WO2021017804A1 - 一种链路测量方法及装置 - Google Patents

一种链路测量方法及装置 Download PDF

Info

Publication number
WO2021017804A1
WO2021017804A1 PCT/CN2020/101712 CN2020101712W WO2021017804A1 WO 2021017804 A1 WO2021017804 A1 WO 2021017804A1 CN 2020101712 W CN2020101712 W CN 2020101712W WO 2021017804 A1 WO2021017804 A1 WO 2021017804A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
duration
reference signal
period
indication information
Prior art date
Application number
PCT/CN2020/101712
Other languages
English (en)
French (fr)
Inventor
王俊伟
黎超
王雪松
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021017804A1 publication Critical patent/WO2021017804A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver

Definitions

  • This application relates to the field of communication technology, and in particular to a link measurement method and device.
  • wireless channels are used as transmission media in wireless networks, they are inherently unstable, so compared with traditional wired network transmission, they are more unreliable and more susceptible to physical environment and wireless networks with the same frequency.
  • the wireless channel as the transmission carrier in the wireless local area network has the characteristics of time-varying. Time-varying refers to the fact that the quality of transmission media tends to vary greatly over time. Specifically, the packet loss rate, frame error rate, and number of retransmissions in the wireless local area network will vary greatly depending on the time period, which will have a great impact on the quality of service. Coupled with the influence of complex environmental factors such as signal fading, environmental noise, channel interference, and the movement of people around, the quality of the wireless link is unstable. Therefore, it is particularly important to measure and track the quality of the wireless link in the actual environment.
  • Radio link monitoring refers to that the connected terminal device can continuously track the quality of the wireless link.
  • the base station will configure a reference signal (reference signal, RS) for the terminal device, which can be called RLM-RS, and the terminal device performs synchronization evaluation or synchronization on the link based on the received reference signal.
  • RS reference signal
  • the current reference signal is periodic, and the terminal device can receive the reference signal once in each cycle.
  • the terminal device can perform the evaluation based on the reference signal received in one or more cycles.
  • V2X vehicle to everything
  • SL sidelink
  • V2X vehicle to everything
  • V2X includes vehicle to vehicle (V2V) communication, vehicle to pedestrian (V2P) communication, or vehicle to infrastructure/network (vehicle to vehicle, V2V) communication infrastructure/Network, V2I/N) communication.
  • V2V vehicle to vehicle
  • V2P vehicle to pedestrian
  • V2I/N vehicle to infrastructure/network
  • the embodiments of the present application provide a link measurement method and device, which are used to provide a way to measure a link based on an aperiodic reference signal.
  • a link measurement method includes: a first terminal device receives at least one reference signal from a second terminal device in a first reference period, and the at least one reference signal is transmitted aperiodicly; The first terminal device determines the first target reference signal in the first reference period according to the at least one reference signal; the first terminal device obtains the first link according to the at least one target reference signal in the at least one reference period Synchronization indication information or out-of-synchronization indication information of a path, the first link is a link between the first terminal device and the second terminal device, and the at least one reference period includes the first reference period , The at least one target reference signal includes the first target reference signal.
  • the method may be executed by a first communication device, and the first communication device may be a communication device or a communication device capable of supporting the communication device to implement the functions required by the method, such as a chip system.
  • the first communication device is a first terminal device.
  • the first terminal device is a first terminal device, or is a chip system set in the first terminal device for realizing the function of the terminal device, or is another device for realizing the function of the first terminal device part.
  • the first terminal device receives at least one reference signal in the first reference period, and the first terminal device obtains the first target reference signal according to the at least one reference signal. If there is at least one reference period, then The first terminal device can obtain the first target reference signal for each reference period, so that the first terminal device can perform synchronization measurement on the first link according to the at least one first target reference signal to obtain synchronization indication information, or perform Out-of-step measurement to obtain out-of-step indication information That is to say, no matter whether the number of reference signals received by the first terminal device in a reference period is large or small, the first terminal device can obtain the first target reference signal based on at least one reference signal for evaluation. This solves the problem that the number of non-periodic reference signals arriving is uncertain, so that the first terminal device can complete the link measurement according to the aperiodic transmitted reference signal.
  • link quality assessment estimate
  • link quality measurement measure
  • link quality monitoring monitoring
  • the method further includes: the first terminal device determines whether the first link fails according to the synchronization indication information or the out-of-synchronization indication information.
  • the first terminal device may determine whether the first link fails, and if the first link fails, subsequent corresponding processing may be performed.
  • the first terminal device determining the first target reference signal in the first reference period according to the at least one reference signal includes: the first terminal device determining the at least one reference signal One of the reference signals is the first target reference signal; or, the first terminal device combines part or all of the at least one reference signal to obtain the first target reference signal.
  • the first terminal device can arbitrarily select a reference signal as the first target reference signal, or can also combine part or all of at least one reference signal to obtain the first target reference signal. No matter which method is adopted, the problem is solved.
  • the problem of measuring aperiodic reference signals One way of combining is, for example, performing linear averaging on multiple reference signals, or there may also be other combining methods, such as assigning corresponding weights to each of the multiple signals and weighting multiple reference signals. Average, etc., there is no restriction on the specific combination method.
  • the measurement result is more accurate and can better reflect the average state of channel quality over a period of time.
  • the first terminal device determining the first target reference signal in the first reference period according to the at least one reference signal includes:
  • the first terminal device uses the first N reference signals as the first target reference signal, and N Greater than or equal to 1, where the density of the reference signal is the number of frequency domain units carrying the reference signal in the bandwidth occupied by a reference signal, and the cumulative density of the reference signal is the sum of the densities of one or more reference signals; or,
  • the first terminal device uses the first N reference signals as the first target reference signal, and N Greater than or equal to 1.
  • the first terminal device can accumulate signals according to the reference density or the reference bandwidth within the reference period, which can solve the problem of the density or bandwidth of the received reference signal that does not meet the measurement accuracy, ensure the measurement accuracy as much as possible, and reduce the equipment and system design Complexity.
  • the method further includes: the first terminal device determines the duration of the reference period; or, the first terminal device receives first indication information from the second terminal device, The first indication information is used to indicate the duration of the reference period.
  • the first terminal device can configure the duration of the reference period by itself, or the second terminal device can also configure the duration of the reference period, or the network device can also configure the duration of the reference period, or the duration of the reference period can also be specified by agreement, and many more.
  • determining the duration of the reference period by the first terminal device includes: determining the duration of the reference period by the first terminal device according to a parameter of a data packet of a first service, and The data packet of the first service is transmitted through the first link, and the parameters of the data packet of the first service include the expected period duration of the data packet of the first service, and/or include the first service The retransmission configuration information of the packet.
  • the first terminal device determines the duration of the reference period according to the data packet parameters related to the service, which can more accurately measure the channel quality according to the requirements of different services.
  • the duration of the reference period satisfies:
  • T min(the first threshold, ceil(T packet ⁇ P 1 ));
  • T represents the duration of the reference period
  • the first threshold is a constant
  • T packet represents the minimum expected period duration of the data packet of the first service
  • P 1 represents the retransmission configuration information of the first service
  • ceil() means round up operation.
  • the test frequency of the first terminal device can be kept moderate, which can not only meet the test requirements, but also ensure that the power consumption of the first terminal device is at a certain level without excessive power consumption.
  • the method for determining the duration of the reference period is not limited to this.
  • P 1 represents the retransmission configuration information of the first service.
  • the transmission situation of the first service is different.
  • the duration of the reference period can also be changed accordingly, thereby making the determined duration of the reference period It is more in line with the actual business situation, so that the channel quality can be measured more accurately according to the needs of different businesses.
  • P 1 can be equal to 2, which is equivalent to making the reference period twice the minimum expected period of the data packet, that is, when the first service is not retransmitted, try to Lengthen the duration of the reference period so that sufficient reference signals can be received in the reference period.
  • the length of the reference period is not suitable for unlimited lengthening, which will reduce the measurement frequency. Therefore, setting P 1 equal to 2 is a more compromise consideration, but the embodiment of the application does not limit P 1 to be equal to 2.
  • P 1 can be equal to 1/2 of the number of retransmissions of the first service. If the first service is retransmitted, it may be able to receive more in a shorter reference period. Therefore, the length of the reference period can be reduced to a certain extent to improve the measurement efficiency.
  • the duration of the reference period should not be too short, which may result in a lower probability of receiving the reference signal, and will make the measurement frequency too high, resulting in higher power consumption of the terminal device, so P 1 is equal to the first service.
  • 1/2 of the number of retransmissions is a relatively compromise consideration, but the embodiment of the present application does not limit P 1 to be equal to 1/2 of the number of retransmissions of the first service.
  • P 1 is just an example of some possible values of P 1 , and the details are not limited to this.
  • the first terminal device obtains synchronization indication information or out-of-synchronization indication information of the first link according to at least one target reference signal in at least one reference period, including: the first terminal device Obtain synchronization indication information or out-of-synchronization indication information of the first link according to at least one target reference signal in the at least one reference period included in the first time length, where the at least one reference period is all of the first time length At least one reference period in which the reference signal is received in the reference period.
  • the first terminal device may obtain synchronization indication information or out-of-synchronization indication information according to the at least one target reference signal, so that the synchronization indication information or out-of-synchronization indication information obtained by the first terminal device is more accurate.
  • the at least one reference period belongs to the first duration, the at least one reference period may be a reference period in which the reference signal is received within the first duration, and the first duration is, for example, the evaluation duration. Or, it is stipulated that the first terminal device evaluates the first link after receiving the reference signal in P reference periods, and P is an integer greater than or equal to 1. If P is greater than 1, the P reference periods may be continuous , It may be discontinuous.
  • the difference from setting the evaluation duration is that the evaluation duration is limited to the total number of reference cycles, but there is no limit to the number of reference cycles that actually receive the reference signal in these reference cycles, and this way of not setting the evaluation duration ,
  • the limit is the number of reference cycles that actually receive the reference signal. Either way, the number of target reference signals participating in the evaluation can be increased, so that the synchronization indication information or the out-of-synchronization indication information obtained by the first terminal device is more accurate.
  • the method further includes: the first terminal device determines the first duration according to the duration of the reference period; or, the first terminal device obtains information from the second terminal device Receiving second indication information, where the second indication information is used to indicate the first duration.
  • the first terminal device can configure the first duration by itself, or the second terminal device can configure the first duration, or the network device can also configure the first duration, or the first duration can also be specified by agreement, and so on.
  • the first terminal device obtains the synchronization indication information of the first link according to at least one target reference signal in the at least one reference period included in the first duration;
  • a terminal device determining the first duration according to the duration of the reference period includes:
  • the first terminal device obtains the out-of-synchronization indication information of the first link according to at least one target reference signal in the at least one reference period included in the first duration; the first terminal device obtains the out-of-synchronization indication information of the first link according to the reference period
  • the duration of determines the first duration including:
  • L out max(200, M out ⁇ T)
  • M out represents that the first time length is calculated according to the periodic reference signal.
  • 100 milliseconds (ms) is the evaluation time when the link is synchronously measured based on the periodically transmitted reference signal. Since the reference signal in the embodiment of this application is transmitted aperiodically, the arrival time of the reference signal cannot be guaranteed.
  • the first terminal device determining the first duration according to the duration of the reference period includes: the first terminal device determining the first duration according to the duration of the reference period and a first parameter For the first duration, the first parameter includes a reference density and/or a reference bandwidth, the reference density is used to determine the target reference signal, and the reference bandwidth is used to determine the target reference signal.
  • link evaluation parameters such as the length of the reference period, reference density, or reference bandwidth
  • signals can be accumulated according to the reference density or reference bandwidth in the reference period, which can solve the problem of the density or bandwidth of the received reference signal that does not meet the measurement accuracy. Problem, try to ensure the accuracy of the measurement and reduce the complexity of equipment and system design.
  • the determining, by the first terminal device, the first duration according to the reference period and the parameters related to the reference density includes:
  • the number of signals, P 2 represents a parameter related to the reference density.
  • the test frequency of the first terminal device can be kept moderate, which can not only meet the test requirements, but also ensure that the power consumption of the first terminal device is at a certain level, and the power consumption is not excessive.
  • the first duration may be related to the reference density, which also solves the problem that the density of the received reference signal does not meet the measurement accuracy.
  • the determining, by the first terminal device, the first duration according to the reference period and a parameter related to the reference bandwidth includes:
  • the test frequency of the first terminal device can be kept moderate, which can not only meet the test requirements, but also ensure that the power consumption of the first terminal device is at a certain level, and the power consumption is not excessive.
  • the first duration may be related to the reference density, which also solves the problem that the bandwidth of the received reference signal does not satisfy the measurement accuracy.
  • the first terminal device determining the first duration according to the reference period, the transmission related to the reference density, and the parameter related to the reference bandwidth includes:
  • the test frequency of the first terminal device can be kept moderate, which can not only meet the test requirements, but also ensure that the power consumption of the first terminal device is at a certain level, and the power consumption is not excessive.
  • the first duration may be related to the reference density, which also solves the problem that the density and bandwidth of the received reference signal do not satisfy the measurement accuracy.
  • the first time length can also be determined by other methods, which are not specifically limited.
  • the method further includes: the first terminal device determining validity information, the validity information being used to indicate the validity of the synchronization indication information or the synchronization indication information Effectiveness, wherein the more the number of the at least one reference period, the higher the effectiveness of the synchronization indication information or the out-of-synchronization indication information.
  • the validity information can be used to determine the reliability of the evaluation information, so that it can choose whether to determine whether the link fails according to the evaluation information. In this way, the reliability of link measurement can be improved.
  • the evaluation information includes synchronization indication information or out-of-synchronization indication information.
  • the first terminal device maintains a first timer, and the first timer is used to: if the reference signal is not received within the timing period of the first timer, When the first timer expires, the first terminal device determines that the link fails.
  • the first terminal device may not receive the reference signal for a long time. For example, when the link fails, the first terminal device may not receive the reference signal for a long time. In order to avoid the first terminal device from continuously waiting, in this embodiment of the present application, the first terminal device may also maintain the first timer. If the first terminal device does not receive the reference signal for wireless link measurement within the time period of the first timer, then when the first timer expires, the first terminal device can directly determine that the first link fails . In this way, the terminal device can be prevented from waiting continuously, and the link failure can be determined as quickly as possible.
  • a second link measurement method includes: a first terminal device does not receive a reference signal from a second terminal device within a third period of time, and the reference signal is used for the first terminal device to measure The first link with the second terminal device; the first terminal device determines that the first link fails.
  • the method may be executed by a second communication device, and the second communication device may be a communication device or a communication device capable of supporting the communication device to implement the functions required by the method, such as a chip system.
  • the second communication device is a first terminal device.
  • the first terminal device is a first terminal device, or is a chip system set in the first terminal device for realizing the function of the terminal device, or is another device for realizing the function of the first terminal device part.
  • the first terminal device may not receive the reference signal for a long time. For example, when the link fails, the first terminal device may not receive the reference signal for a long time. In order to avoid the first terminal device from continuously waiting, in this embodiment of the present application, the first terminal device may maintain the first timer. If the first terminal device does not receive the reference signal for wireless link measurement within the time period of the first timer, then when the first timer expires, the first terminal device can directly determine that the first link fails . In this way, the terminal device can be prevented from waiting continuously, and the link failure can be determined as quickly as possible.
  • a first link evaluation method includes: the first terminal device obtains the data in the second duration according to the number of channels of the first type and the total number of channels between the first terminal device and the second terminal device.
  • Channel busy rate the first type of channel includes channels whose signal strength is greater than or equal to a first threshold within a second time period; the first terminal device checks the first terminal device and the first terminal device according to the channel busy rate The link between the second terminal devices is evaluated for synchronization or out of synchronization.
  • the method may be executed by a third communication device, and the third communication device may be a communication device or a communication device capable of supporting the communication device to implement the functions required by the method, such as a chip system.
  • the second communication device is a first terminal device.
  • the first terminal device is a first terminal device, or is a chip system set in the first terminal device for realizing the function of the terminal device, or is another device for realizing the function of the first terminal device part.
  • the link can be evaluated according to the busy rate of the channel in a simple manner, which reduces the complexity of design and implementation.
  • the first terminal device performs synchronization evaluation or out-of-synchronization evaluation on the link between the first terminal device and the second terminal device according to the channel busy rate, including : When the channel busy rate is greater than or equal to the second threshold, the first terminal device determines that the link is out of synchronization; or, when the channel busy rate is less than or equal to the third threshold, the first terminal device determines The links are synchronized.
  • the second threshold may be configured by the first terminal device, or configured by the second terminal device and notified to the first terminal device, or if the second terminal device is a terminal device, the second threshold may also be configured by the network device and notified to the first terminal device . Or the second threshold can also be stipulated by agreement. For example, the second threshold is 70%, or other values may also be used.
  • the third threshold may be configured by the first terminal device, or configured by the second terminal device and notified to the first terminal device, or if the second terminal device is a terminal device, the third threshold may also be configured by the network device and notified to the first terminal device. A terminal device. Or the third threshold can also be stipulated by agreement. For example, the third threshold is 40%, or other values may also be used.
  • a second link evaluation method includes: the first terminal device updates a counter according to the demodulation of the first signal from the second terminal device, wherein the initial value of the counter is greater than 0 ; The first terminal device determines whether the link with the second terminal device fails according to the value of the counter.
  • the method may be executed by a fourth communication device, which may be a communication device or a communication device capable of supporting the communication device to implement the functions required by the method, such as a chip system.
  • the second communication device is a first terminal device.
  • the first terminal device is a first terminal device, or is a chip system set in the first terminal device for realizing the function of the terminal device, or is another device for realizing the function of the first terminal device part.
  • the first terminal device can evaluate the link based on the demodulation of the signal from the second terminal device, which is equivalent to using the PSSCH/PSCCH decoding result to evaluate the link , Reducing the complexity of design and implementation.
  • the first signal is a control signal
  • the first terminal device updates the counter according to the demodulation of the first signal from the second terminal device, including: the first terminal device pairs If the first signal is successfully demodulated, the first terminal device increases the value of the counter by the first value; or, if the first terminal device misses the first signal, the first terminal device will The value of the counter decreases by a second value.
  • the first signal is a data signal
  • the first signal is initial transmission data
  • the first terminal device updates the data according to the demodulation of the first signal from the second terminal device.
  • the counter includes: the first terminal device successfully demodulates the first signal, and the first terminal device increases the value of the counter by a third value; or, the first terminal device performs Signal demodulation fails, and the first terminal device reduces the value of the counter by a fourth value.
  • the first signal is a data signal
  • the first signal is retransmitted data
  • the first terminal device updates according to the demodulation of the first signal from the second terminal device
  • the counter includes: the first terminal device successfully demodulates the first signal, and the first terminal device increases the value of the counter by a fifth value; or, the first terminal device performs Signal demodulation fails, and the first terminal device decreases the value of the counter by a sixth value.
  • the first terminal device determining whether the link with the second terminal device fails according to the value of the counter includes: when the value of the counter is 0 , The first terminal device determines that the link fails.
  • the first terminal device can determine that the link has failed.
  • the link can be evaluated through the maintenance counter in a relatively simple way.
  • a third link evaluation method includes: a second terminal device receives feedback information from a first terminal device; the second terminal device obtains link synchronization according to the received feedback information Indicating information or out-of-synchronization indicating information, the link is a link between the first terminal device and the second terminal device.
  • the method may be executed by a fifth communication device, which may be a communication device or a communication device capable of supporting the communication device to implement the functions required by the method, such as a chip system.
  • the second communication device is a first terminal device.
  • the first terminal device is a first terminal device, or is a chip system set in the first terminal device for realizing the function of the terminal device, or is another device for realizing the function of the first terminal device part.
  • the link can be evaluated by the second terminal device, so that the link can be evaluated whether it is the sending end or the receiving end of the data, which is more flexible.
  • the evaluation method provided by the embodiment of the present application is relatively simple and easy to implement.
  • the second terminal device obtaining link synchronization indication information or out-of-synchronization indication information according to the received feedback information includes:
  • the second terminal device When N1/N is greater than the first threshold, the second terminal device obtains the synchronization indication information, or when N1/N is less than the second threshold, the second terminal device obtains the out-of-synchronization indication information, where , N1 represents the number of positive responses received by the second terminal device in the first time period, and N represents the total number of HARQ response information that the second terminal device expects to receive in the first time period; or,
  • the second terminal device When N2/N is less than the third threshold, the second terminal device obtains the synchronization indication information, or when N2/N is greater than the fourth threshold, the second terminal device obtains the out-of-synchronization indication information, where , N2 represents the number of negative responses received by the second terminal device in the first time period, N represents the total number of HARQ response information that the second terminal device expects to receive in the first time period; or,
  • the second terminal device When N2/N1 is less than the fifth threshold, the second terminal device obtains the synchronization indication information, or when N2/N is greater than the sixth threshold, the second terminal device obtains the out-of-synchronization indication information, where , N2 represents the number of negative responses received by the second terminal device in the first time period, and N1 represents the number of positive responses received by the second terminal device in the first time period.
  • the second terminal device may also use other methods to evaluate the link.
  • the method further includes: the second terminal device determines whether the link fails according to the synchronization indication information or the out-of-synchronization indication information.
  • the first terminal device may determine whether the first link fails, and if the first link fails, subsequent corresponding processing may be performed.
  • a communication device is provided, for example, the communication device is the first terminal device as described above.
  • the first terminal device is used to execute the method in the foregoing first aspect or any possible implementation manner.
  • the first terminal device may include a module for executing the method in the first aspect or any possible implementation manner, for example, including a processing module and a transceiver module.
  • the first terminal device is a communication device.
  • the communication device is a terminal device. among them,
  • the transceiver module is configured to receive at least one reference signal from a second terminal device in a first reference period, where the at least one reference signal is transmitted aperiodicly;
  • the processing module is configured to determine a first target reference signal in the first reference period according to the at least one reference signal
  • the processing module is further configured to obtain synchronization indication information or out-of-synchronization indication information of a first link according to at least one target reference signal in at least one reference period, where the first link is the first terminal device and the For the link between the second terminal devices, the at least one reference period includes the first reference period, and the at least one target reference signal includes the first target reference signal.
  • the processing module is further configured to determine whether the first link fails according to the synchronization indication information or the out-of-synchronization indication information.
  • the processing module is configured to determine the first target reference signal in the first reference period according to the at least one reference signal by determining one of the at least one reference signal
  • the reference signal is the first target reference signal; or, part or all of the at least one reference signal is combined to obtain the first target reference signal.
  • the processing module is configured to determine the first target reference signal in the first reference period according to the at least one reference signal in the following manner:
  • the first N reference signals are used as the first target reference signal, and N is greater than or equal to 1, wherein,
  • the density of the reference signal is the number of frequency domain units carrying the reference signal in the bandwidth occupied by a reference signal, and the cumulative density of the reference signal is the sum of the densities of one or more reference signals; or,
  • the first N reference signals are used as the first target reference signal, and N is greater than or equal to 1.
  • the processing module is further configured to determine the duration of the reference period; or,
  • the transceiver module is further configured to receive first indication information from the second terminal device, where the first indication information is used to indicate the duration of the reference period.
  • the processing module is configured to determine the duration of the reference period by determining the duration of the reference period according to the parameters of the data packet of the first service, and the data of the first service
  • the packet is transmitted through the first link, and the parameters of the data packet of the first service include the expected period duration of the data packet of the first service, and/or the repetition of the data packet of the first service. Pass configuration information.
  • the duration of the reference period satisfies:
  • T min(the first threshold, ceil(T packet ⁇ P 1 ));
  • T represents the duration of the reference period
  • the first threshold is a constant
  • T packet represents the minimum expected period duration of the data packet of the first service
  • P 1 represents the retransmission configuration information of the first service
  • ceil() means round up operation.
  • the processing module is configured to obtain synchronization indication information or out-of-synchronization indication information of the first link according to at least one target reference signal in at least one reference period in the following manner: At least one target reference signal included in the at least one reference period obtains synchronization indication information or out-of-synchronization indication information of the first link, and the at least one reference period is received in all reference periods in the first duration At least one reference period of the reference signal.
  • the processing module is further configured to determine the first duration according to the duration of the reference period; or, the transceiver module is further configured to receive the first duration from the second terminal device Two indication information, where the second indication information is used to indicate the first duration.
  • the processing module obtains the synchronization indication information of the first link according to at least one target reference signal in the at least one reference period included in the first duration; the processing module uses Determine the first duration according to the duration of the reference period in the following manner:
  • L in max (100, M in ⁇ T)
  • L in represents the first duration
  • T represents the duration of the reference period
  • the processing module obtains the out-of-synchronization indication information of the first link according to at least one target reference signal in the at least one reference period included in the first duration; the processing module is configured to obtain the out-of-synchronization indication information of the first link in the following manner;
  • the duration of the cycle determines the first duration:
  • L out max(200, M out ⁇ T)
  • M out represents that the first link is out of synchronization according to a periodic reference signal
  • T represents the duration of the reference period
  • the processing module is configured to determine the first duration according to the duration of the reference period in the following manner: determine the first duration according to the duration of the reference period and a first parameter,
  • the first parameter includes a reference density and/or a reference bandwidth, the reference density is used to determine the target reference signal, and the reference bandwidth is used to determine the target reference signal.
  • the processing module is configured to determine the first duration according to the reference period and parameters related to the reference density in the following manner:
  • P 2 represents a parameter related to the reference density.
  • the processing module is configured to determine the first duration according to the reference period and parameters related to the reference bandwidth in the following manner:
  • the processing module is configured to determine the first duration according to the reference period, transmission related to reference density, and parameters related to reference bandwidth in the following manner:
  • the processing module is further configured to determine validity information, and the validity information is used to indicate the validity of the synchronization indication information or the validity of the out-of-synchronization indication information, where , The greater the number of the at least one reference period, the higher the effectiveness of the synchronization indication information or the out-of-synchronization indication information.
  • the processing module is further configured to maintain a first timer, and the first timer is configured to: if the reference signal is not received within the timing period of the first timer, then When the first timer expires, it is determined that the link fails.
  • a communication device is provided, for example, the communication device is the aforementioned first terminal device.
  • the first terminal device is used to execute the method in the second aspect or any possible implementation manner.
  • the first terminal device may include a module for executing the method in the second aspect or any possible implementation manner, for example, including a processing module and a transceiver module.
  • the first terminal device is a communication device.
  • the communication device is a terminal device. among them,
  • the processing module is configured to determine that the transceiving module has not received a reference signal from a second terminal device within a third period of time, and the reference signal is used for measurement between the first terminal device and the second terminal device The first link;
  • the processing module is further configured to determine that the first link fails.
  • a communication device is provided, for example, the communication device is the first terminal device as described above.
  • the first terminal device is used to execute the method in the foregoing third aspect or any possible implementation manner.
  • the first terminal device may include a module for executing the method in the third aspect or any possible implementation manner, for example, including a processing module and a transceiver module.
  • the first terminal device is a communication device.
  • the communication device is a terminal device. among them,
  • the processing module is configured to obtain a channel busy rate within a second time period according to the number of channels of the first type and the total number of channels with the second terminal device, and the channels of the first type are included in the second The channel whose signal strength is greater than or equal to the first threshold within the duration;
  • the processing module is further configured to perform synchronization evaluation or out-of-synchronization evaluation on the link between the first terminal device and the second terminal device according to the channel busy rate.
  • the processing module is configured to perform synchronization evaluation or out-of-synchronization of the link between the first terminal device and the second terminal device according to the channel busy rate in the following manner Evaluation: When the channel busy rate is greater than or equal to a second threshold, determine that the link is out of synchronization; or, when the channel busy rate is less than or equal to a third threshold, determine that the link is synchronized.
  • a communication device is provided, for example, the communication device is the aforementioned first terminal device.
  • the first terminal device is used to execute the method in the foregoing fourth aspect or any possible implementation manner.
  • the first terminal device may include a module for executing the method in the fourth aspect or any possible implementation manner, for example, including a processing module and a transceiver module.
  • the first terminal device is a communication device.
  • the communication device is a terminal device. among them,
  • the processing module is configured to update a counter according to the demodulation of the first signal from the second terminal device, wherein the initial value of the counter is greater than 0;
  • the processing module is further configured to determine whether the link with the second terminal device fails according to the value of the counter.
  • the first signal is a control signal
  • the processing module is configured to update a counter according to the demodulation of the first signal from the second terminal device in the following manner: If a signal is successfully demodulated, the value of the counter is increased by a first value; or, if the first signal is missed, the value of the counter is decreased by a second value.
  • the first signal is a data signal
  • the first signal is initial transmission data
  • the processing module is configured to respond to the first signal from the second terminal device in the following manner: In the demodulation situation, update the counter: if the demodulation of the first signal is successful, increase the value of the counter by a third value; or, if the demodulation of the first signal fails, decrease the value of the counter by a fourth value .
  • the first signal is a data signal
  • the first signal is a retransmission data
  • the processing module is configured to respond to the first signal from the second terminal device in the following manner.
  • update the counter For demodulation, update the counter: if the demodulation of the first signal is successful, increase the value of the counter by a fifth value; or, if the demodulation of the first signal fails, decrease the value of the counter by a sixth value .
  • the processing module is configured to determine whether the link with the second terminal device has failed according to the value of the counter in the following manner: when the value of the counter is 0 When it is determined that the link fails.
  • a communication device is provided, for example, the communication device is the second terminal device as described above.
  • the first terminal device is used to execute the method in the fifth aspect or any possible implementation manner.
  • the second terminal device may include a module for executing the method in the fifth aspect or any possible implementation manner, for example, including a processing module and a transceiver module.
  • the second terminal device is a communication device.
  • the communication device is a terminal device. among them,
  • the transceiver module is configured to receive feedback information from the first terminal device
  • the processing module is configured to obtain synchronization indication information or out-of-synchronization indication information of a link according to the received feedback information, and the link is the link between the first terminal device and the second terminal device road.
  • the processing module is configured to obtain link synchronization indication information or out-of-synchronization indication information according to the received feedback information in the following manner:
  • N1/N When N1/N is greater than the first threshold, the synchronization indication information is obtained, or when N1/N is less than the second threshold, the synchronization indication information is obtained, where N1 indicates that the second terminal device is in the first
  • the number of positive responses received within the time period, N represents the total number of HARQ response information that the second terminal device expects to receive within the first time period; or,
  • the synchronization indication information When N2/N is less than the third threshold, the synchronization indication information is obtained, or when N2/N is greater than the fourth threshold, the synchronization indication information is obtained, where N2 indicates that the second terminal device is in the first The number of negative responses received within the time period, where N represents the total number of HARQ response information that the second terminal device expects to receive within the first time period; or,
  • N2/N1 When N2/N1 is less than the fifth threshold, obtain the synchronization indication information, or when N2/N is greater than the sixth threshold, obtain the out-of-synchronization indication information, where N2 indicates that the second terminal device is in the first The number of negative responses received within the time period, N1 represents the number of positive responses received by the second terminal device within the first time period.
  • the processing module is further configured to determine whether the link fails according to the synchronization indication information or the out-of-synchronization indication information.
  • a communication device is provided.
  • the communication device is, for example, the aforementioned first terminal device.
  • the communication device includes a processor and a transceiver, and the processor and the transceiver are coupled with each other to implement the methods described in the first aspect or various possible implementation manners.
  • the communication device is a chip provided in a communication device.
  • the communication device is a terminal device.
  • the transceiver is realized by, for example, an antenna, a feeder, a codec in the communication device, or, if the communication device is a chip set in the communication device, the transceiver is, for example, a communication interface in the chip. It is connected with the radio frequency transceiving component in the communication equipment to realize the transmission and reception of information through the radio frequency transceiving component. among them,
  • the transceiver is configured to receive at least one reference signal from a second terminal device in a first reference period, where the at least one reference signal is transmitted aperiodicly;
  • the processor is configured to determine a first target reference signal in the first reference period according to the at least one reference signal
  • the processor is further configured to obtain synchronization indication information or out-of-synchronization indication information of a first link according to at least one target reference signal in at least one reference period, where the first link is the first terminal device and the For the link between the second terminal devices, the at least one reference period includes the first reference period, and the at least one target reference signal includes the first target reference signal.
  • the processor is further configured to determine whether the first link fails according to the synchronization indication information or the out-of-synchronization indication information.
  • the processor is configured to determine the first target reference signal in the first reference period according to the at least one reference signal in the following manner: determine a reference in the at least one reference signal The signal is the first target reference signal; or, part or all of the at least one reference signal is combined to obtain the first target reference signal.
  • the processor is configured to determine the first target reference signal in the first reference period according to the at least one reference signal in the following manner:
  • the first N reference signals are used as the first target reference signal, and N is greater than or equal to 1, wherein,
  • the density of the reference signal is the number of frequency domain units carrying the reference signal in the bandwidth occupied by a reference signal, and the cumulative density of the reference signal is the sum of the densities of one or more reference signals; or,
  • the first N reference signals are used as the first target reference signal, and N is greater than or equal to 1.
  • the processor is further configured to determine the duration of the reference period; or the transceiver is further configured to receive first indication information from the second terminal device, and The first indication information is used to indicate the duration of the reference period.
  • the processor is configured to determine the duration of the reference period by: determining the duration of the reference period according to the parameters of the data packet of the first service, and the data packet of the first service It is transmitted through the first link, and the parameters of the data packet of the first service include the expected period of the data packet of the first service, and/or the retransmission of the data packet of the first service Configuration information.
  • the duration of the reference period satisfies:
  • T min(the first threshold, ceil(T packet ⁇ P 1 ));
  • T represents the duration of the reference period
  • the first threshold is a constant
  • T packet represents the minimum expected period duration of the data packet of the first service
  • P 1 represents the retransmission configuration information of the first service
  • ceil() means round up operation.
  • the processor is configured to obtain synchronization indication information or out-of-synchronization indication information of the first link according to at least one target reference signal in at least one reference period in the following manner: according to the first time length including The at least one target reference signal in the at least one reference period obtains the synchronization indication information or the out-of-synchronization indication information of the first link, and the at least one reference period is the reference signal received in all reference periods in the first duration At least one reference period of the signal.
  • the processor is further configured to determine the first duration according to the duration of the reference period; or, the transceiver is further configured to receive the first duration from the second terminal device Two indication information, where the second indication information is used to indicate the first duration.
  • the processor obtains the synchronization indication information of the first link according to at least one target reference signal in the at least one reference period included in the first duration; the processor is configured to The first duration is determined according to the duration of the reference period in the following manner:
  • L in max (100, M in ⁇ T)
  • L in represents the first duration
  • T represents the duration of the reference period
  • the processor obtains the out-of-synchronization indication information of the first link according to at least one target reference signal in the at least one reference period included in the first duration; the processor is configured to obtain the out-of-synchronization indication information of the first link in the following manner The duration of determines the first duration:
  • L out max(200, M out ⁇ T)
  • M out represents that the first link is out of synchronization according to a periodic reference signal
  • T represents the duration of the reference period
  • the processor is configured to determine the first duration according to the duration of the reference period in the following manner: determine the first duration according to the duration of the reference period and a first parameter, so
  • the first parameter includes a reference density and/or a reference bandwidth, the reference density is used to determine the target reference signal, and the reference bandwidth is used to determine the target reference signal.
  • the processor is configured to determine the first duration according to the reference period and parameters related to the reference density in the following manner:
  • P 2 represents a parameter related to the reference density.
  • the processor is configured to determine the first duration according to the reference period and parameters related to the reference bandwidth in the following manner:
  • the processor is configured to determine the first duration according to the reference period, transmission related to reference density, and parameters related to reference bandwidth in the following manner:
  • the processor is further configured to determine validity information, and the validity information is used to indicate the validity of the synchronization indication information or the validity of the out-of-synchronization indication information, where , The greater the number of the at least one reference period, the higher the effectiveness of the synchronization indication information or the out-of-synchronization indication information.
  • the processor is further configured to maintain a first timer, and the first timer is configured to: if the reference signal is not received within the timing period of the first timer, then When the first timer expires, it is determined that the link fails.
  • a communication device is provided.
  • the communication device is, for example, the aforementioned first terminal device.
  • the communication device includes a processor and a transceiver, and the processor and the transceiver are coupled with each other to implement the methods described in the second aspect or various possible implementation manners.
  • the communication device is a chip provided in a communication device.
  • the communication device is a terminal device.
  • the transceiver is realized by, for example, an antenna, a feeder, a codec in the communication device, or, if the communication device is a chip set in the communication device, the transceiver is, for example, a communication interface in the chip. It is connected with the radio frequency transceiving component in the communication equipment to realize the transmission and reception of information through the radio frequency transceiving component. among them,
  • the processor is configured to determine that the transceiver does not receive a reference signal from a second terminal device within a third period of time, where the reference signal is used for measurement between the first terminal device and the second terminal device The first link;
  • the processor is further configured to determine that the first link fails.
  • a communication device is provided.
  • the communication device is, for example, the aforementioned first terminal device.
  • the communication device includes a processor and a transceiver, and the processor and the transceiver are coupled with each other to implement the methods described in the third aspect or various possible implementation manners.
  • the communication device is a chip provided in a communication device.
  • the communication device is a terminal device.
  • the transceiver is realized by, for example, an antenna, a feeder, a codec in the communication device, or, if the communication device is a chip set in the communication device, the transceiver is, for example, a communication interface in the chip. It is connected with the radio frequency transceiving component in the communication equipment to realize the transmission and reception of information through the radio frequency transceiving component. among them,
  • the processor is configured to obtain a channel busy rate within a second time period according to the number of channels of the first type with the second terminal device and the total number of channels, where the channels of the first type are included in the second terminal device.
  • the channel whose signal strength is greater than or equal to the first threshold within the duration;
  • the processor is further configured to perform synchronization evaluation or out-of-synchronization evaluation on the link between the first terminal device and the second terminal device according to the channel busy rate.
  • the processor is configured to perform synchronization evaluation or out-of-synchronization evaluation on the link between the first terminal device and the second terminal device according to the channel busy rate in the following manner : When the channel busy rate is greater than or equal to a second threshold, determine that the link is out of synchronization; or, when the channel busy rate is less than or equal to a third threshold, determine that the link is synchronized.
  • a communication device is provided.
  • the communication device is, for example, the first terminal device described above.
  • the communication device includes a processor and a transceiver, and the processor and the transceiver are coupled with each other to implement the methods described in the fourth aspect or various possible implementation manners.
  • the communication device is a chip provided in a communication device.
  • the communication device is a terminal device.
  • the transceiver is realized by, for example, an antenna, a feeder, a codec in the communication device, or, if the communication device is a chip set in the communication device, the transceiver is, for example, a communication interface in the chip. It is connected with the radio frequency transceiving component in the communication equipment to realize the transmission and reception of information through the radio frequency transceiving component. among them,
  • the processor is configured to update a counter according to the demodulation of the first signal from the second terminal device, where the initial value of the counter is greater than 0;
  • the processor is further configured to determine whether the link with the second terminal device fails according to the value of the counter.
  • the first signal is a control signal
  • the processor is configured to update a counter according to demodulation of the first signal from the second terminal device in the following manner: If the signal is successfully demodulated, the value of the counter is increased by a first value; or, if the first signal is missed, the value of the counter is decreased by a second value.
  • the first signal is a data signal
  • the first signal is initial transmission data
  • the processor is configured to decode the first signal from the second terminal device in the following manner: To adjust the situation, update the counter: if the first signal is successfully demodulated, the value of the counter is increased by a third value; or, if the demodulation of the first signal fails, the value of the counter is decreased by a fourth value.
  • the first signal is a data signal
  • the first signal is retransmitted data
  • the processor is configured to decode the first signal from the second terminal device in the following manner: To adjust the situation, update the counter: if the demodulation of the first signal is successful, the value of the counter is increased by a fifth value; or, if the demodulation of the first signal fails, the value of the counter is decreased by a sixth value.
  • the processor is configured to determine whether the link with the second terminal device has failed according to the value of the counter in the following manner: when the value of the counter is 0 , It is determined that the link fails.
  • a communication device is provided.
  • the communication device is, for example, the aforementioned second terminal device.
  • the communication device includes a processor and a transceiver, and the processor and the transceiver are coupled with each other to implement the methods described in the fifth aspect or various possible implementation manners.
  • the communication device is a chip provided in a communication device.
  • the communication device is a terminal device.
  • the transceiver is realized by, for example, an antenna, a feeder, a codec in the communication device, or, if the communication device is a chip set in the communication device, the transceiver is, for example, a communication interface in the chip.
  • the transceiver is configured to receive feedback information from the first terminal device; the processor is configured to obtain synchronization indication information or out-of-synchronization indication information of the link according to the received feedback information, and the link
  • the path is a link between the first terminal device and the second terminal device.
  • the processor is configured to obtain link synchronization indication information or out-of-synchronization indication information according to the received feedback information in the following manner:
  • N1/N When N1/N is greater than the first threshold, the synchronization indication information is obtained, or when N1/N is less than the second threshold, the synchronization indication information is obtained, where N1 indicates that the second terminal device is in the first
  • the number of positive responses received within the time period, N represents the total number of HARQ response information that the second terminal device expects to receive within the first time period; or,
  • the synchronization indication information When N2/N is less than the third threshold, the synchronization indication information is obtained, or when N2/N is greater than the fourth threshold, the synchronization indication information is obtained, where N2 indicates that the second terminal device is in the first The number of negative responses received within the time period, where N represents the total number of HARQ response information that the second terminal device expects to receive within the first time period; or,
  • N2/N1 When N2/N1 is less than the fifth threshold, obtain the synchronization indication information, or when N2/N is greater than the sixth threshold, obtain the out-of-synchronization indication information, where N2 indicates that the second terminal device is in the first The number of negative responses received within the time period, N1 represents the number of positive responses received by the second terminal device within the first time period.
  • the processor is further configured to determine whether the link fails according to the synchronization indication information or the out-of-synchronization indication information.
  • a communication device may be the first terminal device in the above method design.
  • the communication device is a chip provided in a communication device.
  • the communication device is a terminal device.
  • the communication device includes: a memory for storing computer executable program codes; and a processor, which is coupled with the memory.
  • the program code stored in the memory includes instructions, and when the processor executes the instructions, the communication device executes the method in the first aspect or any one of the possible implementation manners.
  • the communication device may also include a communication interface, and the communication interface may be a transceiver in the first terminal device, for example, implemented by an antenna, a feeder, and a codec in the communication device, or if the communication device To be a chip provided in the first terminal device, the communication interface may be an input/output interface of the chip, such as input/output pins.
  • the communication interface may be a transceiver in the first terminal device, for example, implemented by an antenna, a feeder, and a codec in the communication device, or if the communication device To be a chip provided in the first terminal device, the communication interface may be an input/output interface of the chip, such as input/output pins.
  • a communication device may be the first terminal device in the above method design.
  • the communication device is a chip provided in a communication device.
  • the communication device is a terminal device.
  • the communication device includes: a memory for storing computer executable program codes; and a processor, which is coupled with the memory.
  • the program code stored in the memory includes instructions, and when the processor executes the instructions, the communication device is caused to execute the method in the second aspect or any one of the possible implementation manners.
  • the communication device may also include a communication interface, and the communication interface may be a transceiver in the first terminal device, for example, implemented by an antenna, a feeder, a codec, etc. in the communication device, or if the communication device To be a chip provided in the first terminal device, the communication interface may be an input/output interface of the chip, such as input/output pins.
  • the communication interface may be a transceiver in the first terminal device, for example, implemented by an antenna, a feeder, a codec, etc. in the communication device, or if the communication device To be a chip provided in the first terminal device, the communication interface may be an input/output interface of the chip, such as input/output pins.
  • a communication device may be the first terminal device in the above method design.
  • the communication device is a chip provided in a communication device.
  • the communication device is a terminal device.
  • the communication device includes: a memory for storing computer executable program codes; and a processor, which is coupled with the memory.
  • the program code stored in the memory includes instructions, and when the processor executes the instructions, the communication device executes the method in the third aspect or any one of the possible implementation manners.
  • the communication device may also include a communication interface, and the communication interface may be a transceiver in the first terminal device, for example, implemented by an antenna, a feeder, and a codec in the communication device, or if the communication device To be a chip provided in the first terminal device, the communication interface may be an input/output interface of the chip, such as input/output pins.
  • the communication interface may be a transceiver in the first terminal device, for example, implemented by an antenna, a feeder, and a codec in the communication device, or if the communication device To be a chip provided in the first terminal device, the communication interface may be an input/output interface of the chip, such as input/output pins.
  • a communication device may be the first terminal device in the above method design.
  • the communication device is a chip provided in a communication device.
  • the communication device is a terminal device.
  • the communication device includes: a memory for storing computer executable program codes; and a processor, which is coupled with the memory.
  • the program code stored in the memory includes instructions, and when the processor executes the instructions, the communication device is caused to execute the method in the foregoing fourth aspect or any one of the possible implementation manners.
  • the communication device may also include a communication interface, and the communication interface may be a transceiver in the first terminal device, for example, implemented by an antenna, a feeder, and a codec in the communication device, or if the communication device To be a chip provided in the first terminal device, the communication interface may be an input/output interface of the chip, such as input/output pins.
  • the communication interface may be a transceiver in the first terminal device, for example, implemented by an antenna, a feeder, and a codec in the communication device, or if the communication device To be a chip provided in the first terminal device, the communication interface may be an input/output interface of the chip, such as input/output pins.
  • a communication device is provided.
  • the communication device may be the second terminal device in the above method design.
  • the communication device is a chip provided in a communication device.
  • the communication device is a terminal device.
  • the communication device includes: a memory for storing computer executable program codes; and a processor, which is coupled with the memory.
  • the program code stored in the memory includes instructions, and when the processor executes the instructions, the communication device is caused to execute the method in the fifth aspect or any one of the possible implementation manners.
  • the communication device may also include a communication interface, and the communication interface may be a transceiver in the second terminal device, for example, implemented by an antenna, a feeder, and a codec in the communication device, or if the communication device To be a chip set in the second terminal device, the communication interface may be an input/output interface of the chip, such as input/output pins.
  • the communication interface may be a transceiver in the second terminal device, for example, implemented by an antenna, a feeder, and a codec in the communication device, or if the communication device To be a chip set in the second terminal device, the communication interface may be an input/output interface of the chip, such as input/output pins.
  • a first communication system which includes the communication device according to the tenth aspect, the communication device according to the fifteenth aspect, or the communication device according to the twentieth aspect, and: The communication device according to the sixth aspect, the communication device according to the eleventh aspect, or the communication device according to the sixteenth aspect, or the communication device according to the seventh aspect, the communication device according to the twelfth aspect, or The communication device of the seventeenth aspect, or the communication device of the eighth aspect, the communication device of the thirteenth aspect, or the communication device of the eighteenth aspect, or the communication device of the ninth aspect The communication device of the fourteenth aspect or the communication device of the nineteenth aspect.
  • a computer storage medium stores instructions, which when run on a computer, cause the computer to execute the above-mentioned first aspect or any one of the possible implementations. The method described.
  • a computer storage medium stores instructions that, when run on a computer, cause the computer to execute the above-mentioned second aspect or any one of the possible implementations. The method described.
  • a computer storage medium stores instructions that, when run on a computer, cause the computer to execute the above-mentioned third aspect or any one of the possible implementations. The method described.
  • a computer storage medium stores instructions that, when run on a computer, cause the computer to execute the above-mentioned fourth aspect or any one of the possible implementations. The method described.
  • a computer storage medium stores instructions that, when run on a computer, cause the computer to execute the fifth aspect or any one of the possible implementations. The method described.
  • a computer program product containing instructions.
  • the computer program product stores instructions that, when run on a computer, cause the computer to execute the first aspect or any one of the possible implementations. The method described.
  • a computer program product containing instructions.
  • the computer program product stores instructions that, when run on a computer, cause the computer to execute the second aspect or any one of the possible implementations. The method described.
  • a computer program product containing instructions.
  • the computer program product stores instructions, which when run on a computer, cause the computer to execute the third aspect or any one of the possible implementations. The method described.
  • a computer program product containing instructions is provided.
  • the computer program product stores instructions, which when run on a computer, cause the computer to execute the fourth aspect or any one of the possible implementations. The method described.
  • a computer program product containing instructions.
  • the computer program product stores instructions that, when run on a computer, cause the computer to execute the fifth aspect or any one of the possible implementations. The method described.
  • the first terminal device may obtain the first target reference signal according to at least one reference signal for measurement. This solves the problem that the number of non-periodic reference signals arriving is uncertain, so that the first terminal device can complete the link measurement according to the aperiodic transmitted reference signal.
  • Figure 1 is a schematic diagram of several scenarios of V2X
  • Figure 2 is a schematic diagram of an application scenario of an embodiment of the application
  • FIG. 3 is a flowchart of the first link measurement method provided by an embodiment of this application.
  • FIG. 4 is a schematic diagram of obtaining the first target reference signal according to the density of the reference signal in an embodiment of the application;
  • FIG. 5 is a schematic diagram of obtaining the first target reference signal according to the bandwidth of the reference signal in an embodiment of the application;
  • FIG. 6 is a schematic diagram of measuring the first link according to the first target reference signal within the first duration in an embodiment of the application
  • FIG. 7 is a flowchart of a second link measurement method provided by an embodiment of this application.
  • FIG. 8 is a flowchart of the first link evaluation method provided by an embodiment of this application.
  • FIG. 9 is a flowchart of a second link evaluation method provided by an embodiment of this application.
  • FIG. 10 is a flowchart of a third link evaluation method provided by an embodiment of this application.
  • FIG. 11 is a schematic block diagram of a first terminal device of the first type according to an embodiment of this application.
  • FIG. 12 is another schematic block diagram of the first terminal device of the first type according to an embodiment of this application.
  • FIG. 13 is a schematic block diagram of a second type of first terminal device according to an embodiment of this application.
  • FIG. 14 is another schematic block diagram of the second first terminal device according to an embodiment of this application.
  • 15 is a schematic block diagram of a third type of first terminal device according to an embodiment of the application.
  • FIG. 16 is another schematic block diagram of a third type of first terminal device according to an embodiment of this application.
  • FIG. 17 is a schematic block diagram of a fourth first terminal device according to an embodiment of this application.
  • FIG. 18 is another schematic block diagram of the fourth first terminal device according to an embodiment of this application.
  • FIG. 19 is a schematic block diagram of a first type of second terminal device according to an embodiment of this application.
  • FIG. 20 is another schematic block diagram of the first type of second terminal device according to an embodiment of this application.
  • FIG. 21 is a schematic block diagram of a communication device provided by an embodiment of this application.
  • FIG. 22 is another schematic block diagram of a communication device provided by an embodiment of this application.
  • FIG. 23 is still another schematic block diagram of the communication device provided by an embodiment of this application.
  • Terminal devices including devices that provide users with voice and/or data connectivity, specifically, include devices that provide users with voice, or include devices that provide users with data connectivity, or include devices that provide users with voice and data connectivity Sexual equipment.
  • it may include a handheld device with a wireless connection function, or a processing device connected to a wireless modem.
  • the terminal device can communicate with the core network via a radio access network (RAN), exchange voice or data with the RAN, or exchange voice and data with the RAN.
  • RAN radio access network
  • the terminal equipment may include user equipment (UE), wireless terminal equipment, mobile terminal equipment, device-to-device communication (device-to-device, D2D) terminal equipment, vehicle to everything (V2X) terminal equipment , Machine-to-machine/machine-type communications (M2M/MTC) terminal equipment, Internet of things (IoT) terminal equipment, subscriber unit, subscriber station (subscriber) station), mobile station (mobile station), remote station (remote station), access point (access point, AP), remote terminal (remote terminal), access terminal (access terminal), user terminal (user terminal), user Agent (user agent), or user equipment (user device), etc.
  • UE user equipment
  • M2M/MTC Machine-to-machine/machine-type communications
  • IoT Internet of things
  • subscriber unit subscriber station (subscriber) station)
  • mobile station mobile station
  • remote station remote station
  • access point access point
  • AP remote terminal
  • remote terminal remote terminal
  • access terminal access terminal
  • user terminal user terminal
  • user Agent
  • it may include mobile phones (or “cellular” phones), computers with mobile terminal equipment, portable, pocket-sized, handheld, and computer-built mobile devices.
  • PCS personal communication service
  • PCS personal communication service
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistants
  • restricted devices such as devices with low power consumption, or devices with limited storage capabilities, or devices with limited computing capabilities. Examples include barcodes, radio frequency identification (RFID), sensors, global positioning system (GPS), laser scanners and other information sensing equipment.
  • RFID radio frequency identification
  • GPS global positioning system
  • laser scanners and other information sensing equipment.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices or smart wearable devices, etc. It is a general term for using wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes Wait.
  • a wearable device is a portable device that is directly worn on the body or integrated into the user's clothes or accessories. Wearable devices are not only a hardware device, but also realize powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized, complete or partial functions that can be achieved without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, and need to cooperate with other devices such as smart phones.
  • Use such as various smart bracelets, smart helmets, smart jewelry, etc. for physical sign monitoring.
  • the various terminal devices described above if they are located on the vehicle (for example, placed in the vehicle or installed in the vehicle), can be considered as vehicle-mounted terminal equipment, for example, the vehicle-mounted terminal equipment is also called on-board unit (OBU). ).
  • the terminal device of the embodiment of the present application may also be an on-board module, on-board module, on-board component, on-board chip, or on-board unit that is built into a vehicle as one or more components or units. Groups, on-board components, on-board chips, or on-board units can implement the method of this application.
  • the terminal device may also include a relay. Or it can be understood that everything that can communicate with the base station can be regarded as a terminal device.
  • the terminal device may be a terminal device or a module for realizing the functions of the terminal device.
  • the module may be set in the terminal device or may be set independently of the terminal device.
  • the module is, for example, a chip system.
  • Network equipment including, for example, access network (AN) equipment, such as a base station (e.g., access point), which can refer to equipment that communicates with wireless terminal equipment through one or more cells on the air interface in the access network
  • AN access network
  • a base station e.g., access point
  • V2X vehicle-to-everything
  • the base station can be used to convert the received air frame and IP packet to each other, and act as a router between the terminal device and the rest of the access network, where the rest of the access network can include the IP network.
  • the RSU can be a fixed infrastructure entity that supports V2X applications, and can exchange messages with other entities that support V2X applications.
  • the network equipment can also coordinate the attribute management of the air interface.
  • the network equipment may include a long term evolution (LTE) system or an evolved base station (NodeB or eNB or e-NodeB, evolutional Node B) in a long term evolution-advanced (LTE-A) system, or may comprise a fifth generation mobile communication technology (the 5 th generation, 5G) a new air interface (new radio, NR) system (also referred to as NR system) Next Generation node B (next generation node B, gNB ) or else It may include a centralized unit (CU) and a distributed unit (DU) in a cloud radio access network (cloud radio access network, Cloud RAN) system, which is not limited in the embodiment of the present application.
  • LTE long term evolution
  • LTE-A long term evolution-advanced
  • LTE-A long term evolution-advanced
  • LTE-A long term evolution-advanced
  • 5G 5
  • network equipment may also include core network equipment, but because the technical solutions provided in the embodiments of this application mainly involve access network equipment, in the following text, unless otherwise specified, the “core network equipment” described refers to Core network equipment, and the described “network equipment” or “access network equipment” all refer to access network equipment.
  • V2X is the interconnection between vehicles and the outside world, which is the foundation and key technology of future smart cars, autonomous driving, and smart transportation systems. V2X will optimize the specific application requirements of V2X based on the existing device-to-device (D2D) technology. It is necessary to further reduce the access delay of V2X devices and solve the problem of resource conflicts.
  • D2D device-to-device
