WO2021015190A1 - Powder composition and use of same - Google Patents

Powder composition and use of same Download PDF

Info

Publication number
WO2021015190A1
WO2021015190A1 PCT/JP2020/028230 JP2020028230W WO2021015190A1 WO 2021015190 A1 WO2021015190 A1 WO 2021015190A1 JP 2020028230 W JP2020028230 W JP 2020028230W WO 2021015190 A1 WO2021015190 A1 WO 2021015190A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
component
composition
angle
additive
Prior art date
Application number
PCT/JP2020/028230
Other languages
French (fr)
Japanese (ja)
Inventor
中村 明彦
圭 近藤
翼 兼中
Original Assignee
日本製紙株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製紙株式会社 filed Critical 日本製紙株式会社
Priority to JP2021534042A priority Critical patent/JPWO2021015190A1/ja
Publication of WO2021015190A1 publication Critical patent/WO2021015190A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/16Sulfur-containing compounds
    • C04B24/18Lignin sulfonic acid or derivatives thereof, e.g. sulfite lye
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/26Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L55/00Compositions of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C08L23/00 - C08L53/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L97/00Compositions of lignin-containing materials

Definitions

  • the present invention relates to a powdered composition and its use, and more particularly to a powdered composition, a solid composition, an additive for a hydraulic composition, and a hydraulic composition.
  • Lignin is a natural polymer substance present in trees and accounts for about 30% of wood. Lignin is abundantly contained in kraft pulp production waste liquid (kraft pulp waste liquid), sulfite pulp production waste liquid (sulfite pulp waste liquid), and the like. From the viewpoint of reducing the environmental load in recent years, lignin tends to attract attention as one of the biomass resources.
  • Kraft lignin contained in kraft pulp waste liquid and lignin sulfonic acid contained in sulfite pulp waste liquid have different physical properties and are used for various purposes.
  • lignin derivatives obtained by sulfomethylating kraft lignin with sulfites and formaldehyde lignin derivatives obtained by partially desulfonated lignin sulfonic acid or salts of lignin sulfonic acid, and lignin purified products purified by ultrafiltration treatment are lignin.
  • As a system dispersant it is widely used in a wide range of industrial fields such as dyes, cements, inorganic pigments, organic pigments, gypsum, coal-water slurry, pesticides, and ceramics.
  • lignin derivatives that can improve the dispersibility of various dispersoids have been proposed regardless of their uses such as cement, dyes, and muddy water for oil field drilling. (See, for example, Patent Document 1).
  • the solid lignin derivative Since the solid lignin derivative has good powder properties, it is excellent in workability at the time of transporting or charging the drug.
  • the conventional lignin derivative as an additive for a hydraulic composition does not have a satisfactory dispersibility effect when added in a small amount. It is necessary to add a large amount of lignin derivative in order to develop initial dispersibility and dispersion retention in the hydraulic composition. Therefore, it is desired to develop an additive for a powdery hydraulic composition having powder properties equivalent to those of a conventional solid lignin derivative and having excellent initial dispersibility and dispersion retention.
  • Tablet-type additives are superior in transportability and workability as compared with liquid products and powder products, which have been the main product forms of additives for hydraulic compositions.
  • the powder properties of the lignin derivative as an additive for a conventional hydraulic composition are not suitable for tablet moldability, and it is difficult to tablet.
  • the solubility of the tablets in the hydraulic composition was poor, and the dispersibility effect was not sufficiently obtained. Therefore, it is desired to develop an additive for a hydraulic composition that is easy to tablet, has good solubility in the hydraulic composition, and is also excellent in dispersibility.
  • the first object of the present invention is water having powder characteristics equivalent to those of conventional additives for powdery water-hard composition such as lignin derivatives, and having excellent initial dispersibility and dispersion retention. It is to provide a powdery composition suitable for an additive for a rigid composition.
  • the second object of the present invention is suitable for producing a solid additive for a hydraulic composition, which is easy to solidify, has good solubility in a hydraulic composition, and is also excellent in dispersibility. Is to provide a powdered composition.
  • the present inventors have at least containing a lignin derivative and a copolymer composed of a predetermined structural unit, an angle of repose of 50.0 ° or less, and a loose bulk density of 0.4 g / g.
  • a powdery composition satisfying at least one of m 3 or less, a collapse angle of 27.0 ° or more, and a particle size distribution of 100 ⁇ m or more can solve the above problems, and has completed the present invention.
  • R 1 to R 3 independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
  • P represents an integer of 0 to 2.
  • q is 0.
  • a 1 O represents an oxyalkylene group having 2 to 18 carbon atoms, which may be the same or different.
  • N represents an integer of 1 to 300.
  • R 4 represents a hydrogen atom. Or it represents a hydrocarbon group having 1 to 30 carbon atoms.
  • R 5 ⁇ R 7 are each independently a hydrogen atom, a methyl group, or - represents a (CH 2) r COOM 2 group where, -.
  • (CH 2) may be formed r COOM 2 groups and anhydride groups when forming anhydride groups, the M 1 or M 2 of these groups present No. M 1 to M 2 independently represent a hydrogen atom, an alkali metal, an alkaline earth metal, an ammonium group, an alkylammonium group, or a substituted alkylammonium group.
  • R represents an integer of 0 to 2.
  • R 8 to R 10 each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
  • R 11 contains a hetero atom having 1 to 4 carbon atoms. Represents a hydrocarbon group that may be used.
  • S represents an integer of 0 to 2.
  • [2] The composition according to [1], wherein the collapse angle is 30.0 ° or more.
  • the composition according to [1] or [2], wherein the difference angle represented by the following mathematical formula ( ⁇ ) is 19.0 ° or less. Difference angle angle of repose-collapse angle ... ( ⁇ ) [4]
  • [5] The composition according to [4], wherein the weight ratio ((A) / (B)) of the component (A) to the component (B) is 99: 1 to 51:49.
  • [6] The composition according to any one of [1] to [3], wherein the decay angle is 27.0 ° or more and the particle size distribution is 100 ⁇ m or more.
  • [7] The composition according to [6], wherein the weight ratio ((A) / (B)) of the component (A) to the component (B) is 50:50 to 1:99.
  • a solid composition which is a solidified product of the composition according to any one of [1] to [7].
  • [9] The composition according to [8], wherein the solidified product is a solidified product of the composition according to [6] or [7].
  • [11] A hydraulic composition containing the additive according to [10].
  • [1-1] to [1-3] are preferable as the powdery additive and its use.
  • [1-1] Addition for a powdery hydraulic composition containing at least the components (A) and (B), having an angle of repose of 50.0 ° or less, and a loosening bulk density of 0.40 g / m 3 or less. Agent.
  • [1-2] The powdery hydraulic composition according to [1-1], wherein the weight ratio ((A) / (B)) of the component (A) to the component (B) is 99: 1 to 51:49.
  • Additives for products [1-3] A hydraulic composition containing the additive for a powdery hydraulic composition according to [1-1] or [1-2].
  • [2-1] to [2-6] are preferable as the solid additive and its use.
  • a water-hard composition having powder fluidity equivalent to that of a conventional additive for a powdery water-hard composition such as a lignin derivative, and having excellent initial dispersibility and dispersion retention.
  • a powdery composition suitable for a product additive can be provided.
  • the obtained solidified product has good solubility in a hydraulic composition and is also excellent in dispersibility for producing an additive for a hydraulic composition.
  • a powdery composition suitable for the above can be provided.
  • AA-BB AA or more and BB or less.
  • (meth) acrylic it means acrylic and / or methacrylic.
  • the powdery composition of the present invention contains a component (A): a lignin derivative and a component (B): a copolymer having a predetermined structural unit, has an angle of repose of 50.0 ° or less, and has a loose bulk density of 0. It satisfies at least one of 40 g / m 3 or less, a collapse angle of 27.0 ° or more, and a particle size distribution of 100 ⁇ m or more.
  • the angle of repose of the powdered composition is usually 50.0 ° or less, preferably 48.0 ° or less. When the angle of repose is 50.0 ° or less, the powder fluidity and workability can be improved.
  • the lower limit is usually 35.0 ° or more, but is not particularly limited.
  • the angle of repose is a value measured using a powder test device (Powder Tester PT-X (manufactured by Hosokawa Micron Co., Ltd.)) in a sample prepared with a solid content of 95% or more.
  • the loose bulk density of the powdered composition is usually 0.40 g / m 3 or less, preferably 0.36 g / m 3 or less.
  • excellent powder fluidity can be obtained.
  • the diffusibility and initial dispersibility at the time of adding the hydraulic composition are improved.
  • the lower limit is usually 0.25 g / m 3 or more, but is not particularly limited.
