WO2021017266A1 - 一种拼叠式龙伯透镜的生产方法 - Google Patents

一种拼叠式龙伯透镜的生产方法 Download PDF

Info

Publication number
WO2021017266A1
WO2021017266A1 PCT/CN2019/116663 CN2019116663W WO2021017266A1 WO 2021017266 A1 WO2021017266 A1 WO 2021017266A1 CN 2019116663 W CN2019116663 W CN 2019116663W WO 2021017266 A1 WO2021017266 A1 WO 2021017266A1
Authority
WO
WIPO (PCT)
Prior art keywords
dielectric layer
lens
type
lumbert
shell
Prior art date
Application number
PCT/CN2019/116663
Other languages
English (en)
French (fr)
Inventor
郑洪振
芦永超
窦英乾
Original Assignee
佛山市粤海信通讯有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 佛山市粤海信通讯有限公司 filed Critical 佛山市粤海信通讯有限公司
Publication of WO2021017266A1 publication Critical patent/WO2021017266A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/02Refracting or diffracting devices, e.g. lens, prism
    • H01Q15/08Refracting or diffracting devices, e.g. lens, prism formed of solid dielectric material

Definitions

  • the present invention relates to the field of communication equipment production, and more specifically, to a method for producing Lumber lens.
  • Lumber lens technology proposed by RK Luneberg in 1944 based on geometric optics, is used as an antenna and scatterer application. It is mainly used for fast scanning systems, satellite communication systems, 5G communications, automotive collision avoidance radars, and radar reflectors.
  • the dielectric constant of the dielectric material used for the Lumber lens should change continuously from 2 to 1 from the center of the sphere to the outer diameter, following a certain mathematical law.
  • such an ideal medium does not exist in nature, so discrete spherical shells of layered design are often used in actual design instead.
  • Lumber lens production solutions In order to make the actual performance of the Lumber lens close to the theoretical performance, a variety of Lumber lens production solutions exist, such as:
  • CN201510084764.8 A manufacturing method of a hemispherical Lumber lens antenna
  • CN201510065135.0 A production method of Lumber lens with open structure
  • the above technical solutions include: drilling method, controlling the dielectric constant of the material through the proportion of the material volume occupied by the hole, but this method is difficult to control the density and precision of the drilling, the structure is complex, the manufacturing difficulty is high, and the weight is not suitable Mass production.
  • It also includes a layer-by-layer foaming method. Based on the middle core, it is wrapped layer by layer and foamed layer by layer. This is currently the most commonly used method to obtain a stepped dielectric constant foam material, but whether it is physical foaming, Chemical foaming requires strict temperature and pressure control, and is usually produced under high temperature and high pressure. Due to the low thermal conductivity of the foamed material, uneven foaming will occur. The process technology is complicated, special equipment is required, the yield is low, and the cost is very high.
  • the layers are made independently first, and then these layers are glued together. However, the interface between the layers is obvious. The discontinuity of the dielectric constant between the electromagnetic material layers will increase the lens. Electromagnetic loss reduces the radiation efficiency of the antenna.
  • the technical problem to be solved by the present invention is to provide a new method for producing Lumber lens, which can manufacture Lumber lens with stable index and high performance under the conditions of room temperature, normal pressure and low cost.
  • a method for producing split-type Lumbert lens includes the following steps:
  • Step 1) The first-stage ball is made by gluing a certain amount of the first particle material into a ball through an adhesive, and the first-stage ball is called the core;
  • Step 2) Use a certain amount of the second kind of granular material to make the first shell unit, and paste a plurality of pieces of the first shell unit on the surface of the core to completely wrap the core.
  • the layer formed by the first shell unit is called the first dielectric layer.
  • the first-stage ball becomes the second-stage ball after the first dielectric layer is added;
  • Step 3 Use a certain amount of the third granular material to make a second shell unit, and paste a plurality of second shell units on the surface of the second stage ball, thereby completely enveloping the second stage Ball, the layer composed of a plurality of second shell units is called the second dielectric layer, at this time the second-stage ball becomes the third-stage ball after the second dielectric layer is added;
  • a Lumbert lens with a predetermined number of dielectric layers is produced; from the innermost core to the outermost dielectric layer, the dielectric constant of the granular material used in each of them is in accordance with the law of high to low, and at least A dielectric layer is composed of at least three shell units, and the target value of the dielectric constant of the first granular material is 2, and the target value of the dielectric constant of the granular material used in the outermost dielectric layer is 1.
  • This split-type Lumbert lens adopts the method of "splicing shell units with smaller volume and area into a dielectric layer, and stacking multiple dielectric layers into a target sphere". Since the amount of particulate materials required to form a shell unit is relatively small, at this time, if the distribution of these particulate materials is artificially controlled, the difference in electromagnetic performance between shell units of the same specification is relatively small.
  • the contour shape of the shell element is properly designed, then multiple such shell elements can be densely spread on the spherical surface of the ball at the previous stage, and the surface of the formed dielectric layer at this time
  • the difference in electromagnetic performance of the dots is also relatively small, or at this time, the uniformity of the electromagnetic properties of the dots on the surface of the dielectric layer can be controlled to a relatively high degree, which is the most hoped to see in mass production. Since the granular material has been made into the shell unit in advance, it does not need to spend a lot of time in the process of pasting the shell unit into the dielectric layer, so this approach is also one of the efficient production methods.
