performs the steps of capacitively coupling with the target user to enable the target user's human body to generate an electric field to determine the human body communication channel.
  • the processor 1102 is further configured to detect a target distance between the first wearable device and the second wearable device; the first wearable device determines whether the target distance is less than or equal to the second wearable device.
  • the preset distance if yes, trigger the low-frequency transceiver module 1103 to perform capacitive coupling with the target user to enable the target user’s human body to generate an electric field to determine the human body communication channel; if not, trigger the antenna module 1002 to communicate through short distances
  • the network sends the information to be interacted to the second wearable device.
  • the processor 1102 does not receive a response message through the human body communication channel, it triggers the antenna module 1104 to send the information to be interacted to the second wearable device through the short-range communication network, and the response message uses It indicates that the second wearable device has successfully received the information to be interacted.
  • the frequency of the human body communication channel is any value within a target interval, the minimum value of the target interval is 6 kHz, the maximum value of the target interval is 100 MHz, and the communication of the human body communication channel The speed is less than or equal to 10 megabits per second.
  • the antenna module 1104 is further configured to obtain the information to be interacted from the terminal through a short-distance communication network.
  • the processor 1102 is further configured to obtain the information to be interacted through a radio frequency communication network based on a virtual user identification card SIM.
  • the structure of the first wearable device can also be seen as shown in FIG. 12, the first wearable device 1200 may include a processor 1201, a low-frequency transceiver module 1202, and an antenna module 1203, the low-frequency transceiver module 1202 and an antenna
  • the module 1203 please refer to the above description, which will not be repeated in this embodiment;
  • the processor 1201 may also be connected to an audio codec device 1204.
  • the audio codec device 1204 may include a driving circuit for driving a speaker device 1205 and a microphone device 1206.
  • the audio codec device 1204 may also include a A drive circuit and a second drive circuit, the first drive circuit is used to determine the speaker device, and the second drive circuit is used to drive the microphone device;
  • the processor 1201 may be connected to one or more sensors 1207.
  • the sensors 1207 include but are not limited to proximity light sensors, ambient light sensors, Hall sensors, capacitance sensors, acceleration sensors, heart rate detection sensors, etc.
  • the number of sensors 1207 and the type of each sensor are not limited.
  • the first wearable device 1300 includes a processor 1301, a low-frequency transceiver module 1302, an antenna module 1303, an audio codec device 1304,
  • the speaker device 1305, the microphone device 1306, and the sensor 1307 are described in detail as shown in Fig. 12, which are not described in detail in this embodiment;
  • the low-frequency transceiver module 1302 specifically includes two independent devices, namely a low-frequency transmitting unit 13021 and a low-frequency receiving unit 13022.
  • the low-frequency transmitting unit 13021 is used to control the transmission of information through the human body communication channel.
  • the low-frequency receiving unit 13022 is used to control the frequency of receiving information through the human body communication channel, where the frequency of the human body communication channel is any value in a target interval, and the minimum value of the target interval is 6 In kilohertz, the maximum value of the target interval is 100 MHz.
  • the first wearable device further includes a baseband processor 1308, and the baseband processor 1308 is connected between the processor 1301 and the low-frequency transceiver module 1302.
  • the baseband processor 1308 is configured to convert analog signals into digital signals that can be processed by the processor 1301.
  • the first wearable device further includes a short-range communication module 1309.
  • the short-range communication module 1309 is used to perform short-range communication.
  • the short-range communication please refer to the above-mentioned embodiment. , Do not repeat the details.
  • the first wearable device further includes a radio frequency communication module 1310.
  • the radio frequency communication module 1310 is used for radio frequency communication.
  • the radio frequency communication module 1310 is used for radio frequency communication.
  • the radio frequency communication please refer to the above-mentioned embodiment for details. Repeat.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present invention may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present invention essentially or the part that contributes to the prior art or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , Including several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method in each embodiment of the present invention.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Telephone Function (AREA)

Abstract

本发明实施例公开了一种信息的交互方法,穿戴设备以及存储介质,用于避免穿戴设备所位于的通信环境中的信号对穿戴设备之间的信息交互的干扰,且有效的节省穿戴设备的功耗,提高穿戴设备的待机时长。本发明实施例方法包括:第一穿戴设备获取待交互信息,所述第一穿戴设备为所述目标用户所穿戴的所述多个穿戴设备中的任一个;所述第一穿戴设备与目标用户进行电容耦合,使能目标用户的人体产生电场以确定人体通信通道;所述第一穿戴设备通过所述人体通信信道,向所述第二穿戴设备发送所述待交互信息。

