WO2021016870A1 - 一种微流液滴生成装置 - Google Patents

一种微流液滴生成装置 Download PDF

Info

Publication number
WO2021016870A1
WO2021016870A1 PCT/CN2019/098398 CN2019098398W WO2021016870A1 WO 2021016870 A1 WO2021016870 A1 WO 2021016870A1 CN 2019098398 W CN2019098398 W CN 2019098398W WO 2021016870 A1 WO2021016870 A1 WO 2021016870A1
Authority
WO
WIPO (PCT)
Prior art keywords
chip
droplet generating
air pressure
droplet
storage tank
Prior art date
Application number
PCT/CN2019/098398
Other languages
English (en)
French (fr)
Inventor
陈艳
门涌帆
潘挺睿
舒伟良
吴碧珠
Original Assignee
中国科学院深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院深圳先进技术研究院 filed Critical 中国科学院深圳先进技术研究院
Priority to PCT/CN2019/098398 priority Critical patent/WO2021016870A1/zh
Publication of WO2021016870A1 publication Critical patent/WO2021016870A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers

Definitions

  • the invention relates to the technical field of microfluidics, in particular to a microfluidic droplet generating device.
  • Micro-droplet technology uses the interaction between flow shear force and surface tension to divide a continuous fluid into discrete droplets in a micro-scale channel.
  • the basic process of micro-droplet formation is: two immiscible liquids, one of which is used as the continuous phase and the other as the dispersed phase, the dispersed phase is dispersed in the continuous phase in the form of tiny volume units to form micro The drop moves in the channel.
  • Existing droplet generating devices usually use positive pressure under the action of a pressure pump to push the continuous phase and the dispersed phase to move to form droplets at intersections. This method of using a syringe pump to push the liquid to move to form droplets will cause the pressure on the continuous phase and the dispersed phase to be different due to the inconsistency of the syringe pump pressure acting on the continuous phase and the dispersed phase, so that the formed liquid cannot be guaranteed. Uniformity and consistency of drops.
  • most of the existing microfluidic droplet generating devices either require an external gas source and perform complicated air pressure and flow rate adjustments, or are limited to a single function and cannot be expanded.
  • the purpose of the present invention is to overcome the above-mentioned defects of the prior art and provide a microfluidic droplet generating device.
  • the invention provides a microfluidic droplet generating device.
  • the device includes a droplet generating chip, a chip holder, and an air pressure drive component.
  • the chip holder is used to place and seal the droplet generation chip.
  • the droplet generation chip is used to generate microfluidic droplets.
  • the air pressure drive component Used to output desired air pressure into the chip holder, wherein the droplet generation chip is provided with an aqueous phase storage tank, an oil phase storage tank, and a droplet storage tank.
  • the oil phase sample in the oil phase storage tank flows into the microfluidic pipe inside the droplet generation chip under the air pressure to form droplets, and the generated droplets then flow into the droplet storage tank for collection.
  • the droplet generating chip is square as a whole, one corner of the square is set as a foolproof angle in a 45-degree oblique direction, and the base of the chip holder is provided with a bottom that matches the droplet generating chip. Sink the groove.
  • the upper cover and the lower cover of the chip holder are connected by a buckle to seal the droplet generating chip, and the chip holder is provided with a retractable groove for taking and placing The droplet generation chip.
  • a gasket is arranged between the droplet generating chip and the chip holder, and the gasket is provided with the water phase storage tank, the oil phase storage tank and the droplet storage.
  • the groove matches the pool.
  • the air pressure driving assembly includes an air pressure source for providing air pressure, an air pressure buffer bottle, a proportional regulator valve, a digital-analog/analog-to-digital conversion module, and a chip fixture switching module.
  • the pneumatic drive assembly uses a two-position five-way valve to switch between two outputs while maintaining one input through a clamp switching module.
  • the chip holder is provided with a sensor for monitoring the tightness between the droplet generating chip and the chip holder.
  • the microfluidic droplet generating device of the present invention further includes a central control system, a relay drive array, a power supply module, and air pressure and position sensors.
  • the chip holder is made of aluminum material, and the droplet generating chip and the gasket are made of disposable consumables.
  • the droplet generation chip is formed by integral injection molding.
  • the advantage of the present invention is that the droplet generating device of the present invention adopts an air pressure driving mode, generates sufficiently large compressed air through an internal air source, and stabilizes the air pressure at a preset level through a pressure stabilizing device.
  • a pressure stabilizing device In order to cooperate with the droplet generation chip to control the volume of the generated droplets to a preset size.
  • two groups of different sizes of air pressure After passing through the pressure stabilizing device, two groups of different sizes of air pressure enter the fixture through the air pipe and enter the liquid storage tank to push the liquid to flow.
  • the volume of the entire air path from the pressure stabilizing device to the liquid droplet generating chip storage tank It is smaller, so that after the gas is turned on, the droplet generating chip will reach the air pressure balance in a very short time to ensure that the size of the generated droplets is always stable.
  • Fig. 1 is a schematic diagram of a droplet generating chip according to an embodiment of the present invention
  • Fig. 2 is a schematic diagram of a droplet generating chip holder according to an embodiment of the present invention
  • Figure 3 is a schematic diagram of a gasket according to an embodiment of the present invention.
  • Figure 4 is a schematic diagram of an air pressure source according to an embodiment of the present invention.