  • the shape of the first shell element, the second shell element and the shell elements constituting other dielectric layers can be one or more of regular hexagon, regular pentagon or triangle. It should be noted that the shell unit used to form the same dielectric layer may have only one contour shape, or two or more contour shapes. For example, you can refer to the conventional outer connection method of a football made of regular hexagons and regular pentagons, using a shell unit with a regular hexagon and a shell unit with a regular pentagon. Paste densely on the surface of the ball of the previous stage, and then wrap the ball of the previous stage.
  • the same dielectric layer may be composed of two or more shell units. If the design thickness of a certain dielectric layer is relatively thick, and the thickness of a single shell element is insufficient, one or more shells made of the same granular material can be added on the basis of one layer of shell element. unit.
  • the granular materials that make up the same shell unit can be bonded together by an adhesive, or can be packed into a flat box, and together with the box body can be used as a shell unit.
  • the granular materials in the box body can be bonded without adhesive, which can reduce the use of adhesives, thereby reducing the influence of the adhesive on the dielectric constant.
  • the box is required
  • the material of the body is made of a material with a low dielectric constant, and the wall of the box body is preferably sufficiently thin, and the box body is not strongly required to have good shape stability.
  • the wall of the box body is preferably provided with numerous through holes to reduce the weight of the box body. Of course, the size of these through holes should be able to prevent particulate materials from leaking from the inside of the box body.
  • the contour shape of the Lumber lens produced by this production method can be a sphere, a sphere-like, an ellipsoid, or an ellipsoid, etc.
  • the total number of dielectric layers is preferably between 3-20.
  • the structure of the granular material used in each dielectric layer and the core is preferably: a granular or fibrous metal conductor is mixed into a non-metallic material.
  • the volume of the corresponding granular material is preferably larger and larger.
  • the shape of the corresponding particle material can be cubic or spherical.
  • the volume of the granular material is preferably within the range of 8mm3 ⁇ 250mm3.
  • the production method of the split-type Lumber lens of the present invention has the advantages of simple production process, low production cost, light weight, easy control of lens characteristics, and excellent lens performance indicators.
  • a spherical Lumbert lens with 5 dielectric layers is taken as an example.
  • a Lumber lens includes a spherical core, a first medium layer, a second medium layer, a third medium layer, a fourth medium layer, and a fifth medium layer in order from the inside to the outside.
  • the materials corresponding to the core and these media layers in sequence are: the first granular material, the second granular material, the third granular material, the fourth granular material, the fifth granular material, and the sixth granular material.
  • the dielectric constants of the first granular material to the sixth granular material are from high to low, wherein the dielectric constant of the first granular material is 2 and the dielectric constant of the sixth granular material is 1.
  • the production method is as follows:
  • Step 1) The first-stage ball is made by bonding a certain amount of the first particle material into a spherical shape through an adhesive, and the first-stage ball is called the core.
  • Step 2) Use a certain amount of the second kind of granular material to make the first shell unit, and paste a plurality of pieces of the first shell unit on the surface of the core to completely wrap the core.
  • the layer formed by the first shell unit is called the first dielectric layer.
  • the first-stage ball becomes the second-stage ball after the first dielectric layer is added.
  • first shell unit and the shell units of the other dielectric layers may be a sheet formed by bonding granular materials on a plane, such a shell unit has a certain degree of flexibility.
  • the area covered by the single-piece shell unit is not very large compared to the area of the target surface. Therefore, when the size of the single-piece shell unit is designed reasonably, the shell unit can be fully attached to the The curved surface of the target surface.
  • Step 3) Use a certain amount of the third particle material to make a second shell unit, and paste a plurality of second shell units on the surface of the second stage ball and thereby completely wrap the second stage
  • the layer composed of a plurality of second shell units is called the second dielectric layer.
  • the second-stage ball becomes the third-stage ball after the second dielectric layer is added.
  • Step 4) Use a certain amount of the fourth type of granular material to make the first type of third shell unit and the second type of third shell unit;
  • the contour shape of the first type of third shell unit is a regular hexagon,
  • the contour shape of the second type and third shell unit is a regular pentagon.
  • the third shell unit of the first type and the third shell unit of the second type are densely pasted on the surface of the ball of the third stage with reference to the outer layer connection mode of a conventional football, and then wraps the ball of the third stage.
  • the layer composed of several pieces of the first type third shell unit and several pieces of the second type third shell unit is called the third dielectric layer.
  • the ball of the third stage becomes the third dielectric layer after being added The fourth stage of the ball.
  • Step 5) Use a certain amount of the fifth kind of granular material to make the first kind of fourth shell element and the second kind of fourth shell element respectively;
  • the contour shape of the first kind of fourth shell element is a regular hexagon