  • the loose bulk density is a value measured using a powder property test device (Powder Tester PT-X (manufactured by Hosokawa Micron Co., Ltd.)) in a sample having a solid content adjusted to 95% or more.
  • the decay angle of the powdery composition is usually 27.0 ° or more, preferably 30.0 ° or more.
  • the disintegration angle is 27.0 ° or more, the powder property is lowered, so that it can have excellent tablet suitability.
  • a solidified product obtained by solidifying a powdery composition is added to a hydraulic composition, excellent disintegration property can be obtained.
  • the upper limit of the collapse angle is usually 45.0 ° or less, but is not particularly limited.
  • the decay angle is a value measured using a powder test device (Powder Tester PT-X (manufactured by Hosokawa Micron Co., Ltd.)) on a sample having a solid content adjusted to 95% or more.
  • the particle size distribution of the powdery composition is usually 60 ⁇ m or more, 65 or more, 70 or more, or 100 ⁇ m or more, preferably 105 ⁇ m or more, more preferably 107 ⁇ m or more, still more preferably 200 ⁇ m or more.
  • the upper limit of the particle size distribution is usually 500 ⁇ m or less, but is not particularly limited.
  • the horizontal axis is the particle size ( ⁇ m) and the vertical axis is from the molecular weight distribution obtained by measuring 3 g of the powder sample with a laser diffraction type particle size distribution measuring device (Mastersizer 3000 (manufactured by Malvern)) under dry conditions.
  • the axis is represented as a volume (%), and the accumulation distribution is a value of 50%.
  • the difference angle of the powdery composition is preferably 19.0 ° or less. When the difference angle is 19.0 ° or less, the powder property is lowered, so that it can have excellent tablet suitability. Further, when the solidified product is added to the hydraulic composition, excellent disintegration property can be obtained.
  • the lower limit of the difference angle is usually 5.0 ° or more, but is not particularly limited.
  • the powdery composition of the present invention contains at least the component (A).
  • the component (A) is a lignin derivative.
  • the lignin derivative may be a compound having a lignin skeleton, and is preferably lignin sulfonic acid or a salt thereof, kraft lignin, or a combination thereof.
  • lignin sulfonic acid refers to a compound in which at least a part of lignin or a derivative thereof is substituted with a sulfonic acid (salt) group.
  • Kraft lignin refers to a compound having a thiol group in at least a part of lignin or a derivative thereof.
  • the component (A) may be one kind of lignin derivative or a combination of two or more kinds.
  • the content of the component (A) is 51% by weight or more based on the total amount of the component (A) and the component (B). Preferably, 55% by weight or more is more preferable, and 60% by weight or more is even more preferable. When the content of the component (A) is 51% by weight or more, a powdery substance having good powder fluidity can be obtained in good yield.
  • the content of the component (A) is less than 50% by weight based on the total amount of the component (A) and the component (B). It is preferably 45% by weight or less, more preferably 45% by weight or less. When the content of the component (A) is less than 50% by weight, a solid product having good moldability can be obtained in good yield.
  • the lignin derivative As the lignin derivative, a prepared one may be used, or a commercially available product may be used. Here, a method for preparing a lignin derivative is exemplified below. However, the lignin derivative is not limited to the one prepared by the following preparation method.
  • Method of preparing lignin derivative examples include a method for preparing the lignocellulose raw material by treating it with sulfurous acid, and preferably a method for preparing the lignocellulose raw material by treating it with sulfurous acid.
  • the lignocellulose raw material is not particularly limited as long as it contains lignocellulose in its constituents.
  • pulp raw materials such as wood and non-wood can be mentioned.
  • the wood include coniferous wood such as Ezomatsu, Picea glehnii, Sugi, and Hinoki; and broad-leaved wood such as birch and beech.
  • the age of the wood and the collection site do not matter. Therefore, wood collected from trees of different ages or wood collected from different parts of the trees may be used in combination.
  • non-wood include bamboo, kenaf, reeds, and rice.
  • these materials may be used alone or in combination of two or more.
  • the sulfite treatment is a treatment in which at least one of sulfite and sulfite can be brought into contact with the lignocellulose raw material to obtain an intermediate product.
  • the conditions for the sulfurous acid treatment are not particularly limited as long as the sulfonic acid (salt) group can be introduced into the ⁇ carbon atom of the side chain of lignin contained in the lignocellulose raw material.
  • the sulfurous acid treatment is preferably carried out by a sulfurous acid cooking method.
  • lignin in the lignocellulose raw material can be sulfonated more quantitatively.
  • the sulfurous acid cooking method is a method in which a lignocellulose raw material is reacted at a high temperature in at least one solution of sulfite and sulfite (for example, an aqueous solution: a cooking solution). This method has been industrially established and practiced as a method for producing sulfite pulp. Therefore, by performing the sulfurous acid treatment by the sulfurous acid cooking method, economic efficiency and ease of implementation can be improved.
  • Examples of the sulfite salt include magnesium salt, calcium salt, sodium salt, and ammonium salt when sulfurous acid cooking is performed.
  • the concentration of sulfurous acid (SO 2 ) in at least one solution of sulfite and sulfite is not particularly limited, but the ratio of the weight (g) of SO 2 to 100 mL of the solution is preferably 1 g / 100 mL or more.
  • the pH value of the sulfurous acid treatment is not particularly limited, but is preferably 10 or less, and more preferably 5 or less when sulfurous acid cooking is performed.
  • the lower limit of the pH value is preferably 0.1 or more, and more preferably 0.5 or more when sulfurous acid cooking is performed.
  • the pH value during sulfurous acid treatment is preferably 0.1 to 10, and more preferably 0.5 to 5 when sulfurous acid cooking is performed.
  • the temperature of the sulfurous acid treatment is not particularly limited, but is preferably 170 ° C. or lower.
  • the lower limit is preferably 70 ° C. or higher.
  • a compound that supplies a counter cation salt
  • the pH value in the sulfite treatment can be kept constant.
  • the compound that supplies the counter cation include MgO, Mg (OH) 2 , CaO, Ca (OH) 2 , CaCO 3 , NH 3 , NH 4 OH, NaOH, NaOH, Na HCO 3 , and Na 2 CO 3 .
  • the counter cation is preferably sodium ion, magnesium ion or calcium ion.
  • the inorganic salt is usually contained in about 3 to 20% in the lignin derivative, and can be measured by a known method.
  • sulfite and sulfite are used in the sulfite treatment, in addition to SO 2 , the above counter cation (salt) and a cooking penetrant (for example, anthraquinone sulfonate, for example, are used in the solution, if necessary.
  • a cooking penetrant for example, anthraquinone sulfonate, for example.
  • Cyclic ketone compounds such as anthraquinone and tetrahydroanthraquinone may be included.
  • the equipment used for the sulfurous acid treatment is not limited, and for example, generally known equipment for producing dissolved pulp can be used.
  • the separation method include a method for separating the sulfurous acid digestion effluent after the sulfurous acid cooking.
  • a sulfite-treated product is obtained through a step of washing and dehydrating the intermediate composition.
  • the components contained in the intermediate composition that cannot be completely removed by the sulfurous acid treatment can be removed.
  • the washing may be carried out in the same manner as the washing of unbleached sulfite pulp obtained by the sulfite cooking method.
  • the cleaning may be a one-step cleaning or a multi-stage cleaning. By performing multi-step cleaning, cleaning can be sufficiently performed.
  • dehydration may be performed each time, or may be performed only a part of the times.
  • Cleaning is usually performed using a washing machine.
  • the washing machine used for washing is not particularly limited. For example, a replacement washing type washing machine and a dilution dehydration washing type washing machine can be mentioned.
  • Dehydration can be carried out under normal conditions, and may be carried out in the same manner as, for example, dehydration of unbleached sulfite pulp after washing obtained in the sulfite cooking method.
  • a dehydrator is usually used for dehydration.
  • the dehydrator used for dehydration is not particularly limited. For example, a drum type drawing dehydrator, a rotary press, and a continuous pressing dehydrator can be mentioned.
  • the washed and dehydrated sulfite-treated product is separated and purified to obtain the desired lignin derivative.
  • the separation and purification include an alkali oxidation treatment step and an ultrafiltration treatment step.
  • the sulfite-treated product can be subjected to alkali oxidation treatment, and then the insoluble matter can be centrifuged and recovered as a supernatant.
  • Alkaline oxidation treatment may be performed by placing the sulfurous acid-treated product under alkaline conditions.
  • "Keeping under alkaline conditions” usually means putting under an aqueous solution having a pH value of 8 or more, preferably a pH value of 9 or more.
  • the upper limit of the pH value is usually 14.
  • an alkaline substance is usually brought into contact with the sulfurous acid-treated product.
  • the alkaline substance is not particularly limited, and examples thereof include calcium hydroxide, magnesium hydroxide, sodium hydroxide, potassium hydroxide, sodium carbonate, and ammonia. Of these, sodium hydroxide is preferable.
