WO2021017398A1 - 一种波长选择开关 - Google Patents

一种波长选择开关 Download PDF

Info

Publication number
WO2021017398A1
WO2021017398A1 PCT/CN2019/129435 CN2019129435W WO2021017398A1 WO 2021017398 A1 WO2021017398 A1 WO 2021017398A1 CN 2019129435 W CN2019129435 W CN 2019129435W WO 2021017398 A1 WO2021017398 A1 WO 2021017398A1
Authority
WO
WIPO (PCT)
Prior art keywords
signals
sub
optical
module
wavelength selective
Prior art date
Application number
PCT/CN2019/129435
Other languages
English (en)
French (fr)
Inventor
杨柳
杨睿
袁志林
郭金平
王凡
马雨虹
禤颖仪
Original Assignee
武汉光迅科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉光迅科技股份有限公司 filed Critical 武汉光迅科技股份有限公司
Priority to US17/764,387 priority Critical patent/US11899244B2/en
Publication of WO2021017398A1 publication Critical patent/WO2021017398A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/354Switching arrangements, i.e. number of input/output ports and interconnection types
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29304Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/32Optical coupling means having lens focusing means positioned between opposed fibre ends
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/34Optical coupling means utilising prism or grating

Definitions

  • the present disclosure relates to the field of optical communication technology, and in particular to a wavelength selective switch.
  • Wavelength division multiplexing is a common optical layer networking technology. By multiplexing different wavelengths in a single optical fiber for transmission, it is easy to achieve a transmission capacity of Gbit/s or even Tbit/s.
  • the reconfigurable optical add/drop multiplexer (ROADM) as the core optical switching equipment in the WDM network, can configure any wavelength at any port.
  • the wavelength selection switch is the core device in the reconfigurable optical add/drop multiplexing system. It can realize the routing function of the optical network wavelength channel.
  • the embodiments of the present disclosure desirably provide a wavelength selective switch.
  • the wavelength selection switch includes: an optical fiber array, an optical signal processing device, and an output selection device; among them,
  • the optical fiber array includes multiple dual-core optical fibers arranged in parallel, and one dual-core optical fiber is used to input two optical signals;
  • the optical signal processing device is located at the output end of the optical fiber array, and is used to split the two optical signals into sub-signals of different wavelengths, and project the sub-signals of different wavelengths to the output selection device Different spectral band regions in
  • the output selection device is located at the rear end of the optical signal processing device, and is used to process the sub-signals projected to the spectral band region to separate the sub-signals into which the two optical signals are divided. Carry out output selection to realize dual switch function.
  • the optical signal processing device includes:
  • the lens array includes: a plurality of lenses arranged in parallel, one lens is located at the rear end of one of the two-core optical fibers, and is used for transmitting the two optical signals corresponding to the two-core optical fiber to the center axis of the lens. Symmetrical output;
  • a beam expansion module located at the rear end of the lens array, used to respectively expand the beam of the optical signals separated from each other by the lens;
  • the splitting module is located at the back end of the beam expanding module and is used to split the same optical signal after beam expansion by the beam expanding module into the sub-signals of different wavelengths; wherein, the sub-signals of different wavelengths The signal is projected to different said spectral band regions.
  • the ratio of the distance between adjacent dual-core fibers in the optical fiber array to the spot diameter ⁇ l of the optical signal output through one lens is greater than a first set threshold, and ⁇ l satisfies formula:
  • f 1 is the focal length of the lens
  • is the center wavelength of the optical signal
  • ⁇ 0 is the spot diameter corresponding to one optical signal.
  • the optical signal processing device further includes:
  • the beam splitting direction focusing module is located at the rear end of the beam splitting module, and is used to gather the sub-signals of different wavelengths and project them to different spectral band regions of the output selection device.
  • the optical signal processing device further includes:
  • the switching direction focusing module is located at the rear end of the light splitting module, and is used to switch the directions of the sub-signals in different spectral band regions to increase the degree of separation of the different sub-signals.
  • the light splitting module is located at the object focal plane of the light splitting direction focusing module, and the output selection device is located at the image side focal plane of the light splitting direction focusing module;
  • the object-side focal plane of the switching direction focusing module is confocal with the image-side focal plane of the lens; the output selection device is located at the image-side focal plane of the switching direction focusing module.
  • the double-core distance d in one of the double-core optical fibers satisfies the formula:
  • f 1 is the focal length of the lens
  • f x is the focal length of the switching direction focusing module
  • D is the distance between different spectral band regions
  • the D is the direction switching of the focusing module via the switching direction
  • the ratio of the spot diameter ⁇ wx corresponding to the subsequent sub-signals is greater than the second set threshold.
  • the switching direction focusing module and the splitting direction focusing module each include a refractive lens or a concave mirror.
  • the light splitting module includes a transmission grating or a reflection grating.
  • the output selection device includes:
  • Digital light processing DLP micro-mirror array liquid crystal on silicon LCOS pixel unit array or liquid crystal LC unit array.
  • the dual-core optical fiber is used to input two optical signals, which are processed by the optical signal processing device and projected to the non-interference spectral band area on the output selection device to pass the output
  • the selection device controls the sub-signals in different spectral band regions, thereby realizing the function of dual switches. On the one hand, it improves the integration characteristics and saves costs; on the other hand, it only needs to design the optical fiber array, which is simple to implement.
  • FIG. 1 is a structural diagram 1 of a wavelength selective switch shown in an embodiment of the disclosure
  • FIG. 2 is a second structural diagram of a wavelength selective switch shown in an embodiment of the disclosure
  • FIG. 3 is a third structural diagram of a wavelength selective switch shown in an embodiment of the disclosure.
  • FIG. 4 is a fourth structural diagram of a wavelength selective switch shown in an embodiment of the disclosure.
  • FIG. 5 is a structural diagram 1 of the optical path of a wavelength selective switch in the wavelength splitting direction according to an embodiment of the disclosure
  • FIG. 6 is the second structural diagram of the optical path of a wavelength selective switch in the port switching direction according to an embodiment of the disclosure.
  • FIG. 1 is a structural diagram 1 of a wavelength selective switch shown in an embodiment of the disclosure.
  • the wavelength selective switch includes: Optical fiber array 101, optical signal processing device 102, output selection device 103; among them,
  • the optical fiber array 101 includes multiple dual-core optical fibers arranged in parallel, and one dual-core optical fiber is used to input two optical signals;
  • the optical signal processing device 102 is located at the output end of the optical fiber array 101, and is used to split the two optical signals into sub-signals of different wavelengths, and project the sub-signals of different wavelengths to different spectral band regions in the output selection device 103;
  • the output selection device 103 is located at the back end of the optical signal processing device 101, and is used to process the sub-signals projected to the spectral band region to select the output of the sub-signals divided into the two optical signals to realize the dual switch function.