  • the contour shape of the second type fourth shell unit is a regular pentagon.
  • the first type of fourth shell unit and the second type of fourth shell unit are densely pasted on the surface of the fourth stage ball with reference to the outer layer connection of a conventional football, and then wrap the fourth stage ball.
  • the layer composed of several pieces of the first type fourth shell unit and several pieces of the second type fourth shell unit is called the fourth medium layer.
  • the ball of the fourth stage becomes the fourth medium layer after being added.
  • the fifth stage of the ball is a certain amount of the fifth kind of granular material to make the first kind of fourth shell element and the second kind of fourth shell element respectively;
  • the contour shape of the first kind of fourth shell element is a regular hexagon
  • the contour shape of the second type fourth shell unit is a regular pentagon.
  • the contours of the first type third shell unit and the first type fourth shell unit are the same as regular hexagons, the first type fourth shell unit is closer to the outer layer, so its The size of the regular hexagon is generally larger than the first type of the third shell unit.
  • the size of the regular pentagon of the second type and fourth shell unit is generally larger than that of the second type and third shell unit.
  • the shell units of each dielectric layer correspond to one or two or even more sizes, the total specifications of the shell units may be very considerable. At this time, more molds may be required. It will increase production costs and reduce production efficiency.
  • the shell element when used to wrap the surface of the ball in the previous stage, it is not necessary that the shell element should be densely spread on the surface of the ball in the previous stage, as long as the shell element covers the surface of the previous stage as much as possible.
  • the surface of the ball is also allowed. If there are some gaps, the same kind of granular material can be filled manually.
  • Step 6) Use a certain number of sixth types of granular materials to make the first type fifth shell element and the second type fifth shell element; the contour shape of the first type fifth shell element is a regular hexagon, The contour shape of the second fifth shell unit is a regular pentagon.
  • the fifth shell unit of the first type and the fifth shell unit of the second type are densely pasted on the surface of the ball in the fifth stage with reference to the outer layer connection mode of a conventional football, and then wrap the ball in the fifth stage.
  • the layer composed of several pieces of the first type fifth shell unit and several pieces of the second type fifth shell unit is called the fifth dielectric layer.
  • the ball of the fifth stage becomes the fifth dielectric layer after being added The ball for the sixth stage.
  • the first method is When making the first type of fifth shell element and the second type of fifth shell element, let the thickness of these two shell elements reach the preset thickness of the fifth dielectric layer;
  • the second method is to make the first type When the fifth shell element and the second type fifth shell element, the thickness of these two shell elements is not enough to reach the preset thickness of the fifth dielectric layer, but only reaches 1/2 or 1 of the preset thickness /3, and then the fifth dielectric layer finally reaches the preset thickness by adding 1 layer of shell unit or 2 layers of shell unit.
  • the size of the single-piece shell element on the outer layer is generally larger than the size of the single-piece shell element on the inner layer. But in the same way, if one dielectric layer is composed of multiple shell units and corresponding molds are made for these shell units of different sizes, the total number of molds added will be more. Therefore, in practice, the size of the shell elements of each layer of the same dielectric layer can be the same. It is not necessary to pursue the shell elements to be just densely spread on the surface of the ball, as long as the shell elements cover the surface of the ball as much as possible. Yes, if there are some gaps left, then manually fill in the same kind of granular material.
  • the surface of the Lumber lens can be coated and/or the Lumber lens can be installed in a housing to shape or protect the Lumber lens.
  • the granular materials used in each dielectric layer and the core are all pre-prepared, and their structure is that a non-metal foamed material is mixed with a fibrous metal conductor.
  • the dielectric constant of these particle materials can be controlled. For example, if more metal conductors are mixed, the dielectric constant will increase; if more metal conductors are mixed, the dielectric constant will be greater.
  • One of the granular materials can be referred to as "AN ARTIFICIAL DIELECTRIC MATERIAL AND A METHOD OF MANUFACTURING THE SAME", the publication number is WO2009078807, and the publication date is the patent document on June 25, 2009.
  • the Lumber lens produced by the production method of this embodiment has the advantages of light weight, easy control of lens characteristics, and excellent lens performance indicators.
  • step 4 the fourth type of granular material is packed into the first box with a flat projection of a regular hexagon on the bottom surface, together with the first box as the first box.
  • the bottom surface of the first box body facing the second dielectric layer is a concave surface with the same radius of curvature as that of the third-stage ball; the bottom surface of the second box body facing the second dielectric layer is a concave surface with the same radius of curvature as the third-stage ball.
  • the concave surface with the same radius of the lens can ensure sufficient contact surface between the surface of the first box body and the second box body and the third stage ball to ensure the uniformity and regularity of the internal organization of the Lumber lens.
  • the way in which the granular material is used as the shell unit together with the box body can also be considered to be applied to the shell unit of the fourth dielectric layer and the shell unit of the fifth dielectric layer.