  • Figure 5 is a schematic diagram of an air pressure buffer bottle according to an embodiment of the present invention.
  • Figure 6 is a schematic diagram of a proportional regulator valve according to an embodiment of the present invention.
  • Fig. 7 is a schematic diagram of a digital-to-analog/analog-to-digital conversion module according to an embodiment of the present invention.
  • Fig. 8 is a schematic diagram of a clamp switching module according to an embodiment of the present invention.
  • Figure 9 is a schematic diagram of a central control system according to an embodiment of the present invention.
  • Figure 10 is a schematic diagram of a relay drive array according to an embodiment of the present invention.
  • Fig. 11 is a schematic diagram of a power module according to an embodiment of the present invention.
  • Fig. 12 is a schematic diagram of an air pressure and position sensor according to an embodiment of the present invention.
  • Fig. 13 is a schematic diagram of the overall connection of a microfluidic droplet generating device according to an embodiment of the present invention.
  • the embodiment of the present invention provides a microfluidic droplet generating device.
  • the device as a whole includes a droplet generating chip assembly, a pneumatic drive assembly (or a stable pneumatic power assembly), and a circuit control module.
  • the pneumatic drive is used to The volume of droplets produced is controlled at a preset size. The function of each component or module will be described in detail below.
  • the droplet generating component includes a droplet generating chip, a chip holder for placing the droplet generating chip, and a gasket.
  • the droplet generating chip is used to generate microfluidic droplets, and the chip holder is used to place and seal the droplet generating chip.
  • the sheet is used to ensure the tightness between the droplet generating chip and the chip holder.
  • Fig. 1 is a schematic diagram of the droplet generating chip.
  • the droplet generating chip is square as a whole, for example, a square with a side length of 26 mm, in which one side is cut off at a 45-degree angle.
  • three liquid storage tanks are provided on the droplet generation chip.
  • the liquid storage tank 10 is used to store water phase samples
  • the liquid storage tank 20 is used to store oil phase samples
  • the liquid storage tank 30 is used for droplet collection.
  • the three liquid storage tanks are connected by a microfluidic pipe arranged inside the droplet generating chip.
  • the liquid samples in the reservoir 10 and the reservoir 20 are driven by the air pressure generated by the air pressure driving component (described below), flow into the microfluidic pipe, and generate water-in-oil droplets in the microfluidic pipe, and then finally flow into The reservoir 30 collects.
  • the three liquid storage tanks have different volumes but the same height, so as to facilitate the sealing with the chip holder.
  • the droplet generating chip can be made by integral injection molding using disposable consumables.
  • FIG 2 is a schematic diagram of a chip fixture, which is matched with the droplet generating chip of Figure 1, and specifically includes a base 1, a buckle 2, a groove 3, and a foolproof corner 4.
  • the base 1 is provided with a sinking groove , Is used to place the droplet generating chip;
  • the buckle 2 is used to ensure that when the chip holder is fastened, the air path and the droplet generating chip are completely sealed and airtight;
  • the groove 3 is set to retract, so that the user can take the liquid with one hand Droplet generation chip;
  • the design of the foolproof corner 4 makes the droplet generation chip only have one placement method to avoid accidents and waste of samples.
  • the chip holder is made of aluminum.
  • the droplet generating assembly further includes a gasket.
  • the gasket is provided with three grooves to match the three reservoirs of the droplet generating chip.
  • the gasket is used for sealing.
  • the droplet occurs in the gap between the chip and the upper cover of the chip holder.
  • the gasket like the droplet generating chip, can be made of disposable consumables, such as rubber.
  • the air pressure driving component is used to provide the desired air pressure during the droplet generation process to control the stability and uniformity of the droplet generation.
  • the pneumatic drive components include a pneumatic source, a pneumatic buffer bottle, a regulator valve, a digital-analog/analog-to-digital conversion module, and a fixture switching module.
  • Figure 4 is a schematic diagram of an air pressure source, which uses a diaphragm compression pump, which has low power consumption, long life and low noise.
  • a filter device is also provided at the inlet of the air pressure source.
  • the air pressure source can be, for example, a Thomas air pump or a Parker air pump.
  • Figure 5 is a schematic diagram of the air pressure buffer bottle.
  • the purpose of the air pressure buffer bottle is to allow high-pressure gas to accumulate a large enough volume. In the case of limited load, the larger the gas storage volume, the better the air pressure stability.
  • the volume of the buffer bottle can be customized and is fixed on the bottom plate with M6 screws.
  • FIG. 6 is a schematic diagram of a pressure regulator valve, which uses a proportional valve for air pressure adjustment. This kind of valve uses voltage signal for air pressure adjustment and comes with output calibration. The valve command is issued through digital-analog conversion, and the calibration signal is read by analog-digital conversion.
  • Figure 7 is a schematic diagram of the digital-analog/analog-to-digital conversion module.
  • the central control system communicates with the digital-analog/analog-to-digital conversion module through the I2C bus.
  • Figure 8 is a schematic diagram of the fixture switching module.
  • a two-position five-way valve Using a two-position five-way valve, one input can be maintained and two outputs can be switched. When switching, while ensuring that the gas source is connected to the new output, the previous one can be connected to the atmosphere, and the gas can be released instantly, thus ensuring the stability of the droplets in the droplet generation chip.
  • Two-position five-way valve can use SMC, or Lee, Pneumadyne, Festo, etc.