  • the alkaline substance may be used alone or in combination of two or more.
  • a method of preparing a dispersion or solution (for example, an aqueous dispersion or an aqueous solution) of the sulfite-treated product and adding the alkaline substance to the dispersion or solution, or sulfurous acid is a method of adding a solution or dispersion of an alkaline substance (for example, an aqueous dispersion or an aqueous solution) to the treated product.
  • the temperature of the alkali oxidation treatment is not particularly limited, but is preferably 40 ° C. or higher, and more preferably 60 ° C. or higher.
  • the upper limit is preferably 150 ° C. or lower.
  • the amount of the alkaline substance in the alkali oxidation treatment is determined based on the solid content weight of the sulfite-treated product, or when preparing an aqueous solution or dispersion in which the alkali-treated extract is dispersed in an aqueous solvent (for example, water). It is preferably 0.5 to 20% by weight, more preferably 1.0 to 15% by weight, based on the weight of the liquid.
  • the time of the alkali oxidation treatment is not particularly limited, but 0.1 hours or more is preferable, and 0.5 hours or more is more preferable.
  • the upper limit is preferably 10 hours or less, more preferably 6 hours or less.
  • the sulfite-treated product may be dissolved, dispersed, and adjusted in concentration (preparation of a solution or dispersion of an aqueous solvent such as water), if necessary.
  • concentration preparation of a solution or dispersion of an aqueous solvent such as water
  • the dispersion treatment can be performed by passing through a disc refiner, adding to a mixer or a disperser, a kneader treatment, or the like.
  • the concentration can be adjusted using, for example, an aqueous solvent such as water.
  • the ultrafiltration treatment step can be performed using an ultrafiltration membrane (hereinafter, also referred to as “UF membrane”).
  • UF membrane a known UF membrane can be used.
  • a hollow fiber membrane, a spiral membrane, a tubular membrane, and a flat membrane can be mentioned.
  • a known material for the UF membrane can be used.
  • cellulose acetate, aromatic polyamide, polyvinyl alcohol, polysulfone, polyvinylidene fluoride, polyethylene, polyacrylonitrile, ceramics can be mentioned.
  • the UF membrane may be a commercially available product.
  • the fractional molecular weight of the UF membrane is preferably 5,000 to 30,000, more preferably 10,000 to 25,000, and even more preferably 15,000 to 23,000.
  • a UF membrane having a molecular weight cut-off of 5,000 or more it is possible to prevent the black liquor from becoming excessively slow.
  • a UF membrane having a molecular weight cut-off of 30,000 or less it is possible to prevent lignin from being separated from the black liquor.
  • the concentration ratio by ultrafiltration using the UF membrane can be set arbitrarily. That is, the ultrafiltration treatment may be stopped when the outflow amount of the concentrated liquid reaches an arbitrary amount.
  • the temperature of the black liquor during the ultrafiltration treatment is not particularly limited. For example, 20 to 80 ° C. is preferable, and 20 to 70 ° C. is more preferable in consideration of the heat resistant surface of the UF membrane material.
  • the pH value of the black liquor during the ultrafiltration treatment is preferably 2 to 11.
  • the solid content concentration (w / w) of the black liquor during the ultrafiltration treatment is preferably 2 to 30%, more preferably 5 to 15%.
  • the powdered composition of the present invention contains at least the component (B).
  • the component (B) is a structural unit (I) derived from the monomer represented by the general formula (1), a structural unit (II) derived from the monomer represented by the general formula (2), and general. It is a copolymer having at least two kinds of structural units selected from the group consisting of the structural unit (III) derived from the monomer represented by the formula (3).
  • the copolymer of the component (B) may be one kind or a combination of two or more kinds.
  • the content of the component (B) is 1 to 49% by weight based on the total amount of the component (A) and the component (B). Is preferable, 1 to 45% by weight is more preferable, and 1 to 40% by weight is further preferable. When the content of the component (B) is in such a range, a powdery substance having better water solubility can be obtained after drying.
  • the content of the component (B) is 50 to 50 to the total amount of the component (A) and the component (B). 90% by weight is preferable, and 55 to 90% by weight is more preferable.
  • the content of the component (B) is in such a range, a solid substance having better water solubility can be obtained after drying. The details of each structural unit will be described below.
  • the structural unit (I) is a structural unit derived from the monomer represented by the following general formula (1).
  • R 1 to R 3 independently represent an alkyl group having a hydrogen atom or a carbon atom number of 1 to 3.
  • p represents an integer of 0 to 2.
  • q represents an integer of 0 to 1.
  • a 1 O represents an oxyalkylene group having 2 to 18 carbon atoms, which may be the same or different.
  • n represents an integer from 1 to 300.
  • R 4 represents a hydrogen atom or a hydrocarbon group having 1 to 30 carbon atoms.
  • R 1 is preferably a hydrogen atom.
  • R 2 is preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and more preferably a hydrogen atom or a methyl group.
  • R 3 is preferably a hydrogen atom.
  • a 1 O represents an oxyalkylene group having 2 to 18 carbon atoms, which may be the same or different.
  • the oxyalkylene group alkylene glycol unit
  • examples of the oxyalkylene group include an oxyethylene group (ethylene glycol unit), an oxypropylene group (propylene glycol unit), and an oxybutylene group (butylene glycol unit). Of these, an oxyethylene group and an oxypropylene group are preferable.
  • each A 1 O is the same oxyalkylene group. It means that they may be different (two or more kinds) oxyalkylene groups from each other.
  • a plurality of A 1 O are contained in the general formula (1)
  • two or more oxyalkylene groups selected from the group consisting of an oxyethylene group, an oxypropylene group and an oxybutylene group are mixed can be mentioned. Be done.
  • the oxyethylene group and the oxypropylene group are mixed, or the oxyethylene group and the oxybutylene group are mixed, and the oxyethylene group and the oxypropylene group are mixed. More preferably.
  • the addition of two or more types of oxyalkylene groups may be block-like addition or random addition.
  • N in the general formula (1) is the average number of moles of the oxyalkylene group added, and represents an integer of 1 to 300. n is preferably 1 to 200. The average number of moles added means the average value of the number of moles of oxyalkylene groups added to 1 mole of the monomer.
  • R 4 represents a hydrogen atom or a hydrocarbon group having 1 to 30 carbon atoms.
  • R 4 is preferably a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms, more preferably a hydrogen atom or a hydrocarbon group having 1 to 5 carbon atoms, and even more preferably a hydrogen atom or a methyl group.
  • the number of carbon atoms of R 4 is in this range, the number of carbon atoms does not become too large, so that the dispersibility is satisfactorily exhibited when it is used as an additive for a hydraulic composition.
  • a method for producing a monomer represented by the general formula (1) for example, 1 to 300 alkylene oxides are added to unsaturated alcohols such as allyl alcohol, methallyl alcohol, and 3-methyl-3-buten-1-ol.
  • unsaturated alcohols such as allyl alcohol, methallyl alcohol, and 3-methyl-3-buten-1-ol.
  • a method of adding moles can be mentioned.
  • the monomer produced by this method include (poly) ethylene glycol allyl ether, (poly) ethylene glycol metalyl ether, (poly) ethylene glycol 3-methyl-3-butenyl ether, and (poly) ethylene glycol.
  • Other methods for producing the monomer represented by the general formula (1) include unsaturated monocarboxylic acids such as (meth) acrylic acid, (poly) ethylene glycol, and (poly) ethylene (poly) propylene. Glycol, (poly) ethylene (poly) butylene glycol, methoxy (poly) ethylene glycol, methoxy (poly) ethylene (poly) propylene glycol, methoxy (poly) ethylene (poly) butylene glycol and other (poly) alkylene glycols. Examples include methods of esterification.
  • Examples of the monomer produced by this method include (poly) ethylene glycol (meth) acrylate, (poly) ethylene (poly) propylene glycol (meth) acrylate, and (poly) ethylene (poly) butylene glycol (meth).
  • (Poly) alkylene glycol (meth) acrylate such as acrylate; methoxy (poly) ethylene glycol (meth) acrylate, methoxy (poly) ethylene (poly) propylene glycol (meth) acrylate, methoxy (poly) ethylene (poly) butylene glycol ( Examples thereof include methoxy (poly) alkylene glycol (meth) acrylate such as (poly) alkylene glycol (meth) acrylate such as meta) acrylate.
  • (poly) alkylene glycol (meth) acrylate and methoxy (poly) ethylene glycol (meth) acrylate are preferable, and methoxy (poly) ethylene glycol (meth) acrylate is more preferable.
  • the copolymer When the copolymer has a structural unit (I), it may have only one structural unit (I), and has two or more structural units (I) derived from different monomers. You may be.