Description

一种信息的交互方法,穿戴设备以及存储介质
本申请要求于2019年7月26日提交中国专利局、申请号为201910683699.9、发明名称为“一种信息的交互方法,穿戴设备以及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及的是一种信息的交互方法,穿戴设备以及存储介质。
背景技术
随着通信技术的发展,用户所佩戴的穿戴设备的种类越来越多样,穿戴设备可为智能手环、无线耳机、眼镜等。
现有技术所提供的穿戴设备支持采用蓝牙、无线保真(wireless fidelity,WIFI)通信,所以穿戴设备可通过蓝牙、WIFI等进行信息交互。
但是,受限于穿戴设备的体积,穿戴设备的续航能力有效,而蓝牙、WIFI的耗电量大,从而使得通过蓝牙、WIFI等进行信息交互,降低了穿戴设备的待机时长。以穿戴设备通过蓝牙进行信息交互为例,由于蓝牙主要采用2.4G频段通讯,通讯距离远,导致在机场、商场、展会等场所信号多,容易受到干扰,而且又因为蓝牙和WIFI同频段,这就会造成在机场、商场、展会等场所通讯信号质量差。
发明内容
本申请提供了一种信息的交互方法,穿戴设备以及存储介质,其能够有效的提高信息交互的信号质量,且能够有效的降低功耗。
本申请实施例第一方面提供了一种信息的交互方法,所述方法用于人体交互系统,所述人体交互系统包括目标用户以及所述目标用户所穿戴的多个穿戴设备,所述方法包括:第一穿戴设备获取待交互信息,所述第一穿戴设备为所述目标用户所穿戴的所述多个穿戴设备中的任一个;所述第一穿戴设备与目标用户进行电容耦合,使能目标用户的人体产生电场以确定人体通信通道;所述第一穿戴设备通过所述人体通信信道,向所述第二穿戴设备发送所述待交互信息。
可见,采用本方面所示的方法,因所述第一穿戴设备通过人体通信通道向第二穿戴设备发送所述待交互信息,使得发送过程中的频率和功耗都比较低,所以对人体不会产生伤害,而且利用人体是一个电容来做电容耦合,所受到环境的干扰是非常有限,即便第一穿戴设备所处于的通信环境中的蓝牙信号和WIFI信号等,这些信号都不会对人体通信信道造成干扰,从而使得第一穿戴设备通过人体通信通道将待交互信息发送给第二穿戴设备,能够有效的保障信息传输的稳定和质量,又因人体通信通道进行待交互信息的传输,所耗费的功耗比较低,从而有效的提高了穿戴设备的待机时长。
基于本申请实施例第一方面,本申请实施例第一方面的一种可选的实现方式中,所述第一穿戴设备与目标用户进行电容耦合,使能目标用户的人体产生电场以确定人体通信通道之前,所述方法还包括:所述第一穿戴设备判断所述第一穿戴设备与所述目标用户之间的距离是否大于或等于第一预设距离;若是,则所述第一穿戴设备生成提示信息;若否, 则触发执行所述第一穿戴设备与目标用户进行电容耦合,使能目标用户的人体产生电场以确定人体通信通道的步骤。
可见,所述第一穿戴设备可预先确定第一预设距离,其中,所述第一预设距离是指,在所述第一穿戴设备和目标用户之间的距离大于或等于该第一预设距离时,所述第一穿戴设备无法基于人体确定所述人体通信通道,具体的,若目标用户没有正常穿戴该第一穿戴设备,则该第一穿戴设备无法通过人体通信通道向第二穿戴设备发送待交互信息,只有在第一穿戴设备与目标用户之间的距离小于第一预设值的情况下,才会通过人体通信通道进行待交互信息的发送,提高了通过人体通信通道进行待交互信息发送的成功率,避免了因目标用户没有成功佩戴第一穿戴设备的情况下,待交互信息没有成功发送至第二穿戴设备的情况的出现。
基于本申请实施例第一方面,本申请实施例第一方面的一种可选的实现方式中,所述方法还包括:所述第一穿戴设备检测所述第一穿戴设备和所述第二穿戴设备之间的目标距离;所述第一穿戴设备判断所述目标距离是否小于或等于第二预设距离;若是,则触发执行所述第一穿戴设备与目标用户进行电容耦合,使能目标用户的人体产生电场以确定人体通信通道的步骤;若否,则所述第一穿戴设备通过短距离通信网络向所述第二穿戴设备发送所述待交互信息。
可见,所述第一穿戴设备检测所述第一穿戴设备和第二穿戴设备之间的距离是否小于或等于第二预设值,只有在第一穿戴设备与第二穿戴设备之间的距离小于或等于第二预设值的情况下,才会通过人体通信通道进行待交互信息的发送,提高了通过人体通信通道进行待交互信息发送的成功率,而且在检测到第一穿戴设备与第二穿戴设备之间的距离大于第二预设值的情况下,第一穿戴设备可通过短距离通信网络发送所述待交互信息,避免了待交互信息没有成功发送至第二穿戴设备的情况的出现。
基于本申请实施例第一方面,本申请实施例第一方面的一种可选的实现方式中,所述第一穿戴设备通过所述人体通信信道,向所述第二穿戴设备发送所述待交互信息之后,所述方法还包括:若所述第一穿戴设备通过所述人体通信信道未接收到响应消息,则所述第一穿戴设备通过短距离通信网络向所述第二穿戴设备发送所述待交互信息,所述响应消息用于指示所述第二穿戴设备已成功接收到所述待交互信息。
可见,在所述第一穿戴设备确定出通过所述人体通信通道未接收到第二穿戴设备所发送的响应消息,则说明所述第二穿戴设备未成功接收到第一穿戴设备所发送的所述待交互信息,则说明经由所述人体通信通道所传输的待交互信息出现了丢包,则所述第一穿戴设备可通过短距离通信网络向第二穿戴设备发送所述待交互信息,避免了待交互信息没有成功发送至第二穿戴设备的情况的出现。
基于本申请实施例第一方面,本申请实施例第一方面的一种可选的实现方式中,所述人体通信信道的频率为目标区间内的任一数值,所述目标区间的最小值为6千赫兹,所述目标区间的最大值为100兆赫。
可见,采用本方面所示的方法,使得人体通信通道的频率位于所述目标区间内,从而使得所述人体通信通道能够提高所传输的待交互信息的信号质量、以及安全性和可靠性。
基于本申请实施例第一方面,本申请实施例第一方面的一种可选的实现方式中,所述人体交互系统还包括终端,所述第一穿戴设备获取待交互信息包括:所述第一穿戴设备通过短距离通信网络,从所述终端获取所述待交互信息。
可见,第一穿戴设备可通过短距离通信网络从终端获取所述待交互信息,在成功获取到待交互信息后,第一穿戴设备即可通过人体通信通道将该待交互信息转发给第二穿戴设备。
基于本申请实施例第一方面,本申请实施例第一方面的一种可选的实现方式中,所述第一穿戴设备获取待交互信息包括:所述第一穿戴设备基于虚拟用户身份识别卡SIM,通过射频通信网络获取所述待交互信息。
可见,第一穿戴设备可通过虚拟用户身份识别卡SIM从基站获取待交互信息,在成功获取到所述待交互信息后,第一穿戴设备即可通过人体通信通道将该待交互信息转发给第二穿戴设备。
基于本申请实施例第一方面,本申请实施例第一方面的一种可选的实现方式中,所述第一穿戴设备获取待交互信息包括:所述第一穿戴设备通过已集成的传感器,获取所述待交互信息。
其中,所述传感器数据包括但不限于第一穿戴设备所集成的传感器所采集的到人体的心率、血氧等健康信息,所述传感器可为如下所示的一种或多种传感器:
近光传感器、环境光传感器、霍尔传感器、电容传感器、加速度传感器或心率检测传感器等。
本申请实施例第二方面提供了一种穿戴设备,所述穿戴设备为第一穿戴设备,所述第一穿戴设备用于人体交互系统,所述人体交互系统包括目标用户以及所述目标用户所穿戴的多个穿戴设备,所述第一穿戴设备为所述目标用户所穿戴的所述多个穿戴设备中的任一个,所述第一穿戴设备包括:接收单元,用于获取待交互信息;处理单元,用于与目标用户进行电容耦合,使能目标用户的人体产生电场以确定人体通信通道;发送单元,用于通过所述人体通信信道,向所述第二穿戴设备发送所述待交互信息。
本方面所示的穿戴设备用于执行第一方面所示的方法,具体执行过程以及有益效果的说明,请详见上述所示,具体不做赘述。
基于本申请实施例第二方面,本申请实施例第二方面的一种可选的实现方式中,所述处理单元还用于,检测到所述第一穿戴设备与所述目标用户相脱离时,生成提示信息,所述提示信息用于提示所述第一穿戴设备与所述目标用户相脱离的状态。
基于本申请实施例第二方面,本申请实施例第二方面的一种可选的实现方式中,所述处理单元还用于:检测所述第一穿戴设备和所述第二穿戴设备之间的目标距离;判断所述目标距离是否小于或等于预设距离;若是,则触发执行所述第一穿戴设备与目标用户进行电容耦合,使能目标用户的人体产生电场以确定人体通信通道的步骤;若否,则通过短距离通信网络向所述第二穿戴设备发送所述待交互信息。
基于本申请实施例第二方面,本申请实施例第二方面的一种可选的实现方式中,所述处理单元还用于,若确定所述接收单元通过所述人体通信信道未接收到响应消息,则触发 所述发送单元发送所述待交互信息;所述发送单元还用于,通过短距离通信网络向所述第二穿戴设备发送所述待交互信息,所述响应消息用于指示所述第二穿戴设备已成功接收到所述待交互信息。
