WO2021017169A1 - 无线受电设备、无线充电方法及系统 - Google Patents

无线受电设备、无线充电方法及系统 Download PDF

Info

Publication number
WO2021017169A1
WO2021017169A1 PCT/CN2019/110472 CN2019110472W WO2021017169A1 WO 2021017169 A1 WO2021017169 A1 WO 2021017169A1 CN 2019110472 W CN2019110472 W CN 2019110472W WO 2021017169 A1 WO2021017169 A1 WO 2021017169A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
circuit
capacitor
down circuit
power receiving
Prior art date
Application number
PCT/CN2019/110472
Other languages
English (en)
French (fr)
Inventor
范杰
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to JP2019563188A priority Critical patent/JP7397670B2/ja
Priority to KR1020197033734A priority patent/KR102342239B1/ko
Priority to RU2019141294A priority patent/RU2723298C1/ru
Publication of WO2021017169A1 publication Critical patent/WO2021017169A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/005Mechanical details of housing or structure aiming to accommodate the power transfer means, e.g. mechanical integration of coils, antennas or transducers into emitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/10Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
    • H02H7/12Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers
    • H02H7/1213Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for DC-DC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/18Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for batteries; for accumulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00304Overcurrent protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00308Overvoltage protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/06Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
    • H02M3/07Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/06Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
    • H02M3/07Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps
    • H02M3/072Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps adapted to generate an output voltage whose value is lower than the input voltage