  • the circuit control module is used to control the droplet generation process, such as the central control system, relay drive array, power supply module, air pressure and position sensor, etc.
  • Figure 9 is a schematic diagram of the central control system, which uses the embedded development system Beagle Bone Black running Linux to develop the control program, and realize the comprehensive control of multiple hardware, sensors, and interfaces, and help program functions. Expand, add new functional modules, and even include graphical interfaces.
  • the central control system may also use Raspberry Pi, iOS, or single-chip microcomputer.
  • Fig. 10 is a schematic diagram of a relay drive array.
  • the microfluidic droplet generating device of the present invention adopts a stable solid state + electromagnetic relay cascade method for hardware drive. After Vcc is connected, use logic 1 to trigger state switching.
  • Fig. 11 is a schematic diagram of a power supply module. Since the overall power consumption of the microfluidic droplet generating device of the present invention is not high, a commonly used switching power supply can be selected. For example, 5V is used as the power supply for the logic circuit, and 24V is used as the load power supply. It should be noted that the two DC channels need to share the ground, otherwise, the potential needs to be forced to be leveled in order to avoid unnecessary power consumption.
  • Figure 12 is a schematic diagram of the air pressure and position sensor.
  • Common components can be used to monitor air pressure.
  • the air pressure sensor module that comes with the proportional valve is used to detect the air pressure at the outlet position of the chip fixture. If it is stable, there is no need to monitor the position sensor on the chip fixture side to check whether the chip fixture is tightly closed.
  • Fig. 13 is an overall connection diagram of a microfluidic droplet generating device according to an embodiment of the present invention, which illustrates the power supply, gas cylinder (ie, air pressure buffer bottle), air pump (ie, air pressure source), chip fixture, electromagnetic relay (ie relay The connection between the drive array), proportional valve (ie proportional regulator valve), digital-to-analog converter MCP4725, analog-to-digital converter ADS1115, two-position three-way valve (ie fixture switching module), and photoelectric sensor.
  • gas cylinder ie, air pressure buffer bottle
  • air pump ie, air pressure source
  • chip fixture electromagnetic relay
  • the photoelectric sensor is used to detect whether the chip fixture Cover tightly. It should be understood that the device of the present invention further includes an operation lamp, a system switch, an operation switch, etc. to monitor or control the operation of the device.
  • microfluidic droplet generating device of the present invention also includes in practical applications: control software, such as GPIO (General Purpose Input Output) control, communication and digital-analog/analog-to-digital conversion control, air pressure calibration control, Chip fixture positioning sensor, etc.
  • control software such as GPIO (General Purpose Input Output) control
  • communication and digital-analog/analog-to-digital conversion control air pressure calibration control, Chip fixture positioning sensor, etc.
  • it may further include shell and human-computer interaction design, such as indicator lights and control buttons, fixture ergonomic design, heat dissipation and electromagnetic screen closure, etc. I will not repeat them here.
  • the positive pressure drive is replaced by the negative pressure drive
  • the voltage-regulated proportional pressure regulator is replaced with a current-driven proportional pressure regulator
  • the droplet generation chip is made by mechanical processing to replace the injection molding method and the droplet generation chip.
  • injection molding materials can also have PS, COP, etc.
  • the bonding methods of droplet generation chips can be thermal bonding, adhesive, laser welding, etc.
  • the microfluidic droplet generating device of the embodiment of the present invention can be used as a prototype of a droplet generator to realize the function of generating water-in-oil emulsion droplets.
  • the device has its own gas source and does not require any external accessories, and reusable.
  • the consumables are injection molded chips, which can be discarded after a single use.
  • add reagents to the water phase sample reservoir and oil phase sample reservoir of the droplet generator chip put the droplet generator chip into the chip fixture and start running, and then collect the droplets from the droplet generator chip
  • the entire operation process of the liquid droplets produced by the liquid storage tank is fast, simple and intuitive.
  • the present invention may be a system, a method and/or a computer program product.
  • the computer program product may include a computer-readable storage medium loaded with computer-readable program instructions for enabling a processor to implement various aspects of the present invention.
  • the computer-readable storage medium may be a tangible device that holds and stores instructions used by the instruction execution device.
  • the computer-readable storage medium may include, but is not limited to, an electrical storage device, a magnetic storage device, an optical storage device, an electromagnetic storage device, a semiconductor storage device, or any suitable combination of the foregoing, for example.
  • Computer-readable storage media include: portable computer disks, hard disks, random access memory (RAM), read-only memory (ROM), erasable programmable read-only memory (EPROM) Or flash memory), static random access memory (SRAM), portable compact disk read-only memory (CD-ROM), digital versatile disk (DVD), memory stick, floppy disk, mechanical encoding device, such as a printer with instructions stored thereon
  • RAM random access memory
  • ROM read-only memory
  • EPROM erasable programmable read-only memory
  • flash memory flash memory
  • SRAM static random access memory
  • CD-ROM compact disk read-only memory
  • DVD digital versatile disk
  • memory stick floppy disk
  • mechanical encoding device such as a printer with instructions stored thereon