Landscapes

  • Aerials With Secondary Devices (AREA)

Abstract

本发明提供一种拼叠式龙伯透镜的生产方法,在室温、常压、低成本的条件下即可制造出指标稳定的高性能的龙伯透镜。包括以下步骤:通过粘合剂将第一种颗粒材料粘成球状而制成球核;用若干数量的第二种颗粒材料制成第一壳片单元,将复数件第一壳片单元粘贴到所述球核的表面并由此完全包裹住所述球核,该由复数件第一壳片单元构成的层称为第一介质层,此时球核在被加上第一介质层后成为第二阶段的球;如此类推,用相应的壳片单元去制作预定层数的介质层,即获得目标龙伯透镜成品。本发明的龙伯透镜的生产方法具有生产工艺简单、生产成本低、质量轻、透镜特性易于控制、透镜性能指标优良等优点。

Description

一种拼叠式龙伯透镜的生产方法 技术领域
本发明涉及通信设备生产领域,更具体地说,涉及龙伯透镜的生产方法。
背景技术
龙伯透镜技术,由RKLuneberg于1944年基于几何光学法提出,用作天线和散射体的应用,主要用于快速扫描系统、卫星通信系统、5G通讯、汽车防撞雷达、雷达反射器。
理论上,用于龙伯透镜的介质材料的介电常数从球心到外径应该是从2 到1 遵从一定的数学规律连续变化。但自然界里不存在这样理想的介质,所以在实际设计中常用分层设计的离散球壳来代替。
为使龙伯透镜的实际性能接近理论性能,目前已经存在多种龙伯透镜的生产方案,如:
CN201510084764.8 一种半球龙伯透镜天线的制作方法;
CN201510065135.0 一种开孔结构形式龙伯透镜的生产方法;
CN201610015855.0 基于新型介质填充方式的极低剖面柱面龙伯透镜天线;
CN201610393370.5 龙伯透镜天线的制造方法;
CN201520112992.7 一种龙伯透镜天线。
以上技术方案包括有:钻孔的方法,通过孔洞所占材料体积的比例,控制材料的介电常数,但这种方法钻孔密度和精度不易控制,结构复杂,制造难度高、重量大不适合批量生产。
还包括有逐层发泡的方法,以中间球核为基础,逐层包裹逐层发泡,这是目前最常用的获得阶梯介电常数泡沫材料的一种方法,但无论是物理发泡,还是化学发泡,都需要严格控制温度和压力,通常是在高温和高压下生产,由于发泡材料的导热率很低,会形成发泡不均匀的现象。该工艺技术复杂,需要专用设备,成品率低,成本非常高。
还包括有分层设计的方法,先独立地制作各层,然后再将这些层粘合在一起,但各层分界面明显,电磁材料层间的介电常数的不连续性,会增加透镜的电磁损耗,降低天线的辐射效率。
因此需要对现有的龙伯透镜生产方法进行改进。
技术问题
本发明所要解决的技术问题是,提供新的龙伯透镜的生产方法,在室温、常压、低成本的条件下即可制造出指标稳定的高性能的龙伯透镜。
技术解决方案
采用以下的技术方案:
一种拼叠式龙伯透镜的生产方法,包括以下步骤:
步骤1):通过粘合剂将若干数量的第一种颗粒材料粘成球状而制成第一阶段的球,该第一阶段的球称为球核;
步骤2):用若干数量的第二种颗粒材料制成第一壳片单元,将复数件第一壳片单元粘贴到所述球核的表面并由此完全包裹住所述球核,该由复数件第一壳片单元构成的层称为第一介质层,此时第一阶段的球在被加上第一介质层后成为第二阶段的球;
步骤3)用若干数量的第三种颗粒材料制成第二壳片单元,将复数件第二壳片单元粘贴到所述第二阶段的球的表面并由此完全包裹住所述第二阶段的球,该由复数件第二壳片单元构成的层称为第二介质层,此时第二阶段的球在被加上第二介质层后成为第三阶段的球;
如此类推,即制得具有预定介质层数的龙伯透镜;从最里面的球核至最外面的介质层,它们各自所用的颗粒材料的介电常数是按照由高到低的规律,并且至少有一层介质层是由至少3件壳片单元构成,且第一种颗粒材料的介电常数的目标值是2,最外面的介质层所用的颗粒材料的介电常数的目标值是1。
本拼叠式龙伯透镜采用的是“将体积和面积较小的壳片单元拼接成介质层、多层介质层叠加成目标球体”的方法。由于构成一件壳片单元所需的颗粒材料的数量相对较少,此时人为控制这些颗粒材料的分布的话,相同规格的壳片单元之间的电磁性能差异也相对较小。在制作某一介质层时,如果壳片单元的轮廓形状设计得当,则多件这样的壳片单元可以密铺于上一阶段的球的球面上,则此时所构成的介质层其表面各点的电磁性能差异也是比较小的,或者说此时该介质层表面各点电磁性能的均匀度能被控制在比较高的程度,这是批量生产时最希望见到的。而由于颗粒材料已经事先被制成了壳片单元,在将壳片单元粘贴成介质层的过程中也并不需要花费大量的时间,因此这样的做法也是一种高效生产的方法之一。