  • V2X specifically includes vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I), vehicle-to-pedestrian (V2P) direct communication, and Several application requirements such as vehicle-to-network (V2N) communication interaction.
  • V2V refers to the communication between vehicles
  • V2P refers to the communication between vehicles and people (including pedestrians, cyclists, drivers, or passengers)
  • V2I refers to the communication between vehicles and network equipment, such as RSU
  • V2N refers to the communication between the vehicle and the base station/network.
  • V2P can be used as a safety warning for pedestrians or non-motorized vehicles on the road.
  • vehicles can communicate with roads and even other infrastructure, such as traffic lights, roadblocks, etc., to obtain road management information such as traffic light signal timing.
  • V2V can be used for information exchange and reminding between vehicles, and the most typical application is for the anti-collision safety system between vehicles.
  • V2N is currently the most widely used form of Internet of Vehicles. Its main function is to enable vehicles to connect to a cloud server through a mobile network and use the navigation, entertainment, or anti-theft application functions provided by the cloud server.
  • V2X it is mainly the communication between terminal equipment and terminal equipment.
  • the current standard protocols support broadcast, multicast, and unicast.
  • the broadcast mode means that the terminal device as the sender uses broadcast mode to send data.
  • Multiple terminal device ends can receive sidelink control information (SCI) or sidelink sharing from the sender Channel (sidelink shared channel, SSCH).
  • SCI sidelink control information
  • SSCH sidelink shared channel
  • the way to ensure that all terminal devices parse the control information from the sender is that the sender does not scramble the control information, or the sender uses a scrambling code known to all terminal devices to add to the control information. Disturb.
  • the multicast mode is similar to broadcast transmission.
  • the terminal equipment as the transmitting end uses the broadcast mode for data transmission, and a group of terminal equipment can parse SCI or SSCH.
  • the unicast mode is one terminal device sending data to another terminal device, and other terminal devices do not need or cannot parse the data.
  • the link measured in the embodiment of the present application may be a link between any two devices in a base station, a terminal device, or a roadside device.
  • a link between the terminal device and the terminal device or the link between the base station and the terminal device, or the link between the roadside unit and the terminal device, or Measure the link between the base station and the base station, or measure the link between the roadside unit and the roadside unit, etc.
  • the description is mainly based on measuring the link between the terminal device and the terminal device.
  • the first terminal device and the second terminal device described in the following should be replaced with devices in the corresponding scenario.
  • the first terminal device can be a terminal device, and the second terminal device can be replaced with a base station; if it is an uplink measurement, then The first terminal device may be replaced by a base station, and the second terminal device may be a terminal device.
  • the first terminal device can be a terminal, and the second terminal device can be replaced with a roadside unit; if it is an uplink measurement
  • the first terminal device can be replaced with a roadside unit, and the second terminal device can be a terminal device.
  • the spectrum used to measure the link can be a licensed spectrum, an unlicensed spectrum, or an unlicensed spectrum dedicated to link measurement.
  • Aperiodic reference signal may mean that the reference signal does not arrive at the receiving end according to a predetermined fixed time interval. Or, it may refer to the reference signal that the transmitting end does not transmit according to a predetermined fixed time interval.
  • dynamically scheduled signals are generally non-periodic signals.
  • the sending end sets the reference signal to be sent as a periodic transmission signal, due to various reasons, it is still unable to send the reference signal at a certain fixed time interval, such a reference signal is also regarded as a non-periodic transmission reference signal.
  • the transmission of the signal is delayed due to the failure of channel sensing, and the signal should be transmitted periodically, but it is actually aperiodic transmission.
  • a higher priority signal is received, which causes the sender to be unable to send the reference signal, which may also cause the reference signal to actually be aperiodic transmission.
  • the reference signal described in the embodiment of this application refers to a signal that can be used for link measurement.
  • the reference signal may include one or more of the following: channel state information reference signal (channel state information-reference signal) , CSI-RS), demodulation reference signal (demodulation reference signal, DMRS), or synchronization signal block (synchornonus signal block, SSB).
  • the reference signal may also include other signals that can be used for link measurement.
  • first and second are used to distinguish multiple objects, and are not used to limit the order, timing, priority, or order of multiple objects. Importance.
  • first filtering information and the second filtering information are only for distinguishing different filtering information, and do not necessarily indicate the difference in content, priority, sending order, or importance of the two filtering information.
  • RLM refers to that the connected terminal device can continuously track the quality of the wireless link.
  • the base station will equip the terminal equipment with a set of periodic reference signals for RLM, and the reference signals may be called RLM-RS.
  • the base station may configure a reference signal, or in other words, configure a reference signal.
  • the terminal device can receive the reference signal configured by the base station on the link, where the reference signal is periodic, so the terminal device can receive one reference signal (or one time) in each cycle.
  • the terminal device can perform out-of-synchronization evaluation on the link based on the reference signal received in the evaluation period 1, or can perform synchronization evaluation on the link based on the reference signal received in the evaluation period 2.
  • the evaluation duration 1 may include one or more cycles
  • the evaluation duration 2 may include one or more cycles.
  • the evaluation duration 1 and the evaluation duration 2 may be equal or not equal.
  • the physical layer of the terminal device performs out-of-synchronization evaluation on the link based on the reference signal received within the evaluation period 1. For example, the physical layer of the terminal device estimates the block error ratio (BLER) of the physical downlink control channel (PDCCH) based on the reference signal received within the evaluation duration 1, if the physical layer of the terminal device is based on The estimated BLER of each reference signal within the evaluation period is greater than the preset threshold q out (for example, 10%), then the physical layer of the terminal device can report to the higher layer of the terminal device (for example, the media access control (MAC) layer). ) Send a link out-of-sync indication.
  • BLER block error ratio
  • PDCCH physical downlink control channel
  • the physical layer of the terminal device performs synchronization evaluation on the link based on the reference signal received within the evaluation duration 2. For example, the physical layer of the terminal device estimates the BLER of the PDCCH based on the reference signal received within the evaluation duration 2. If the physical layer of the terminal device estimates the BLER from each reference signal within the evaluation duration, one BLER is greater than the preset threshold q in (for example, 2%), the physical layer of the terminal device can send a link synchronization (in-sync) indication to the upper layer of the terminal device.
  • the preset threshold q in for example, 2%
  • the T310 timer can be started. Before the T310 timer expires, if the upper layer can continuously receive N311 link synchronization indications from the physical layer, the upper layer considers that the terminal equipment and the base station are back in synchronization. Or, before the T310 timer expires, if the upper layer does not continuously receive N311 synchronization indications from the physical layer, it is determined that the link has failed.
  • the length of the evaluation time or called the evaluation time.
  • the terminal device filters (such as linear averaging) the reference signal received during the evaluation period, and then evaluates the BLER of the PDCCH according to the filtered reference signal.
  • the relevant evaluation duration includes the duration of out-of-step evaluation and the duration of synchronous evaluation.
  • the duration of out-of-step evaluation can be expressed as T Evaluate_out , for example, a typical value is 200 ms, and the synchronous evaluation duration can be expressed as T Evaluate_in , for example, a typical value is 100 ms.
  • the synchronization evaluation duration and the out-of-synchronization evaluation duration can refer to Table 1.
  • ceil() represents a round-up operation
  • M out represents the number of reference signals that participate in the evaluation during an evaluation period when performing out-of-step evaluation.
  • the value of M out is 20.
  • T CSI-RS represents the period of the reference signal CSI-RS.
  • the physical layer of the terminal device can perform out-of-synchronization assessment. For example, the physical layer of the terminal device combines the reference signals received in each period in T Evaluate_out in each L1 indication period (L1 indication period). After that, the physical layer of the terminal device compares the combined result with q out . If the combined result is greater than q out , the physical layer of the terminal device sends a link out of synchronization indication to the upper layer of the terminal device.
  • the physical layer of the terminal device can also perform synchronization evaluation. For example, in each layer 1 indication period (L1 indication period), the physical layer of the terminal device combines the reference signals received in each period in T Evaluate_in . After that, the physical layer of the terminal device compares the combined result with q in , and if the combined result is greater than q in , the physical layer of the terminal device sends a link synchronization indication to the upper layer of the terminal device.
  • L1 indication period the physical layer of the terminal device combines the reference signals received in each period in T Evaluate_in . After that, the physical layer of the terminal device compares the combined result with q in , and if the combined result is greater than q in , the physical layer of the terminal device sends a link synchronization indication to the upper layer of the terminal device.
  • V2X is the interconnection between cars and the outside world, which is the foundation and key technology of future smart cars, autonomous driving, and smart transportation systems. Therefore, it is currently proposed to perform RLM on the side link of V2X to ensure that data transmission can be performed on the high-quality side link.
  • V2X it is currently proposed that instead of using periodic reference signals, use non-periodic reference signals for evaluation.
  • the current RLM of the Uu port uses a periodic signal.
  • the terminal device can receive a reference signal once (or one) in each cycle, and the terminal device can perform evaluation based on the reference signal. However, if it is a non-periodic reference signal, the number of reference signals received by the terminal device may be uncertain within a certain period of time, and may be more or less. So how the terminal equipment should be evaluated is still inconclusive.
  • the first terminal device receives at least one reference signal in the first reference period, and the first terminal device obtains the first target reference signal according to the at least one reference signal. If there is at least one reference period, then The first terminal device can obtain the first target reference signal for each reference period, so that the first terminal device can perform synchronization evaluation on the first link according to the at least one first target reference signal to obtain synchronization indication information, or perform Out-of-step evaluation to obtain out-of-step indication information.
  • the first terminal device can obtain the first target reference signal based on at least one reference signal for evaluation. This solves the problem that the number of non-periodic reference signals arriving is uncertain, so that the first terminal device can complete the link assessment based on the aperiodic transmitted reference signals.
  • D2D scenarios which can be NR D2D scenarios or LTE D2D scenarios, etc.
  • V2X scenarios which can be NR V2X scenarios or LTE V2X scenarios, or can Applied to other scenarios or other communication systems, for example, it can also be used for link evaluation of the Uu interface of the LTE system or NR system.
  • the carrier frequency carried by the relevant side link can be a licensed spectrum or an unlicensed spectrum. It can also be shared spectrum, and there are no specific restrictions.
  • FIG. 2 is a network architecture applied in the embodiment of this application.
  • Figure 2 includes a network device and two terminal devices, namely terminal device 1 and terminal device 2. Both of these terminal devices can be connected to the network device, or the two terminal devices may only have the terminal device 1 connected to the network device.
  • the terminal device 2 is not connected to the network device, and the two terminal devices can also communicate through sidelink, that is, the terminal device 1 is a terminal device with network coverage, and the terminal device 2 is a terminal device with partial network coverage.
  • Figure 2 takes as an example that only the terminal device 1 is connected to the network device.
  • the number of terminal devices in FIG. 2 is only an example. In practical applications, a network device can provide services for multiple terminal devices.
  • the network device in FIG. 2 is, for example, an access network device, such as a base station.
  • the access network device in different systems corresponding to different devices for example, in the fourth generation mobile communication technology (the 4 th generation, 4G) system
  • the eNB may correspond, a corresponding access network device 5G 5G in the system, For example, gNB, or an access network device in the subsequent evolution of the communication system.
  • the terminal device in FIG. 2 is a vehicle-mounted terminal device or a car as an example, but the terminal device in the embodiment of the present application is not limited to this.
  • the embodiment of the present application provides a link measurement method.
  • FIG. 3 is a flowchart of the method.
  • the application of this method to the network architecture shown in FIG. 3 is taken as an example.
  • the method can be executed by two communication devices, for example, the first communication device and the second communication device.
  • the first communication device or the second communication device may be a network device or a communication device capable of supporting the network device to implement the functions required by the method, or may be a terminal device or a terminal device capable of supporting the functions required by the terminal device to implement the method.
  • the communication device can of course also be other communication devices, such as a chip system. And there are no restrictions on the implementation of the first communication device or the second communication device.
  • the two communication devices can be implemented in the same form, for example, both can be implemented in the form of equipment, or the two communication devices can also be implemented as Different forms, for example, the first communication device is implemented in the form of a device, the second communication device is implemented in the form of a chip system, and so on.
  • the network equipment is, for example, a base station.
  • the method is executed by the terminal device and the terminal device as an example, that is, the first communication device is a terminal device (for example, called the first terminal device), and the second communication device is also a terminal device (for example, Referred to as the second terminal device) as an example.
  • the first terminal device described below can implement the functions of the terminal device 1 in the network architecture shown in FIG.
  • the second terminal device can implement the functions of the terminal device 2 in the network architecture shown in FIG. 2.
  • the first terminal device configures a reference period.
  • the first terminal device may first configure link evaluation parameters.
  • the link evaluation parameter includes a reference period.
  • the reference signal involved in the embodiment of this application is transmitted aperiodically, but the embodiment of this application can still set a reference period.
  • the reference period can be understood as a period of time, and the first terminal device expects to receive one or more Reference signal, which can be compatible with the existing RLM process and framework, simplifying the design process.
  • the transmission time of the reference signal is irregular, that is, the reference signal cannot be guaranteed to be sent periodically, and the number of reference signals received by the first terminal device may be different, for example, one or more reference signals may be received. There are two reference signals, or 0 reference signals may be received (or no reference signals are received). Therefore, the number of reference signals that can be received in a reference period cannot be guaranteed.
  • the first terminal device may determine the duration of the reference period by itself, that is, the duration of the reference period may be configured by the first terminal device, or the duration of the reference period may be specified by the protocol, and the first terminal device may directly follow the protocol Configuration.
  • the duration of the reference period may be configured by the second terminal device, and after configuring the duration of the reference period, the second terminal device may send first indication information to the first terminal device, where the first indication information is used to indicate the duration of the reference period. After receiving the first indication information, the first terminal device can configure the duration of the reference period.
  • the duration of the reference period may also be configured by a network device (such as a base station), and the network device may send to the first terminal device after configuring the duration of the reference period
  • the first indication information is used to indicate the duration of the reference period. After receiving the first indication information, the first terminal device can configure the duration of the reference period.
  • the first service here is the service transmitted on the first link.
  • the link is the link between the first terminal device and the second terminal device.
  • the first terminal device receives at least one reference signal on the first link, and what the first terminal device wants to measure is the first link.
  • the determined duration of the reference period is 40 ms, or other lengths may also be possible, and the duration of the reference period may be determined according to the duration of the expected reference signal.
  • the reference signal is sent together when the service is sent, for example, the demodulation signal (DMRS) of the control channel PSCCH of the service is used as the reference signal, or the data of the service
  • the demodulation signal (DMRS) of the channel PSSCH is used as a demodulation signal, or other reference signals that are simultaneously transmitted with the PSSCH in a time slot. Therefore, another way to determine the duration of the reference period is to consider the parameters of the first service when determining the duration of the reference period. Combining service parameters to determine the duration of the reference period, and associating link evaluation parameters with the service can make the measurement result more suitable and more accurate.
  • the parameters of the first service include, for example, the expected period duration of the data packet of the first service, or the retransmission configuration information of the first service, or the expected period duration of the data packet of the first service and the retransmission of the data packet of the first service.
  • Pass configuration information Among them, if there is only one service transmission on the first link, then the service is the first service, the expected period of the data packet of this service is the expected period of the data packet of the first service, and the retransmission of the data packet of this service
  • the configuration information is the retransmission configuration information of the first service.
  • the service with the smallest expected period duration of the data packet can be determined from it, and this service is regarded as the first service, and the expected period duration of the data packet of this service is that of the first service.
  • the expected period duration of the data packet, and the retransmission configuration information of the data packet of the service is the retransmission configuration information of the first service.
  • the parameters of the first service include the expected period duration of the data packet of the first service and the retransmission configuration information of the data packet of the first service
  • the reference period can satisfy the following formula 1 :
  • T min (the first threshold, ceil (T packet ⁇ P 1 ) (formula 1)
  • ceil() means rounding up.
  • T represents the reference period
  • T packet represents the expected period duration of the data packet of the first service
  • P 1 represents the retransmission configuration information of the first service.
  • the first threshold may be configured through signaling, for example, configured by the network device through the first indication information, or configured by the second terminal device through the first indication information, or the first threshold may also be set by the first terminal device itself, or It can be specified by agreement, for example, the agreement specifies that the first threshold is 2 ms.
  • the value of P 1 is related to the retransmission configuration of the first service, for example, it is related to the hybrid automatic repeat request (HARQ) retransmission of the first service.
  • the retransmission configuration information of the data packet of the first service may indicate the retransmission mode of the data packet of the first service.
  • the retransmission configuration information may include one of not performing HARQ retransmission for the first service, performing blind retransmission for the first service, or performing adaptive retransmission for the first service.
  • k is a constant, such as k is equal to 1 or 2, or k can also be a variable.
  • the number of times of HARQ adaptive retransmission for different data packets included in the first service may be the same or may be different.
  • the method of determining the value of P 1 here is only an example, and the specifics are not limited thereto.
  • blind retransmission means that after the sender of the first service sends the first service, the sender will retransmit the first service regardless of whether it receives the feedback information from the receiver for the first service, which is equivalent to One service is sent multiple times to improve coverage.
  • Adaptive retransmission means that after sending the first service, the sender of the first service will determine whether to retransmit according to the feedback information from the receiving end.
  • parameters of the first service may also include other parameters, and the formulas satisfied by the reference period may be different accordingly, and the specifics are not limited.
  • the second terminal device sends at least one reference signal to the first terminal device, and the first terminal device receives at least one reference signal from the second terminal device.
  • the at least one reference signal is transmitted aperiodicly, in other words, the at least one reference signal is irregular.
  • the "irregular" mentioned in the various embodiments of the present application means that the reference signal arrives randomly, rather than being sent according to a certain period.
  • the reference signal is a demodulation reference signal (demodulation reference sgnal, DMRS) of a control channel or a data channel, and the transmission of the reference signal is based on scheduling.
  • demodulation reference signal demodulation reference sgnal, DMRS
  • the reference signal is a reference signal dedicated to RLM, and the reference signal is sent along with the service data channel (for example, PSSCH), and the reference signal is also based on scheduling.
  • the service data channel for example, PSSCH
  • At least one reference signal includes one, two or more reference signals. At least one reference signal is used for wireless link measurement. It should be noted that in addition to the wireless link measurement, the first terminal device may also need to perform some other measurement procedures. Other measurement procedures may use other reference signals, so the first terminal device may not only receive In addition to at least one reference signal, reference signals used to complete other functions may also be received. Of course, reference signals used to complete other functions may not be received. These reference signals are not within the scope of consideration of the embodiments of this application. The reference signals mentioned in the examples all refer to the reference signals used to complete the wireless link measurement.
  • the first terminal device may use the duration of the reference period as a time unit to receive the reference signal from the second terminal device.
  • the first terminal device may receive one reference signal in one reference period, or may also receive at least two reference signals, or may not receive the reference signal (the reference signal cannot be received here).
  • Means that the reference signal used to perform RLM cannot be received, and whether the first terminal device can receive the reference signal used to complete other measurement processes is not limited in the embodiment of the present application).
  • FIG. 3 is an example in which the first terminal device receives at least one reference signal in the first reference period.
  • the first terminal device determines a first target reference signal in the first reference period according to the at least one reference signal.
  • the first terminal device can directly use the reference signal as the first target reference signal, so that the first target reference signal can participate in the evaluation subsequently. Or, if the first terminal device receives at least two reference signals in the first reference period, the first terminal device can obtain a reference signal, that is, the first target reference signal, according to the at least two reference signals, so that the first target reference signal can be subsequently A target reference signal participates in the measurement.
  • the first terminal device may determine the first target reference signal, which will be described below with examples.
  • the first terminal device may determine that one of the at least one reference signal is the first target reference signal.
  • the first terminal device may use the first received reference signal among the at least one reference signal as the first target reference signal; or, the first terminal device may use the last received reference signal among the at least one reference signal as the first target reference signal.
  • a target reference signal; or, the first terminal device may also use the reference signal in the middle of the at least one reference signal as the first target reference signal.
  • the number of at least one reference signal is 3, that is, the first terminal device is in the If 3 reference signals are received in the reference period, the first terminal device can use the second received reference signal as the first target reference signal, or, for example, the number of at least two reference signals is 4, that is, the first terminal device is in If 4 reference signals are received in the reference period, the first terminal device may use the second received reference signal or the third received reference signal as the first target reference signal.
  • the first terminal device may use any one of the at least one reference signal as the first target reference signal, and which reference signal is specifically selected as the first target reference signal is not limited in the embodiment of the present application.
  • the first terminal device may combine part of or all of the reference signals in the at least two reference signals, and use the combined signal as the first Target reference signal.
  • multiple signals are combined.
  • One combining method is, for example, linear averaging the multiple signals, or other combining methods are also possible, which are not specifically limited.
  • the first terminal device may combine all reference signals in at least one reference signal to obtain the first target reference signal; or, the first terminal device may also combine part of the reference signals in the at least one reference signal, for example, The first received reference signal and the last received reference signal in the at least one reference signal are combined to obtain the first target reference signal.
  • part of the reference signals may be arbitrarily selected from the at least one reference signal and combined to obtain the first target reference signal.
  • a target reference signal If the first terminal device combines part of the reference signals in the at least one reference signal to obtain the first target reference signal, then which reference signals in the at least one reference signal are combined by the first terminal device is not done in this embodiment. limit.
  • the first reference period is taken as an example for introduction.
  • the first terminal device obtains the first target reference signal in a similar manner.
  • the problem that the aperiodic transmission of reference signals cannot be measured due to the uneven arrival quantity is solved, and the existing RLM Process compatibility is better.
  • the first terminal device may determine the first target reference signal according to the link evaluation parameter.
  • the link evaluation parameters include the reference period, and in addition, the link evaluation parameters may also include the reference density or the reference bandwidth, or include the reference density and the reference bandwidth.
  • the link evaluation parameter used by the first terminal device to determine the first target reference signal may be a reference density or a reference bandwidth.
  • the density of the reference signal refers to the number of frequency domain units that carry the reference signal in the bandwidth occupied by a reference signal, and the cumulative density of the reference signal is the sum of the densities of one or more reference signals.
  • the frequency domain unit is, for example, a resource block (resource block, RB), or a resource element (resource element, RE), or other frequency domain units.
  • the first terminal device determines the first target reference signal according to the reference density. In this manner, when the cumulative density of the first N reference signals in at least one reference signal is greater than or equal to the reference density, the first terminal device uses the first N reference signals as the first target reference signal, and N is greater than Or an integer equal to 1. For example, in the first reference period, the first terminal device continuously receives the reference signal. For example, each time it receives a reference signal, the first terminal device can determine whether the cumulative density of all reference signals received in the first reference period is greater than or Equal to the reference density.
  • the reference density is 3, and in the first reference period, the density of the reference signal received by the first terminal device may refer to FIG. 4.
  • the oblique box in FIG. 4 represents the reference signal.
  • the first terminal device receives 1 reference signal with a density of 1 at time t0, and the first terminal device can determine the accumulation of all reference signals received in the reference period Whether the density is greater than or equal to the reference density, because the reference density is 3, the cumulative density of the reference signal is 1, so the cumulative density of all reference signals received in the reference period is less than the reference density, the first terminal device can continue Receive reference signal.
  • the first terminal device receives a reference signal with a density of 1.
  • the first terminal device can determine whether the cumulative density of all reference signals received in the first reference period is greater than or equal to the reference density, because the reference density If it is 3, the cumulative density of the reference signal is 2. Therefore, the cumulative density of all reference signals received in the reference period is less than the reference density, and the first terminal device can continue to receive the reference signal.
  • the first terminal device receives a reference signal with a density of 1.
  • the first terminal device can determine whether the cumulative density of all reference signals received in the first reference period is greater than or equal to the reference density, because the reference density If it is 3, the cumulative density of the reference signal is 2. Therefore, the cumulative density of all reference signals received in the first reference period is equal to the reference density, which is equivalent to that the first terminal device has received the density in the first reference period.
  • the reference signal of 3 can reach the measurement accuracy, so the first terminal device can use these 3 reference signals as the first target reference signal. For example, the first terminal device can combine these 3 reference signals to obtain the first target reference signal. , The first target reference signal can participate in the measurement of the first link. In the first reference period, if the terminal device also receives the reference signal, the reference signal that is subsequently received may not need to participate in the measurement of the first link.
  • the first terminal device determines the first target reference signal according to the reference bandwidth. In this manner, when the cumulative bandwidth of the first N reference signals in at least one reference signal is greater than or equal to the reference bandwidth, the first terminal device uses the first N reference signals as the first target reference signal, and N is greater than Or an integer equal to 1. For example, in the first reference period, the first terminal device continuously receives the reference signal. For example, every time a reference signal is received, the first terminal device can determine whether the cumulative bandwidth of all reference signals received in the first reference period is greater than or Equal to the reference bandwidth.
  • the reference bandwidth is 48 RBs
  • the bandwidth of the reference signal received by the first terminal device may refer to FIG. 5.
  • the oblique box in FIG. 5 represents the reference signal.
  • the first terminal device receives a reference signal with a bandwidth of 16 RBs at time t0, and the first terminal device can determine all the reference signals received in the first reference period. Whether the cumulative bandwidth of the signal is greater than or equal to the reference bandwidth, because the reference bandwidth is 48 RBs, at this time the cumulative bandwidth of the reference signal is 16 RBs, so the cumulative bandwidth of all reference signals received in the first reference period is less than the reference bandwidth , The first terminal device can continue to receive the reference signal.
  • the first terminal device receives a reference signal with a bandwidth of 12 RBs.
  • the first terminal device can determine whether the cumulative bandwidth of all reference signals received in the first reference period is greater than or equal to the reference bandwidth, because The reference bandwidth is 48 RBs.
  • the accumulated bandwidth of the reference signal is 28 RBs. Therefore, the accumulated bandwidth of all reference signals received in the first reference period is less than the reference bandwidth, and the first terminal device can continue to receive the reference signal.
  • the first terminal device receives a reference signal with a bandwidth of 12 RBs.
  • the first terminal device can determine whether the cumulative bandwidth of all reference signals received in the first reference period is greater than or equal to the reference bandwidth, because The reference bandwidth is 48 RBs.
  • the accumulated bandwidth of the reference signal is 48 RBs. Therefore, the accumulated bandwidth of all reference signals received in the first reference period is less than the reference bandwidth, and the first terminal device can continue to receive the reference signal.
  • the first terminal device receives a reference signal with a bandwidth of 8 RBs, and the first terminal device can determine whether the cumulative bandwidth of all reference signals received in the first reference period is greater than or equal to the reference bandwidth, because The reference bandwidth is 48 RBs.
  • the accumulated bandwidth of the reference signal is 48 RBs. Therefore, the accumulated bandwidth of all reference signals received in the first reference period is equal to the reference bandwidth, which is equivalent to the first terminal device in the first reference period.
  • the reference signal with a bandwidth of 48 RBs has been received in the network, and the measurement accuracy can be achieved. Therefore, the first terminal device can use these 4 reference signals as the first target reference signal. For example, the first terminal device can use these 4 reference signals. Combine to obtain the first target reference signal, and the first target reference signal can participate in the measurement of the first link. In the first reference period, if the terminal device also receives the reference signal, the reference signal that is subsequently received may not need to participate in the measurement of the first link.
  • the first terminal device may determine the reference density by itself, that is, the reference density may be configured by the first terminal device, or the reference density may be specified through an agreement.
  • the reference density may be configured by the second terminal device, and the second terminal device may send third indication information to the first terminal device after configuring the reference density, and the third indication information is used to indicate the reference density.
  • the first terminal device can determine the reference density.
  • the reference density may also be configured by a network device (such as a base station), and the network device may send third indication information to the first terminal device after configuring the reference density , The third indication information is used to indicate the reference density.
  • the first terminal device can determine the reference density.
  • the third indication information and the first indication information may be the same indication information, or may also be different indication information.
  • the first terminal device may determine the reference bandwidth by itself, that is, the reference bandwidth may be configured by the first terminal device, or the reference bandwidth may be specified through a protocol.
  • the reference bandwidth may be configured by the second terminal device, and after configuring the reference bandwidth, the second terminal device may send fourth indication information to the first terminal device, where the fourth indication information is used to indicate the reference bandwidth.
  • the first terminal device can determine the reference bandwidth.
  • the reference bandwidth may also be configured by a network device (such as a base station), and the network device may send fourth indication information to the first terminal device after configuring the reference bandwidth , The fourth indication information is used to indicate the reference bandwidth.
  • the first terminal device After receiving the first indication information, the first terminal device can determine the reference bandwidth.
  • the fourth indication information and the first indication information may be the same indication information, or may also be different indication information.
  • the fourth indication information and the first indication information may be the same indication information, or may also be different indication information.
  • the fourth indication information and the third indication information may be the same indication information, or may also be different indication information.
  • the signal can be accumulated according to the reference density or reference bandwidth in the reference period, which can solve the problem of the density or bandwidth of the received reference signal that does not meet the measurement accuracy. , As far as possible to ensure the accuracy of the measurement, reducing the complexity of equipment and system design.
  • the first terminal device may not use the above way, but adopt other ways to determine the first target reference signal.
  • the first terminal device can be determined by the first terminal device itself, or configured by the second terminal device, or if the second terminal device is also a terminal device, it can also be determined by the network Equipment configuration, or can also be stipulated by agreement.
  • the process of S33 may be completed by the physical layer of the first terminal device, for example.
  • the first terminal device obtains synchronization indication information or out-of-synchronization indication information of the first link according to at least one target reference signal in at least one reference period, where the first link is the first terminal device and the second terminal device
  • the at least one reference period includes the first reference period
  • the at least one target reference signal includes the first target reference signal.
  • the first terminal device obtains the first target reference signal according to at least one reference signal in the first reference period, and for each reference period in at least one reference period, the first terminal device can use the same manner To get the target reference signal.
  • the second terminal device sends one or more reference signals to the first terminal device in the second reference period, and the first terminal device receives one or more reference signals from the second terminal device in the second reference period.
  • the first terminal device may determine the target reference signal in the second reference period according to the one or more reference signals, for example, referred to as the second target reference signal.
  • the manner in which the first terminal device determines the second target reference signal according to one or more reference signals may refer to the manner in which the first terminal device determines the first target reference signal according to at least one reference signal. Then the at least one reference period may also include a second reference period, and the at least one target reference signal may also include a second target reference signal.
  • the first terminal device may perform synchronization measurement on the first link according to at least one target reference signal in at least one reference period to obtain synchronization indication information, or the first terminal device may perform synchronization measurement according to at least one target reference signal in at least one reference period. Perform out-of-synchronization measurement on the first link to obtain out-of-synchronization indication information.
  • the measurement when the first terminal device measures the link, the measurement may be performed with the evaluation duration included in the link evaluation parameter as the time unit, that is, the first terminal device may perform the measurement based on the reference signal received during the evaluation duration.
  • the evaluation duration may also be referred to as the measurement duration or monitoring duration.
  • the evaluation duration used by the first terminal device for evaluation is called the first duration.
  • the first duration includes one or more reference periods, and the one or more reference periods include the at least one reference period, then the first The terminal device performs measurement according to at least one target reference signal in at least one reference period, that is, performs measurement according to at least one target reference signal in the first time period.
  • the first duration here may refer to the synchronization evaluation duration used for performing synchronization measurement, or may refer to the out-of-synchronization evaluation duration used for performing out-of-synchronization measurement.
  • the length of the synchronization evaluation duration and the out-of-synchronization evaluation duration may be the same or different.
  • the number of reference periods included in the evaluation duration is greater than or equal to the number of the at least one reference period.
  • the at least one reference period mentioned here refers to the reference period in which the reference signal is received, that is, the Among the reference periods included in the evaluation duration, it is possible that the first terminal device does not receive the reference signal in some reference periods, and the reference period is not included in at least one reference period. At least one reference period may be continuous or discontinuous in time.
  • the evaluation duration includes 5 reference periods, namely reference period 1, reference period 2, reference period 3, reference period 4, and reference period 5.
  • the first terminal device is in reference period 1, reference period 2, and reference period.
  • the reference signal is received in reference period 3 and reference period 4.
  • the first terminal device can obtain the target reference signal according to the reference signal received in reference period 1, obtain the target reference signal according to the reference signal received in reference period 2, and obtain the target reference signal according to the reference signal received in reference period 2.
  • the reference signal received in the reference period 3 obtains the target reference signal 3, and the target reference signal 4 is obtained from the reference signal received in the reference period 4.
  • the first terminal device does not receive the reference signal in the reference period 5 and cannot obtain For the target reference signal, the reference period 1, the reference period 2, the reference period 3, and the reference period 4 can participate in the measurement, and the reference period 5 does not participate in the measurement. Then, the at least one reference period includes reference period 1, reference period 2, reference period 3, and reference period 4, but does not include reference period 5. It can be seen that in this case, the at least one reference period is continuous in time.
  • the evaluation duration includes 5 reference periods, namely, reference period 1, reference period 2, reference period 3, reference period 4, and reference period 5.
  • the first terminal device is in reference period 1, reference period 2, and reference period. After receiving the reference signal in period 4, the first terminal device can obtain the target reference signal according to the reference signal received in reference period 1, obtain the target reference signal according to the reference signal received in reference period 2, and obtain the target reference signal according to the reference signal received in reference period 2.
  • the reference signal received in period 4 obtains target reference signal 3, but the first terminal device does not receive the reference signal in reference period 3 and reference period 5, and cannot obtain the target reference signal, then reference period 1, reference period 2, and Reference period 4 can participate in measurement, while reference period 3 and reference period 5 are not involved in measurement.
  • the at least one reference period includes reference period 1, reference period 2, and reference period 4, but does not include reference period 3 and reference period 5. It can be seen that in this case, the at least one reference period is not continuous in time.
  • the first terminal device when the first terminal device measures the first link, it may not use the evaluation duration as the time unit for evaluation. This is equivalent to not setting the evaluation duration parameter, and the first terminal device uses at least one reference period as the time unit.
  • the measurement is performed in time units, and at least one reference period refers to the reference period during which the reference signal is received.
  • P is an integer greater than or equal to 1. If P is greater than 1, the P reference periods may be continuous , It may be discontinuous.
  • the difference from setting the evaluation duration is that the evaluation duration is limited to the total number of reference cycles, but there is no limit to the number of reference cycles that actually receive the reference signal in these reference cycles, and this way of not setting the evaluation duration ,
  • the limit is the number of reference cycles that actually receive the reference signal.
  • the first terminal device may determine the first duration by itself, that is, the first duration may be configured by the first terminal device, or the first duration may be specified through an agreement.
  • the first duration may be configured by the second terminal device, and the second terminal device may send second indication information to the first terminal device after configuring the first duration, and the second indication information is used to indicate the first duration.
  • the first terminal device can determine the first duration.
  • the first duration may also be configured by a network device (such as a base station), and the network device may send the second terminal device to the first terminal device after configuring the first duration.
  • Indication information the second indication information is used to indicate the first duration.
  • the first terminal device can determine the first duration.
  • the fourth indication information and the first indication information may be the same indication information, or may also be different indication information.
  • the first terminal device may determine the value of P by itself, that is, the value of P may be configured by the first terminal device, or the value of P may be specified through an agreement.
  • the value of P may be configured by the second terminal device.
  • the second terminal device may send second indication information to the first terminal device, and the second indication information is used to indicate the value of P. After receiving the second indication information, the first terminal device can determine the value of P.
  • the value of P may also be configured by a network device (such as a base station), and the network device may send the value of P to the first terminal device after configuring the value of P
  • a network device such as a base station
  • the network device may send the value of P to the first terminal device after configuring the value of P
  • the second indication information the second indication information is used to indicate the value of P, after the first terminal device receives the first indication information, the value of P can be determined.
  • the fourth indication information and the first indication information may be the same indication information, or may also be different indication information.
  • the second indication information and the first indication information may be the same indication information, or may also be different indication information.
  • the second indication information and the third indication information may be the same indication information, or may also be different indication information.
  • the second indication information and the fourth indication information may be the same indication information, or may also be different indication information.
  • the first indication information, the second indication information, the third indication information, and the fourth indication information may be the same indication information, which is equivalent to configuring the reference period, first duration, reference density, and reference bandwidth simultaneously through one indication information.
  • the first indication information, the second indication information, the third indication information, and the fourth indication information may also be different indication information, which is equivalent to configuring different link evaluation parameters through different indication information, so that the configuration is more Targeted.
  • some of the first indication information, the second indication information, the third indication information, and the fourth indication information may be the same indication information, for example, the first indication information and the second indication information are the same indication information, The third instruction information and the fourth instruction information are the same instruction information, etc., and there is no specific limitation.
  • the first terminal device may determine the first duration according to the reference period.
  • the first duration is the evaluation duration used for synchronization measurement, that is, the first terminal device is to obtain the synchronization indication of the first link according to the first target reference signal in at least one cycle included in the first duration Information, then the first duration can satisfy the following formula 2:
  • the unit of the first duration is, for example, milliseconds.
  • the first duration is the evaluation duration for out-of-synchronization measurement, that is, the first terminal device is to obtain the out-of-step of the first link according to the first target reference signal in at least one cycle included in the first duration.
  • Step instruction information then the first duration can satisfy the following formula 3:
  • L out represents the first duration
  • T represents the duration of the reference period
  • M out represents the out- of-synchronization measurement of the first link during the out-of-synchronization measurement based on the periodic reference signal.
  • the unit of the first duration is, for example, milliseconds.
  • the above formula is only an example. If the first terminal device determines the first duration according to the reference period, the determination method is not limited to the above formula.
  • the above formula 2 or formula 3 only considers the reference period, or, when determining the first duration, other link evaluation parameters may also be considered.
  • the first terminal device determines the first duration according to the reference period.
  • the first terminal device determines the first duration according to the reference period and the first parameter.
  • the first parameter includes, for example, a parameter related to the reference density, or a parameter related to the reference bandwidth, or a parameter related to the reference density and a parameter related to the reference bandwidth.
  • the first terminal device determines the first duration according to the reference period and the parameters related to the reference density.
  • the first duration is the evaluation duration used for synchronization measurement, that is, the first terminal device is to obtain the synchronization indication information of the first link according to the first target reference signal in at least one cycle included in the first duration , Then the first duration can satisfy the following formula 4:
  • Equation 4 ceil() means round up.
  • L in max (a second threshold, ), Indicates rounding down.
  • T is the duration of the reference period
  • M in the reference signal represents the number of the first link when measured according to a periodic synchronization reference signal
  • the unit of the first duration is, for example, milliseconds.
  • P 2 may also be a value in other forms, as long as P 2 is related to the reference density, and the lower the actual signal density, the more measurement samples are required.
  • the first duration is the evaluation duration used for out-of-synchronization measurement, that is, the first terminal device is to obtain the out-of-synchronization of the first link according to the first target reference signal in at least one period included in the first duration.
  • the first duration can satisfy the following formula 5:
  • ceil() means round up.
  • L out represents the first duration
  • T represents the duration of the reference period
  • P 2 please refer to the previous introduction.
  • the first terminal device determines the first duration according to the reference period and the parameter related to the reference bandwidth.
  • the first duration is the evaluation duration used for synchronization measurement, that is, the first terminal device is to obtain the synchronization indication information of the first link according to the first target reference signal in at least one cycle included in the first duration , Then the first duration can continue to satisfy the following formula 6:
  • ceil() means round up.
  • the bandwidth of the reference signal actually received in a reference period is 24 RBs and the reference bandwidth is 48 RBs
  • P 3 1/bandwidth ratio
  • P 3 may also be a value in other forms, as long as P 3 is related to the reference bandwidth.
  • the first duration is the evaluation duration used for out-of-synchronization measurement, that is, the first terminal device is to obtain the out-of-synchronization of the first link according to the first target reference signal in at least one period included in the first duration. Indicating information, then the first duration can continue to satisfy the following formula 7:
  • ceil() means rounding up.
  • L out max (the second threshold, ), Indicates rounding down.
  • the first terminal device determines the first duration according to the reference period and the parameter related to the reference bandwidth.
  • the first duration is the evaluation duration used for out-of-synchronization measurement, that is, the first terminal device is to obtain the out-of-synchronization of the first link according to the first target reference signal in at least one period included in the first duration. Indicating information, then the first duration can continue to satisfy the following formula 8:
  • ceil() means round up.
  • L out max (the second threshold, ), Indicates rounding down.
  • the first duration is the evaluation duration used for synchronization measurement, that is, the first terminal device is to obtain the synchronization indication information of the first link according to the first target reference signal in at least one cycle included in the first duration , Then the first duration can continue to satisfy the following formula 9:
  • ceil() means round up.
  • L in max (a second threshold, )
  • the first terminal device can obtain synchronization indication information or out-of-synchronization indication information.
  • the process of S33 may be completed by the physical layer of the first terminal device, for example.
  • the physical layer of the first terminal device performs out-of-synchronization measurement on the first link according to the reference signal received in Lout .
  • the physical layer of the first terminal device estimates the BLER of the PDCCH according to the target reference signal in Lout to obtain out-of-synchronization indication information.
  • the physical layer of the first terminal device can report to the higher layer of the first terminal device (for example, MAC A layer or a radio resource control (radio resource control, RRC) layer, etc.) sends out-of-synchronization indication information.
  • the higher layer of the first terminal device for example, MAC A layer or a radio resource control (radio resource control, RRC) layer, etc.
  • the physical layer of the first terminal device synchronizing measurement of a first link according to the received reference signal L in. For example, the physical layer of the first terminal device to estimate the BLER PDCCH signal according to the target within the reference L in, synchronized indication information.
  • the physical layer of the first terminal apparatus BLER obtained in accordance with the respective reference signal L in estimation, BLER is greater than a preset threshold q in (e.g. 2%)
  • the physical layer of the first terminal may be the terminal device The upper layer of the device sends synchronization indication information.
  • the physical layer of the first terminal device may perform a measurement every second time period, and may send the evaluation information to the upper layer of the first terminal device.
  • the second duration can be understood as the duration of the reporting interval, and the duration of the reporting interval is, for example, equal to the duration of the reference period.
  • the evaluation information may include synchronization indication information or out of synchronization indication information, or include synchronization indication information and out of synchronization indication information.
  • the evaluation information can also be called measurement information, or monitoring information.
  • the first terminal device may determine the duration of the reporting interval by itself, that is, the duration of the reporting interval may be configured by the first terminal device, or the duration of the reporting interval may be stipulated by agreement. Alternatively, the duration of the reporting interval may be configured by the second terminal device.
  • the second terminal device can send the duration of the reporting interval to the first terminal device, so that the first terminal device can determine the duration of the reporting interval. duration.
  • the duration of the reporting interval may also be configured by a network device (such as a base station). After the network device configures the duration of the reporting interval, the reporting interval can be sent to The first terminal device, so that the first terminal device can determine the duration of the reporting interval.
  • the duration of the reporting interval may be greater than or equal to the duration of the reference period, for example, the duration of the reporting interval may be equal to the duration of the reference period, or may also be equal to an integer multiple of the duration of the reference period.
  • the duration of the reference period is equal to the reporting interval duration.
  • FIG. 6 is a schematic diagram of measuring the first link by the physical layer of the first terminal device.
  • the part shown by the dashed frame in FIG. 6 represents the first duration.
  • the first duration includes, for example, 6 reference periods, and these 6 reference periods are respectively represented as RS0 to RS5.
  • Figure 6 takes a reference period of 20ms as an example.
  • the slashed box in FIG. 6 represents the target reference signal. It should be noted that the target reference signal in FIG. 6 is only indicative, and does not represent the actual position or time domain length of the target reference signal. It can be seen that the reference period RS0, the reference period RS2, and the reference period RS4 do not include slashed boxes.
  • the reference signal used by the terminal device to perform radio link measurement that is, among the 6 reference periods, RS1, RS3, and RS5 belong to at least one reference period, and the first terminal device obtains 3 in at least one reference period.
  • the reporting interval is equal to the reference period, and at the end of each reference period, the physical layer of the first terminal device can perform measurement and report evaluation information to a higher layer.
  • the reporting timing in Figure 7 refers to the first terminal device to perform measurement and report evaluation information to the higher level. It can be seen that two reporting timings are shown in Figure 6, and the interval between these two reporting timings is the reporting interval. It is a reference period.
  • the first terminal device when the first terminal device evaluates the first reporting opportunity shown in FIG. 6, it measures according to all the target reference signals included in the dashed box, and if the first terminal device performs the measurement at the second reporting opportunity shown in FIG. To report the timing for measurement, then move the position of the dashed frame to the right for a reference period, and the first terminal device then performs measurement according to all target reference signals included in the moved dashed frame.
  • the first terminal device determines whether the first link fails according to the synchronization indication information or the out-of-synchronization indication information.
  • the first terminal device After obtaining the synchronization indication information or the out-of-synchronization indication information, the first terminal device can determine whether the first link fails.
  • the process of S33 can be completed by the physical layer of the first terminal device, that is, the physical layer of the first terminal device can obtain synchronization indication information or out-of-synchronization indication information, then if the physical layer of the first terminal device obtains the synchronization indication Information, the synchronization indication information may be sent to the upper layer of the first terminal device, or if the physical layer of the first terminal device obtains the out-of-synchronization indication information, the out-of-synchronization indication information may be sent to the upper layer of the first terminal device.
  • the synchronization indication information is, for example, a link synchronization indication
  • the out of synchronization indication information is, for example, a link out of synchronization indication.
  • the upper layer of the first terminal device performs S34.
  • the T310 timer can be started. Before the T310 timer expires, if the upper layer can continuously receive N311 link synchronization indications from the physical layer, the upper layer considers that the first terminal device and the second terminal device are back in synchronization. Or, before the T310 timer expires, if the upper layer does not continuously receive N311 synchronization indications from the physical layer, it is determined that the first link has failed. If it is determined that the link fails, the first terminal device may perform one or more of the following operations:
  • the first operation the first terminal device sends sidelink failure report information to the network device.
  • the side link failure report information may be carried by a radio resource control (radio resource control, RRC) message, a media access control control element (MAC CE), or a physical layer channel.
  • RRC radio resource control
  • MAC CE media access control control element
  • the second operation the first terminal device transmits side link failure report information to the second terminal device.
  • the side link failure report information can be carried by RRC messages, MAC CE, or physical layer channels.
  • the third operation the first terminal device stops sending feedback information to the second terminal device, and the feedback information includes, for example, hybrid automatic repeat request-ack (HARQ-ACK) information or CSI. If the second terminal device does not receive the feedback information from the first terminal device within a certain period of time, the second terminal device will also determine that the link fails.
  • HARQ-ACK hybrid automatic repeat request-ack
  • the first terminal device may also determine the validity of the evaluation information.
  • the evaluation information may include synchronization indication information or out-of-synchronization indication information.
  • the physical layer of the first terminal device may determine the validity of the evaluation information, and when sending the evaluation information to the upper layer of the first terminal device, the validity information is also sent to the upper layer of the first terminal device.
  • the validity information of the evaluation information (or the validity of the evaluation information) may indicate the number of target reference signals participating in obtaining the evaluation information. For example, the more the number of reference signals participating in obtaining the evaluation information, the more effective the evaluation information is. High, and the less the number of reference signals involved in obtaining the evaluation information, the lower the effectiveness of the evaluation information.
  • the validity information of the evaluation information may be, for example, specific numerical values, for example, the numerical values 1, 2, 3, etc., respectively representing different validity; or, the validity information of the evaluation information may simply indicate that the validity is high or the validity is low.
  • the validity information of the evaluation information can be realized by 1 bit. If the value of this bit is "1", it means that the validity of the evaluation information is high; (for example: If the target reference signal is received in the last reference period, the value of 1 bit can be "1", or the target reference signal is not received in the last reference period. The value of 1 bit can be "0".
  • the first threshold is, for example, 80% (the number of reference signals actually received/the number of reference signals expected to be received), or the first threshold is, for example, 15 (the number of reference signals actually received) ;
  • the upper level of the first terminal device can determine the degree of reliability of the evaluation information, so that it can choose whether to determine whether the link fails according to the evaluation information. In this way, the reliability of link measurement can be improved.
  • the physical layer may not perform the same/out-of-synchronization measurement, skip this high-level report, and do not report synchronization or report Out-of-synchronization information, or report an indication of "No reference signal received".
  • the first terminal device may not receive the reference signal for a long time. For example, when the link fails, the first terminal device may not receive the reference signal for a long time.
  • the first terminal device may also maintain a first timer, and the timing duration of the first timer may be configured by the first terminal device or by the second terminal device. Configure and notify the first terminal device, or if the second terminal device is a terminal device, the timing duration of the first timer may also be configured by the network device and notified to the first terminal device, or the timing duration of the first timer may also be determined by The agreement stipulates.
  • the timing duration of the first timer is ⁇ 500ms, or 1s, or 2s ⁇ , or other values may also be used.
  • the first timer may be maintained by the physical layer of the first terminal device, or may also be maintained by the upper layer of the first terminal device.
  • the first terminal device can directly determine that the first link fails . In this way, the terminal device can be prevented from waiting continuously, and the link failure can be determined as quickly as possible.
  • the first terminal device may use one or several of the following processing methods: One processing method, the second processing method, the third processing method or the fourth processing method.
  • the first terminal device may use the first processing method, or the first terminal device may use the first processing method and the second processing method, or the first terminal device may use the second processing method and the third processing method.
  • the fourth processing method etc. The following describes these processing methods.
  • the first processing method skip this measurement process, this measurement process can be a synchronous measurement process, or an out-of-step measurement process, or a synchronous measurement process and an out-of-step measurement process.
  • the physical layer of the first terminal device neither sends synchronization indication information to the upper layer of the first terminal device, nor does it send out-of-synchronization indication information to the upper layer of the first terminal device.
  • the second processing method skip this measurement process, this measurement process can be a synchronous measurement process, or an out-of-step measurement process, or a synchronous measurement process and an out-of-step measurement process.
  • the physical layer of the first terminal device can still send to the upper layer of the first terminal device
  • the fifth indicator information is neither the synchronization indicator information nor the out-of-synchronization indicator information.
  • the fifth indicator information can indicate the upper layer. In the reference period, there is no Received reference signal.
  • the third processing method You can continue to obtain synchronization indication information or out-of-synchronization indication information.
  • the synchronization indication information or the out-of-synchronization indication information obtained in the reference period does not participate in the relevant measurement. For example, when the upper layer of the first terminal device measures the link, it may not consider the synchronization obtained in the reference period. Instructions or out-of-synchronization instructions.
  • the fourth processing method You can continue to obtain synchronization indication information or out-of-synchronization indication information.
  • the synchronization indication information or the out-of-synchronization indication information obtained in the reference period does not participate in the relevant measurement.
  • the physical layer of the first terminal device may also send validity information of the evaluation information to the higher layer of the first terminal device, and the evaluation information may include synchronization indication information or out-of-synchronization indication information.
  • validity information please refer to the previous introduction.
  • the embodiment of the present application also provides a corresponding solution.
  • the first terminal device will receive at least two reference signals in one reference period, and the first terminal device will obtain the first target reference signal according to the at least two reference signals, so as to obtain the first target reference signal according to the first target reference signal.
  • the first terminal device can obtain the first target reference signal according to the at least two reference signals for measurement. This solves the problem that the number of arrivals of aperiodic reference signals is uncertain, so that the first terminal device can complete the measurement of the link according to the aperiodic reference signal.
  • the embodiment of the present application provides a link measurement method. Please refer to FIG. 7, which is a flowchart of the method.
  • the application of this method to the network architecture shown in FIG. 2 is taken as an example.
  • the method may be executed by two communication devices, for example, the third communication device and the fourth communication device.
  • the third communication device or the fourth communication device may be a network device or a communication device capable of supporting the network device to implement the functions required by the method, or may be a terminal device or a terminal device capable of supporting the functions required by the terminal device to implement the method.
  • the communication device can of course also be other communication devices, such as a chip system. And there are no restrictions on the implementation of the third communication device or the fourth communication device.
  • the two communication devices can be implemented in the same form, for example, both can be implemented in the form of equipment, or the two communication devices can also be implemented as Different forms, for example, the third communication device is implemented in the form of equipment, the fourth communication device is implemented in the form of a chip system, and so on.
  • the network equipment is, for example, a base station.
  • the method is executed by the terminal device and the terminal device as an example, that is, the third communication device is the terminal device (for example, called the first terminal device) and the fourth communication device is the terminal device (for example, Called the fourth device) as an example.
  • the first terminal device described below can implement the functions of the terminal device 1 in the network architecture shown in FIG.
  • the second terminal device can implement the functions of the terminal device 2 in the network architecture shown in FIG. 2.
  • the first terminal device does not receive the reference signal from the second terminal device within the third time period.
  • the first terminal device may determine the third duration by itself, that is, the third duration may be configured by the first terminal device, or the third duration may be specified through an agreement.
  • the third duration may be configured by the second terminal device, and the second terminal device may send instruction information to the first terminal device after configuring the third duration, and the instruction information is used to indicate the third duration.
  • the first terminal device can determine the third duration.
  • the third duration may also be configured by a network device (such as a base station), and the network device may send instruction information to the first terminal device after configuring the third duration ,
  • the indication information is used to indicate the third duration.
  • the first terminal device can determine the third duration.
  • the third duration is 500 ms, or other durations may also be used.
  • the first terminal device may start a first timer, and the timing duration of the first timer is the third duration.
  • the first timer expires, if the first terminal device does not receive the reference signal, then the reference signal is not received within the third time period.
  • the reference signal described in the embodiment of this application is a reference signal used for RLM.
  • the first terminal device determines that the first link between the first terminal device and the second terminal device fails.
  • the first terminal device may not receive the reference signal for a long time. For example, when the link fails, the first terminal device may not receive the reference signal for a long time.
  • the first terminal device may also maintain the first timer.
  • the first timer may be maintained by the physical layer of the first terminal device, or may also be maintained by the upper layer of the first terminal device.
  • the first terminal device can directly determine that the first link fails . In this way, the terminal device can be prevented from waiting continuously, and the link failure can be determined as quickly as possible.
  • Both the embodiment shown in FIG. 3 or the embodiment shown in FIG. 7 evaluate the link through the RLM process.
  • other methods can be used to evaluate the link.
  • other link evaluation methods are introduced through another embodiment.
  • the embodiment of the present application provides a link evaluation method.
  • FIG. 8, is a flowchart of the method.
  • the application of this method to the network architecture shown in FIG. 2 is taken as an example.
  • the method may be executed by two communication devices, for example, the fifth communication device and the sixth communication device.
  • the fifth communication device or the sixth communication device may be a network device or a communication device capable of supporting the network device to implement the functions required by the method, or may be a terminal device or a terminal device capable of supporting the functions required by the terminal device to implement the method.
  • the communication device can of course also be other communication devices, such as a chip system. And there are no restrictions on the implementation of the fifth communication device or the sixth communication device.
  • the two communication devices can be implemented in the same form, for example, both can be implemented in the form of equipment, or the two communication devices can also be implemented as Different forms, for example, the fifth communication device is implemented in the form of equipment, the sixth communication device is implemented in the form of a chip system, and so on.
  • the network equipment is, for example, a base station.
  • the method is executed by the terminal device and the terminal device as an example, that is, the fifth communication device is the terminal device (for example, called the first terminal device), and the sixth communication device is the terminal device (for example, Called the fourth device) as an example.
  • the first terminal device described below may be the terminal device 1 in the network architecture shown in FIG. 2
  • the first terminal device described below may be The second terminal device may be the terminal device 2 in the network architecture shown in FIG. 2.
  • the first terminal device updates the counter according to the demodulation status of the first signal from the second terminal device.
  • a counter may be configured for the first terminal device, and the initial value of the counter may be greater than 0, for example, the initial value of 20, or another value, or the initial value of the counter may also be equal to 0.
  • the initial value of the counter can be configured by the first terminal device, or configured by the second terminal device and notified to the first terminal device, or if the second terminal device is a terminal device, the initial value of the counter can also be configured by the network device and notified to the first terminal device. Terminal device. Or the initial value of the counter can also be specified by the agreement.
  • the first signal may be a control signal, such as the SCI carried on a physical sidelink control channel (pysical sidelink control channel, PSCCH); or, the first signal may also be a data signal, such as a physical sidelink control channel (pysical sidelink control channel, PSCCH). sidelink shared channel, PSSCH) data.
  • a control signal such as the SCI carried on a physical sidelink control channel (pysical sidelink control channel, PSCCH); or, the first signal may also be a data signal, such as a physical sidelink control channel (pysical sidelink control channel, PSCCH). sidelink shared channel, PSSCH) data.
  • PSSCH sidelink shared channel
  • the first terminal device updates the counter according to the demodulation of the first signal from the second terminal device, which may include: if the first terminal device demodulates the first signal successfully (ie If the CRC check succeeds), the first terminal device may increase the value of the counter by the first value, or if the first terminal device misses the first signal, the first terminal device may decrease the value of the counter by the second value.