Abstract

一种微流液滴生成装置,包括液滴生成芯片、芯片夹具和气压驱动组件,芯片夹具用于放置和密封液滴生成芯片,液滴生成芯片用于生成微流液滴,气压驱动组件用于向芯片夹具内输出期望的气压,液滴发生芯片上设有水相存储池(10)、油相存储池(20)和液滴存储池(30),水相存储池(10)的水相样品和油相存储池(20)的油相样品在气压驱动下流入液滴生成芯片内部的微流管道形成液滴,液滴进而流入液滴存储池(30)进行收集。

Description

一种微流液滴生成装置 技术领域
本发明涉及微流控技术领域,尤其涉及一种微流液滴生成装置。
背景技术
微液滴技术是在微尺度通道内,利用流动剪切力与表面张力之间的相互作用将连续流体分割成离散的液滴。微液滴形成的基本过程是:将两种互不相溶的液体,以其中一种作为连续相,另一种作为分散相,分散相以微小体积单元的形式分散与连续相中,形成微滴在通道内运动。
现有的液滴生成装置通常都是在压力泵的作用下,利用正压,推动连续相和分散相运动,在交叉处形成液滴。这种利用注射泵推动液体运动形成液滴的方法,会由于分别作用于连续相和分散相的注射泵压力的不一致性而导致加载在连续相和分散相的压力不同,从而无法保证形成的液滴的均匀性和一致性。此外,现有的多数微流液滴生成装置或者需要外接气源,并进行复杂的气压和流速调节,或者被限制为单一功能,无法进行扩展。
因此,需要对现有技术进行改进,提供操作简便、成本低廉、性能可靠、具备一定扩展功能的微流液滴生成装置,以实现发生油包水的乳化液滴的功能。
发明内容
本发明的目的在于克服上述现有技术的缺陷,提供一种微流液滴生成装置。
本发明提供一种微流液滴生成装置。该装置包括液滴生成芯片、芯片夹具和气压驱动组件,所述芯片夹具用于放置和密封所述液滴生成芯片,所述液滴生成芯片用于生成微流液滴,所述气压驱动组件用于向所述芯片夹具内输出期望的气压,其中所述液滴发生芯片上设有水相存储池、油相存储池和液滴存储池,所述水相存储池的水相样品和所述油相存储池的油相样品在气压驱动下流入所述液滴生成芯片内部的微流管道形成液滴,所 生成的液滴进而流入所述液滴存储池进行收集。
在一个实施例中,所述液滴生成芯片整体上为正方形,正方形的一角按斜45度方向设为防呆角,所述芯片夹具的基座设有与所述液滴生成芯片匹配的下沉凹槽。
在一个实施例中,所述芯片夹具的上盖和下盖之间通过卡扣方式连接,以密封所述液滴生成芯片,并且所述芯片夹具上设有回缩式凹槽,以取放所述液滴生成芯片。
在一个实施例中,在所述液滴发生芯片和所述芯片夹具之间配置垫片,该垫片上设有与所述水相存储池、所述油相存储池和所述液滴存储池相匹配的凹槽。
在一个实施例中,所述气压驱动组件包括用于提供气压的气压源、气压缓冲瓶、比例稳压阀门、数模/模数转换模块和芯片夹具切换模块。
在一个实施例中,所述气压驱动组件通过夹具切换模块使用二位五通阀门在维持一路输入的情况下对两路输出进行切换。
在一个实施例中,所述芯片夹具内设有用于监控所述液滴生成芯片和所述芯片夹具之间密封性的传感器。
在一个实施例中,本发明的微流液滴生成装置还包括中央控制系统、继电器驱动阵列、电源模块、气压与位置传感器。
在一个实施例中,所述芯片夹具采用铝制材料制造,所述液滴生成芯片和所述垫片采用抛弃型耗材制造。
在一个实施例中,所述液滴生成芯片通过一体注塑而成。
与现有技术相比,本发明的优点在于:本发明的液滴生成装置采用气压驱动方式,通过内部气源生成足够大的压缩空气,并经过稳压装置将气压稳定在预设的水平,以便配合液滴生成芯片将所产生的液滴的体积控制在预设的大小。经过稳压装置后,有两组不同大小的气压经过气管进入夹具,并进入储液池推动液体流动,在本发明中,从稳压装置到液滴生成芯片储液池的整个气路的体积较小,从而在开气后,液滴生成芯片会在极短时间内达到气压平衡,以保证所产生的液滴的大小始终保持稳定。
附图说明
以下附图仅对本发明作示意性的说明和解释,并不用于限定本发明的范围,其中:
图1是根据本发明一个实施例的液滴发生芯片的示意图;
图2是根据本发明一个实施例的液滴发生芯片夹具的示意图;
图3是根据本发明一个实施例的垫片的示意图;
图4是根据本发明一个实施例的气压源的示意图;
图5是根据本发明一个实施例的气压缓冲瓶的示意图;
图6是根据本发明一个实施例的比例稳压阀门的示意图;
图7是根据本发明一个实施例的数模/模数转换模块的示意图;