  • each path in the optical fiber array 101 of the wavelength selective switch is a dual-core fiber, and the two optical signals input by each dual-core fiber are separately processed by the optical signal processing device 102, and then output selection The device 103 separately controls the spectral band area formed by each optical signal, thereby realizing the dual switch function.
  • the two optical signals input through the dual-core optical fiber are split into sub-signals of different wavelengths based on the optical signal processing device 102 of the embodiment of the present disclosure, and the optical signal processing device 102 also The sub-signals of different wavelengths are projected to different spectral band regions of the output selection device 103.
  • the two optical signals are split into multiple (for example, 6) sub-signals of different wavelengths after passing through the optical signal processing device 102, and projected In the different spectral band regions of the output selection device 103.
  • the spectral band region S1 includes sub-signals of different wavelengths that are split into one optical signal
  • the spectral band region S2 includes sub-signals of different wavelengths that are split into another optical signal. It can be seen from Figure 1 that the spectral band region S1 and the spectral band region S2 do not overlap with each other. Therefore, the output device 103 can perform independent output selection control on the spectral band regions corresponding to the two optical signals after splitting, thereby achieving Double switch function.
  • the output selection control of the output selection device 103 includes: selecting the sub-signal to be output and adjusting the output power of the sub-signal to be output.
  • the optical path of the wavelength selection switch composed of the input fiber array 101, the optical signal processing device 102, and the output selection device 103 is reversible, which is expressed in:
  • the optical signal processing device 102 splits the light into N sub-signals, and the sub-signals of different wavelengths are projected to different spectral band regions in the output selection device;
  • the N sub-signals on the output selection device 103 are selected and output by the output selection device 103, and a signal can be output based on the optical fiber array 101.
  • the signal includes one sub-signal reflected back from the N sub-signals, and also includes N sub-signals.
  • the optical fiber array 101 using the dual-core optical fiber is used to input two optical signals to realize the function of the dual-structure wavelength selective switch, which improves the integration characteristics and is simple to implement.
  • FIG. 2 is a second structural diagram of a wavelength selective switch shown in an embodiment of the present disclosure.
  • the optical signal processing device 102 includes:
  • the lens array 102A includes: a plurality of lenses arranged in parallel, one lens is located at the rear end of a dual-core optical fiber, and is used to output two optical signals corresponding to the dual-core optical fiber symmetrically with the central axis of the lens as the symmetrical axis;
  • the beam expansion module 102B is located at the rear end of the lens array 102A, and is used to respectively expand the beams of the optical signals separated from each other by the lenses;
  • the beam splitting module 102C is located at the back end of the beam expanding module 102B, and is used to split the same optical signal after beam expansion by the beam expanding module 102B into sub-signals of different wavelengths; among them, the sub-signals of different wavelengths Project to different spectral band regions.
  • back end refers to the back end along the optical signal transmission direction.
  • one lens corresponds to one dual-core optical fiber, so that two optical signals A11 and A12 output through the dual-core optical fiber are output symmetrically with the central axis of the lens as the symmetry axis.
  • the beam expansion of the beam expander module 102B refers to the expansion of the spot size of the optical signal, and the optical signal after beam expansion by the beam expander module 102B is split into sub-signals of different wavelengths by the beam splitter module 102C.
  • the distance between adjacent dual-core fibers in the optical fiber array 101 and the spot diameter ⁇ of the optical signal output through a lens The ratio of l is greater than the first set threshold, and ⁇ l satisfies the formula:
  • f 1 is the focal length of the lens
  • is the center wavelength of the input optical signal
  • ⁇ 0 is the spot diameter corresponding to one optical signal.
  • the diameters of different fiber cores are the same, so the spot diameters corresponding to different optical signals are the same.
  • the distance P between adjacent dual-core optical fibers is greater than 1.5 ⁇ l .
  • FIG. 3 is the third structural diagram of a wavelength selective switch shown in an embodiment of the disclosure. As shown in FIG. 3, based on the structure of the wavelength selective switch shown in FIG. 2, the optical signal processing device 102 further includes:
  • the beam splitting direction focusing module 102D is located at the rear end of the beam splitting module 102C, and is used to gather sub-signals of different wavelengths belonging to different paths of optical signals and project them to different spectral band regions of the output selection device 103.
  • the sub-signals of different wavelengths corresponding to the optical signals of different paths after coming out of the beam splitting module 102C are collected in the beam splitting direction focusing module 102D and projected in parallel to the spectral band region S1 of the output selection device 103 respectively. And the spectral band region S2.
  • the optical signal processing device 102 further includes:
  • the switching direction focusing module 102E is located at the rear end of the beam splitting module 102C, and is used to switch the direction of the sub-signals in different spectral band regions to increase the degree of separation of the different sub-signals.
  • the switching direction focusing module 102E is also used to gather the sub-signals of different wavelengths corresponding to the optical signals input by the cores of the same core port sequence in the different dual-core fibers, and then project them to the output selection The same spectral band region of the device.
  • the optical signals A11 and A12 are output via one dual-core optical fiber
  • the optical signals A21 and A22 are output via another dual-core optical fiber.
  • A11 and A21 belong to the same order of arrangement of the core ports. From the plan view of FIG. 4, they are both located at the upper core port of a dual-core optical fiber.
  • the direction switching is performed by the switching direction focusing module 102E, and they are projected parallel to the output through the splitting direction focusing module 102D In the spectral band region S2 of the selection device 103; after A12 and A22 are divided into sub-signals of different wavelengths through the lens array 102A, the beam expansion module 102B, and the beam splitting module 102C, the direction is switched by the switching direction focusing module 102E, and The beam splitting direction focusing module 102D is projected parallel to the spectral band region S1 of the output selection device 103.
  • the direction switching focusing module 102E switches the sub-signals in different spectral band regions to increase the degree of separation of the sub-signals, so that the spectral band regions S1 and S2 can be completely separated.
  • the beam splitting module 102C is located at the object focal plane of the beam splitting direction focusing module 102D, and the output selecting device 103 is located at the focusing mode The image side focal plane of group 102D;
  • the object focal plane of the switching direction focusing module 102E is confocal with the image focal plane of the lens
  • the output selection device 103 is located at the image side focal plane of the switching direction focusing module 102E.
  • the double-core spacing d in a dual-core optical fiber satisfies the formula:
  • f 1 is the focal length of the lens
  • f x is the focal length of the switching direction focusing module 102E