  • the structural unit (II) is a structural unit derived from the monomer represented by the following general formula (2).
  • R 5 ⁇ R 7 are each independently a hydrogen atom, a methyl group, or - represents a (CH 2) r COOM 2 group. However, - (CH 2) When referring to r COOM 2 group, -COOM 1 group or other - (CH 2) may be formed r COOM 2 groups and anhydride groups. When forming anhydride groups, M 1 or M 2 of those groups is absent. M 1 to M 2 independently represent a hydrogen atom, an alkali metal, an alkaline earth metal, an ammonium group, an alkylammonium group, or a substituted alkylammonium group. r represents an integer of 0 to 2.
  • R 5 is preferably a hydrogen atom.
  • R 6 is preferably a hydrogen atom, a methyl group or (CH 2 ) r COMM 2 .
  • R 7 is preferably a hydrogen atom.
  • M 1 and M 2 are hydrogen atoms, alkali metals, alkaline earth metals, ammonium groups, alkylammonium groups or substituted alkylammonium groups, which may be the same or different.
  • M 1 and M 2 hydrogen atoms, alkali metals, or alkaline earth metals are preferable, respectively.
  • R represents an integer of 0 to 2. r is preferably 0 or 1, more preferably 0.
  • Examples of the monomer represented by the general formula (2) include unsaturated monocarboxylic acid-based monomers and unsaturated dicarboxylic acid-based monomers.
  • Specific examples of unsaturated monocarboxylic acid-based monomers include acrylic acid, methacrylic acid, crotonic acid, and these monovalent metal salts, ammonium salts, and organic amine salts.
  • Specific examples of the unsaturated dicarboxylic acid include maleic acid, itaconic acid, citraconic acid, fumaric acid and the like, their monovalent metal salts, ammonium salts and organic amine salts and the like, or anhydrides thereof.
  • acrylic acid, methacrylic acid, and maleic acid are preferable.
  • the copolymer When the copolymer has a structural unit (II), it may have only one structural unit (II), or has two or more structural units (II) derived from different monomers. You may be.
  • the structural unit (III) is a structural unit derived from the monomer represented by the following general formula (3).
  • R 8 to R 10 each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
  • R 11 represents a hydrocarbon group which may contain a heteroatom having 1 to 4 carbon atoms.
  • s represents an integer of 0 to 2. Examples of alkyl groups having 1 to 3 carbon atoms are the same as those in R 1 ⁇ R 3.
  • R 8 is preferably a hydrogen atom.
  • R 9 is preferably a hydrogen atom.
  • R 10 is preferably a hydrogen atom.
  • R 11 represents a hydrocarbon group which may contain a heteroatom having 1 to 4 carbon atoms.
  • the number of carbon atoms is preferably 1 to 3, more preferably 2 to 3, and even more preferably 3.
  • the hetero atom include an oxygen atom, a nitrogen atom, a phosphorus atom, and a silicon atom. Among these, an oxygen atom is preferable.
  • the hydrocarbon group having 1 to 4 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, a butyl group, an isobutyl group and a sec-butyl group.
  • the number of heteroatoms contained in R 11 may be one or two or more. When two or more heteroatoms are contained, each heteroatom may be the same or different from each other.
  • R 11 is preferably a hydrocarbon group having 1 to 4 carbon atoms containing a heteroatom, and more preferably a hydrocarbon group having 1 to 4 carbon atoms containing an oxygen atom.
  • the group include a 2-hydroxyethyl group, a 2-hydroxypropyl group, a 4-hydroxybutyl group, and a glyceryl group. Among these, 2-hydroxyethyl group and 2-hydroxypropyl group are preferable.
  • s represents an integer of 0 to 2. s is preferably 0.
  • Examples of the monomer represented by the general formula (3) include monoesters of unsaturated monocarboxylic acids.
  • Examples of the unsaturated monocarboxylic acid monoester include methyl (meth) acrylate, ethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, and 4-hydroxybutyl (meth) acrylate.
  • Glyceryl (meth) acrylate is preferable.
  • the copolymer When the copolymer has a structural unit (III), it may have only one structural unit (III), and has two or more structural units (III) derived from different monomers. You may be.
  • the copolymer has at least two structural units selected from the group consisting of the above structural units (I) to (III), the coexistence with the component (A) is enhanced, and the component (A) in the cement composition is enhanced. ) Can be dispersed more evenly.
  • the copolymer may have a structural unit (IV) in addition to the structural units (I) to (III).
  • the structural unit (IV) is a structural unit derived from a monomer copolymerizable with the monomers represented by the general formulas (1) to (3).
  • the monomers copolymerizable with the monomers represented by the general formulas (1) to (3) are structurally distinguished from the monomers represented by the general formulas (1) to (3). ..
  • the monomer constituting the structural unit (IV) is not particularly limited, and examples thereof include the following monomers. It should be noted that these monomers can be used alone or in combination of two or more.
  • Examples of the monomer represented by the general formula (IV-1) include 3 of bisphenols such as 4,4'-dihydroxydiphenylpropane, 4,4'-dihydroxydiphenylmethane, and 4,4'-dihydroxydiphenylsulfone. And 3'-position allyl substitutions and the like.
  • Examples of the monomer represented by the general formula (IV-2) include bisphenols such as 4,4′-dihydroxydiphenylpropane, 4,4′-dihydroxydiphenylmethane, and 4,4′-dihydroxydiphenylsulfone. Examples thereof include 3-position allyl substitution products.
  • Examples of the monomer represented by the general formula (IV-3) include allylphenol.
  • Half-esters and diesters of unsaturated dicarboxylic acids such as maleic acid, maleic anhydride, fumaric acid, itaconic acid, and citraconic acid and alcohols having 1 to 30 carbon atoms;
  • a half ester of a (poly) oxyalkylene alkyl ether or (poly) oxyalkylene alkyl amine obtained by adding 1 to 500 mol of an alkylene oxide having 2 to 18 carbon atoms to the alcohol or amine and the unsaturated dicarboxylic acids. , Halfamides, diesters, diamides;
  • (Poly) alkylene glycols such as triethylene glycol di (meth) acrylate, (poly) ethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, (poly) ethylene glycol (poly) propylene glycol di (meth) acrylate Di (meth) acrylates;
  • Polyfunctional (meth) acrylates such as hexanediol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, and trimethylolpropane di (meth) acrylate;
  • (Poly) alkylene glycol dimalates such as triethylene glycol dimalate and polyethylene glycol dimalate;
  • Amides of unsaturated monocarboxylic acids such as methyl (meth) acrylamide and amines with 1 to 30 carbon atoms;
  • Vinyl aromatics such as styrene, ⁇ -methylstyrene, vinyltoluene, p-methylstyrene;
  • Alkanediol mono (meth) acrylates such as 1,5-pentanediol mono (meth) acrylate and 1,6-hexanediol mono (meth) acrylate (however, the monomer represented by the general formula (3) is excluded. .);
  • Dienes such as butadiene, isoprene, 2-methyl-1,3-butadiene, 2-chlor-1,3-butadiene;
  • Unsaturated amides such as (meth) acrylamide, (meth) acrylic alkylamide, N-methylol (meth) acrylamide, N, N-dimethyl (meth) acrylamide;
  • Unsaturated cyanides such as (meth) acrylonitrile and ⁇ -chloroacrylonitrile;
  • Unsaturated esters such as vinyl acetate and vinyl propionate
  • Divinyl aromatics such as divinylbenzene
  • cyanurates such as triallyl cyanurate
  • Allyls such as (meth) allyl alcohol and glycidyl (meth) allyl ether;
  • Vinyl ethers such as methoxypolyethylene glycol monovinyl ether, polyethylene glycol monovinyl ether, methoxypolyethylene glycol mono (meth) allyl ether, polyethylene glycol mono (meth) allyl ether, or allyl ethers (however, a single amount represented by the general formula (1)). Excluding the body.);
  • a siloxane derivative such as -propyl-3-methacrylate) (excluding the monomer represented by the general formula (3)).
  • the copolymer may have only one type of structural unit (IV), or may have two or more types of structural units (IV) derived from different monomers.
  • each of the structural units (I) to (IV) may be a structural unit composed of one type of monomer, or may be composed of a combination of two or more types of monomers. It may be a structural unit.
  • the copolymer is preferably a copolymer which is a combination of the structural unit (I) and the structural unit (II), or a copolymer which is a combination of the structural units (I) to (III).
  • Each copolymer can be prepared by copolymerizing predetermined monomers by a known method. Examples of the method include polymerization methods such as polymerization in a solvent and bulk polymerization.