  • the missing detection of the first signal can also be regarded as a failure to demodulate the first signal. Therefore, the missing detection of the first signal by the first terminal device can also be regarded as a demodulation of the first signal by the first terminal device.
  • the first value may be configured by the first terminal device, or configured by the second terminal device and notified to the first terminal device, or if the second terminal device is a terminal device, the first value may also be configured by the network device and notified to the first terminal device. Terminal device. Or the first value can also be stipulated by agreement.
  • the first value is, for example, 1, or may also be other values.
  • the second value can be configured by the first terminal device, or configured by the second terminal device and notified to the first terminal device, or if the second terminal device is a terminal device, the second value can also be configured by the network device and notified to the first terminal device. A terminal device. Or the second value can also be specified by agreement.
  • the first terminal device when the first terminal device fails to detect a certain time slot or subframe (for example, because the first terminal device transmits data in the time slot or subframe, and the first terminal device cannot receive data while transmitting data) , You need to subtract or deduct the missed count. For example, when the first terminal device detects that Y control channels are missed from the xth slot to the x+kth slot, but between the xth slot and the x+kth slot, the first terminal device transmits If the data is N times, the actual number of missed detections should be YN. Wherein Y and N are integers greater than or equal to zero.
  • the first signal is a data signal
  • data retransmission can be considered.
  • the first signal is a data signal
  • the first signal is the initial transmission data.
  • the first terminal device updates the counter according to the demodulation of the first signal from the second terminal device, which may include: if the first terminal device demodulates the first signal successfully, the first terminal device may change the counter value The value is increased by a third value, or, if the first terminal device fails to demodulate the first signal, the first terminal device may decrease the value of the counter by a fourth value.
  • the third value may be configured by the first terminal device, or configured by the second terminal device and notified to the first terminal device, or if the second terminal device is a terminal device, the third value may also be configured by the network device and notified to the first terminal device. Terminal device. Or the third value can also be stipulated by agreement.
  • the third value is, for example, 2, or other values may also be used.
  • the fourth value can be configured by the first terminal device, or configured by the second terminal device and notified to the first terminal device, or if the second terminal device is a terminal device, the fourth value can also be configured by the network device and notified to the first terminal device. A terminal device. Or the fourth value can also be specified by agreement.
  • the first signal is a data signal, and the first signal is retransmitted data.
  • the first terminal device updates the counter according to the demodulation of the first signal from the second terminal device, which may include: if the first terminal device demodulates the first signal successfully, the first terminal device may change the counter value The value is increased by a fifth value, or, if the first terminal device fails to demodulate the first signal, the first terminal device may decrease the value of the counter by a sixth value.
  • the fifth value can be configured by the first terminal device, or configured by the second terminal device and notified to the first terminal device, or if the second terminal device is a terminal device, the fifth value can also be configured by the network device and notified to the first terminal device. Terminal device. Or the fifth value can also be stipulated by agreement.
  • the fifth value is, for example, 1, or may also be other values.
  • the sixth value can be configured by the first terminal device, or configured by the second terminal device and notified to the first terminal device, or if the second terminal device is a terminal device, the sixth value can also be configured by the network device and notified to the first terminal device.
  • the sixth value can also be stipulated by agreement.
  • the values of these values are just some examples, which are not actually limited.
  • the first terminal device determines whether the link with the second terminal device fails according to the value of the counter.
  • the initial value of the counter can be greater than zero, or the initial value of the counter can also be equal to zero. For example, if the initial value of the counter is greater than 0, then when the value of the counter is 0, the first terminal device may consider that the link with the second terminal device has failed. Or, if the initial value of the counter is 0, then when the value of the counter is the seventh value, the first terminal device may consider that the link with the second terminal device has failed.
  • the seventh value can be configured by the first terminal device, or configured by the second terminal device and notified to the first terminal device, or if the second terminal device is a terminal device, the seventh value can also be configured by the network device and notified to the first terminal device . Or the seventh value can also be stipulated by agreement.
  • the seventh value is, for example, 20, or other values may also be used.
  • the first terminal device can evaluate the link based on the demodulation of the signal from the second terminal device, which is equivalent to using the PSSCH/PSCCH decoding result to evaluate the link. Reduce the complexity of design and implementation.
  • the embodiment of the present application provides a link evaluation method.
  • FIG. 9 is a flowchart of the method.
  • the application of this method to the network architecture shown in FIG. 2 is taken as an example.
  • the method may be executed by two communication devices, for example, the fifth communication device and the sixth communication device.
  • the fifth communication device or the sixth communication device may be a network device or a communication device capable of supporting the network device to implement the functions required by the method, or may be a terminal device or a terminal device capable of supporting the functions required by the terminal device to implement the method.
  • the communication device can of course also be other communication devices, such as a chip system. And there are no restrictions on the implementation of the fifth communication device or the sixth communication device.
  • the two communication devices can be implemented in the same form, for example, both can be implemented in the form of equipment, or the two communication devices can also be implemented as Different forms, for example, the fifth communication device is implemented in the form of equipment, the sixth communication device is implemented in the form of a chip system, and so on.
  • the network equipment is, for example, a base station.
  • the method is executed by the terminal device and the terminal device as an example, that is, the fifth communication device is the terminal device (for example, called the first terminal device), and the sixth communication device is the terminal device (for example, Called the fourth device) as an example.
  • the first terminal device described below may be the terminal device 1 in the network architecture shown in FIG. 2
  • the first terminal device described below may be The second terminal device may be the terminal device 2 in the network architecture shown in FIG. 2.
  • the first terminal device obtains a channel busy rate in the second time period according to the number of channels of the first type with the second terminal device and the total number of channels, where the channel of the first type includes signals in the second time period.
  • the network device initially configures the channels to be used by the terminal device, and the total number of channels configured by the network device can be used as the total number of channels described in S91.
  • the first terminal device may determine the number of channels of the first type.
  • the channels of the first type may include, within the second duration, the channels whose signal strength is greater than or equal to the first threshold. Because the second duration is used as the duration, the first The class channel may include channels whose average signal strength is greater than or equal to the first threshold within the second duration.
  • the first threshold may be configured by the first terminal device, or configured by the second terminal device and notified to the first terminal device, or if the second terminal device is a terminal device, the first threshold may also be configured by the network device and notified to the first terminal device. Terminal device. Or the first threshold can also be stipulated by agreement.
  • the first terminal device performs synchronization evaluation or out-of-synchronization evaluation on the link between the first terminal device and the second terminal device according to the channel busy rate.
  • the first terminal device determines that the link is out of synchronization, or if the channel busy rate is less than or equal to the third threshold, the first terminal device determines that the link is synchronized. Because link evaluation generally occurs before the first terminal device transmits data, when the first terminal device has not yet transmitted data, if the channel busy rate is greater than or equal to the second threshold, it is likely that the link is A failure has occurred, so the first terminal device can determine whether the link is out of sync based on this.
  • the processes of S91 and S92 can be performed by the physical layer of the first terminal device. Then, if the physical layer of the first terminal device determines that the link is out of synchronization, it can send a link out of synchronization indication to the upper layer of the first terminal device, Alternatively, if the physical layer of the first terminal device determines that the link is synchronized, the link synchronization indication may be sent to the higher layer of the first terminal device. The upper layer of the first terminal device may determine whether the link has failed according to the link synchronization indication or the link out-of-synchronization indication.
  • the T310 timer can be started. Before the T310 timer expires, if the upper layer can continuously receive N311 link synchronization indications from the physical layer, the upper layer considers that the first terminal device and the second terminal device are back in synchronization. Or, before the T310 timer expires, if the upper layer does not continuously receive N311 synchronization indications from the physical layer, it is determined that the first link has failed. If it is determined that the link fails, the first terminal device may perform one or more of the following operations:
  • the first operation the first terminal device sends sidelink failure report information to the network device.
  • the side link failure report information may be carried by a radio resource control (radio resource control, RRC) message, a media access control control element (MAC CE), or a physical layer channel.
  • RRC radio resource control
  • MAC CE media access control control element
  • the second operation the first terminal device transmits side link failure report information to the second terminal device.
  • the side link failure report information can be carried by RRC messages, MAC CE, or physical layer channels.
  • the third operation the first terminal device stops sending feedback information to the second terminal device, and the feedback information includes, for example, hybrid automatic repeat request-ack (HARQ-ACK) information or CSI. If the second terminal device does not receive the feedback information from the first terminal device within a certain period of time, the second terminal device will also determine that the link fails.
  • HARQ-ACK hybrid automatic repeat request-ack
  • the second threshold may be configured by the first terminal device, or configured by the second terminal device and notified to the first terminal device, or if the second terminal device is a terminal device, the second threshold may also be configured by the network device and notified to the first terminal device . Or the second threshold can also be stipulated by agreement. For example, the second threshold is 70%, or other values may also be used.
  • the third threshold may be configured by the first terminal device, or configured by the second terminal device and notified to the first terminal device, or if the second terminal device is a terminal device, the third threshold may also be configured by the network device and notified to the first terminal device. A terminal device. Or the third threshold can also be stipulated by agreement. For example, the third threshold is 40%, or other values may also be used.
  • the channel busy rate is likely to be within the range of (40%, 70%). Then, if the channel busy rate is within this range, the first terminal device neither considers the link to be synchronized nor considers it The link is out of sync, but will continue to be evaluated.
  • the link can be evaluated according to the channel busy rate in a simple manner, which reduces the complexity of design and implementation.
  • the embodiment shown in FIG. 9 can also be combined with the embodiment shown in FIG. 3.
  • the physical layer of the first terminal device can obtain evaluation information according to the method provided in the embodiment shown in FIG. 3, for example, called first evaluation information, and also obtain the evaluation information according to the method provided in the embodiment shown in FIG. 9. For example, it is called the second evaluation information, and when the physical layer of the first terminal device sends the first evaluation information obtained according to the method provided in the embodiment shown in FIG. 3 to the upper layer of the first terminal device, it also sends the information to the first terminal device.
  • the senior management of the company sent the validity information of the first evaluation information.
  • the upper layer of the terminal device may choose to determine whether the link with the second terminal device fails according to the first evaluation information. Or, if the validity information of the first evaluation information indicates that the validity of the first evaluation information is low, or indicates that the first evaluation information is invalid, then the upper layer of the first terminal device may choose to determine with the second terminal device based on the second evaluation information. Whether the link between them has failed.
  • the physical layer of the first terminal device may obtain the first evaluation information according to the method provided in the embodiment shown in FIG. 3 and the second evaluation information according to the method provided in the embodiment shown in FIG. 9. If the first terminal If the physical layer of the device considers the first evaluation information to be highly effective, or the first evaluation information is valid, then the physical layer of the first terminal device can send the first evaluation information to the upper layer of the first terminal device without sending the second evaluation information. The information is sent to the upper layer of the first terminal device, and the upper layer of the first terminal device can directly determine whether the link with the second terminal device fails according to the first evaluation information.
  • the physical layer of the first terminal device may send the second evaluation information to the higher layer of the first terminal device, Instead of sending the first evaluation information to the upper layer of the first terminal device, the upper layer of the first terminal device can directly determine whether the link with the second terminal device fails according to the second evaluation information.
  • the second evaluation information includes synchronization indication information, or if the first evaluation information includes out-of-synchronization indication information, the second evaluation information includes out-of-synchronization indication information.
  • the first terminal device can make more reliable assessment of whether the link fails.
  • a link evaluation method is introduced through another embodiment below. Different from the previous link evaluation methods, the link evaluation methods introduced in the previous embodiments are all performed by the first terminal device, while in this embodiment, the second terminal device performs the link evaluation. Assessment.
  • the embodiment of the present application provides a method for link evaluation.
  • FIG. 10 is a flowchart of the method.
  • the application of this method to the network architecture shown in FIG. 2 is taken as an example.
  • the method can be executed by two communication devices, for example, the seventh communication device and the eighth communication device.
  • the seventh communication device or the eighth communication device may be a network device or a communication device capable of supporting the network device to implement the functions required by the method, or may be a terminal device or a terminal device capable of supporting the functions required by the terminal device to implement the method.
  • the communication device can of course also be other communication devices, such as a chip system. And there are no restrictions on the implementation of the seventh communication device or the eighth communication device.
  • the two communication devices can be implemented in the same form, for example, both can be implemented in the form of equipment, or the two communication devices can also be implemented as Different forms, for example, the seventh communication device is implemented in the form of equipment, the eighth communication device is implemented in the form of a chip system, and so on.
  • the network equipment is, for example, a base station.
  • the method is executed by the terminal device and the terminal device as an example, that is, the seventh communication device is the terminal device (for example, called the first terminal device), and the eighth communication device is the terminal device (for example, Called the fourth device) as an example.
  • the first terminal device described below may be the terminal device 1 in the network architecture shown in FIG. 2
  • the first terminal device described below may be The second terminal device may be the terminal device 2 in the network architecture shown in FIG. 2.
  • the physical layer of the second terminal device performs synchronization evaluation or out-of-synchronization evaluation on the link between the first terminal device and the second terminal device according to the received feedback information from the first terminal device.
  • the second terminal device can obtain the first duration, and when performing the evaluation, the second terminal device can perform the evaluation according to the feedback information received within the first duration.
  • the first duration may adopt a default value, such as 200 ms, or, for the first duration, reference may also be made to the related introduction of the first duration in the embodiment shown in FIG. 3.
  • the second terminal device can also obtain the reporting interval, and the second terminal device performs synchronization assessment or out-of-synchronization assessment on the link at each reporting interval.
  • the reporting interval for example, adopts a default value, such as 10 ms, or, for the reporting interval, reference may also be made to the related introduction of the reporting interval in the embodiment shown in FIG. 3. Then, for the manner in which the second terminal device obtains the reporting interval, reference may also be made to the manner in which the first terminal device obtains the reporting interval in the embodiment shown in FIG. 3.
  • the feedback information includes, for example, HARQ-ACK, and HARQ-ACK may include an acknowledgement (ACK) or a negative acknowledgement (NACK).
  • HARQ-ACK may include an acknowledgement (ACK) or a negative acknowledgement (NACK).
  • the second terminal device performs synchronization evaluation or out-of-synchronization evaluation on the link between the first terminal device and the second terminal device according to the received feedback information from the first terminal device. There may be different evaluation methods, which are described below by examples.
  • the first evaluation method if N1/N is greater than the first threshold, the second terminal device considers the link to be synchronized with the first terminal device, or if N1/N is less than the second threshold, the second terminal device considers The link with the first terminal device is out of synchronization.
  • N1 represents the number of ACKs received by the second terminal device in the first time period
  • N represents the total number of HARQ-ACKs that the second terminal device expects to receive in the first time period.
  • the first threshold may be configured by the second terminal device, or configured by the first terminal device and notified to the second terminal device, or if the second terminal device is a terminal device, the first threshold may also be configured by the network device and notified to the second terminal device . Or the first threshold can also be stipulated by agreement. For example, the first threshold is 80%, or other values may also be used.
  • the second threshold may be configured by the second terminal device, or configured by the first terminal device and notified to the second terminal device, or if the second terminal device is a terminal device, the second threshold may also be configured by the network device and notified to the second terminal device. Two terminal devices. Or the second threshold can also be stipulated by agreement. For example, the second threshold is 20%, or other values may also be used.
  • the second evaluation method If N2/N is less than the third threshold (for example: 20%), the second terminal device considers the link to be synchronized with the first terminal device, or if N2/N is greater than the fourth threshold, Then the second terminal device considers that the link with the first terminal device is out of sync (eg, 80%).
  • N2 represents the number of NACKs received by the second terminal device within the first duration
  • N represents the total number of HARQ-ACKs that the second terminal device expects to receive within the first duration.
  • the third threshold may be configured by the second terminal device, or configured by the first terminal device and notified to the second terminal device, or if the second terminal device is a terminal device, the third threshold may also be configured by the network device and notified to the second terminal device . Or the third threshold can also be stipulated by agreement. For example, the third threshold is 20%, or other values may also be used.
  • the fourth threshold may be configured by the second terminal device, or configured by the first terminal device and notified to the second terminal device, or if the second terminal device is a terminal device, the fourth threshold may also be configured by the network device and notified to the second terminal device. Two terminal devices. Or the fourth threshold can also be stipulated by agreement. For example, the fourth threshold is 80%, or other values may also be used.
  • the third evaluation method if N2/N1 is less than the fifth threshold (such as 10%), the second terminal device considers the link to be synchronized with the first terminal device, or if N2/N is greater than the sixth threshold, Then the second terminal device considers that the link with the first terminal device is out of synchronization (for example, 50%).
  • N2 represents the number of NACKs received by the second terminal device in the first time period
  • N1 represents the number of ACKs received by the second terminal device in the first time period.
  • the fifth threshold may be configured by the second terminal device, or configured by the first terminal device and notified to the second terminal device, or if the second terminal device is a terminal device, the fifth threshold may also be configured by the network device and notified to the second terminal device . Or the fifth threshold can also be stipulated by agreement. For example, the fifth threshold is 10%, or other values may also be used.
  • the sixth threshold may be configured by the second terminal device, or configured by the first terminal device and notified to the second terminal device, or if the second terminal device is a terminal device, the sixth threshold may also be configured by the network device and notified to the second terminal device. Two terminal devices. Or the sixth threshold can also be stipulated by agreement. For example, the sixth threshold is 50%, or other values may also be used.
  • N N1+N2+Y.
  • Y represents the number of data that has not received any feedback, that is, for the data sent by the second terminal device to the first terminal device, there may be data that neither received an ACK from the first terminal device nor received from the first terminal device. NACK of the device, these data belong to Y data.
  • the physical layer of the second terminal device sends synchronization indication information and/or out-of-synchronization indication information to the upper layer of the second terminal device, where the synchronization indication information is obtained by performing synchronization evaluation on the link, and The out-of-synchronization indication information is obtained by performing out-of-synchronization evaluation on the link.
  • the physical layer of the second terminal device can obtain synchronization indication information or out-of-synchronization indication information, and if the physical layer of the second terminal device obtains the synchronization indication information, it can send the synchronization indication information to the higher layer of the second terminal device, or, If the physical layer of the second terminal device obtains the out-of-synchronization indication information, it may send the out-of-synchronization indication information to the upper layer of the second terminal device.
  • the synchronization indication information is, for example, a link synchronization indication
  • the out of synchronization indication information is, for example, a link out of synchronization indication.
  • the upper layer of the second terminal device is, for example, the MAC layer or the RRC layer.
  • the T310 timer can be started. Before the T310 timer expires, if the upper layer can continuously receive N311 link synchronization indications from the physical layer, the upper layer considers that the first terminal device and the second terminal device are back in synchronization. Or, before the T310 timer expires, if the upper layer does not continuously receive N311 synchronization indications from the physical layer, it is determined that the first link has failed. If it is determined that the link fails, the second terminal device may perform one or more of the following operations:
  • the first operation the second terminal device sends side link failure report information to the network device.
  • the side link failure report information can be carried by RRC messages, MAC CE, or physical layer channels.
  • the second operation the second terminal device transmits side link failure report information to the first terminal device.
  • the side link failure report information can be carried by RRC messages, MAC CE, or physical layer channels.
  • the link can be evaluated by the second terminal device, so that the link can be evaluated whether it is the sending end or the receiving end of the data, which is more flexible.
  • the evaluation method provided by the embodiment of the present application is relatively simple and easy to implement.
  • FIG. 11 is a schematic block diagram of a communication device 1100 according to an embodiment of the application.
  • the communication device 1100 is, for example, the first terminal device 1100.
  • the first terminal device 1100 includes a processing module 1110 and a transceiver module 1120.
  • the first terminal device 1100 may be a terminal device, or may be a chip applied in the terminal device, or other combination devices, components, etc. having the above-mentioned terminal device functions.
  • the transceiver module 1120 may be a transceiver, which may include an antenna and a radio frequency circuit, etc.
  • the processing module 1110 may be a processor, such as a baseband processor.
  • the baseband processor may include one or more central Processing unit (central processing unit, CPU).
  • the transceiver module 1120 may be a radio frequency unit, and the processing module 1110 may be a processor, such as a baseband processor.
  • the transceiver module 1120 may be an input/output interface of a chip system (for example, a baseband chip), and the processing module may be a processor of the chip system, and may include one or more central processing units.
  • the processing module 1110 can be used to perform all the operations performed by the first terminal device in the embodiment shown in FIG. 3 except for the transceiving operations, such as S31, S33, S34, and S35, and/or for supporting the text Other processes of the described technique.
  • the transceiver module 1120 may be used to perform all the transceiver operations performed by the first terminal device in the embodiment shown in FIG. 3, such as S32, and/or other processes used to support the technology described herein.
  • the transceiver module 1120 may be a functional module that can perform both sending operations and receiving operations.
  • the transceiver module 1120 may be used to perform all the operations performed by the first terminal device in the embodiment shown in FIG. 3 Sending operation and receiving operation, for example, when performing a sending operation, the transceiver module 1120 can be considered as a sending module, and when performing a receiving operation, the transceiver module 1120 can be considered as a receiving module; or, the transceiver module 1120 can also have two functions The collective name of the modules.
  • These two functional modules are the sending module and the receiving module.
  • the sending module is used to complete the sending operation.
  • the sending module can be used to perform all the sending performed by the first terminal device in the embodiment shown in FIG. 3
  • the receiving module is used to complete receiving operations.
  • the receiving module may be used to perform all receiving operations performed by the first terminal device in the embodiment shown in FIG. 3.
  • the transceiver module 1120 is configured to receive at least one reference signal from the second terminal device in a first reference period, the at least one reference signal is aperiodic transmission, or the at least one reference signal is irregular ;
  • a processing module 1110 configured to determine a first target reference signal in the first reference period according to the at least one reference signal
  • the processing module 1110 is further configured to obtain synchronization indication information or out-of-synchronization indication information of the first link according to at least one target reference signal in at least one reference period, where the first link is the first terminal device 1100 and the second For a link between two terminal devices, the at least one reference period includes the first reference period, and the at least one target reference signal includes the first target reference signal.
  • the processing module 1110 is further configured to determine whether the first link fails according to the synchronization indication information or the out-of-synchronization indication information.
  • the processing module 1110 is configured to determine the first target reference signal in the first reference period according to the at least one reference signal in the following manner:
  • the processing module 1110 is configured to determine the first target reference signal in the first reference period according to the at least one reference signal in the following manner:
  • the first N reference signals are used as the first target reference signal, and N is greater than or equal to 1, wherein,
  • the density of the reference signal is the number of frequency domain units carrying the reference signal in the bandwidth occupied by a reference signal, and the cumulative density of the reference signal is the sum of the densities of one or more reference signals; or,
  • the first N reference signals are used as the first target reference signal, and N is greater than or equal to 1.
  • the processing module 1110 is further configured to determine the duration of the reference period; or,
  • the transceiver module 1120 is further configured to receive first indication information from the second terminal device, where the first indication information is used to indicate the duration of the reference period.
  • the processing module 1110 is configured to determine the duration of the reference period in the following manner: determine the duration of the reference period according to the parameters of the data packet of the first service, and the data packet of the first service It is transmitted through the first link, and the parameters of the data packet of the first service include the expected period of the data packet of the first service, and/or the retransmission of the data packet of the first service Configuration information.
  • the duration of the reference period satisfies:
  • T min(the first threshold, ceil(T packet ⁇ P 1 ));
  • T represents the duration of the reference period
  • the first threshold is a constant
  • T packet represents the minimum expected period duration of the data packet of the first service
  • P 1 represents the retransmission configuration information of the first service
  • ceil() means round up operation.
  • the value of P 1 includes one of the following or any combination of the following multiple:
  • N 1 represents the number of blind retransmissions of a data packet included in the first service
  • N 2 represents the expected number of HARQ adaptive retransmissions for a data packet included in the first service.
  • the processing module 1110 is configured to obtain synchronization indication information or out-of-synchronization indication information of the first link according to at least one target reference signal in at least one reference period in the following manner:
  • the at least one target reference signal in the at least one reference period obtains the synchronization indication information or the out-of-synchronization indication information of the first link, and the at least one reference period is the reference signal received in all reference periods in the first duration At least one reference period of the signal.
  • the processing module 1110 is further configured to determine the first duration according to the duration of the reference period; or,
  • the transceiver module 1120 is further configured to receive second indication information from the second terminal device, where the second indication information is used to indicate the first duration.
  • the processing module 1110 obtains the synchronization indication information of the first link according to the at least one target reference signal in the at least one reference period included in the first duration; the processing module 1110 is configured to obtain the synchronization indication information of the first link in the following manner according to the duration of the reference period Determine the first duration:
  • L in max (100, M in ⁇ T)
  • L in represents the first duration
  • T represents the duration of the reference period
  • the processing module 1110 obtains the out-of-synchronization indication information of the first link according to at least one target reference signal in the at least one reference period included in the first duration; the processing module 1110 is configured to obtain the out-of-synchronization indication information of the first link in the following manner;
  • the duration determines the first duration:
  • L out max(200, M out ⁇ T)
  • M out represents that the first link is out of synchronization according to a periodic reference signal
  • T represents the duration of the reference period
  • the processing module 1110 is configured to determine the first duration according to the duration of the reference period in the following manner: determine the first duration according to the duration of the reference period and a first parameter, so The first parameter includes a reference density and/or a reference bandwidth, the reference density is used to determine the target reference signal, and the reference bandwidth is used to determine the target reference signal.
  • the processing module 1110 is configured to determine the first duration according to the reference period and parameters related to the reference density in the following manner:
  • P 2 represents a parameter related to the reference density.
  • the processing module 1110 is configured to determine the first duration according to the reference period and parameters related to the reference bandwidth in the following manner:
  • the processing module 1110 is configured to determine the first duration according to the reference period, transmission related to the reference density, and parameters related to the reference bandwidth in the following manner:
  • the processing module 1110 is further configured to determine validity information, where the validity information is used to indicate the validity of the synchronization indication information or the validity of the out-of-synchronization indication information, where: The greater the number of the at least one reference period, the higher the effectiveness of the synchronization indication information or the out-of-synchronization indication information.
  • the processing module 1110 is further configured to maintain a first timer, and the first timer is configured to: if the reference signal is not received within the timing period of the first timer, then When the first timer expires, it is determined that the link fails.
  • processing module 1110 in the embodiment of the present application may be implemented by a processor or processor-related circuit components
  • transceiver module 1120 may be implemented by a transceiver or transceiver-related circuit components.
  • an embodiment of the present application also provides a communication device 1200.
  • the communication device 1200 is, for example, the first terminal device 1200.
  • the first terminal device 1200 may be a communication device, such as a terminal device, or may also be a chip system or the like.
  • the first terminal device 1200 includes a processor 1210, a memory 1220, and a transceiver 1230.
  • the memory 1220 stores instructions or programs, and the processor 1210 is configured to execute instructions or programs stored in the memory 1220.
  • the processor 1210 is used to perform the operations performed by the processing module 1110 in the foregoing embodiment
  • the transceiver 1230 is used to perform the operations performed by the transceiver module 1120 in the foregoing embodiment.
  • the transceiver 1230 may be a functional unit that can complete both sending and receiving operations.
  • the transceiver 1230 may be used to perform all the operations performed by the first terminal device in the embodiment shown in FIG. 3 Sending operation and receiving operation.
  • the transceiver 1230 when performing a sending operation, can be considered as a transmitter, and when performing a receiving operation, the transceiver 1230 can be considered as a receiver; or, the transceiver 1230 can also have two functions. The general name of the units. These two functional units are the transmitter and the receiver respectively.
  • the transmitter is used to complete the transmission operation.
  • the transmitter can be used to perform all the transmission operations performed by the first terminal device in the embodiment shown in FIG. 3
  • the receiver is used to complete the receiving operation.
  • the receiver can be used to perform all the receiving operations performed by the first terminal device in the embodiment shown in FIG. 3.
  • first terminal device 1100 or the first terminal device 1200 can implement the function of the first terminal device in the embodiment shown in FIG. 3, and the first terminal device 1100 or the first terminal device 1200 The operation and/or function of each module in FIG. 3 is to implement the corresponding process in the embodiment shown in FIG. 3. For the sake of brevity, it will not be repeated here.
  • FIG. 13 is a schematic block diagram of a communication device 1300 according to an embodiment of the application.
  • the communication device 1300 is, for example, the first terminal device 1300.
  • the first terminal device 1300 includes a processing module 1310 and a transceiver module 1320.
  • the first terminal device 1300 may be a terminal device, or may be a chip applied to the terminal device or other combination devices, components, etc. having the above-mentioned terminal device functions.
  • the transceiver module 1320 may be a transceiver, which may include an antenna and a radio frequency circuit
  • the processing module 1310 may be a processor, such as a baseband processor.
  • the baseband processor may include one or more central Processing unit (central processing unit, CPU).
  • the transceiver module 1320 may be a radio frequency unit, and the processing module 1310 may be a processor, such as a baseband processor.
  • the transceiver module 1320 may be an input/output interface of a chip system (such as a baseband chip), and the processing module may be a processor of the chip system, and may include one or more central processing units.
  • the processing module 1310 can be used to perform all the operations performed by the first terminal device in the embodiment shown in FIG. 7 except for receiving and sending operations, such as S71 and S72, and/or to support the technology described herein Other processes.
  • the transceiving module 1320 may be used to perform all the transceiving operations performed by the first terminal device in the embodiment shown in FIG. 7, such as the operation of receiving a reference signal from the second terminal device, and/or to support the operations described herein Other processes of technology.
  • the transceiver module 1320 may be a functional module that can perform both sending operations and receiving operations.
  • the transceiver module 1320 may be used to perform all the operations performed by the first terminal device in the embodiment shown in FIG. 7 Sending operation and receiving operation, for example, when performing a sending operation, the transceiver module 1320 can be considered as a sending module, and when performing a receiving operation, the transceiver module 1320 can be considered as a receiving module; or, the transceiver module 1320 can also have two functions The collective name of the modules. These two functional modules are respectively the sending module and the receiving module. The sending module is used to complete the sending operation.
  • the sending module can be used to perform all the sending performed by the first terminal device in the embodiment shown in FIG. 7 Operation, the receiving module is used to complete receiving operations. For example, the receiving module may be used to perform all receiving operations performed by the first terminal device in the embodiment shown in FIG. 7.
  • the processing module 1310 is configured to determine that the transceiving module has not received a reference signal from the second terminal device within the third time period, and the reference signal is used for measurement between the first terminal device 1300 and the second terminal device.
  • the processing module 1310 is further configured to determine that the first link fails.
  • processing module 1310 in the embodiment of the present application may be implemented by a processor or processor-related circuit components
  • transceiver module 1320 may be implemented by a transceiver or transceiver-related circuit components.
  • an embodiment of the present application also provides a communication device 1400.
  • the communication device 1400 is, for example, the first terminal device 1400.
  • the first terminal device 1400 may be a communication device, such as a terminal device, or may also be a chip system or the like.
  • the first terminal device 1400 includes a processor 1410, a memory 1420, and a transceiver 1430.
  • the memory 1420 stores instructions or programs, and the processor 1410 is configured to execute instructions or programs stored in the memory 1420.
  • the processor 1410 is used to perform the operations performed by the processing module 1310 in the foregoing embodiment
  • the transceiver 1430 is used to perform the operations performed by the transceiver module 1320 in the foregoing embodiment.
  • the transceiver 1430 may be a functional unit that can complete both sending and receiving operations.
  • the transceiver 1430 may be used to perform all the operations performed by the first terminal device in the embodiment shown in FIG. 7 Sending operation and receiving operation, for example, when performing a sending operation, the transceiver 1430 can be considered as a transmitter, and when performing a receiving operation, the transceiver 1430 can be considered as a receiver; or, the transceiver 1430 can also have two functions A general term for the units.
  • These two functional units are respectively a transmitter and a receiver.
  • the transmitter is used to complete the transmission operation.
  • the transmitter can be used to perform all the transmission operations performed by the first terminal device in the embodiment shown in FIG. 7
  • the receiver is used to complete the receiving operation.
  • the receiver can be used to perform all the receiving operations performed by the first terminal device in the embodiment shown in FIG. 7.
  • first terminal device 1300 or the first terminal device 1400 can implement the function of the first terminal device in the embodiment shown in FIG. 7, and the first terminal device 1300 or the first terminal device 1400 The operation and/or function of each module in FIG. 7 is used to implement the corresponding process in the embodiment shown in FIG. 7. For brevity, details are not repeated here.
  • FIG. 15 is a schematic block diagram of a communication device 1500 according to an embodiment of the application.
  • the communication device 1500 is, for example, the first terminal device 1500.
  • the first terminal device 1500 includes a processing module 1510 and a transceiver module 1520.
  • the first terminal device 1500 may be a terminal device, or may be a chip applied to the terminal device or other combination devices, components, etc. having the above-mentioned terminal device functions.
  • the transceiver module 1520 may be a transceiver, which may include an antenna and a radio frequency circuit, etc.
  • the processing module 1510 may be a processor, such as a baseband processor.
  • the baseband processor may include one or more central Processing unit (central processing unit, CPU).
  • the transceiver module 1520 may be a radio frequency unit, and the processing module 1510 may be a processor, such as a baseband processor.
  • the transceiver module 1520 may be an input/output interface of a chip system (such as a baseband chip), and the processing module may be a processor of the chip system, and may include one or more central processing units.
  • the processing module 1510 may be used to perform all the operations performed by the first terminal device in the embodiment shown in FIG. 8 except for receiving and sending operations, such as S81 and S82, and/or to support the technology described herein Other processes.
  • the transceiving module 1520 may be used to perform all the transceiving operations performed by the first terminal device in the embodiment shown in FIG. 8, such as the operation of receiving the first signal from the second terminal device, and/or to support the operations described herein Other processes of the technology.
  • the transceiver module 1520 may be a functional module that can complete both sending operations and receiving operations.
  • the transceiver module 1520 may be used to perform all the operations performed by the first terminal device in the embodiment shown in FIG. 8 Sending operation and receiving operation, for example, when performing a sending operation, the transceiver module 1520 can be considered as a sending module, and when performing a receiving operation, the transceiver module 1520 can be considered as a receiving module; or, the transceiver module 1520 can also have two functions The general term of the modules. These two functional modules are the sending module and the receiving module.
  • the sending module is used to complete the sending operation.
  • the sending module can be used to perform all the sending performed by the first terminal device in the embodiment shown in FIG. Operation
  • the receiving module is used to complete the receiving operation.
  • the receiving module can be used to perform all the receiving operations performed by the first terminal device in the embodiment shown in FIG. 8.
  • the processing module 1510 is configured to update a counter according to the demodulation of the first signal from the second terminal device, where the initial value of the counter is greater than 0;
  • the processing module 1510 is further configured to determine whether the link with the second terminal device fails according to the value of the counter.
  • the first signal is a control signal
  • the processing module 1510 is configured to update the counter according to the demodulation of the first signal from the second terminal device in the following manner:
  • the demodulation of the first signal is successful, and the value of the counter is increased by a first value; or,
  • the first signal is missed, and the value of the counter is decreased by a second value.
  • the first signal is a data signal
  • the first signal is initial transmission data
  • the processing module 1510 is configured to decode the first signal from the second terminal device in the following manner: Adjust the situation and update the counter:
  • the value of the counter is increased by a third value
  • the demodulation of the first signal fails, and the value of the counter is decreased by a fourth value.
  • the first signal is a data signal
  • the first signal is retransmitted data
  • the processing module 1510 is configured to decode the first signal from the second terminal device in the following manner: Adjust the situation and update the counter:
  • the value of the counter is increased by a fifth value
  • the demodulation of the first signal fails, and the value of the counter is decreased by a sixth value.
  • the processing module 1510 is configured to determine whether the link with the second terminal device has failed according to the value of the counter in the following manner: when the value of the counter is 0 , It is determined that the link fails.
  • processing module 1510 in the embodiment of the present application may be implemented by a processor or processor-related circuit components
  • transceiver module 1520 may be implemented by a transceiver or transceiver-related circuit components.
  • an embodiment of the present application also provides a communication device 1600.
  • the communication device 1600 is, for example, the first terminal device 1600.
  • the first terminal device 1600 may be a communication device, such as a terminal device, or may also be a chip system or the like.
  • the first terminal device 1600 includes a processor 1610, a memory 1620, and a transceiver 1630.
  • the memory 1620 stores instructions or programs, and the processor 1610 is configured to execute the instructions or programs stored in the memory 1620.
  • the processor 1610 is used to perform the operations performed by the processing module 1510 in the foregoing embodiment
  • the transceiver 1630 is used to perform the operations performed by the transceiver module 1520 in the foregoing embodiment.
  • the transceiver 1630 may be a functional unit that can complete both sending and receiving operations.
  • the transceiver 1630 may be used to perform all of the operations performed by the first terminal device in the embodiment shown in FIG. 8 Sending operation and receiving operation, for example, when performing a sending operation, the transceiver 1630 can be considered as a transmitter, and when performing a receiving operation, the transceiver 1630 can be considered as a receiver; or, the transceiver 1630 can also have two functions The general name of the units. These two functional units are the transmitter and the receiver respectively.
  • the transmitter is used to complete the transmission operation.
  • the transmitter can be used to perform all the transmission operations performed by the first terminal device in the embodiment shown in FIG. 8
  • the receiver is used to complete the receiving operation.
  • the receiver may be used to perform all the receiving operations performed by the first terminal device in the embodiment shown in FIG. 8.
  • first terminal device 1500 or the first terminal device 1600 can implement the function of the first terminal device in the embodiment shown in FIG. 8, and the first terminal device 1500 or the first terminal device 1600
  • the operation and/or function of each module in FIG. 8 is to implement the corresponding process in the embodiment shown in FIG. 8, and for the sake of brevity, it will not be repeated here.
  • FIG. 17 is a schematic block diagram of a communication device 1700 according to an embodiment of the application.
  • the communication device 1700 is, for example, the first terminal device 1700.
  • the first terminal device 1700 includes a processing module 1710 and a transceiver module 1720.
  • the first terminal device 1700 may be a terminal device, or may be a chip applied to the terminal device, or other combination devices, components, etc. having the above-mentioned terminal device functions.
  • the transceiver module 1720 may be a transceiver, which may include an antenna and a radio frequency circuit, etc.
  • the processing module 1710 may be a processor, such as a baseband processor.
  • the baseband processor may include one or more central Processing unit (central processing unit, CPU).
  • the transceiver module 1720 may be a radio frequency unit, and the processing module 1710 may be a processor, such as a baseband processor.
  • the transceiver module 1720 may be an input/output interface of the chip system (such as a baseband chip), and the processing module may be a processor of the chip system, and may include one or more central processing units.
  • the processing module 1710 may be used to perform all the operations performed by the first terminal device in the embodiment shown in FIG. 9 except for the transceiving operations, such as S91 and S92, and/or to support the technology described herein Other processes.
  • the transceiving module 1720 can be used to perform all the transceiving operations performed by the first terminal device in the embodiment shown in FIG. 9, such as the operation of receiving a signal from the second terminal device, and/or to support the technology described herein Other processes.
  • the transceiver module 1720 may be a functional module that can complete both sending operations and receiving operations.
  • the transceiver module 1720 may be used to perform all the operations performed by the first terminal device in the embodiment shown in FIG. 9 Sending operation and receiving operation, for example, when performing a sending operation, the transceiver module 1720 can be considered as a sending module, and when performing a receiving operation, the transceiver module 1720 can be considered as a receiving module; or, the transceiver module 1720 can also have two functions The collective name of the modules.
  • These two functional modules are the sending module and the receiving module.
  • the sending module is used to complete the sending operation.
  • the sending module can be used to perform all the sending performed by the first terminal device in the embodiment shown in FIG. 9
  • the receiving module is used to complete receiving operations.
  • the receiving module may be used to perform all receiving operations performed by the first terminal device in the embodiment shown in FIG. 9.
  • the processing module 1710 is configured to obtain the channel busy rate in the second time period according to the number of channels of the first type and the total number of channels with the second terminal device, and the channels of the first type are included in the first Channels whose signal strength is greater than or equal to the first threshold in the second time period;
  • the processing module 1710 is further configured to perform synchronization evaluation or out-of-synchronization evaluation on the link between the first terminal device 1700 and the second terminal device according to the channel busy rate.
  • the processing module 1710 is configured to perform synchronization evaluation or out-of-synchronization evaluation on the link between the first terminal device 1700 and the second terminal device according to the channel busy rate in the following manner:
  • the channel busy rate is less than or equal to the third threshold, it is determined that the link is synchronized.
  • processing module 1710 in the embodiment of the present application may be implemented by a processor or processor-related circuit components
  • transceiver module 1720 may be implemented by a transceiver or transceiver-related circuit components.
  • an embodiment of the present application also provides a communication device 1800.
  • the communication device 1800 is, for example, the first terminal device 1800.
  • the first terminal device 1800 may be a communication device, such as a terminal device, or may also be a chip system or the like.
  • the first terminal device 1800 includes a processor 1810, a memory 1820, and a transceiver 1830.
  • the memory 1820 stores instructions or programs, and the processor 1810 is configured to execute instructions or programs stored in the memory 1820.
  • the processor 1810 is used to perform the operations performed by the processing module 1710 in the foregoing embodiment
  • the transceiver 1830 is used to perform the operations performed by the transceiver module 1720 in the foregoing embodiment.
  • the transceiver 1830 may be a functional unit that can perform both sending operations and receiving operations.
  • the transceiver 1830 may be used to perform all the operations performed by the first terminal device in the embodiment shown in FIG. 9
  • Sending operation and receiving operation for example, when performing a sending operation, the transceiver 1830 can be considered as a transmitter, and when performing a receiving operation, the transceiver 1830 can be considered as a receiver; or, the transceiver 1830 can also have two functions A general term for the units.
  • These two functional units are respectively a transmitter and a receiver.
  • the transmitter is used to complete the transmission operation.
  • the transmitter can be used to perform all the transmission operations performed by the first terminal device in the embodiment shown in FIG. 9
  • the receiver is used to complete the receiving operation.
  • the receiver can be used to perform all the receiving operations performed by the first terminal device in the embodiment shown in FIG. 9.
  • first terminal device 1700 or the first terminal device 1800 can implement the function of the first terminal device in the embodiment shown in FIG. 9, and the first terminal device 1700 or the first terminal device 1800 The operation and/or function of each module in FIG. 9 is to realize the corresponding process in the embodiment shown in FIG. 9, and for the sake of brevity, it is not repeated here.
  • FIG. 19 is a schematic block diagram of a communication device 1900 according to an embodiment of the application.
  • the communication device 1900 is, for example, the second terminal device 1900.
  • the second terminal device 1900 includes a processing module 1910 and a transceiver module 1920.
  • the second terminal device 1900 may be a terminal device, or may be a chip applied in the terminal device or other combination devices, components, etc. having the functions of the terminal device.
  • the transceiver module 1920 may be a transceiver, which may include an antenna and a radio frequency circuit, etc.
  • the processing module 1910 may be a processor, such as a baseband processor.
  • the baseband processor may include one or more CPUs.
  • the transceiver module 1920 may be a radio frequency unit
  • the processing module 1910 may be a processor, such as a baseband processor.
  • the transceiver module 1920 may be an input/output interface of a chip system (such as a baseband chip), and the processing module may be a processor of the chip system, and may include one or more central processing units.
  • the processing module 1910 can be used to perform all the operations performed by the second terminal device in the embodiment shown in FIG. 10 except for the receiving and sending operations, such as S102 and S103, and/or for supporting the technology described herein Other processes.
  • the transceiving module 1920 may be used to perform all transceiving operations performed by the second terminal device in the embodiment shown in FIG. 10, such as S101, and/or other processes used to support the technology described herein.
  • the transceiver module 1920 may be a functional module that can perform both sending and receiving operations.
  • the transceiver module 1920 may be used to perform all the operations performed by the second terminal device in the embodiment shown in FIG. 10 Sending operation and receiving operation, for example, when performing a sending operation, the transceiver module 1920 can be considered as a sending module, and when performing a receiving operation, the transceiver module 1920 can be considered as a receiving module; or, the transceiver module 1920 can also have two functions The collective name of the modules.
  • These two functional modules are the sending module and the receiving module.
  • the sending module is used to complete the sending operation.
  • the sending module can be used to perform all the sending performed by the second terminal device in the embodiment shown in FIG. 10
  • the receiving module is used to complete receiving operations.
  • the receiving module may be used to perform all receiving operations performed by the second terminal device in the embodiment shown in FIG. 10.
  • the transceiver module 1920 is configured to receive feedback information from the first terminal device
  • the processing module 1910 is configured to obtain synchronization indication information or out-of-synchronization indication information of a link according to the received feedback information, the link being the link between the first terminal device 1900 and the second terminal device.
  • the processing module 1910 is configured to obtain link synchronization indication information or out-of-synchronization indication information according to the received feedback information in the following manner:
  • N1/N When N1/N is greater than the first threshold, the synchronization indication information is obtained, or when N1/N is less than the second threshold, the synchronization indication information is obtained, where N1 indicates that the second terminal device is in the first
  • the number of positive responses received within the time period, N represents the total number of HARQ response information that the second terminal device expects to receive within the first time period; or,
  • the synchronization indication information When N2/N is less than the third threshold, the synchronization indication information is obtained, or when N2/N is greater than the fourth threshold, the synchronization indication information is obtained, where N2 indicates that the second terminal device is in the first The number of negative responses received within the time period, where N represents the total number of HARQ response information that the second terminal device expects to receive within the first time period; or,
  • N2/N1 When N2/N1 is less than the fifth threshold, obtain the synchronization indication information, or when N2/N is greater than the sixth threshold, obtain the out-of-synchronization indication information, where N2 indicates that the second terminal device is in the first The number of negative responses received within the time period, N1 represents the number of positive responses received by the second terminal device within the first time period.
  • the processing module 1900 is further configured to determine whether the link fails according to the synchronization indication information or the out-of-synchronization indication information.
  • processing module 1910 in the embodiment of the present application may be implemented by a processor or processor-related circuit components
  • transceiver module 1920 may be implemented by a transceiver or transceiver-related circuit components.
  • an embodiment of the present application also provides a communication device 2000.
  • the communication device 2000 is, for example, the second terminal device 2000.
  • the second terminal device 2000 may be a communication device, such as a terminal device, or may also be a chip system or the like.
  • the second terminal device 2000 includes a processor 2010, a memory 2020, and a transceiver 2030.
  • the memory 2020 stores instructions or programs, and the processor 2010 is used to execute the instructions or programs stored in the memory 2020.
  • the processor 2010 is used to perform the operations performed by the processing module 1910 in the foregoing embodiment, and the transceiver 2030 is used to perform the operations performed by the transceiver module 1920 in the foregoing embodiment.
  • the transceiver 2030 may be a functional unit that can complete both sending and receiving operations.
  • the transceiver 2030 may be used to perform all the operations performed by the second terminal device in the embodiment shown in FIG. 10
  • Sending operation and receiving operation for example, when performing a sending operation, the transceiver 2030 can be considered as a transmitter, and when performing a receiving operation, the transceiver 2030 can be considered as a receiver; or, the transceiver 2030 can also have two functions A general term for the units.
  • These two functional units are respectively a transmitter and a receiver.
  • the transmitter is used to complete the transmission operation.
  • the transmitter can be used to perform all the transmission operations performed by the second terminal device in the embodiment shown in FIG. 10
  • the receiver is used to complete the receiving operation.
  • the receiver can be used to perform all the receiving operations performed by the second terminal device in the embodiment shown in FIG. 10.
  • the second terminal device 1900 or the second terminal device 2000 can realize the function of the second terminal device in the embodiment shown in FIG. 10, and the second terminal device 1900 or the second terminal device 2000
  • the operations and/or functions of each module in are respectively intended to implement the corresponding process in the embodiment shown in FIG. 10, and for the sake of brevity, details are not described herein again.
  • the embodiment of the present application also provides a communication device, which may be a terminal device or a circuit.
  • the communication device can be used to execute the method embodiment shown in FIG. 3, the method embodiment shown in FIG. 7, the method embodiment shown in FIG. 8, or the method embodiment shown in FIG. The actions performed, or the actions performed by the second terminal device in the method embodiment shown in FIG. 10 above.
  • FIG. 21 shows a simplified structural diagram of a terminal device.
  • the terminal equipment includes a processor, a memory, a radio frequency circuit, an antenna, and an input and output device.
  • the processor is mainly used to process the communication protocol and communication data, and to control the terminal device, execute the software program, and process the data of the software program.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of baseband signal and radio frequency signal and the processing of radio frequency signal.
  • the antenna is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, and keyboards, are mainly used to receive data input by users and output data to users. It should be noted that some types of terminal devices may not have input and output devices.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal to the outside in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
  • FIG. 21 only one memory and processor are shown in FIG. 21. In actual terminal equipment products, there may be one or more processors and one or more memories.
  • the memory may also be referred to as a storage medium or storage device.
  • the memory may be set independently of the processor, or may be integrated with the processor, which is not limited in the embodiment of the present application.
  • the antenna and radio frequency circuit with the transceiving function can be regarded as the transceiving unit of the terminal device
  • the processor with the processing function can be regarded as the processing unit of the terminal device.
  • the terminal device includes a transceiver unit 2110 and a processing unit 2120.
  • the transceiver unit may also be referred to as a transceiver, a transceiver, a transceiver, and so on.
  • the processing unit may also be called a processor, a processing board, a processing module, a processing device, and so on.
  • the device for implementing the receiving function in the transceiver unit 2110 can be regarded as the receiving unit, and the device for implementing the sending function in the transceiver unit 2110 can be regarded as the sending unit, that is, the transceiver unit 2110 includes a receiving unit and a sending unit.
  • the transceiver unit may sometimes be called a transceiver, a transceiver, or a transceiver circuit.
  • the receiving unit may sometimes be called a receiver, receiver, or receiving circuit.
  • the transmitting unit may sometimes be called a transmitter, a transmitter, or a transmitting circuit.
  • transceiving unit 2110 is used to perform the sending operation and receiving operation on the first terminal device side in the method embodiment shown in FIG. 3, and the processing unit 2120 is used to perform the first terminal device in the method embodiment shown in FIG. Other operations on the device side except for sending and receiving operations.
  • the transceiving unit 2110 is used to perform all the transceiving steps on the first terminal device side in the embodiment shown in FIG. 3, such as S32, such as S71 and S72, and/or used to support Other processes of the described technology.
  • the processing unit 2120 is configured to perform other operations on the side of the first terminal device in the embodiment shown in FIG. 3 besides the transceiving operations, such as S31, S33, S34, and S35, and/or for supporting the technology described herein Other processes.
  • the transceiving unit 2110 is configured to execute the sending operation and the receiving operation on the first terminal device side in the method embodiment shown in FIG. 7, and the processing unit 2120 is configured to execute the first terminal device in the method embodiment shown in FIG. Other operations besides sending and receiving operations.
  • the transceiving unit 2110 is configured to perform all the transceiving steps on the side of the first terminal device in the embodiment shown in FIG. 7, such as the operation of receiving a reference signal from the second terminal device, and/or Other processes used to support the technology described in this article.
  • the processing unit 2120 is configured to perform other operations on the side of the first terminal device in the embodiment shown in FIG. 7 except for the receiving and sending operations, such as S71 and S72, and/or other processes for supporting the technology described herein.
  • the transceiver unit 2110 is configured to perform the sending operation and the receiving operation on the first terminal device side in the method embodiment shown in FIG. 8, and the processing unit 2120 is configured to perform the first terminal device in the method embodiment shown in FIG. Other operations besides sending and receiving operations.
  • the transceiving unit 2110 is configured to perform all the transceiving steps on the first terminal device side in the embodiment shown in FIG. 8, such as the operation of receiving the first signal from the second terminal device.
  • the processing unit 2120 is configured to perform other operations on the side of the first terminal device in the embodiment shown in FIG. 8 except for the transceiving operations, such as S81 and S82, and/or other processes for supporting the technology described herein.
  • the transceiving unit 2110 is configured to perform the sending operation and the receiving operation on the first terminal device side in the method embodiment shown in FIG. 9, and the processing unit 2120 is configured to perform the first terminal device in the method embodiment shown in FIG. Other operations besides sending and receiving operations.
  • the transceiving unit 2110 is configured to perform all the transceiving steps on the first terminal device side in the embodiment shown in FIG. 9, such as the operation of receiving signals from the second terminal device, and/or use To support other processes of the technology described in this article.
  • the processing unit 2120 is configured to perform other operations on the first terminal device side in the embodiment shown in FIG. 9 in addition to the receiving and sending operations, such as S91 and S92, and/or other processes for supporting the technology described herein.
  • the transceiver unit 2110 is configured to perform the sending operation and the receiving operation on the second terminal device side in the method embodiment shown in FIG. 10, and the processing unit 2120 is configured to perform the second terminal device in the method embodiment shown in FIG. Other operations besides sending and receiving operations.
  • the transceiving unit 2110 is configured to perform all the transceiving steps on the second terminal device side in the embodiment shown in FIG. 10, such as S101, and/or other technologies that support the technology described herein. process.
  • the processing unit 2120 is configured to perform other operations on the side of the second terminal device in the embodiment shown in FIG. 10 except for the transceiving operations, such as S102 and S103, and/or other processes for supporting the technology described herein.
  • the chip When the communication device is a chip, the chip includes a transceiver unit and a processing unit.
  • the transceiver unit may be an input/output circuit or a communication interface;
  • the processing unit is a processor or microprocessor or integrated circuit integrated on the chip.
  • the device shown in FIG. 22 may be referred to.
  • the device can perform functions similar to the processor 2210 in FIG. 22.
  • the device includes a processor 2210, a data sending processor 2220, and a data receiving processor 2230.
  • the processing module 1110 in the foregoing embodiment may be the processor 2210 in FIG. 22 and complete corresponding functions; the transceiving module 1120 in the foregoing embodiment may be the sending data processor 2220 in FIG. 22, and/or receiving data The processor 2230.
  • the processing module 1310 in the foregoing embodiment may be the processor 2210 in FIG.
  • the transceiver module 1320 in the foregoing embodiment may be the sending data processor 2220 in FIG. 22, and/or Receive data processor 2230.
  • the processing module 1510 in the foregoing embodiment may be the processor 2210 in FIG. 22 and perform corresponding functions; the transceiver module 1520 in the foregoing embodiment may be the data sending processor 2220 in FIG. 22, and/or Receive data processor 2230.
  • the processing module 1710 in the foregoing embodiment may be the processor 2210 in FIG. 22 and perform corresponding functions; the transceiver module 1720 in the foregoing embodiment may be the sending data processor 2220 in FIG. 22, and/or Receive data processor 2230.
  • the processing module 1910 in the foregoing embodiment may be the processor 2210 in FIG. 22 and complete corresponding functions; the transceiver module 1920 in the foregoing embodiment may be the sending data processor 2220 in FIG. 22, and/or Receive data processor 2230.
  • channel encoder and the channel decoder are shown in FIG. 22, it can be understood that these modules do not constitute a restrictive description of this embodiment, and are only illustrative.
  • Fig. 23 shows another form of this embodiment.
  • the processing device 2300 includes modules such as a modulation subsystem, a central processing subsystem, and a peripheral subsystem.
  • the communication device in this embodiment can be used as a modulation subsystem therein.
  • the modulation subsystem may include a processor 2303 and an interface 2304.
  • the processor 2303 completes the function of the aforementioned processing module 1110
  • the interface 2304 completes the function of the aforementioned transceiver module 1120.
  • the processor 2303 completes the function of the aforementioned processing module 1310
  • the interface 2304 completes the function of the aforementioned transceiver module 1320.
  • the processor 2303 completes the function of the aforementioned processing module 1510, and the interface 2304 completes the function of the aforementioned transceiver module 1520.
  • the processor 2303 completes the function of the aforementioned processing module 1710, and the interface 2304 completes the function of the aforementioned transceiver module 1720.
  • the processor 2303 completes the function of the aforementioned processing module 1910, and the interface 2304 completes the function of the aforementioned transceiver module 1920.
  • the modulation subsystem includes a memory 2306, a processor 2303, and a program stored in the memory 2306 and running on the processor. The processor 2303 implements the method shown in FIG. 3 when executing the program.
  • Example, the method embodiment shown in FIG. 7, the method embodiment shown in FIG. 8, or the method on the first terminal device side in the method embodiment shown in FIG. 9, or the above-mentioned method shown in FIG. 10 is implemented when the program is executed The method on the second terminal device side in the method embodiment.
  • the memory 2306 can be non-volatile or volatile. Its location can be located inside the modulation subsystem or in the processing device 2300, as long as the memory 2306 can be connected to the The processor 2303 is fine.
  • the embodiment of the present application also provides a first communication system.
  • the communication system may include the second terminal device involved in the embodiment shown in FIG. 10, and the first terminal device involved in the embodiment shown in FIG. 3, and the second terminal device involved in the embodiment shown in FIG.
  • the second terminal device involved in the embodiment shown in FIG. 10 is, for example, the second terminal device 1900 in FIG. 19 or the second terminal device 2000 in FIG. 20, and the first terminal device involved in the embodiment shown in FIG. 3
  • the device is, for example, the first terminal device 1100 in FIG. 11 or the first terminal device 1200 in FIG. 12, and the first terminal device involved in the embodiment shown in FIG.
  • the first terminal device 1400 in FIG. 14 the first terminal device involved in the embodiment shown in FIG. 8 is, for example, the first terminal device 1500 in FIG. 15 or the first terminal device 1600 in FIG.
  • the first terminal device involved in the embodiment is, for example, the first terminal device 1700 in FIG. 17 or the first terminal device 1800 in FIG. 18.
  • the embodiment of the present application also provides a computer-readable storage medium on which a computer program is stored.
  • a computer program is stored.
  • the program is executed by a processor, it can realize that the embodiment shown in FIG. 3 provided by the above method embodiment is related to the first terminal device. The process.
  • the embodiment of the present application also provides a computer-readable storage medium on which a computer program is stored.
  • the program When the program is executed by a processor, the program can realize that the embodiment shown in FIG. 7 provided by the above method embodiment is related to the first terminal device. The process.
  • the embodiment of the present application also provides a computer-readable storage medium on which a computer program is stored.
  • a computer program is stored.
  • the program is executed by a processor, it can realize that the embodiment shown in FIG. 8 provided by the foregoing method embodiment is related to the first terminal device. The process.
  • the embodiment of the present application also provides a computer-readable storage medium on which a computer program is stored.
  • a computer program is stored.
  • the program is executed by a processor, it can realize that the embodiment shown in FIG. 9 provided by the foregoing method embodiment is related to the first terminal device. The process.
  • the embodiment of the present application also provides a computer-readable storage medium on which a computer program is stored.
  • a computer program is stored.
  • the program is executed by a processor, it can realize that the embodiment shown in FIG. 10 provided by the above method embodiment is related to the second terminal device. The process.
  • the embodiment of the present application also provides a computer program product containing instructions, which when executed, execute the method on the first terminal device side in the method embodiment shown in FIG. 3.
  • the embodiment of the present application also provides a computer program product containing instructions, which when executed, execute the method on the second terminal device side in the method embodiment shown in FIG. 7.
  • the embodiment of the present application also provides a computer program product containing instructions, which when executed, execute the method on the first terminal device side in the method embodiment shown in FIG. 8.
  • the embodiment of the present application also provides a computer program product containing instructions, which when executed, execute the method on the first terminal device side in the method embodiment shown in FIG. 9.
  • the embodiment of the present application also provides a computer program product containing instructions, which when executed, execute the method on the second terminal device side in the method embodiment shown in FIG. 10.
  • processors mentioned in the embodiments of this application may be a CPU, other general-purpose processors, digital signal processors (digital signal processors, DSP), application specific integrated circuits (ASICs), ready-made Field programmable gate array (FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the memory mentioned in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electronic Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic random access memory
  • synchronous dynamic random access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory serial DRAM, SLDRAM
  • direct rambus RAM direct rambus RAM, DR RAM
  • the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic device, discrete gate or transistor logic device, or discrete hardware component
  • the memory storage module
  • the size of the sequence number of the above-mentioned processes does not mean the order of execution, and the execution order of each process should be determined by its function and internal logic, rather than corresponding to the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)
  • Traffic Control Systems (AREA)