  • D is the distance between the different spectral band regions
  • the D is the same as the direction switching of the focusing module 102E through the switching direction
  • the ratio of the spot diameter ⁇ wx corresponding to the sub-signals is greater than the second set threshold.
  • ⁇ 0 is the spot diameter corresponding to one optical signal.
  • the spot diameters of different optical signals from the switching direction focusing module 102E are also the same.
  • the distance D between different spectral band regions is greater than 1.5 ⁇ wx .
  • the switching direction focusing module 102E and the splitting direction focusing module 102D both include a refractive lens or a concave mirror.
  • the beam splitting module 102C includes a transmission grating or a reflection grating.
  • the output selection device 103 includes:
  • DLP Digital Light Processing
  • LCOS Liquid Crystal on Silicon
  • LC liquid crystal
  • the sub-signal to be output is selected by adjusting the angle of the micro-mirror, and at the same time, by adjusting whether the sub-signal is complete
  • the output power can be adjusted by aligning the output port.
  • the selection of sub-signals is achieved by independently controlling different liquid crystal pixels of the LCOS, and at the same time, the position of the selected liquid crystal pixel Voltage is applied to the pixel point, and the refractive index of the corresponding liquid crystal is changed to change the phase, that is, to achieve power adjustment.
  • two-way optical signals are inputted by using a dual-core optical fiber, and based on the lens array 102A, the beam expansion module 102B, the beam splitting module 102C, the beam splitting direction focusing module 102D, and the switching direction
  • the optical elements of the focusing module 102E form a non-interference spectral band region to realize the function of a dual-structure wavelength selective switch.
  • the number of optical components is small, which avoids excessive increase in size, improves integration characteristics and saves Cost; on the other hand, only the optical fiber array needs to be designed, and the implementation is simple.
  • FIG. 5 is a structural diagram 1 of the optical path of a wavelength selective switch in the wavelength splitting direction according to an embodiment of the disclosure.
  • the dual wavelength selective switch consists of a dual-core optical fiber array 201, a microlens array 202, and a
  • the beam module 203, the beam splitting module 204, the switching direction focusing module 205, the beam splitting direction focusing module 206, and the attenuation switching spectrum dividing device 207 are arranged in sequence, wherein the attenuation switching spectrum dividing device 207 is the output selection device 103 of this application.
  • the light path process is as follows: the light incident from the dual-core optical fiber array 201 through the microlens array 202 is expanded by the beam expansion module 203, and then the light is split by the beam splitting module 204 into an angular distribution.
  • Wavelength optical signals, multi-wavelength optical signals are sub-signals of different wavelengths after splitting.
  • the focal length of the light splitting direction focusing module 206 is f y
  • the light splitting module 204 is located at the front focal plane of the light splitting direction focusing module 206
  • the attenuation switching spectral division device 207 is located at the rear focus of the light splitting direction focusing module 206
  • the split multi-wavelength optical signal is then projected in parallel to the attenuation switching spectrum splitting device 207 through the splitting direction focusing module 206, and the optical signals of different wavelengths are projected to the different spectral band positions of the spectrum splitting device, and occupy correspondingly according to the bandwidth requirements.
  • the parallel light region on the attenuation switching spectrum dividing device 207 is a spectral band region.
  • FIG. 6 is an optical path structure diagram of a wavelength selective switch in the port switching direction of an embodiment of the disclosure.
  • the focal length of the switching direction focusing module 205 is f x
  • the micro lens array 202 is The focal length is f l
  • the front focal plane of the switching direction focusing module 205 is confocal with the rear focal plane of the microlens array 102
  • the attenuation switching spectral division device 207 is located at the rear focal plane of the switching direction focusing module 205, the distance between the two cores is d.
  • the distance between the spectral bands corresponding to the two wavelength selective switches on the attenuation switching spectral division device 207 is D.
  • each dual-core fiber contains two input and output ports from two wavelength selective switches.
  • the two input and output ports refer to two cores in a dual-core optical fiber.
  • the two input optical signals are processed by the microlens array 202, the beam expander module 203, the beam splitter module 204, the switching direction focusing module 205, and the splitting direction focusing module 206, which are formed on the attenuation switching spectrum dividing device 207.
  • the control area corresponding to each spectral band area.
  • the light incident through these two input and output ports will be projected to the attenuation switching spectral division device 207 in different switching directions. As shown in Figure 6, the light incident on the 201A port of the dual-core fiber will be projected to the attenuation switching spectral division device.
  • the 207A position at 207, and the light from the 201B port is projected to the 207B position.
  • the 201A port and the 201B port belong to two different wavelength selective switches respectively, and 207A and 207B respectively correspond to a spectral band region.
  • the optical signals from the two wavelength selective switches will be projected to two different positions on the attenuation switching spectrum dividing device 207, and the light of the same wavelength selective switch will be concentrated to the same spectral band region of the attenuation switching spectrum dividing device 207, Then the independent control of the two wavelength selective switches in the dual structure is realized.
  • dual-core optical fibers are used to input two optical signals, and non-interference spectral band regions are formed on the basis of existing optical elements, thereby realizing the function of a dual-structure wavelength selective switch
  • no need to add additional optical components avoid excessive increase in size, improve integration characteristics and save costs; on the other hand, only need to design the optical fiber array, which is simple to implement.
  • the disclosed device and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, such as: multiple units or components can be combined, or It can be integrated into another system, or some features can be ignored or not implemented.
  • the coupling, or direct coupling, or communication connection between the components shown or discussed may be indirect coupling or communication connection through some interfaces, devices or units, and may be electrical, mechanical or other forms of.
  • the units described above as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, they may be located in one place or distributed on multiple network units; Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • the functional units in the embodiments of the present disclosure can be all integrated into one processing module, or each unit can be individually used as a unit, or two or more units can be integrated into one unit;
  • the unit can be implemented in the form of hardware, or in the form of hardware plus software functional units.
  • a person of ordinary skill in the art can understand that all or part of the steps in the above method embodiments can be implemented by a program instructing relevant hardware.
  • the foregoing program can be stored in a computer readable storage medium. When the program is executed, it is executed. Including the steps of the foregoing method embodiment; and the foregoing storage medium includes: removable storage devices, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disks or optical disks, etc.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