基于本申请实施例第二方面,本申请实施例第二方面的一种可选的实现方式中,所述人体交互系统还包括终端,所述接收单元还用于,通过短距离通信网络,从所述终端获取所述待交互信息。
基于本申请实施例第二方面,本申请实施例第二方面的一种可选的实现方式中,所述接收单元还用于,基于虚拟用户身份识别卡SIM,通过射频通信网络获取所述待交互信息。
基于本申请实施例第二方面,本申请实施例第二方面的一种可选的实现方式中,所述接收单元还用于,通过已集成的传感器,获取所述待交互信息。
本申请实施例第三方面提供了一种穿戴设备,所述穿戴设备为第一穿戴设备,所述第一穿戴设备用于人体交互系统,所述人体交互系统包括目标用户以及所述目标用户所穿戴的多个穿戴设备,所述第一穿戴设备为所述目标用户所穿戴的所述多个穿戴设备中的任一个,所述第一穿戴设备包括低频收发模块和天线模块;所述天线模块用于,获取待交互信息;所述低频收发模块用于与目标用户进行电容耦合,使能目标用户的人体产生电场以确定人体通信通道,所述人体通信通道包括所述天线模块和所述目标用户;所述低频收发模块用于,通过所述人体通信信道,向所述第二穿戴设备发送所述待交互信息。
本方面所示的穿戴设备用于执行上述第一方面所示的方法,具体执行过程以及有益效果的具体说明,请详见第一方面所示,具体在本方面中不做赘述。
基于本申请实施例第三方面,本申请实施例第三方面的一种可选的实现方式中,所述低频收发模块和所述天线模块位于同一系统级芯片SOC上,或,所述低频收发模块和所述天线模块位于不同的芯片上。
基于本申请实施例第三方面,本申请实施例第三方面的一种可选的实现方式中,所述第一穿戴设备还包括处理器,所述处理器连接传感器,所述处理器用于通过所述传感器获取所述待交互信息。
基于本申请实施例第三方面,本申请实施例第三方面的一种可选的实现方式中,若所述待交互信息为音视频信息,则所述处理器连接用于对音视频数据进行编解码处理的音频编解码装置。
基于本申请实施例第三方面,本申请实施例第三方面的一种可选的实现方式中,所述第一穿戴设备还包括基带处理器,所述处理器和所述低频收发模块之间连接设置有所述基带处理器。
基于本申请实施例第三方面,本申请实施例第三方面的一种可选的实现方式中,所述低频收发模块包括低频发送单元和低频接收单元,所述低频发送单元用于控制通过所述人体通信通道发送信息的频率,所述低频接收单元用于控制通过所述人体通信通道接收信息的频率,其中,所述人体通信信道的频率为目标区间内的任一数值,所述目标区间的最小值为6千赫兹,所述目标区间的最大值为100兆赫。
基于本申请实施例第三方面,本申请实施例第三方面的一种可选的实现方式中,所述第一穿戴设备还包括用于短距离通信的短距离通信模块,和/或,所述第一穿戴设备还包括用于射频通信的射频模块。
本申请实施例第四方面提供了一种芯片,包括通信接口、存储器和处理器,所述存储器用于存储计算机程序,所述处理器用于读取并执行所述存储器中存储的所述计算机程序,以执行如上述第一方面所示的任一项所述的方法。
本申请实施例第五方面提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机程序,当所述计算机程序在计算机上执行时,使得计算机执行如上述第一方面所示的任一项所述的方法。
本申请实施例第六方面提供了一种人体交互系统,其特征在于,所述人体交互系统包括目标用户以及所述目标用户所穿戴的多个穿戴设备,所述多个穿戴设备包括第一穿戴设备和第二穿戴设备;所述第一穿戴设备用于获取待交互信息;所述第一穿戴设备还用于与目标用户进行电容耦合,使能目标用户的人体产生电场以确定人体通信通道;所述第一穿戴设备还用于通过所述人体通信信道,向所述第二穿戴设备发送所述待交互信息。其中,所述第一穿戴设备用于执行如上述第一方面所示的任一项所述的方法。
附图说明
图1为本申请所提供的人体交互系统的一种实施例结构示例图;
图2为本申请所提供的信息的交互方法的一种实施例步骤流程图;
图3为本申请所提供的信息的交互方法的另一种实施例步骤流程图;
图4为本申请所提供的信息的交互方法的另一种实施例步骤流程图;
图5为本申请所提供的信息的交互方法的一种实施例场景示例图;
图6为本申请所提供的信息的交互方法的另一种实施例场景示例图;
图7为本申请所提供的信息的交互方法的另一种实施例场景示例图;
图8为本申请所提供的信息的交互方法的另一种实施例场景示例图;
图9为本申请所提供的穿戴设备的一种实施例结构示例图;
图10为本申请所提供的穿戴设备的另一种实施例结构示例图;
图11为本申请所提供的穿戴设备的另一种实施例结构示例图;
图12为本申请所提供的穿戴设备的另一种实施例结构示例图;
图13为本申请所提供的穿戴设备的另一种实施例结构示例图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本申请中出现的术语“和/或”,可以是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或模块的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或模块,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或模块。
本发明实施例提供了一种信息的交互方法,该方法用于有效的提高穿戴设备的待机时长,且能够有效的提高所交互的信息的信号质量,为更好的理解本申请所提供的信息的交互方法,以下首先对本申请所示的信息的交互方法所应用的人体交互系统的具体结构进行示例性说明:
如图1所示,所述人体交互系统包括目标用户的人体101、终端102以及目标用户所佩戴的多个穿戴设备,本实施例对穿戴设备的具体设备类型不做限定,只要该穿戴设备能够实现不同的穿戴设备之间的信息的交互,和/或实现该穿戴设备和终端102之间的信息交互即可;
本实施例所示的穿戴设备的类型可为无线耳机104,可选的,该无线耳机104可为如下所示的任一种:
挂于头颈上的颈挂式耳机,头戴式耳机,入耳式蓝牙耳机、半入耳式蓝牙耳机、半开放式蓝牙耳机、开放式蓝牙耳机、单耳蓝牙耳机、真无线立体声(true wireless stereo,TWS)蓝牙耳机,以及带线材的蓝牙有线两用耳机等。
穿戴设备的类型还可为眼镜105,眼镜105包括用于增强现实(augmented reality,AR)的眼镜、用于虚拟现实(virtual reality,VR)的眼镜、用于混合现实(mix reality,MR)的眼镜等;穿戴设备的类型还可为智能手环103,本实施例对所述智能手环103所能够实现的功能不做限定,例如,所述手能手环103可实现显示时间、可实现目标用户运动、健康、睡眠等检测功能等,具体在本实施例中不做限定。本实施例所示的穿戴设备还可为智能手表等。
基于图1所示的人体交互系统,以下结合图2所示对本实施例所提供的信息的交互方法的具体执行流程进行示例性说明:
步骤201、第一穿戴设备获取待交互信息。
本实施例所示的第一穿戴设备和第二穿戴设备为目标用户所佩戴的多个穿戴设备中的任意两个,且所述第一穿戴设备用于将所获取到的待交互信息向所述第二穿戴设备发送。其中,所述第一穿戴设备可为图1所示的智能手环、眼镜、无线耳机等,具体在本实施例中不做限定。
本实施例对所述待交互信息的具体信息类型不做限定,在所述第一穿戴设备的设备类型有所不同的情况下,所述待交互信息的信息类型也会有所不同;例如,在所述第一穿戴设备为无线耳机中的主耳机,而第二穿戴设备为无线耳机中的从耳机的情况下,所述待交 互信息为音频信息;又如,若所述第一穿戴设备为智能手坏,所述第二穿戴设备为无线耳机,则所述待交互信息也可为音频信息,又如,若所述第一穿戴设备为无线耳机,所述第二穿戴设备为智能手环,则所述待交互信息可为传感器数据,所述传感器数据包括但不限于第一穿戴设备所集成的传感器所采集的到人体的心率、血氧等健康信息,又如,所述待交互信息还可为设备信息,该设备信息包括但不限于终端的剩余电量信息等。
本实施例对所述第一穿戴设备获取所述待交互信息的具体方式不做限定,只要所述第一穿戴设备能够将所获取到待交互信息向所述第二穿戴设备发送即可,以下对所述第一穿戴设备获取待交互信息的几种可选的方式进行示例性说明:
方式1
所述第一穿戴设备通过短距离通信网络,从所述终端获取所述待交互信息,本实施例对所述短距离通信网络的具体通信类型不做限定,例如,所述短距离通信网络可为如下所示的一种或多种:
直接式红外线(direct-beamir)、散射式红外线(diffuseir)、全向性红外线(ominidirectionalir)、蓝牙、WIFI、紫蜂协议(ZigBee)、或近场通信(NFC)等。
例如,若所述第一穿戴设备为无线耳机中的主耳机,而所述第二穿戴设备为无线耳机中的从耳机,则主耳机可通过短距离通信网络从终端获取音频信息(即待交互信息),所述主耳机即可通过如下步骤所示将该音频信息向从耳机发送。
方式2
所述第一穿戴设备基于虚拟用户身份识别卡,通过射频通信网络获取所述待交互信息,具体的,本方式所示的第一穿戴设备内集成有虚拟用户身份识别卡(subscriber identification module,SIM),本实施例所示的虚拟SIM包括但不限于嵌入式用户识别卡(embedded subscriber identification module,ESIM)、软件SIM(soft SIM)或虚拟SIM(virtual SIM,vSIM)。
例如,所述第一穿戴设备可为智能手环,第二穿戴设备为无线耳机,所述智能手环用于基于虚拟SIM以实现通过射频通信网络向基站获取通话数据(即待交互信息),所述智能手环即可通过如下步骤所示将该通话数据向无线耳机发送。
方式3
所述第一穿戴设备通过已集成的传感器,获取所述待交互信息,本实施例对所述第一穿戴设备所集成的传感器的具体类型不做限定,例如,所述传感器可为如下所示的一种或多种传感器:
近光传感器、环境光传感器、霍尔传感器、电容传感器、加速度传感器或心率检测传感器等。
例如,所述第一穿戴设备可为无线耳机,所述第二穿戴设备可为智能手环,则所述无线耳机基于传感器可采集到传感器数据(即待交互信息),所述传感器数据可为目标用户的心率信息,则所述无线耳机可通过如下步骤所示,将目标用户的心率信息向智能手环发送。
步骤202、所述第一穿戴设备确定人体通信通道。
以下首先对人体通信通道进行说明:
本实施例所示的第一穿戴设备基于无线体域网(wireless body area network,wban)确定所述人体通信通道,该无线体域网是指建立在目标用户所佩戴的多个穿戴设备之间的信息网络,在网络分级中比局域网更低一级,本实施例所示的第一穿戴设备可基于无线体域网的人体通信技术,确定所述人体通信通道,其中,人体通信技术是指,利用人体作为信息通道传输信息的方式,其可行性是建立在人体具有的导电能力基础之上的,具体的,由于人体组织中有60%以上是由含有导电物质的水分组成,因此,人体是个导体。人体通信技术是利用人的身体作为通信信号传输媒介的一种通信方式。
在本实施例中,所述第一穿戴设备基于人体通信技术的电容耦合方式,与目标用户进行电容耦合,使能目标用户的人体产生电场以确定人体通信通道,具体的,电容耦合方式是指,利用第一穿戴设备的振荡让人体产生电场,并由第二穿戴设备检测电场的变化,从而实现通信。更具体的,第一穿戴设备可包括两个电极,其中一个电极与人体进行电容耦合,另一个电极与地进行电容耦合来确定人体通信通道。
以下对所述人体通信通道所传输的待交互信息的频率进行示例性说明:
所述人体通信信道的频率为目标区间内的任一数值,所述目标区间的最小值为6千赫兹(6kHz),所述目标区间的最大值为100兆赫(MHz)。
具体的,大于10kHz的高频信号可以通过高阻抗的细胞膜,但是由于人体内存在许多不同频率额50kHz以下的人电信号,为了保持人体通信的安全性和可靠性,人体通信的信号工作频率应该保持在50kHz以上。由于100kHz-100MHz的射频信号在人体中的传输效率高于在空气中的传输效率,所以通讯频率需要限制在100kHz-100MHz之间,所述人体通信通道的通信速度小于或等于10兆比特每秒。
又因为子带编码(sub-band coding,SBC)、高级音频编码(advanced audio coding,AAC)等编解码信号的带宽在100-300千比特每秒(kbps)之间,高清的96kHz/24bit音频信号,如无损音频更是需要2兆比特每秒(Mbps)以上的带宽,再加上其它传感器信号,以及数据采集信号等,所以人体通信信道可以100kHz-100MHz之间之内选择。需明确的是,本实施例对所述人体通信通道的频率的说明不做限定,只要所述第一穿戴设备能够通过该人体通信通道进行待交互信息的发送即可。
步骤203、所述第一穿戴设备通过所述人体通信信道,向所述第二穿戴设备发送所述待交互信息。
本实施例中,在所述第一穿戴设备获取到所述待交互信息,且已确定所述人体通信通道的情况下,所述第一穿戴设备即可通过所述人体通信通道,向所述第二穿戴设备发送所述待交互信息。
采用本实施例所示的方法,因所述第一穿戴设备通过人体通信通道向第二穿戴设备发送所述待交互信息,使得发送过程中的频率和功耗都比较低,所以对人体不会产生伤害,而且利用人体是一个电容来做电容耦合,所受到环境的干扰是非常有限,即便第一穿戴设备所处于的通信环境中的蓝牙信号和WIFI信号等,这些信号都不会对人体通信信道造成干扰,从而使得第一穿戴设备通过人体通信通道将待交互信息发送给第二穿戴设备,能够 有效的保障信息传输的稳定和质量,又因人体通信通道进行待交互信息的传输,所耗费的功耗比较低,从而有效的提高了穿戴设备的待机时长。
以下结合图3所示,对本申请所提供的信息的交互方法的另一种执行流程进行示例性说明:
步骤301、第一穿戴设备获取待交互信息。
本实施例所示的步骤301的具体执行过程,请详见图2所示的步骤201所示,具体执行过程,不做赘述。
步骤302、第一穿戴设备判断所述第一穿戴设备与所述目标用户之间的距离是否大于或等于第一预设距离,若是,则执行步骤303,若否,则执行步骤304。
本实施例中,所述第一穿戴设备可预先确定第一预设距离,其中,所述第一预设距离是指,在所述第一穿戴设备和目标用户之间的距离大于或等于该第一预设距离时,所述第一穿戴设备无法基于人体确定所述人体通信通道,具体的,若目标用户没有正常穿戴该第一穿戴设备,则该第一穿戴设备无法通过人体通信通道向第二穿戴设备发送待交互信息,具体例如,若所述第一穿戴设备为主耳机,则在目标用户摘下主耳机的情况下,与目标用户已脱离的主耳机无法通过人体通信通道向副耳机发送待交互的音频信息。
可选的,本实施例所示的第一穿戴设备可基于已集成的距离传感器获取所述第一穿戴设备与所述目标用户之间的距离,本实施例对所述第一穿戴设备获取所述第一穿戴设备与所述目标用户之间的距离的具体过程不做限定。
本实施例对所述第一预设距离的大小不做限定,只要在第一穿戴设备与目标用户之间的距离大于或等于该第一预设距离的情况下,该第一穿戴设备无法通过人体通信通道向第二穿戴设备发送待交互信息,而在第一穿戴设备与目标用户之间的距离小于该第一预设距离的情况下,该第一穿戴设备能够通过人体通信通道向第二穿戴设备发送待交互信息即可。
步骤303、所述第一穿戴设备生成提示信息。
具体的,在所述第一穿戴设备确定出第一穿戴设备与目标用户之间的距离大于或等于该第一预设距离的情况下,则第一穿戴设备确定无法通过人体通信通道进行待交互信息的发送,则所述第一穿戴设备可生成提示信息,本实施例对所述提示信息的具体信息类型不做限定,只要所述提示信息用于指示无法进行人体通信通道的通信即可,例如,所述提示信息可为音频信息或字符信息等。在目标用户接收到提示信息的情况下,所述目标用户即可重新对第一穿戴设备进行调整,以使目标用户能够成功佩戴所述第一穿戴设备。
可选的,所述第一穿戴设备可周期性的执行步骤302,以使在目标用户调整了第一穿戴设备后,通过执行步骤302,以使第一穿戴设备确定出所述第一穿戴设备与所述目标用户之间的距离已小于所述第一预设距离的情况,进而触发执行步骤304。
步骤304、所述第一穿戴设备确定人体通信通道。
步骤305、所述第一穿戴设备通过所述人体通信信道,向所述第二穿戴设备发送所述待交互信息。
本实施例所示的步骤304至步骤305之间的执行过程,请详见图2所示的步骤202至步骤203所示,具体执行过程请详见图2所示,具体不做赘述。
采用本实施例所示的方法,所述第一穿戴设备可周期性的检测所述第一穿戴设备和目标用户之间的距离是否小于第一预设值,只有在第一穿戴设备与目标用户之间的距离小于第一预设值的情况下,才会通过人体通信通道进行待交互信息的发送,提高了通过人体通信通道进行待交互信息发送的成功率,避免了因目标用户没有成功佩戴第一穿戴设备的情况下,待交互信息没有成功发送至第二穿戴设备的情况的出现。
以下结合图4所示,对本申请所提供的信息的交互方法的另一种执行流程进行示例性说明:
步骤401、第一穿戴设备获取待交互信息。
本实施例所示的步骤401的具体执行过程,请详见图2所示的步骤201所示,具体执行过程在本实施例中不做赘述。