  • Examples of the solvent used for polymerization in the solvent include water; lower alcohols such as methyl alcohol, ethyl alcohol and isopropyl alcohol; aromatic hydrocarbons such as benzene, toluene and xylene; and fats such as cyclohexane and n-hexane. Group hydrocarbons; esters such as ethyl acetate; ketones such as acetone and methyl ethyl ketone. From the viewpoint of solubility of the raw material monomer and the obtained copolymer, it is preferable to use at least one solvent of water and a lower alcohol, and it is more preferable to use water.
  • each monomer and the polymerization initiator may be continuously added dropwise to the reaction vessel, or a mixture of each monomer and the polymerization initiator may be continuously added dropwise to the reaction vessel. .. Further, the solvent may be charged into the reaction vessel, and the mixture of the monomer and the solvent and the polymerization initiator solution may be continuously added dropwise to the reaction vessel, and a part or all of the monomer may be charged into the reaction vessel to start the polymerization.
  • the agent may be continuously added dropwise.
  • the polymerization initiator that can be used in the polymerization reaction is not particularly limited.
  • Examples of the polymerization initiator that can be used when carrying out the polymerization reaction in an aqueous solvent include persulfates such as ammonium persulfate, sodium persulfate and potassium persulfate; and water-soluble substances such as t-butyl hydroperoxide and hydrogen peroxide. Examples include sex peroxides.
  • an accelerator such as L-ascorbic acid, sodium bisulfite, or molle salt may be used in combination.
  • Examples of the polymerization initiator that can be used when carrying out the polymerization reaction in an organic solvent such as a lower alcohol, an aromatic hydrocarbon, an aliphatic hydrocarbon, an ester or a ketone include benzoyl peroxide and lauryl peroxide. Examples thereof include hydrocarbons; hydroperoxides such as cumene peroxide; and azo compounds such as azobisisobutyronitrile.
  • an accelerator such as an amine compound may be used in combination.
  • the polymerization initiator that can be used when the polymerization reaction is carried out in a water-lower alcohol mixed solvent may be appropriately selected from the above-mentioned polymerization initiator or a combination of the polymerization initiator and the accelerator.
  • the polymerization temperature is usually 40 to 120 ° C., although it varies depending on the polymerization conditions such as the solvent used and the type of the polymerization initiator.
  • the molecular weight can be adjusted by using a chain transfer agent, if necessary.
  • thiol-based chain transfer agents include, for example, mercaptoethanol, thioglycerol, thioglycolic acid, 2-mercaptopropionic acid, 3-mercaptopropionic acid, thioalinic acid, octyl thioglycolate, 2-mercaptoethanesulfonic acid and the like.
  • the pH at the time of the polymerization reaction is usually strongly acidic due to the influence of a monomer having an unsaturated bond. However, this may be adjusted to an appropriate pH. If it is necessary to adjust the pH during the polymerization reaction, adjust the pH using an acidic substance such as phosphoric acid, sulfuric acid, nitric acid, alkylphosphate, alkylsulfuric acid, alkylsulfonic acid, or (alkyl) benzenesulfonic acid. Good. Among these acidic substances, it is preferable to use phosphoric acid for reasons such as having a pH buffering action.
  • the alkaline substance that can be used for adjusting the pH is not particularly limited, and alkaline substances such as NaOH and Ca (OH) 2 are generally used.
  • the pH adjustment may be performed on the monomer before the polymerization reaction or on the copolymer solution after the polymerization reaction. Further, these may be polymerized by adding a part of alkaline substances before the polymerization reaction, and then the pH of the copolymer may be adjusted (for example, adjusted to pH 3 to 7).
  • the copolymer can be prepared as a liquid.
  • the liquid solvent include aqueous solvents.
  • the aqueous solvent include water, alcohols having 1 to 6 carbon atoms (ethyl alcohol, methyl alcohol, ethylene glycol, diethylene glycol, etc.), ketones having 1 to 6 carbon atoms (methylisobutylketone, acetone, etc.), and the like. These aqueous solvents may be used alone or in combination of two or more. Water is preferable as the aqueous solvent.
  • the lower limit of the solid content concentration in the copolymer is preferably 5% by weight or more, more preferably 15% by weight or more.
  • the upper limit thereof is preferably 70% by weight or less, more preferably 65% by weight or less.
  • the component (B) may contain at least one monomer selected from the group consisting of the above general formulas (1) to (3), which is a raw material of the copolymer.
  • the reaction solvent may be removed, concentrated, purified or the like, if necessary.
  • These treatment methods may be conventionally known methods.
  • the lower limit of the weight average molecular weight (Mw) of the copolymer is preferably 5000 or more, more preferably 7000 or more, and further preferably 10000 or more.
  • the upper limit of the weight average molecular weight is preferably 60,000 or less, more preferably 45,000 or less, and even more preferably 30,000 or less.
  • the weight average molecular weight is preferably 5000 to 60,000, more preferably 7,000 to 45,000, and even more preferably 10,000 to 30,000.
  • the lower limit of the molecular weight distribution (Mw / Mn) of the copolymer is preferably 1.0 or more, more preferably 1.2 or more.
  • the upper limit is preferably 3.0 or less, more preferably 2.5 or less.
  • the molecular weight distribution is preferably in the range of 1.0 to 3.0, more preferably in the range of 1.2 to 3.0, and even more preferably in the range of 1.2 to 2.5.
  • the weight average molecular weight can be measured by gel permeation chromatography (GPC) by a known method in terms of polyethylene glycol.
  • GPC gel permeation chromatography
  • the measurement conditions for GPC are not particularly limited, and examples thereof include the following conditions.
  • the weight average molecular weight in the latter example is a value measured under this condition.
  • Measuring device Tosoh column used: Shodex Volume OH-pak SB-806HQ, SB-804HQ, SB-802.5HQ Eluent; 0.05 mM sodium nitrate / acetonitrile 8/2 (v / v) Standard substance: Polyethylene glycol (manufactured by Tosoh or GL Science) Detector; differential refractometer (manufactured by Tosoh Corporation) Calibration curve; polyethylene glycol standard
  • the weight ratio ((A) / (B)) of the component (A) to the component (B) is 99: 1 to 51: 49 is preferable, 90:10 to 55:45 is more preferable, and 80:20 to 60:40 is further preferable.
  • the weight ratio ((A) / (B)) of the component (A) to the component (B) satisfies the above range, sufficient initial dispersibility can be exhibited while maintaining good powder properties.
  • the weight ratio ((A) / (B)) of the component (A) to the component (B) is 1: 99 to 50: 50 is preferable, 10:90 to 45:55 is more preferable, and 20:80 to 40:60 is even more preferable.
  • the weight ratio ((A) / (B)) of the component (A) to the component (B) satisfies the above range, sufficient water solubility and initial dispersibility are exhibited while maintaining good tablet moldability. Can be done.
  • the powdery composition of the present invention may contain any component other than the above-mentioned component (A) and component (B) as long as the effect of the present invention is not impaired.
  • optional components include, for example, a water-soluble polymer, a curing accelerator, a thickener, a polymer emulsion, an air entraining agent, a cement wetting agent, and a swelling agent.
  • Known additives for water-hard composition such as waterproofing agent, coagulant, drying shrinkage reducing agent, strength enhancer, defoaming agent, AE agent, surfactant and the like, excipients and lubricants. These may be used individually by 1 type, and may be used in combination of 2 or more type.
  • Polyalkylene glycol is a water-soluble polymer. More specifically, polyethylene glycol, polypropylene glycol, polyethylene polypropylene glycol, polyethylene polybutylene glycol and the like can be mentioned.
  • the content of the water-soluble polymer is preferably 0.01 to 50% by weight with respect to the component (A).
  • the curing accelerator examples include soluble calcium salts such as calcium chloride, calcium nitrite and calcium nitrate; chlorides such as iron chloride and magnesium chloride; thiosulfate; formic acid; and formates such as calcium formate.
  • the curing accelerator may be used alone or in combination of two or more.
  • the content of the curing accelerator is preferably 0.01 to 50% by weight with respect to the component (A).
  • the solid composition of the present invention is a solidified product of the above-mentioned powdery composition.
  • the solidified product means a processed product obtained by the solidification treatment.
  • the solidification treatment include a dry solidification treatment, a granulation treatment (locking, extrusion), and various molding treatments, but the solidification treatment is not particularly limited.
  • the dosage form of the solid composition include tablets and pellets.
  • the additive for a hydraulic composition of the present invention contains at least one selected from the above-mentioned powdery composition and solid composition as an active ingredient.
  • the dosage form of the additive is preferably powder or solid (for example, tablets or pellets).
  • the dosage form of the additive is in the form of powder, it is preferable to use a powdery composition in which the angle of repose and the loose bulk density satisfy the above conditions as the active ingredient.
  • a solid product of a powdery composition in which the collapse angle and particle size distribution satisfy the above conditions is preferable, and further, a powder form in which at least one of the collapse angle and the difference angle satisfies the above conditions. It is more preferable to use the solidified product of the composition as an active ingredient.