一种波长选择开关,包括:光纤阵列(101)、光信号处理装置(102)、输出选择装置(103);其中,光纤阵列(101)包括多路并列设置的双芯光纤,一路双芯光纤用于输入两路光信号(A11,A12);光信号处理装置(102)位于光纤阵列(101)的输出端,用于将两路光信号(A11,A12)分光成不同波长的子信号,并将不同波长的子信号投射至输出选择装置(103)中的不同光谱带区域(S1,S2);输出选择装置(103)位于光信号处理装置(102)的后端,用于对投射到光谱带区域(S1,S2)的子信号进行处理,以对两路光信号(A11,A12)分成的子信号分别进行输出选择,实现双开关功能。

Description

一种波长选择开关
相关申请的交叉引用
本申请基于申请号为201910691466.3、申请日为2019年7月29日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本公开涉及光通信技术领域,尤其涉及一种波长选择开关。
背景技术
波分复用(WDM)是当前常见的光层组网技术,通过把不同波长复用在一根光纤中传输,很容易实现Gbit/s甚至Tbit/s的传输容量。可重构光分插复用器(ROADM)作为WDM网络中的核心光交换设备,能够在任一端口对任意波长进行配置,波长选择开关是可重构光插分复用系统中的核心器件,能够实现光网络波长通道的路由功能。
然而,新一代波长选择开关对器件的尺寸和集成特性要求逐步提高。
发明内容
有鉴于此,本公开实施例期望提供一种波长选择开关。
本公开的技术方案是这样实现的:
波长选择开关包括:光纤阵列、光信号处理装置、输出选择装置;其中,
所述光纤阵列包括多路并列设置的双芯光纤,一路所述双芯光纤,用于输入两路光信号;
所述光信号处理装置,位于所述光纤阵列的输出端,用于将所述两路光信号分光成不同波长的子信号,并将不同所述波长的子信号,投射至所述输出选择装置中的不同光谱带区域;
所述输出选择装置,位于所述光信号处理装置的后端,用于对投射到所述光谱带区域的所述子信号进行处理,以对所述两路光信号分成的所述子信号分别进行输出选择,实现双开关功能。
在一种实施例中,所述光信号处理装置包括:
透镜阵列,包括:多个并列设置的透镜,一个所述透镜位于一路所述双芯光纤后端,用于将对应所述双芯光纤输出的两路所述光信号以所述透镜的中心轴为对称轴对称输出;
扩束模组,位于所述透镜阵列的后端,用于分别对通过所述透镜相互分离的所述光信号进行扩束;
分光模组,位于所述扩束模组的后端,用于分别将经扩束模组扩束后的同一路光信号分光成不同波长的所述子信号;其中,不同波长的所述子信号投射到不同所述光谱带区域。
在一种实施例中,所述光纤阵列中相邻路双芯光纤的间距与经由一个所述透镜输出的一路所述光信号的光斑直径φ l的比值大于第一设定阈值,φ l满足公式:
Figure PCTCN2019129435-appb-000001
其中,f l为所述透镜的焦距,λ为所述光信号的中心波长,φ 0为一路所述光信号对应的光斑直径。
在一种实施例中,所述光信号处理装置还包括:
分光方向聚焦模组,位于所述分光模组的后端,用于将不同波长的所述子信号聚集后,投射到所述输出选择装置的不同的所述光谱带区域。
在一种实施例中,所述光信号处理装置还包括:
切换方向聚焦模组,位于所述分光模组的后端,用于对不同所述光谱带区域的所述子信号进行方向切换,以加大不同所述子信号的分离程度。
在一种实施例中,所述分光模组,位于所述分光方向聚焦模组的物方焦平面,所述输出选择装置位于所述分光方向聚焦模组的象方焦平面;
所述切换方向聚焦模组的物方焦平面与所述透镜的象方焦平面共焦;所述输出选择装置,位于所述切换方向聚焦模组的象方焦平面。
在一种实施例中,一路所述双芯光纤中的双芯间距d满足公式:
Figure PCTCN2019129435-appb-000002
其中,f l为所述透镜的焦距,f x为所述切换方向聚焦模组的焦距,D为不同所述光谱带区域的间距,所述D与经由所述切换方向聚焦模组进行方向切换后的所述子信号对应的光斑直径φ wx的比值大于第二设定阈值。
在一种实施例中,所述切换方向聚焦模组和所述分光方向聚焦模组均包括折射透镜或凹面反射镜。
在一种实施例中,所述分光模组包括透射光栅或反射光栅。
在一种实施例中,所述输出选择装置包括:
数字光处理DLP微反射镜阵列、硅基液晶LCOS像素单元阵列或液晶LC单元阵列。
本公开的实施例提供的技术方案可以包括以下有益效果:
在本公开的实施例中,通过对光纤阵列进行设计,采用双芯光纤输入两路光信号,并经过光信号处理装置处理后投射到输出选择装置上互不干涉的光谱带区域,以通过输出选择装置对不同光谱带区域的子信号进行控制,从而实现双开关的功能,一方面,提升了集成特性且节约了成本;另一方面,只需对光纤阵列进行设计,实现方式简单。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
图1为本公开实施例示出的一种波长选择开关的结构图一;
图2为本公开实施例示出的一种波长选择开关的结构图二;
图3为本公开实施例示出的一种波长选择开关的结构图三;
图4为本公开实施例示出的一种波长选择开关的结构图四;
图5为本公开实施例的一种波长选择开关在波长分光方向的光路结构图一;
图6为本公开实施例的一种波长选择开关在端口切换方向的光路结构图二。
具体实施方式
以下结合说明书附图及具体实施例对本公开的技术方案做进一步的详细阐述。
本公开实施例提供了一种波长选择开关,图1为本公开实施例示出的一种波长选择开关的结构图一,如图1所示,在本公开的实施例中,波长选择开关包括:光纤阵列101、光信号处理装置102、输出选择装置103;其中,
光纤阵列101包括多路并列设置的双芯光纤,一路双芯光纤,用于输入两路光信号;
光信号处理装置102,位于光纤阵列101的输出端,用于将两路光信号分光成不同波长的子信号,并将不同波长的子信号,投射至输出选择装置103中的不同光谱带区域;
输出选择装置103,位于光信号处理装置101的后端,用于对投射到光谱带区域的子信号进行处理,以对两路光信号分成的子信号分别进行输出选择,实现双开关功能。
在本公开的实施例中,波长选择开关的光纤阵列101中的每一路都是 双芯光纤,每一路双芯光纤输入的两路光信号分别经光信号处理装置102分光处理,再经输出选择装置103分别对每路光信号形成的光谱带区域进行独立控制,从而实现双开关功能。