图8是根据本发明一个实施例的夹具切换模块的示意图;
图9是根据本发明一个实施例的中央控制系统的示意图;
图10是根据本发明一个实施例的继电器驱动阵列的示意图;
图11是根据本发明一个实施例的电源模块的示意图;
图12是根据本发明一个实施例的气压与位置传感器的示意图;
图13是根据本发明一个实施例的微流液滴生成装置的整体连线示意图。
具体实施方式
为了使本发明的目的、技术方案、设计方法及优点更加清楚明了,以下结合附图通过具体实施例对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅用于解释本发明,并不用于限定本发明。
在本文示出和讨论的所有例子中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它例子可以具有不同的值。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。
本发明实施例提供一种微流液滴生成装置,该装置整体上包括液滴发生芯片组件、气压驱动组件(或称稳定气压动力组件)和电路控制模块,在本发明中采用气压驱动方式将所产生的液滴体积控制在预设的大小。在下文中将详细介绍各组件或模块的功能。
1)、关于液滴发生组件的实施例
液滴发生组件包括液滴发生芯片、用于放置液滴发生芯片的芯片夹具以及垫片,其中液滴发生芯片用于产生微流液滴,芯片夹具用于放置和密封液滴发生芯片,垫片用于保证液滴发生芯片和芯片夹具之间的密封性。
图1是液滴发生芯片的示意图,在该实施例中,液滴发生芯片整体上是正方形,例如边长26mm的正方形,其中,有一侧按斜45度方向切掉一个防呆角。并且,液滴发生芯片上设有三个储液池,储液池10用于储存水相样品,储液池20用于储存油相样品,储液池30用于液滴收集。三个储液池通过设置在液滴发生芯片内部的微流管道进行连接。储液池10和储液池20内的液体样品,经过气压驱动组件(将在下文介绍)产生的气压驱动,流入微流管道,并在微流管道内部产生油包水液滴,再最终流入储液池30进行收集。优选地,三个储液池的容积不同,但高度相同,以有利于与芯片夹具配合进行密封。液滴发生芯片可采用抛弃型耗材通过一体注塑而成。
图2是芯片夹具的示意图,该芯片夹具与图1的液滴发生芯片匹配,具体包括基座1、卡扣2、凹槽3和防呆角4,其中基座1设有一下沉凹槽,用于放置液滴发生芯片;卡扣2用于确保芯片夹具扣好时,气路与液滴发生芯片间完全密封不漏气;凹槽3设置为回缩式,以便用户单手取放液滴发生芯片;防呆角4的设计,使得液滴发生芯片只能有一种放置方式,以避免事故和样品的浪费。优选地,芯片夹具是铝制材料。
在一个优选实施例中,液滴发生组件还包括垫片,参见图3所示,垫片上设有三个凹槽,与液滴发生芯片的三个储液池相匹配,垫片用于密封液滴发生芯片与芯片夹具上盖之间的空隙。垫片与液滴发生芯片一样,可采用抛弃型耗材,例如采用橡胶材质制造。
2)、关于气压驱动组件的实施例
气压驱动组件用于在液滴生成过程中提供期望的气压,以控制液滴生成的稳定性和均一性。例如,气压驱动组件包括气压源、气压缓冲瓶、稳压阀门、数模/模数转换模块和夹具切换模块。
图4是气压源的示意图,该气压源采用隔膜压缩泵,功耗低,寿命长,噪音小。优选地,在气压源入口处还设有过滤装置。气压源例如可采用Thomas气泵或Parker气泵等。
图5是气压缓冲瓶的示意图,气压缓冲瓶的目的是让高压气积聚足够大的体积,在负载有限的情况下,储气体积越大,气压稳定性越好。该缓冲瓶体积可定制,采用M6螺丝固定于底板上。
图6是稳压阀门的示意图,采用比例阀门进行气压调节。这种阀门使用电压信号进行气压调节,并自带输出校准。通过数模转换来进行阀门命 令的下达,并用模数转换来进行校准信号的读取。
图7是数模/模数转换模块的示意图,中央控制系统通过I2C总线与数模/模数转换模块进行通讯。
图8是夹具切换模块的示意图,使用二位五通阀门,可以维持一路输入,并对两路输出进行切换。在切换的时候,在保证气源与新一路输出接通的同时,还可以让前一路与大气接通,瞬间放气,因此能够保证液滴发生芯片中液滴的稳定。二位五通阀可采用SMC,或者选用Lee,Pneumad yne,Festo等。
3)、关于电路控制模块的实施例
电路控制模块用于控制液滴生成过程,例如包括中央控制系统、继电器驱动阵列、电源模块、气压与位置传感器等。