Definitions

  • the present disclosure relates to the field of wireless charging, and in particular to a wireless power receiving device, a wireless charging method and system.
  • Wireless charging technology is usually used in charging mobile phones, tablets, laptops, smart watches and other mobile terminals, or charging accessories (such as Bluetooth headsets, display screens, etc.) from the main part of smart terminals.
  • a wireless charging technology includes a wireless charging device and a wireless power receiving device.
  • the wireless power receiving device receives the energy transmitted by the wireless charging device and converts the energy into a charging voltage and a charging current.
  • the charging voltage is stepped down through a step-down conversion circuit (Buck circuit) architecture to charge the power source.
  • Buck circuit step-down conversion circuit
  • the present disclosure provides a wireless power receiving device, a wireless charging method and system, which can solve the problem of energy loss caused by the impedance of the inductor itself in the BUCK circuit architecture, resulting in low charging efficiency of wireless charging.
  • the technical solution is as follows:
  • a wireless power receiving device comprising: a wireless power receiving coil, an AC to DC circuit, a capacitor step-down circuit, and a battery. Includes at least two capacitors and at least one switch;
  • the output terminal of the wireless power receiving coil is connected to the input terminal of the AC-to-DC circuit, the output terminal of the AC-to-DC circuit is connected to the input terminal of the capacitor step-down circuit, and the output of the capacitor step-down circuit is Connected to the battery;
  • the at least two capacitors are in a series state and store energy
  • the at least two capacitors are in a parallel state and release energy.
  • the capacitive step-down circuit includes a first-level capacitive step-down circuit and a second-level capacitive step-down circuit;
  • the output terminal of the AC-to-DC circuit is connected to the input terminal of the first-stage capacitive step-down circuit, and the output terminal of the first-stage capacitive step-down circuit is connected to the input terminal of the second-stage capacitive step-down circuit , The output terminal of the second-stage capacitor step-down circuit is connected to the battery.
  • the first-level capacitive step-down circuit includes a first capacitor, a second capacitor, and at least one first switch
  • the second-level capacitive step-down circuit includes a third capacitor, a first Four capacitors and at least one second switch
  • the first capacitor and the second capacitor are in the series connection state, and when the at least one first switch is in the second connection state , The first capacitor and the second capacitor are in the parallel state;
  • the third capacitor and the fourth capacitor are in the series connection state, and when the at least one second switch is in the second connection state , The third capacitor and the fourth capacitor are in the parallel state.
  • a third switch, a fourth switch and a fifth capacitor are connected between the first-stage capacitive step-down circuit and the second-stage capacitive step-down circuit;
  • the output terminal of the first-stage capacitive step-down circuit is connected to the input terminal of the third switch, the output terminal of the third switch is connected to the input terminal of the fourth switch, and the output terminal of the fourth switch Connected to the input terminal of the second-stage capacitor step-down circuit;
  • the output terminal of the third switch and the input terminal of the fourth switch are connected to the first terminal of the fifth capacitor, and the second terminal of the fifth capacitor is grounded.
  • the wireless power receiving device further includes: a digital control circuit and a central processing unit;
  • the first end of the digital control circuit is connected to the central processing unit, and communicates with the central processing unit through the connection;
  • the second terminal of the digital control circuit is connected to the output terminal of the AC-to-DC circuit, and the third terminal of the digital control circuit is connected to the capacitor step-down circuit.
  • the wireless power receiving device further includes: a protection circuit, an analog circuit, and a detection resistor;
  • the output terminal of the second-stage capacitive step-down circuit is connected to the battery through the detection resistor;
  • the fourth terminal of the digital control circuit is connected to the first terminal of the protection circuit, the second terminal of the protection circuit is connected to the first terminal of the analog circuit, and the second terminal of the analog circuit is connected to the The battery is connected, and the third terminal of the analog circuit is connected to the detection resistor;
  • the analog circuit is used to detect the output voltage and output current of the output terminal of the capacitor step-down circuit, and to detect the battery voltage of the battery through the detection resistor;
  • the protection circuit is used to protect the overvoltage and overcurrent at the input end of the capacitive step-down circuit, overvoltage and overcurrent at the output end of the capacitive step-down circuit, and short circuit.
  • the wireless power receiving device further includes a fifth switch
  • the second terminal of the digital control circuit is connected to the output terminal of the AC to DC circuit through the fifth switch;
  • the input terminal of the first-stage capacitor step-down circuit is connected to the output terminal of the AC-to-DC circuit through the fifth switch.
  • the protection circuit is configured to control the fifth switch to switch to an off state through the digital control circuit when the overvoltage occurs at the input terminal of the capacitive step-down circuit;
  • the protection circuit is used for controlling the fifth switch to switch to an off state through the digital control circuit when the overcurrent occurs at the input terminal of the capacitor step-down circuit;
  • the protection circuit is used to control the fifth switch to switch to an off state through the digital control circuit when the overvoltage occurs at the output terminal of the capacitor step-down circuit;
  • the protection circuit is used to control the fifth switch to switch to an off state through the digital control circuit when the overcurrent occurs at the output terminal of the capacitor step-down circuit;
  • the protection circuit is used to control the fifth switch to switch to an off state through the digital control circuit when the short circuit occurs in the charging circuit of the wireless power receiving device.
  • the input voltage of the first-stage capacitive step-down circuit is the first voltage, and the input current is the first current
  • the output voltage of the first-stage capacitive step-down circuit is a second voltage, and the output current is a second current.
  • the voltage value of the second voltage is half of the voltage value of the first voltage.
  • the current value is twice the current value of the first current.
  • the output voltage of the second-stage capacitive step-down circuit is a third voltage
  • the output current is a third current
  • the voltage value of the third voltage is the voltage value of the second voltage
  • the current value of the third current is twice the current value of the second current.
  • a wireless charging method including:
  • the wireless power receiving coil receives the energy transferred by the wireless charging device, and outputs the energy to the AC-to-DC circuit in the form of alternating current;
  • the AC-to-DC circuit converts the AC power into DC power and outputs the DC power to a capacitor step-down circuit, and the capacitor step-down circuit includes at least two capacitors and at least one switch;
  • the capacitor step-down circuit controls the at least one switch to a first connection state, and the at least two capacitors are in a series connection state and store energy when the at least one switch is in the first connection state;
  • the capacitor step-down circuit controls the at least one switch to a second connection state, and the at least two capacitors are in a parallel state when the at least one switch is in the second connection state and output energy in the form of output current To the battery.
  • a wireless charging system includes a wireless charging device and a wireless power receiving device, and the wireless power receiving device includes the wireless power receiving device provided in the above embodiment of the present disclosure. .
  • the wireless power receiving device is a mobile terminal
  • the wireless charging device is a charging base
  • the AC-to-DC circuit converts AC power into DC power and step-down the DC power
  • at least two capacitors and at least one switch in the capacitor step-down circuit are used to control the stored energy and release of the at least two capacitors according to the connection state of the switches
  • the energy process avoids the problem of energy loss caused by the impedance of the inductor itself, improves the energy conversion efficiency, and improves the charging efficiency of wireless charging.
  • Fig. 1 is a structural block diagram of a wireless charging system provided by an exemplary embodiment of the present disclosure
  • Fig. 2 is a flowchart of a wireless charging method provided by an exemplary embodiment of the present disclosure
  • Fig. 3 is a structural block diagram of a capacitive step-down circuit provided by an exemplary embodiment of the present disclosure
  • Fig. 4 is a structural block diagram of a first-stage capacitive step-down circuit provided by an exemplary embodiment of the present disclosure
  • FIG. 5 is an equivalent circuit diagram when the first switch of the first-stage capacitive step-down circuit is in the first connection state according to an exemplary embodiment of the present disclosure
  • FIG. 6 is an equivalent circuit diagram when the first switch of the first-stage capacitive step-down circuit is in the second connection state according to an exemplary embodiment of the present disclosure
  • Fig. 7 is a structural block diagram of a second-stage capacitive step-down circuit provided by an exemplary embodiment of the present disclosure
  • FIG. 8 is an equivalent circuit diagram when the second switch of the second-stage capacitive step-down circuit is in the first connection state according to an exemplary embodiment of the present disclosure
  • FIG. 9 is an equivalent circuit diagram when the second switch of the second-stage capacitive step-down circuit is in the second connection state according to an exemplary embodiment of the present disclosure
  • FIG. 10 is a structural block diagram of a capacitor step-down circuit provided by another exemplary embodiment of the present disclosure.
  • Fig. 11 is a structural block diagram of a wireless power receiving device provided by an exemplary embodiment of the present disclosure.
  • FIG. 12 is a flowchart of a wireless charging method provided by another exemplary embodiment of the present disclosure.
  • the wireless charging process is a process of charging a wireless power receiving device through a wireless charging device.
  • the wireless charging device includes a wireless charging coil
  • the wireless power receiving device includes a wireless power receiving coil.
  • the wireless charging coil and the wireless power receiving coil are Coupling coils realize energy transfer through the coupling between coils.
  • a wireless charging technology includes a wireless charging device and a wireless power receiving device.
  • the wireless power receiving device receives the energy transmitted by the wireless charging device and converts the energy into a charging voltage and a charging current.
  • the charging voltage is stepped down through a step-down conversion circuit (Buck circuit) architecture to charge the power source.
  • Buck circuit step-down conversion circuit
  • the charging voltage is adjusted through the inductor, and the impedance of the inductor itself in the Buck circuit architecture will produce energy loss, resulting in low charging efficiency of wireless charging.
  • Fig. 1 is a structural block diagram of a wireless charging system provided by an exemplary embodiment of the present disclosure.
  • the wireless charging system 100 includes a wireless charging device 110 and a wireless power receiving device 120, where the wireless charging device 110 includes a charger 111, a resonance circuit 112, and a direct current-alternating current circuit (Direct Current-Alternating Current). , DC-AC) 113 and a wireless charging coil 114; the wireless power receiving device 120 includes a wireless power receiving coil 121, an alternating current-direct current (AC-DC) 122, a capacitor step-down circuit 123, and a battery 124 .
  • DC-AC direct current-alternating current circuit
  • AC-DC alternating current-direct current
  • the output terminal of the charger 111 is connected to the input terminal of the resonance circuit 112