因输入的光信号包括不同波长的子信号,因此经双芯光纤输入的两路光信号基于本公开实施例的光信号处理装置102会分光成不同波长的子信号,同时光信号处理装置102还会将不同波长的子信号投射到输出选择装置103的不同光谱带区域。
如图1所示,输入光纤阵列101的两路光信号A11和A12,该两路光信号经过光信号处理装置102后被分光成不同波长的多路(例如,6路)子信号,并投射在输出选择装置103的不同光谱带区域。光谱带区域S1包括一路光信号分光成的不同波长的子信号,而光谱带区域S2包括另一路光信号分光成的不同波长的子信号。由图1可知,光谱带区域S1和光谱带区域S2间互不重叠,由此,能基于输出装置103对两路光信号分光后分别所对应的光谱带区域进行独立的输出选择控制,从而实现双开关功能。
其中,输出选择装置103的输出选择控制包括:选择待输出的子信号并调节待输出的子信号的输出功率。
需要说明的是,在本公开的实施例中,由输入光纤阵列101、光信号处理装置102以及输出选择装置103构成的波长选择开关的光路是可逆的,表现在:
1、对于从光纤阵列101的一路双芯光纤输入的两路光信号,基于光信号处理装置102分光成N路子信号,而不同波长的子信号,投射至输出选择装置中的不同光谱带区域;
2、输出选择装置103上的N路子信号经过输出选择装置103的选择输出,又可基于光纤阵列101输出一路信号,该一路信号包括N路子信号中反射回去的一路子信号,还包括N路子信号中的多路经处理并耦合后形成 的一路信号。
可以理解的是,在本公开的实施例中,采用双芯光纤的光纤阵列101输入两路光信号来实现双结构的波长选择开关的功能,提升了集成特性,且实现方式简单。
图2为本公开实施例示出的一种波长选择开关的结构图二,如图2所示,在本公开的实施例中,光信号处理装置102包括:
透镜阵列102A,包括:多个并列设置的透镜,一个透镜位于一路双芯光纤后端,用于将对应双芯光纤输出的两路光信号以透镜的中心轴为对称轴对称输出;
扩束模组102B,位于透镜阵列102A的后端,用于分别对通过透镜相互分离的光信号进行扩束;
分光模组102C,位于所述扩束模组102B的后端,用于分别将经扩束模组102B扩束后的同一路光信号分光成不同波长的子信号;其中,不同波长的子信号投射到不同光谱带区域。
需要说明的是,本申请所述的“后端”为沿光信号传输方向的后端。
在该实施例中,如图2所示,一个透镜与一个双芯光纤对应,以将经双芯光纤输出的两路光信号A11和A12以透镜的中心轴为对称轴对称输出。此外,扩束模组102B的扩束是指扩大光信号的光斑尺寸,经过扩束模组102B扩束后的光信号即被分光模组102C分光成不同波长的子信号。
在一种实施例中,为保证双开关的波长选择开关中相邻端口间的隔离度要求,光纤阵列101中相邻路双芯光纤的间距与经由一个透镜输出的一路光信号的光斑直径φ l的比值大于第一设定阈值,φ l满足公式:
Figure PCTCN2019129435-appb-000003
其中,f l为透镜的焦距,λ为输入光信号的中心波长,φ 0为一路光信号对应的光斑直径。
需要说明的是,在本公开的实施例中,不同纤芯的直径相同,因此不同路光信号对应的光斑直径是相同的。
示例性的,如图2所示,第一设定阈值为1.5时,相邻路双芯光纤的间距P大于1.5φ l
图3为本公开实施例示出的一种波长选择开关的结构图三,如图3所示,在图2所示的波长选择开关的结构基础上,光信号处理装置102还包括:
分光方向聚焦模组102D,位于分光模组102C的后端,用于将属于不同路光信号中的不同波长的子信号聚集后,投射到输出选择装置103的不同的光谱带区域。
如图3所示,经由分光模组102C出来后的不同路的光信号对应的不同波长的子信号,在分光方向聚焦模组102D聚集后,分别平行投射到输出选择装置103的光谱带区域S1和光谱带区域S2。
图4为本公开实施例示出的一种波长选择开关的结构图四,如图4所示,在图3所示的波长选择开关的结构上,光信号处理装置102还包括:
切换方向聚焦模组102E,位于分光模组102C的后端,用于对不同光谱带区域的子信号进行方向切换,以加大不同子信号的分离程度。
如图4所示,切换方向聚焦模组102E,还用于将不同路双芯光纤中属于同一纤芯端口顺序的纤芯输入的光信号对应的不同波长的子信号聚集后,投射到输出选择装置的同一光谱带区域。具体的,光信号A11和A12经由一路双芯光纤输出,光信号A21和A22经由另一路双芯光纤输出。其中,A11和A21属于相同的纤芯端口排列顺序,从图4的平面图上看即都位于一路双芯光纤中的上方纤芯端口。A11和A21经由透镜阵列102A和扩束模组102B、分光模组102C分成不同的波长的子信号后,通过切换方向聚焦模组102E进行方向切换,并经由分光方向聚焦模组102D平行投射到 输出选择装置103的光谱带区域S2中;A12和A22经由透镜阵列102A和扩束模组102B、分光模组102C分成不同的波长的子信号后,通过切换方向聚焦模组102E进行方向切换,并经由分光方向聚焦模组102D平行投射到输出选择装置103的光谱带区域S1中。
在该实施例中,通过切换方向聚焦模组102E将不同光谱带区域的子信号进行方向切换,以加大子信号的分离程度,从而使得光谱带区域S1和S2能完全分离。
基于图3和图4包括的元器件类型的波长选择开关,在一种实施例中,分光模组102C,位于分光方向聚焦模组102D的物方焦平面,输出选择装置103位于分光方向聚焦模组102D的象方焦平面;
切换方向聚焦模组102E的物方焦平面与透镜的象方焦平面共焦;
输出选择装置103,位于切换方向聚焦模组102E的象方焦平面。
在一种实施例中,为保证不同光谱带区域互不干涉,一路双芯光纤中的双芯间距d满足公式:
Figure PCTCN2019129435-appb-000004
其中,f l为透镜的焦距,f x为切换方向聚焦模组102E的焦距,D为不同所述光谱带区域的间距,所述D与经由切换方向聚焦模组102E进行方向切换后的所述子信号对应的光斑直径φ wx的比值大于第二设定阈值。
其中,
Figure PCTCN2019129435-appb-000005
φ 0为一路光信号对应的光斑直径。
需要说明的是,在本公开的实施例中,从切换方向聚焦模组102E出来的不同路光信号的光斑直径也是一样的。