图9是中央控制系统的示意图,其使用运行Linux的嵌入式开发系统Beagle Bone Black,进行控制程序的开发,并实现对多个硬件、传感器、接口的综合控制,并且有助于进行程序功能的扩展,加入新的功能模块,甚至包括图形化界面。在另外的实施例中,中央控制系统还可以采用Raspberry Pi,Arduino或单片机等。
图10是继电器驱动阵列的示意图,为了自动化驱动高功率的负载,本发明的微流液滴生成装置采用稳定的固态+电磁继电器级连的方式进行硬件驱动。Vcc接好后,用逻辑1即可触发状态切换。
图11是电源模块的示意图,由于本发明的微流液滴生成装置的整体功耗不高,可选用常用的开关电源。例如,5V作为逻辑电路的供电,24V作为负载供电。需注意的是,这两路直流需要共地,否则后续需要强制进行电位拉平,以避免增加不必要的功耗。
图12是气压与位置传感器的示意图,可利用常见元件,以进行气压监控,例如,采用比例阀自带的气压传感器模块来检测芯片夹具出口位置的气压,但实际操作时,如果液滴生成非常稳定,则没有必要在芯片夹具端进行额外监控位置传感器用于检查芯片夹具是否关紧。
图13是根据本发明一个实施例的微流液滴生成装置的整体连接图,其中示意了电源、气瓶(即气压缓冲瓶)、气泵(即气压源)、芯片夹具、电磁继电器(即继电器驱动阵列)、比例阀(即比例稳压阀门)、数模转换器MCP4725、模数转换器ADS1115、二位三通阀(即夹具切换模块)、光电传感器之间的连接关系,其中气瓶和比例阀之间、比例阀和二位三通阀 之间、二位三通阀和夹具之间、气瓶和气泵之间是气路连接,其他是电路连接,光电传感器用于检测芯片夹具是否盖紧。应理解的是,本发明的装置还进一步包括运行灯、系统开关、运行开关等,以监测或控制装置的运行。
需要说明的是,本发明的微流液滴生成装置在实际应用中还包括:控制软件,例如用于GPIO(通用型输入输出)控制、通讯与数模/模数转换控制、气压校准控制、芯片夹具定位传感等。此外,还可进一步包括外壳与人机交互设计,例如指示灯与控制按钮、夹具人体工学设计、散热与电磁屏闭等。在此不再一一赘述。
应理解的是,在不脱离本发明精神和范围的情况下,本领域技术人员可对上述实施例作适当改变或变型。例如,正压驱动替代为负压驱动、将电压调节的比例调压阀换成电流驱动的比例调压阀、使用机械加工的方式制作液滴生成芯片以替代注塑加工方式、液滴发生芯片的注塑材料除采用COC之外,还可以有PS,COP等、液滴发生芯片的键合方式除了热键合,还可以有胶粘、激光焊接等。
综上所述,本发明实施例的微流液滴生成装置能够作为液滴生成仪样机,实现发生油包水的乳化液滴的功能,该装置自带气源,不需要任何外界附件,并且可重复使用。耗材为注塑芯片,单次用后可抛弃。在实际应用时,将试剂加入液滴发生芯片的水相样品储液池和油相样品储液池,将液滴发生芯片放入芯片夹具并开始运行,然后从液滴发生芯片的液滴收集储液池回收所产生的液滴,整个操作流程快速、简便、直观。
需要说明的是,虽然上文按照特定顺序描述了各个步骤,但是并不意味着必须按照上述特定顺序来执行各个步骤,实际上,这些步骤中的一些可以并发执行,甚至改变顺序,只要能够实现所需要的功能即可。
本发明可以是系统、方法和/或计算机程序产品。计算机程序产品可以包括计算机可读存储介质,其上载有用于使处理器实现本发明的各个方面的计算机可读程序指令。
计算机可读存储介质可以是保持和存储由指令执行设备使用的指令的有形设备。计算机可读存储介质例如可以包括但不限于电存储设备、磁存储设备、光存储设备、电磁存储设备、半导体存储设备或者上述的任意合适的组合。计算机可读存储介质的更具体的例子(非穷举的列表)包括:便携式计算机盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、 可擦式可编程只读存储器(EPROM或闪存)、静态随机存取存储器(SRAM)、便携式压缩盘只读存储器(CD-ROM)、数字多功能盘(DVD)、记忆棒、软盘、机械编码设备、例如其上存储有指令的打孔卡或凹槽内凸起结构、以及上述的任意合适的组合。
以上已经描述了本发明的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。本文中所用术语的选择,旨在最好地解释各实施例的原理、实际应用或对市场中的技术改进,或者使本技术领域的其它普通技术人员能理解本文披露的各实施例。