Abstract

本申请涉及一种链路测量方法及装置,可应用于车联网,例如V2X、LTE-V、V2V等,或可用于智能驾驶,智能网联车等领域。第一终端装置在第一参考周期内接收至少一个参考信号,至少一个参考信号为非周期传输的。第一终端装置根据至少一个参考信号确定第一参考周期中的第一目标参考信号。第一终端装置根据至少一个参考周期中的至少一个目标参考信号获得第一链路的同步指示信息或失步指示信息,第一链路是第一终端装置和第二终端装置之间的链路,至少一个参考周期包括第一参考周期,至少一个目标参考信号包括第一目标参考信号。解决了非周期的参考信号到达的数量不确定的问题,第一终端装置能根据非周期传输的参考信号完成链路评估。

Description

一种链路测量方法及装置
相关申请的交叉引用
本申请要求在2019年07月29日提交中国国家知识产权局、申请号为201910691410.8、申请名称为“一种链路测量方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种链路测量方法及装置。
背景技术
由于在无线网络中是采用无线信道作为传输媒介,先天性地有着不稳定的特点,因此与传统的有线网络传输相比更加不可靠,更容易受到物理环境和同频率无线网络的影响。在无线局域网中作为传输载体的无线信道有着时变性的特点。时变性是指传输媒介的质量容易随着时间的变化而有很大的不同。具体来说,就是在无线局域网中的丢包率、误帧率和重传次数会根据时间段的不同而有很大的不同,从而对服务质量造成很大的影响。加上信号衰落、环境噪声、信道干扰和周围的人员移动等复杂环境因素的影响,无线链路质量不稳定,所以,在实际环境中对无线链路质量进行测量和跟踪显得尤为重要。
无线链路检测(radio link monitoring,RLM),指的是连接态的终端设备可以对无线链路的质量进行持续跟踪。对于终端设备和基站之间的一条链路,基站会为终端设备配置一个参考信号(reference signal,RS)可以称为RLM-RS,终端设备根据所接收的参考信号对该链路进行同步评估或失步评估。目前的参考信号是周期性的,终端设备可以在每个周期接收一次该参考信号,在进行评估时,终端设备可以根据一个或多个周期内接收的参考信号进行评估。
在下一代通信系统中,支持车到一切(vehicle to everything,V2X)的侧行链路(sidelink,SL)通信场景。车与任何事物(vehicle to everything,V2X)之间的通信,V2X包括车与车(vehicle to vehicle,V2V)通信、车与行人(vehicle to pedestrian,V2P)通信或车与基建/网络(vehicle to infrastructure/Network,V2I/N)通信。在侧行链路上也有进行RLM的需求,可能使用非周期的参考信号来进行无线链路测量,但是目前还没有基于非周期的参考进行无线链路测量的方法。
发明内容
本申请实施例提供一种链路测量方法及装置,用于提供一种根据非周期的参考信号对链路进行测量的方式。
第一方面,提供一种链路测量方法,该方法包括:第一终端装置在第一参考周期内接收来自第二终端装置的至少一个参考信号,所述至少一个参考信号为非周期传输的;所述第一终端装置根据所述至少一个参考信号确定所述第一参考周期中的第一目标参考信号;所述第一终端装置根据至少一个参考周期中的至少一个目标参考信号获得第一链路的同 步指示信息或失步指示信息,所述第一链路是所述第一终端装置和所述第二终端装置之间的链路,所述至少一个参考周期包括所述第一参考周期,所述至少一个目标参考信号包括所述第一目标参考信号。
该方法可由第一通信装置执行,第一通信装置可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如芯片系统。示例性地,所述第一通信装置为第一终端装置。示例性地,所述第一终端装置为第一终端设备,或者为设置在第一终端设备中的用于实现终端设备的功能的芯片系统,或者为用于实现第一终端设备的功能的其他部件。
在本申请实施例中,第一终端装置在第一参考周期内会接收至少一个参考信号,而第一终端装置会根据至少一个参考信号得到第一目标参考信号,如果有至少一个参考周期,则第一终端装置针对其中的每个参考周期都可以获得第一目标参考信号,从而第一终端装置可以根据至少一个第一目标参考信号对第一链路进行同步测量以获得同步指示信息,或进行失步测量以获得失步指示信息。也就是说,无论第一终端装置在一个参考周期内接收的参考信号的数量多还是少,第一终端装置都可以根据至少一个参考信号得到第一目标参考信号来进行评估。这样就解决了非周期的参考信号到达的数量不确定的问题,使得第一终端装置能够根据非周期传输的参考信号完成对链路的测量。
本申请实施例中描述的对链路质量进行评估(estimate)和对链路质量进行测量(measure)以及对链路质量进行监测(monitor)是等价的,也就是说,本申请实施例中的“评估”、“测量”和“监测”等概念可以互相替换。
在一种可能的实施方式中,所述方法还包括:所述第一终端装置根据所述同步指示信息或所述失步指示信息确定所述第一链路是否失败。
在获得同步指示信息或失步指示信息后,第一终端装置可以确定第一链路是否失败,如果第一链路失败,可以进行后续的相应处理。
在一种可能的实施方式中,所述第一终端装置根据所述至少一个参考信号确定所述第一参考周期内的第一目标参考信号,包括:所述第一终端装置确定所述至少一个参考信号中的一个参考信号为所述第一目标参考信号;或,所述第一终端装置将所述至少一个参考信号中的部分或全部进行合并,得到所述第一目标参考信号。
第一终端装置可以任意选择一个参考信号作为第一目标参考信号,或者也可以将至少一个参考信号中的部分或全部进行合并,得到第一目标参考信号,无论采用哪种方式,都解决了采用非周期的参考信号进行测量的问题。一种合并的方式例如为将多个参考信号进行线性平均,或者也还可以有其它的合并方式,例如为多个信号中的每个参考信号分别分配相应的权重,将多个参考信号进行加权平均等,对于具体的合并方式不做限制。通过将接收到的非周期参考信号合并的方式,使得测量结果更加精确,更能反映一段时间内信道质量的平均状态。
在一种可能的实施方式中,所述第一终端装置根据所述至少一个参考信号确定所述第一参考周期内的第一目标参考信号,包括:
在所述至少一个参考信号中的前N个参考信号的累计密度大于或等于参考密度的情况下,所述第一终端装置将所述前N个参考信号作为所述第一目标参考信号,N大于等于1,其中,参考信号的密度为一个参考信号占用的带宽中承载参考信号的频域单元的个数,所述参考信号的累计密度为一个或多个参考信号的密度的和;或,
在所述至少一个参考信号中的前N个参考信号累计的带宽大于或等于参考带宽的情况 下,所述第一终端装置将所述前N个参考信号作为所述第一目标参考信号,N大于等于1。
第一终端装置可以在参考周期内根据参考密度或参考带宽进行信号的累计,能够解决接收的参考信号的密度或带宽等不满足测量精度问题,尽量保证了测量的精度,减少了设备和系统设计的复杂度。
在一种可能的实施方式中,所述方法还包括:所述第一终端装置确定所述参考周期的时长;或者,所述第一终端装置从所述第二终端装置接收第一指示信息,所述第一指示信息用于指示所述参考周期的时长。
第一终端装置可以自行配置参考周期的时长,或者也可以由第二终端装置配置参考周期的时长,或者还可以由网络设备配置参考周期的时长,或者,参考周期的时长也可以通过协议规定,等等。
在一种可能的实施方式中,所述第一终端装置确定所述参考周期的时长,包括:所述第一终端装置根据第一业务的数据包的参数确定所述参考周期的时长,所述第一业务的数据包是通过所述第一链路传输的,所述第一业务的数据包的参数包括所述第一业务的数据包的期望周期时长,和/或包括所述第一业务的数据包的重传配置信息。
第一终端装置根据与业务相关的数据包参数确定参考周期的时长,能够针对不同业务的需求更加准确地测量信道质量。
在一种可能的实施方式中,所述参考周期的时长满足:
T=min(第一门限,ceil(T packet×P 1));
其中,T表示所述参考周期的时长,所述第一门限为常数,T packet表示所述第一业务的数据包的最小期望周期时长,P 1表示所述第一业务的重传配置信息,ceil()表示向上取整运算。
如果参考周期的时长太短,而参考信号又是非周期性传输的,则很难保证在一个参考周期内能够接收到参考信号,而如果参考周期的时长太长,则测试频度可能又达不到要求。因此本申请实施例通过设置第一门限,可以保持第一终端装置的测试频度适中,既能满足测试要求,也能够保证第一终端装置的功耗在一定的水平,不至于功耗过大。当然这里只是给出了一种确定参考周期的时长方式。在实际实现中,参考周期的时长的确定方式不限于此。
在一种可能的实施方式中,P 1的取值包括如下的一项或如下多项的任意组合:当所述第一业务不进行重传时,P 1=2;当所述第一业务进行盲重传时,P 1=2/N 1,N 1表示所述第一业务所包括的一个数据包进行盲重传的次数;或,当所述第一业务进行HARQ自适应重传时,P 1=2/N 2,N 2表示所述第一业务所包括的一个数据包进行HARQ自适应重传的预期次数。
P 1表示第一业务的重传配置信息。在第一业务不进行重传,或采用的重传方式不同时,第一业务的传输情况是不同的,相应的,参考周期的时长也可以随之变化,从而使得所确定的参考周期的时长更符合实际的业务情况,以能够针对不同业务的需求更加准确地测量信道质量。例如,当第一业务不进行重传时,P 1可以等于2,相当于使得参考周期的时长是数据包的最小期望周期时长的两倍,即,在第一业务不重传时,可以尽量拉长参考周期的时长,使得在参考周期内能够接收足够的参考信号。但是参考周期的时长也不适宜无限制拉长,这会降低测量频度,因此令P 1等于2,是一种较为折中的考虑,但本申请实施例 也不限制P 1一定等于2。例如,当第一业务进行重传时,P 1可以等于第一业务进行重传的次数的1/2,如果第一业务进行重传,那么可能在较短的参考周期内就能接收较多的参考信号,因此可以在一定程度上减小参考周期的长度,以提高测量效率。但是参考周期的时长也不适宜过短,这可能会导致接收参考信号的概率变低,而且会使得测量频度过高,导致终端装置的功耗较大,因此令P 1等于第一业务进行重传的次数的1/2,是一种较为折中的考虑,但本申请实施例也不限制P 1一定等于第一业务进行重传的次数的1/2。这里只是对P 1可能的一些取值进行举例,具体的不限于此。
在一种可能的实施方式中,所述第一终端装置根据至少一个参考周期中的至少一个目标参考信号获得第一链路的同步指示信息或失步指示信息,包括:所述第一终端装置根据第一时长中包括的所述至少一个参考周期中的至少一个目标参考信号获得第一链路的同步指示信息或失步指示信息,所述至少一个参考周期为所述第一时长中的所有参考周期中接收到参考信号的至少一个参考周期。
第一终端装置可以根据至少一个目标参考信号来获得同步指示信息或失步指示信息,从而使得第一终端装置获得的同步指示信息或失步指示信息更为准确。至少一个参考周期例如属于第一时长,至少一个参考周期可以是第一时长内接收了参考信号的参考周期,第一时长例如为评估时长。或者,规定第一终端装置在P个参考周期接收参考信号后,就对第一链路进行评估,P为大于或等于1的整数,如果P大于1,则这P个参考周期可能是连续的,也可能是不连续的。与设置评估时长的区别是,评估时长所限制的是总共的参考周期的数量,但对于这些参考周期中实际接收了参考信号的参考周期的数量并不限制,而这种不设置评估时长的方式,限制的是实际接收了参考信号的参考周期的数量。无论是哪种方式,都可以增加参与评估的目标参考信号的数量,使得第一终端装置获得的同步指示信息或失步指示信息更为准确。
在一种可能的实施方式中,所述方法还包括:所述第一终端装置根据所述参考周期的时长确定所述第一时长;或,所述第一终端装置从所述第二终端装置接收第二指示信息,所述第二指示信息用于指示所述第一时长。
第一终端装置可以自行配置第一时长,或者也可以由第二终端装置配置第一时长,或者还可以由网络设备配置第一时长,或者,第一时长也可以通过协议规定,等等。
在一种可能的实施方式中,所述第一终端装置根据第一时长中包括的所述至少一个参考周期中的至少一个目标参考信号获得所述第一链路的同步指示信息;所述第一终端装置根据所述参考周期的时长确定所述第一时长,包括:
所述第一终端装置确定所述第一时长满足:L in=max(100,M in×T),L in表示所述第一时长,M in表示在根据周期性的参考信号对所述第一链路进行同步测量时,一个所述第一时长内的参与所述同步测量的周期性参考信号的数量,T表示所述参考周期的时长;或者,
所述第一终端装置根据第一时长中包括的所述至少一个参考周期中的至少一个目标参考信号获得所述第一链路的失步指示信息;所述第一终端装置根据所述参考周期的时长确定所述第一时长,包括:
所述第一终端装置确定所述第一时长满足:L out=max(200,M out×T),L out表示所述第一时长,M out表示在根据周期性的参考信号对所述第一链路进行失步测量时,一个所述第一时长内的参与所述失步测量的周期性参考信号的数量,T表示所述参考周期的时长。
100毫秒(ms)是根据周期性传输的参考信号对链路进行同步测量时的评估时长,由 于本申请实施例中的参考信号是非周期传输的,无法保证参考信号的到达时间,因此可以使得本申请实施例中的同步测量的第一时长选择100和M in×T中的最大值,以尽量保证在第一时长内能够接收到足够的参考信号。对于失步测量也是同样的,200ms是根据周期性传输的参考信号对链路进行失步测量时的评估时长,由于本申请实施例中的参考信号是非周期传输的,无法保证参考信号的到达时间,因此可以使得本申请实施例中的失步测量的第一时长选择200和M out×T中的最大值,以尽量保证在第一时长内能够接收到足够的参考信号。
在一种可能的实施方式中,所述第一终端装置根据所述参考周期的时长确定所述第一时长,包括:所述第一终端装置根据所述参考周期的时长以及第一参数确定所述第一时长,所述第一参数包括参考密度和/或参考带宽,所述参考密度用于确定所述目标参考信号,所述参考带宽用于确定所述目标参考信号。
通过配置参考周期的时长、参考密度或参考带宽等链路评估参数,可以在参考周期内根据参考密度或参考带宽进行信号的累计,能够解决接收的参考信号的密度或带宽等不满足测量精度等问题,尽量保证了测量的精度,减少了设备和系统设计的复杂度。
在一种可能的实施方式中,所述第一终端装置根据所述参考周期以及与参考密度相关的参数确定所述第一时长,包括:
所述第一时长用于获得所述同步指示信息,所述第一时长满足如下公式:L in=max(第二门限,ceil(M in×P 2)×T),L in表示所述第一时长,T表示所述参考周期的时长,M in表示在根据周期性的参考信号对所述第一链路进行同步测量时,一个所述第一时长内的参与同步测量的参考信号的数量,P 2表示与所述参考密度相关的参数;或,
所述第一时长用于获得所述失步指示信息,所述第一时长满足如下公式:L out=max(第二门限,ceil(M out×P 2)×T),L out表示所述第一时长,T表示所述参考周期的时长,M out表示在根据周期性的参考信号对所述第一链路进行失步评估时,一个所述第一时长内的参与失步评估的参考信号的数量,P 2表示与所述参考密度相关的参数。
如果第一时长太短,而参考信号又是非周期性传输的,则很难保证在第一时长内能够接收到参考信号,而如果第一时长太长,则测试频度可能又达不到要求。因此本申请实施例通过设置第二门限,可以保持第一终端装置的测试频度适中,既能满足测试要求,也能够保证第一终端装置的功耗在一定的水平,不至于功耗过大。而且第一时长可以与参考密度相关,也解决了接收的参考信号的密度不满足测量精度的问题。
在一种可能的实施方式中,所述第一终端装置根据所述参考周期以及与参考带宽相关的参数确定所述第一时长,包括:
所述第一时长用于获得所述同步指示信息,所述第一时长满足如下公式:L in=max(第二门限,ceil(M in×P 3)×T),L in表示所述第一时长,T表示所述参考周期,M in表示在根据周期性的参考信号对所述第一链路进行同步测量时,一个所述第一时长内的参与同步测量的参考信号的数量,P 3表示与所述参考带宽相关的参数;或,
所述第一时长用于获得所述失步指示信息,所述第一时长满足如下公式:L out=max(第二门限,ceil(M out×P 3)×T),L out表示所述第一时长,T表示所述参考周期,M out表示在根据周期性的参考信号对所述第一链路进行同步测量时,一个所述第一时长内的参与同步测量的参考信号的数量,P 3表示与所述参考带宽相关的参数。
如果第一时长太短,而参考信号又是非周期性传输的,则很难保证在第一时长内能够 接收到参考信号,而如果第一时长太长,则测试频度可能又达不到要求。因此本申请实施例通过设置第二门限,可以保持第一终端装置的测试频度适中,既能满足测试要求,也能够保证第一终端装置的功耗在一定的水平,不至于功耗过大。而且第一时长可以与参考密度相关,也解决了接收的参考信号的带宽不满足测量精度的问题。
在一种可能的实施方式中,所述第一终端装置根据所述参考周期、与参考密度相关的传输以及与参考带宽相关的参数确定所述第一时长,包括:
所述第一时长用于获得所述同步指示信息,所述第一时长满足如下公式:L in=max(第二门限,ceil(M in×P 2×P 3)×T)L in表示所述第一时长,T表示所述参考周期,M in表示在根据周期性的参考信号对所述第一链路进行同步测量时,一个所述第一时长内的参与同步测量的参考信号的数量,P 2表示与所述参考密度相关的参数,P 3表示与所述参考带宽相关的参数;或,
所述第一时长用于获得所述失步指示信息,所述第一时长满足如下公式:L in=max(第二门限,ceil(M out×P 2×P 3)×T)L in表示所述第一时长,T表示所述参考周期,M out表示在根据周期性的参考信号对所述第一链路进行失步测量时,一个所述第一时长内的参与同步测量的参考信号的数量,P 2表示与所述参考密度相关的参数,P 3表示与所述参考带宽相关的参数。
如果第一时长太短,而参考信号又是非周期性传输的,则很难保证在第一时长内能够接收到参考信号,而如果第一时长太长,则测试频度可能又达不到要求。因此本申请实施例通过设置第二门限,可以保持第一终端装置的测试频度适中,既能满足测试要求,也能够保证第一终端装置的功耗在一定的水平,不至于功耗过大。而且第一时长可以与参考密度相关,也解决了接收的参考信号的密度和带宽等不满足测量精度的问题。
如上只是给出了第一时长的几种计算方式,除了如上几种方式之外,第一时长还可以通过其他方式来确定,具体的不限制。
在一种可能的实施方式中,所述方法还包括:所述第一终端装置确定有效性信息,所述有效性信息用于指示所述同步指示信息的有效性或所述失步指示信息的有效性,其中,所述至少一个参考周期的数量越多,所述同步指示信息或所述失步指示信息的有效性越高。
第一终端装置的高层获得同步指示信息或失步指示信息和有效性信息后,可以通过有效性信息确定该评估信息的可靠程度,从而可以选择是否要根据该评估信息来确定链路是否失败。通过这种方式可以提高链路测量的可靠性。评估信息包括同步指示信息或失步指示信息。
在一种可能的实施方式中,所述第一终端装置维护第一定时器,所述第一定时器用于,在所述第一定时器的定时时长内若未接收参考信号,则在所述第一定时器超时时,所述第一终端装置确定所述链路失败。
第一终端装置很有可能长时间接收不到参考信号,例如链路故障时,第一终端装置就可能长时间接收不到参考信号。那么为了避免第一终端装置持续等待,在本申请实施例中,第一终端装置还可以维护第一定时器。如果第一终端装置在第一定时器的定时时长内都未接收到用于进行无线链路测量的参考信号,那么在第一定时器超时时,第一终端装置可以直接确定第一链路失败。通过这种方式可以避免终端设备持续等待,能够尽量及时地判定链路失败。
第二方面,提供第二种链路测量方法,该方法包括:第一终端装置在第三时长内未接 收来自第二终端装置的参考信号,所述参考信号用于所述第一终端装置测量与所述第二终端装置之间的第一链路;所述第一终端装置确定所述第一链路失败。
该方法可由第二通信装置执行,第二通信装置可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如芯片系统。示例性地,所述第二通信装置为第一终端装置。示例性地,所述第一终端装置为第一终端设备,或者为设置在第一终端设备中的用于实现终端设备的功能的芯片系统,或者为用于实现第一终端设备的功能的其他部件。
第一终端装置很有可能长时间接收不到参考信号,例如链路故障时,第一终端装置就可能长时间接收不到参考信号。那么为了避免第一终端装置持续等待,在本申请实施例中,第一终端装置可以维护第一定时器。如果第一终端装置在第一定时器的定时时长内都未接收到用于进行无线链路测量的参考信号,那么在第一定时器超时时,第一终端装置可以直接确定第一链路失败。通过这种方式可以避免终端设备持续等待,能够尽量及时地判定链路失败。
第三方面,提供第一种链路评估方法,该方法包括:第一终端装置根据与所述第二终端装置之间的第一类信道的数量和信道的总数量,获得第二时长内的信道繁忙率,所述第一类信道包括在第二时长内信号强度大于或等于第一门限的信道;所述第一终端装置根据所述信道繁忙率,对所述第一终端装置和所述第二终端装置之间的链路进行同步评估或失步评估。
该方法可由第三通信装置执行,第三通信装置可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如芯片系统。示例性地,所述第二通信装置为第一终端装置。示例性地,所述第一终端装置为第一终端设备,或者为设置在第一终端设备中的用于实现终端设备的功能的芯片系统,或者为用于实现第一终端设备的功能的其他部件。
在本申请实施例中,根据信道繁忙率就能够对链路进行评估,方式简单,减少了设计和实现的复杂度。
在一种可能的实施方式中,所述第一终端装置根据所述信道繁忙率,对所述第一终端装置和所述第二终端装置之间的链路进行同步评估或失步评估,包括:当所述信道繁忙率大于或等于第二门限,所述第一终端装置确定所述链路失步;或,当所述信道繁忙率小于或等于第三门限,所述第一终端装置确定所述链路同步。
第二门限可以由第一终端装置配置,或者由第二终端装置配置并告知第一终端装置,或者如果第二终端装置是终端设备,第二门限也可以由网络设备配置并告知第一终端装置。或者第二门限也可以由协议规定。例如第二门限为70%,或者也可以是其他取值。同理,第三门限可以由第一终端装置配置,或者由第二终端装置配置并告知第一终端装置,或者如果第二终端装置是终端设备,第三门限也可以由网络设备配置并告知第一终端装置。或者第三门限也可以由协议规定。例如第三门限为40%,或者也可以是其他取值。
第四方面,提供第二种链路评估方法,该方法包括:第一终端装置根据对来自第二终端装置的第一信号的解调情况,更新计数器,其中,所述计数器的初始值大于0;所述第一终端装置根据所述计数器的取值确定与所述第二终端装置之间的链路是否失败。
该方法可由第四通信装置执行,第四通信装置可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如芯片系统。示例性地,所述第二通信装置为第一终端装置。示例性地,所述第一终端装置为第一终端设备,或者为设置在第一终端设备中的用于实现终端设备的功能的芯片系统,或者为用于实现第一终端设备的功能的其他部件。
在本申请实施例中,第一终端装置根据对来自第二终端装置的信号的解调情况就能对链路进行评估,相当于,使用PSSCH/PSCCH的译码结果对链路进行评估即可,减少了设计和实现上的复杂度。
在一种可能的实施方式中,所述第一信号为控制信号,第一终端装置根据对来自第二终端装置的第一信号的解调情况,更新计数器,包括:所述第一终端装置对所述第一信号解调成功,所述第一终端装置将所述计数器的值增加第一值;或者,所述第一终端装置漏检所述第一信号,所述第一终端装置将所述计数器的值减少第二值。
在一种可能的实施方式中,所述第一信号为数据信号,且所述第一信号为初传数据,第一终端装置根据对来自第二终端装置的第一信号的解调情况,更新计数器,包括:所述第一终端装置对所述第一信号解调成功,所述第一终端装置将所述计数器的值增加第三值;或者,所述第一终端装置对所述第一信号解调失败,所述第一终端装置将所述计数器的值减少第四值。
在一种可能的实施方式中,所述第一信号为数据信号,且所述第一信号为重传数据,第一终端装置根据对来自第二终端装置的第一信号的解调情况,更新计数器,包括:所述第一终端装置对所述第一信号解调成功,所述第一终端装置将所述计数器的值增加第五值;或者,所述第一终端装置对所述第一信号解调失败,所述第一终端装置将所述计数器的值减少第六值。
如上给出了第一终端装置更新计数器的几种方式。
在一种可能的实施方式中,所述第一终端装置根据所述计数器的取值确定与所述第二终端装置之间的链路是否失败,包括:当所述计数器的取值为0时,所述第一终端装置确定所述链路失败。
如果计数器的初始值大于0,那么当计数器的取值为0时,第一终端装置就可以确定链路失败。通过维护计数器就能对链路进行评估,方式较为简单。
第五方面,提供第三种链路评估方法,该方法包括:第二终端装置接收来自第一终端装置的反馈信息;所述第二终端装置根据接收的所述反馈信息,获得链路的同步指示信息或失步指示信息,所述链路为所述第一终端装置和所述第二终端装置之间的链路。
该方法可由第五通信装置执行,第五通信装置可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如芯片系统。示例性地,所述第二通信装置为第一终端装置。示例性地,所述第一终端装置为第一终端设备,或者为设置在第一终端设备中的用于实现终端设备的功能的芯片系统,或者为用于实现第一终端设备的功能的其他部件。
在本申请实施例中,可以由第二终端装置来对链路进行评估,从而无论是数据的发送端还是接收端,都能对链路进行评估,较为灵活。而且本申请实施例所提供的评估方式较为简单,易于实现。
在一种可能的实施方式中,所述第二终端装置根据接收的所述反馈信息,获得链路的同步指示信息或失步指示信息,包括:
当N1/N大于第一门限时,所述第二终端装置获得所述同步指示信息,或者,当N1/N小于第二门限时,所述第二终端装置获得所述失步指示信息,其中,N1表示所述第二终端装置在第一时长内所接收的肯定应答的数量,N表示第二终端装置期望在所述第一时长内接收的HARQ应答信息的总数量;或,
当N2/N小于第三门限时,所述第二终端装置获得所述同步指示信息,或者,当N2/N 大于第四门限时,所述第二终端装置获得所述失步指示信息,其中,N2表示所述第二终端装置在第一时长内所接收的否定应答的数量,N表示所述第二终端装置期望在所述第一时长内接收的HARQ应答信息的总数量;或,
当N2/N1小于第五门限时,所述第二终端装置获得所述同步指示信息,或者,当N2/N大于第六门限时,所述第二终端装置获得所述失步指示信息,其中,N2表示所述第二终端装置在第一时长内所接收的否定应答的数量,N1表示所述第二终端装置在所述第一时长内所接收的肯定应答的数量。
给出了第二终端装置对链路进行评估的几种方式。这几种方式只是举例,第二终端装置还可以采用其他方法对链路进行评估。
在一种可能的实施方式中,所述方法还包括:所述第二终端装置根据所述同步指示信息或所述失步指示信息确定所述链路是否失败。
在获得同步指示信息或失步指示信息后,第一终端装置可以确定第一链路是否失败,如果第一链路失败,可以进行后续的相应处理。
第六方面,提供一种通信装置,例如该通信装置为如前所述的第一终端装置。所述第一终端装置用于执行上述第一方面或任一可能的实施方式中的方法。具体地,所述第一终端装置可以包括用于执行第一方面或任一可能的实施方式中的方法的模块,例如包括处理模块和收发模块。示例性地,所述第一终端装置为通信设备。示例性地,所述通信设备为终端设备。其中,
所述收发模块,用于在第一参考周期内接收来自第二终端装置的至少一个参考信号,所述至少一个参考信号为非周期传输的;
所述处理模块,用于根据所述至少一个参考信号确定所述第一参考周期中的第一目标参考信号;
所述处理模块,还用于根据至少一个参考周期中的至少一个目标参考信号获得第一链路的同步指示信息或失步指示信息,所述第一链路是所述第一终端装置和所述第二终端装置之间的链路,所述至少一个参考周期包括所述第一参考周期,所述至少一个目标参考信号包括所述第一目标参考信号。
在一种可能的实施方式中,所述处理模块,还用于根据所述同步指示信息或所述失步指示信息确定所述第一链路是否失败。
在一种可能的实施方式中,所述处理模块用于通过如下方式根据所述至少一个参考信号确定所述第一参考周期内的第一目标参考信号:确定所述至少一个参考信号中的一个参考信号为所述第一目标参考信号;或,将所述至少一个参考信号中的部分或全部进行合并,得到所述第一目标参考信号。
在一种可能的实施方式中,所述处理模块用于通过如下方式根据所述至少一个参考信号确定所述第一参考周期内的第一目标参考信号:
在所述至少一个参考信号中的前N个参考信号的累计密度大于或等于参考密度的情况下,将所述前N个参考信号作为所述第一目标参考信号,N大于等于1,其中,参考信号的密度为一个参考信号占用的带宽中承载参考信号的频域单元的个数,所述参考信号的累计密度为一个或多个参考信号的密度的和;或,
在所述至少一个参考信号中的前N个参考信号累计的带宽大于或等于参考带宽的情况下,将所述前N个参考信号作为所述第一目标参考信号,N大于等于1。
在一种可能的实施方式中,所述处理模块,还用于确定所述参考周期的时长;或者,
所述收发模块,还用于从所述第二终端装置接收第一指示信息,所述第一指示信息用于指示所述参考周期的时长。
在一种可能的实施方式中,所述处理模块用于通过如下方式确定所述参考周期的时长:根据第一业务的数据包的参数确定所述参考周期的时长,所述第一业务的数据包是通过所述第一链路传输的,所述第一业务的数据包的参数包括所述第一业务的数据包的期望周期时长,和/或包括所述第一业务的数据包的重传配置信息。
在一种可能的实施方式中,所述参考周期的时长满足:
T=min(第一门限,ceil(T packet×P 1));
其中,T表示所述参考周期的时长,所述第一门限为常数,T packet表示所述第一业务的数据包的最小期望周期时长,P 1表示所述第一业务的重传配置信息,ceil()表示向上取整运算。
在一种可能的实施方式中,P 1的取值包括如下的一项或如下多项的任意组合:当所述第一业务不进行重传时,P 1=2;当所述第一业务进行盲重传时,P 1=2/N 1,N 1表示所述第一业务所包括的一个数据包进行盲重传的次数;或,当所述第一业务进行HARQ自适应重传时,P 1=2/N 2,N 2表示所述第一业务所包括的一个数据包进行HARQ自适应重传的预期次数。
在一种可能的实施方式中,所述处理模块用于通过如下方式根据至少一个参考周期中的至少一个目标参考信号获得第一链路的同步指示信息或失步指示信息:根据第一时长中包括的所述至少一个参考周期中的至少一个目标参考信号获得第一链路的同步指示信息或失步指示信息,所述至少一个参考周期为所述第一时长中的所有参考周期中接收到参考信号的至少一个参考周期。
在一种可能的实施方式中,所述处理模块,还用于根据所述参考周期的时长确定所述第一时长;或,所述收发模块,还用于从所述第二终端装置接收第二指示信息,所述第二指示信息用于指示所述第一时长。
在一种可能的实施方式中,所述处理模块根据第一时长中包括的所述至少一个参考周期中的至少一个目标参考信号获得所述第一链路的同步指示信息;所述处理模块用于通过如下方式根据所述参考周期的时长确定所述第一时长:
确定所述第一时长满足:L in=max(100,M in×T),L in表示所述第一时长,M in表示在根据周期性的参考信号对所述第一链路进行同步测量时,一个所述第一时长内的参与所述同步测量的周期性参考信号的数量,T表示所述参考周期的时长;或者,
所述处理模块根据第一时长中包括的所述至少一个参考周期中的至少一个目标参考信号获得所述第一链路的失步指示信息;所述处理模块用于通过如下方式根据所述参考周期的时长确定所述第一时长:
确定所述第一时长满足:L out=max(200,M out×T),L out表示所述第一时长,M out表示在根据周期性的参考信号对所述第一链路进行失步测量时,一个所述第一时长内的参与所述失步测量的周期性参考信号的数量,T表示所述参考周期的时长。
在一种可能的实施方式中,所述处理模块用于通过如下方式根据所述参考周期的时长确定所述第一时长:根据所述参考周期的时长以及第一参数确定所述第一时长,所述第一参数包括参考密度和/或参考带宽,所述参考密度用于确定所述目标参考信号,所述参考带 宽用于确定所述目标参考信号。
在一种可能的实施方式中,所述处理模块用于通过如下方式根据所述参考周期以及与参考密度相关的参数确定所述第一时长:
所述第一时长用于获得所述同步指示信息,所述第一时长满足如下公式:L in=max(第二门限,ceil(M in×P 2)×T),L in表示所述第一时长,T表示所述参考周期的时长,M in表示在根据周期性的参考信号对所述第一链路进行同步测量时,一个所述第一时长内的参与同步测量的参考信号的数量,P 2表示与所述参考密度相关的参数;或,
所述第一时长用于获得所述失步指示信息,所述第一时长满足如下公式:L out=max(第二门限,ceil(M out×P 2)×T),L out表示所述第一时长,T表示所述参考周期的时长,M out表示在根据周期性的参考信号对所述第一链路进行失步测量时,一个所述第一时长内的参与失步测量的参考信号的数量,P 2表示与所述参考密度相关的参数。
在一种可能的实施方式中,所述处理模块用于通过如下方式根据所述参考周期以及与参考带宽相关的参数确定所述第一时长:
所述第一时长用于获得所述同步指示信息,所述第一时长满足如下公式:L in=max(第二门限,ceil(M in×P 3)×T),L in表示所述第一时长,T表示所述参考周期,M in表示在根据周期性的参考信号对所述第一链路进行同步测量时,一个所述第一时长内的参与同步测量的参考信号的数量,P 3表示与所述参考带宽相关的参数;或,
所述第一时长用于获得所述失步指示信息,所述第一时长满足如下公式:L out=max(第二门限,ceil(M out×P 3)×T),L out表示所述第一时长,T表示所述参考周期,M out表示在根据周期性的参考信号对所述第一链路进行同步测量时,一个所述第一时长内的参与同步测量的参考信号的数量,P 3表示与所述参考带宽相关的参数。
在一种可能的实施方式中,所述处理模块用于通过如下方式根据所述参考周期、与参考密度相关的传输以及与参考带宽相关的参数确定所述第一时长:
所述第一时长用于获得所述同步指示信息,所述第一时长满足如下公式:L in=max(第二门限,ceil(M in×P 2×P 3)×T)L in表示所述第一时长,T表示所述参考周期,M in表示在根据周期性的参考信号对所述第一链路进行同步测量时,一个所述第一时长内的参与同步测量的参考信号的数量,P 2表示与所述参考密度相关的参数,P 3表示与所述参考带宽相关的参数;或,
所述第一时长用于获得所述失步指示信息,所述第一时长满足如下公式:L in=max(第二门限,ceil(M out×P 2×P 3)×T)L in表示所述第一时长,T表示所述参考周期,M out表示在根据周期性的参考信号对所述第一链路进行失步测量时,一个所述第一时长内的参与同步测量的参考信号的数量,P 2表示与所述参考密度相关的参数,P 3表示与所述参考带宽相关的参数。
在一种可能的实施方式中,所述处理模块,还用于确定有效性信息,所述有效性信息用于指示所述同步指示信息的有效性或所述失步指示信息的有效性,其中,所述至少一个参考周期的数量越多,所述同步指示信息或所述失步指示信息的有效性越高。
在一种可能的实施方式中,所述处理模块还用于维护第一定时器,所述第一定时器用于,在所述第一定时器的定时时长内若未接收参考信号,则在所述第一定时器超时时,确定所述链路失败。
关于第六方面或各种可能的实施方式的技术效果,可以参考对于第一方面或第一方面 的相应的实施方式的技术效果的介绍。
第七方面,提供一种通信装置,例如该通信装置为如前所述的第一终端装置。所述第一终端装置用于执行上述第二方面或任一可能的实施方式中的方法。具体地,所述第一终端装置可以包括用于执行第二方面或任一可能的实施方式中的方法的模块,例如包括处理模块和收发模块。示例性地,所述第一终端装置为通信设备。示例性地,所述通信设备为终端设备。其中,
所述处理模块,用于确定所述收发模块在第三时长内未接收来自第二终端装置的参考信号,所述参考信号用于所述第一终端装置测量与所述第二终端装置之间的第一链路;
所述处理模块,还用于确定所述第一链路失败。
关于第七方面或各种可能的实施方式的技术效果,可以参考对于第二方面或第二方面的相应的实施方式的技术效果的介绍。
第八方面,提供一种通信装置,例如该通信装置为如前所述的第一终端装置。所述第一终端装置用于执行上述第三方面或任一可能的实施方式中的方法。具体地,所述第一终端装置可以包括用于执行第三方面或任一可能的实施方式中的方法的模块,例如包括处理模块和收发模块。示例性地,所述第一终端装置为通信设备。示例性地,所述通信设备为终端设备。其中,
所述处理模块,用于根据与所述第二终端装置之间的第一类信道的数量和信道的总数量,获得第二时长内的信道繁忙率,所述第一类信道包括在第二时长内信号强度大于或等于第一门限的信道;
所述处理模块,还用于根据所述信道繁忙率,对所述第一终端装置和所述第二终端装置之间的链路进行同步评估或失步评估。
在一种可能的实施方式中,所述处理模块用于通过如下方式根据所述信道繁忙率,对所述第一终端装置和所述第二终端装置之间的链路进行同步评估或失步评估:当所述信道繁忙率大于或等于第二门限,确定所述链路失步;或,当所述信道繁忙率小于或等于第三门限,确定所述链路同步。
关于第八方面或各种可能的实施方式的技术效果,可以参考对于第三方面或第三方面的相应的实施方式的技术效果的介绍。
第九方面,提供一种通信装置,例如该通信装置为如前所述的第一终端装置。所述第一终端装置用于执行上述第四方面或任一可能的实施方式中的方法。具体地,所述第一终端装置可以包括用于执行第四方面或任一可能的实施方式中的方法的模块,例如包括处理模块和收发模块。示例性地,所述第一终端装置为通信设备。示例性地,所述通信设备为终端设备。其中,
所述处理模块,用于根据对来自第二终端装置的第一信号的解调情况,更新计数器,其中,所述计数器的初始值大于0;
所述处理模块,还用于根据所述计数器的取值确定与所述第二终端装置之间的链路是否失败。
在一种可能的实施方式中,所述第一信号为控制信号,所述处理模块用于通过如下方式根据对来自第二终端装置的第一信号的解调情况,更新计数器:对所述第一信号解调成功,将所述计数器的值增加第一值;或者,漏检所述第一信号,将所述计数器的值减少第二值。
在一种可能的实施方式中,所述第一信号为数据信号,且所述第一信号为初传数据,所述处理模块用于通过如下方式根据对来自第二终端装置的第一信号的解调情况,更新计数器:对所述第一信号解调成功,将所述计数器的值增加第三值;或者,对所述第一信号解调失败,将所述计数器的值减少第四值。
在一种可能的实施方式中,所述第一信号为数据信号,且所述第一信号为重传数据,所述处理模块用于通过如下方式根据对来自第二终端装置的第一信号的解调情况,更新计数器:对所述第一信号解调成功,将所述计数器的值增加第五值;或者,对所述第一信号解调失败,将所述计数器的值减少第六值。
在一种可能的实施方式中,所述处理模块用于通过如下方式根据所述计数器的取值确定与所述第二终端装置之间的链路是否失败:当所述计数器的取值为0时,确定所述链路失败。
关于第九方面或各种可能的实施方式的技术效果,可以参考对于第四方面或第四方面的相应的实施方式的技术效果的介绍。
第十方面,提供一种通信装置,例如该通信装置为如前所述的第二终端装置。所述第一终端装置用于执行上述第五方面或任一可能的实施方式中的方法。具体地,所述第二终端装置可以包括用于执行第五方面或任一可能的实施方式中的方法的模块,例如包括处理模块和收发模块。示例性地,所述第二终端装置为通信设备。示例性地,所述通信设备为终端设备。其中,
所述收发模块,用于接收来自第一终端装置的反馈信息;
所述处理模块,用于根据接收的所述反馈信息,获得链路的同步指示信息或失步指示信息,所述链路为所述第一终端装置和所述第二终端装置之间的链路。
在一种可能的实施方式中,所述处理模块用于通过如下方式根据接收的所述反馈信息,获得链路的同步指示信息或失步指示信息:
当N1/N大于第一门限时,获得所述同步指示信息,或者,当N1/N小于第二门限时,获得所述失步指示信息,其中,N1表示所述第二终端装置在第一时长内所接收的肯定应答的数量,N表示第二终端装置期望在所述第一时长内接收的HARQ应答信息的总数量;或,
当N2/N小于第三门限时,获得所述同步指示信息,或者,当N2/N大于第四门限时,获得所述失步指示信息,其中,N2表示所述第二终端装置在第一时长内所接收的否定应答的数量,N表示所述第二终端装置期望在所述第一时长内接收的HARQ应答信息的总数量;或,
当N2/N1小于第五门限时,获得所述同步指示信息,或者,当N2/N大于第六门限时,获得所述失步指示信息,其中,N2表示所述第二终端装置在第一时长内所接收的否定应答的数量,N1表示所述第二终端装置在所述第一时长内所接收的肯定应答的数量。
在一种可能的实施方式中,所述处理模块,还用于根据所述同步指示信息或所述失步指示信息确定所述链路是否失败。
关于第十方面或各种可能的实施方式的技术效果,可以参考对于第五方面或第五方面的相应的实施方式的技术效果的介绍。
第十一方面,提供一种通信装置,该通信装置例如为如前所述的第一终端装置。该通信装置包括处理器和收发器,处理器和收发器相互耦合,用于实现上述第一方面或各种可能的实施方式所描述的方法。示例性地,所述通信装置为设置在通信设备中的芯片。示例 性的,所述通信设备为终端设备。其中,收发器例如通过通信设备中的天线、馈线和编解码器等实现,或者,如果所述通信装置为设置在通信设备中的芯片,那么收发器例如为芯片中的通信接口,该通信接口与通信设备中的射频收发组件连接,以通过射频收发组件实现信息的收发。其中,
所述收发器,用于在第一参考周期内接收来自第二终端装置的至少一个参考信号,所述至少一个参考信号为非周期传输的;
所述处理器,用于根据所述至少一个参考信号确定所述第一参考周期中的第一目标参考信号;
所述处理器,还用于根据至少一个参考周期中的至少一个目标参考信号获得第一链路的同步指示信息或失步指示信息,所述第一链路是所述第一终端装置和所述第二终端装置之间的链路,所述至少一个参考周期包括所述第一参考周期,所述至少一个目标参考信号包括所述第一目标参考信号。
在一种可能的实施方式中,所述处理器,还用于根据所述同步指示信息或所述失步指示信息确定所述第一链路是否失败。
在一种可能的实施方式中,所述处理器用于通过如下方式根据所述至少一个参考信号确定所述第一参考周期内的第一目标参考信号:确定所述至少一个参考信号中的一个参考信号为所述第一目标参考信号;或,将所述至少一个参考信号中的部分或全部进行合并,得到所述第一目标参考信号。
在一种可能的实施方式中,所述处理器用于通过如下方式根据所述至少一个参考信号确定所述第一参考周期内的第一目标参考信号:
在所述至少一个参考信号中的前N个参考信号的累计密度大于或等于参考密度的情况下,将所述前N个参考信号作为所述第一目标参考信号,N大于等于1,其中,参考信号的密度为一个参考信号占用的带宽中承载参考信号的频域单元的个数,所述参考信号的累计密度为一个或多个参考信号的密度的和;或,
在所述至少一个参考信号中的前N个参考信号累计的带宽大于或等于参考带宽的情况下,将所述前N个参考信号作为所述第一目标参考信号,N大于等于1。
在一种可能的实施方式中,所述处理器,还用于确定所述参考周期的时长;或者,所述收发器,还用于从所述第二终端装置接收第一指示信息,所述第一指示信息用于指示所述参考周期的时长。
在一种可能的实施方式中,所述处理器用于通过如下方式确定所述参考周期的时长:根据第一业务的数据包的参数确定所述参考周期的时长,所述第一业务的数据包是通过所述第一链路传输的,所述第一业务的数据包的参数包括所述第一业务的数据包的期望周期时长,和/或包括所述第一业务的数据包的重传配置信息。
在一种可能的实施方式中,所述参考周期的时长满足:
T=min(第一门限,ceil(T packet×P 1));
其中,T表示所述参考周期的时长,所述第一门限为常数,T packet表示所述第一业务的数据包的最小期望周期时长,P 1表示所述第一业务的重传配置信息,ceil()表示向上取整运算。
在一种可能的实施方式中,P 1的取值包括如下的一项或如下多项的任意组合:当所述第一业务不进行重传时,P 1=2;当所述第一业务进行盲重传时,P 1=2/N 1,N 1表示所述第 一业务所包括的一个数据包进行盲重传的次数;或,当所述第一业务进行HARQ自适应重传时,P 1=2/N 2,N 2表示所述第一业务所包括的一个数据包进行HARQ自适应重传的预期次数。
在一种可能的实施方式中,所述处理器用于通过如下方式根据至少一个参考周期中的至少一个目标参考信号获得第一链路的同步指示信息或失步指示信息:根据第一时长中包括的所述至少一个参考周期中的至少一个目标参考信号获得第一链路的同步指示信息或失步指示信息,所述至少一个参考周期为所述第一时长中的所有参考周期中接收到参考信号的至少一个参考周期。
在一种可能的实施方式中,所述处理器,还用于根据所述参考周期的时长确定所述第一时长;或,所述收发器,还用于从所述第二终端装置接收第二指示信息,所述第二指示信息用于指示所述第一时长。
在一种可能的实施方式中,所述处理器根据第一时长中包括的所述至少一个参考周期中的至少一个目标参考信号获得所述第一链路的同步指示信息;所述处理器用于通过如下方式根据所述参考周期的时长确定所述第一时长:
确定所述第一时长满足:L in=max(100,M in×T),L in表示所述第一时长,M in表示在根据周期性的参考信号对所述第一链路进行同步测量时,一个所述第一时长内的参与所述同步测量的周期性参考信号的数量,T表示所述参考周期的时长;或者,
所述处理器根据第一时长中包括的所述至少一个参考周期中的至少一个目标参考信号获得所述第一链路的失步指示信息;所述处理器用于通过如下方式根据所述参考周期的时长确定所述第一时长:
确定所述第一时长满足:L out=max(200,M out×T),L out表示所述第一时长,M out表示在根据周期性的参考信号对所述第一链路进行失步测量时,一个所述第一时长内的参与所述失步测量的周期性参考信号的数量,T表示所述参考周期的时长。
在一种可能的实施方式中,所述处理器用于通过如下方式根据所述参考周期的时长确定所述第一时长:根据所述参考周期的时长以及第一参数确定所述第一时长,所述第一参数包括参考密度和/或参考带宽,所述参考密度用于确定所述目标参考信号,所述参考带宽用于确定所述目标参考信号。
在一种可能的实施方式中,所述处理器用于通过如下方式根据所述参考周期以及与参考密度相关的参数确定所述第一时长:
所述第一时长用于获得所述同步指示信息,所述第一时长满足如下公式:L in=max(第二门限,ceil(M in×P 2)×T),L in表示所述第一时长,T表示所述参考周期的时长,M in表示在根据周期性的参考信号对所述第一链路进行同步测量时,一个所述第一时长内的参与同步测量的参考信号的数量,P 2表示与所述参考密度相关的参数;或,
所述第一时长用于获得所述失步指示信息,所述第一时长满足如下公式:L out=max(第二门限,ceil(M out×P 2)×T),L out表示所述第一时长,T表示所述参考周期的时长,M out表示在根据周期性的参考信号对所述第一链路进行失步测量时,一个所述第一时长内的参与失步测量的参考信号的数量,P 2表示与所述参考密度相关的参数。
在一种可能的实施方式中,所述处理器用于通过如下方式根据所述参考周期以及与参考带宽相关的参数确定所述第一时长:
所述第一时长用于获得所述同步指示信息,所述第一时长满足如下公式:L in=max(第 二门限,ceil(M in×P 3)×T),L in表示所述第一时长,T表示所述参考周期,M in表示在根据周期性的参考信号对所述第一链路进行同步测量时,一个所述第一时长内的参与同步测量的参考信号的数量,P 3表示与所述参考带宽相关的参数;或,
所述第一时长用于获得所述失步指示信息,所述第一时长满足如下公式:L out=max(第二门限,ceil(M out×P 3)×T),L out表示所述第一时长,T表示所述参考周期,M out表示在根据周期性的参考信号对所述第一链路进行同步测量时,一个所述第一时长内的参与同步测量的参考信号的数量,P 3表示与所述参考带宽相关的参数。
在一种可能的实施方式中,所述处理器用于通过如下方式根据所述参考周期、与参考密度相关的传输以及与参考带宽相关的参数确定所述第一时长:
所述第一时长用于获得所述同步指示信息,所述第一时长满足如下公式:L in=max(第二门限,ceil(M in×P 2×P 3)×T)L in表示所述第一时长,T表示所述参考周期,M in表示在根据周期性的参考信号对所述第一链路进行同步测量时,一个所述第一时长内的参与同步测量的参考信号的数量,P 2表示与所述参考密度相关的参数,P 3表示与所述参考带宽相关的参数;或,
所述第一时长用于获得所述失步指示信息,所述第一时长满足如下公式:L in=max(第二门限,ceil(M out×P 2×P 3)×T)L in表示所述第一时长,T表示所述参考周期,M out表示在根据周期性的参考信号对所述第一链路进行失步测量时,一个所述第一时长内的参与同步测量的参考信号的数量,P 2表示与所述参考密度相关的参数,P 3表示与所述参考带宽相关的参数。
在一种可能的实施方式中,所述处理器,还用于确定有效性信息,所述有效性信息用于指示所述同步指示信息的有效性或所述失步指示信息的有效性,其中,所述至少一个参考周期的数量越多,所述同步指示信息或所述失步指示信息的有效性越高。
在一种可能的实施方式中,所述处理器还用于维护第一定时器,所述第一定时器用于,在所述第一定时器的定时时长内若未接收参考信号,则在所述第一定时器超时时,确定所述链路失败。
关于第十一方面或各种可能的实施方式的技术效果,可以参考对于第一方面或相应的实施方式的技术效果的介绍。
第十二方面,提供一种通信装置,该通信装置例如为如前所述的第一终端装置。该通信装置包括处理器和收发器,处理器和收发器相互耦合,用于实现上述第二方面或各种可能的实施方式所描述的方法。示例性地,所述通信装置为设置在通信设备中的芯片。示例性的,所述通信设备为终端设备。其中,收发器例如通过通信设备中的天线、馈线和编解码器等实现,或者,如果所述通信装置为设置在通信设备中的芯片,那么收发器例如为芯片中的通信接口,该通信接口与通信设备中的射频收发组件连接,以通过射频收发组件实现信息的收发。其中,
所述处理器,用于确定所述收发器在第三时长内未接收来自第二终端装置的参考信号,所述参考信号用于所述第一终端装置测量与所述第二终端装置之间的第一链路;
所述处理器,还用于确定所述第一链路失败。
关于第十二方面或各种可能的实施方式的技术效果,可以参考对于第二方面或相应的实施方式的技术效果的介绍。
第十三方面,提供一种通信装置,该通信装置例如为如前所述的第一终端装置。该通 信装置包括处理器和收发器,处理器和收发器相互耦合,用于实现上述第三方面或各种可能的实施方式所描述的方法。示例性地,所述通信装置为设置在通信设备中的芯片。示例性的,所述通信设备为终端设备。其中,收发器例如通过通信设备中的天线、馈线和编解码器等实现,或者,如果所述通信装置为设置在通信设备中的芯片,那么收发器例如为芯片中的通信接口,该通信接口与通信设备中的射频收发组件连接,以通过射频收发组件实现信息的收发。其中,
所述处理器,用于根据与所述第二终端装置之间的第一类信道的数量和信道的总数量,获得第二时长内的信道繁忙率,所述第一类信道包括在第二时长内信号强度大于或等于第一门限的信道;
所述处理器,还用于根据所述信道繁忙率,对所述第一终端装置和所述第二终端装置之间的链路进行同步评估或失步评估。
在一种可能的实施方式中,所述处理器用于通过如下方式根据所述信道繁忙率,对所述第一终端装置和所述第二终端装置之间的链路进行同步评估或失步评估:当所述信道繁忙率大于或等于第二门限,确定所述链路失步;或,当所述信道繁忙率小于或等于第三门限,确定所述链路同步。
关于第十三方面或各种可能的实施方式的技术效果,可以参考对于第三方面或相应的实施方式的技术效果的介绍。
第十四方面,提供一种通信装置,该通信装置例如为如前所述的第一终端装置。该通信装置包括处理器和收发器,处理器和收发器相互耦合,用于实现上述第四方面或各种可能的实施方式所描述的方法。示例性地,所述通信装置为设置在通信设备中的芯片。示例性的,所述通信设备为终端设备。其中,收发器例如通过通信设备中的天线、馈线和编解码器等实现,或者,如果所述通信装置为设置在通信设备中的芯片,那么收发器例如为芯片中的通信接口,该通信接口与通信设备中的射频收发组件连接,以通过射频收发组件实现信息的收发。其中,
所述处理器,用于根据对来自第二终端装置的第一信号的解调情况,更新计数器,其中,所述计数器的初始值大于0;
所述处理器,还用于根据所述计数器的取值确定与所述第二终端装置之间的链路是否失败。
在一种可能的实施方式中,所述第一信号为控制信号,所述处理器用于通过如下方式根据对来自第二终端装置的第一信号的解调情况,更新计数器:对所述第一信号解调成功,将所述计数器的值增加第一值;或者,漏检所述第一信号,将所述计数器的值减少第二值。
在一种可能的实施方式中,所述第一信号为数据信号,且所述第一信号为初传数据,所述处理器用于通过如下方式根据对来自第二终端装置的第一信号的解调情况,更新计数器:对所述第一信号解调成功,将所述计数器的值增加第三值;或者,对所述第一信号解调失败,将所述计数器的值减少第四值。
在一种可能的实施方式中,所述第一信号为数据信号,且所述第一信号为重传数据,所述处理器用于通过如下方式根据对来自第二终端装置的第一信号的解调情况,更新计数器:对所述第一信号解调成功,将所述计数器的值增加第五值;或者,对所述第一信号解调失败,将所述计数器的值减少第六值。
在一种可能的实施方式中,所述处理器用于通过如下方式根据所述计数器的取值确定 与所述第二终端装置之间的链路是否失败:当所述计数器的取值为0时,确定所述链路失败。
关于第十四方面或各种可能的实施方式的技术效果,可以参考对于第四方面或相应的实施方式的技术效果的介绍。
第十五方面,提供一种通信装置,该通信装置例如为如前所述的第二终端装置。该通信装置包括处理器和收发器,处理器和收发器相互耦合,用于实现上述第五方面或各种可能的实施方式所描述的方法。示例性地,所述通信装置为设置在通信设备中的芯片。示例性的,所述通信设备为终端设备。其中,收发器例如通过通信设备中的天线、馈线和编解码器等实现,或者,如果所述通信装置为设置在通信设备中的芯片,那么收发器例如为芯片中的通信接口,该通信接口与通信设备中的射频收发组件连接,以通过射频收发组件实现信息的收发。其中,所述收发器,用于接收来自第一终端装置的反馈信息;所述处理器,用于根据接收的所述反馈信息,获得链路的同步指示信息或失步指示信息,所述链路为所述第一终端装置和所述第二终端装置之间的链路。
在一种可能的实施方式中,所述处理器用于通过如下方式根据接收的所述反馈信息,获得链路的同步指示信息或失步指示信息:
当N1/N大于第一门限时,获得所述同步指示信息,或者,当N1/N小于第二门限时,获得所述失步指示信息,其中,N1表示所述第二终端装置在第一时长内所接收的肯定应答的数量,N表示第二终端装置期望在所述第一时长内接收的HARQ应答信息的总数量;或,
当N2/N小于第三门限时,获得所述同步指示信息,或者,当N2/N大于第四门限时,获得所述失步指示信息,其中,N2表示所述第二终端装置在第一时长内所接收的否定应答的数量,N表示所述第二终端装置期望在所述第一时长内接收的HARQ应答信息的总数量;或,
当N2/N1小于第五门限时,获得所述同步指示信息,或者,当N2/N大于第六门限时,获得所述失步指示信息,其中,N2表示所述第二终端装置在第一时长内所接收的否定应答的数量,N1表示所述第二终端装置在所述第一时长内所接收的肯定应答的数量。
在一种可能的实施方式中,所述处理器,还用于根据所述同步指示信息或所述失步指示信息确定所述链路是否失败。
关于第十五方面或各种可能的实施方式的技术效果,可以参考对于第五方面或相应的实施方式的技术效果的介绍。
第十六方面,提供一种通信装置。该通信装置可以为上述方法设计中的第一终端装置。示例性地,所述通信装置为设置在通信设备中的芯片。示例性地,所述通信设备为终端设备。该通信装置包括:存储器,用于存储计算机可执行程序代码;以及处理器,处理器与存储器耦合。其中存储器所存储的程序代码包括指令,当处理器执行所述指令时,使该通信装置执行上述第一方面或任意一种可能的实施方式中的方法。
其中,所述通信装置还可以包括通信接口,该通信接口可以是第一终端装置中的收发器,例如通过所述通信装置中的天线、馈线和编解码器等实现,或者,如果该通信装置为设置在第一终端装置中的芯片,则通信接口可以是该芯片的输入/输出接口,例如输入/输出管脚等。
第十七方面,提供一种通信装置。该通信装置可以为上述方法设计中的第一终端装置。示例性地,所述通信装置为设置在通信设备中的芯片。示例性地,所述通信设备为终端设 备。该通信装置包括:存储器,用于存储计算机可执行程序代码;以及处理器,处理器与存储器耦合。其中存储器所存储的程序代码包括指令,当处理器执行所述指令时,使该通信装置执行上述第二方面或任意一种可能的实施方式中的方法。
其中,所述通信装置还可以包括通信接口,该通信接口可以是第一终端装置中的收发器,例如通过所述通信装置中的天线、馈线和编解码器等实现,或者,如果该通信装置为设置在第一终端装置中的芯片,则通信接口可以是该芯片的输入/输出接口,例如输入/输出管脚等。
第十八方面,提供一种通信装置。该通信装置可以为上述方法设计中的第一终端装置。示例性地,所述通信装置为设置在通信设备中的芯片。示例性地,所述通信设备为终端设备。该通信装置包括:存储器,用于存储计算机可执行程序代码;以及处理器,处理器与存储器耦合。其中存储器所存储的程序代码包括指令,当处理器执行所述指令时,使该通信装置执行上述第三方面或任意一种可能的实施方式中的方法。
其中,所述通信装置还可以包括通信接口,该通信接口可以是第一终端装置中的收发器,例如通过所述通信装置中的天线、馈线和编解码器等实现,或者,如果该通信装置为设置在第一终端装置中的芯片,则通信接口可以是该芯片的输入/输出接口,例如输入/输出管脚等。
第十九方面,提供一种通信装置。该通信装置可以为上述方法设计中的第一终端装置。示例性地,所述通信装置为设置在通信设备中的芯片。示例性地,所述通信设备为终端设备。该通信装置包括:存储器,用于存储计算机可执行程序代码;以及处理器,处理器与存储器耦合。其中存储器所存储的程序代码包括指令,当处理器执行所述指令时,使该通信装置执行上述第四方面或任意一种可能的实施方式中的方法。
其中,所述通信装置还可以包括通信接口,该通信接口可以是第一终端装置中的收发器,例如通过所述通信装置中的天线、馈线和编解码器等实现,或者,如果该通信装置为设置在第一终端装置中的芯片,则通信接口可以是该芯片的输入/输出接口,例如输入/输出管脚等。
第二十方面,提供一种通信装置。该通信装置可以为上述方法设计中的第二终端装置。示例性地,所述通信装置为设置在通信设备中的芯片。示例性地,所述通信设备为终端设备。该通信装置包括:存储器,用于存储计算机可执行程序代码;以及处理器,处理器与存储器耦合。其中存储器所存储的程序代码包括指令,当处理器执行所述指令时,使该通信装置执行上述第五方面或任意一种可能的实施方式中的方法。
其中,所述通信装置还可以包括通信接口,该通信接口可以是第二终端装置中的收发器,例如通过所述通信装置中的天线、馈线和编解码器等实现,或者,如果该通信装置为设置在第二终端装置中的芯片,则通信接口可以是该芯片的输入/输出接口,例如输入/输出管脚等。
第二十一方面,提供第一种通信系统,该通信系统包括第十方面所述的通信装置、第十五方面所述的通信装置或第二十方面所述的通信装置,以及:包括第六方面所述的通信装置、第十一方面所述的通信装置或第十六方面所述的通信装置,或者,包括第七方面所述的通信装置、第十二方面所述的通信装置或第十七方面所述的通信装置,或者,包括第八方面所述的通信装置、第十三方面所述的通信装置或第十八方面所述的通信装置,或者,包括第九方面所述的通信装置、第十四方面所述的通信装置或第十九方面所述的通信装置。
第二十二方面,提供一种计算机存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第一方面或任意一种可能的实施方式中所述的方法。
第二十三方面,提供一种计算机存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第二方面或任意一种可能的实施方式中所述的方法。
第二十四方面,提供一种计算机存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第三方面或任意一种可能的实施方式中所述的方法。
第二十五方面,提供一种计算机存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第四方面或任意一种可能的实施方式中所述的方法。
第二十六方面,提供一种计算机存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第五方面或任意一种可能的实施方式中所述的方法。
第二十七方面,提供一种包含指令的计算机程序产品,所述计算机程序产品中存储有指令,当其在计算机上运行时,使得计算机执行上述第一方面或任意一种可能的实施方式中所述的方法。
第二十八方面,提供一种包含指令的计算机程序产品,所述计算机程序产品中存储有指令,当其在计算机上运行时,使得计算机执行上述第二方面或任意一种可能的实施方式中所述的方法。
第二十九方面,提供一种包含指令的计算机程序产品,所述计算机程序产品中存储有指令,当其在计算机上运行时,使得计算机执行上述第三方面或任意一种可能的实施方式中所述的方法。
第三十方面,提供一种包含指令的计算机程序产品,所述计算机程序产品中存储有指令,当其在计算机上运行时,使得计算机执行上述第四方面或任意一种可能的实施方式中所述的方法。
第三十一方面,提供一种包含指令的计算机程序产品,所述计算机程序产品中存储有指令,当其在计算机上运行时,使得计算机执行上述第五方面或任意一种可能的实施方式中所述的方法。
在本申请实施例中,无论第一终端装置在一个参考周期内接收的参考信号的数量多还是少,第一终端装置都可以根据至少一个参考信号得到第一目标参考信号来进行测量。这样就解决了非周期的参考信号到达的数量不确定的问题,使得第一终端装置能够根据非周期传输的参考信号完成对链路的测量。
附图说明
图1为V2X的几种场景的示意图;
图2为本申请实施例的一种应用场景示意图;
图3为本申请实施例提供的第一种链路测量方法的流程图;
图4为本申请实施例中根据参考信号的密度获得第一目标参考信号的一种示意图;
图5为本申请实施例中根据参考信号的带宽获得第一目标参考信号的一种示意图;
图6为本申请实施例中根据第一时长内的第一目标参考信号对第一链路进行测量的一种示意图;
图7为本申请实施例提供的第二种链路测量方法的流程图;
图8为本申请实施例提供的第一种链路评估方法的流程图;
图9为本申请实施例提供的第二种链路评估方法的流程图;
图10为本申请实施例提供的第三种链路评估方法的流程图;
图11为本申请实施例提供的第一种第一终端装置的示意性框图;
图12为本申请实施例提供的第一种第一终端装置的另一示意性框图;
图13为本申请实施例提供的第二种第一终端装置的示意性框图;
图14为本申请实施例提供的第二种第一终端装置的另一示意性框图;
图15为本申请实施例提供的第三种第一终端装置的示意性框图;
图16为本申请实施例提供的第三种第一终端装置的另一示意性框图;
图17为本申请实施例提供的第四种第一终端装置的示意性框图;
图18为本申请实施例提供的第四种第一终端装置的另一示意性框图;
图19为本申请实施例提供的第一种第二终端装置的示意性框图;
图20为本申请实施例提供的第一种第二终端装置的另一示意性框图;
图21为本申请实施例提供的通信装置的示意性框图;
图22为本申请实施例提供的通信装置的另一示意性框图;
图23为本申请实施例提供的通信装置的再一示意性框图。
具体实施方式
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例作进一步地详细描述。
以下,对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
1)终端设备,包括向用户提供语音和/或数据连通性的设备,具体的,包括向用户提供语音的设备,或包括向用户提供数据连通性的设备,或包括向用户提供语音和数据连通性的设备。例如可以包括具有无线连接功能的手持式设备、或连接到无线调制解调器的处理设备。该终端设备可以经无线接入网(radio access network,RAN)与核心网进行通信,与RAN交换语音或数据,或与RAN交互语音和数据。该终端设备可以包括用户设备(user equipment,UE)、无线终端设备、移动终端设备、设备到设备通信(device-to-device,D2D)终端设备、车到一切(vehicle to everything,V2X)终端设备、机器到机器/机器类通信(machine-to-machine/machine-type communications,M2M/MTC)终端设备、物联网(internet of things,IoT)终端设备、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、远程站(remote station)、接入点(access point,AP)、远程终端(remote terminal)、接入终端(access terminal)、用户终端(user terminal)、用户代理(user agent)、或用户装备(user device)等。例如,可以包括移动电话(或称为“蜂窝”电话),具有移动终端设备的计算机,便携式、袖珍式、手持式、计算机内置的移动装置等。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助 理(personal digital assistant,PDA)、等设备。还包括受限设备,例如功耗较低的设备,或存储能力有限的设备,或计算能力有限的设备等。例如包括条码、射频识别(radio frequency identification,RFID)、传感器、全球定位系统(global positioning system,GPS)、激光扫描器等信息传感设备。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备或智能穿戴式设备等,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能头盔、智能首饰等。
而如上介绍的各种终端设备,如果位于车辆上(例如放置在车辆内或安装在车辆内),都可以认为是车载终端设备,车载终端设备例如也称为车载单元(on-board unit,OBU)。本申请实施例的终端设备还可以是作为一个或多个部件或者单元而内置于车辆的车载模块、车载模组、车载部件、车载芯片或者车载单元,车辆通过内置的所述车载模块、车载模组、车载部件、车载芯片或者车载单元可以实施本申请的方法。
本申请实施例中,终端设备还可以包括中继(relay)。或者理解为,能够与基站进行数据通信的都可以看作终端设备。
终端装置,可以是终端设备,或者也可以是用于实现终端设备的功能的模块,该模块可以设置在终端设备中,或者也可以与终端设备彼此独立设置,该模块例如为芯片系统等。
2)网络设备,例如包括接入网(access network,AN)设备,例如基站(例如,接入点),可以是指接入网中在空口通过一个或多个小区与无线终端设备通信的设备,或者例如,一种车到一切(vehicle-to-everything,V2X)技术中的网络设备为路侧单元(road side unit,RSU)。基站可用于将收到的空中帧与IP分组进行相互转换,作为终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括IP网络。RSU可以是支持V2X应用的固定基础设施实体,可以与支持V2X应用的其他实体交换消息。网络设备还可协调对空口的属性管理。例如,网络设备可以包括长期演进(long term evolution,LTE)系统或高级长期演进(long term evolution-advanced,LTE-A)中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),或者也可以包括第五代移动通信技术(the 5 th generation,5G)新空口(new radio,NR)系统(也简称为NR系统)中的下一代节点B(next generation node B,gNB)或者也可以包括云接入网(cloud radio access network,Cloud RAN)系统中的集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU),本申请实施例并不限定。
当然网络设备还可以包括核心网设备,但因为本申请实施例提供的技术方案主要涉及的是接入网设备,因此在后文中,如无特殊说明,则所描述的“核心网设备”是指核心网设备,而所描述的“网络设备”或“接入网设备”均是指接入网设备。
3)V2X就是车与外界进行互联互通,这是未来智能汽车、自动驾驶、智能交通运输系统的基础和关键技术。V2X将在已有的设备到设备(device-to-device,D2D)技术的基础上对V2X的具体应用需求进行优化,需要进一步减少V2X设备的接入时延,解决资源 冲突问题。
V2X具体又包括车与车(vehicle-to-vehicle,V2V)、车与路侧基础设施(vehicle-to-infrastructure,V2I)、车与行人(vehicle-to-pedestrian,V2P)的直接通信,以及车与网络(vehicle-to-network,V2N)的通信交互等几种应用需求。如图1所示。V2V指的是车辆间的通信;V2P指的是车辆与人(包括行人、骑自行车的人、司机、或乘客)的通信;V2I指的是车辆与网络设备的通信,网络设备例如RSU,另外还有一种V2N可以包括在V2I中,V2N指的是车辆与基站/网络的通信。
其中,V2P可以用做给道路上行人或非机动车安全警告。通过V2I,车辆可以与道路甚至其他基础设施,例如交通灯、路障等,进行通信,获取交通灯信号时序等道路管理信息。V2V可以用做车辆间信息交互和提醒,最典型的应用是用于车辆间防碰撞安全系统。V2N是目前应用最为广泛的车联网形式,其主要功能是使车辆通过移动网络,连接到云服务器,使用云服务器提供的导航、娱乐、或防盗等应用功能。
在V2X中,主要是终端设备和终端设备之间的通信。对于终端设备和终端设备之间的传输模式,当前标准协议支持的有广播方式,组播方式,和单播方式。
广播方式:广播方式是指作为发送端的终端设备采用广播的模式进行数据发送,多个终端设备端均能接收来自发送端的侧行链路控制信息(sidelink control information,SCI)或侧行链路共享信道(sidelink shared channel,SSCH)。
在侧行链路中,保证所有的终端设备都解析来自发送端的控制信息的方式是,发送端不对控制信息不加扰,或者发送端使用所有的终端设备都已知的扰码对控制信息加扰。
组播方式:组播方式和广播发送相似,作为发送端的终端设备采用广播的模式进行数据发送,一组终端设备均能解析SCI或SSCH。
单播方式:单播方式是一个终端设备向另外一个终端设备发送数据,其它终端设备不需要或者不能够解析该数据。
4)本申请实施例中所测量的链路(例如后文将要介绍的第一链路),可以是基站、终端装置、或路侧装置中的任意两个设备之间的链路。例如,可以通过本申请实施例提供的方法测量终端装置和终端装置之间的链路,或者测量基站和终端装置的之间链路,或者测量路侧单元和终端装置之间的链路,或者测量基站和基站之间的链路,或者测量路侧单元和路侧单元之间的链路,等等。
5)本申请实施例在介绍时,主要是以测量终端装置和终端装置之间的链路为例进行说明。当需要测量其它链路时,在下文中所述的第一终端装置和第二终端装置,应相应替换为对应场景中的装置。例如,要测量基站和终端装置之间的链路,如果是做下行链路测量,则第一终端装置可以是终端装置,第二终端装置可以替换为基站;如果是做上行链路测量,则第一终端装置可以替换为基站,第二终端装置可以是终端装置。又例如,要测量路侧单元和终端装置之间的链路,如果是做下行链路测量,第一终端装置可以是终端,第二终端装置可以替换为路侧单元;如果是做上行链路测量,第一终端装置可以替换为路侧单元,第二终端装置可以是终端装置。
6)用于测量链路的频谱,可以是授权频谱,也可以是非授权频谱,或者也可以是专用于进行链路测量的非授权频谱。
7)非周期的参考信号(或称为,非周期传输的参考信号),可以是指参考信号没有按照预定的固定时长间隔到达接收端。或者,可以是指发送端没有按照预定的固定时长间隔 发送的参考信号,例如动态调度的信号一般都是非周期的信号。或者,虽然发送端将待发送的参考信号设置为周期传输的信号,但由于各种原因,仍然无法按照确定的固定时长间隔发送参考信号,则这样的参考信号也认为是非周期传输的参考信号。例如,当信号在非授权频谱上传输时,由于信道侦听失败导致信号延迟发送,则本来应该是按周期传输的信号,实际是非周期传输。再例如,在发送端发送参考信号的时间上,有更高优先级的信号在接收,导致发送端无法发送参考信号,则也可能导致参考信号实际是非周期传输。
8)本申请实施例所述的参考信号,是指可以用于做链路测量的信号,例如,参考信号可以包括如下的一种或多种:信道状态信息参考信号(channel state information-reference signal,CSI-RS)、解调参考信号(demodulation reference signal,DMRS)、或同步信号块(synchornonus signal block,SSB)。或者,参考信号还可以包括其他的能够用于进行链路测量的信号。
9)本申请实施例中的术语“系统”和“网络”可被互换使用。“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
以及,除非有相反的说明,本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度。例如,第一过滤信息和第二过滤信息,只是为了区分不同的过滤信息,而并不一定是表示这两种过滤信息的内容、优先级、发送顺序或者重要程度等的不同。
如上介绍了本申请实施例涉及的一些概念,下面介绍本申请实施例的技术特征。
所谓的RLM,指的是连接态的终端设备可以对无线链路的质量进行持续跟踪。
对于一个服务小区,基站会为终端设备配备一组用于RLM的周期性的参考信号,参考信号可以称为RLM-RS。其中,对于终端设备和基站之间的一条链路,基站可以配置一个参考信号,或者说配置一种参考信号。以一条链路为例。终端设备可以在该链路上接收基站所配置的参考信号,其中,参考信号是周期性的,因此终端设备可以在每个周期接收一个(或者说,接收一次)参考信号。在进行评估时,终端设备可以根据评估时长1内接收的参考信号对该链路进行失步评估,也可以根据评估时长2内接收的参考信号对该链路进行同步评估。其中,评估时长1可以包括一个或多个周期,评估时长2可以包括一个或多个周期。评估时长1和评估时长2可以相等,也可以不相等。
对于失步评估过程,是终端设备的物理层根据评估时长1内接收的参考信号对该链路进行失步评估。例如,终端设备的物理层根据评估时长1内接收的参考信号对物理下行控制信道(physical downlink control channel,PDCCH)的误块率(block error ratio,BLER)进行估计,如果终端设备的物理层根据评估时长内的各个参考信号估计得到的BLER均大于预设门限q out(例如10%),则终端设备的物理层可以向终端设备的高层(例如媒体接入控制(media access control,MAC)层)发送链路失步(out-of-sync)指示。
对于同步评估过程,是终端设备的物理层根据评估时长2内接收的参考信号对该链路进行同步评估。例如,终端设备的物理层根据评估时长2内接收的参考信号对PDCCH的 BLER进行估计,如果终端设备的物理层根据评估时长内的各个参考信号估计得到的BLER中,有一个BLER大于预设门限q in(例如2%),则终端设备的物理层可以向终端设备的高层发送链路同步(in-sync)指示。
对于终端设备的高层来说,如果连续收到来自物理层的N310个链路失步指示,则可以启动T310定时器。在T310定时器超时之前,如果高层能够连续收到来自物理层的N311个链路同步指示,则高层认为终端设备和基站重新回到了同步状态。或者,在T310定时器超时之前,如果高层没有连续收到来自物理层的N311个同步指示,则确定链路失败(failure)。
为了提高RLM的评估精度,标准定义了如下两个参数;
1、评估时间长度,或者称为评估时长。
终端设备对评估时长内接收的参考信号进行滤波(如线性平均)后,再根据滤波后的参考信号评估PDCCH的BLER。相关的评估时长包括失步评估时长和同步评估时长,失步评估时长可以表示为T Evaluate_out,例如典型数值为200ms,同步评估时长可以表示为T Evaluate_in,例如典型数值为100ms。
以参考信号是信道状态信息参考信号(channel state information-reference signal,CSI-RS)为例,同步评估时长和失步评估时长可参考表1。
表1
Figure PCTCN2020101712-appb-000001
本申请实施例不涉及DRX相关的问题,因此只讨论非DRX的情况。
表1中,ceil()表示向上取整运算,M out表示在进行失步评估时,一个评估时长内参与评估的参考信号的数量,例如M out的取值为20。M in表示在进行同步评估时,一个评估时长内参与评估的参考信号的数量,例如M in的取值为10。T CSI-RS表示参考信号CSI-RS的周期。P是一个修正数值,是由于某种原因无法测量所有的参考信号的时间补偿,例如,当所有的参考信号都能够参与评估时,P=1。
在RLM过程中,终端设备的物理层可以进行失步评估。例如,终端设备的物理层在每一个层1指示周期(L1 indication period)内,会对T Evaluate_out内的各个周期内接收的参考信号进行合并。之后,终端设备的物理层将合并后的结果和q out进行比较,如果合并后的结果大于q out,则终端设备的物理层向终端设备的高层发送链路失步指示。
另外终端设备的物理层还可以进行同步评估。例如,终端设备的物理层在每一个层1指示周期(L1 indication period)内,会对T Evaluate_in内的各个周期内接收的参考信号进行合并。之后,终端设备的物理层将合并后的结果和q in进行比较,如果合并后的结果大于q in,则终端设备的物理层向终端设备的高层发送链路同步指示。
V2X就是车与外界进行互联互通,这是未来智能汽车、自动驾驶、智能交通运输系统的基础和关键技术。因此,目前提出对V2X的侧行链路也进行RLM,从而保证数据传输能够在高质量的侧行链路上进行。而针对V2X,目前提出了,不采用周期性的参考信号,而是使用非周期的参考信号来进行评估。而根据前面的介绍可知,目前Uu口的RLM采用的是 周期性信号,在每个周期内终端设备可以接收一次(或者说一个)参考信号,则终端设备可以根据该参考信号进行评估。但如果是非周期的参考信号,则在某段时长内,终端设备接收的参考信号的数量可能是不确定的,可能较多,也可能较少。那么终端设备究竟应该如何进行评估,目前尚无定论。
鉴于此,提供本申请实施例的技术方案。在本申请实施例中,第一终端装置在第一参考周期内会接收至少一个参考信号,而第一终端装置会根据至少一个参考信号得到第一目标参考信号,如果有至少一个参考周期,则第一终端装置针对其中的每个参考周期都可以获得第一目标参考信号,从而第一终端装置可以根据至少一个第一目标参考信号对第一链路进行同步评估以获得同步指示信息,或进行失步评估以获得失步指示信息。也就是说,无论第一终端装置在一个参考周期内接收的参考信号的数量多还是少,第一终端装置都可以根据至少一个参考信号得到第一目标参考信号来进行评估。这样就解决了非周期的参考信号到达的数量不确定的问题,使得第一终端装置能够根据非周期传输的参考信号完成对链路的评估。
本申请实施例提供的技术方案可以应用于D2D场景,可以是NR D2D场景也可以是LTE D2D场景等,或者可以应用于V2X场景,可以是NR V2X场景也可以是LTE V2X场景等,或者还可以应用于其他的场景或其他的通信系统,例如还可以用于LTE系统或NR系统的Uu接口的链路评估,相关的侧行链路承载的载频可以是授权频谱,也可以是非授权频谱,也可以是共享频谱,具体的不做限制。
下面介绍本申请实施例所应用的网络架构。请参考图2,为本申请实施例所应用的一种网络架构。
图2中包括网络设备和两个终端设备,分别为终端设备1和终端设备2,这两个终端设备均可以与网络设备连接,或者这两个终端设备可以只有终端设备1与网络设备连接,终端设备2不与网络设备连接,这两个终端设备之间也可以通过sidelink进行通信,也就是终端设备1是有网络覆盖的终端设备,终端设备2是部分网络覆盖的终端设备。图2以只有终端设备1与网络设备连接为例。当然图2中的终端设备的数量只是举例,在实际应用中,网络设备可以为多个终端设备提供服务。
图2中的网络设备例如为接入网设备,例如基站。其中,接入网设备在不同的系统对应不同的设备,例如在第四代移动通信技术(the 4 th generation,4G)系统中可以对应eNB,在5G系统中对应5G中的接入网设备,例如gNB,或为后续演进的通信系统中的接入网设备。
其中,图2中的终端设备是以车载终端设备或车为例,但本申请实施例中的终端设备不限于此。
接下来结合附图介绍本申请实施例提供的技术方案。在本申请实施例的各个实施例中,所描述的对链路质量进行评估(estimate)、对链路质量进行测量(measure)以及对链路质量进行监测(monitor),这三者是等价的,也就是说,本申请的各个实施例中所述的“评估”、“测量”和“监测”等概念可以互相替换。
本申请实施例提供一种链路测量方法,请参见图3,为该方法的流程图。在下文的介绍过程中,以该方法应用于图3所示的网络架构为例。另外,该方法可由两个通信装置执行,这两个通信装置例如为第一通信装置和第二通信装置。其中,第一通信装置或第二通信装置,可以是网络设备或能够支持网络设备实现该方法所需的功能的通信装置,或者可 以是终端设备或能够支持终端设备实现该方法所需的功能的通信装置,当然还可以是其他通信装置,例如芯片系统。且对于第一通信装置或第二通信装置的实现方式均不做限制,例如这两个通信装置可以实现为相同的形式,例如均通过设备的形式实现,或者这两个通信装置也可以实现为不同的形式,例如第一通信装置通过设备的形式实现,第二通信装置通过芯片系统的方式实现,等等。其中,网络设备例如为基站。
为了便于介绍,在下文中,以该方法由终端装置和终端装置执行为例,也就是,以第一通信装置是终端装置(例如称为第一终端装置)、第二通信装置也是终端装置(例如称为第二终端装置)为例。因为本实施例是以应用在图2所示的网络架构为例,因此,下文中所述的第一终端装置可以实现图2所示的网络架构中的终端设备1的功能,下文中所述的第二终端装置可以实现图2所示的网络架构中的终端设备2的功能。
S31、第一终端装置配置参考周期。
在本申请实施例中,第一终端装置可以先配置链路评估参数。例如链路评估参数包括参考周期。其中,本申请实施例所涉及的参考信号是非周期性传输的,但本申请实施例还是可以设置参考周期,对于参考周期,可以理解为一段时长,第一终端装置期望收到1个或者多个参考信号,这样可以兼容现有RLM的流程和框架,简化设计过程。在侧行链路中,参考信号的发送时间具有非规律性,即参考信号无法保证是周期发送的,第一终端装置所接收的参考信号的数量可能是不同的,例如可能收到一个或多个参考信号,或者可能收到0个参考信号(或者说没有收到参考信号),因此,一个参考周期内能够接收的参考信号的数量是无法保证的。
例如,第一终端装置可以自行确定参考周期的时长,也就是说,参考周期的时长可以由第一终端装置配置,或者,参考周期的时长可以通过协议规定,则第一终端装置可以直接根据协议配置。或者,参考周期的时长可以是第二终端装置配置的,第二终端装置配置参考周期的时长后可以向第一终端装置发送第一指示信息,第一指示信息用于指示参考周期的时长。第一终端装置接收第一指示信息后,就可以配置参考周期的时长。或者,如果第一终端装置和第二终端装置都是终端设备,那么参考周期的时长还可能是网络设备(例如基站)所配置的,网络设备配置参考周期的时长后可以向第一终端装置发送第一指示信息,第一指示信息用于指示参考周期的时长。第一终端装置接收第一指示信息后,就可以配置参考周期的时长。
无论由哪个设备来确定参考周期的时长,一种确定方式是,在确定参考周期的时长时无需考虑第一业务的参数,这里的第一业务,是第一链路上传输的业务,第一链路是第一终端装置和第二终端装置之间的链路,第一终端装置在第一链路上接收至少一个参考信号,而第一终端装置要测量的也就是第一链路。在这种确定参考周期的时长的方式下,例如所确定的参考周期的时长为40ms,或者也可能是其他长度,根据期望收到参考信号的时长来确定参考周期的时长即可。
或者,由于参考信号的发送跟业务相关,一般来说,都是在发送业务时会一并发送参考信号,比如:业务的控制信道PSCCH的解调信号(DMRS)作为参考信号,或者业务的数据信道PSSCH的解调信号(DMRS)作为解调信号,或者和PSSCH在一个时隙中同时传输的其它参考信号。因此,另一种确定参考周期的时长的方式是,在确定参考周期的时长时可以考虑第一业务的参数。结合业务的参数来确定参考周期的时长,将链路评估参数和业务相关联,可以使得测量结果更加匹配业务的需求,更为准确。
第一业务的参数例如包括第一业务的数据包的期望周期时长,或包括第一业务的重传配置信息,或包括第一业务的数据包的期望周期时长和第一业务的数据包的重传配置信息。其中,如果第一链路上只有一种业务传输,那么该业务就是第一业务,该业务的数据包的期望周期就是第一业务的数据包的期望周期时长,该业务的数据包的重传配置信息就是第一业务的重传配置信息。或者,如果第一链路上有多种业务传输,那么可以从中确定数据包的期望周期时长最小的业务,将该业务作为第一业务,该业务的数据包的期望周期时长就是第一业务的数据包的期望周期时长,该业务的数据包的重传配置信息就是第一业务的重传配置信息。
在这种确定参考周期的时长的方式下,例如第一业务的参数包括第一业务的数据包的期望周期时长和第一业务的数据包的重传配置信息,则参考周期可以满足如下公式1:
T=min(第一门限,ceil(T packet×P 1)     (公式1)
在公式1中,ceil()表示向上取整。或者,公式1也可以是,T=min(第一门限,
Figure PCTCN2020101712-appb-000002
Figure PCTCN2020101712-appb-000003
),
Figure PCTCN2020101712-appb-000004
表示向下取整。T表示参考周期,T packet表示第一业务的数据包的期望周期时长,P 1表示第一业务的重传配置信息。通过设置第一门限,可以保持终端设备的测试频度适中,既能满足测试要求,也能够保证终端设备的功耗在一定的水平,不至于功耗过大。第一门限可以通过信令配置,例如由网络设备通过第一指示信息配置,或者由第二终端装置通过第一指示信息配置,或者,第一门限也可以由第一终端装置自行设置,或者也可以通过协议规定,例如协议规定第一门限为2ms。
P 1的取值与第一业务的重传配置相关,例如与第一业务的混合自动重传请求(hybrid automatic repeat request,HARQ)重传相关。第一业务的数据包的重传配置信息,可以指示第一业务的数据包的重传方式。例如,该重传配置信息可以包括第一业务不进行HARQ重传、第一业务进行盲重传、或第一业务进行自适应重传中的一种。例如,如果第一业务不进行HARQ重传,也就是说,第一业务仅进行单次传输,则P 1=k(k为可设置的变量,或常量,如k=1,k=2);或者,如果第一业务进行盲重传,则P 1=k/N 1,N 1表示第一业务所包括的一个数据包进行盲重传的次数,其中,第一业务所包括的不同的数据包进行盲重传的次数可能都相同,或者也可能不同;或者,如果第一业务进行自适应重传,P 1=k/N 2,N 2表示第一业务所包括的一个数据包进行HARQ自适应重传的预期次数,例如N 2=1.2,或者也可以是其他取值。或者,如果第一业务不进行HARQ重传,也就是说,第一业务仅进行单次传输,则P 1=1,或者,如果第一业务进行盲重传,则P 1=1/N 1,等等。k例如为常数,如k等于1或2等,或者,k也可以是个变量。
其中,第一业务所包括的不同的数据包进行HARQ自适应重传的次数可能都相同,或者也可能不同。这里的确定P 1的取值的方式只是举例,具体的不限于此。
其中,盲重传是指,第一业务的发送端在发送第一业务后,无论是否接收了接收端对于第一业务的反馈信息,发送端都会对第一业务进行重传,相当于将第一业务发送多次,以提高覆盖。自适应重传是指,第一业务的发送端在发送第一业务后,会根据来自接收端的反馈信息确定是否重传。
当然,第一业务的参数还可以包括其他的参数,则参考周期所满足的公式可以相应有 所不同,具体的不做限制。
S32、在第一参考周期内,第二终端装置向第一终端装置发送至少一个参考信号,第一终端装置接收到来自第二终端装置的至少一个参考信号。所述至少一个参考信号为非周期传输的,或者说,所述至少一个参考信号是不规律的。
本申请的各个实施例所述的“不规律的”,是指参考信号是随机到达,而不是按照某种周期发送的。
例如,参考信号为控制信道或者数据信道的解调参考信号(demodulation reference sgnal,DMRS),则参考信号的发送是基于调度的。
再例如,参考信号是专门用于RLM的参考信号,参考信号是伴随业务数据信道(例如PSSCH)发送的,则参考信号也是基于调度的。
至少一个参考信号,例如包括一个、两个或更多个参考信号。至少一个参考信号用于无线链路测量。需要注意的是,第一终端装置除了要进行无线链路测量之外,还可能要进行其他的一些测量过程,其他的测量过程所使用的可能是其他的参考信号,那么第一终端装置除了接收至少一个参考信号之外,还可能接收用于完成其他功能的参考信号,当然也可能不接收用于完成其他功能的参考信号,这些参考信号不在本申请实施例的考虑范围之内,本申请实施例所提及的参考信号,都是指用于完成无线链路测量的参考信号。
在确定参考周期后,第一终端装置可以以参考周期的时长为时间单位来接收来自第二终端装置的参考信号。在本申请实施例中,第一终端装置在一个参考周期内可能接收一个参考信号,或者也可能接收至少两个参考信号,或者还可能接收不到参考信号(这里所述的接收不到参考信号,是指接收不到用于进行RLM的参考信号,而对于用于完成其他测量过程的参考信号,第一终端装置是否能够接收,本申请实施例不做限制)。图3是以第一终端装置在第一参考周期内接收至少一个参考信号为例。
S33、第一终端装置根据所述至少一个参考信号确定所述第一参考周期内的第一目标参考信号。
如果第一终端装置在第一参考周期内只接收了一个参考信号,那么第一终端装置可以直接将该参考信号作为第一目标参考信号,从而后续可以由第一目标参考信号参与评估。或者,如果第一终端装置在第一参考周期内接收了至少两个参考信号,那么第一终端装置可以根据至少两个参考信号得到一个参考信号,即第一目标参考信号,从而后续可以由第一目标参考信号参与测量。
关于第一终端装置确定第一目标参考信号,可以有不同的方式,下面举例介绍。
作为第一终端装置确定第一目标参考信号的第一种可能的方式,第一终端装置可以确定至少一个参考信号中的一个参考信号为第一目标参考信号。
例如,第一终端装置可以将至少一个参考信号中的第一个接收的参考信号作为第一目标参考信号;或者,第一终端装置可以将至少一个参考信号中的最后一个接收的参考信号作为第一目标参考信号;或者,第一终端装置也可以将至少一个参考信号中的,位于中间的参考信号作为第一目标参考信号,例如至少一个参考信号的数量为3,即第一终端装置在该参考周期内接收了3个参考信号,那么第一终端装置可以将第二个接收的参考信号作为第一目标参考信号,或者,例如至少两个参考信号的数量为4,即第一终端装置在该参考周期内接收了4个参考信号,那么第一终端装置可以将第二个接收的参考信号或第三个接收的参考信号作为第一目标参考信号。实际上,第一终端装置可以将至少一个参考信号 中的任意一个作为第一目标参考信号,具体选择哪个参考信号作为第一目标参考信号,本申请实施例不做限制。
作为第一终端装置确定第一目标参考信号的第二种可能的方式,第一终端装置可以将至少两个参考信号中的部分参考信号或全部参考信号进行合并,将合并后的信号作为第一目标参考信号。本申请实施例中,将多个信号进行合并,一种合并方式例如为将多个信号进行线性平均,或者也还可以有其它的合并方式,具体的不做限制。
例如,第一终端装置可以将至少一个参考信号中的全部参考信号进行合并,得到第一目标参考信号;或者,第一终端装置也可以将至少一个参考信号中的部分参考信号进行合并,例如将至少一个参考信号中的第一个接收的参考信号和最后一个接收的参考信号进行合并,得到第一目标参考信号,或者,也可以在至少一个参考信号中任意选择部分参考信号进行合并,得到第一目标参考信号。如果第一终端装置是将至少一个参考信号中的部分参考信号进行合并得到第一目标参考信号,那么第一终端装置究竟将至少一个参考信号中的哪些参考信号进行合并,本申请实施例不做限制。
如上是以第一参考周期为例进行介绍,对于其他的参考周期,第一终端装置获得第一目标参考信号的方式也是类似的。
通过设置参考周期,并根据在参考周期内接收的至少一个参考信号得到第一目标参考信号,解决了非周期传输的参考信号由于到达数量不均而不能进行测量的问题,且对现有的RLM过程兼容性较好。
作为第一终端装置确定第一目标参考信号的第三种可能的方式,第一终端装置可以根据链路评估参数确定第一目标参考信号。在前文介绍了,链路评估参数包括参考周期,而另外,链路评估参数还可以包括参考密度或参考带宽,或包括参考密度和参考带宽。这里用于第一终端装置确定第一目标参考信号的链路评估参数,可以是参考密度,也可以是参考带宽。其中,参考信号的密度是指,一个参考信号占用的带宽中,承载参考信号的频域单元的个数,参考信号的累计密度为一个或多个参考信号的密度的和。频域单元例如为资源块(resource block,RB),或者资源单元(resource element,RE),或者其他的频域单元。
第一终端装置根据参考密度确定第一目标参考信号。在这种方式下,在至少一个参考信号中的前N个参考信号的累计密度大于或等于参考密度的情况下,第一终端装置将前N个参考信号作为第一目标参考信号,N为大于或等于1的整数。例如,在第一参考周期内,第一终端装置持续接收参考信号,例如每接收一个参考信号,第一终端装置就可以确定在第一参考周期内已接收的所有参考信号的累计密度是否大于或等于参考密度。如果在第一参考周期内已接收的所有参考信号的累计密度小于参考密度,则第一终端装置可以继续接收参考信号,在接收下一个参考信号后再进行判断;或者,如果在第一参考周期内已接收的所有参考信号的累计密度大于或等于参考密度,那么第一终端装置就将在第一参考周期内已接收的所有参考信号作为第一目标参考信号。例如此时,在第一参考周期内已接收的所有参考信号的数量为N,如果N=1,则第一终端装置可以将第一参考信号作为第一目标参考信号,或者,如果N>1,,则第一终端装置可以将在第一参考周期内已接收的所有参考信号进行合并,以得到第一目标参考信号。
例如,参考密度为3,在第一参考周期内,第一终端装置接收到的参考信号的密度可参考图4。其中,图4中画斜线的方框表示参考信号。如图4所示,在第一参考周期内,第一终端装置在t0时刻接收到1个密度为1的参考信号,第一终端装置可以确定在该参考 周期内已接收的所有参考信号的累计密度是否大于或等于参考密度,因为参考密度是3,此时参考信号的累计密度是1,因此在该参考周期内已接收的所有参考信号的累计密度小于参考密度,则第一终端装置可以继续接收参考信号。在t1时刻,第一终端装置接收到1个密度为1的参考信号,第一终端装置可以确定在第一参考周期内已接收的所有参考信号的累计密度是否大于或等于参考密度,因为参考密度是3,此时参考信号的累计密度是2,因此在该参考周期内已接收的所有参考信号的累计密度小于参考密度,则第一终端装置可以继续接收参考信号。在t2时刻,第一终端装置接收到1个密度为1的参考信号,第一终端装置可以确定在第一参考周期内已接收的所有参考信号的累计密度是否大于或等于参考密度,因为参考密度是3,此时参考信号的累计密度是2,因此在第一参考周期内已接收的所有参考信号的累计密度等于参考密度,相当于第一终端装置在第一参考周期内已经收到了密度为3的参考信号,可以达到测量的精度,因此第一终端装置可以将这3个参考信号作为第一目标参考信号,例如第一终端装置可以将这3个参考信号合并,得到第一目标参考信号,第一目标参考信号可以参与对第一链路的测量。而在第一参考周期内,如果终端设备还接收了参考信号,则后续再接收的参考信号就可以无需参与对第一链路的测量。