示例性的,第二设定阈值为1.5时,不同光谱带区域的间距D大于1.5φ wx
在一种实施例中,切换方向聚焦模组102E和分光方向聚焦模组102D 均包括折射透镜或凹面反射镜。
在一种实施例中,分光模组102C包括透射光栅或反射光栅。
在一种实施例中,输出选择装置103包括:
数字光处理(Digital Light Processing,DLP)微反射镜阵列、硅基液晶(Liquid Crystal on Silicon,LCOS)像素单元阵列或液晶(liquid crystal,LC)单元阵列。
其中,在一种实施例中,当输出选择装置103的核心部件为数字光处理DLP微反射镜时,通过调整微反射镜的角度来选择待输出的子信号,同时,通过调整子信号是否完全对准输出端口可实现输出功率的调整。
在另一种实施例中,当输出选择装置103的核心部件为硅基液晶LCOS像素单元阵列时,通过独立控制LCOS不同的液晶像素来实现子信号的选择,同时,对选择的液晶像素位置的像素点施加电压,改变对应液晶的折射率来改变相位,即实现功率调节。
可以理解的是,在本公开的实施例中,采用双芯光纤输入两路光信号,并基于包括透镜阵列102A、扩束模组102B、分光模组102C、分光方向聚焦模组102D、切换方向聚焦模组102E的光学元件形成互不干涉的光谱带区域,实现双结构的波长选择开关的功能,一方面,光学元器件数量少,避免了尺寸的过多增加,提升了集成特性且节约了成本;另一方面,只需对光纤阵列进行设计,实现方式简单。
示例性的,图5为本公开实施例的一种波长选择开关在波长分光方向的光路结构图一,如图5所示,双波长选择开关由双芯光纤阵列201、微透镜阵列202、扩束模组203、分光模组204、切换方向聚焦模组205、分光方向聚焦模组206、衰减切换光谱分割装置207依次排列,其中衰减切换光谱分割装置207即为本申请的输出选择装置103。在波长分光方向上,其光路过程具体如下:从双芯光纤阵列201并经由微透镜阵列202入射的光, 经过扩束模组203扩束,再经过分光模组204分光成按照角度分布的多波长光信号,多波长光信号即分光后的不同波长的子信号。
如图5所示,分光方向聚焦模组206的焦距为f y,分光模组204位于分光方向聚焦模组206的前焦面,衰减切换光谱分割装置207位于分光方向聚焦模组206的后焦面,分光后的多波长光信号再经分光方向聚焦模组206平行地投射到衰减切换光谱分割装置207,不同波长的光信号投射到光谱分割装置的不同光谱带位置,并依据带宽要求占据相应数量的光谱分割装置控制单元。衰减切换光谱分割装置207上的平行光区域即为一个光谱带区域。
示例性的,图6为本公开实施例的一种波长选择开关在端口切换方向的光路结构图二,如图6所示,切换方向聚焦模组205的焦距为f x,微透镜阵列202的焦距为f l,切换方向聚焦模组205的前焦面与微透镜阵列102的后焦面共焦,且衰减切换光谱分割装置207位于切换方向聚焦模组205的后焦面,双芯间距为d,衰减切换光谱分割装置207上对应两个波长选择开关的光谱带区域间距为D。
在端口切换方向,每一路双芯光纤包含两个分别来自两个波长选择开关的输入输出端口。其中,两个输入输出端口是指一路双芯光纤中的两个纤芯。输入后的两路光信号经微透镜阵列202、扩束模组203、分光模组204、切换方向聚焦模组205、分光方向聚焦模组206处理后在衰减切换光谱分割装置207上形成的2个光谱带区域对应的控制区。经由这两个输入输出端口入射的光将分别投射到衰减切换光谱分割装置207在切换方向不同的位置,如图6所示,双芯光纤的201A端口入射的光将投射到衰减切换光谱分割装置207处的207A位置,而201B端口的光则投射到207B位置。
需要说明的是,201A端口和201B端口分别属于两个不同的波长选择开关,207A和207B分别对应一个光谱带区域。如此,来自两个波长选择 开关的光信号会投射到衰减切换光谱分割装置207上的两个不同位置,同一个波长选择开关的光将汇聚到衰减切换光谱分割装置207的同一个光谱带区域,继而实现了双结构中两个波长选择开关的相互独立控制。
可以理解的是,在本公开的实施例中,采用双芯光纤输入两路光信号,并在已有光学元件基础上形成互不干涉的光谱带区域,从而实现双结构的波长选择开关的功能,一方面,不需要增加额外的光学元件,避免了尺寸的过多增加,提升了集成特性且节约了成本;另一方面,只需对光纤阵列进行设计,实现方式简单。
在本申请所提供的几个实施例中,应该理解到,所揭露的设备和方法,可以通过其它的方式实现。以上所描述的设备实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,如:多个单元或组件可以结合,或可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的各组成部分相互之间的耦合、或直接耦合、或通信连接可以是通过一些接口,设备或单元的间接耦合或通信连接,可以是电性的、机械的或其它形式的。
上述作为分离部件说明的单元可以是、或也可以不是物理上分开的,作为单元显示的部件可以是、或也可以不是物理单元,即可以位于一个地方,也可以分布到多个网络单元上;可以根据实际的需要选择其中的部分或全部单元来实现本实施例方案的目的。
另外,在本公开各实施例中的各功能单元可以全部集成在一个处理模块中,也可以是各单元分别单独作为一个单元,也可以两个或两个以上单元集成在一个单元中;上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的 硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:移动存储设备、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
本申请所提供的几个方法实施例中所揭露的方法,在不冲突的情况下可以任意组合,得到新的方法实施例。
本申请所提供的几个产品实施例中所揭露的特征,在不冲突的情况下可以任意组合,得到新的产品实施例。
本申请所提供的几个方法或设备实施例中所揭露的特征,在不冲突的情况下可以任意组合,得到新的方法实施例或设备实施例。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (10)