第一壳片单元、第二壳片单元以及构成其他介质层的壳片单元,它们的形状可以是正六边形或正五边形或三角形中的一种或多种。应该说明的是,用于构成同一介质层的壳片单元可以只有1种轮廓形状, 也可以有2种或以上的轮廓形状。譬如,可以参照常规的由正六边形片和正五边形片制成的足球的外层连接方式,用轮廓形状为正六边形的壳片单元和轮廓形状为正五边形的壳片单元来密铺地粘贴到上一阶段的球的球面上,进而包裹住上一阶段的球。
另外,同一介质层可以是由2层或以上的壳片单元构成的。如果某介质层的设计厚度比较厚,而单件壳片单元的厚度不足时,可以在一层壳片单元的基础上再增加粘贴多一层或几层用同种颗粒材料制成的壳片单元。
构成同一壳片单元的颗粒材料可以是通过粘合剂粘合在一起的,也可以是被装入到扁形盒体内,连同盒体一起作为壳片单元。采用后者的做法时,在盒体内的颗粒材料之间可以不采用粘合剂粘合,这样可以减少粘合剂的使用,从而减少粘合剂对介电常数的影响,当然此时要求盒体的材料是用低介电常数的材料制成,而且盒体的壁体最好足够的薄,而并不强烈要求盒体具有很好的形状稳固性。另外,盒体的壁体上最好设有众多通孔以减轻盒体的自身重量,当然这些通孔的大小应能避免颗粒材料从盒体内部漏出。
本生产方法,越外层的介质层其壳片单元的数量越多。
本生产方法所制得的龙伯透镜,其轮廓形状可以是圆球或类圆球或椭球或类椭球等。
本生产方法,介质层的总数量最好在3~20之间。
本生产方法,各介质层以及球核所用颗粒材料的结构优选是:在非金属材料中混入颗粒状或纤维状的金属导体。
本生产方法,由球核至最外面的介质层,对应的颗粒材料的体积最好越来越大。
本生产方法,由球核至最外面的介质层,对应的颗粒材料的形状可以是立方体状或球状。
本生产方法,颗粒材料的体积最好在8mm³~250mm³范围内。
有益效果
本发明的拼叠式龙伯透镜的生产方法具有生产工艺简单、生产成本低、质量轻、透镜特性易于控制、透镜性能指标优良等优点。
本发明的实施方式
下面结合实施例对本发明内容作进一步说明。
实施例 1
本实施例以制作一个具有5层介质层的球形龙伯透镜为例。这样的龙伯透镜从内到外依次为球核、第一介质层、第二介质层、第三介质层、第四介质层和第五介质层。球核以及这些介质层依次对应的材料为:第一种颗粒材料、第二种颗粒材料、第三种颗粒材料、第四种颗粒材料、第五种颗粒材料和第六种颗粒材料。其中,第一种颗粒材料至第六种颗粒材料各自的介电常数由高到低,其中,第一种颗粒材料的介电常数为2,第六种颗粒材料的介电常数为1。
其生产方法如下:
步骤1):通过粘合剂将若干数量的第一种颗粒材料粘成圆球状而制成第一阶段的球,该第一阶段的球称为球核。
步骤2):用若干数量的第二种颗粒材料制成第一壳片单元,将复数件第一壳片单元粘贴到所述球核的表面并由此完全包裹住所述球核,该由复数件第一壳片单元构成的层称为第一介质层,此时第一阶段的球在被加上第一介质层后成为第二阶段的球。
应当说明的是,虽然第一壳片单元以及其他各介质层的壳片单元可能是颗粒材料在一个平面上进行粘合而成的一个片状物,然而这样的壳片单元由于具有一定的柔性,并且单件壳片单元所能覆盖的面积相比目标表面的面积不是很大,因此在单件壳片单元的尺寸大小被设计得合理的情况下,壳片单元是可以充分地贴合在曲面的目标表面的。
步骤3):用若干数量的第三种颗粒材料制成第二壳片单元,将复数件第二壳片单元粘贴到所述第二阶段的球的表面并由此完全包裹住所述第二阶段的球,该由复数件第二壳片单元构成的层称为第二介质层,此时第二阶段的球在被加上第二介质层后成为第三阶段的球。
步骤4):用若干数量的第四种颗粒材料分别制成第一种第三壳片单元和第二种第三壳片单元;第一种第三壳片单元的轮廓形状为正六边形,第二种第三壳片单元的轮廓形状为正五边形。将第一种第三壳片单元和第二种第三壳片单元参照常规足球的外层连接方式来密铺地粘贴到第三阶段的球的表面上,进而包裹住第三阶段的球。该由若干件第一种第三壳片单元和若干件第二种第三壳片单元构成的层称为第三介质层,此时第三阶段的球在被加上第三介质层后成为第四阶段的球。