第一终端装置根据参考带宽确定第一目标参考信号。在这种方式下,在至少一个参考信号中的前N个参考信号累计的带宽大于或等于参考带宽的情况下,第一终端装置将前N个参考信号作为第一目标参考信号,N为大于或等于1的整数。例如,在第一参考周期内,第一终端装置持续接收参考信号,例如每接收一个参考信号,第一终端装置就可以确定在第一参考周期内已接收的所有参考信号的累计带宽是否大于或等于参考带宽。如果在第一参考周期内已接收的所有参考信号的累计密度小于参考带宽,则第一终端装置可以继续接收参考信号,在接收下一个参考信号后再进行判断;或者,如果在第一参考周期内已接收的所有参考信号的累计带宽大于或等于参考带宽,那么第一终端装置就将在第一参考周期内已接收的所有参考信号作为第一目标参考信号。例如,在第一参考周期内已接收的所有参考信号的数量为N,如果N=1,则第一终端装置可以将该参考信号作为第一目标参考信号,或者,如果N>1,则第一终端装置可以将在第一参考周期内已接收的所有参考信号进行合并,以得到第一目标参考信号。
例如,参考带宽为48个RB,在第一参考周期内,第一终端装置接收到的参考信号的带宽可参考图5。其中,图5中画斜线的方框表示参考信号。如图5所示,在第一参考周期内,第一终端装置在t0时刻接收到1个带宽为16个RB的参考信号,第一终端装置可以确定在第一参考周期内已接收的所有参考信号的累计带宽是否大于或等于参考带宽,因为参考带宽是48个RB,此时参考信号的累计带宽是16个RB,因此在第一参考周期内已接收的所有参考信号累计的带宽小于参考带宽,则第一终端装置可以继续接收参考信号。在t1时刻,第一终端装置接收到1个带宽为12个RB的参考信号,第一终端装置可以确定在第一参考周期内已接收的所有参考信号累计的带宽是否大于或等于参考带宽,因为参考带宽是48个RB,此时参考信号的累计带宽是28个RB,因此在第一参考周期内已接收的所有参考信号累计的带宽小于参考带宽,则第一终端装置可以继续接收参考信号。在t1时刻,第一终端装置接收到1个带宽为12个RB的参考信号,第一终端装置可以确定在第一参考周期内已接收的所有参考信号累计的带宽是否大于或等于参考带宽,因为参考带宽是48个RB,此时参考信号的累计带宽是48个RB,因此在第一参考周期内已接收的所有参考信号累计的带宽小于参考带宽,则第一终端装置可以继续接收参考信号。在t3时刻, 第一终端装置接收到1个带宽为8个RB的参考信号,第一终端装置可以确定在第一参考周期内已接收的所有参考信号累计的带宽是否大于或等于参考带宽,因为参考带宽是48个RB,此时参考信号累计的带宽是48个RB,因此在第一参考周期内已接收的所有参考信号累计的带宽等于参考带宽,相当于第一终端装置在第一参考周期内已经收到了带宽为48个RB的参考信号,可以达到测量的精度,因此第一终端装置可以将这4个参考信号作为第一目标参考信号,例如第一终端装置可以将这4个参考信号合并,得到第一目标参考信号,第一目标参考信号可以参与对第一链路的测量。而在第一参考周期内,如果终端设备还接收了参考信号,则后续再接收的参考信号就可以无需参与对第一链路的测量。
关于参考密度。例如,第一终端装置可以自行确定参考密度,也就是说,参考密度可以由第一终端装置配置,或者,参考密度可以通过协议规定。或者,参考密度可以是第二终端装置配置的,第二终端装置配置参考密度后可以向第一终端装置发送第三指示信息,第三指示信息用于指示参考密度。第一终端装置接收第三指示信息后,就可以确定参考密度。或者,如果第一终端装置和第二终端装置都是终端设备,那么参考密度还可能是网络设备(例如基站)所配置的,网络设备配置参考密度后可以向第一终端装置发送第三指示信息,第三指示信息用于指示参考密度。第一终端装置接收第一指示信息后,就可以确定参考密度。第三指示信息和第一指示信息可以是同一个指示信息,或者也可以是不同的指示信息。
关于参考带宽。例如,第一终端装置可以自行确定参考带宽,也就是说,参考带宽可以由第一终端装置配置,或者,参考带宽可以通过协议规定。或者,参考带宽可以是第二终端装置配置的,第二终端装置配置参考带宽后可以向第一终端装置发送第四指示信息,第四指示信息用于指示参考带宽。第一终端装置接收第四指示信息后,就可以确定参考带宽。或者,如果第一终端装置和第二终端装置都是终端设备,那么参考带宽还可能是网络设备(例如基站)所配置的,网络设备配置参考带宽后可以向第一终端装置发送第四指示信息,第四指示信息用于指示参考带宽。第一终端装置接收第一指示信息后,就可以确定参考带宽。第四指示信息和第一指示信息可以是同一个指示信息,或者也可以是不同的指示信息。第四指示信息和第一指示信息可以是同一个指示信息,或者也可以是不同的指示信息。第四指示信息和第三指示信息可以是同一个指示信息,或者也可以是不同的指示信息。
通过配置参考周期的时长、参考密度或参考带宽等链路评估参数,可以在参考周期内根据参考密度或参考带宽进行信号的累计,能够解决接收的参考信号的密度或带宽等不满足测量精度问题,尽量保证了测量的精度,减少了设备和系统设计的复杂度。
如上介绍了几种第一终端装置确定第一目标参考信号的方式,或者,第一终端装置也可以不采用如上的方式,而是采用其他方式来确定第一目标参考信号。至于第一终端装置究竟采用哪种方式来确定第一目标参考信号,可以由第一终端装置自行确定,或者由第二终端装置配置,或者如果第二终端装置也是终端设备,那么也可以由网络设备配置,或者也可以通过协议规定。
S33的过程,例如可以由第一终端装置的物理层来完成。
S34、第一终端装置根据至少一个参考周期中的至少一个目标参考信号,获得第一链路的同步指示信息或失步指示信息,所述第一链路是第一终端装置和第二终端装置之间的链路,所述至少一个参考周期包括所述第一参考周期,所述至少一个目标参考信号包括所 述第一目标参考信号。
前文介绍了第一终端装置根据第一参考周期内的至少一个参考信号得到第一目标参考信号的方式,而对于至少一个参考周期中的每个参考周期,第一终端装置都可以采用相同的方式来得到目标参考信号。例如,第二终端装置在第二参考周期内向第一终端装置发送一个或多个参考信号,第一终端装置在第二参考周期内接收来自第二终端装置的一个或多个参考信号。第一终端装置可以根据所述的一个或多个参考信号,可以确定第二参考周期中的目标参考信号,例如称为第二目标参考信号。第一终端装置根据一个或多个参考信号确定第二目标参考信号的方式,可以参考第一终端装置根据至少一个参考信号确定第一目标参考信号的方式。那么所述的至少一个参考周期还可以包括第二参考周期,所述的至少一个目标参考信号也可以包括第二目标参考信号。
从而第一终端装置可以根据至少一个参考周期中的至少一个目标参考信号对第一链路进行同步测量,得到同步指示信息,或者第一终端装置可以根据至少一个参考周期中的至少一个目标参考信号对第一链路进行失步测量,得到失步指示信息。
其中,第一终端装置对链路进行测量时,可以是以链路评估参数所包括的评估时长为时间单位来进行测量,也就是说,第一终端装置可以根据在评估时长内接收的参考信号来对链路进行测量。或者,评估时长也可以称为测量时长或监测时长等。例如将第一终端装置用于进行评估的评估时长称为第一时长,例如第一时长就包括一个或多个参考周期,一个或多个参考周期包括所述的至少一个参考周期,那么第一终端装置根据至少一个参考周期中的至少一个目标参考信号进行测量,也就是根据第一时长内的至少一个目标参考信号进行测量。这里的第一时长,可以是指用于进行同步测量的同步评估时长,也可以是指用于进行失步测量的失步评估时长。其中,同步评估时长和失步评估时长的长度可能相同,也可能不同。另外,评估时长所包括的参考周期的个数大于或等于所述的至少一个参考周期的个数,这里所述的至少一个参考周期,是指接收了参考信号的参考周期,也就是说,在评估时长所包括的参考周期中,可能第一终端装置在有些参考周期内并未接收参考信号,则该参考周期就不包括在至少一个参考周期内。至少一个参考周期在时间上可能是连续的,也可能是不连续的。
例如,评估时长内包括5个参考周期,分别为参考周期1、参考周期2、参考周期3、参考周期4和参考周期5,其中,第一终端装置在参考周期1、参考周期2、参考周期3和参考周期4内都接收了参考信号,第一终端装置可以根据在参考周期1内接收的参考信号获得目标参考信号1、根据在参考周期2内接收的参考信号获得目标参考信号2、根据在参考周期3内接收的参考信号获得目标参考信号3、以及根据在参考周期4内接收的参考信号获得目标参考信号4,而第一终端装置在参考周期5内未接收参考信号,也无法获得目标参考信号,则,参考周期1、参考周期2、参考周期3和参考周期4可以参与测量,而参考周期5是不参与测量的。那么,所述的至少一个参考周期就包括参考周期1、参考周期2、参考周期3和参考周期4,而不包括参考周期5。可以看到,在这种情况下,所述的至少一个参考周期在时间上是连续的。
再例如,评估时长内包括5个参考周期,分别为参考周期1、参考周期2、参考周期3、参考周期4和参考周期5,其中,第一终端装置在参考周期1、参考周期2和参考周期4内都接收了参考信号,第一终端装置可以根据在参考周期1内接收的参考信号获得目标参考信号1、根据在参考周期2内接收的参考信号获得目标参考信号2、以及根据在参考周 期4内接收的参考信号获得目标参考信号3,而第一终端装置在参考周期3和参考周期5内都未接收参考信号,也无法获得目标参考信号,则,参考周期1、参考周期2和参考周期4可以参与测量,而参考周期3和参考周期5是不参与测量的。那么,所述的至少一个参考周期就包括参考周期1、参考周期2和参考周期4,而不包括参考周期3和参考周期5。可以看到,在这种情况下,所述的至少一个参考周期在时间上是不连续的。
或者,第一终端装置对第一链路进行测量时,也可以不以评估时长为时间单位来进行评估,相当于,可以不设置评估时长这个参数,第一终端装置就是以至少一个参考周期为时间单位来进行测量,至少一个参考周期是指接收了参考信号的参考周期。例如,规定第一终端装置在P个参考周期接收参考信号后,就对第一链路进行测量,P为大于或等于1的整数,如果P大于1,则这P个参考周期可能是连续的,也可能是不连续的。与设置评估时长的区别是,评估时长所限制的是总共的参考周期的数量,但对于这些参考周期中实际接收了参考信号的参考周期的数量并不限制,而这种不设置评估时长的方式,限制的是实际接收了参考信号的参考周期的数量。
例如,第一终端装置可以自行确定第一时长,也就是说,第一时长可以由第一终端装置配置,或者,第一时长可以通过协议规定。或者,第一时长可以是第二终端装置配置的,第二终端装置配置第一时长后可以向第一终端装置发送第二指示信息,第二指示信息用于指示第一时长。第一终端装置接收第二指示信息后,就可以确定第一时长。或者,如果第一终端装置和第二终端装置都是终端设备,那么第一时长还可能是网络设备(例如基站)所配置的,网络设备配置第一时长后可以向第一终端装置发送第二指示信息,第二指示信息用于指示第一时长。第一终端装置接收第一指示信息后,就可以确定第一时长。第四指示信息和第一指示信息可以是同一个指示信息,或者也可以是不同的指示信息。
或者,第一终端装置可以自行确定P的取值,也就是说,P的取值可以由第一终端装置配置,或者,P的取值可以通过协议规定。或者,P的取值可以是第二终端装置配置的,第二终端装置配置P的取值后可以向第一终端装置发送第二指示信息,第二指示信息用于指示P的取值。第一终端装置接收第二指示信息后,就可以确定P的取值。或者,如果第一终端装置和第二终端装置都是终端设备,那么P的取值还可能是网络设备(例如基站)所配置的,网络设备配置P的取值后可以向第一终端装置发送第二指示信息,第二指示信息用于指示P的取值第一终端装置接收第一指示信息后,就可以确定P的取值。第四指示信息和第一指示信息可以是同一个指示信息,或者也可以是不同的指示信息。
第二指示信息和第一指示信息可以是同一个指示信息,或者也可以是不同的指示信息。第二指示信息和第三指示信息可以是同一个指示信息,或者也可以是不同的指示信息。第二指示信息和第四指示信息可以是同一个指示信息,或者也可以是不同的指示信息。例如,第一指示信息、第二指示信息、第三指示信息和第四指示信息可以是同一个指示信息,相当于通过一个指示信息可以同时配置参考周期、第一时长、参考密度和参考带宽这几种链路评估参数,无需过多的指示信息,有助于节省信令开销。或者,第一指示信息、第二指示信息、第三指示信息和第四指示信息也可以分别是不同的指示信息,相当于通过不同的指示信息分别配置不同的链路评估参数,使得配置更有针对性。或者,第一指示信息、第二指示信息、第三指示信息和第四指示信息中也可以有部分指示信息是同一个指示信息,例如第一指示信息和第二指示信息是同一个指示信息,第三指示信息和第四指示信息是同一个指示信息,等等,具体的不做限制。
如果由第一终端装置自行确定第一时长,那么例如,第一终端装置可以根据参考周期确定第一时长。
例如,第一时长是用于进行同步测量的评估时长,也就是说,第一终端装置是要根据第一时长包括的至少一个周期中的第一目标参考信号来获得第一链路的同步指示信息,那么第一时长可以满足如下的公式2:
L in=max(100ms,M in×T)     (公式2)
公式2中,L in表示第一时长,T表示参考周期的时长,M in表示在根据周期性的参考信号对第一链路进行同步测量时,一个第一时长内的参与同步测量的参考信号的数量,例如M in=10。第一时长的单位例如为毫秒。
例如,第一时长是用于进行失步测量的评估时长,也就是说,第一终端装置是要根据第一时长包括的至少一个周期中的第一目标参考信号来获得第一链路的失步指示信息,那么第一时长可以满足如下的公式3:
L out=max(200,M out×T)    (公式3)
公式3中,L out表示第一时长,T表示参考周期的时长,M out表示在根据周期性的参考信号对第一链路进行失步测量时,一个第一时长内的参与失步测量的参考信号的数量,例如M out=20。第一时长的单位例如为毫秒。
如上的公式只是举例,如果第一终端装置根据参考周期来确定第一时长,则确定方式不限于如上的公式。
另外,如上的公式2或公式3只是考虑了参考周期,或者,在确定第一时长时,还可以考虑其他的链路评估参数。例如,第一终端装置根据参考周期确定第一时长,还可以是,第一终端装置根据参考周期以及第一参数确定第一时长。第一参数例如包括与参考密度相关的参数,或者包括与参考带宽相关的参数,或者包括与参考密度相关的参数和与参考带宽相关的参数。
例如,第一终端装置根据参考周期和与参考密度相关的参数确定第一时长。
例如第一时长是用于进行同步测量的评估时长,也就是说,第一终端装置是要根据第一时长包括的至少一个周期中的第一目标参考信号来获得第一链路的同步指示信息,那么第一时长可以满足如下的公式4:
L in=max(第二门限,ceil(M in×P 2)×T)    (公式4)
在公式4中,ceil()表示向上取整。或者,公式4也可以是,L in=max(第二门限,
Figure PCTCN2020101712-appb-000005
),
Figure PCTCN2020101712-appb-000006
表示向下取整。L in表示第一时长,T表示参考周期的时长,M in表示在根据周期性的参考信号对第一链路进行同步测量时,一个第一时长内的参与同步测量的参考信号的数量,例如M in=10。第一时长的单位例如为毫秒。通过设置第二门限,可以保持第一终端装置的测试的有效性,既能统计到足够的样点,又能够保证样点之间是相关联的。例如第二门限可以与第一终端装置的速度有关。第二门限可以通过信令配置,例如由网络设备通过第二指示信息配置,或者由第二终端装置通过第二指示信息配置,或者,第二门限也可以由第一终端装置自行设置,或者也可以通过协议规定。例如,当第一终端装置的速度为高速(例如高速对应的速度范围为(120,250]公里/小时)时,第二门限=80ms,而当第一终端装置的速度为低速(例如低速对应的速度范围为[0,120]公里/小时)时,第二门限=140ms。
P 2表示与参考密度相关的参数。例如,如果参考密度小于或等于在一个参考周期内实 际接收的参考信号的密度,那么P 2=1。或者,P 2也可以是密度比,P 2为在一个参考周期内实际接收的参考信号的密度与参考密度的比值,也就是说,P 2=在一个参考周期内实际接收的参考信号的密度/参考密度。例如,在一个参考周期内实际接收的参考信号的密度为1,参考密度为3,那么P 2=3,也就是说,P 2=参考密度/实际信号密度。或者,P 2也可以是其他形式的值,只要P 2与参考密度相关即可,且实际信号密度越低,需要的测量样点越多。
例如第一时长是用于进行失步测量的评估时长,也就是说,第一终端装置是要根据第一时长包括的至少一个周期中的第一目标参考信号来获得第一链路的失步指示信息,那么第一时长可以满足如下的公式5:
L out=max(第二门限,ceil(M out×P 2)×T)    (公式5)
在公式5中,ceil()表示向上取整。或者,公式5也可以是,L in=max(第二门限,
Figure PCTCN2020101712-appb-000007
),
Figure PCTCN2020101712-appb-000008
表示向下取整。L out表示第一时长,T表示参考周期的时长,M out表示在根据周期性的参考信号对第一链路进行失步测量时,一个第一时长内的参与失步测量的参考信号的数量,例如M out=20。关于P 2等参数可参考前文的介绍。
例如,第一终端装置根据参考周期和与参考带宽相关的参数确定第一时长。
例如第一时长是用于进行同步测量的评估时长,也就是说,第一终端装置是要根据第一时长包括的至少一个周期中的第一目标参考信号来获得第一链路的同步指示信息,那么第一时长可以继续满足如下的公式6:
L in=max(第二门限,ceil(M in×P 3)×T)   (公式6)
在公式6中,ceil()表示向上取整。或者,公式6也可以是,L in=max(第二门限,
Figure PCTCN2020101712-appb-000009
),
Figure PCTCN2020101712-appb-000010
表示向下取整。P 3表示与参考带宽相关的参数。例如,如果参考带宽小于或等于在一个参考周期内实际接收的参考信号的带宽,那么P 3=1。或者,P 3=1/带宽比,带宽比是在一个参考周期内实际接收的参考信号的带宽与参考带宽的比值,也就是说,带宽比=在一个参考周期内实际接收的参考信号的带宽/参考带宽。例如,在一个参考周期内实际接收的参考信号的带宽为24个RB,参考带宽为48个RB,那么带宽比=24/48=1/2,而P 3=1/带宽比,则P 3=1/1/2=2。或者P 3也可以是其他形式的值,只要P 3与参考带宽相关即可。公式5中的其他参数可参考对于前文其他公式的介绍。
例如第一时长是用于进行失步测量的评估时长,也就是说,第一终端装置是要根据第一时长包括的至少一个周期中的第一目标参考信号来获得第一链路的失步指示信息,那么第一时长可以继续满足如下的公式7:
L out=max(第二门限,ceil(M out×P 3)×T)    (公式7)
公式7中,ceil()表示向上取整。或者,公式7也可以是,L out=max(第二门限,
Figure PCTCN2020101712-appb-000011
),
Figure PCTCN2020101712-appb-000012
表示向下取整。公式7中的其他参数可参考对于前文其他公式的介绍。
例如,第一终端装置根据参考周期和与参考带宽相关的参数确定第一时长。
例如第一时长是用于进行失步测量的评估时长,也就是说,第一终端装置是要根据第一时长包括的至少一个周期中的第一目标参考信号来获得第一链路的失步指示信息,那么第一时长可以继续满足如下的公式8:
L out=max(第二门限,ceil(M out×P 2×P 3)×T)    (公式8)
ceil()表示向上取整。或者,公式8也可以是,L out=max(第二门限,
Figure PCTCN2020101712-appb-000013
),
Figure PCTCN2020101712-appb-000014
表示向下取整。关于公式8所涉及的其他参数,均可参考前文的相关介绍。
例如第一时长是用于进行同步测量的评估时长,也就是说,第一终端装置是要根据第 一时长包括的至少一个周期中的第一目标参考信号来获得第一链路的同步指示信息,那么第一时长可以继续满足如下的公式9:
L in=max(第二门限,ceil(M in×P 2×P 3)×T)    (公式9)
ceil()表示向上取整。或者,公式9也可以是,L in=max(第二门限,
Figure PCTCN2020101712-appb-000015
),
Figure PCTCN2020101712-appb-000016
表示向下取整。关于公式9所涉及的其他参数,均可参考前文的相关介绍。
在确定第一时长后,第一终端装置就可以获得同步指示信息或失步指示信息。其中,S33的过程,例如可以由第一终端装置的物理层来完成。
对于失步测量过程,例如是第一终端装置的物理层根据L out内接收的参考信号对第一链路进行失步测量。例如,第一终端装置的物理层根据L out内的目标参考信号对PDCCH的BLER进行估计,得到失步指示信息。其中,如果第一终端装置的物理层根据L out内的各个目标参考信号估计得到的BLER均大于预设门限q out,则第一终端装置的物理层可以向第一终端装置的高层(例如MAC层或无线资源控制(radio resource control,RRC)层等)发送失步指示信息。
对于同步测量过程,例如是第一终端装置的物理层根据L in内接收的参考信号对第一链路进行同步测量。例如,第一终端装置的物理层根据L in内的目标参考信号对PDCCH的BLER进行估计,得到同步指示信息。其中,如果第一终端装置的物理层根据L in内的各个参考信号估计得到的BLER中,有一个BLER大于预设门限q in(例如2%),则第一终端装置的物理层可以向终端设备的高层发送同步指示信息。
其中,第一终端装置的物理层可以每隔第二时长就进行一次测量,并可以将评估信息发送给第一终端装置的高层。第二时长可以理解为上报间隔的时长,上报间隔的时长例如就等于参考周期的时长。评估信息可以包括同步指示信息或失步指示信息,或包括同步指示信息和失步指示信息。例如,评估信息也可以称为测量信息,或称为监测信息等。例如,第一终端装置可以自行确定上报间隔的时长,也就是说,上报间隔的时长可以由第一终端装置配置,或者,上报间隔的时长可以通过协议规定。或者,上报间隔的时长可以是第二终端装置配置的,第二终端装置配置上报间隔的时长后可以将该上报间隔的时长发送给第一终端装置,从而第一终端装置可以确定该上报间隔的时长。或者,如果第一终端装置和第二终端装置都是终端设备,那么上报间隔的时长还可能是网络设备(例如基站)所配置的,网络设备配置上报间隔的时长后可以将该上报间隔发送给第一终端装置,从而第一终端装置可以确定该上报间隔的时长。例如,上报间隔的时长可以大于或等于参考周期的时长,例如上报间隔的时长可以等于参考周期的时长,或者也可以等于参考周期的时长的整数倍。当终端只被配置上报间隔时长时,参考周期的时长等于上报间隔时长。
例如可参考图6,为第一终端装置的物理层对第一链路进行测量的示意图。图6中的虚线框所示的部分表示第一时长,第一时长例如包括6个参考周期,这6个参考周期分别表示为RS0~RS5。图6以一个参考周期为20ms为例。图6中的画斜线的方框表示目标参考信号,需要注意的是,图6中的目标参考信号只是示意,并不代表实际的目标参考信号的位置或时域长度等。可以看到,参考周期RS0内、参考周期RS2和参考周期RS4内均不包括画斜线的方框,可能是因为,在这三个参考周期内,第一终端装置都未接收到来自第二终端装置的用于进行无线链路测量的参考信号,也就是说,这6个参考周期中,RS1、RS3和RS5属于至少一个参考周期,第一终端装置在至少一个参考周期中获得了3个目标参考信号。例如上报间隔和参考周期相等,则在每个参考周期的结束时刻,第一终端装置的物理层就可 以进行测量以及向高层上报评估信息。图7的上报时机,就是指第一终端装置进行测量以及向高层上报评估信息,可以看到,图6中示出了两个上报时机,这两个上报时机之间的间隔就是上报间隔,也就是一个参考周期。例如第一终端装置在图6所示的第一个上报时机进行评估时,就是根据虚线框中包括的所有的目标参考信号进行测量,而如果第一终端装置在图6所示的第二个上报时机进行测量,那么就将虚线框的位置往右挪一个参考周期,第一终端装置再根据挪动后的虚线框所包括的所有的目标参考信号进行测量即可。
S35、第一终端装置根据所述同步指示信息或所述失步指示信息确定所述第一链路是否失败。
第一终端装置在得到同步指示信息或失步指示信息后,可以确定第一链路是否失败。
例如S33的过程可以由第一终端装置的物理层完成,也就是说,第一终端装置的物理层可以获得同步指示信息或失步指示信息,那么第一终端装置的物理层如果获得了同步指示信息,则可以将同步指示信息发送给第一终端装置的高层,或者,第一终端装置的物理层如果获得了失步指示信息,则可以将失步指示信息发送给第一终端装置的高层。同步指示信息例如为链路同步指示,失步指示信息例如为链路失步指示。执行S34的例如为第一终端装置的高层。
对于第一终端装置的高层来说,如果连续收到来自物理层的N310个链路失步指示,则可以启动T310定时器。在T310定时器超时之前,如果高层能够连续收到来自物理层的N311个链路同步指示,则高层认为第一终端装置和第二终端装置重新回到了同步状态。或者,在T310定时器超时之前,如果高层没有连续收到来自物理层的N311个同步指示,则确定第一链路失败。如果确定链路失败,则第一终端装置可执行如下的一种或几种操作:
第一种操作:第一终端装置向网络设备发送侧行链路失败报告信息。例如侧行链路失败报告信息可以通过无线资源控制(radio resource control,RRC)消息、媒体接入控制控制元素(media access control control element,MAC CE)、或物理层信道来承载。
第二种操作:第一终端装置向第二终端装置发送侧行链路失败报告信息。例如侧行链路失败报告信息可以通过RRC消息、MAC CE、或物理层信道来承载。
第三种操作:第一终端装置停止向第二终端装置发送反馈信息,反馈信息例如包括混合自动重传请求应答(hybrid automatic repeat request-ack,HARQ-ACK)信息或CSI。第二终端装置在一定的时间内,如果没有收到来自第一终端装置的反馈信息,则第二终端装置也会判断为链路失败。
作为一种可选的方式,第一终端装置除了可以获得评估信息之外,还可以确定评估信息的有效性,评估信息可以包括同步指示信息或失步指示信息。例如,第一终端装置的物理层可以确定评估信息的有效性,并在向第一终端装置的高层发送评估信息时,一并向第一终端装置的高层发送该有效性信息。例如,评估信息的有效性信息(或,评估信息的有效性)可以指示参与获得评估信息的目标参考信号的数量,例如参与获得评估信息的参考信号的数量越多,则评估信息的有效性越高,而参与获得评估信息的参考信号的数量越少,则评估信息的有效性越低。评估信息的有效性信息例如可以是具体的数值,例如数值1、2、3等分别表示不同的有效性;或者,评估信息的有效性信息也可以只是简单指示有效性高或有效性低。例如评估信息的有效性信息可以通过1个比特(bit)来实现,如果这1比特的取值为“1”,则表示该评估信息的有效性高;(例如:在一个包含多个参考周期的失步/同步的评估时长,如果最近一个参考周期内,收到了目标参考信号,则1比特的取值就可 以是“1”,或者最近一个参考周期内,没有收到目标参考信号,则1比特的取值就可以是“0”,再比如:在一个失步/同步的评估时长,如果收到的获得的目标参考信号的个数大于或等于第一门限,这1比特的取值就可以是“1”,第一门限例如为80%(实际收到参考信号个数/期望收到的参考信号个数),或者第一门限例如为15(实际收到的参考信号个数);
。那么第一终端装置的高层获得评估信息和评估信息的有效性信息后,就可以确定该评估信息的可靠程度,从而可以选择是否要根据该评估信息来确定链路是否失败。通过这种方式可以提高链路测量的可靠性。
同样,对于在一个参考周期内(或者同/失步上报间隔内)没有收到参考信号时,物理层可以不进行同/失步的测量,跳过本次高层上报,不上报同步也不上报失步信息,或者上报一个“没有收到参考信号”的指示。
另外,考虑一种情况,第一终端装置很有可能长时间接收不到参考信号,例如链路故障时,第一终端装置就可能长时间接收不到参考信号。那么为了避免第一终端装置持续等待,在本申请实施例中,第一终端装置还可以维护第一定时器,第一定时器的定时时长可以由第一终端装置配置,或者由第二终端装置配置并告知第一终端装置,或者如果第二终端装置是终端设备,那么第一定时器的定时时长也可以由网络设备配置并告知第一终端装置,或者第一定时器的定时时长也可以由协议规定。例如,第一定时器的定时时长为{500ms,或者1s,或2s},或者也可以是其他的取值。第一定时器可以由第一终端装置的物理层维护,或者也可以由第一终端装置的高层维护。
如果第一终端装置在第一定时器的定时时长内都未接收到用于进行无线链路测量的参考信号,那么在第一定时器超时时,第一终端装置可以直接确定第一链路失败。通过这种方式可以避免终端设备持续等待,能够尽量及时地判定链路失败。
另外,在一个参考周期内,如果第一终端装置没有收到参考信号,或者说收到的参考信号的个数为0,则第一终端装置可以采用如下的一种或者几种处理方式:第1种处理方式、第2种处理方式、第3种处理方式或第4种处理方式。例如,第一终端装置可以采用第1种处理方式,或者第一终端装置可以采用第1种处理方式和第2种处理方式,或者第一终端装置可以采用第2种处理方式、第3种处理方式和第4种处理方式,等等。下面介绍这几种处理方式。
第1种处理方式:跳过本次测量过程,本次测量过程可以是同步测量过程,或失步测量过程,或同步测量过程和失步测量过程。
既然跳过了本次的测量过程,那么第一终端装置的物理层就既不向第一终端装置的高层发送同步指示信息,也不向高层第一终端装置的发送失步指示信息。
第2种处理方式:跳过本次测量过程,本次测量过程可以是同步测量过程,或失步测量过程,或同步测量过程和失步测量过程。
虽然跳过了本次的测量过程,但第一终端装置的物理层还是可以向第一终端装置的高层发送
跳过本次同/失步的测量,向高层反馈第五指示信息,第五指示信息既不是同步指示信息,也不是失步指示信息,第五指示信息可以指示高层,在参考周期内,没有收到参考信号。
第3种处理方式:可以继续获得同步指示信息或失步指示信息。
但是在该参考周期所获得的同步指示信息或失步指示信息,不参与相关的测量,例如,第一终端装置的高层在对链路进行测量时,可以不考虑在该参考周期所获得的同步指示信息或失步指示信息。
第4种处理方式:可以继续获得同步指示信息或失步指示信息。
但是在该参考周期所获得的同步指示信息或失步指示信息,不参与相关的测量,例如,第一终端装置的高层在对链路进行测量时,可以不考虑在该参考周期所获得的同步指示信息或失步指示信息。另外,第一终端装置的物理层还可以向第一终端装置的高层发送评估信息的有效性信息,评估信息可以包括同步指示信息或失步指示信息。关于有效性信息,可参考前文的介绍。
即使第一终端装置没有收到参考信号,本申请实施例也给出了相应的解决方案。
另外可以看到,本申请实施例在阐述技术方案时是针对一条链路进行的阐述,对于不同的链路,均可以采用类似的方式来进行评估。
在本申请实施例中,第一终端装置在一个参考周期内会接收至少两个参考信号,而第一终端装置会根据至少两个参考信号得到第一目标参考信号,从而根据第一目标参考信号进行测量。也就是说,无论第一终端装置在一个参考周期内接收的参考信号的数量多还是少,第一终端装置都可以根据至少两个参考信号得到第一目标参考信号来进行测量。这样就解决了非周期的参考信号到达的数量不确定的问题,使得第一终端装置能够根据非周期的参考信号完成对链路的测量。
本申请实施例提供一种链路测量方法,请参见图7,为该方法的流程图。在下文的介绍过程中,以该方法应用于图2所示的网络架构为例。另外,该方法可由两个通信装置执行,这两个通信装置例如为第三通信装置和第四通信装置。其中,第三通信装置或第四通信装置,可以是网络设备或能够支持网络设备实现该方法所需的功能的通信装置,或者可以是终端设备或能够支持终端设备实现该方法所需的功能的通信装置,当然还可以是其他通信装置,例如芯片系统。且对于第三通信装置或第四通信装置的实现方式均不做限制,例如这两个通信装置可以实现为相同的形式,例如均通过设备的形式实现,或者这两个通信装置也可以实现为不同的形式,例如第三通信装置通过设备的形式实现,第四通信装置通过芯片系统的方式实现,等等。其中,网络设备例如为基站。
为了便于介绍,在下文中,以该方法由终端设备和终端设备执行为例,也就是,以第三通信装置是终端设备(例如称为第一终端装置)、第四通信装置是终端设备(例如称为第四设备)为例。因为本实施例是以应用在图2所示的网络架构为例,因此,下文中所述的第一终端装置可以实现图2所示的网络架构中的终端设备1的功能,下文中所述的第二终端装置可以实现图2所示的网络架构中的终端设备2的功能。
S71、第一终端装置在第三时长内未接收来自第二终端装置的参考信号。
关于参考周期,可以参考图3所示的实施例的介绍。
例如,第一终端装置可以自行确定第三时长,也就是说,第三时长可以由第一终端装置配置,或者,第三时长可以通过协议规定。或者,第三时长可以是第二终端装置配置的,第二终端装置配置第三时长后可以向第一终端装置发送指示信息,指示信息用于指示第三时长。第一终端装置接收指示信息后,就可以确定第三时长。或者,如果第一终端装置和第二终端装置都是终端设备,那么第三时长还可能是网络设备(例如基站)所配置的,网络设备配置第三时长后可以向第一终端装置发送指示信息,指示信息用于指示第三时长。 第一终端装置接收第一指示信息后,就可以确定第三时长。例如第三时长为500ms,或者也可以是其他的时长。
例如,第一终端装置可以启动第一定时器,第一定时器的定时时长就是第三时长。在第一定时器超时时,如果第一终端装置未接收参考信号,那么就是在第三时长内未接收参考信号。本申请实施例所述的参考信号,是用于RLM的参考信号。
S72、第一终端装置确定第一终端装置和第二终端装置之间的第一链路失败。
第一终端装置很有可能长时间接收不到参考信号,例如链路故障时,第一终端装置就可能长时间接收不到参考信号。那么为了避免第一终端装置持续等待,在本申请实施例中,第一终端装置还可以维护第一定时器。第一定时器可以由第一终端装置的物理层维护,或者也可以由第一终端装置的高层维护。
如果第一终端装置在第一定时器的定时时长内都未接收到用于进行无线链路测量的参考信号,那么在第一定时器超时时,第一终端装置可以直接确定第一链路失败。通过这种方式可以避免终端设备持续等待,能够尽量及时地判定链路失败。
图3所示的实施例或图7所示的实施例,都是通过RLM过程对链路进行评估。而要对链路进行评估,除了RLM方式之外,还可以通过其他的方式。下面再通过另外的实施例介绍其他的链路评估方式。
本申请实施例提供一种链路评估方法,请参见图8,为该方法的流程图。在下文的介绍过程中,以该方法应用于图2所示的网络架构为例。另外,该方法可由两个通信装置执行,这两个通信装置例如为第五通信装置和第六通信装置。其中,第五通信装置或第六通信装置,可以是网络设备或能够支持网络设备实现该方法所需的功能的通信装置,或者可以是终端设备或能够支持终端设备实现该方法所需的功能的通信装置,当然还可以是其他通信装置,例如芯片系统。且对于第五通信装置或第六通信装置的实现方式均不做限制,例如这两个通信装置可以实现为相同的形式,例如均通过设备的形式实现,或者这两个通信装置也可以实现为不同的形式,例如第五通信装置通过设备的形式实现,第六通信装置通过芯片系统的方式实现,等等。其中,网络设备例如为基站。
为了便于介绍,在下文中,以该方法由终端设备和终端设备执行为例,也就是,以第五通信装置是终端设备(例如称为第一终端装置)、第六通信装置是终端设备(例如称为第四设备)为例。因为本实施例是以应用在图2所示的网络架构为例,因此,下文中所述的第一终端装置可以是图2所示的网络架构中的终端设备1,下文中所述的第二终端装置可以是图2所示的网络架构中的终端设备2。
S81、第一终端装置根据对来自第二终端装置的第一信号的解调情况,更新计数器。
可以为第一终端装置配置计数器,计数器的初始值可以大于0,例如初始值为20,或者为其他取值,或者,计数器的初始值也可以等于0。计数器的初始值可以由第一终端装置配置,或者由第二终端装置配置并告知第一终端装置,或者如果第二终端装置是终端设备,计数器的初始值也可以由网络设备配置并告知第一终端装置。或者计数器的初始值也可以由协议规定。
第一信号可能是控制信号,例如是承载在物理侧行控制信道(pysical sidelink control channel,PSCCH)的SCI;或者,第一信号也可能是数据信号,例如是承载在物理侧行控制信道(pysical sidelink shared channel,PSSCH)的数据。
如果第一信号是控制信号,那么,第一终端装置根据对来自第二终端装置的第一信号 的解调情况,更新计数器,可以包括:如果第一终端装置对第一信号解调成功(即CRC校验成功),则第一终端装置可以将计数器的值增加第一值,或者,如果第一终端装置漏检第一信号,则第一终端装置可以将计数器的值减少第二值。其中,漏检第一信号,也可以视为对第一信号解调失败,因此第一终端装置漏检第一信号,也可以认为是第一终端装置对第一信号的一种解调情况。
其中,第一值可以由第一终端装置配置,或者由第二终端装置配置并告知第一终端装置,或者如果第二终端装置是终端设备,第一值也可以由网络设备配置并告知第一终端装置。或者第一值也可以由协议规定。第一值例如为1,或者也可以是其他取值。
同理,第二值可以由第一终端装置配置,或者由第二终端装置配置并告知第一终端装置,或者如果第二终端装置是终端设备,第二值也可以由网络设备配置并告知第一终端装置。或者第二值也可以由协议规定。第二值例如为3,或者也可以是其他取值。如果第一值=1,第二值=3,则第一值小于第二值,但这里只是举例,实际上对于第一值和第二值之间的大小关系不做限制,例如第二值也可以小于第一值,或者第二值也可以等于第一值。
另外,当出现第一终端装置没有对某一时隙或子帧进行检测时(如:由于第一终端装置在该时隙或子帧发送数据,而第一终端装置发数据的同时无法接收数据),则需要将漏检的计数减去或者扣除。例如,当第一终端装置检测出在第x时隙到第x+k时隙漏检了Y个控制信道,但在第x时隙到第x+k时隙之间,第一终端装置发送了N次数据,则实际发生漏检的次数应该为Y-N。其中Y和N为大于或等于0的整数。
如果第一信号是数据信号,那么在更新计数器时,可以考虑数据的重传情况。
第一信号是数据信号,且第一信号为初传数据。那么,第一终端装置根据对来自第二终端装置的第一信号的解调情况,更新计数器,可以包括:如果第一终端装置对第一信号解调成功,则第一终端装置可以将计数器的值增加第三值,或者,如果第一终端装置对第一信号解调失败,则第一终端装置可以将计数器的值减少第四值。
其中,第三值可以由第一终端装置配置,或者由第二终端装置配置并告知第一终端装置,或者如果第二终端装置是终端设备,第三值也可以由网络设备配置并告知第一终端装置。或者第三值也可以由协议规定。第三值例如为2,或者也可以是其他取值。
同理,第四值可以由第一终端装置配置,或者由第二终端装置配置并告知第一终端装置,或者如果第二终端装置是终端设备,第四值也可以由网络设备配置并告知第一终端装置。或者第四值也可以由协议规定。第四值例如为1,或者也可以是其他取值。如果第三值=2,第四值=1,则第三值大于第四值,但这里只是举例,实际上对于第三值和第四值之间的大小关系不做限制,例如第四值也可以大于第三值,或者第四值也可以等于第三值。
或者,第一信号是数据信号,且第一信号为重传数据。那么,第一终端装置根据对来自第二终端装置的第一信号的解调情况,更新计数器,可以包括:如果第一终端装置对第一信号解调成功,则第一终端装置可以将计数器的值增加第五值,或者,如果第一终端装置对第一信号解调失败,则第一终端装置可以将计数器的值减少第六值。
其中,第五值可以由第一终端装置配置,或者由第二终端装置配置并告知第一终端装置,或者如果第二终端装置是终端设备,第五值也可以由网络设备配置并告知第一终端装置。或者第五值也可以由协议规定。第五值例如为1,或者也可以是其他取值。
同理,第六值可以由第一终端装置配置,或者由第二终端装置配置并告知第一终端装置,或者如果第二终端装置是终端设备,第六值也可以由网络设备配置并告知第一终端装 置。或者第六值也可以由协议规定。第六值例如为2,或者也可以是其他取值。如果第五值=1,第六值=2,则第五值小于第六值,但这里只是举例,实际上对于第五值和第六值之间的大小关系不做限制,例如第六值也可以小于第五值,或者第六值也可以等于第五值。
另外,在如上的对于第一值、第二值、第三值、第四值、第五值和第六值的介绍过程中,对于这些值的取值只是一些示例,实际上并不限制这几个值之间的大小关系。
S82、第一终端装置根据所述计数器的取值确定与第二终端装置之间的链路是否失败。
计数器的初始值可以大于0,或者,计数器的初始值也可以等于0。例如,如果计数器的初始值大于0,那么,当计数器的取值为0时,第一终端装置可以认为与第二终端装置之间的链路失败。或者,如果计数器的初始值为0,那么,当计数器的取值为第七值时,第一终端装置可以认为与第二终端装置之间的链路失败。第七值可以由第一终端装置配置,或者由第二终端装置配置并告知第一终端装置,或者如果第二终端装置是终端设备,第七值也可以由网络设备配置并告知第一终端装置。或者第七值也可以由协议规定。第七值例如为20,或者也可以是其他取值。
本申请实施例中,第一终端装置根据对来自第二终端装置的信号的解调情况就能对链路进行评估,相当于,使用PSSCH/PSCCH的译码结果对链路进行评估即可,减少了设计和实现上的复杂度。
在前文介绍了,要对链路进行评估,除了RLM方式之外,还可以通过其他的方式。除了图8所示的实施例所介绍的方式之外,下面再通过几个实施例介绍其他的链路评估方式。
本申请实施例提供一种链路评估方法,请参见图9,为该方法的流程图。在下文的介绍过程中,以该方法应用于图2所示的网络架构为例。另外,该方法可由两个通信装置执行,这两个通信装置例如为第五通信装置和第六通信装置。其中,第五通信装置或第六通信装置,可以是网络设备或能够支持网络设备实现该方法所需的功能的通信装置,或者可以是终端设备或能够支持终端设备实现该方法所需的功能的通信装置,当然还可以是其他通信装置,例如芯片系统。且对于第五通信装置或第六通信装置的实现方式均不做限制,例如这两个通信装置可以实现为相同的形式,例如均通过设备的形式实现,或者这两个通信装置也可以实现为不同的形式,例如第五通信装置通过设备的形式实现,第六通信装置通过芯片系统的方式实现,等等。其中,网络设备例如为基站。
为了便于介绍,在下文中,以该方法由终端设备和终端设备执行为例,也就是,以第五通信装置是终端设备(例如称为第一终端装置)、第六通信装置是终端设备(例如称为第四设备)为例。因为本实施例是以应用在图2所示的网络架构为例,因此,下文中所述的第一终端装置可以是图2所示的网络架构中的终端设备1,下文中所述的第二终端装置可以是图2所示的网络架构中的终端设备2。
S91、第一终端装置根据与第二终端装置之间的第一类信道的数量和信道的总数量,获得第二时长内的信道繁忙率,所述第一类信道包括在第二时长内信号强度大于或等于第一门限的信道。
例如在V2X中,网络设备最初会为终端设备配置需要使用的信道,网络设备所配置的信道的总数量,就可以作为S91中所述的信道的总数量。第一终端装置可以确定第一类信道的数量,第一类信道可以包括,在第二时长内,信号强度大于或等于第一门限的信道,因为是以第二时长为时间长度,因此第一类信道可以包括在第二时长内,平均信号强度大 于或等于第一门限的信道。其中,第一门限可以由第一终端装置配置,或者由第二终端装置配置并告知第一终端装置,或者如果第二终端装置是终端设备,第一门限也可以由网络设备配置并告知第一终端装置。或者第一门限也可以由协议规定。
其中,信道繁忙率例如用CR表示,则CR=N 1/N 2,其中,N 1表示第一类信道的数量,N 2表示信道的总数量。
S92、第一终端装置根据所述信道繁忙率,对第一终端装置和第二终端装置之间的链路进行同步评估或失步评估。
例如,如果信道繁忙率大于或等于第二门限,则第一终端装置确定链路失步,或者,如果信道繁忙率小于或等于第三门限,则第一终端装置确定链路同步。因为链路的评估一般来说都发生在第一终端装置传输数据之前,那么在第一终端装置还未传输数据时,如果信道繁忙率就大于或等于第二门限,则很有可能是链路出现了故障,因此第一终端装置可以据此来确定链路是否失步。
例如,S91和S92的过程可以由第一终端装置的物理层执行,那么,如果第一终端装置的物理层确定链路失步,则可以向第一终端装置的高层发送链路失步指示,或者,如果第一终端装置的物理层确定链路同步,则可以向第一终端装置的高层发送链路同步指示。第一终端装置的高层可以根据链路同步指示或链路失步指示确定该链路是否失败。
例如,对于第一终端装置的高层来说,如果连续收到来自物理层的N310个链路失步指示,则可以启动T310定时器。在T310定时器超时之前,如果高层能够连续收到来自物理层的N311个链路同步指示,则高层认为第一终端装置和第二终端装置重新回到了同步状态。或者,在T310定时器超时之前,如果高层没有连续收到来自物理层的N311个同步指示,则确定第一链路失败。如果确定链路失败,则第一终端装置可执行如下的一种或几种操作:
第一种操作:第一终端装置向网络设备发送侧行链路失败报告信息。例如侧行链路失败报告信息可以通过无线资源控制(radio resource control,RRC)消息、媒体接入控制控制元素(media access control control element,MAC CE)、或物理层信道来承载。
第二种操作:第一终端装置向第二终端装置发送侧行链路失败报告信息。例如侧行链路失败报告信息可以通过RRC消息、MAC CE、或物理层信道来承载。
第三种操作:第一终端装置停止向第二终端装置发送反馈信息,反馈信息例如包括混合自动重传请求应答(hybrid automatic repeat request-ack,HARQ-ACK)信息或CSI。第二终端装置在一定的时间内,如果没有收到来自第一终端装置的反馈信息,则第二终端装置也会判断为链路失败。
第二门限可以由第一终端装置配置,或者由第二终端装置配置并告知第一终端装置,或者如果第二终端装置是终端设备,第二门限也可以由网络设备配置并告知第一终端装置。或者第二门限也可以由协议规定。例如第二门限为70%,或者也可以是其他取值。
同理,第三门限可以由第一终端装置配置,或者由第二终端装置配置并告知第一终端装置,或者如果第二终端装置是终端设备,第三门限也可以由网络设备配置并告知第一终端装置。或者第三门限也可以由协议规定。例如第三门限为40%,或者也可以是其他取值。
可以看到,信道繁忙率很有可能取值会位于(40%,70%)这个范围内,那么,如果信道繁忙率位于这个范围内,第一终端装置既不认为链路同步,也不认为链路失步,而是会继续进行评估。
在本申请实施例中,根据信道繁忙率就能够对链路进行评估,方式简单,减少了设计 和实现的复杂度。
另外,图9所示的实施例还可以与图3所示的实施例相结合。例如,第一终端装置的物理层可以既根据图3所示的实施例提供的方式得到评估信息,例如称为第一评估信息,也根据图9所示的实施例提供的方式得到评估信息,例如称为第二评估信息,且第一终端装置的物理层在将根据图3所示的实施例提供的方式得到第一评估信息发送给第一终端装置的高层时,还向第一终端装置的高层发送了第一评估信息的有效性信息。那么,第一终端装置的高层得到第一评估信息和第二评估信息后,如果第一评估信息的有效性信息指示第一评估信息的有效性高,或者指示第一评估信息有效,那么第一终端装置的高层可以选择根据第一评估信息来确定与第二终端装置之间的链路是否失败。或者,如果第一评估信息的有效性信息指示第一评估信息的有效性低,或者指示第一评估信息无效,那么第一终端装置的高层可以选择根据第二评估信息来确定与第二终端装置之间的链路是否失败。
或者,第一终端装置的物理层可以既根据图3所示的实施例提供的方式得到第一评估信息,也根据图9所示的实施例提供的方式得到第二评估信息,如果第一终端装置的物理层认为第一评估信息的有效性高,或者第一评估信息有效,那么第一终端装置的物理层可以将第一评估信息发送给第一终端装置的高层,而不将第二评估信息发送给第一终端装置的高层,则第一终端装置的高层可以直接根据第一评估信息来确定与第二终端装置之间的链路是否失败。或者,如果第一终端装置的物理层认为第一评估信息的有效性低,或者第一评估信息无效,那么第一终端装置的物理层可以将第二评估信息发送给第一终端装置的高层,而不将第一评估信息发送给第一终端装置的高层,则第一终端装置的高层可以直接根据第二评估信息来确定与第二终端装置之间的链路是否失败。
其中,如果第一评估信息包括同步指示信息,则第二评估信息包括同步指示信息,或者,如果第一评估信息包括失步指示信息,则第二评估信息包括失步指示信息。
通过将两个实施例相结合的方式,可以使得第一终端装置对于链路是否失败的评估更为可靠。