  • the output terminal of the resonance circuit 112 is connected to the input terminal of the DC-to-AC circuit 113
  • the output terminal of the DC-to-AC circuit 113 is connected to the wireless The charging coil 114 is connected.
  • the output terminal of the wireless power receiving coil 121 is connected to the input terminal of the AC-to-DC circuit 122, the output terminal of the AC-to-DC circuit 122 is connected to the input terminal of the capacitor step-down circuit 123, and the capacitor step-down circuit 123 The output terminal is connected to the battery 124.
  • the charger 111 is used to connect to the power supply, receive the energy in the power supply and output it in the form of current; the resonance circuit 112 is used to convert and control the current output from the charger, and control the current and voltage in the preset according to the voltage requirements. Set within the range; the DC-to-AC circuit 113 is used to convert the DC power output by the resonance circuit 112 into AC power for output; the wireless charging coil 114 is used to convert the AC power into energy and output to the wireless power receiving coil 121 in the wireless power receiving device 120 .
  • the wireless charging coil 114 may be a coupling coil capable of generating magnetic coupling, may be a coupling coil capable of generating electric field coupling, or may be a coil capable of transmitting radio waves, which is not limited in the present disclosure.
  • the energy emitted by the wireless charging coil 114 includes, but is not limited to, energy in the form of electromagnetic waves, microwaves, etc.
  • the wireless power receiving coil 121 is used to receive the energy transferred by the wireless charging coil 114 of the wireless charging device 110, and output the energy in the form of alternating current to the alternating current to direct current circuit 122.
  • the alternating current to direct current circuit 122 converts the alternating current to direct current, and then the direct current Input to the capacitor step-down circuit 123, which is used to control the storage and release of energy through capacitors and switches, thereby compressing the voltage of the direct current and correspondingly increasing the current of the direct current.
  • at least two connection states are controlled by at least one switch, that is, at least two capacitors are controlled to be in series or parallel state by different connection states of the switches, and energy is stored when at least two capacitors are in series.
  • the at least two capacitors when at least one switch is in the first connection state, the at least two capacitors are in a series connection state and store energy; when at least one switch is in the second connection state, the at least two capacitors are in a parallel state and release energy.
  • the voltage of the direct current is compressed to a quarter of the input voltage input to the capacitive step-down circuit through the capacitor and switch in the capacitive step-down circuit, and the current of the direct current is correspondingly increased to four times the input current.
  • the capacitor step-down circuit 123 inputs the converted DC power to the battery 124 to charge the battery 124.
  • the entire wireless charging system 100 is taken as an example for description.
  • the foregoing wireless charging device 110 and the wireless power receiving device 120 can be regarded as two independent individuals.
  • the wireless power receiving device converts AC power into DC power through an AC-to-DC circuit and steps down the DC power through at least two capacitors and at least one switch in the capacitor step-down circuit.
  • the process of storing energy and releasing energy of at least two capacitors is controlled according to the connection state of the switch, which avoids the problem of energy loss caused by the impedance of the inductor itself, improves the energy conversion efficiency, and improves the charging efficiency of wireless charging.
  • the wireless power receiving device provided in this embodiment can convert a higher voltage into a voltage within the battery's acceptable range to charge the battery through the capacitive step-down circuit, so that when charging the wireless power receiving device, the higher voltage can be passed through After the power current is reduced by the capacitor step-down circuit, the battery is charged with a reasonable voltage and higher current, which improves the charging efficiency of wireless charging.
  • FIG. 2 is a flowchart of a wireless charging method provided by an exemplary embodiment of the present disclosure. As shown in FIG. 2, the method includes:
  • Step 201 The wireless power receiving coil receives the energy transferred by the wireless charging device.
  • the wireless power receiving coil may be a coupling coil capable of generating magnetic coupling, may be a coupling coil capable of generating electric field coupling, or may be a coil capable of transmitting radio waves, which is not limited in the present disclosure.
  • the energy received by the wireless power receiving coil includes, but is not limited to, energy in the form of electromagnetic waves and microwaves.
  • Step 202 The wireless power receiving coil outputs energy in the form of alternating current to the alternating current to direct current circuit.
  • the wireless power receiving coil receives the energy delivered by the wireless charging device, it converts the energy into corresponding alternating current according to the power of the energy, and outputs the alternating current to the AC-to-DC circuit.
  • Step 203 The AC-to-DC circuit converts AC power into DC power.
  • Step 204 The AC-to-DC circuit outputs the DC power to the capacitor step-down circuit.
  • the capacitive step-down circuit includes at least two capacitors and at least one switch, and the capacitive step-down circuit controls the storage and output of energy by the at least two capacitors by controlling the at least one switch to different connection states.
  • Step 205 The capacitive step-down circuit controls at least one switch to the first connection state.
  • the at least two capacitors are in a series state and store energy when at least one switch is in the first connection state.
  • Step 206 The capacitive step-down circuit controls at least one switch to the second connection state.
  • the at least two capacitors are in a parallel state when the at least one switch is in the second connection state and output energy to the battery in the form of output current.
  • the wireless charging method provided in this embodiment converts AC power into DC power by the AC-to-DC circuit and step-down the DC power through at least two capacitors and at least one switch in the capacitor step-down circuit, according to
  • the connection state of the switch controls the process of storing energy and releasing energy of at least two capacitors, avoiding the problem of energy loss caused by the impedance of the inductor itself, improving the energy conversion efficiency, and improving the charging efficiency of wireless charging.
  • the aforementioned capacitive step-down circuit 123 includes a first-stage capacitive step-down circuit 310 and a second-stage capacitive step-down circuit 320;
  • the output terminal of the AC-to-DC circuit 122 is connected to the input terminal of the first-stage capacitive step-down circuit 310, and the output terminal of the first-stage capacitive step-down circuit 310 is connected to the input terminal of the second-stage capacitive step-down circuit 320.
  • the output terminal of the capacitor step-down circuit 320 is connected to the battery 124.
  • the first-stage capacitor step-down circuit 310 includes a first capacitor 311, a second capacitor 312, and at least one first switch 313 (in FIG. 4, the first-stage step-down circuit 310 Including four first switches 313 as an example for description).
  • the first switch 313 when at least one first switch 313 is in the first connection state, the first capacitor 311 and the second capacitor 312 are in a series state, and when at least one first switch 313 is in the second connection state, the first capacitor 311 and The second capacitor 312 is in a parallel state.
  • the first switch 313 includes a switch S1, a switch S2, a switch S3, and a switch S4.
  • the first terminal of the second capacitor 312 is connected to the above-mentioned at least one first switch 313, and the second terminal of the second capacitor 312 is grounded.
  • the capacitance values of the first capacitor 311 and the second capacitor 312 are the same.
  • the first capacitor 311 and the second capacitor 312 are in a series relationship, because the first capacitor 311 and the second capacitor 312
  • the voltage across the second capacitor 312 is equal to the voltage across the first capacitor 311, that is, the voltage across the second capacitor 312 is equal to half of the input voltage to the first-stage capacitor step-down circuit 310 ,
  • the first capacitor 311 and the second capacitor 312 store energy at the same time, and the stored energy has the same magnitude.
  • the voltage across the capacitor 311 and the voltage across the second capacitor 312 are the output voltage of the first-stage capacitor step-down circuit 310, that is, half of the input voltage of the first-stage capacitor step-down circuit 310, so after being converted to a parallel state, According to the law of conservation of energy, the energy stored in the first capacitor 311 and the second capacitor 312 is released, the output voltage of the first-stage capacitor step-down circuit 310 is half of the input voltage, and the output current of the first-stage capacitor step-down circuit 310 It is twice the output current.
  • the second-level capacitor step-down circuit 320 includes a third capacitor 321, a fourth capacitor 322, and at least one second switch 323 (in FIG. 7 that the second-level step-down circuit 320 includes four
  • the second switch 323 is described as an example).
  • the second switch 323 when at least one second switch 323 is in the first connection state, the third capacitor 321 and the fourth capacitor 322 are in a series connection state, and when at least one second switch 323 is in the second connection state, the third capacitor 321 and The fourth capacitor 322 is in a parallel state.
  • the second switch 323 includes a switch S5, a switch S6, a switch S7, and a switch S8.
  • the third capacitor 321 and the fourth capacitor 321 The capacitor 322 is in a series connection state; when the switch S7 and the switch S8 are closed and the switch S5 and the switch S6 are opened, the third capacitor 321 and the fourth capacitor 322 are in a parallel connection state.
  • the switch S5 and the switch S8 are closed, the switch S6 and the switch S7 are disconnected, and the third capacitor 321 and the fourth capacitor 322 are connected in series, please refer to the equivalent circuit shown in Fig. 8; when the switch S7 and When the switch S8 is closed and the switch S5 and the switch S6 are open, and the third capacitor 321 and the fourth capacitor 322 are in a parallel state, the equivalent circuit is shown in FIG. 9.
  • the first terminal of the fourth capacitor 322 is connected to the above-mentioned at least one second switch 323, and the second terminal of the fourth capacitor 322 is grounded.
  • the capacitance values of the third capacitor 321 and the fourth capacitor 322 are the same.
  • the third capacitor 321 and the fourth capacitor 322 are in a series relationship, because the third capacitor 321 and the fourth capacitor 322
  • the voltage across the fourth capacitor 322 is equal to the voltage across the third capacitor 321, that is, the voltage across the fourth capacitor 322 is equal to half of the input voltage to the second-stage capacitor step-down circuit 320 ,
  • the third capacitor 321 and the fourth capacitor 322 store energy at the same time, and the stored energy has the same magnitude.
  • the switch S7 and the switch S8 are closed, and the switch S5 and the switch S6 are opened, the third capacitor 321 and the fourth capacitor 322 are converted from the series state to the parallel state, and the third capacitor 321 and the fourth capacitor 322 store the same energy.
  • the voltage across the capacitor 321 and the voltage across the fourth capacitor 322 are the output voltage of the second-stage capacitor step-down circuit 320, that is, half of the input voltage of the second-stage capacitor step-down circuit 320, so after being converted to a parallel state, According to the law of conservation of energy, the energy stored in the third capacitor 321 and the fourth capacitor 322 is released, the output voltage of the second-stage capacitor step-down circuit 320 is half of the input voltage, and the output current of the second-stage capacitor step-down circuit 320 It is twice the output current.
  • the input voltage of the first-stage capacitive step-down circuit 310 is the first voltage and the input current is the first current
  • the output voltage of the first-stage capacitive step-down circuit 310 is the second voltage
  • the output current is the second current
  • the voltage value of the second voltage is half of the voltage value of the first voltage