  • the additive for a powdery hydraulic composition means an additive for a hydraulic composition that has undergone a dry solidification treatment but not a granulation treatment in the manufacturing process, and has a solid hydraulic composition.
  • the additive for a material means an additive for a hydraulic composition that has undergone a solidification treatment such as a dry solidification treatment and a granulation treatment in a manufacturing process.
  • the water content of the additive for the hydraulic composition is usually 50% by weight or less, preferably 30% by weight or less, and more preferably 10% by weight or less.
  • the water content of the additive for the hydraulic composition can be measured using an infrared moisture meter (manufactured by Ketsuto Scientific Research Institute Co., Ltd.). The solid content (%) of the examples in the latter stage was measured with this instrument.
  • the additive for hydraulic composition may contain components other than the powdery composition and the solid composition.
  • other additives for hydraulic composition each agent exemplified in 1-3 above can be mentioned.
  • the present invention provides a method for drying and pulverizing a liquid substance containing at least the component (A) and the component (B). For details of each component, see [1. It is the same as the content described in [Powdered composition].
  • a drying method a known method can be used. For example, a method of neutralizing with a hydroxide of a divalent metal such as calcium or magnesium to obtain a polyvalent metal salt and then drying; a method of supporting and drying on an inorganic powder such as a silica-based fine powder; a drying device ( For example, a method of drying and solidifying in a thin film on a support of a drum type drying device, a disk type drying device or a belt type drying device; a method of drying and solidifying with a spray dryer can be mentioned.
  • the water content after the dry solidification treatment is usually 50% by weight or more, preferably 30% by weight or less, and more preferably 10% by weight or less.
  • the powdered composition obtained after dry powdering can be used as it is as an additive for a powdered hydraulic composition, or a solidified product can be obtained by further solidifying treatment for a solid hydraulic composition. It can be used as an additive.
  • the solidification treatment include a dry solidification treatment, a granulation treatment (locking, extrusion), and various molding treatments, but the solidification treatment is not particularly limited.
  • the hydraulic composition of the present invention contains the additive for hydraulic composition according to 4 above. More specifically, the hydraulic composition is a cement paste, mortar, concrete, plaster or the like prepared by adding an additive for a hydraulic composition to a hydraulic material such as cement.
  • hydraulic materials examples include cement, gypsum (hemihydrate gypsum, dihydrate gypsum, etc.), and dolomite.
  • the most common hydraulic material is cement.
  • cement there are no particular restrictions on cement.
  • Portoland cement normal, early-strength, ultra-fast-strength, moderate heat, sulfate-resistant and each low-alkali form
  • various mixed cements blast furnace cement, silica cement, fly ash cement
  • white Portorand cement alumina cement
  • Ultra-fast-hardening cement (1 clinker fast-hardening cement, 2 clinker fast-hardening cement, magnesium phosphate cement
  • grout cement oil well cement
  • low heat-generating cement low-heat-generating blast furnace cement, fly ash mixed low-heat-generating blast furnace cement, belite High-content cement
  • ultra-high-strength cement cement-based solidifying material
  • eco-cement cement manufactured from one or more of municipal waste incineration ash and sewage sludge incineration ash
  • Fine powder such as blast furnace slag, fly ash, cinder ash, clinker ash, husk ash, silica fume, silica sand powder (silica powder), limestone powder, gypsum and the like may be added to the cement.
  • the hydraulic composition may contain aggregate.
  • the aggregate may be either a fine aggregate or a coarse aggregate.
  • Aggregates include, for example, sand, gravel, crushed stone, granulated slag, recycled aggregate, etc., silica stone, silica sand powder (silica powder), clay, zircon, high alumina, silicon carbide, graphite, chromium. Examples thereof include fire-resistant aggregates such as quality, chromagous, and magnesia.
  • the amount of the additive for the hydraulic composition added to the hydraulic composition is not particularly limited.
  • the hydraulic composition is mortar or concrete
  • the following addition amount uniformly disperses the additive for the hydraulic composition in the cement matrix and suppresses the thickening of fresh concrete.
  • a cement composition having good fluidity can be prepared.
  • the amount added is a ratio to the total weight of the hydraulic material (cement).
  • the lower limit of the addition amount (solid content addition amount) of the additive for the hydraulic composition is preferably 0.001% by weight or more, more preferably 0.01% by weight or more, still more preferably 0.1% by weight or more.
  • the upper limit thereof is preferably 30% by weight or less, more preferably 25% by weight or less, and even more preferably 20% by weight or less. That is, 0.001 to 30% by weight is preferable, 0.01 to 25% by weight is more preferable, and 0.1 to 20% by weight is further preferable.
  • the above-mentioned water-hardening compositions include, for example, ready-mixed concrete, concrete for secondary concrete products (precast concrete), centrifugal-forming concrete, vibration-compacting concrete, steam-curing concrete, lightweight aerated concrete, Autoclaved Lightweight aerated Concrete, and the like. It is effective as concrete such as sprayed concrete. In addition, medium-fluidity concrete (concrete with a slump value in the range of 22 to 25 cm), high-fluidity concrete (concrete with a slump value of 25 cm or more and a slump flow value in the range of 50 to 70 cm), self-filling concrete, self-leveling material. It is also effective as mortar or concrete that requires high fluidity such as.
  • particle size distribution ( ⁇ m) From the molecular weight distribution obtained by measuring 3 g of a powder sample with a laser diffraction type particle size distribution measuring device (Mastersizer 3000 (manufactured by Malvern)) under dry conditions, the horizontal axis is the particle size ( ⁇ m). , The vertical axis is represented as volume (%), and the value at which the accumulation distribution is 50% is calculated.
  • the particle size distribution is 100 ⁇ m or more, it is determined that the tablet suitability can be improved because the cohesive force between the particles is improved.
  • Disintegration test 500 mL of water at 10 to 15 ° C. was placed in a 500 mL graduated cylinder, the tablet sample prepared by the above tablet moldability evaluation was added, and the time until the disintegrated sample fell to the bottom was measured. If the disintegration time is 20 seconds or less, the disintegration property is excellent.
  • the reaction was carried out for 1 hour while maintaining the temperature at 100 ° C. Then, the pH was adjusted to 7 with a 31% aqueous sodium hydroxide solution to obtain an aqueous copolymer.
  • the copolymer in the liquid was a copolymer (B-3) (weight average molecular weight 13,000, Mw / Mn1.41).
  • Example 1 Production of additive for powdery hydraulic composition
  • It is a powdery substance obtained by drying the component (A-1) and the component (B-1) of the formulations shown in Table 1 at 140 ° C. with a drum dryer.
  • the solid content of the powder was 95%.
  • Example 2 Production of additive for powdery hydraulic composition
  • the solid content of the powder was 96%.
  • Examples 3 to 5 Production of additives for powdery hydraulic composition
  • It is a powdery substance obtained by drying the component (A-1) and the component (B-2) of the formulations shown in Table 1 at 140 ° C. with a drum dryer.
  • the solid content of the powdered product of Example 3 was 95%
  • the solid content of the powdered product of Example 4 was 97%
  • the solid content of the powdered product of Example 5 was 97%. It was.
  • Example 6 Production of additive for powdery hydraulic composition It is a powdery substance obtained by drying the component (A-1) and the component (B-3) of the formulations shown in Table 1 at 140 ° C. with a drum dryer. The solid content of the powdered product of Example 6 was 95%.
  • Example 7 Production of additive for powdery hydraulic composition It is a powdery substance obtained by drying the component (A-1) and the component (B-4) of the formulations shown in Table 1 at 140 ° C. with a drum dryer. The solid content of the powdered product of Example 7 was 96%.
  • Comparative Example 1 Production of Additive for Powdered Hydraulic Composition It is a powdery substance obtained by drying the component (A-1) produced in Production Example 1 with a spray dryer (inlet temperature 300 ° C., outlet temperature 100 ° C.). The solid content of the powder was 94%.
  • Example 8 to 10 Production of additives for solid hydraulic composition
  • It is a powdery substance obtained by drying the component (A-1) and the component (B-3) of the formulations shown in Table 2 at 140 ° C. with a drum dryer.
  • the solid content of the solid matter of Example 8 was 97%
  • the solid content of the solid matter of Example 9 was 98%
  • the solid content of the solid matter of Example 10 was 97%. It was.
  • Example 11 Production of additive for solid hydraulic composition
  • the mixture of the component (A-1) and the component (B-1) of the formulation shown in Table 2 is a powdery product dried at 140 ° C. by a drum dryer.
  • the solid content of the powder was 97%.
  • Example 12 Production of additive for solid hydraulic composition
  • It is a powdery substance obtained by drying the component (A-1) and the component (B-2) of the formulations shown in Table 2 at 140 ° C. with a drum dryer.