在前文介绍了,要对链路进行评估,除了RLM方式之外,还可以通过其他的方式。除了图8所示的实施例或图9所示的实施例所介绍的方式之外,下面再通过一个实施例介绍一种链路评估方式。与前面的链路评估方式不同的是,前文的实施例所介绍的链路评估方式都是由第一终端装置来执行链路评估,而本实施例中,是由第二终端装置进行链路评估。
本申请实施例提供一种链路评估方法,请参见图10,为该方法的流程图。在下文的介绍过程中,以该方法应用于图2所示的网络架构为例。另外,该方法可由两个通信装置执行,这两个通信装置例如为第七通信装置和第八通信装置。其中,第七通信装置或第八通信装置,可以是网络设备或能够支持网络设备实现该方法所需的功能的通信装置,或者可以是终端设备或能够支持终端设备实现该方法所需的功能的通信装置,当然还可以是其他通信装置,例如芯片系统。且对于第七通信装置或第八通信装置的实现方式均不做限制,例如这两个通信装置可以实现为相同的形式,例如均通过设备的形式实现,或者这两个通信装置也可以实现为不同的形式,例如第七通信装置通过设备的形式实现,第八通信装置通过芯片系统的方式实现,等等。其中,网络设备例如为基站。
为了便于介绍,在下文中,以该方法由终端设备和终端设备执行为例,也就是,以第七通信装置是终端设备(例如称为第一终端装置)、第八通信装置是终端设备(例如称为 第四设备)为例。因为本实施例是以应用在图2所示的网络架构为例,因此,下文中所述的第一终端装置可以是图2所示的网络架构中的终端设备1,下文中所述的第二终端装置可以是图2所示的网络架构中的终端设备2。
S101、第二终端装置的物理层根据接收的来自第一终端装置的反馈信息,对第一终端装置和第二终端装置之间的链路进行同步评估或失步评估。
例如,第二终端装置可以获得第一时长,在进行评估时,第二终端装置可以根据第一时长内所接收的反馈信息来进行评估。第一时长可以采用默认的取值,例如200ms,或者,关于第一时长也可参考图3所示的实施例中对第一时长的相关介绍。那么关于第二终端装置获得第一时长的方式,也可参考图3所示的实施例中第一终端装置获得第一时长的方式。另外,第二终端装置还可以获得上报间隔,第二终端装置在每个上报间隔对链路进行同步评估或失步评估。上报间隔例如采用默认的取值,例如10ms,或者,关于上报间隔也可参考图3所示的实施例中对上报间隔的相关介绍。那么关于第二终端装置获得上报间隔的方式,也可参考图3所示的实施例中第一终端装置获得上报间隔的方式。
反馈信息例如包括HARQ-ACK,HARQ-ACK可以包括肯定应答(ACK)或否定应答(NACK)。第二终端装置根据接收的来自第一终端装置的反馈信息,对第一终端装置和第二终端装置之间的链路进行同步评估或失步评估,可以有不同的评估方式,下面举例介绍。
第一种评估方式:如果N1/N大于第一门限,则第二终端装置认为与第一终端装置之间的链路同步,或者,如果N1/N小于第二门限,则第二终端装置认为与第一终端装置之间的链路失步。其中,N1表示第二终端装置在第一时长内所收到的ACK的数量,N表示第二终端装置期望在第一时长内接收的HARQ-ACK的总数量。
第一门限可以由第二终端装置配置,或者由第一终端装置配置并告知第二终端装置,或者如果第二终端装置是终端设备,第一门限也可以由网络设备配置并告知第二终端装置。或者第一门限也可以由协议规定。例如第一门限为80%,或者也可以是其他取值。同理,第二门限可以由第二终端装置配置,或者由第一终端装置配置并告知第二终端装置,或者如果第二终端装置是终端设备,第二门限也可以由网络设备配置并告知第二终端装置。或者第二门限也可以由协议规定。例如第二门限为20%,或者也可以是其他取值。
第二种评估方式:如果N2/N小于第三门限(如:20%),则第二终端装置认为与第一终端装置之间的链路同步,或者,如果N2/N大于第四门限,则第二终端装置认为与第一终端装置之间的链路失步(如:80%)。其中,N2表示第二终端装置在第一时长内所收到的NACK的数量,N表示第二终端装置期望在第一时长内接收的HARQ-ACK的总数量。
第三门限可以由第二终端装置配置,或者由第一终端装置配置并告知第二终端装置,或者如果第二终端装置是终端设备,第三门限也可以由网络设备配置并告知第二终端装置。或者第三门限也可以由协议规定。例如第三门限为20%,或者也可以是其他取值。同理,第四门限可以由第二终端装置配置,或者由第一终端装置配置并告知第二终端装置,或者如果第二终端装置是终端设备,第四门限也可以由网络设备配置并告知第二终端装置。或者第四门限也可以由协议规定。例如第四门限为80%,或者也可以是其他取值。
第三种评估方式:如果N2/N1小于第五门限(如:10%),则第二终端装置认为与第一终端装置之间的链路同步,或者,如果N2/N大于第六门限,则第二终端装置认为与第一终端装置之间的链路失步(如:50%)。N2表示第二终端装置在第一时长内所收到的NACK的数量,N1表示第二终端装置在第一时长内所收到的ACK的数量。
第五门限可以由第二终端装置配置,或者由第一终端装置配置并告知第二终端装置,或者如果第二终端装置是终端设备,第五门限也可以由网络设备配置并告知第二终端装置。或者第五门限也可以由协议规定。例如第五门限为10%,或者也可以是其他取值。同理,第六门限可以由第二终端装置配置,或者由第一终端装置配置并告知第二终端装置,或者如果第二终端装置是终端设备,第六门限也可以由网络设备配置并告知第二终端装置。或者第六门限也可以由协议规定。例如第六门限为50%,或者也可以是其他取值。
其中,N=N1+N2+Y。Y表示未收到任何反馈的数据的数量,即,对于第二终端装置发送给第一终端装置的数据,可能有的数据既未接收来自第一终端装置的ACK,也未接收来自第一终端装置的NACK,则这些数据就属于Y个数据。
S102、第二终端装置的物理层将同步指示信息和/或失步指示信息发送给第二终端装置的高层,其中,所述同步指示信息是对所述链路进行同步评估获得的,所述失步指示信息是对所述链路进行失步评估获得的。
第二终端装置的物理层可以获得同步指示信息或失步指示信息,那么第二终端装置的物理层如果获得了同步指示信息,则可以将同步指示信息发送给第二终端装置的高层,或者,第二终端装置的物理层如果获得了失步指示信息,则可以将失步指示信息发送给第二终端装置的高层。同步指示信息例如为链路同步指示,失步指示信息例如为链路失步指示。第二终端装置的高层例如为MAC层或RRC层等。
对于第二终端装置的高层来说,如果连续收到来自物理层的N310个链路失步指示,则可以启动T310定时器。在T310定时器超时之前,如果高层能够连续收到来自物理层的N311个链路同步指示,则高层认为第一终端装置和第二终端装置重新回到了同步状态。或者,在T310定时器超时之前,如果高层没有连续收到来自物理层的N311个同步指示,则确定第一链路失败。如果确定链路失败,则第二终端装置可执行如下的一种或几种操作:
第一种操作:第二终端装置向网络设备发送侧行链路失败报告信息。例如侧行链路失败报告信息可以通过RRC消息、MAC CE、或物理层信道来承载。
第二种操作:第二终端装置向第一终端装置发送侧行链路失败报告信息。例如侧行链路失败报告信息可以通过RRC消息、MAC CE、或物理层信道来承载。
在本申请实施例中,可以由第二终端装置来对链路进行评估,从而无论是数据的发送端还是接收端,都能对链路进行评估,较为灵活。而且本申请实施例所提供的评估方式较为简单,易于实现。
下面结合附图介绍本申请实施例中用来实现上述方法的装置。因此,上文中的内容均可以用于后续实施例中,重复的内容不再赘述。
图11为本申请实施例提供的通信装置1100的示意性框图。示例性地,通信装置1100例如为第一终端装置1100。
第一终端装置1100包括处理模块1110和收发模块1120。示例性地,第一终端装置1100可以是终端设备,也可以是应用于终端设备中的芯片或者其他具有上述终端设备功能的组合器件、部件等。当第一终端装置1100是终端设备时收发模块1120可以是收发器,可以包括天线和射频电路等,处理模块1110可以是处理器,例如基带处理器,基带处理器中可以包括一个或多个中央处理单元(central processing unit,CPU)。当第一终端装置1100是具有上述终端功能的部件时,收发模块1120可以是射频单元,处理模块1110可以是处理器,例如基带处理器。当第一终端装置1100是芯片系统时,收发模块1120可以是芯片系 统(例如基带芯片)的输入输出接口、处理模块可以是芯片系统的处理器,可以包括一个或多个中央处理单元。
其中,处理模块1110可以用于执行图3所示的实施例中由第一终端装置所执行的除了收发操作之外的全部操作,例如S31、S33、S34和S35,和/或用于支持本文所描述的技术的其它过程。收发模块1120可以用于执行图3所示的实施例中由第一终端装置所执行的全部收发操作,例如S32,和/或用于支持本文所描述的技术的其它过程。
另外,收发模块1120可以是一个功能模块,该功能模块既能完成发送操作也能完成接收操作,例如收发模块1120可以用于执行图3所示的实施例中由第一终端装置所执行的全部发送操作和接收操作,例如,在执行发送操作时,可以认为收发模块1120是发送模块,而在执行接收操作时,可以认为收发模块1120是接收模块;或者,收发模块1120也可以是两个功能模块的统称,这两个功能模块分别为发送模块和接收模块,发送模块用于完成发送操作,例如发送模块可以用于执行图3所示的实施例中由第一终端装置所执行的全部发送操作,接收模块用于完成接收操作,例如接收模块可以用于执行图3所示的实施例中由第一终端装置所执行的全部接收操作。
例如,收发模块1120,用于在第一参考周期内接收来自第二终端装置的至少一个参考信号,所述至少一个参考信号为非周期传输的,或者,所述至少一个参考信号为不规律的;
处理模块1110,用于根据所述至少一个参考信号确定所述第一参考周期中的第一目标参考信号;
处理模块1110,还用于根据至少一个参考周期中的至少一个目标参考信号获得第一链路的同步指示信息或失步指示信息,所述第一链路是第一终端装置1100和所述第二终端装置之间的链路,所述至少一个参考周期包括所述第一参考周期,所述至少一个目标参考信号包括所述第一目标参考信号。
作为一种可选的实施方式,处理模块1110,还用于根据所述同步指示信息或所述失步指示信息确定所述第一链路是否失败。
作为一种可选的实施方式,处理模块1110用于通过如下方式根据所述至少一个参考信号确定所述第一参考周期内的第一目标参考信号:
确定所述至少一个参考信号中的一个参考信号为所述第一目标参考信号;或,
将所述至少一个参考信号中的部分或全部进行合并,得到所述第一目标参考信号。
作为一种可选的实施方式,处理模块1110用于通过如下方式根据所述至少一个参考信号确定所述第一参考周期内的第一目标参考信号:
在所述至少一个参考信号中的前N个参考信号的累计密度大于或等于参考密度的情况下,将所述前N个参考信号作为所述第一目标参考信号,N大于等于1,其中,参考信号的密度为一个参考信号占用的带宽中承载参考信号的频域单元的个数,所述参考信号的累计密度为一个或多个参考信号的密度的和;或,
在所述至少一个参考信号中的前N个参考信号累计的带宽大于或等于参考带宽的情况下,将所述前N个参考信号作为所述第一目标参考信号,N大于等于1。
作为一种可选的实施方式,
处理模块1110,还用于确定所述参考周期的时长;或者,
收发模块1120,还用于从所述第二终端装置接收第一指示信息,所述第一指示信息用于指示所述参考周期的时长。
作为一种可选的实施方式,处理模块1110用于通过如下方式确定所述参考周期的时长:根据第一业务的数据包的参数确定所述参考周期的时长,所述第一业务的数据包是通过所述第一链路传输的,所述第一业务的数据包的参数包括所述第一业务的数据包的期望周期时长,和/或包括所述第一业务的数据包的重传配置信息。
作为一种可选的实施方式,所述参考周期的时长满足:
T=min(第一门限,ceil(T packet×P 1));
其中,T表示所述参考周期的时长,所述第一门限为常数,T packet表示所述第一业务的数据包的最小期望周期时长,P 1表示所述第一业务的重传配置信息,ceil()表示向上取整运算。
作为一种可选的实施方式,P 1的取值包括如下的一项或如下多项的任意组合:
当所述第一业务不进行重传时,P 1=2;
当所述第一业务进行盲重传时,P 1=2/N 1,N 1表示所述第一业务所包括的一个数据包进行盲重传的次数;或,
当所述第一业务进行HARQ自适应重传时,P 1=2/N 2,N 2表示所述第一业务所包括的一个数据包进行HARQ自适应重传的预期次数。
作为一种可选的实施方式,处理模块1110用于通过如下方式根据至少一个参考周期中的至少一个目标参考信号获得第一链路的同步指示信息或失步指示信息:根据第一时长中包括的所述至少一个参考周期中的至少一个目标参考信号获得第一链路的同步指示信息或失步指示信息,所述至少一个参考周期为所述第一时长中的所有参考周期中接收到参考信号的至少一个参考周期。
作为一种可选的实施方式,
处理模块1110,还用于根据所述参考周期的时长确定所述第一时长;或,
收发模块1120,还用于从所述第二终端装置接收第二指示信息,所述第二指示信息用于指示所述第一时长。
作为一种可选的实施方式,
处理模块1110根据第一时长中包括的所述至少一个参考周期中的至少一个目标参考信号获得所述第一链路的同步指示信息;处理模块1110用于通过如下方式根据所述参考周期的时长确定所述第一时长:
确定所述第一时长满足:L in=max(100,M in×T),L in表示所述第一时长,M in表示在根据周期性的参考信号对所述第一链路进行同步测量时,一个所述第一时长内的参与所述同步测量的周期性参考信号的数量,T表示所述参考周期的时长;或者,
处理模块1110根据第一时长中包括的所述至少一个参考周期中的至少一个目标参考信号获得所述第一链路的失步指示信息;处理模块1110用于通过如下方式根据所述参考周期的时长确定所述第一时长:
确定所述第一时长满足:L out=max(200,M out×T),L out表示所述第一时长,M out表示在根据周期性的参考信号对所述第一链路进行失步测量时,一个所述第一时长内的参与所述失步测量的周期性参考信号的数量,T表示所述参考周期的时长。
作为一种可选的实施方式,处理模块1110用于通过如下方式根据所述参考周期的时长确定所述第一时长:根据所述参考周期的时长以及第一参数确定所述第一时长,所述第一参数包括参考密度和/或参考带宽,所述参考密度用于确定所述目标参考信号,所述参考带 宽用于确定所述目标参考信号。
作为一种可选的实施方式,处理模块1110用于通过如下方式根据所述参考周期以及与参考密度相关的参数确定所述第一时长:
所述第一时长用于获得所述同步指示信息,所述第一时长满足如下公式:L in=max(第二门限,ceil(M in×P 2)×T),L in表示所述第一时长,T表示所述参考周期的时长,M in表示在根据周期性的参考信号对所述第一链路进行同步测量时,一个所述第一时长内的参与同步测量的参考信号的数量,P 2表示与所述参考密度相关的参数;或,
所述第一时长用于获得所述失步指示信息,所述第一时长满足如下公式:L out=max(第二门限,ceil(M out×P 2)×T),L out表示所述第一时长,T表示所述参考周期的时长,M out表示在根据周期性的参考信号对所述第一链路进行失步测量时,一个所述第一时长内的参与失步测量的参考信号的数量,P 2表示与所述参考密度相关的参数。
作为一种可选的实施方式,处理模块1110用于通过如下方式根据所述参考周期以及与参考带宽相关的参数确定所述第一时长:
所述第一时长用于获得所述同步指示信息,所述第一时长满足如下公式:L in=max(第二门限,ceil(M in×P 3)×T),L in表示所述第一时长,T表示所述参考周期,M in表示在根据周期性的参考信号对所述第一链路进行同步测量时,一个所述第一时长内的参与同步测量的参考信号的数量,P 3表示与所述参考带宽相关的参数;或,
所述第一时长用于获得所述失步指示信息,所述第一时长满足如下公式:L out=max(第二门限,ceil(M out×P 3)×T),L out表示所述第一时长,T表示所述参考周期,M out表示在根据周期性的参考信号对所述第一链路进行同步测量时,一个所述第一时长内的参与同步测量的参考信号的数量,P 3表示与所述参考带宽相关的参数。
作为一种可选的实施方式,处理模块1110用于通过如下方式根据所述参考周期、与参考密度相关的传输以及与参考带宽相关的参数确定所述第一时长:
所述第一时长用于获得所述同步指示信息,所述第一时长满足如下公式:L in=max(第二门限,ceil(M in×P 2×P 3)×T)L in表示所述第一时长,T表示所述参考周期,M in表示在根据周期性的参考信号对所述第一链路进行同步测量时,一个所述第一时长内的参与同步测量的参考信号的数量,P 2表示与所述参考密度相关的参数,P 3表示与所述参考带宽相关的参数;或,
所述第一时长用于获得所述失步指示信息,所述第一时长满足如下公式:L in=max(第二门限,ceil(M out×P 2×P 3)×T)L in表示所述第一时长,T表示所述参考周期,M out表示在根据周期性的参考信号对所述第一链路进行失步测量时,一个所述第一时长内的参与同步测量的参考信号的数量,P 2表示与所述参考密度相关的参数,P 3表示与所述参考带宽相关的参数。
作为一种可选的实施方式,处理模块1110,还用于确定有效性信息,所述有效性信息用于指示所述同步指示信息的有效性或所述失步指示信息的有效性,其中,所述至少一个参考周期的数量越多,所述同步指示信息或所述失步指示信息的有效性越高。
作为一种可选的实施方式,处理模块1110还用于维护第一定时器,所述第一定时器用于,在所述第一定时器的定时时长内若未接收参考信号,则在所述第一定时器超时时,确定所述链路失败。
应理解,本申请实施例中的处理模块1110可以由处理器或处理器相关电路组件实现, 收发模块1120可以由收发器或收发器相关电路组件实现。
如图12所示,本申请实施例还提供一种通信装置1200。示例性地,通信装置1200例如为第一终端装置1200。示例性地,第一终端装置1200可以是通信设备,例如为终端设备,或者也可以是芯片系统等。第一终端装置1200包括处理器1210,存储器1220与收发器1230,其中,存储器1220中存储指令或程序,处理器1210用于执行存储器1220中存储的指令或程序。存储器1220中存储的指令或程序被执行时,该处理器1210用于执行上述实施例中处理模块1110执行的操作,收发器1230用于执行上述实施例中收发模块1120执行的操作。
其中,收发器1230可以是一个功能单元,该功能单元既能完成发送操作也能完成接收操作,例如收发器1230可以用于执行图3所示的实施例中由第一终端装置所执行的全部发送操作和接收操作,例如,在执行发送操作时,可以认为收发器1230是发送器,而在执行接收操作时,可以认为收发器1230是接收器;或者,收发器1230也可以是两个功能单元的统称,这两个功能单元分别为发送器和接收器,发送器用于完成发送操作,例如发送器可以用于执行图3所示的实施例中由第一终端装置所执行的全部发送操作,接收器用于完成接收操作,例如接收器可以用于执行图3所示的实施例中由第一终端装置所执行的全部接收操作。
应理解,根据本申请实施例的第一终端装置1100或第一终端装置1200可实现图3所示的实施例中的第一终端装置的功能,并且第一终端装置1100或第一终端装置1200中的各个模块的操作和/或功能分别为了实现图3所示的实施例中的相应流程,为了简洁,在此不再赘述。
图13为本申请实施例提供的通信装置1300的示意性框图。示例性地,通信装置1300例如为第一终端装置1300。
第一终端装置1300包括处理模块1310和收发模块1320。示例性地,第一终端装置1300可以是终端设备,也可以是应用于终端设备中的芯片或者其他具有上述终端设备功能的组合器件、部件等。当第一终端装置1300是终端设备时收发模块1320可以是收发器,可以包括天线和射频电路等,处理模块1310可以是处理器,例如基带处理器,基带处理器中可以包括一个或多个中央处理单元(central processing unit,CPU)。当第一终端装置1300是具有上述终端功能的部件时,收发模块1320可以是射频单元,处理模块1310可以是处理器,例如基带处理器。当第一终端装置1300是芯片系统时,收发模块1320可以是芯片系统(例如基带芯片)的输入输出接口、处理模块可以是芯片系统的处理器,可以包括一个或多个中央处理单元。
其中,处理模块1310可以用于执行图7所示的实施例中由第一终端装置所执行的除了收发操作之外的全部操作,例如S71和S72,和/或用于支持本文所描述的技术的其它过程。收发模块1320可以用于执行图7所示的实施例中由第一终端装置所执行的全部收发操作,例如接收来自第二终端装置的参考信号的操作,和/或用于支持本文所描述的技术的其它过程。
另外,收发模块1320可以是一个功能模块,该功能模块既能完成发送操作也能完成接收操作,例如收发模块1320可以用于执行图7所示的实施例中由第一终端装置所执行的全部发送操作和接收操作,例如,在执行发送操作时,可以认为收发模块1320是发送模块,而在执行接收操作时,可以认为收发模块1320是接收模块;或者,收发模块1320 也可以是两个功能模块的统称,这两个功能模块分别为发送模块和接收模块,发送模块用于完成发送操作,例如发送模块可以用于执行图7所示的实施例中由第一终端装置所执行的全部发送操作,接收模块用于完成接收操作,例如接收模块可以用于执行图7所示的实施例中由第一终端装置所执行的全部接收操作。
例如,处理模块1310,用于确定所述收发模块在第三时长内未接收来自第二终端装置的参考信号,所述参考信号用于第一终端装置1300测量与所述第二终端装置之间的第一链路;
处理模块1310,还用于确定所述第一链路失败。
应理解,本申请实施例中的处理模块1310可以由处理器或处理器相关电路组件实现,收发模块1320可以由收发器或收发器相关电路组件实现。
如图14所示,本申请实施例还提供一种通信装置1400。示例性地,通信装置1400例如为第一终端装置1400。示例性地,第一终端装置1400可以是通信设备,例如为终端设备,或者也可以是芯片系统等。第一终端装置1400包括处理器1410,存储器1420与收发器1430,其中,存储器1420中存储指令或程序,处理器1410用于执行存储器1420中存储的指令或程序。存储器1420中存储的指令或程序被执行时,该处理器1410用于执行上述实施例中处理模块1310执行的操作,收发器1430用于执行上述实施例中收发模块1320执行的操作。
其中,收发器1430可以是一个功能单元,该功能单元既能完成发送操作也能完成接收操作,例如收发器1430可以用于执行图7所示的实施例中由第一终端装置所执行的全部发送操作和接收操作,例如,在执行发送操作时,可以认为收发器1430是发送器,而在执行接收操作时,可以认为收发器1430是接收器;或者,收发器1430也可以是两个功能单元的统称,这两个功能单元分别为发送器和接收器,发送器用于完成发送操作,例如发送器可以用于执行图7所示的实施例中由第一终端装置所执行的全部发送操作,接收器用于完成接收操作,例如接收器可以用于执行图7所示的实施例中由第一终端装置所执行的全部接收操作。
应理解,根据本申请实施例的第一终端装置1300或第一终端装置1400可实现图7所示的实施例中的第一终端装置的功能,并且第一终端装置1300或第一终端装置1400中的各个模块的操作和/或功能分别为了实现图7所示的实施例中的相应流程,为了简洁,在此不再赘述。
图15为本申请实施例提供的通信装置1500的示意性框图。示例性地,通信装置1500例如为第一终端装置1500。
第一终端装置1500包括处理模块1510和收发模块1520。示例性地,第一终端装置1500可以是终端设备,也可以是应用于终端设备中的芯片或者其他具有上述终端设备功能的组合器件、部件等。当第一终端装置1500是终端设备时收发模块1520可以是收发器,可以包括天线和射频电路等,处理模块1510可以是处理器,例如基带处理器,基带处理器中可以包括一个或多个中央处理单元(central processing unit,CPU)。当第一终端装置1500是具有上述终端功能的部件时,收发模块1520可以是射频单元,处理模块1510可以是处理器,例如基带处理器。当第一终端装置1500是芯片系统时,收发模块1520可以是芯片系统(例如基带芯片)的输入输出接口、处理模块可以是芯片系统的处理器,可以包括一个或多个中央处理单元。
其中,处理模块1510可以用于执行图8所示的实施例中由第一终端装置所执行的除了收发操作之外的全部操作,例如S81和S82,和/或用于支持本文所描述的技术的其它过程。收发模块1520可以用于执行图8所示的实施例中由第一终端装置所执行的全部收发操作,例如接收来自第二终端装置的第一信号的操作,和/或用于支持本文所描述的技术的其它过程。
另外,收发模块1520可以是一个功能模块,该功能模块既能完成发送操作也能完成接收操作,例如收发模块1520可以用于执行图8所示的实施例中由第一终端装置所执行的全部发送操作和接收操作,例如,在执行发送操作时,可以认为收发模块1520是发送模块,而在执行接收操作时,可以认为收发模块1520是接收模块;或者,收发模块1520也可以是两个功能模块的统称,这两个功能模块分别为发送模块和接收模块,发送模块用于完成发送操作,例如发送模块可以用于执行图8所示的实施例中由第一终端装置所执行的全部发送操作,接收模块用于完成接收操作,例如接收模块可以用于执行图8所示的实施例中由第一终端装置所执行的全部接收操作。
例如,处理模块1510,用于根据对来自第二终端装置的第一信号的解调情况,更新计数器,其中,所述计数器的初始值大于0;
处理模块1510,还用于根据所述计数器的取值确定与所述第二终端装置之间的链路是否失败。
作为一种可选的实施方式,所述第一信号为控制信号,处理模块1510用于通过如下方式根据对来自第二终端装置的第一信号的解调情况,更新计数器:
对所述第一信号解调成功,将所述计数器的值增加第一值;或者,
漏检所述第一信号,将所述计数器的值减少第二值。
作为一种可选的实施方式,所述第一信号为数据信号,且所述第一信号为初传数据,处理模块1510用于通过如下方式根据对来自第二终端装置的第一信号的解调情况,更新计数器:
对所述第一信号解调成功,将所述计数器的值增加第三值;或者,
对所述第一信号解调失败,将所述计数器的值减少第四值。
作为一种可选的实施方式,所述第一信号为数据信号,且所述第一信号为重传数据,处理模块1510用于通过如下方式根据对来自第二终端装置的第一信号的解调情况,更新计数器:
对所述第一信号解调成功,将所述计数器的值增加第五值;或者,
对所述第一信号解调失败,将所述计数器的值减少第六值。
作为一种可选的实施方式,处理模块1510用于通过如下方式根据所述计数器的取值确定与所述第二终端装置之间的链路是否失败:当所述计数器的取值为0时,确定所述链路失败。
应理解,本申请实施例中的处理模块1510可以由处理器或处理器相关电路组件实现,收发模块1520可以由收发器或收发器相关电路组件实现。
如图16所示,本申请实施例还提供一种通信装置1600。示例性地,通信装置1600例如为第一终端装置1600。示例性地,第一终端装置1600可以是通信设备,例如为终端设备,或者也可以是芯片系统等。第一终端装置1600包括处理器1610,存储器1620与收发器1630,其中,存储器1620中存储指令或程序,处理器1610用于执行存储器1620中存 储的指令或程序。存储器1620中存储的指令或程序被执行时,该处理器1610用于执行上述实施例中处理模块1510执行的操作,收发器1630用于执行上述实施例中收发模块1520执行的操作。
其中,收发器1630可以是一个功能单元,该功能单元既能完成发送操作也能完成接收操作,例如收发器1630可以用于执行图8所示的实施例中由第一终端装置所执行的全部发送操作和接收操作,例如,在执行发送操作时,可以认为收发器1630是发送器,而在执行接收操作时,可以认为收发器1630是接收器;或者,收发器1630也可以是两个功能单元的统称,这两个功能单元分别为发送器和接收器,发送器用于完成发送操作,例如发送器可以用于执行图8所示的实施例中由第一终端装置所执行的全部发送操作,接收器用于完成接收操作,例如接收器可以用于执行图8所示的实施例中由第一终端装置所执行的全部接收操作。
应理解,根据本申请实施例的第一终端装置1500或第一终端装置1600可实现图8所示的实施例中的第一终端装置的功能,并且第一终端装置1500或第一终端装置1600中的各个模块的操作和/或功能分别为了实现图8所示的实施例中的相应流程,为了简洁,在此不再赘述。
图17为本申请实施例提供的通信装置1700的示意性框图。示例性地,通信装置1700例如为第一终端装置1700。
第一终端装置1700包括处理模块1710和收发模块1720。示例性地,第一终端装置1700可以是终端设备,也可以是应用于终端设备中的芯片或者其他具有上述终端设备功能的组合器件、部件等。当第一终端装置1700是终端设备时收发模块1720可以是收发器,可以包括天线和射频电路等,处理模块1710可以是处理器,例如基带处理器,基带处理器中可以包括一个或多个中央处理单元(central processing unit,CPU)。当第一终端装置1700是具有上述终端功能的部件时,收发模块1720可以是射频单元,处理模块1710可以是处理器,例如基带处理器。当第一终端装置1700是芯片系统时,收发模块1720可以是芯片系统(例如基带芯片)的输入输出接口、处理模块可以是芯片系统的处理器,可以包括一个或多个中央处理单元。
其中,处理模块1710可以用于执行图9所示的实施例中由第一终端装置所执行的除了收发操作之外的全部操作,例如S91和S92,和/或用于支持本文所描述的技术的其它过程。收发模块1720可以用于执行图9所示的实施例中由第一终端装置所执行的全部收发操作,例如接收来自第二终端装置的信号的操作,和/或用于支持本文所描述的技术的其它过程。
另外,收发模块1720可以是一个功能模块,该功能模块既能完成发送操作也能完成接收操作,例如收发模块1720可以用于执行图9所示的实施例中由第一终端装置所执行的全部发送操作和接收操作,例如,在执行发送操作时,可以认为收发模块1720是发送模块,而在执行接收操作时,可以认为收发模块1720是接收模块;或者,收发模块1720也可以是两个功能模块的统称,这两个功能模块分别为发送模块和接收模块,发送模块用于完成发送操作,例如发送模块可以用于执行图9所示的实施例中由第一终端装置所执行的全部发送操作,接收模块用于完成接收操作,例如接收模块可以用于执行图9所示的实施例中由第一终端装置所执行的全部接收操作。
例如,处理模块1710,用于根据与所述第二终端装置之间的第一类信道的数量和信道 的总数量,获得第二时长内的信道繁忙率,所述第一类信道包括在第二时长内信号强度大于或等于第一门限的信道;
处理模块1710,还用于根据所述信道繁忙率,对第一终端装置1700和所述第二终端装置之间的链路进行同步评估或失步评估。
作为一种可选的实施方式,处理模块1710用于通过如下方式根据所述信道繁忙率,对第一终端装置1700和所述第二终端装置之间的链路进行同步评估或失步评估:
当所述信道繁忙率大于或等于第二门限,确定所述链路失步;或,
当所述信道繁忙率小于或等于第三门限,确定所述链路同步。
应理解,本申请实施例中的处理模块1710可以由处理器或处理器相关电路组件实现,收发模块1720可以由收发器或收发器相关电路组件实现。
如图18所示,本申请实施例还提供一种通信装置1800。示例性地,通信装置1800例如为第一终端装置1800。示例性地,第一终端装置1800可以是通信设备,例如为终端设备,或者也可以是芯片系统等。第一终端装置1800包括处理器1810,存储器1820与收发器1830,其中,存储器1820中存储指令或程序,处理器1810用于执行存储器1820中存储的指令或程序。存储器1820中存储的指令或程序被执行时,该处理器1810用于执行上述实施例中处理模块1710执行的操作,收发器1830用于执行上述实施例中收发模块1720执行的操作。
其中,收发器1830可以是一个功能单元,该功能单元既能完成发送操作也能完成接收操作,例如收发器1830可以用于执行图9所示的实施例中由第一终端装置所执行的全部发送操作和接收操作,例如,在执行发送操作时,可以认为收发器1830是发送器,而在执行接收操作时,可以认为收发器1830是接收器;或者,收发器1830也可以是两个功能单元的统称,这两个功能单元分别为发送器和接收器,发送器用于完成发送操作,例如发送器可以用于执行图9所示的实施例中由第一终端装置所执行的全部发送操作,接收器用于完成接收操作,例如接收器可以用于执行图9所示的实施例中由第一终端装置所执行的全部接收操作。
应理解,根据本申请实施例的第一终端装置1700或第一终端装置1800可实现图9所示的实施例中的第一终端装置的功能,并且第一终端装置1700或第一终端装置1800中的各个模块的操作和/或功能分别为了实现图9所示的实施例中的相应流程,为了简洁,在此不再赘述。
图19为本申请实施例提供的通信装置1900的示意性框图。示例性地,通信装置1900例如为第二终端装置1900。
第二终端装置1900包括处理模块1910和收发模块1920。示例性地,第二终端装置1900可以是终端设备,也可以是应用于终端设备中的芯片或者其他具有上述终端设备功能的组合器件、部件等。当第二终端装置1900是终端设备时收发模块1920可以是收发器,可以包括天线和射频电路等,处理模块1910可以是处理器,例如基带处理器,基带处理器中可以包括一个或多个CPU。当第二终端装置1900是具有上述终端功能的部件时,收发模块1920可以是射频单元,处理模块1910可以是处理器,例如基带处理器。当第二终端装置1900是芯片系统时,收发模块1920可以是芯片系统(例如基带芯片)的输入输出接口、处理模块可以是芯片系统的处理器,可以包括一个或多个中央处理单元。
其中,处理模块1910可以用于执行图10所示的实施例中由第二终端装置所执行的除 了收发操作之外的全部操作,例如S102和S103,和/或用于支持本文所描述的技术的其它过程。收发模块1920可以用于执行图10所示的实施例中由第二终端装置所执行的全部收发操作,例如S101,和/或用于支持本文所描述的技术的其它过程。
另外,收发模块1920可以是一个功能模块,该功能模块既能完成发送操作也能完成接收操作,例如收发模块1920可以用于执行图10所示的实施例中由第二终端装置所执行的全部发送操作和接收操作,例如,在执行发送操作时,可以认为收发模块1920是发送模块,而在执行接收操作时,可以认为收发模块1920是接收模块;或者,收发模块1920也可以是两个功能模块的统称,这两个功能模块分别为发送模块和接收模块,发送模块用于完成发送操作,例如发送模块可以用于执行图10所示的实施例中由第二终端装置所执行的全部发送操作,接收模块用于完成接收操作,例如接收模块可以用于执行图10所示的实施例中由第二终端装置所执行的全部接收操作。
例如,收发模块1920,用于接收来自第一终端装置的反馈信息;
处理模块1910,用于根据接收的所述反馈信息,获得链路的同步指示信息或失步指示信息,所述链路为第一终端装置1900和所述第二终端装置之间的链路。
作为一种可选的实施方式,处理模块1910用于通过如下方式根据接收的所述反馈信息,获得链路的同步指示信息或失步指示信息:
当N1/N大于第一门限时,获得所述同步指示信息,或者,当N1/N小于第二门限时,获得所述失步指示信息,其中,N1表示所述第二终端装置在第一时长内所接收的肯定应答的数量,N表示第二终端装置期望在所述第一时长内接收的HARQ应答信息的总数量;或,
当N2/N小于第三门限时,获得所述同步指示信息,或者,当N2/N大于第四门限时,获得所述失步指示信息,其中,N2表示所述第二终端装置在第一时长内所接收的否定应答的数量,N表示所述第二终端装置期望在所述第一时长内接收的HARQ应答信息的总数量;或,
当N2/N1小于第五门限时,获得所述同步指示信息,或者,当N2/N大于第六门限时,获得所述失步指示信息,其中,N2表示所述第二终端装置在第一时长内所接收的否定应答的数量,N1表示所述第二终端装置在所述第一时长内所接收的肯定应答的数量。
作为一种可选的实施方式,处理模块1900,还用于根据所述同步指示信息或所述失步指示信息确定所述链路是否失败。
应理解,本申请实施例中的处理模块1910可以由处理器或处理器相关电路组件实现,收发模块1920可以由收发器或收发器相关电路组件实现。
如图20所示,本申请实施例还提供一种通信装置2000。示例性地,通信装置2000例如为第二终端装置2000。示例性地,第二终端装置2000可以是通信设备,例如为终端设备,或者也可以是芯片系统等。第二终端装置2000包括处理器2010,存储器2020与收发器2030,其中,存储器2020中存储指令或程序,处理器2010用于执行存储器2020中存储的指令或程序。存储器2020中存储的指令或程序被执行时,该处理器2010用于执行上述实施例中处理模块1910执行的操作,收发器2030用于执行上述实施例中收发模块1920执行的操作。
其中,收发器2030可以是一个功能单元,该功能单元既能完成发送操作也能完成接收操作,例如收发器2030可以用于执行图10所示的实施例中由第二终端装置所执行的全部发送操作和接收操作,例如,在执行发送操作时,可以认为收发器2030是发送器,而 在执行接收操作时,可以认为收发器2030是接收器;或者,收发器2030也可以是两个功能单元的统称,这两个功能单元分别为发送器和接收器,发送器用于完成发送操作,例如发送器可以用于执行图10所示的实施例中由第二终端装置所执行的全部发送操作,接收器用于完成接收操作,例如接收器可以用于执行图10所示的实施例中由第二终端装置所执行的全部接收操作。
应理解,根据本申请实施例的第二终端装置1900或第二终端装置2000可实现图10所示的实施例中的第二终端装置的功能,并且第二终端装置1900或第二终端装置2000中的各个模块的操作和/或功能分别为了实现图10所示的实施例中的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供一种通信装置,该通信装置可以是终端设备也可以是电路。该通信装置可以用于执行上述图3所示的方法实施例、图7所示的方法实施例、图8所示的方法实施例或图9所示的方法实施例中由第一终端装置所执行的动作,或执行上述图10所示的方法实施例中由第二终端装置所执行的动作。
当该通信装置为终端装置时,图21示出了一种简化的终端设备的结构示意图。如图21所示,终端设备包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对终端设备进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图21中仅示出了一个存储器和处理器。在实际的终端设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备的收发单元,将具有处理功能的处理器视为终端设备的处理单元。如图21所示,终端设备包括收发单元2110和处理单元2120。收发单元也可以称为收发器、收发机、收发装置等。处理单元也可以称为处理器,处理单板,处理模块、处理装置等。可选的,可以将收发单元2110中用于实现接收功能的器件视为接收单元,将收发单元2110中用于实现发送功能的器件视为发送单元,即收发单元2110包括接收单元和发送单元。收发单元有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
应理解,收发单元2110用于执行上述图3所示的方法实施例中第一终端装置侧的发送操作和接收操作,处理单元2120用于执行上述图3所示的方法实施例中第一终端装置侧除了收发操作之外的其他操作。
例如,在一种实现方式中,收发单元2110用于执行图3所示的实施例中的第一终端装 置侧的全部收发步骤,例如S32,例如S71和S72,和/或用于支持本文所描述的技术的其它过程。处理单元2120,用于执行图3所示的实施例中的第一终端装置侧除了收发操作之外的其他操作,例如S31、S33、S34和S35,和/或用于支持本文所描述的技术的其它过程。
或者,收发单元2110用于执行上述图7所示的方法实施例中第一终端装置侧的发送操作和接收操作,处理单元2120用于执行上述图7所示的方法实施例中第一终端装置侧除了收发操作之外的其他操作。
例如,在一种实现方式中,收发单元2110用于执行图7所示的实施例中的第一终端装置侧的全部收发步骤,例如接收来自第二终端装置的参考信号的操作,和/或用于支持本文所描述的技术的其它过程。处理单元2120,用于执行图7所示的实施例中的第一终端装置侧除了收发操作之外的其他操作,例如S71和S72,和/或用于支持本文所描述的技术的其它过程。
或者,收发单元2110用于执行上述图8所示的方法实施例中第一终端装置侧的发送操作和接收操作,处理单元2120用于执行上述图8所示的方法实施例中第一终端装置侧除了收发操作之外的其他操作。
例如,在一种实现方式中,收发单元2110用于执行图8所示的实施例中的第一终端装置侧的全部收发步骤,例如接收来自第二终端装置的第一信号的操作。处理单元2120,用于执行图8所示的实施例中的第一终端装置侧除了收发操作之外的其他操作,例如S81和S82,和/或用于支持本文所描述的技术的其它过程。
或者,收发单元2110用于执行上述图9所示的方法实施例中第一终端装置侧的发送操作和接收操作,处理单元2120用于执行上述图9所示的方法实施例中第一终端装置侧除了收发操作之外的其他操作。
例如,在一种实现方式中,收发单元2110用于执行图9所示的实施例中的第一终端设备侧的全部收发步骤,例如接收来自第二终端装置的信号的操作,和/或用于支持本文所描述的技术的其它过程。处理单元2120,用于执行图9所示的实施例中的第一终端装置侧除了收发操作之外的其他操作,例如S91和S92,和/或用于支持本文所描述的技术的其它过程。
或者,收发单元2110用于执行上述图10所示的方法实施例中第二终端装置侧的发送操作和接收操作,处理单元2120用于执行上述图10所示的方法实施例中第二终端装置侧除了收发操作之外的其他操作。
例如,在一种实现方式中,收发单元2110用于执行图10所示的实施例中的第二终端设备侧的全部收发步骤,例如S101,和/或用于支持本文所描述的技术的其它过程。处理单元2120,用于执行图10所示的实施例中的第二终端装置侧除了收发操作之外的其他操作,例如S102和S103,和/或用于支持本文所描述的技术的其它过程。
当该通信装置为芯片时,该芯片包括收发单元和处理单元。其中,收发单元可以是输入输出电路、通信接口;处理单元为该芯片上集成的处理器或者微处理器或者集成电路。
本申请实施例中的通信装置为终端设备时,可以参照图22所示的设备。作为一个例子,该设备可以完成类似于图22中处理器2210的功能。在图22中,该设备包括处理器2210,发送数据处理器2220,接收数据处理器2230。上述实施例中的处理模块1110可以是图22中的该处理器2210,并完成相应的功能;上述实施例中的收发模块1120可以是图22中的发送数据处理器2220,和/或接收数据处理器2230。或者,上述实施例中的处理模 块1310可以是图22中的该处理器2210,并完成相应的功能;上述实施例中的收发模块1320可以是图22中的发送数据处理器2220,和/或接收数据处理器2230。或者,上述实施例中的处理模块1510可以是图22中的该处理器2210,并完成相应的功能;上述实施例中的收发模块1520可以是图22中的发送数据处理器2220,和/或接收数据处理器2230。或者,上述实施例中的处理模块1710可以是图22中的该处理器2210,并完成相应的功能;上述实施例中的收发模块1720可以是图22中的发送数据处理器2220,和/或接收数据处理器2230。或者,上述实施例中的处理模块1910可以是图22中的该处理器2210,并完成相应的功能;上述实施例中的收发模块1920可以是图22中的发送数据处理器2220,和/或接收数据处理器2230。
虽然图22中示出了信道编码器、信道解码器,但是可以理解这些模块并不对本实施例构成限制性说明,仅是示意性的。
图23示出本实施例的另一种形式。处理装置2300中包括调制子系统、中央处理子系统、周边子系统等模块。本实施例中的通信装置可以作为其中的调制子系统。具体的,该调制子系统可以包括处理器2303,接口2304。其中,处理器2303完成上述处理模块1110的功能,接口2304完成上述收发模块1120的功能。或者,处理器2303完成上述处理模块1310的功能,接口2304完成上述收发模块1320的功能。或者,处理器2303完成上述处理模块1510的功能,接口2304完成上述收发模块1520的功能。或者,处理器2303完成上述处理模块1710的功能,接口2304完成上述收发模块1720的功能。或者,处理器2303完成上述处理模块1910的功能,接口2304完成上述收发模块1920的功能。作为另一种变形,该调制子系统包括存储器2306、处理器2303及存储在存储器2306上并可在处理器上运行的程序,该处理器2303执行该程序时实现上述图3所示的方法实施例、图7所示的方法实施例、图8所示的方法实施例、或图9所示的方法实施例中第一终端装置侧的方法,或执行该程序时实现上述图10所示的方法实施例中第二终端装置侧的方法。需要注意的是,所述存储器2306可以是非易失性的,也可以是易失性的,其位置可以位于调制子系统内部,也可以位于处理装置2300中,只要该存储器2306可以连接到所述处理器2303即可。
本申请实施例还提供第一通信系统。该通信系统可以包括上述的图10所示的实施例所涉及的第二终端装置,以及:包括图3所示的实施例所涉及的第一终端装置、图7所示的实施例所涉及的第一终端装置、图8所示的实施例所涉及的第一终端装置、或图9所示的实施例所涉及的第一终端装置。图10所示的实施例所涉及的第二终端装置备例如为图19中的第二终端装置1900或图20中的第二终端装置2000,图3所示的实施例所涉及的第一终端装置例如为图11中的第一终端装置1100或图12中的第一终端装置1200,图7所示的实施例所涉及的第一终端装置例如为图13中的第一终端装置1300或图14中的第一终端装置1400,图8所示的实施例所涉及的第一终端装置例如为图15中的第一终端装置1500或图16中的第一终端装置1600,图9所示的实施例所涉及的第一终端装置例如为图17中的第一终端装置1700或图18中的第一终端装置1800。
本申请实施例还提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时可以实现上述方法实施例提供的图3所示的实施例中与第一终端装置相关的流程。
本申请实施例还提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处 理器执行时可以实现上述方法实施例提供的图7所示的实施例中与第一终端装置相关的流程。
本申请实施例还提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时可以实现上述方法实施例提供的图8所示的实施例中与第一终端装置相关的流程。
本申请实施例还提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时可以实现上述方法实施例提供的图9所示的实施例中与第一终端装置相关的流程。
本申请实施例还提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时可以实现上述方法实施例提供的图10所示的实施例中与第二终端装置相关的流程。
本申请实施例还提供一种包含指令的计算机程序产品,该指令被执行时执行上述图3所示的方法实施例中第一终端装置侧的方法。
本申请实施例还提供一种包含指令的计算机程序产品,该指令被执行时执行上述图7所示的方法实施例中第二终端装置侧的方法。
本申请实施例还提供一种包含指令的计算机程序产品,该指令被执行时执行上述图8所示的方法实施例中第一终端装置侧的方法。
本申请实施例还提供一种包含指令的计算机程序产品,该指令被执行时执行上述图9所示的方法实施例中第一终端装置侧的方法。
本申请实施例还提供一种包含指令的计算机程序产品,该指令被执行时执行上述图10所示的方法实施例中第二终端装置侧的方法。
应理解,本申请实施例中提及的处理器可以是CPU,还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)集成在处理器中。
应注意,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请实施例揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请实施例的保护范围应所述以权利要求的保护范围为准。