  • the current value of the second current is twice the current value of the first current.
  • the output voltage of the second-stage capacitive step-down circuit 320 is a third voltage, and the output current is a third current, and the voltage value of the third voltage is half of the voltage value of the second voltage, and the current value of the third current It is twice the current value of the second current. That is, the voltage value of the third voltage is one quarter of the voltage value of the first voltage, and the current value of the third current is four times the current value of the first current.
  • a third switch 1010, a fourth switch 1020, and a fifth capacitor are connected between the first-level capacitive step-down circuit 310 and the second-level capacitive step-down circuit 320. 1030;
  • the output terminal of the first-stage capacitive step-down circuit 310 is connected to the input terminal of the third switch 1010, the output terminal of the third switch 1010 is connected to the input terminal of the fourth switch 1020, and the output terminal of the fourth switch 1020 is connected to the second switch 1020.
  • the input terminal of the step capacitor step-down circuit 320 is connected; optionally, the output terminal of the third switch 1010 and the input terminal of the fourth switch 1020 are connected to the first terminal of the fifth capacitor 1030, and the second terminal of the fifth capacitor 1030 is grounded .
  • the third switch 1010 is closed and the fourth switch 1020 is opened, and the output energy is concentrated in the fifth capacitor 1030.
  • the third switch 1010 is opened and the fourth switch 1020 is closed, the energy is released to the second-stage capacitor step-down circuit 320.
  • the fifth capacitor, the third switch and the fourth switch are arranged between the first-stage capacitive step-down circuit and the second-stage capacitive step-down circuit, and the third switch is closed and the first
  • the opening of the four switches uses the fifth capacitor as an energy transfer station for energy storage, and the third switch is opened and the fourth switch is closed to transfer the energy in the fifth capacitor to the second-stage capacitor step-down circuit to avoid the first stage
  • the energy output by the capacitor step-down circuit is relatively large, which impacts the second-stage capacitor step-down circuit and affects the energy transfer process.
  • the above-mentioned wireless power receiving device 120 further includes a digital control circuit and a central processing unit (CPU), wherein the first end of the digital control circuit is connected to the central processing unit, and It communicates with the central processing unit through the link; optionally, the second end of the digital control circuit is connected to the output end of the AC-to-DC circuit 113, and the third end of the digital control circuit is connected to the capacitor step-down circuit.
  • CPU central processing unit
  • the capacitive step-down circuit includes a first-level capacitive step-down circuit 310 and a second-level capacitive step-down circuit 320
  • the digital control circuit is connected to the first-level capacitive step-down circuit 310 and the second-level capacitor
  • the step-down circuits 320 are respectively connected.
  • the digital control circuit is used to communicate with the CPU or other core processors.
  • the CPU sends control signaling to the digital control circuit and controls the wireless charging process through the digital control circuit.
  • the digital control signaling controls the wireless charging process.
  • the charging status is reported to the CPU.
  • the CPU sends control signaling to the digital control circuit, and the control signaling is used to indicate wireless charging
  • the energy transmitted by the device to the wireless power receiving device is within the preset energy range, and the digital control circuit starts the wireless charging process according to the received control signaling.
  • the above-mentioned wireless power receiving device 120 further includes the above-mentioned digital control circuit 1110, a protection circuit 1120, an analog circuit 1130, and a detection resistor 1140;
  • the output terminal of the second-stage capacitive step-down circuit 320 is connected to the battery 124 through the detection resistor 1140, that is, the output terminal of the second-stage capacitive step-down circuit 320 is connected to the input terminal of the detection resistor 1140, and the output of the detection resistor 1140 Connected to the battery 124;
  • the fourth terminal of the digital control circuit 1110 is connected to the first terminal of the protection circuit 1120, the second terminal of the protection circuit 1120 is connected to the first terminal of the analog circuit 1130, the second terminal of the analog circuit 1130 is connected to the battery 124, the analog circuit 1130 The third terminal of is connected to the detection resistor 1140;
  • the analog circuit 1130 is used to detect the output voltage and output current of the output terminal of the capacitor step-down circuit, and to detect the battery voltage of the battery 124 through the detection resistor 1140.
  • the analog circuit 1130 is used to detect the output voltage and output current of the output terminal of the second-stage capacitive step-down circuit 320.
  • the protection circuit 1120 is used to protect the overvoltage and overcurrent at the input end of the capacitor step-down circuit, overvoltage and overcurrent at the output end of the capacitor step-down circuit, and short circuit.
  • the wireless power receiving device 120 further includes a fifth switch 1150, and the second end of the digital control circuit 1110 is connected to the output end of the AC-to-DC circuit 122 through the fifth switch 1150.
  • the input terminal of the first-stage capacitor step-down circuit 310 is connected to the output terminal of the AC-to-DC circuit 122 through the fifth switch 1150.
  • the fifth switch 1150 is a switch that connects the AC-to-DC circuit 122 and the first-stage capacitive step-down circuit 310, the fifth switch 1150 can be switched to the off state during the wireless charging process. End the wireless charging process.
  • the protection circuit 1120 is used to control the fifth switch 1150 to switch to the off state through the digital control circuit 1110 when an overvoltage occurs at the input of the capacitor step-down circuit 123; or, the protection circuit 1120 is used to act as a capacitor step-down circuit
  • the digital control circuit 1110 controls the fifth switch 1150 to switch to the off state; or, the protection circuit 1120 is used to control the digital control circuit 1110 when an overvoltage occurs at the output of the capacitor step-down circuit 123
  • the fifth switch 1150 is switched to the off state; or, the protection circuit 1120 is used to control the fifth switch 1150 to switch to the off state through the digital control circuit 1110 when an overcurrent occurs at the output terminal of the capacitor step-down circuit 123.
  • the MOS transistor switch circuit is a kind of MOS transistor.
  • the gate (g) controls the MOS transistor source (s) and drain (d) on and off the principle structure of the circuit.
  • this embodiment provides a wireless power receiving device, which protects the wireless charging process through a protection circuit, a detection resistor, and an analog circuit, so as to prevent overvoltage, overcurrent, or short circuit conditions from affecting the wireless charging process and cause Danger in charging, improve the safety of wireless charging process.
  • FIG. 12 is a flowchart of a wireless charging method provided by an exemplary embodiment of the present disclosure. As shown in FIG. 12, the method includes:
  • Step 1201 The wireless power receiving coil receives energy transferred from the wireless charging device.
  • the wireless power receiving coil may be a coupling coil capable of generating magnetic coupling, may be a coupling coil capable of generating electric field coupling, or may be a coil capable of transmitting radio waves, which is not limited in the present disclosure.
  • the energy received by the wireless power receiving coil includes, but is not limited to, energy in the form of electromagnetic waves and microwaves.
  • Step 1202 The wireless power receiving coil outputs energy in the form of alternating current to the alternating current to direct current circuit.
  • the wireless power receiving coil receives the energy transferred by the wireless charging device, it converts the energy into corresponding alternating current according to the power of the energy, and outputs the alternating current to the AC-to-DC circuit.
  • Step 1203 The AC-to-DC circuit converts AC power into DC power.
  • Step 1204 the AC-to-DC circuit outputs the DC power to the first-stage capacitor step-down circuit.
  • the first-level capacitive step-down circuit includes a first capacitor, a second capacitor, and at least one first switch, and the first-level capacitive step-down circuit controls the at least one switch to be in different connection states.
  • the first capacitor and the second capacitor store and release energy.
  • Step 1205 The first-stage capacitive step-down circuit controls at least one first switch to be in the first connection state.
  • the first capacitor and the second capacitor are in a series state and store energy when at least one of the first switches is in the first connection state.
  • Step 1206 the first-stage capacitive step-down circuit controls the third switch to be in a closed state, and controls the fourth switch to be in an open state.
  • the first-stage capacitor step-down circuit can transfer energy to the fifth capacitor, but the fifth capacitor cannot transfer energy to the second-stage capacitor Step-down circuit.
  • Step 1207 The first-stage capacitive step-down circuit controls at least one first switch to be in the second connection state.
  • the first capacitor and the second capacitor are in a parallel state and release energy when the at least one first switch is in the second connection state.
  • the first-stage capacitor step-down circuit transfers the energy in the first capacitor and the second capacitor to the fifth capacitor.
  • Step 1208 the first-stage capacitor step-down circuit controls the third switch to be in an off state, and controls the fourth switch to be in a closed state.
  • the fifth capacitor releases energy to the outside according to the law of conservation of energy.
  • Step 1209 the second-stage capacitive step-down circuit controls at least one second switch to be in the first connection state.
  • the third capacitor and the fourth capacitor are in a series state and store energy when the at least one first switch is in the first connection state.
  • Step 1210 the second-stage capacitive step-down circuit controls at least one second switch to be in the second connection state.
  • the third capacitor and the fourth capacitor are in a parallel state and release energy when the at least one second switch is in the second connection state.
  • Step 1211 The battery receives the energy output by the second-stage capacitor step-down circuit.
  • the battery is charged by the received energy.
  • the output voltage of the second-stage capacitive step-down circuit is one-fourth of the input voltage of the first-stage capacitive step-down circuit, and the output current of the second-stage capacitive step-down circuit is the input current of the first-stage capacitive step-down circuit Four times.
  • Step 1212 The protection circuit monitors the current size of the input current and the voltage size of the input voltage at the input end of the first-stage capacitive step-down circuit.
  • Step 1213 when the current magnitude of the input current exceeds the current threshold, or the voltage magnitude of the input voltage exceeds the voltage threshold, turn off the fifth switch.
  • the wireless charging process is turned off.
  • Step 1214 The protection circuit monitors the current size of the output current and the voltage size of the output voltage at the output terminal of the second-stage capacitive step-down circuit.
  • Step 1215 When the current magnitude of the output current exceeds the current threshold, or the voltage magnitude of the output voltage exceeds the voltage threshold, the fifth switch is turned off.
  • step 1212 to step 1215 can be executed at any position before, after, or between the foregoing step 1201 to step 1211.
  • the embodiment of the present disclosure does not limit the execution timing of step 1212 to step 1215.
  • the wireless charging method provided in this embodiment converts AC power into DC power by the AC-to-DC circuit and step-down the DC power through at least two capacitors and at least one switch in the capacitor step-down circuit, according to
  • the connection state of the switch controls the process of storing energy and releasing energy of at least two capacitors, avoiding the problem of energy loss caused by the impedance of the inductor itself, improving the energy conversion efficiency, and improving the charging efficiency of wireless charging.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