  • the solid content of the powder was 97%.
  • Example 13 Production of additive for solid hydraulic composition
  • a mixture of the component (A-2) and the component (B-2) of the formulation shown in Table 2 is a mass dried at 140 ° C. with a drum dryer.
  • the solid content of the mass was 96%.
  • Example 14 Production of additive for solid hydraulic composition
  • a lump of the mixture of the component (A-3) and the component (B-2) of the formulation shown in Table 2 dried at 140 ° C. with a drum dryer was prepared as a sample mill (manufactured by Kyoritsu Riko Co., Ltd., model: It is a crushed product crushed for 30 seconds with SK-M2 type).
  • the solid content of the pulverized product was 98%.
  • Example 15 Production of additive for solid hydraulic composition
  • the mixture of the component (A-1) and the component (B-3) of the formulation shown in Table 1 is a powdery product dried at 140 ° C. with a drum dryer.
  • the solid content of the powder was 97%.
  • the angle of repose is 50.0 ° or less
  • the loosening bulk density is 0.40 g / m 3 or less. It can be seen that the powder fluidity is equivalent to that of the lignin derivative, and the initial dispersibility and dispersion retention are superior to those of the lignin derivative. Further, Example 6 (using A-1 and B-3) and Comparative Example 2 (using only B-3), and Example 7 (using A-1 and B-4) and Comparative Example 3 (B-).
  • the additives for powdered hydraulic composition of Example 3 and Example 4 are 30 after kneading than the additives for liquid hydraulic composition of Comparative Example 2 and Comparative Example 3. Since the mortar flow is large even at the minute, it can be seen that it has excellent dispersibility.
  • the powdered material of Example 8 Table 2 with the solid content added at 1.20%, the mortar flows immediately after kneading and 30 minutes after kneading were 200 mm and 190 mm, respectively, and the powder. Body fluidity was rated B.
  • Example 10 Comparing (using only 2), the solid hydraulic composition additives of Examples 10 and 12 were immediately after kneading and 30 with the liquid hydraulic composition additives of Comparative Examples 2 and 4. Since the mortar flow at minutes is the same or larger, it can be seen that the mortar flow has the same or higher dispersibility. Further, although Example 13 is a lump, it can be seen that the mortar flow performance is as excellent as in Examples 8 to 12 and 14. Example 15 has good dispersibility, and it is expected that a good evaluation (for example, B or higher) can be obtained in the powder fluidity test.
  • a good evaluation for example, B or higher

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The purpose of the present invention is to provide a powder composition which has powder fluidity equivalent to those of conventional powder additives for hydraulic compositions, while having excellent initial dispersibility or being easily solidified and enabling the solidified product to have good solubility and excellent dispersibility in a hydraulic composition, said powder composition being suitable as an additive for hydraulic compositions. The present invention provides a powder composition which contains at least a lignin derivative (component (A)) and a copolymer (component (B)) that is composed of a specific constituent unit, and which satisfies at least one requirement selected from among: the repose angle is 50.0° or less; the loose bulk density is 0.40 g/m3 or less; the collapse angle is 27.0° or more; and the particle size distribution is 100 μm or more. The present invention also provides an additive for hydraulic compositions, said additive using this powder composition.

Description

粉末状組成物及びその用途Powdered composition and its uses
 本発明は、粉末状組成物及びその用途に関し、詳しくは、粉末状組成物、固形状組成物、水硬性組成物用添加剤、及び水硬性組成物に関する。 The present invention relates to a powdered composition and its use, and more particularly to a powdered composition, a solid composition, an additive for a hydraulic composition, and a hydraulic composition.
 リグニンは、樹木中に存在する天然高分子物質であり、木材の約30%を占めている。リグニンは、クラフトパルプ製造における廃液(クラフトパルプ廃液)、亜硫酸パルプ製造における廃液(亜硫酸パルプ廃液)等に多く含まれている。近年の環境負荷低減の観点から、リグニンはバイオマス資源の一つとして注目される傾向にある。 Lignin is a natural polymer substance present in trees and accounts for about 30% of wood. Lignin is abundantly contained in kraft pulp production waste liquid (kraft pulp waste liquid), sulfite pulp production waste liquid (sulfite pulp waste liquid), and the like. From the viewpoint of reducing the environmental load in recent years, lignin tends to attract attention as one of the biomass resources.
 クラフトパルプ廃液中に含まれているクラフトリグニン、亜硫酸パルプ廃液中に含まれるリグニンスルホン酸は、それぞれ異なった物性を有しており、様々な用途に使用されている。
 また、クラフトリグニンを亜硫酸塩とホルムアルデヒドによりスルホメチル化したリグニン誘導体、リグニンスルホン酸又はリグニンスルホン酸の塩を部分的に脱スルホン化したリグニン誘導体、及び限外濾過処理によって精製したリグニン精製物は、リグニン系分散剤として、染料、セメント、無機顔料、有機顔料、石膏、石炭-水スラリー、農薬、窯業など広範囲な工業分野で多用されている。
Kraft lignin contained in kraft pulp waste liquid and lignin sulfonic acid contained in sulfite pulp waste liquid have different physical properties and are used for various purposes.
In addition, lignin derivatives obtained by sulfomethylating kraft lignin with sulfites and formaldehyde, lignin derivatives obtained by partially desulfonated lignin sulfonic acid or salts of lignin sulfonic acid, and lignin purified products purified by ultrafiltration treatment are lignin. As a system dispersant, it is widely used in a wide range of industrial fields such as dyes, cements, inorganic pigments, organic pigments, gypsum, coal-water slurry, pesticides, and ceramics.
 さらに、バイオマス資源としてのリグニンの有効利用を図ることを目的とし、セメント、染料、油田掘削用泥水など用途を問わず、各種の被分散体の分散性を向上させ得るリグニン誘導体が提案されている(例えば、特許文献1参照)。 Furthermore, for the purpose of effectively utilizing lignin as a biomass resource, lignin derivatives that can improve the dispersibility of various dispersoids have been proposed regardless of their uses such as cement, dyes, and muddy water for oil field drilling. (See, for example, Patent Document 1).
特開2011-240224号公報Japanese Unexamined Patent Publication No. 2011-240224
 固形状のリグニン誘導体は、良好な粉体特性を有しているため、薬剤の運搬時や投入時の作業性に優れる。
 一方で、従来の水硬性組成物用添加剤としてのリグニン誘導体は、少量添加では分散性の効果が満足に得られていない。水硬性組成物に対して初期分散性、及び分散保持性を発現させるためには、リグニン誘導体を多量に添加する必要がある。
 そのため、粉体特性が従来の固形状のリグニン誘導体と同等であり、かつ初期分散性、及び分散保持性に優れる粉末状水硬性組成物用添加剤の開発が望まれている。
Since the solid lignin derivative has good powder properties, it is excellent in workability at the time of transporting or charging the drug.
On the other hand, the conventional lignin derivative as an additive for a hydraulic composition does not have a satisfactory dispersibility effect when added in a small amount. It is necessary to add a large amount of lignin derivative in order to develop initial dispersibility and dispersion retention in the hydraulic composition.
Therefore, it is desired to develop an additive for a powdery hydraulic composition having powder properties equivalent to those of a conventional solid lignin derivative and having excellent initial dispersibility and dispersion retention.
 近年、水硬性組成物用添加剤の新たな製品形態として、錠剤型が台頭し始めている。錠剤型の添加剤は、これまで水硬性組成物用添加剤の製品形態の主流であった液体品や粉末品と比較し、運搬性や作業性に優れている。
 しかし、従来の水硬性組成物用添加剤としてのリグニン誘導体の粉末特性は、錠剤成形性に好適ではなく、錠剤化が困難であった。また、錠剤化が出来たとしても、水硬性組成物に対する錠剤の溶解性が悪く、分散性の効果が満足に得られていなかった。
 そのため、錠剤化が容易で、かつその錠剤が水硬性組成物に対して良好な溶解性を有し、更に分散性にも優れる水硬性組成物用添加剤の開発が望まれている。
In recent years, tablet molds have begun to emerge as a new product form of additives for hydraulic compositions. Tablet-type additives are superior in transportability and workability as compared with liquid products and powder products, which have been the main product forms of additives for hydraulic compositions.
However, the powder properties of the lignin derivative as an additive for a conventional hydraulic composition are not suitable for tablet moldability, and it is difficult to tablet. Further, even if the tablets could be formed, the solubility of the tablets in the hydraulic composition was poor, and the dispersibility effect was not sufficiently obtained.
Therefore, it is desired to develop an additive for a hydraulic composition that is easy to tablet, has good solubility in the hydraulic composition, and is also excellent in dispersibility.