步骤5):用若干数量的第五种颗粒材料分别制成第一种第四壳片单元和第二种第四壳片单元;第一种第四壳片单元的轮廓形状为正六边形,第二种第四壳片单元的轮廓形状为正五边形。将第一种第四壳片单元和第二种第四壳片单元参照常规足球的外层连接方式来密铺地粘贴到第四阶段的球的表面上,进而包裹住第四阶段的球。该由若干件第一种第四壳片单元和若干件第二种第四壳片单元构成的层称为第四介质层,此时第四阶段的球在被加上第四介质层后成为第五阶段的球。
本实施例中,虽然第一种第三壳片单元与第一种第四壳片单元它们的轮廓形状同为正六边形,但是由于第一种第四壳片单元更靠近外层,因此其正六边形尺寸一般情况下是大于第一种第三壳片单元的。同理,第二种第四壳片单元的正五边形尺寸一般情况下也是大于第二种第三壳片单元的。然而如果各介质层的壳片单元都对应一种或者两种,甚至更多种的尺寸规格,则总共加起来的壳片单元的规格可能非常可观,此时可能会需要较多的模具,这就会令生产成本变高、生产效率降低。因此在实际中用壳片单元去包裹上一阶段的球的表面时,并不必定要求壳片单元就要刚好密铺于上一阶段的球的表面,只要壳片单元尽量覆盖上一阶段的球的表面也是允许的,若有留下一些缝隙,则届时人工补填同种的颗粒材料即可。
步骤6):用若干数量的第六种颗粒材料分别制成第一种第五壳片单元和第二种第五壳片单元;第一种第五壳片单元的轮廓形状为正六边形,第二种第五壳片单元的轮廓形状为正五边形。将第一种第五壳片单元和第二种第五壳片单元参照常规足球的外层连接方式来密铺地粘贴到第五阶段的球的表面上,进而包裹住第五阶段的球。该由若干件第一种第五壳片单元和若干件第二种第五壳片单元构成的层称为第五介质层,此时第五阶段的球在被加上第五介质层后成为第六阶段的球。
由于靠近外层的介质层的厚度一般会比靠近内层的介质层的厚度要厚,譬如本实施例的第五介质层,于是此时可以采用两种做法之一:第一种做法是在制作第一种第五壳片单元和第二种第五壳片单元的时候就让这两种壳片单元的厚度达到第五介质层预设的厚度;第二种做法是在制作第一种第五壳片单元和第二种第五壳片单元的时候让这两种壳片单元的厚度不足以达到第五介质层预设的厚度,而是只达到预设厚度的1/2或1/3,而后通过增加1层壳片单元或2层壳片单元的做法来令该第五介质层最终达到预设的厚度。
如果某一介质层是由2层或以上的壳片单元构成,那么靠外那层的单件壳片单元的尺寸一般情况下是要大于靠里那层的单件壳片单元的尺寸的。但是同样地,如果1层介质层因为是由多层壳片单元构成就分别为这些不同尺寸的壳片单元制作对应的模具的话,也会令总共加起来的模具较多。于是在实际中,属同一介质层的各层的壳片单元它们的尺寸可以是一样的,不必定追求壳片单元就要刚好密铺于球的表面,只要壳片单元尽量覆盖球的表面也是可以的,若有留下一些缝隙,则届时人工补填同种的颗粒材料即可。
后续可以根据需要在龙伯透镜的表面覆膜和/或将龙伯透镜装在一壳体内,用于定形或保护龙伯透镜。
至此,完成球形龙伯透镜的生产。
本实施例中,各介质层以及球核所用颗粒材料都是预先制备好的,它们的结构是:在非金属的发泡而成的材料中混入纤维状的金属导体。只要控制单个颗粒中所混入的金属导体的数量或者直径大小,就可以控制这些颗粒材料的介电常数。如:混入更多的金属导体则介电常数将变大;混入更大的金属导体则介电常数也更大。其中一种颗粒材料的制作方法可参照名为“AN ARTIFICIAL DIELECTRIC MATERIAL AND A METHOD OF MANUFACTURING THE SAME”,公开号为WO2009078807,公开日为2009年6月25日的专利文献。
各颗粒材料的介电常数以及尺寸大小被进行良好设定的情况下,本实施例生产方法生产出来的龙伯透镜其具有质量轻、透镜特性易于控制、透镜性能指标优良等优点。
实施例 2
本实施例与实施例1的区别在于:在步骤4)中,第四种颗粒材料是被装入到底面的投影为正六边形的扁形的第一盒体内,连同第一盒体一起作为第一种第三壳片单元;并且,第四种颗粒材料也被装入到底面的投影为正五边形的扁形的第二盒体内,连同第二盒体一起作为第二种第三壳片单元。并且,第一盒体的朝向第二介质层的底面是曲率半径与第三阶段的球的半径相同的凹面;第二盒体的朝向第二介质层的底面是曲率半径与第三阶段的球的半径相同的凹面,这样可确保第一盒体和第二盒体与第三阶段的球的表面之间有充分的接触面,确保龙伯透镜成品内部组织的均匀性和规律性。
颗粒材料连同盒体一起作为壳片单元的这种方式,同样可以考虑应用到第四介质层的壳片单元以及第五介质层的壳片单元。
本说明书列举的仅为本发明的较佳实施方式,凡在本发明的工作原理和思路下所做的等同技术变换,均视为本发明的保护范围。