  1. 一种波长选择开关,所述波长选择开关包括:光纤阵列、光信号处理装置、输出选择装置;其中,
    所述光纤阵列包括多路并列设置的双芯光纤,一路所述双芯光纤,用于输入两路光信号;
    所述光信号处理装置,位于所述光纤阵列的输出端,用于将所述两路光信号分光成不同波长的子信号,并将不同所述波长的子信号,投射至所述输出选择装置中的不同光谱带区域;
    所述输出选择装置,位于所述光信号处理装置的后端,用于对投射到所述光谱带区域的所述子信号进行处理,以对所述两路光信号分成的所述子信号分别进行输出选择,实现双开关功能。
  2. 根据权利要求1所述的波长选择开关,其中,所述光信号处理装置包括:
    透镜阵列,包括:多个并列设置的透镜,一个所述透镜位于一路所述双芯光纤后端,用于将对应所述双芯光纤输出的两路所述光信号以所述透镜的中心轴为对称轴对称输出;
    扩束模组,位于所述透镜阵列的后端,用于分别对通过所述透镜相互分离的所述光信号进行扩束;
    分光模组,位于所述扩束模组的后端,用于分别将经扩束模组扩束后的同一路所述光信号分光成不同波长的所述子信号;其中,不同波长的所述子信号投射到不同所述光谱带区域。
  3. 根据权利要求2所述的波长选择开关,其中,所述光纤阵列中相邻路双芯光纤的间距与经由一个所述透镜输出的一路所述光信号的光斑直径φ l的比值大于第一设定阈值,φ l满足公式:
    Figure PCTCN2019129435-appb-100001
    其中,f l为所述透镜的焦距,λ为所述光信号的中心波长,φ 0为一路所述光信号对应的光斑直径。
  4. 根据权利要求2所述的波长选择开关,其中,所述光信号处理装置还包括:
    分光方向聚焦模组,位于所述分光模组的后端,用于将不同波长的所述子信号聚集后,投射到所述输出选择装置的不同的所述光谱带区域。
  5. 根据权利要求4所述的波长选择开关,其中,所述光信号处理装置还包括:
    切换方向聚焦模组,位于所述分光模组的后端,用于对不同所述光谱带区域的所述子信号进行方向切换,以加大不同所述子信号的分离程度。
  6. 根据权利要求5所述的波长选择开关,其中,
    所述分光模组,位于所述分光方向聚焦模组的物方焦平面,所述输出选择装置位于所述分光方向聚焦模组的象方焦平面;
    所述切换方向聚焦模组的物方焦平面与所述透镜的象方焦平面共焦;
    所述输出选择装置,位于所述切换方向聚焦模组的象方焦平面。
  7. 根据权利要求6所述的波长选择开关,其中,一路所述双芯光纤中的双芯间距d满足公式:
    Figure PCTCN2019129435-appb-100002
    其中,f l为所述透镜的焦距,f x为所述切换方向聚焦模组的焦距,D为不同所述光谱带区域的间距,所述D与经由所述切换方向聚焦模组进行方向切换后的所述子信号对应的光斑直径φ wx的比值大于第二设定阈值。
  8. 根据权利要求5所述的波长选择开关,其中,所述切换方向聚焦模组和所述分光方向聚焦模组均包括折射透镜或凹面反射镜。
  9. 根据权利要求2所述的波长选择开关,其中,所述分光模组包括透射光栅或反射光栅。
  10. 根据权利要求1所述的波长选择开关,其中,所述输出选择装置包括:
    数字光处理DLP微反射镜阵列、硅基液晶LCOS像素单元阵列或液晶LC单元阵列。
PCT/CN2019/129435 2019-07-29 2019-12-27 一种波长选择开关 WO2021017398A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/764,387 US11899244B2 (en) 2019-07-29 2019-12-27 Wavelength selective switch