一种无线受电设备(120)、无线充电方法及系统(100),涉及无线充电领域,该无线受电设备(120)包括:无线受电线圈(121)、交流转直流电路(122)、电容降压电路(123)以及电池(124),电容降压电路(123)中包括至少两个电容和开关;无线受电线圈(121)的输出端与交流转直流电路(122)的输入端相连,交流转直流电路(122)的输出端与电容降压电路(123)的输入端相连,电容降压电路(123)的输出端与电池(124)相连;当开关处于第一连接状态时,至少两个电容处于串联状态并存储能量;当开关处于第二连接状态时,至少两个电容处于并联状态并释放能量。在对直流电进行降压时,通过电容降压电路(123)中开关的连接状态控制至少两个电容的存储能量和释放能量的过程,避免了电感本身的阻抗产生能量损失的问题,提高了无线充电的充电效率。

Description

无线受电设备、无线充电方法及系统 技术领域
本公开涉及无线充电领域,特别涉及一种无线受电设备、无线充电方法及系统。
背景技术
无线充电技术通常应用于向手机、平板、笔记本电脑、智能手表等多种移动终端的充电中,或智能终端中由主体部分向配件(如:蓝牙耳机、显示屏等)的充电中。
相关技术中,提供一种无线充电技术,该无线充电技术中包括无线充电设备和无线受电设备。在充电时,无线受电设备接收无线充电设备传输的能量,并将该能量转换为充电电压和充电电流,通过降压式变换电路(Buck电路)架构将充电电压降压后对电源进行充电。
发明内容
本公开提供一种无线受电设备、无线充电方法及系统,可以解决BUCK电路架构中的电感本身的阻抗会产生能量损失,导致无线充电的充电效率较低的问题。所述技术方案如下:
根据本公开实施例的第一方面,提供了一种无线受电设备,所述无线受电设备包括:无线受电线圈、交流转直流电路、电容降压电路以及电池,所述电容降压电路中包括至少两个电容和至少一个开关;
所述无线受电线圈的输出端与所述交流转直流电路的输入端相连,所述交流转直流电路的输出端与所述电容降压电路的输入端相连,所述电容降压电路的输出端与所述电池相连;
当所述至少一个开关处于第一连接状态时,所述至少两个电容处于串联状态并存储能量;
当所述至少一个开关处于第二连接状态时,所述至少两个电容处于并联状态并释放能量。
在一个可选的实施例中,所述电容降压电路包括第一级电容降压电路和第二级电容降压电路;
所述交流转直流电路的输出端与所述第一级电容降压电路的输入端相连,所述第一级电容降压电路的输出端与所述第二级电容降压电路的输入端相连,所述第二级电容降压电路的输出端与所述电池相连。
在一个可选的实施例中,所述第一级电容降压电路中包括第一电容、第二电容和至少一个第一开关,所述第二级电容降压电路中包括第三电容、第四电容和至少一个第二开关;
当所述至少一个第一开关处于所述第一连接状态时,所述第一电容和所述第二电容处于所述串联状态,当所述至少一个第一开关处于所述第二连接状态时,所述第一电容和所述第二电容处于所述并联状态;
当所述至少一个第二开关处于所述第一连接状态时,所述第三电容和所述第四电容处于所述串联状态,当所述至少一个第二开关处于所述第二连接状态时,所述第三电容和所述第四电容处于所述并联状态。
在一个可选的实施例中,所述第一级电容降压电路和所述第二级电容降压电路之间连接有第三开关、第四开关和第五电容;
所述第一级电容降压电路的输出端与所述第三开关的输入端相连,所述第三开关的输出端与所述第四开关的输入端相连,所述第四开关的输出端与所述第二级电容降压电路的输入端相连;
所述第三开关的输出端和所述第四开关的输入端与所述第五电容的第一端相连,所述第五电容的第二端接地。
在一个可选的实施例中,所述无线受电设备中还包括:数字控制电路和中央处理器;
所述数字控制电路的第一端与所述中央处理器相连接,并通过所述连接与所述中央处理器进行通信;
所述数字控制电路的第二端与所述交流转直流电路的输出端相连,所述数字控制电路的第三端与所述电容降压电路相连。
在一个可选的实施例中,所述无线受电设备中还包括:保护电路和模拟电路和检测电阻;
所述第二级电容降压电路的输出端通过所述检测电阻与所述电池相连;
所述数字控制电路的第四端与所述保护电路的第一端相连,所述保护电路的第二端与所述模拟电路的第一端相连,所述模拟电路的第二端与所述电池相连,所述模拟电路的第三端与所述检测电阻相连;
所述模拟电路用于对所述电容降压电路输出端的输出电压和输出电流进行侦测,以及通过所述检测电阻对所述电池的电池电压进行侦测;
所述保护电路用于对所述电容降压电路输入端的过压和过流、所述电容降压电路输出端的过压和过流,以及短路进行保护。
在一个可选的实施例中,所述无线受电设备中还包括第五开关;
所述数字控制电路的第二端通过所述第五开关与所述交流转直流电路的输出端相连;
所述第一级电容降压电路的输入端通过所述第五开关与所述交流转直流电路的输出端相连。
在一个可选的实施例中,所述保护电路用于当所述电容降压电路输入端出现所述过压时,通过所述数字控制电路控制所述第五开关切换至断开状态;
或,
所述保护电路用于当所述电容降压电路输入端出现所述过流时,通过所述数字控制电路控制所述第五开关切换至断开状态;
或,
所述保护电路用于当所述电容降压电路输出端出现所述过压时,通过所述数字控制电路控制所述第五开关切换至断开状态;
或,
所述保护电路用于当所述电容降压电路输出端出现所述过流时,通过所述数字控制电路控制所述第五开关切换至断开状态;
或,
所述保护电路用于当无线受电设备的充电线路出现所述短路时,通过所述数字控制电路控制所述第五开关切换至断开状态。
在一个可选的实施例中,所述第一级电容降压电路的输入电压为第一电压,输入电流为第一电流;
所述第一级电容降压电路的输出电压为第二电压,输出电流为第二电流,所述第二电压的电压值为所述第一电压的电压值的一半,所述第二电流的电流值为所述第一电流的电流值的两倍。
在一个可选的实施例中,所述第二级电容降压电路的输出电压为第三电压,输出电流为第三电流,所述第三电压的电压值为所述第二电压的电压值的一半,所述第三电流的电流值为所述第二电流的电流值的两倍。
根据本公开的另一方面,提供了一种无线充电方法,所述方法包括:
所述无线受电线圈接收无线充电设备传递的能量,并将所述能量以交流电的形式输出至交流转直流电路;
所述交流转直流电路将所述交流电转换为直流电,并将所述直流电输出至电容降压电路,所述电容降压电路中包括至少两个电容和至少一个开关;
所述电容降压电路将所述至少一个开关控制为第一连接状态,所述至少两个电容在所述至少一个开关处于所述第一连接状态时处于串联状态并储存能量;
所述电容降压电路将所述至少一个开关控制为第二连接状态,所述至少两个电容在所述至少一个开关处于所述第二连接状态时处于并联状态并以输出电流的形式输出能量至电池。
根据本公开的另一方面,提供了一种无线充电系统,所述无线充电系统包括无线充电设备和无线受电设备,所述无线受电设备包括如上述本公开实施例提供的无线受电设备。
在一个可选的实施例中,所述无线受电设备是移动终端,所述无线充电设备是充电底座。
本公开的实施例提供的技术方案可以包括以下有益效果:
在交流转直流电路将交流电转换为直流电,并对直流电进行降压时,通过电容降压电路中的至少两个电容以及至少一个开关,根据开关的连接状态控制至少两个电容的存储能量和释放能量的过程,避免了电感本身的阻抗产生能量损失的问题,提高了能量的转换效率,以及提高了无线充电的充电效率。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并于说明书一起用于解释本公开的原理。
图1是本公开一个示例性实施例提供的无线充电系统的结构框图;
图2是本公开一个示例性实施例提供的无线充电方法的流程图;
图3是本公开一个示例性实施例提供的电容降压电路的结构框图;
图4是本公开一个示例性实施例提供的第一级电容降压电路的结构框图;
图5是本公开一个示例性实施例提供的第一级电容降压电路的第一开关处于第一连接状态时的等效电路图;
图6是本公开一个示例性实施例提供的第一级电容降压电路的第一开关处于第二连接状态时的等效电路图;
图7是本公开一个示例性实施例提供的第二级电容降压电路的结构框图;
图8是本公开一个示例性实施例提供的第二级电容降压电路的第二开关处于第一连接状态时的等效电路图;
图9是本公开一个示例性实施例提供的第二级电容降压电路的第二开关处于第二连接状态时的等效电路图;
图10是本公开另一个示例性实施例提供的电容降压电路的结构框图;
图11是本公开一个示例性实施例提供的无线受电设备的结构框图;
图12是本公开另一个示例性实施例提供的无线充电方法的流程图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。
下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
无线充电过程是通过无线充电设备向无线受电设备进行充电的过程,其中,无线充电设备中包括无线充电线圈,无线受电设备中包括无线受电线圈,该无线充电线圈和无线受电线圈为耦合线圈,通过线圈之间的耦合实现能量传递。
相关技术中,提供一种无线充电技术,该无线充电技术中包括无线充电设备和无线受电设备。在充电时,无线受电设备接收无线充电设备传输的能量,并将该能量转换为充电电压和充电电流,通过降压式变换电路(Buck电路)架构将充电电压降压后对电源进行充电。然而,由于Buck电路架构中,是通过电感对充电电压进行调整的,而Buck电路架构中的电感本身的阻抗会产生能量损失,导致无线充电的充电效率较低。
图1是本公开一个示例性实施例提供的无线充电系统的结构框图。如图1所示,该无线充电系统100中包括无线充电设备110和无线受电设备120,其中,无线充电设备110中包括充电器111、谐振电路112、直流转交流电路(Direct Current-Alternating Current, DC-AC)113以及无线充电线圈114;无线受电设备120中包括无线受电线圈121、交流转直流电路(Alternating Current-Direct Current,AC-DC)122、电容降压电路123以及电池124。
其中,无线充电设备110中,充电器111的输出端与谐振电路112的输入端相连,谐振电路112的输出端与直流转交流电路113的输入端相连,直流转交流电路113的输出端与无线充电线圈114相连。
无线受电设备120中,无线受电线圈121的输出端与交流转直流电路122的输入端相连,交流转直流电路122的输出端与电容降压电路123的输入端相连,电容降压电路123的输出端与电池124相连。
其中,充电器111用于与电源相连,接收电源中的能量并以电流的形式进行输出;谐振电路112用于对从充电器输出的电流进行转换以及控制,根据电压要求将电流电压控制在预设范围内;直流转交流电路113用于将谐振电路112输出的直流电转换为交流电进行输出;无线充电线圈114用于将交流电转换为能量后输出至无线受电设备120中的无线受电线圈121。可选地,该无线充电线圈114可以是能够产生磁耦合的耦合线圈,可以是能产生电场耦合的耦合线圈,也可以是能发射无线电波的线圈,本公开对此不加以限定。其中,无线充电线圈114发射的能量包括但不限于:电磁波、微波等形式的能量。
无线受电线圈121用于接收无线充电设备110的无线充电线圈114传递的能量,并将能量以交流电的形式输出至交流转直流电路122,交流转直流电路122将交流电转换为直流电后,将直流电输入至电容降压电路123,该电容降压电路123用于通过电容和开关控制能量的储存和释放,从而对直流电的电压进行压缩,并对直流电的电流将进行对应的提高。示意性的,通过至少一个开关控制至少两个的连接状态,也即,通过开关的不同连接状态控制至少两个电容处于串联状态或并联状态,在至少两个电容处于串联状态时对能量进行存储,并当至少两个电容处于并联状态时对能量进行释放,从而实现电压的压缩以及电流的提高。可选地,当至少一个开关处于第一连接状态时,该至少两个电容处于串联状态并存储能量;当至少一个开关处于第二连接状态时,该至少两个电容处于并联状态并释放能量。示意 性的,通过电容降压电路中的电容和开关将直流电的电压压缩至输入该电容降压电路的输入电压的四分之一,并对应将直流电的电流提高至输入电流的四倍。可选地,电容降压电路123将转换后的直流电输入至电池124,以实现对电池124的充电。
值得注意的是,上述实施例中,以无线充电系统100整体为例进行说明,实际操作中,上述无线充电设备110和无线受电设备120可以视为两个独立的个体。
综上所述,本实施例提供的无线受电设备,在交流转直流电路将交流电转换为直流电,并对直流电进行降压时,通过电容降压电路中的至少两个电容以及至少一个开关,根据开关的连接状态控制至少两个电容的存储能量和释放能量的过程,避免了电感本身的阻抗产生能量损失的问题,提高了能量的转换效率,以及提高了无线充电的充电效率。
本实施例提供的无线受电设备,由于通过电容降压电路能够将较高的电压转换为电池可承受范围内的电压为电池充电,从而在向无线受电设备进行充电时,可以通过较高功率的电流,并通过电容降压电路进行降压后,以合理的电压以及较高的电流向电池充电,提高了无线充电的充电效率。
结合上述无线受电设备120的结构,图2是本公开一个示例性实施例提供的无线充电方法的流程图,如图2所示,该方法包括:
步骤201,无线受电线圈接收无线充电设备传递的能量。
可选地,该无线受电线圈可以是能够产生磁耦合的耦合线圈,可以是能产生电场耦合的耦合线圈,也可以是能发射无线电波的线圈,本公开对此不加以限定。其中,无线受电线圈接收的能量包括但不限于:电磁波、微波等形式的能量。
步骤202,无线受电线圈将能量以交流电的形式输出至交流转直流电路。
可选地,无线受电线圈接收到无线充电设备传递的能量后,根据该能量的功率将该能量转换为对应的交流电,并将该交流电输出至 交流转直流电路。
步骤203,交流转直流电路将交流电转换为直流电。
步骤204,交流转直流电路将直流电输出至电容降压电路。
可选地,该电容降压电路中包括至少两个电容和至少一个开关,电容降压电路通过将该至少一个开关控制为不同的连接状态,从而控制至少两个电容对能量的存储和输出。
步骤205,电容降压电路将至少一个开关控制为第一连接状态。
可选地,该至少两个电容在至少一个开关处于第一连接状态时处于串联状态并储存能量。
步骤206,电容降压电路将至少一个开关控制为第二连接状态。
可选地,该至少两个电容在至少一个开关处于第二连接状态时处于并联状态并以输出电流的形式输出能量至电池。