步骤402、所述第一穿戴设备检测所述第一穿戴设备和所述第二穿戴设备之间的目标距离;
具体的,在所述第一穿戴设备确定出需要向第二穿戴设备发送待交互信息的情况下,所述第一穿戴设备可首先检测所述第一穿戴设备和所述第二穿戴设备之间的目标距离。
可选的,所述第一穿戴设备可基于已集成的距离传感器获取所述第一穿戴设备和所述第二穿戴设备之间的目标距离,具体过程在本实施例中不做赘述。
步骤403、所述第一穿戴设备判断所述目标距离是否小于或等于第二预设距离,若否,则执行步骤404,若是,则执行步骤405。
本实施例对所述第二预设距离的大小不做限定,只要在第一穿戴设备与第二穿戴设备之间的目标距离大于该第二预设距离的情况下,该第一穿戴设备无法通过人体通信通道向第二穿戴设备发送待交互信息,而在第一穿戴设备与第二穿戴设备之间的目标距离小于或等于该第二预设距离的情况下,该第一穿戴设备能够通过人体通信通道向第二穿戴设备发送待交互信息。
步骤404、所述第一穿戴设备通过短距离通信网络向所述第二穿戴设备发送所述待交互信息。
在所述第一穿戴设备和所述第二穿戴设备之间的目标距离大于所述第二预设距离时,所述第一穿戴设备即可确定出,所述第一穿戴设备无法通过人体通信通道向第二穿戴设备发送所述待交互信息,则所述第一穿戴设备可通过短距离通信网络向所述第二穿戴设备发送所述待交互信息,对所述短距离通信的具体说明,请详见上述实施例所示,具体在本实施例中不做赘述。
步骤405、所述第一穿戴设备确定人体通信通道。
在所述第一穿戴设备和所述第二穿戴设备之间的目标距离小于或等于所述第二预设距离时,所述第一穿戴设备即可确定出,所述第一穿戴设备可通过人体通信通道向第二穿戴设备发送所述待交互信息,即可执行步骤405。
步骤406、所述第一穿戴设备通过所述人体通信信道,向所述第二穿戴设备发送所述待交互信息。
本实施例所示的步骤405至步骤406之间的执行过程,请详见图2所示的步骤202至步骤203所示,具体执行过程请详见图2所示,具体不做赘述。
步骤407、若所述第一穿戴设备通过所述人体通信信道未接收到响应消息,则所述第一穿戴设备通过短距离通信网络向所述第二穿戴设备发送所述待交互信息。
本实施例中,为提高第一穿戴设备向第二穿戴设备发送所述待交互信息的成功率,则所述第一穿戴设备可周期性的检测是否接收到第二穿戴设备发送的响应消息,其中,所述响应消息用于指示所述第二穿戴设备已成功接收到所述待交互信息。
在所述第一穿戴设备确定出通过所述人体通信通道未接收到第二穿戴设备所发送的响应消息,则说明所述第二穿戴设备未成功接收到第一穿戴设备所发送的所述待交互信息,则说明经由所述人体通信通道所传输的待交互信息出现了丢包,则所述第一穿戴设备可通过短距离通信网络向第二穿戴设备发送所述待交互信息,对所述短距离通信网络的具体说明,请详见上述实施例所示,具体在本实施例中不做赘述。
采用本实施例所示的方法,所述第一穿戴设备检测所述第一穿戴设备和第二穿戴设备之间的距离是否小于或等于第二预设值,只有在第一穿戴设备与第二穿戴设备之间的距离小于或等于第二预设值的情况下,才会通过人体通信通道进行待交互信息的发送,提高了通过人体通信通道进行待交互信息发送的成功率,而且在检测到第一穿戴设备与第二穿戴设备之间的距离大于第二预设值的情况下,第一穿戴设备可通过短距离通信网络发送所述待交互信息,避免了待交互信息没有成功发送至第二穿戴设备的情况的出现。
为更好的理解本申请所提供的信息的交互方法,以下结合具体应用场景进行示例性说明;
场景1,本场景以第一穿戴设备为无线耳机中的主耳机,第二穿戴设备为无线耳机中副耳机,且以待交互信息为音频信息为例;具体的,本场景中的无线耳机为TWS耳机;
TWS耳机产品形态和功能相对以往的蓝牙耳机实现了大幅创新,既摆脱了传统轻便型蓝牙耳机只有单耳,无法享受立体声音乐的缺陷,又摆脱了传统颈挂式或者头戴式耳机,有一根连接线,导致运动场景不方便,以及收纳的困难。TWS耳机已经掀起了一股热潮,迎来快速增长期,TWS耳机已经带动了无线耳机的消费热潮,是对传统蓝牙耳机的取代,市场规模可观,据测算,到2020年市场规模有望超过150亿美金。从以上发展可以看到,未来伴随着手机全屏化、无孔化的发展趋势,TWS耳机有望成为标配。
首先,如图5所示,主TWS耳机501可先通过蓝牙或WIFI等短距离通信网络与终端502建立连接,以使主TWS耳机能够从终端502获取音频信息,其中,该音频信息包括与主TWS耳机501对应的音频信息和与副TWS耳机503对应的音频信息;
主TWS耳机501将接收到的音频信息在本地编解码后,获取到主TWS耳机501对应的音频信息和与副TWS耳机503对应的音频信息;
其次,主TWS耳机501通过人体通信通道向副TWS耳机503发送与副TWS耳机503对 应的音频信息。参见图6所示,所述主TWS耳机501包括用于与人体601进行电容耦合的电极602,所述主TWS耳机501即可通过已创建的人体通信通道将副TWS耳机503对应的音频信息,发送给副TWS耳机503。
这么做的优势在于,主TWS耳机501通过人体通信通道向副TWS耳机503发送音频信息的功耗低,传输效率高,不会造成播放延时大,从而使得在播放电影或者打游戏的场景下,能够有效的保障主TWS耳机501与副TWS耳机503之间的音频信息的同步。而且通过人体通信通道进行音频信息的传输,可有效的保障副TWS耳机503的通讯信号的稳定,不会出现音乐卡顿和通话断续现象。
可选的,若出现主TWS耳机501的音频信息的丢包现象,则主TWS耳机501会直接发送用于指示丢包的消息给终端502,以通知终端502该主TWS耳机501出现丢包,终端502会重传音频信息给主TWS耳机501。若出现副TWS耳机503出现丢包,副TWS耳机503需要先发送用于指示丢包的消息给主TWS耳机501,主TWS耳机501再发送用于指示丢包的消息给终端502,终端502则重传音频信息给主TWS耳机501,主TWS耳机501再通过人体通信通道将音频信息重传给副TWS耳机503。
场景2,本应用场景中,如图7所示,第一穿戴设备701可为智能手环,第二穿戴设备为主TWS耳机702,第三穿戴设备为副TWS耳机703;
本场景中,第一穿戴设备701可通过蓝牙、WIFI等短距离通信网络和终端704建立连接,终端704即可将音频信息发送给主TWS耳机702和副TWS耳机703,可选的,本场景下的音频信息还可为第一穿戴设备通过已设置的虚拟SIM从基站处获取到的用于进行通话的音频信息,本场景下的具体发送的方式有如下三种:
方式1
首先,第一穿戴设备701可将从终端704所获取到的音频信息,通过人体通信信道将该音频信息发送给主TWS耳机702,其中,该音频信息包括与主TWS耳机702对应的音频信息和与副TWS耳机703对应的音频信息;
主TWS耳机702将接收到的音频信息在本地编解码后,获取到主TWS耳机702对应的音频信息和与副TWS耳机703对应的音频信息;
其次,主TWS耳机702通过人体通信通道向副TWS耳机703发送与副TWS耳机703对应的音频信息。
可选的,若出现主TWS耳机702的音频信息的丢包现象,则主TWS耳机702会直接发送用于指示丢包的消息给终端704,以通知终端704该主TWS耳机702出现丢包,终端704会重传音频信息给主TWS耳机702。若出现副TWS耳机703出现丢包,副TWS耳机703需要先发送用于指示丢包的消息给主TWS耳机702,主TWS耳机702再发送用于指示丢包的消息给终端704,终端704则重传音频信息给主TWS耳机702,主TWS耳机702再通过人体通信通道将音频信息重传给副TWS耳机703。
方式2
第一穿戴设备701可将从终端704所获取到的音频信息,通过人体通信信道同步发送给主TWS耳机702和副TWS耳机703,从而使得主TWS耳机702和副TWS耳机703能够实 现双耳同时接收音频信息,并同时将接收到的音频信息在本地解码播放。
可选的,若出现音频信息丢包,例如,若副TWS耳机703丢包,则副TWS耳机703丢包可通过人体通信通道将用于指示丢包的消息发送给主TWS耳机702,由主TWS耳机702将用于指示丢包的消息通过人体通信通道发送给第一穿戴设备701;若主TWS耳机702出现丢包,则由主TWS耳机702将用于指示丢包的消息通过人体通信通道发送给第一穿戴设备701。