Claims (15)

  1. 一种拼叠式龙伯透镜的生产方法,其特征是:包括以下步骤:
    步骤1):通过粘合剂将若干数量的第一种颗粒材料粘成球状而制成第一阶段的球,该第一阶段的球称为球核;
    步骤2):用若干数量的第二种颗粒材料制成第一壳片单元,将复数件第一壳片单元粘贴到所述球核的表面并由此完全包裹住所述球核,该由复数件第一壳片单元构成的层称为第一介质层,此时第一阶段的球在被加上第一介质层后成为第二阶段的球;
    步骤3)用若干数量的第三种颗粒材料制成第二壳片单元,将复数件第二壳片单元粘贴到所述第二阶段的球的表面并由此完全包裹住所述第二阶段的球,该由复数件第二壳片单元构成的层称为第二介质层,此时第二阶段的球在被加上第二介质层后成为第三阶段的球;
    如此类推,即制得具有预定介质层数的龙伯透镜;从最里面的球核至最外面的介质层,它们各自所用的颗粒材料的介电常数是按照由高到低的规律,并且至少有一层介质层是由至少3件壳片单元构成。
  2. 如权利要求1所述的一种拼叠式龙伯透镜的生产方法,其特征是:第一种颗粒材料的介电常数的目标值是2,最外面的介质层所用的颗粒材料的介电常数的目标值是1。
  3. 如权利要求1所述的一种拼叠式龙伯透镜的生产方法,其特征是:龙伯透镜的轮廓形状是圆球或类圆球或椭球或类椭球。
  4. 如权利要求1所述的一种拼叠式龙伯透镜的生产方法,其特征是:用于构成同一介质层的壳片单元有2种或以上的轮廓形状。
  5. 如权利要求1或4所述的一种拼叠式龙伯透镜的生产方法,其特征是:第一壳片单元、第二壳片单元以及构成其他介质层的壳片单元,它们的形状是正六边形或正五边形或三角形中的一种或多种。
  6. 如权利要求1或4所述的一种拼叠式龙伯透镜的生产方法,其特征是:同一介质层是由2层或以上的壳片单元构成的。
  7. 如权利要求1或4所述的一种拼叠式龙伯透镜的生产方法,其特征是:构成同一壳片单元的颗粒材料是被装入到扁形盒体内,连同盒体一起作为壳片单元。
  8. 如权利要求7所述的一种拼叠式龙伯透镜的生产方法,其特征是:所述盒体的壁体上设有众多通孔以减轻盒体的自身重量。
  9. 如权利要求1所述的一种拼叠式龙伯透镜的生产方法,其特征是:介质层的总数量在3~20之间。
  10. 如权利要求1所述的一种拼叠式龙伯透镜的生产方法,其特征是:越外层的介质层其壳片单元的数量越多。
  11. 如权利要求1所述的一种拼叠式龙伯透镜的生产方法,其特征是:各介质层以及球核所用颗粒材料的结构是:在非金属材料中混入颗粒状或纤维状的金属导体。
  12. 如权利要求1所述的一种拼叠式龙伯透镜的生产方法,其特征是:由球核至最外面的介质层,对应的颗粒材料的体积越来越大。
  13. 如权利要求1所述的一种拼叠式龙伯透镜的生产方法,其特征是:由球核至最外面的介质层,对应的颗粒材料的形状是立方体状或球状。
  14. 如权利要求1所述的一种拼叠式龙伯透镜的生产方法,其特征是:颗粒材料的体积在8mm³~250mm³范围内。
  15. 如权利要求1所述的一种拼叠式龙伯透镜的生产方法,其特征是:后续在龙伯透镜的表面覆膜和/或将龙伯透镜装在一壳体内。
PCT/CN2019/116663 2019-07-29 2019-11-08 一种拼叠式龙伯透镜的生产方法 WO2021017266A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910683233.9A CN110311227A (zh) 2019-07-29 2019-07-29 一种拼叠式龙伯透镜的生产方法
CN201910683233.9 2019-07-29

Publications (1)

Publication Number Publication Date
WO2021017266A1 true WO2021017266A1 (zh) 2021-02-04

Family

ID=68081831

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/116663 WO2021017266A1 (zh) 2019-07-29 2019-11-08 一种拼叠式龙伯透镜的生产方法

Country Status (2)