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910691466.3 2019-07-29
CN201910691466.3A CN110426789B (zh) 2019-07-29 2019-07-29 一种波长选择开关

Publications (1)

Publication Number Publication Date
WO2021017398A1 true WO2021017398A1 (zh) 2021-02-04

Family

ID=68411253

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/129435 WO2021017398A1 (zh) 2019-07-29 2019-12-27 一种波长选择开关

Country Status (3)

Country Link
US (1) US11899244B2 (zh)
CN (1) CN110426789B (zh)
WO (1) WO2021017398A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110426789B (zh) * 2019-07-29 2021-01-08 武汉光迅科技股份有限公司 一种波长选择开关

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1168012A2 (en) * 2000-06-22 2002-01-02 Eastman Kodak Company Coupling optical fibers with aspheric collimator lenses
US20060093264A1 (en) * 2004-11-01 2006-05-04 Fujitsu Limited Optical fiber device, optical monitor and optical switch
CN101156098A (zh) * 2005-04-11 2008-04-02 卡佩拉光子学公司 具有基于mems的衰减或功率管理的优化的可重构光分插复用器结构
CN103197388A (zh) * 2013-04-19 2013-07-10 武汉邮电科学研究院 C+l波段波长选择开关及其实现方法和处理单元
CN103608708A (zh) * 2011-06-17 2014-02-26 住友电气工业株式会社 光学装置
CN110426789A (zh) * 2019-07-29 2019-11-08 武汉光迅科技股份有限公司 一种波长选择开关

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012172968A1 (ja) * 2011-06-17 2012-12-20 住友電気工業株式会社 光学装置
CN104620155B (zh) 2013-08-22 2017-03-29 华为技术有限公司 一种波长选择开关
WO2015161452A1 (zh) * 2014-04-22 2015-10-29 华为技术有限公司 光通信的装置和方法
CA3177421A1 (en) * 2014-05-06 2015-11-06 Oz Optics Ltd. Method and system for simultaneous measurement of strain and temperature utilizing dual core fiber
CN104597572B (zh) * 2015-01-16 2017-07-18 华中科技大学 一种基于硅基液晶的波长选择开关
JP6404769B2 (ja) * 2015-04-30 2018-10-17 日本電信電話株式会社 波長クロスコネクト装置及び光クロスコネクト装置
US9913008B1 (en) 2017-06-06 2018-03-06 Lumentum Operations Llc Multicast wavelength selective switch
CN109212766B (zh) * 2018-09-10 2021-07-27 武汉光迅科技股份有限公司 一种分光装置、波长选择开关和分光方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1168012A2 (en) * 2000-06-22 2002-01-02 Eastman Kodak Company Coupling optical fibers with aspheric collimator lenses
US20060093264A1 (en) * 2004-11-01 2006-05-04 Fujitsu Limited Optical fiber device, optical monitor and optical switch
CN101156098A (zh) * 2005-04-11 2008-04-02 卡佩拉光子学公司 具有基于mems的衰减或功率管理的优化的可重构光分插复用器结构
CN103608708A (zh) * 2011-06-17 2014-02-26 住友电气工业株式会社 光学装置
CN103197388A (zh) * 2013-04-19 2013-07-10 武汉邮电科学研究院 C+l波段波长选择开关及其实现方法和处理单元
CN110426789A (zh) * 2019-07-29 2019-11-08 武汉光迅科技股份有限公司 一种波长选择开关

Also Published As

Publication number Publication date
CN110426789B (zh) 2021-01-08
US11899244B2 (en) 2024-02-13
CN110426789A (zh) 2019-11-08
US20220342156A1 (en) 2022-10-27

Similar Documents

Publication Publication Date Title
JP6549097B2 (ja) 統合されたチャネルモニタを有する波長選択スイッチ
CA2867007C (en) Wavelength switch system using angle multiplexing optics
JP6609789B2 (ja) 波長選択スイッチアレイ
US8693819B2 (en) Method and system for switching optical channels
US11728919B2 (en) Optical communications apparatus and wavelength selection method
CN105739026B (zh) 一种高端口数目波长选择开关
US11067752B2 (en) Reconfigurable optical add/drop multiplexer
US9521473B2 (en) Wavelength selective switch with increased frequency separation to avoid crosstalk
JP7479518B2 (ja) 光交換装置、リダイレクション方法、リコンフィギュラブル光アド/ドロップマルチプレクサ、及びシステム
JP2009042558A (ja) 波長選択スイッチ
WO2021017398A1 (zh) 一种波长选择开关
JP5192501B2 (ja) 波長選択スイッチ
US9998253B2 (en) Use of wavelength selective switch for a few-mode fiber
US20220271859A1 (en) Wavelength selective switch with direct grating interface
JP2016138989A (ja) 波長選択スイッチ
JP2019191300A (ja) 波長選択光スイッチ
US20240310583A1 (en) M by n wavelength-selective switch
WO2024099579A1 (en) Optical apparatus and method for selective wavelength switching of light
WO2024099578A1 (en) Optical apparatus and method for selective wavelength switching of light
CN118112721A (zh) 一种波长选择开关和相关设备
KR101832874B1 (ko) 광 교차연결 장치
CN116466436A (zh) 一种波长选择开关

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19939140

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19939140

Country of ref document: EP

Kind code of ref document: A1