Claims (33)

  1. 一种链路测量方法,其特征在于,包括:
    第一终端装置在第一参考周期内接收来自第二终端装置的至少一个参考信号,所述至少一个参考信号为非周期传输的;
    所述第一终端装置根据所述至少一个参考信号确定所述第一参考周期中的第一目标参考信号;
    所述第一终端装置根据至少一个参考周期中的至少一个目标参考信号获得第一链路的同步指示信息或失步指示信息,所述第一链路是所述第一终端装置和所述第二终端装置之间的链路,所述至少一个参考周期包括所述第一参考周期,所述至少一个目标参考信号包括所述第一目标参考信号。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述第一终端装置根据所述同步指示信息或所述失步指示信息确定所述第一链路是否失败。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一终端装置根据所述至少一个参考信号确定所述第一参考周期内的第一目标参考信号,包括:
    所述第一终端装置确定所述至少一个参考信号中的一个参考信号为所述第一目标参考信号;或,
    所述第一终端装置将所述至少一个参考信号中的部分或全部进行合并,得到所述第一目标参考信号。
  4. 根据权利要求1或2所述的方法,其特征在于,所述第一终端装置根据所述至少一个参考信号确定所述第一参考周期内的第一目标参考信号,包括:
    在所述至少一个参考信号中的前N个参考信号的累计密度大于或等于参考密度的情况下,所述第一终端装置将所述前N个参考信号作为所述第一目标参考信号,N大于等于1,其中,参考信号的密度为一个参考信号占用的带宽中承载参考信号的频域单元的个数,所述参考信号的累计密度为一个或多个参考信号的密度的和;或,
    在所述至少一个参考信号中的前N个参考信号累计的带宽大于或等于参考带宽的情况下,所述第一终端装置将所述前N个参考信号作为所述第一目标参考信号,N大于等于1。
  5. 根据权利要求1~4任一项所述的方法,其特征在于,所述方法还包括:
    所述第一终端装置确定所述参考周期的时长;或者,
    所述第一终端装置从所述第二终端装置接收第一指示信息,所述第一指示信息用于指示所述参考周期的时长。
  6. 根据权利要求5所述的方法,其特征在于,所述第一终端装置确定所述参考周期的时长,包括:
    所述第一终端装置根据第一业务的数据包的参数确定所述参考周期的时长,所述第一业务的数据包是通过所述第一链路传输的,所述第一业务的数据包的参数包括所述第一业务的数据包的期望周期时长,和/或包括所述第一业务的数据包的重传配置信息。
  7. 根据权利要求6所述的方法,其特征在于,所述参考周期的时长满足:
    T=min(第一门限,ceil(T packet×P 1));
    其中,T表示所述参考周期的时长,所述第一门限为常数,T packet表示所述第一业务 的数据包的最小期望周期时长,P 1表示所述第一业务的重传配置信息,ceil()表示向上取整运算。
  8. 根据权利要求1~7任一项所述的方法,其特征在于,所述第一终端装置根据至少一个参考周期中的至少一个目标参考信号获得第一链路的同步指示信息或失步指示信息,包括:
    所述第一终端装置根据第一时长中包括的所述至少一个参考周期中的至少一个目标参考信号获得第一链路的同步指示信息或失步指示信息,所述至少一个参考周期为所述第一时长中的所有参考周期中接收到参考信号的至少一个参考周期。
  9. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    所述第一终端装置根据所述参考周期的时长确定所述第一时长;或,
    所述第一终端装置从所述第二终端装置接收第二指示信息,所述第二指示信息用于指示所述第一时长。
  10. 根据权利要求9所述的方法,其特征在于,所述第一终端装置根据第一时长中包括的所述至少一个参考周期中的至少一个目标参考信号获得所述第一链路的同步指示信息;所述第一终端装置根据所述参考周期的时长确定所述第一时长,包括:
    所述第一终端装置确定所述第一时长满足:L in=max(100,M in×T),L in表示所述第一时长,M in表示根据周期性的参考信号对所述第一链路进行同步测量时,一个所述第一时长内的参与所述同步测量的周期性参考信号的数量,T表示所述参考周期的时长;或者,
    所述第一终端装置根据第一时长中包括的所述至少一个参考周期中的至少一个目标参考信号获得所述第一链路的失步指示信息;所述第一终端装置根据所述参考周期的时长确定所述第一时长,包括:
    所述第一终端装置确定所述第一时长满足:L out=max(200,M out×T),L out表示所述第一时长,M out表示根据周期性的参考信号对所述第一链路进行失步测量时,一个所述第一时长内的参与所述失步测量的周期性参考信号的数量,T表示所述参考周期的时长。
  11. 根据权利要求9所述的方法,其特征在于,所述第一终端装置根据所述参考周期的时长确定所述第一时长,包括:
    所述第一终端装置根据所述参考周期的时长以及第一参数确定所述第一时长,所述第一参数包括参考密度和/或参考带宽,所述参考密度用于确定所述目标参考信号,所述参考带宽用于确定所述目标参考信号。
  12. 根据权利要求11所述的方法,其特征在于,所述第一终端装置根据所述参考周期以及与参考密度相关的参数确定所述第一时长,包括:
    所述第一时长用于获得所述同步指示信息,所述第一时长满足如下公式:L in=max(第二门限,ceil(M in×P 2)×T),L in表示所述第一时长,T表示所述参考周期的时长,M in表示在根据周期性的参考信号对所述第一链路进行同步测量时,一个所述第一时长内的参与同步测量的参考信号的数量,P 2表示与所述参考密度相关的参数;或,
    所述第一时长用于获得所述失步指示信息,所述第一时长满足如下公式:L out=max(第二门限,ceil(M out×P 2)×T),L out表示所述第一时长,T表示所述参考周期的时长,M out表示在根据周期性的参考信号对所述第一链路进行失步测量时,一个所述第一时长内的参与失步测量的参考信号的数量,P 2表示与所述参考密度相关的参数。
  13. 根据权利要求11所述的方法,其特征在于,所述第一终端装置根据所述参考周期以及与参考带宽相关的参数确定所述第一时长,包括:
    所述第一时长用于获得所述同步指示信息,所述第一时长满足如下公式:L in=max(第二门限,ceil(M in×P 3)×T),L in表示所述第一时长,T表示所述参考周期,M in表示在根据周期性的参考信号对所述第一链路进行同步测量时,一个所述第一时长内的参与同步测量的参考信号的数量,P 3表示与所述参考带宽相关的参数;或,
    所述第一时长用于获得所述失步指示信息,所述第一时长满足如下公式:L out=max(第二门限,ceil(M out×P 3)×T),L out表示所述第一时长,T表示所述参考周期,M out表示在根据周期性的参考信号对所述第一链路进行同步测量时,一个所述第一时长内的参与同步测量的参考信号的数量,P 3表示与所述参考带宽相关的参数。
  14. 根据权利要求11所述的方法,其特征在于,所述第一终端装置根据所述参考周期、与参考密度相关的传输以及与参考带宽相关的参数确定所述第一时长,包括:
    所述第一时长用于获得所述同步指示信息,所述第一时长满足如下公式:L in=max(第二门限,ceil(M in×P 2×P 3)×T)L in表示所述第一时长,T表示所述参考周期,M in表示在根据周期性的参考信号对所述第一链路进行同步测量时,一个所述第一时长内的参与同步测量的参考信号的数量,P 2表示与所述参考密度相关的参数,P 3表示与所述参考带宽相关的参数;或,
    所述第一时长用于获得所述失步指示信息,所述第一时长满足如下公式:L in=max(第二门限,ceil(M out×P 2×P 3)×T)L in表示所述第一时长,T表示所述参考周期,M out表示在根据周期性的参考信号对所述第一链路进行失步测量时,一个所述第一时长内的参与同步测量的参考信号的数量,P 2表示与所述参考密度相关的参数,P 3表示与所述参考带宽相关的参数。
  15. 根据权利要求1~14任一项所述的方法,其特征在于,所述方法还包括:
    所述第一终端装置确定有效性信息,所述有效性信息用于指示所述同步指示信息的有效性或所述失步指示信息的有效性,其中,所述至少一个参考周期的数量越多,所述同步指示信息或所述失步指示信息的有效性越高。
  16. 一种终端装置,其特征在于,包括:
    收发模块,用于在第一参考周期内接收来自第二终端装置的至少一个参考信号,所述至少一个参考信号为非周期传输的;
    处理模块,用于根据所述至少一个参考信号确定所述第一参考周期中的第一目标参考信号;
    所述处理模块,还用于根据至少一个参考周期中的至少一个目标参考信号获得第一链路的同步指示信息或失步指示信息,所述第一链路是所述终端装置和所述第二终端装置之间的链路,所述至少一个参考周期包括所述第一参考周期,所述至少一个目标参考信号包括所述第一目标参考信号。
  17. 根据权利要求16所述的终端装置,其特征在于,所述处理模块,还用于根据所述同步指示信息或所述失步指示信息确定所述第一链路是否失败。
  18. 根据权利要求16或17所述的终端装置,其特征在于,所述处理模块用于通过如下方式根据所述至少一个参考信号确定所述第一参考周期内的第一目标参考信号:
    确定所述至少一个参考信号中的一个参考信号为所述第一目标参考信号;或,
    将所述至少一个参考信号中的部分或全部进行合并,得到所述第一目标参考信号。
  19. 根据权利要求16或17所述的终端装置,其特征在于,所述处理模块用于通过如下方式根据所述至少一个参考信号确定所述第一参考周期内的第一目标参考信号:
    在所述至少一个参考信号中的前N个参考信号的累计密度大于或等于参考密度的情况下,将所述前N个参考信号作为所述第一目标参考信号,N大于等于1,其中,参考信号的密度为一个参考信号占用的带宽中承载参考信号的频域单元的个数,所述参考信号的累计密度为一个或多个参考信号的密度的和;或,
    在所述至少一个参考信号中的前N个参考信号累计的带宽大于或等于参考带宽的情况下,将所述前N个参考信号作为所述第一目标参考信号,N大于等于1。
  20. 根据权利要求16~19任一项所述的终端装置,其特征在于,
    所述处理模块,还用于确定所述参考周期的时长;或者,
    所述收发模块,还用于从所述第二终端装置接收第一指示信息,所述第一指示信息用于指示所述参考周期的时长。
  21. 根据权利要求20所述的终端装置,其特征在于,所述处理模块用于通过如下方式确定所述参考周期的时长:
    根据第一业务的数据包的参数确定所述参考周期的时长,所述第一业务的数据包是通过所述第一链路传输的,所述第一业务的数据包的参数包括所述第一业务的数据包的期望周期时长,和/或包括所述第一业务的数据包的重传配置信息。
  22. 根据权利要求21所述的终端装置,其特征在于,所述参考周期的时长满足:
    T=min(第一门限,ceil(T packet×P 1));
    其中,T表示所述参考周期的时长,所述第一门限为常数,T packet表示所述第一业务的数据包的最小期望周期时长,P 1表示所述第一业务的重传配置信息,ceil()表示向上取整运算。
  23. 根据权利要求16~22任一项所述的终端装置,其特征在于,所述处理模块用于通过如下方式根据至少一个参考周期中的至少一个目标参考信号获得第一链路的同步指示信息或失步指示信息:
    根据第一时长中包括的所述至少一个参考周期中的至少一个目标参考信号获得第一链路的同步指示信息或失步指示信息,所述至少一个参考周期为所述第一时长中的所有参考周期中接收到参考信号的至少一个参考周期。
  24. 根据权利要求23所述的终端装置,其特征在于,
    所述处理模块,还用于根据所述参考周期的时长确定所述第一时长;或,
    所述收发模块,还用于从所述第二终端装置接收第二指示信息,所述第二指示信息用于指示所述第一时长。
  25. 根据权利要求24所述的终端装置,其特征在于,所述处理模块根据第一时长中包括的所述至少一个参考周期中的至少一个目标参考信号获得所述第一链路的同步指示信息;所述处理模块用于通过如下方式根据所述参考周期的时长确定所述第一时长:
    确定所述第一时长满足:L in=max(100,M in×T),L in表示所述第一时长,M in表示根据周期性的参考信号对所述第一链路进行同步测量时,一个所述第一时长内的参与所述同步测量的周期性参考信号的数量,T表示所述参考周期的时长;或者,
    所述处理模块根据第一时长中包括的所述至少一个参考周期中的至少一个目标参考信号获得所述第一链路的失步指示信息;所述处理模块用于通过如下方式根据所述参考周期的时长确定所述第一时长:
    确定所述第一时长满足:L out=max(200,M out×T),L out表示所述第一时长,M out表示根据周期性的参考信号对所述第一链路进行失步测量时,一个所述第一时长内的参与所述失步测量的周期性参考信号的数量,T表示所述参考周期的时长。
  26. 根据权利要求24所述的终端装置,其特征在于,所述处理模块用于通过如下方式根据所述参考周期的时长确定所述第一时长:
    根据所述参考周期的时长以及第一参数确定所述第一时长,所述第一参数包括参考密度和/或参考带宽,所述参考密度用于确定所述目标参考信号,所述参考带宽用于确定所述目标参考信号。
  27. 根据权利要求26所述的终端装置,其特征在于,所述处理模块用于通过如下方式根据所述参考周期以及与参考密度相关的参数确定所述第一时长:
    所述第一时长用于获得所述同步指示信息,所述第一时长满足如下公式:L in=max(第二门限,ceil(M in×P 2)×T),L in表示所述第一时长,T表示所述参考周期的时长,M in表示在根据周期性的参考信号对所述第一链路进行同步测量时,一个所述第一时长内的参与同步测量的参考信号的数量,P 2表示与所述参考密度相关的参数;或,
    所述第一时长用于获得所述失步指示信息,所述第一时长满足如下公式:L out=max(第二门限,ceil(M out×P 2)×T),L out表示所述第一时长,T表示所述参考周期的时长,M out表示在根据周期性的参考信号对所述第一链路进行失步测量时,一个所述第一时长内的参与失步测量的参考信号的数量,P 2表示与所述参考密度相关的参数。
  28. 根据权利要求26所述的终端装置,其特征在于,所述处理模块用于通过如下方式根据所述参考周期以及与参考带宽相关的参数确定所述第一时长:
    所述第一时长用于获得所述同步指示信息,所述第一时长满足如下公式:L in=max(第二门限,ceil(M in×P 3)×T),L in表示所述第一时长,T表示所述参考周期,M in表示在根据周期性的参考信号对所述第一链路进行同步测量时,一个所述第一时长内的参与同步测量的参考信号的数量,P 3表示与所述参考带宽相关的参数;或,
    所述第一时长用于获得所述失步指示信息,所述第一时长满足如下公式:L out=max(第二门限,ceil(M out×P 3)×T),L out表示所述第一时长,T表示所述参考周期,M out表示在根据周期性的参考信号对所述第一链路进行同步测量时,一个所述第一时长内的参与同步测量的参考信号的数量,P 3表示与所述参考带宽相关的参数。
  29. 根据权利要求26所述的终端装置,其特征在于,所述处理模块用于通过如下方式根据所述参考周期、与参考密度相关的传输以及与参考带宽相关的参数确定所述第一时长:
    所述第一时长用于获得所述同步指示信息,所述第一时长满足如下公式:L in=max(第二门限,ceil(M in×P 2×P 3)×T)L in表示所述第一时长,T表示所述参考周期,M in表示在根据周期性的参考信号对所述第一链路进行同步测量时,一个所述第一时长内的参与同步测量的参考信号的数量,P 2表示与所述参考密度相关的参数,P 3表示与所述参考带宽相关的参数;或,
    所述第一时长用于获得所述失步指示信息,所述第一时长满足如下公式:L in=max(第 二门限,ceil(M out×P 2×P 3)×T)L in表示所述第一时长,T表示所述参考周期,M out表示在根据周期性的参考信号对所述第一链路进行失步测量时,一个所述第一时长内的参与同步测量的参考信号的数量,P 2表示与所述参考密度相关的参数,P 3表示与所述参考带宽相关的参数。
  30. 根据权利要求16~29任一项所述的终端装置,其特征在于,所述处理模块,还用于确定有效性信息,所述有效性信息用于指示所述同步指示信息的有效性或所述失步指示信息的有效性,其中,所述至少一个参考周期的数量越多,所述同步指示信息或所述失步指示信息的有效性越高。
  31. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1~15中任意一项所述的方法。
  32. 一种通信装置,其特征在于,所述通信装置包括:
    存储器,用于存储指令;
    至少一个处理器,用于从所述存储器中调用并运行所述指令,使得所述通信装置实现如权利要求1~15中任意一项所述的方法。
  33. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机程序,当所述计算机程序在计算机上运行时,使得计算机执行如权利要求1~15中任意一项所述的方法。
PCT/CN2020/101712 2019-07-29 2020-07-13 一种链路测量方法及装置 WO2021017804A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910691410.8A CN112312452B (zh) 2019-07-29 2019-07-29 一种链路测量方法及装置
CN201910691410.8 2019-07-29

Publications (1)

Publication Number Publication Date
WO2021017804A1 true WO2021017804A1 (zh) 2021-02-04

Family

ID=74228343

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/101712 WO2021017804A1 (zh) 2019-07-29 2020-07-13 一种链路测量方法及装置

Country Status (2)

Country Link
CN (2) CN112312452B (zh)
WO (1) WO2021017804A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114040513A (zh) * 2021-12-13 2022-02-11 哲库科技(北京)有限公司 链路建立方法、装置、终端设备和计算机可读存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102595629A (zh) * 2011-01-18 2012-07-18 中兴通讯股份有限公司 回程链路发送非周期性测量参考信号的方法及中继站
CN104412525A (zh) * 2012-07-06 2015-03-11 Lg电子株式会社 收发控制信号的方法和装置
US20160227519A1 (en) * 2015-01-30 2016-08-04 Motorola Mobility Llc Method and apparatus for signaling aperiodic channel state indication reference signals for lte operation

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018148248A (ja) * 2015-07-28 2018-09-20 シャープ株式会社 端末装置、基地局装置および方法
CN113891474A (zh) * 2016-03-31 2022-01-04 三星电子株式会社 无线通信系统中的资源分配方法、基于所述方法的数据接收方法以及用于所述方法的装置
CN108024364B (zh) * 2016-11-04 2023-09-05 华为技术有限公司 一种上行测量参考信号传输方法、装置和系统
US10327170B2 (en) * 2017-03-13 2019-06-18 Qualcomm Incorporated Radio link monitoring without always-on reference signals

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102595629A (zh) * 2011-01-18 2012-07-18 中兴通讯股份有限公司 回程链路发送非周期性测量参考信号的方法及中继站
CN104412525A (zh) * 2012-07-06 2015-03-11 Lg电子株式会社 收发控制信号的方法和装置
US20160227519A1 (en) * 2015-01-30 2016-08-04 Motorola Mobility Llc Method and apparatus for signaling aperiodic channel state indication reference signals for lte operation

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "On aperiodic reference signals for NR-U", 3GPP DRAFT; R1-1907461 ON APERIODIC REFERENCE SIGNALS FOR NR-U, vol. RAN WG1, 4 May 2019 (2019-05-04), Reno, NV, USA, pages 1 - 5, XP051709474 *
HUAWEI; HISILICON: "On RLM and RLF in NR V2X", 3GPP DRAFT; R1-1907494, vol. RAN WG1, 3 May 2019 (2019-05-03), Reno, USA, pages 1 - 3, XP051709509 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114040513A (zh) * 2021-12-13 2022-02-11 哲库科技(北京)有限公司 链路建立方法、装置、终端设备和计算机可读存储介质
CN114040513B (zh) * 2021-12-13 2023-08-11 哲库科技(北京)有限公司 链路建立方法、装置、终端设备和计算机可读存储介质

Also Published As

Publication number Publication date
CN112312452B (zh) 2023-02-03
CN112312452A (zh) 2021-02-02
CN116193493A (zh) 2023-05-30

Similar Documents

Publication Publication Date Title
WO2020143732A1 (zh) 发送和接收反馈信道的方法以及装置
US20210258764A1 (en) Device discovery using sidelink discovery messages
WO2020238428A1 (zh) 一种通信方法及装置
CN118764965A (zh) 用于sl sr/bsr处理的方法
WO2021031043A1 (zh) 一种通信方法及装置
WO2021018295A1 (zh) 一种反馈信息传输方法及装置
WO2023273743A1 (zh) 一种侧行通信方法及装置
CN112583532B (zh) 一种harq信息传输方法及设备
WO2022213705A1 (zh) 一种通信方法及装置
WO2021017804A1 (zh) 一种链路测量方法及装置
US20230344610A1 (en) Indication information transmission method, apparatus, and system
WO2015062477A1 (zh) 一种数据传输方法及设备
CN114503696B (zh) 一种通信方法及装置
WO2021062855A1 (zh) 一种通信方法及装置
WO2021134659A1 (zh) 一种中继传输的方法和设备
CN114747270A (zh) 一种侧行数据传输的方法、装置和系统
CN112584430B (zh) 一种通信方法及装置
WO2021212510A1 (zh) 一种通信方法及装置
WO2021184386A1 (zh) 一种通信方法及装置
WO2021088081A1 (zh) 一种控制信息发送方法、接收方法和通信装置
CN116420360A (zh) 侧行传输方法和通信装置
WO2021088063A1 (zh) 一种通信方法及装置
KR20230006514A (ko) 통신 방법, 장치, 및 시스템
WO2021073483A1 (zh) 一种侧行信息的传输方法、装置及系统
WO2024140322A1 (zh) 波束测量方法、装置及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20846847

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20846847

Country of ref document: EP

Kind code of ref document: A1