采用上述场景,主TWS耳机和副TWS耳机可佩带于同一目标用户的人体上,也可佩带于不同目标用户的人体上,例如,主TWS耳机可佩带于第一目标用户的人体上,而副TWS耳机可佩带于第二目标用户的人体上,本场景下的人体通信通道包括第一目标用户的人体和第二目标用户的人体,具体的,只要所述第一目标用户的人体和第二目标用户的人体之间的距离足够近,则第一目标用户的人体和第二目标用户的人体即可连接以形成所述人体通信通道,则使得主TWS耳机可将音频信息通过包括有第一目标用户的人体和第二目标用户的人体,发送给副TWS耳机,从而使得第一目标用户通过主TWS耳机,第二目标用户通过副TWS耳机可接收到相同的音频信息。
场景3
本场景下以第一穿戴设备为TWS耳机,且所述TWS耳机内集成有传感器,所述第一穿戴设备可通过已集成的传感器采集传感器信息,所述传感器信息可为人体的心率、血氧等信息,第一穿戴设备即可通过人体通信通道将所述传感器信息发送给第二穿戴设备,本场景下的第二穿戴设备可为智能手环;
可选的,智能手环可通过内部预置的应用对已接收到的传感器信息进行分析和处理,从而对目标用户的身体情况进行检测、监控等;
还可选的,智能手环也可通过短距离通信网络将所述传感器数据发送给终端,由终端预置的应用对已接收到的传感器信息进行分析和处理,从而对目标用户的身体情况进行检测、监控等。
以下结合图9所示,从功能模块的角度对第一穿戴设备的结构进行示例性说明,本实施例所示的第一穿戴设备用于执行上述任一方法实施例相关的步骤,具体执行过程以及有益效果的说明,请详见上述实施例所示,具体不做赘述,本实施例所示的第一穿戴设备包括:
接收单元901,用于获取待交互信息;
处理单元902,用于与目标用户进行电容耦合,使能目标用户的人体产生电场以确定人体通信通道;
发送单元903,用于通过所述人体通信信道,向所述第二穿戴设备发送所述待交互信息。
可选的,所述处理单元902还用于,检测到所述第一穿戴设备与所述目标用户相脱离时,生成提示信息,所述提示信息用于提示所述第一穿戴设备与所述目标用户相脱离的状态。
可选的,所述处理单元902还用于:检测所述第一穿戴设备和所述第二穿戴设备之间的目标距离;判断所述目标距离是否小于或等于预设距离;若是,则触发执行所述第一穿戴设备与目标用户进行电容耦合,使能目标用户的人体产生电场以确定人体通信通道的步骤;若否,则通过短距离通信网络向所述第二穿戴设备发送所述待交互信息。
可选的,所述处理单元902还用于:若确定所述接收单元901通过所述人体通信信道未接收到响应消息,则触发所述发送单元903发送所述待交互信息;
所述发送单元903还用于,通过短距离通信网络向所述第二穿戴设备发送所述待交互信息,所述响应消息用于指示所述第二穿戴设备已成功接收到所述待交互信息。
可选的,所述人体交互系统还包括终端,所述接收单元901还用于,通过短距离通信网络,从所述终端获取所述待交互信息。
可选的,所述接收单元901还用于,基于虚拟用户身份识别卡SIM,通过射频通信网络获取所述待交互信息。
可选的,所述接收单元901还用于,通过已集成的传感器,获取所述待交互信息。
以下结合图10所示,从实体硬件的角度对本申请所提供的第一穿戴设备的具体结构进行示例性说明,本实施例所示的第一穿戴设备用于执行上述任一方法实施例对应的步骤,具体执行过程请详见上述实施例所示,具体在本实施例中不做赘述。
如图10所示,所述第一穿戴设备1000包括:
低频收发模块1001和天线模块1002;
所述天线模块1002用于,获取待交互信息;
所述低频收发模块1001用于与目标用户进行电容耦合,使能目标用户的人体产生电场以确定人体通信通道,所述人体通信通道包括所述天线模块1002和所述目标用户;
所述低频收发模块1001用于,通过所述人体通信信道,向所述第二穿戴设备发送所述待交互信息。
可选的,如图11所示,所述第一穿戴设备1100还包括系统级芯片(system on chip,SOC)1101,所述SOC1101内可包括处理器1102、所述低频收发模块1103和天线模块1104,所述处理器1102可以是一个或多个现场可编程门阵列(field-programmable gate array,FPGA)、专用集成芯片(application specific integrated circuit,ASIC)、中央处理器(central processor unit,CPU)、网络处理器(network processor,NP)、数字信号处理电路(digital signal processor,DSP)、微控制器(micro controller unit,MCU),可编程控制器(programmable logic device,PLD)或其它集成芯片,或者上述芯片或者处理器的任意组合等。本实施例所示的处理器1102包含物理层和协议栈相关处理功能;本实施例对所述第一穿戴设备的设置方式的说明为可选的示例,不做限定,可选的,所述低频收发模块1103可与SOC1100为相互分离的设置方式。可选的,所述天线模块1104可与SOC1100为相互分离的设置方式,具体在本实施例中不做限定。
可选的,所述处理器1102用于判断所述第一穿戴设备与所述目标用户之间的距离是否大于或等于第一预设距离,若是,则生成提示信息;若否,则触发低频收发模块1103 执行与目标用户进行电容耦合,使能目标用户的人体产生电场以确定人体通信通道的步骤。
可选的,所述处理器1102还用于,检测所述第一穿戴设备和所述第二穿戴设备之间的目标距离;所述第一穿戴设备判断所述目标距离是否小于或等于第二预设距离;若是,则触发低频收发模块1103执行与目标用户进行电容耦合,使能目标用户的人体产生电场以确定人体通信通道的步骤;若否,则触发所述天线模块1002通过短距离通信网络向所述第二穿戴设备发送所述待交互信息。
可选的,所述处理器1102通过所述人体通信信道未接收到响应消息,则触发天线模块1104通过短距离通信网络向所述第二穿戴设备发送所述待交互信息,所述响应消息用于指示所述第二穿戴设备已成功接收到所述待交互信息。
可选的,所述人体通信信道的频率为目标区间内的任一数值,所述目标区间的最小值为6千赫兹,所述目标区间的最大值为100兆赫,所述人体通信通道的通信速度小于或等于10兆比特每秒。
可选的,所述天线模块1104还用于,通过短距离通信网络,从所述终端获取所述待交互信息。
可选的,所述处理器1102还用于,基于虚拟用户身份识别卡SIM,通过射频通信网络获取所述待交互信息。
可选的,所述第一穿戴设备的结构还可参见图12所示,所述第一穿戴设备1200可包括处理器1201、低频收发模块1202以及天线模块1203,所述低频收发模块1202以及天线模块1203的具体说明,请详见上述所示,具体在本实施例中不做赘述;
可选的,所述处理器1201还可连接音频编解码装置1204,所述音频编解码装置1204可以包括驱动喇叭设备1205和麦克风设备1206的驱动电路,所述音频编解码装置1204也可包括第一驱动电路和第二驱动电路,所述第一驱动电路用于确定喇叭设备,所述第二驱动电路用于驱动麦克风设备;
可选的,所述处理器1201可连接一个或多个传感器1207,所述传感器1207包括但不限于接近光传感器、环境光传感器、霍尔传感器、电容传感器、加速度传感器、心率检测传感器等,具体传感器1207的数量和各传感器的类型不做限定。
可选的,所述第一穿戴设备的另一种结构也可参见图13所示,所述第一穿戴设备1300包括处理器1301、低频收发模块1302、天线模块1303、音频编解码装置1304、喇叭设备1305和麦克风设备1306、传感器1307,具体说明请详见图12所示,具体在本实施例中不做赘述;
在本实施例所示,所述低频收发模块1302具体包括两个相互独立的装置,即低频发送单元13021和低频接收单元13022,所述低频发送单元13021用于控制通过所述人体通信通道发送信息的频率,所述低频接收单元13022用于控制通过所述人体通信通道接收信息的频率,其中,所述人体通信信道的频率为目标区间内的任一数值,所述目标区间的最小值为6千赫兹,所述目标区间的最大值为100兆赫。
可选的,所述第一穿戴设备还包括基带处理器1308,所述处理器1301和所述低频收 发模块1302之间连接有所述基带处理器1308。所述基带处理器1308用于将模拟信号转换为所述处理器1301可以处理的数字信号。
可选的,所述第一穿戴设备还包括短距离通信模块1309,所述短距离通信模块1309用于进行短距离通信,对所述短距离通信的具体说明,请详见上述实施例所示,具体不做赘述。
可选的,所述第一穿戴设备还包括射频通信模块1310,所述射频通信模块1310用于进行射频通信,对所述射频通信的具体说明,请详见上述实施例所示,具体不做赘述。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (22)