综上所述,本实施例提供的无线充电方法,在交流转直流电路将交流电转换为直流电,并对直流电进行降压时,通过电容降压电路中的至少两个电容以及至少一个开关,根据开关的连接状态控制至少两个电容的存储能量和释放能量的过程,避免了电感本身的阻抗产生能量损失的问题,提高了能量的转换效率,以及提高了无线充电的充电效率。
在一个可选的实施例中,如图3所示,上述电容降压电路123包括第一级电容降压电路310和第二级电容降压电路320;
交流转直流电路122的输出端与第一级电容降压电路310的输入端相连,第一级电容降压电路310的输出端与第二级电容降压电路320的输入端相连,第二级电容降压电路320的输出端与电池124相连。
可选地,如图4所示,该第一级电容降压电路310中包括第一电容311、第二电容312和至少一个第一开关313(图4中以该第一级降压电路310中包括4个第一开关313为例进行说明)。
可选地,当至少一个第一开关313处于第一连接状态时,第一电容311和第二电容312处于串联状态,当至少一个第一开关313 处于第二连接状态时,第一电容311和第二电容312处于并联状态。示意性的,请参考图4,第一开关313包括开关S1、开关S2、开关S3以及开关S4,当开关S1和开关S4闭合,开关S2和开关S3断开时,第一电容311和第二电容312处于串联状态;当开关S3和开关S4闭合,开关S1和开关S2断开时,第一电容311和第二电容312处于并联状态。示意性的,当开关S1和开关S4闭合,开关S2和开关S3断开,且第一电容311和第二电容312处于串联状态时,等效电路请参考如图5所示;当开关S3和开关S4闭合,开关S1和开关S2断开时,第一电容311和第二电容312处于并联状态时,等效电路请参考如图6所示。
可选地,第二电容312的第一端与上述至少一个第一开关313相连,第二电容312的第二端接地。
可选地,第一电容311和第二电容312的电容值相同。可选地,如图4所示,当开关S1和开关S4闭合,开关S2和开关S3断开时,第一电容311和第二电容312为串联关系,由于第一电容311和第二电容312的电容值相同,则第二电容312两端的电压,与第一电容311两端的电压相等,即也即第二电容312两端的电压等于输入该第一级电容降压电路310的输入电压的一半,第一电容311和第二电容312同时储存能量,且储存能量的大小一致。当开关S3和开关S4闭合,开关S1和开关S2断开时,第一电容311和第二电容312由串联状态转换为并联状态,而第一电容311和第二电容312储存能量相同,第一电容311两端的电压与第二电容312两端的电压即为第一级电容降压电路310的输出电压,也即第一级电容降压电路310的输入电压的一半,故变换为并联状态后,根据能量守恒定律,第一电容311和第二电容312所储存的能量释放出来,第一级电容降压电路310的输出电压为输入电压的一半,且第一级电容降压电路310的输出电流为输出电流的两倍。
如图7所示,第二级电容降压电路320中包括第三电容321、第四电容322以及至少一个第二开关323(图7中以该第二级降压电路 320中包括4个第二开关323为例进行说明)。
可选地,当至少一个第二开关323处于第一连接状态时,第三电容321和第四电容322处于串联状态,当至少一个第二开关323处于第二连接状态时,第三电容321和第四电容322处于并联状态。示意性的,请参考图7,第二开关323包括开关S5、开关S6、开关S7以及开关S8,当开关S5和开关S8闭合,开关S6和开关S7断开时,第三电容321和第四电容322处于串联状态;当开关S7和开关S8闭合,开关S5和开关S6断开时,第三电容321和第四电容322处于并联状态。示意性的,当开关S5和开关S8闭合,开关S6和开关S7断开,且第三电容321和第四电容322处于串联状态时,等效电路请参考如图8所示;当开关S7和开关S8闭合,开关S5和开关S6断开时,第三电容321和第四电容322处于并联状态时,等效电路请参考如图9示。
可选地,第四电容322的第一端与上述至少一个第二开关323相连,第四电容322的第二端接地。
可选地,第三电容321和第四电容322的电容值相同。可选地,如图7所示,当开关S5和开关S8闭合,开关S6和开关S7断开时,第三电容321和第四电容322为串联关系,由于第三电容321和第四电容322的电容值相同,则第四电容322两端的电压,与第三电容321两端的电压相等,即也即第四电容322两端的电压等于输入该第二级电容降压电路320的输入电压的一半,第三电容321和第四电容322同时储存能量,且储存能量的大小一致。当开关S7和开关S8闭合,开关S5和开关S6断开时,第三电容321和第四电容322由串联状态转换为并联状态,而第三电容321和第四电容322储存能量相同,第三电容321两端的电压与第四电容322两端的电压即为第二级电容降压电路320的输出电压,也即第二级电容降压电路320的输入电压的一半,故变换为并联状态后,根据能量守恒定律,第三电容321和第四电容322所储存的能量释放出来,第二级电容降压电路320的输出电压为输入电压的一半,且第二级电容降压电路320的输出电流为输出电流的两倍。
可选地,第一级电容降压电路310的输入电压为第一电压,输入电流为第一电流,则第一级电容降压电路310的输出电压为第二电压,输出电流为第二电流,其中,第二电压的电压值为第一电压的电压值的一半,第二电流的电流值为第一电流的电流值的两倍。
可选地,第二级电容降压电路320的输出电压为第三电压,输出电流为第三电流,该第三电压的电压值为第二电压的电压值的一半,第三电流的电流值为第二电流的电流值的两倍。也即,第三电压的电压值为第一电压的电压值的四分之一,而第三电流的电流值为第一电流的电流值的四倍。
在一个可选的实施例中,如图10所示,上述第一级电容降压电路310和第二级电容降压电路320之间连接有第三开关1010、第四开关1020和第五电容1030;
其中,第一级电容降压电路310的输出端与第三开关1010的输入端相连,第三开关1010的输出端与第四开关1020的输入端相连,第四开关1020的输出端与第二级电容降压电路320的输入端相连;可选地,第三开关1010的输出端和第四开关1020的输入端与第五电容1030的第一端相连,第五电容1030的第二端接地。
如图10所示,当第一级电容降压电路310将电压减半,并将电流加倍输出时,第三开关1010闭合,第四开关1020断开,则输出的能量集中在第五电容1030中,当第三开关1010断开,第四开关1020闭合,则将能量释放给第二级电容降压电路320。
本实施例提供的无线受电设备,通过在第一级电容降压电路和第二级电容降压电路之间设置第五电容、第三开关和第四开关,通过第三开关的闭合和第四开关的断开将第五电容作为能量中转站进行能量存储,并通过第三开关断开和第四开关闭合将第五电容中的能量中转至第二级电容降压电路,避免第一级电容降压电路输出的能量较大而对第二级电容降压电路造成冲击,影响能量传递过程。
在一个可选的实施例中,上述无线受电设备120中还包括数字 控制电路和中央处理器(Central Processing Unit,CPU),其中,数字控制电路的第一端与中央处理器相连接,并通过该链接与中央处理器进行通信;可选地,该数字控制电路的第二端与交流转直流电路113的输出端相连,数字控制电路的第三端与电容降压电路相连。
可选地,当该电容降压电路包括第一级电容降压电路310和第二级电容降压电路320时,该数字控制电路与该第一级电容降压电路310和该第二级电容降压电路320分别连接。
可选地,该数字控制电路用于与CPU或者其他核心处理器进行通信,CPU向数字控制电路发送控制信令,并通过该数字控制电路控制无线充电过程,数字控制信令将无线充电过程的充电状态向CPU进行上报。
示意性的,当无线受电设备120的无线受电线圈121接收到无线充电设备110的无线充电线圈114的耦合时,CPU向数字控制电路发送控制信令,该控制信令用于表示无线充电设备向无线受电设备发射的能量在预设能量范围内,数字控制电路根据接收到的控制信令开启无线充电过程。
在一个可选的实施例中,如图11所示,上述无线受电设备120中还包括上述数字控制电路1110、保护电路1120、模拟电路1130和检测电阻1140;
其中,第二级电容降压电路320的输出端通过检测电阻1140与电池124相连,也即,第二级电容降压电路320的输出端与检测电阻1140的输入端相连,检测电阻1140的输出端与电池124相连;
数字控制电路1110的第四端与保护电路1120的第一端相连,保护电路1120的第二端与模拟电路1130的第一端相连,模拟电路1130的第二端与电池124相连,模拟电路1130的第三端与检测电阻1140相连;
可选地,该模拟电路1130用于对电容降压电路输出端的输出电压和输出电流进行侦测,以及通过检测电阻1140对电池124的电池电压进行侦测。可选地,该模拟电路1130用于对第二级电容降压电路320输出端的输出电压和输出电流进行侦测。
可选地,该保护电路1120用于对电容降压电路输入端的过压和过流、电容降压电路输出端的过压和过流,以及短路进行保护。
可选地,如图11所示,该无线受电设备120中还包括第五开关1150,该数字控制电路1110的第二端通过该第五开关1150与交流转直流电路122的输出端相连,第一级电容降压电路310的输入端通过第五开关1150与交流转直流电路122的输出端相连。
可选地,由于该第五开关1150为连接交流转直流电路122和第一级电容降压电路310的开关,故该第五开关1150能够在无线充电的过程中,通过切换为断开状态,结束无线充电过程。
可选地,保护电路1120用于当电容降压电路123输入端出现过压时,通过数字控制电路1110控制第五开关1150切换至断开状态;或,保护电路1120用于当电容降压电路123输入端出现过流时,通过数字控制电路1110控制第五开关1150切换至断开状态;或,保护电路1120用于当电容降压电路123输出端出现过压时,通过数字控制电路1110控制第五开关1150切换至断开状态;或,保护电路1120用于当电容降压电路123输出端出现过流时,通过数字控制电路1110控制第五开关1150切换至断开状态。
值得注意的是,上述第一开关313、第二开关323、第三开关1010、第四开关1020以及第五开关1150都可以实现为MOS管开关电路,该MOS管开关电路是一种利用MOS管栅极(g)控制MOS管源极(s)和漏极(d)通断的原理构造的电路。
综上所述,本实施例提供无线受电设备,通过保护电路、检测电阻和模拟电路对无线充电的过程进行保护,避免过压、过流或者短路的情况对无线充电的过程产生影响,造成充电中的危险,提高无线充电过程的安全性。
结合上述图11示出的无线受电设备120,图12是本公开一个示例性实施例提供的无线充电方法的流程图,如图12所示,该方法包括:
步骤1201,无线受电线圈接收无线充电设备传递的能量。
可选的,该无线受电线圈可以是能够产生磁耦合的耦合线圈,可以是能产生电场耦合的耦合线圈,也可以是能发射无线电波的线圈,本公开对此不加以限定。其中,无线受电线圈接收的能量包括但不限于:电磁波、微波等形式的能量。
步骤1202,无线受电线圈将能量以交流电的形式输出至交流转直流电路。
可选地,无线受电线圈接收到无线充电设备传递的能量后,根据该能量的功率将该能量转换为对应的交流电,并将该交流电输出至交流转直流电路。
步骤1203,交流转直流电路将交流电转换为直流电。
步骤1204,交流转直流电路将直流电输出至第一级电容降压电路。
可选地,该第一级电容降压电路中包括第一电容、第二电容和至少一个第一开关,第一级电容降压电路通过将该至少一个开关控制为不同的连接状态,从而控制第一电容和第二电容对能量的存储和释放。
步骤1205,第一级电容降压电路控制至少一个第一开关为第一连接状态。
可选地,该第一电容和第二电容在至少一个第一开关处于第一连接状态时处于串联状态并储存能量。
步骤1206,第一级电容降压电路控制第三开关处于闭合状态,并控制第四开关处于断开状态。
可选地,当第三开关处于闭合状态且第四开关处于断开状态时,第一级电容降压电路能够将能量传输至第五电容,而第五电容无法将能量传递至第二级电容降压电路。
步骤1207,第一级电容降压电路控制至少一个第一开关为第二连接状态。
可选地,该第一电容和第二电容在至少一个第一开关处于第二连接状态时处于并联状态并释放能量。
可选地,第一级电容降压电路将第一电容和第二电容中的能量 传递至第五电容中。
步骤1208,第一级电容降压电路控制第三开关处于断开状态,并控制第四开关处于闭合状态。
可选地,当第三开关处于断开状态,且第四开关处于闭合状态时,第五电容根据能量守恒定律向外释放能量。
步骤1209,第二级电容降压电路控制至少一个第二开关为第一连接状态。
可选地,该第三电容和第四电容在至少一个第一开关处于第一连接状态时处于串联状态并储存能量。
步骤1210,第二级电容降压电路控制至少一个第二开关为第二连接状态。
可选地,该第三电容和第四电容在至少一个第二开关处于第二连接状态时处于并联状态并释放能量。
步骤1211,电池接收到第二级电容降压电路输出的能量。
可选地,电池通过接收到的能量进行充电。可选地,第二级电容降压电路输出的电压为第一级电容降压电路输入电压的四分之一,第二级电容降压电路输出的电流为第一级电容降压电路输入电流的四倍。
步骤1212,保护电路对第一级电容降压电路输入端的输入电流的电流大小和输入电压的电压大小进行监测。
步骤1213,当输入电流的电流大小超出电流阈值,或输入电压的电压大小超出电压阈值时,断开第五开关。
可选地,当该第五开关断开时,无线充电过程关闭。
步骤1214,保护电路对第二级电容降压电路输出端的输出电流的电流大小和输出电压的电压大小进行监测。
步骤1215,当输出电流的电流大小超出电流阈值,或输出电压的电压大小超出电压阈值时,断开第五开关。
值得注意的是,上述步骤1212至步骤1215可以执行在上述步骤1201至步骤1211之前、之后、之间的任意位置,本公开实施例对步骤1212至步骤1215的执行时机不加以限定。
综上所述,本实施例提供的无线充电方法,在交流转直流电路将交流电转换为直流电,并对直流电进行降压时,通过电容降压电路中的至少两个电容以及至少一个开关,根据开关的连接状态控制至少两个电容的存储能量和释放能量的过程,避免了电感本身的阻抗产生能量损失的问题,提高了能量的转换效率,以及提高了无线充电的充电效率。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本公开旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (13)