Claims (10)

  1. 一种微流液滴生成装置,其特征在于,包括液滴生成芯片、芯片夹具和气压驱动组件,所述芯片夹具用于放置和密封所述液滴生成芯片,所述液滴生成芯片用于生成微流液滴,所述气压驱动组件用于向所述芯片夹具内输出期望的气压,其中所述液滴发生芯片上设有水相存储池、油相存储池和液滴存储池,所述水相存储池的水相样品和所述油相存储池的油相样品在气压驱动下流入所述液滴生成芯片内部的微流管道形成液滴,所生成的液滴进而流入所述液滴存储池进行收集。
  2. 根据权利要求1所述的微流液滴生成装置,其特征在于,所述液滴生成芯片整体上为正方形,正方形的一角按斜45度方向设为防呆角,所述芯片夹具的基座设有与所述液滴生成芯片匹配的下沉凹槽。
  3. 根据权利要求1所述的微流液滴生成装置,其特征在于,所述芯片夹具的上盖和下盖之间通过卡扣方式连接,以密封所述液滴生成芯片,并且所述芯片夹具上设有回缩式凹槽,以取放所述液滴生成芯片。
  4. 根据权利要求1所述的微流液滴生成装置,其特征在于,在所述液滴发生芯片和所述芯片夹具之间配置垫片,该垫片上设有与所述水相存储池、所述油相存储池和所述液滴存储池相匹配的凹槽。
  5. 根据权利要求1所述的微流液滴生成装置,其特征在于,所述气压驱动组件包括用于提供气压的气压源、气压缓冲瓶、比例稳压阀门、数模/模数转换模块和芯片夹具切换模块,其中所述气压源和所述气压缓冲瓶之间、所述气压缓冲瓶和所述比例稳压阀门之间、所述比例稳压阀门和所述芯片夹具切换模块之间、所述芯片夹具切换模块和所述芯片夹具之间具有气路连接。
  6. 根据权利要求5所述的微流液滴生成装置,其特征在于,所述芯片夹具切换模块是二位三通阀门,在维持一路输入的情况下对两路输出进行切换。
  7. 根据权利要求1所述的微流液滴生成装置,其特征在于,所述芯片夹具内设有用于监控所述液滴生成芯片和所述芯片夹具之间密封性的传感器。
  8. 根据权利要求1所述的微流控液滴生成装置,其特征在于,所述装置还包括中央控制系统、继电器驱动阵列、电源模块、气压与位置传感器。
  9. 根据权利要求4所述的微流控液滴生成装置,其特征在于,所述芯片夹具采用铝制材料制造,所述液滴生成芯片和所述垫片采用抛弃型耗材制造。
  10. 根据权利要求1所述的微流控液滴生成装置,其特征在于,所述液滴生成芯片通过一体注塑而成。
PCT/CN2019/098398 2019-07-30 2019-07-30 一种微流液滴生成装置 WO2021016870A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/098398 WO2021016870A1 (zh) 2019-07-30 2019-07-30 一种微流液滴生成装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/098398 WO2021016870A1 (zh) 2019-07-30 2019-07-30 一种微流液滴生成装置