  1. 一种信息的交互方法,其特征在于,所述方法用于人体交互系统,所述人体交互系统包括目标用户以及所述目标用户所穿戴的多个穿戴设备,所述方法包括:
    第一穿戴设备获取待交互信息,所述第一穿戴设备为所述目标用户所穿戴的所述多个穿戴设备中的任一个;
    所述第一穿戴设备与所述目标用户进行电容耦合,使能所述目标用户的人体产生电场以确定人体通信通道;
    所述第一穿戴设备通过所述人体通信信道,向所述第二穿戴设备发送所述待交互信息。
  2. 根据权利要求1所述的交互方法,其特征在于,所述第一穿戴设备与所述目标用户进行电容耦合,使能所述目标用户的人体产生电场以确定人体通信通道之前,所述方法还包括:
    所述第一穿戴设备判断所述第一穿戴设备与所述目标用户之间的距离是否大于或等于第一预设距离;
    若是,则所述第一穿戴设备生成提示信息;
    若否,则触发执行所述第一穿戴设备与所述目标用户进行电容耦合,使能所述目标用户的人体产生电场以确定人体通信通道的步骤。
  3. 根据权利要求1或2所述的交互方法,其特征在于,所述方法还包括:
    所述第一穿戴设备检测所述第一穿戴设备和所述第二穿戴设备之间的目标距离;
    所述第一穿戴设备判断所述目标距离是否小于或等于第二预设距离;
    若是,则触发执行所述第一穿戴设备与所述目标用户进行电容耦合,使能所述目标用户的人体产生电场以确定人体通信通道的步骤;
    若否,则所述第一穿戴设备通过短距离通信网络向所述第二穿戴设备发送所述待交互信息。
  4. 根据权利要求1至3任一项所述的交互方法,其特征在于,所述第一穿戴设备通过所述人体通信信道,向所述第二穿戴设备发送所述待交互信息之后,所述方法还包括:
    若所述第一穿戴设备通过所述人体通信信道未接收到响应消息,则所述第一穿戴设备通过短距离通信网络向所述第二穿戴设备发送所述待交互信息,所述响应消息用于指示所述第二穿戴设备已成功接收到所述待交互信息。
  5. 根据权利要求1至4任一项所述的交互方法,其特征在于,所述人体通信信道的频率为目标区间内的任一数值,所述目标区间的最小值为6千赫兹,所述目标区间的最大值为100兆赫。
  6. 根据权利要求1至5任一项所述的交互方法,其特征在于,所述人体交互系统还包括终端,所述第一穿戴设备获取待交互信息包括:
    所述第一穿戴设备通过短距离通信网络,从所述终端获取所述待交互信息。
  7. 根据权利要求1至5任一项所述的交互方法,其特征在于,所述第一穿戴设备获取待交互信息包括:
    所述第一穿戴设备基于虚拟用户身份识别卡SIM,通过射频通信网络获取所述待交互信息。
  8. 根据权利要求1至5任一项所述的交互方法,其特征在于,所述第一穿戴设备获取待交互信息包括:
    所述第一穿戴设备通过已集成的传感器,获取所述待交互信息。
  9. 一种穿戴设备,其特征在于,所述穿戴设备为第一穿戴设备,所述第一穿戴设备用于人体交互系统,所述人体交互系统包括目标用户以及所述目标用户所穿戴的多个穿戴设备,所述第一穿戴设备为所述目标用户所穿戴的所述多个穿戴设备中的任一个,所述第一穿戴设备包括:
    接收单元,用于获取待交互信息;
    处理单元,用于与所述目标用户进行电容耦合,使能所述目标用户的人体产生电场以确定人体通信通道;
    发送单元,用于通过所述人体通信信道,向所述第二穿戴设备发送所述待交互信息。
  10. 根据权利要求9所述的穿戴设备,其特征在于,所述处理单元还用于,检测到所述第一穿戴设备与所述目标用户相脱离时,生成提示信息,所述提示信息用于提示所述第一穿戴设备与所述目标用户相脱离的状态。
  11. 根据权利要求9或10所述的穿戴设备,其特征在于,所述处理单元还用于:
    检测所述第一穿戴设备和所述第二穿戴设备之间的目标距离;
    判断所述目标距离是否小于或等于预设距离;
    若是,则触发执行所述第一穿戴设备与所述目标用户进行电容耦合,使能所述目标用户的人体产生电场以确定人体通信通道的步骤;
    若否,则通过短距离通信网络向所述第二穿戴设备发送所述待交互信息。
  12. 根据权利要求9至11任一项所述的穿戴设备,其特征在于,所述处理单元还用于,若确定所述接收单元通过所述人体通信信道未接收到响应消息,则触发所述发送单元发送所述待交互信息;
    所述发送单元还用于,通过短距离通信网络向所述第二穿戴设备发送所述待交互信息,所述响应消息用于指示所述第二穿戴设备已成功接收到所述待交互信息。
  13. 一种穿戴设备,其特征在于,所述穿戴设备为第一穿戴设备,所述第一穿戴设备用于人体交互系统,所述人体交互系统包括目标用户以及所述目标用户所穿戴的多个穿戴设备,所述第一穿戴设备为所述目标用户所穿戴的所述多个穿戴设备中的任一个,所述第一穿戴设备包括低频收发模块和天线模块;
    所述天线模块用于,获取待交互信息;
    所述低频收发模块用于与所述目标用户进行电容耦合,使能所述目标用户的人体产生电场以确定人体通信通道,所述人体通信通道包括所述天线模块和所述目标用户;
    所述低频收发模块用于,通过所述人体通信信道,向所述第二穿戴设备发送所述待交互信息。
  14. 根据权利要求13所述的穿戴设备,其特征在于,所述低频收发模块和所述天线 模块位于同一系统级芯片SOC上,或,所述低频收发模块和所述天线模块位于不同的芯片上。
  15. 根据权利要求13或14所述的穿戴设备,其特征在于,所述第一穿戴设备还包括处理器,所述处理器连接传感器,所述处理器用于通过所述传感器获取所述待交互信息。
  16. 根据权利要求15所述的穿戴设备,其特征在于,若所述待交互信息为音视频信息,则所述处理器连接用于对音视频数据进行编解码处理的音频编解码装置。
  17. 根据权利要求15或16所述的穿戴设备,其特征在于,所述第一穿戴设备还包括基带处理器,所述处理器和所述低频收发模块之间连接设置有所述基带处理器。
  18. 根据权利要求13至17任一项所述的穿戴设备,其特征在于,所述低频收发模块包括低频发送单元和低频接收单元,所述低频发送单元用于控制通过所述人体通信通道发送信息的频率,所述低频接收单元用于控制通过所述人体通信通道接收信息的频率,其中,所述人体通信信道的频率为目标区间内的任一数值,所述目标区间的最小值为6千赫兹,所述目标区间的最大值为100兆赫。
  19. 根据权利要求13至18任一项所述的穿戴设备,其特征在于,所述第一穿戴设备还包括用于短距离通信的短距离通信模块,和/或,所述第一穿戴设备还包括用于射频通信的射频模块。
  20. 一种芯片,其特征在于,包括通信接口、存储器和处理器,所述存储器用于存储计算机程序,所述处理器用于读取并执行所述存储器中存储的所述计算机程序,以执行如权利要求1-8中任一项所述的方法。
  21. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机程序,当所述计算机程序在计算机上执行时,使得计算机执行如权利要求1-8中任一项所述的方法。
  22. 一种人体交互系统,其特征在于,所述人体交互系统包括目标用户以及所述目标用户所穿戴的多个穿戴设备,所述多个穿戴设备包括第一穿戴设备和第二穿戴设备;
    所述第一穿戴设备用于获取待交互信息;所述第一穿戴设备还用于与所述目标用户进行电容耦合,使能所述目标用户的人体产生电场以确定人体通信通道;所述第一穿戴设备还用于通过所述人体通信信道,向所述第二穿戴设备发送所述待交互信息。
PCT/CN2020/101923 2019-07-26 2020-07-14 一种信息的交互方法,穿戴设备以及存储介质 WO2021017822A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910683699.9 2019-07-26
CN201910683699.9A CN110505023A (zh) 2019-07-26 2019-07-26 一种信息的交互方法,穿戴设备以及存储介质