  1. 一种无线受电设备,其特征在于,所述无线受电设备包括:无线受电线圈、交流转直流电路、电容降压电路以及电池,所述电容降压电路中包括至少两个电容和至少一个开关;
    所述无线受电线圈的输出端与所述交流转直流电路的输入端相连,所述交流转直流电路的输出端与所述电容降压电路的输入端相连,所述电容降压电路的输出端与所述电池相连;
    当所述至少一个开关处于第一连接状态时,所述至少两个电容处于串联状态并存储能量;
    当所述至少一个开关处于第二连接状态时,所述至少两个电容处于并联状态并释放能量。
  2. 根据权利要求1所述的无线受电设备,其特征在于,所述电容降压电路包括第一级电容降压电路和第二级电容降压电路;
    所述交流转直流电路的输出端与所述第一级电容降压电路的输入端相连,所述第一级电容降压电路的输出端与所述第二级电容降压电路的输入端相连,所述第二级电容降压电路的输出端与所述电池相连。
  3. 根据权利要求2所述的无线受电设备,其特征在于,所述第一级电容降压电路中包括第一电容、第二电容和至少一个第一开关,所述第二级电容降压电路中包括第三电容、第四电容和至少一个第二开关;
    当所述至少一个第一开关处于所述第一连接状态时,所述第一电容和所述第二电容处于所述串联状态,当所述至少一个第一开关处于所述第二连接状态时,所述第一电容和所述第二电容处于所述并联状态;
    当所述至少一个第二开关处于所述第一连接状态时,所述第三电容和所述第四电容处于所述串联状态,当所述至少一个第二开关处于所述第二连接状态时,所述第三电容和所述第四电容处于所述并联 状态。
  4. 根据权利要求2所述的无线受电设备,其特征在于,所述第一级电容降压电路和所述第二级电容降压电路之间连接有第三开关、第四开关和第五电容;
    所述第一级电容降压电路的输出端与所述第三开关的输入端相连,所述第三开关的输出端与所述第四开关的输入端相连,所述第四开关的输出端与所述第二级电容降压电路的输入端相连;
    所述第三开关的输出端和所述第四开关的输入端与所述第五电容的第一端相连,所述第五电容的第二端接地。
  5. 根据权利要求2至4任一所述的无线受电设备,其特征在于,所述无线受电设备中还包括:数字控制电路和中央处理器;
    所述数字控制电路的第一端与所述中央处理器相连接,并通过所述连接与所述中央处理器进行通信;
    所述数字控制电路的第二端与所述交流转直流电路的输出端相连,所述数字控制电路的第三端与所述电容降压电路相连。
  6. 根据权利要求5所述的无线受电设备,其特征在于,所述无线受电设备中还包括:保护电路和模拟电路和检测电阻;
    所述第二级电容降压电路的输出端通过所述检测电阻与所述电池相连;
    所述数字控制电路的第四端与所述保护电路的第一端相连,所述保护电路的第二端与所述模拟电路的第一端相连,所述模拟电路的第二端与所述电池相连,所述模拟电路的第三端与所述检测电阻相连;
    所述模拟电路用于对所述电容降压电路输出端的输出电压和输出电流进行侦测,以及通过所述检测电阻对所述电池的电池电压进行侦测;
    所述保护电路用于对所述电容降压电路输入端的过压和过流、 所述电容降压电路输出端的过压和过流,以及短路进行保护。
  7. 根据权利要求6所述的无线受电设备,其特征在于,所述无线受电设备中还包括第五开关;
    所述数字控制电路的第二端通过所述第五开关与所述交流转直流电路的输出端相连;
    所述第一级电容降压电路的输入端通过所述第五开关与所述交流转直流电路的输出端相连。
  8. 根据权利要求7所述的无线受电设备,其特征在于,
    所述保护电路用于当所述电容降压电路输入端出现所述过压时,通过所述数字控制电路控制所述第五开关切换至断开状态;
    或,
    所述保护电路用于当所述电容降压电路输入端出现所述过流时,通过所述数字控制电路控制所述第五开关切换至断开状态;
    或,
    所述保护电路用于当所述电容降压电路输出端出现所述过压时,通过所述数字控制电路控制所述第五开关切换至断开状态;
    或,
    所述保护电路用于当所述电容降压电路输出端出现所述过流时,通过所述数字控制电路控制所述第五开关切换至断开状态;
    或,
    所述保护电路用于当无线受电设备的充电线路出现所述短路时,通过所述数字控制电路控制所述第五开关切换至断开状态。
  9. 根据权利要求2至4任一所述的无线受电设备,其特征在于,所述第一级电容降压电路的输入电压为第一电压,输入电流为第一电流;
    所述第一级电容降压电路的输出电压为第二电压,输出电流为第二电流,所述第二电压的电压值为所述第一电压的电压值的一半, 所述第二电流的电流值为所述第一电流的电流值的两倍。
  10. 根据权利要求9所述无线受电设备,其特征在于,
    所述第二级电容降压电路的输出电压为第三电压,输出电流为第三电流,所述第三电压的电压值为所述第二电压的电压值的一半,所述第三电流的电流值为所述第二电流的电流值的两倍。
  11. 一种无线充电方法,其特征在于,所述方法包括:
    所述无线受电线圈接收无线充电设备传递的能量,并将所述能量以交流电的形式输出至交流转直流电路;
    所述交流转直流电路将所述交流电转换为直流电,并将所述直流电输出至电容降压电路,所述电容降压电路中包括至少两个电容和至少一个开关;
    所述电容降压电路将所述至少一个开关控制为第一连接状态,所述至少两个电容在所述至少一个开关处于所述第一连接状态时处于串联状态并储存能量;
    所述电容降压电路将所述至少一个开关控制为第二连接状态,所述至少两个电容在所述至少一个开关处于所述第二连接状态时处于并联状态并以输出电流的形式输出能量至电池。
  12. 一种无线充电系统,其特征在于,所述无线充电系统包括无线充电设备和无线受电设备,所述无线受电设备包括如权利要求1至10任一所述的设备。
  13. 根据权利要求12所述的系统,其特征在于,所述无线受电设备是移动终端,所述无线充电设备是充电底座。
PCT/CN2019/110472 2019-08-01 2019-10-10 无线受电设备、无线充电方法及系统 WO2021017169A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019563188A JP7397670B2 (ja) 2019-08-01 2019-10-10 無線受電装置、無線充電方法及びシステム
KR1020197033734A KR102342239B1 (ko) 2019-08-01 2019-10-10 무선 수전 장치, 무선 충전 방법 및 시스템
RU2019141294A RU2723298C1 (ru) 2019-08-01 2019-10-10 Устройство беспроводного приема питания, способ и система беспроводной зарядки