Country Link
CN (1) CN110311227A (zh)
WO (1) WO2021017266A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110311227A (zh) * 2019-07-29 2019-10-08 佛山市粤海信通讯有限公司 一种拼叠式龙伯透镜的生产方法
CN111509398B (zh) * 2020-04-26 2022-04-12 成都新光微波工程有限责任公司 一种低密度人工介质龙伯透镜的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106025565A (zh) * 2016-06-24 2016-10-12 深圳贝斯特网联通讯设备有限公司 透镜天线的制造方法
WO2018096306A1 (en) * 2016-11-28 2018-05-31 Plasma Antennas Limited A surface array antenna
CN207782945U (zh) * 2017-12-19 2018-08-28 广东欧珀移动通信有限公司 摄像头的镜头组件和具有其的摄像头、电子设备
CN109994837A (zh) * 2019-03-26 2019-07-09 佛山市粤海信通讯有限公司 龙伯透镜的生产方法
CN110311227A (zh) * 2019-07-29 2019-10-08 佛山市粤海信通讯有限公司 一种拼叠式龙伯透镜的生产方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1030063A (en) * 1964-02-26 1966-05-18 North American Aviation Inc Luneberg-type microwave lens
JP3664094B2 (ja) * 2000-10-18 2005-06-22 株式会社村田製作所 複合誘電体成形物、その製造方法、およびそれを用いたレンズアンテナ
US6433936B1 (en) * 2001-08-15 2002-08-13 Emerson & Cuming Microwave Products Lens of gradient dielectric constant and methods of production
AU2003903409A0 (en) * 2003-07-02 2003-07-17 Commonwealth Scientific And Industrial Research Organisation Composite dielectric materials
JP3772191B2 (ja) * 2004-03-25 2006-05-10 独立行政法人電子航法研究所 電波反射体を用いた測定装置
CN102176545B (zh) * 2011-01-12 2015-06-17 电子科技大学 一种分层数目最少的电大尺寸高效龙伯透镜天线

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106025565A (zh) * 2016-06-24 2016-10-12 深圳贝斯特网联通讯设备有限公司 透镜天线的制造方法
WO2018096306A1 (en) * 2016-11-28 2018-05-31 Plasma Antennas Limited A surface array antenna
CN207782945U (zh) * 2017-12-19 2018-08-28 广东欧珀移动通信有限公司 摄像头的镜头组件和具有其的摄像头、电子设备
CN109994837A (zh) * 2019-03-26 2019-07-09 佛山市粤海信通讯有限公司 龙伯透镜的生产方法
CN110311227A (zh) * 2019-07-29 2019-10-08 佛山市粤海信通讯有限公司 一种拼叠式龙伯透镜的生产方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WANG, YU: "Shell-Type Luneberg Lens", RADIO ENGINEERING, no. 4, 28 August 1980 (1980-08-28), pages 68 - 77, XP055776721, ISSN: 1003-3106 *

Also Published As

Publication number Publication date
CN110311227A (zh) 2019-10-08

Similar Documents

Publication Publication Date Title
WO2020191911A1 (zh) 龙伯透镜的生产方法
CN107611619B (zh) 一种半球龙伯透镜天线
WO2021017266A1 (zh) 一种拼叠式龙伯透镜的生产方法
CN110911846A (zh) 可不使用粘合剂的龙伯透镜生产方法
WO2021017263A1 (zh) 一种龙伯透镜的生产方法
WO2019034119A1 (zh) 一种超轻人工介质多层圆柱透镜
CN105793031B (zh) 用于热阻隔系统的多层涂覆系统及其制造方法
CN102868021B (zh) 一种高性能频率选择雷达罩
US4288337A (en) Lightweight materials having a high dielectric constant and their method of manufacture
CN106304820B (zh) 一种智能型吸波材料及其制备方法
CN108097560B (zh) 一种基于三维成型的吸波体制备方法及相应的吸波体
US20190067829A1 (en) Dielectric lens for antenna system
CN103178353A (zh) 一种宽频带且适用于圆极化电磁波的梯度折射率超常媒质透镜及使用该透镜的透镜天线
CN111244640A (zh) 一种柱体状电磁波透镜的制备方法
JP2019519905A (ja) 種々の用途のための電磁波を吸収する新規材料
JPH06502052A (ja) 可変屈折率レンズの製造方法
CN213878435U (zh) 一种3d打印材料与自发泡材料复合制成的龙伯透镜
CN111463580B (zh) 一种球形介电材料及其生产方法及龙伯透镜
US20030062639A1 (en) Method of manufacturing a lens for microwave frequencies
CN202231156U (zh) 一种后馈式微波天线
US3235441A (en) Radome and method of making same
CN109546351B (zh) 一种宽频带电磁波吸收的泡沫介质基超材料
CN217691656U (zh) 一种介质颗粒制成的柱体透镜
CN114566807B (zh) 柱状电磁波透镜
CN202217792U (zh) 一种微波天线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19939447

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19939447

Country of ref document: EP

Kind code of ref document: A1