Publications (1)

Publication Number Publication Date
WO2021017822A1 true WO2021017822A1 (zh) 2021-02-04

Family

ID=68587519

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/101923 WO2021017822A1 (zh) 2019-07-26 2020-07-14 一种信息的交互方法,穿戴设备以及存储介质

Country Status (2)

Country Link
CN (1) CN110505023A (zh)
WO (1) WO2021017822A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110505023A (zh) * 2019-07-26 2019-11-26 华为技术有限公司 一种信息的交互方法,穿戴设备以及存储介质
CN112911271B (zh) * 2019-12-03 2022-04-12 Oppo广东移动通信有限公司 图像显示方法、人体通信装置、系统及存储介质
CN113010460A (zh) * 2019-12-19 2021-06-22 Oppo广东移动通信有限公司 信息传输方法、装置、主机设备、电子设备及存储介质
CN113329378B (zh) * 2020-02-28 2023-05-05 Oppo广东移动通信有限公司 耳机控制方法及相关产品
CN111479148B (zh) * 2020-04-17 2022-02-08 Oppo广东移动通信有限公司 可穿戴设备、眼镜终端、处理终端、数据交互方法与介质
CN111601204A (zh) * 2020-05-15 2020-08-28 华为技术有限公司 基于人体通信的无线耳机及其通信方法、系统和装置
CN114051250A (zh) * 2021-11-30 2022-02-15 上海豪承信息技术有限公司 基于可穿戴设备的身份验证方法、装置及可穿戴设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103440753A (zh) * 2013-08-19 2013-12-11 深圳先进技术研究院 一种多媒体播放器的自动关闭系统及方法
CN103888194A (zh) * 2014-04-08 2014-06-25 深圳先进技术研究院 音频通信系统
US20180242254A1 (en) * 2017-02-21 2018-08-23 International Business Machines Corporation Contextually switching from a wireless communication to human body near-field communication for power savings
CN108777854A (zh) * 2018-05-25 2018-11-09 恒玄科技(上海)有限公司 一种无线耳机实现高质量传输立体声的系统及方法
CN109040935A (zh) * 2018-06-20 2018-12-18 恒玄科技(上海)有限公司 一种耳机入耳检测方法及检测系统
CN110505023A (zh) * 2019-07-26 2019-11-26 华为技术有限公司 一种信息的交互方法,穿戴设备以及存储介质

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103795446A (zh) * 2014-02-26 2014-05-14 宇龙计算机通信科技(深圳)有限公司 通信连接建立方法和通信装置
JP2016025595A (ja) * 2014-07-23 2016-02-08 株式会社東芝 通信装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103440753A (zh) * 2013-08-19 2013-12-11 深圳先进技术研究院 一种多媒体播放器的自动关闭系统及方法
CN103888194A (zh) * 2014-04-08 2014-06-25 深圳先进技术研究院 音频通信系统
US20180242254A1 (en) * 2017-02-21 2018-08-23 International Business Machines Corporation Contextually switching from a wireless communication to human body near-field communication for power savings
CN108777854A (zh) * 2018-05-25 2018-11-09 恒玄科技(上海)有限公司 一种无线耳机实现高质量传输立体声的系统及方法
CN109040935A (zh) * 2018-06-20 2018-12-18 恒玄科技(上海)有限公司 一种耳机入耳检测方法及检测系统
CN110505023A (zh) * 2019-07-26 2019-11-26 华为技术有限公司 一种信息的交互方法,穿戴设备以及存储介质

Also Published As

Publication number Publication date
CN110505023A (zh) 2019-11-26

Similar Documents

Publication Publication Date Title
WO2021017822A1 (zh) 一种信息的交互方法,穿戴设备以及存储介质
US10412494B2 (en) Operation mode switch of wireless headphones
US11805350B2 (en) Point-to-multipoint data transmission method and device
US10432773B1 (en) Wireless audio transceivers
CN106101901B (zh) 一种通过近场通讯实现立体声输出的耳机及其方法
WO2020124611A1 (zh) 一种速率控制方法及设备
CN109819377B (zh) 无线耳机的信号传输方法及无线耳机系统
CN109089330B (zh) 一种音频数据传输方法及终端
CN115175043A (zh) 应用于tws耳机单双耳切换的音频数据传输方法及设备
CN113039822B (zh) 一种数据信道的建立方法及设备
WO2020063065A1 (zh) 音频传输方法、装置、电子设备以及存储介质
WO2020132907A1 (zh) 一种音频数据的通信方法及电子设备
CN116074986B (zh) 一种蓝牙连接方法、设备及系统
CN114466099B (zh) 蓝牙设备的控制方法、装置和存储介质
CN113330757B (zh) 一种数据传输方法以及相关装置
US11647322B2 (en) TWS earphone communication method and system for TWS earphones
WO2021233398A1 (zh) 无线音频系统、无线通讯方法及设备
US11513765B2 (en) Bluetooth audio device, Bluetooth audio system and operating method thereof
WO2018072346A1 (zh) 数据转发设备,数据转发方法、装置和系统
CN113115281B (zh) 蓝牙音讯装置、蓝牙音讯系统及其运作方法
WO2024022156A1 (zh) 建立感知网络的方法及相关装置
CN114696961B (zh) 一种多媒体数据传输方法和设备
TWI700953B (zh) 一種無線傳輸系統及其方法
CN116405921A (zh) 一种耳机组群的无线通信方法
WO2024211705A1 (en) Earbuds - two microphone support over ble for binaural audio recording and stereo voice call

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20847291

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20847291

Country of ref document: EP

Kind code of ref document: A1