Publications (1)

Publication Number Publication Date
WO2021016870A1 true WO2021016870A1 (zh) 2021-02-04

Family

ID=74228402

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/098398 WO2021016870A1 (zh) 2019-07-30 2019-07-30 一种微流液滴生成装置

Country Status (1)

Country Link
WO (1) WO2021016870A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040203055A1 (en) * 2001-03-02 2004-10-14 Caliper Life Sciences, Inc. Priming module for microfluidic chips
CN105344404A (zh) * 2015-12-04 2016-02-24 苏州汶颢芯片科技有限公司 微流控芯片夹具
CN206553532U (zh) * 2017-02-27 2017-10-13 武汉科技大学 微滴式数字pcr芯片模块
CN108514895A (zh) * 2018-03-01 2018-09-11 北京天健惠康生物科技有限公司 一种微液滴生成及监测装置
CN109289949A (zh) * 2018-10-15 2019-02-01 苏州锐讯生物科技有限公司 一种全自动微液滴乳浊液生成装置及其生成方法
CN209144161U (zh) * 2018-09-29 2019-07-23 深圳华大生命科学研究院 微流控芯片系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040203055A1 (en) * 2001-03-02 2004-10-14 Caliper Life Sciences, Inc. Priming module for microfluidic chips
CN105344404A (zh) * 2015-12-04 2016-02-24 苏州汶颢芯片科技有限公司 微流控芯片夹具
CN206553532U (zh) * 2017-02-27 2017-10-13 武汉科技大学 微滴式数字pcr芯片模块
CN108514895A (zh) * 2018-03-01 2018-09-11 北京天健惠康生物科技有限公司 一种微液滴生成及监测装置
CN209144161U (zh) * 2018-09-29 2019-07-23 深圳华大生命科学研究院 微流控芯片系统
CN109289949A (zh) * 2018-10-15 2019-02-01 苏州锐讯生物科技有限公司 一种全自动微液滴乳浊液生成装置及其生成方法

Similar Documents

Publication Publication Date Title
US20210130891A1 (en) Sequencing device
CA2590649C (en) Electrokinetic device employing a non-newtonian liquid
US11318464B2 (en) Automated machine for sorting of biological fluids
WO2021016870A1 (zh) 一种微流液滴生成装置
US9328849B2 (en) Microdevice structure of microchannel chip
CN1737562A (zh) 微流控芯片毛细管电泳负压进样方法
US8173078B2 (en) Gravity-driven micropump
CN101839919B (zh) 流体控制装置
US20210205806A1 (en) Microfluidic chip system and method for preparing droplets
CN103055984B (zh) 一种微流管道内驱动装置
JP2007177769A (ja) マイクロポンプ装置
CN217888039U (zh) 一种分体式芯片液滴生成仪
JP4528330B2 (ja) マイクロポンプ及びマイクロ流体チップ
JP2013128876A (ja) オゾン液生成装置
CN209229111U (zh) 一种可接入式气动控制软启动卸荷阀
CN101493434A (zh) 弹性空心球负压源的微流控芯片负压进样和分离装置
JP7332055B2 (ja) 流体特性センサ
CN212595791U (zh) 微液滴生成装置
US20220168737A1 (en) Well assemblies and related methods
Duan et al. A facile method for microfluidic metering and transport
US10507464B2 (en) Microfluidic device
Ke et al. Stable pressure driving system for generation of droplets on demand
WO2014150798A1 (en) Interface for microfluidic chip
WO2023072873A1 (en) Apparatus for controlling positive and negative pressure or flow in a fluidic system
JP2022012309A (ja) 液体取扱装置および液体取扱方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19939154

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19939154

Country of ref document: EP

Kind code of ref document: A1