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910706107.0A CN112311101A (zh) 2019-08-01 2019-08-01 无线受电设备、无线充电方法及系统
CN201910706107.0 2019-08-01

Publications (1)

Publication Number Publication Date
WO2021017169A1 true WO2021017169A1 (zh) 2021-02-04

Family

ID=69410986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/110472 WO2021017169A1 (zh) 2019-08-01 2019-10-10 无线受电设备、无线充电方法及系统

Country Status (7)

Country Link
US (1) US11557920B2 (zh)
EP (1) EP3772156A1 (zh)
JP (1) JP7397670B2 (zh)
KR (1) KR102342239B1 (zh)
CN (1) CN112311101A (zh)
RU (1) RU2723298C1 (zh)
WO (1) WO2021017169A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220125514A (ko) * 2021-03-05 2022-09-14 삼성전자주식회사 무선으로 전력을 수신하는 전자 장치와 이의 동작 방법
CN114665575B (zh) * 2022-05-20 2022-08-23 珠海市魅族科技有限公司 降压电路、电路集成芯片、充电电路及终端设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104218632A (zh) * 2013-05-30 2014-12-17 新普科技股份有限公司 电源供应装置
JP2017022953A (ja) * 2015-07-15 2017-01-26 シチズン時計株式会社 降圧回路及びこれを用いた降圧充電回路
CN108233456A (zh) * 2017-07-31 2018-06-29 珠海市魅族科技有限公司 一种无线充电电路、系统、方法及电子设备
CN108988426A (zh) * 2018-07-27 2018-12-11 北京小米移动软件有限公司 充电电路、终端及充电方法
CN109038694A (zh) * 2017-06-08 2018-12-18 华为技术有限公司 电源转换电路、充电装置及系统
JP2018201278A (ja) * 2017-05-25 2018-12-20 学校法人近畿大学 キャパシタの充放電回路
CN109148990A (zh) * 2018-09-30 2019-01-04 Oppo广东移动通信有限公司 无线充电方法、电子设备、无线充电装置和无线充电系统

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008125198A (ja) * 2006-11-09 2008-05-29 Ishida Co Ltd 非接触給電装置
JP5510032B2 (ja) * 2009-05-14 2014-06-04 日産自動車株式会社 非接触給電装置
CN105406606A (zh) * 2015-08-30 2016-03-16 电子科技大学 无线充电方法及无线充电发射装置
JP6299738B2 (ja) * 2015-12-24 2018-03-28 トヨタ自動車株式会社 非接触送電装置及び電力伝送システム
EP3327897B1 (en) * 2016-11-25 2021-06-16 Nxp B.V. Apparatus and associated method
CN108233453A (zh) 2017-07-31 2018-06-29 珠海市魅族科技有限公司 一种充电方法、装置及电子设备
CN207518289U (zh) * 2017-07-31 2018-06-19 珠海市魅族科技有限公司 一种无线充电电路、系统及电子设备
CN108718103A (zh) * 2018-06-15 2018-10-30 珠海市魅族科技有限公司 一种充电电路、电子设备及无线充电方法
US20200099257A1 (en) * 2018-09-21 2020-03-26 Apple Inc. Wireless Power System With Dynamic Battery Charging

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104218632A (zh) * 2013-05-30 2014-12-17 新普科技股份有限公司 电源供应装置
JP2017022953A (ja) * 2015-07-15 2017-01-26 シチズン時計株式会社 降圧回路及びこれを用いた降圧充電回路
JP2018201278A (ja) * 2017-05-25 2018-12-20 学校法人近畿大学 キャパシタの充放電回路
CN109038694A (zh) * 2017-06-08 2018-12-18 华为技术有限公司 电源转换电路、充电装置及系统
CN108233456A (zh) * 2017-07-31 2018-06-29 珠海市魅族科技有限公司 一种无线充电电路、系统、方法及电子设备
CN108988426A (zh) * 2018-07-27 2018-12-11 北京小米移动软件有限公司 充电电路、终端及充电方法
CN109148990A (zh) * 2018-09-30 2019-01-04 Oppo广东移动通信有限公司 无线充电方法、电子设备、无线充电装置和无线充电系统

Also Published As

Publication number Publication date
KR20210016260A (ko) 2021-02-15
CN112311101A (zh) 2021-02-02
EP3772156A1 (en) 2021-02-03
RU2723298C1 (ru) 2020-06-09
US20210036551A1 (en) 2021-02-04
US11557920B2 (en) 2023-01-17
JP7397670B2 (ja) 2023-12-13
KR102342239B1 (ko) 2021-12-23
JP2021534707A (ja) 2021-12-09

Similar Documents

Publication Publication Date Title
US10270277B2 (en) System and method for prevention of wireless charging cross connection
US10128689B2 (en) Systems and methods for enabling a universal back-cover wireless charging solution
US9490652B2 (en) Wireless charger equipped with auxiliary power supply and auxiliary power device
CN101335470B (zh) 送电控制装置、送电装置、无触点电力传输系统及电子设备
US20140063666A1 (en) Wireless power overvoltage protection circuit with reduced power dissipation
EP2782210A1 (en) Wireless power transmitting unit,wireless power receiving unit, and control methods thereof
US9401622B2 (en) Systems and methods for extending the power capability of a wireless charger
WO2018157761A1 (zh) 电压转换器及其控制方法和电压转换系统
TW200937795A (en) Power transmission control device, power transmitting device, non-contact power transmitting system, and electronic instrument
US20170005502A1 (en) Wireless charging device
JP2003299255A (ja) 携帯型充電装置
WO2021017169A1 (zh) 无线受电设备、无线充电方法及系统
CN106786886B (zh) 一种基于负载识别技术的无线充电系统充电方法
WO2014100192A2 (en) Gate drive circuit for synchronous rectification
CN209805437U (zh) 充电系统和电子设备
US20160211675A1 (en) Method and system for charging/discharging a battery
KR101549438B1 (ko) 휴대 단말기 무선충전장치
CN108565989A (zh) 一种无线充电系统的能量传输系统及方法
JP2014217116A (ja) 電子機器、電子機器送電システム及び受電制御方法
CN205544511U (zh) 多功能充电器
EP4329143A1 (en) Systems and methods for inverter and dc/dc converter operation
WO2024113737A1 (zh) 一种充电电路、充电方法、充电器及车辆
CN209593023U (zh) 高集成度pir人体感应器控制芯片及其应用电路
US11631907B2 (en) System and method for charging of a battery
KR101797895B1 (ko) 출력전압을 가변시키는 충전장치 및 출력전압을 가변시키는 충전방법

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019563188

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19939851

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19939851

Country of ref document: EP

Kind code of ref document: A1