 本発明の第1の課題は、リグニン誘導体に代表されるような従来の粉末状水硬性組成物用添加剤と同等の粉体特性を有し、かつ初期分散性、及び分散保持性に優れる水硬性組成物用添加剤に適した粉末状組成物を提供することである。 The first object of the present invention is water having powder characteristics equivalent to those of conventional additives for powdery water-hard composition such as lignin derivatives, and having excellent initial dispersibility and dispersion retention. It is to provide a powdery composition suitable for an additive for a rigid composition.
 本発明の第2の課題は、固形化が容易で、水硬性組成物に対して良好な溶解性を有し、更に分散性にも優れる固形状の水硬性組成物用添加剤の製造に適した粉末状組成物を提供することである。 The second object of the present invention is suitable for producing a solid additive for a hydraulic composition, which is easy to solidify, has good solubility in a hydraulic composition, and is also excellent in dispersibility. Is to provide a powdered composition.
 本発明者らは、上記課題について鋭意検討した結果、リグニン誘導体と、所定の構成単位で構成される共重合体を少なくとも含み、安息角が50.0°以下、ゆるめ嵩密度が0.4g/m以下、崩壊角が27.0°以上、及び粒度分布が100μm以上の少なくともいずれかを満たす粉末状組成物が、上記の課題を解決できることを見出し、本発明を完成するに至った。 As a result of diligent studies on the above problems, the present inventors have at least containing a lignin derivative and a copolymer composed of a predetermined structural unit, an angle of repose of 50.0 ° or less, and a loose bulk density of 0.4 g / g. We have found that a powdery composition satisfying at least one of m 3 or less, a collapse angle of 27.0 ° or more, and a particle size distribution of 100 μm or more can solve the above problems, and has completed the present invention.
 すなわち、本発明者らは、下記の発明を提供する。
〔1〕成分(A):リグニン誘導体、及び
 成分(B):下記一般式(1)で表される単量体に由来する構成単位(I)、下記一般式(2)で表される単量体に由来する構成単位(II)、及び下記一般式(3)で表される単量体に由来する構成単位(III)からなる群から選択される少なくとも2種の構成単位を有する共重合体、
 を少なくとも含み、安息角が50.0°以下、ゆるめ嵩密度が0.40g/m以下、崩壊角が27.0°以上、及び、粒度分布が100μm以上、から選ばれる少なくとも1つを満たす粉末状組成物。
Figure JPOXMLDOC01-appb-C000004
 (前記一般式(1)中、R~Rは、それぞれ独立に、水素原子又は炭素原子数1~3のアルキル基を表す。pは、0~2の整数を表す。qは、0~1の整数を表す。AOは、同一又は異なっていてもよい、炭素原子数2~18のオキシアルキレン基を表す。nは、1~300の整数を表す。Rは、水素原子又は炭素原子数1~30の炭化水素基を表す。)
Figure JPOXMLDOC01-appb-C000005
 (前記一般式(2)中、R~Rは、それぞれ独立に、水素原子、メチル基、又は-(CHCOOM基を表す。但し、-(CHCOOM基を表す場合、-COOM基又は他の-(CHCOOM基と無水物基を形成してもよい。無水物基を形成する場合、それらの基のM又はMは存在しない。M~Mは、それぞれ独立に、水素原子、アルカリ金属、アルカリ土類金属、アンモニウム基、アルキルアンモニウム基、又は置換アルキルアンモニウム基を表す。rは、0~2の整数を表す。)
Figure JPOXMLDOC01-appb-C000006
 (前記一般式(3)中、R~R10は、それぞれ独立に、水素原子又は炭素原子数1~3のアルキル基を表す。R11は、炭素原子数1~4のヘテロ原子を含んでよい炭化水素基を表す。sは、0~2の整数を表す。)
〔2〕崩壊角が30.0°以上である、〔1〕に記載の組成物。
〔3〕下記数式(α)で表される差角が19.0°以下である、〔1〕又は〔2〕に記載の組成物。
  差角=安息角-崩壊角・・・・・・(α)
〔4〕安息角が50.0°以下、かつ、ゆるめ嵩密度が0.40g/m以下である、〔1〕~〔3〕のいずれか1項に記載の組成物。
〔5〕成分(A)の成分(B)に対する重量比率((A)/(B))が99:1~51:49である、〔4〕に記載の組成物。
〔6〕崩壊角が27.0°以上、かつ、粒度分布が100μm以上である、〔1〕~〔3〕のいずれか1項に記載の組成物。
〔7〕成分(A)の成分(B)に対する重量比率((A)/(B))が50:50~1:99である、〔6〕に記載の組成物。
〔8〕〔1〕~〔7〕のいずれか1項に記載の組成物の固形化物である、固形状組成物。
〔9〕固形化物が、〔6〕又は〔7〕に記載の組成物の固形化物である、〔8〕に記載の組成物。
〔10〕〔1〕~〔9〕のいずれか1項に記載の組成物を有効成分とする、水硬性組成物用添加剤。
〔11〕〔10〕に記載の添加剤を含む、水硬性組成物。
That is, the present inventors provide the following inventions.
[1] Component (A): Lignin derivative, and component (B): Structural unit (I) derived from the monomer represented by the following general formula (1), simple represented by the following general formula (2). A copolymer having at least two structural units selected from the group consisting of a structural unit (II) derived from a polymer and a structural unit (III) derived from a monomer represented by the following general formula (3). Coalescence,
Satisfy at least one selected from an angle of repose of 50.0 ° or less, a loose bulk density of 0.40 g / m 3 or less, a collapse angle of 27.0 ° or more, and a particle size distribution of 100 μm or more. Powdery composition.
Figure JPOXMLDOC01-appb-C000004
(In the general formula (1), R 1 to R 3 independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms. P represents an integer of 0 to 2. q is 0. Represents an integer of 1 to 1. A 1 O represents an oxyalkylene group having 2 to 18 carbon atoms, which may be the same or different. N represents an integer of 1 to 300. R 4 represents a hydrogen atom. Or it represents a hydrocarbon group having 1 to 30 carbon atoms.)
Figure JPOXMLDOC01-appb-C000005
(In the general formula (2), R 5 ~ R 7 are each independently a hydrogen atom, a methyl group, or - represents a (CH 2) r COOM 2 group where, -. (CH 2) r COOM 2 group when referring to, -COOM 1 group or other -. (CH 2) may be formed r COOM 2 groups and anhydride groups when forming anhydride groups, the M 1 or M 2 of these groups present No. M 1 to M 2 independently represent a hydrogen atom, an alkali metal, an alkaline earth metal, an ammonium group, an alkylammonium group, or a substituted alkylammonium group. R represents an integer of 0 to 2. )
Figure JPOXMLDOC01-appb-C000006
(In the general formula (3), R 8 to R 10 each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms. R 11 contains a hetero atom having 1 to 4 carbon atoms. Represents a hydrocarbon group that may be used. S represents an integer of 0 to 2.)
[2] The composition according to [1], wherein the collapse angle is 30.0 ° or more.
[3] The composition according to [1] or [2], wherein the difference angle represented by the following mathematical formula (α) is 19.0 ° or less.
Difference angle = angle of repose-collapse angle ... (α)
[4] The composition according to any one of [1] to [3], wherein the angle of repose is 50.0 ° or less and the loosening bulk density is 0.40 g / m 3 or less.
[5] The composition according to [4], wherein the weight ratio ((A) / (B)) of the component (A) to the component (B) is 99: 1 to 51:49.
[6] The composition according to any one of [1] to [3], wherein the decay angle is 27.0 ° or more and the particle size distribution is 100 μm or more.
[7] The composition according to [6], wherein the weight ratio ((A) / (B)) of the component (A) to the component (B) is 50:50 to 1:99.
[8] A solid composition which is a solidified product of the composition according to any one of [1] to [7].
[9] The composition according to [8], wherein the solidified product is a solidified product of the composition according to [6] or [7].
[10] An additive for a hydraulic composition containing the composition according to any one of [1] to [9] as an active ingredient.
[11] A hydraulic composition containing the additive according to [10].
 粉末状の添加剤及びその用途としては、下記の〔1-1〕~〔1-3〕が好ましい。
 〔1-1〕成分(A)及び(B)を少なくとも含み、安息角が50.0°以下、かつ、ゆるめ嵩密度が0.40g/m以下、である粉末状水硬性組成物用添加剤。
〔1-2〕成分(A)の成分(B)に対する重量比率((A)/(B))が99:1~51:49である、〔1-1〕に記載の粉末状水硬性組成物用添加剤。
〔1-3〕〔1-1〕又は〔1-2〕に記載の粉末状水硬性組成物用添加剤を含む、水硬性組成物。
The following [1-1] to [1-3] are preferable as the powdery additive and its use.
[1-1] Addition for a powdery hydraulic composition containing at least the components (A) and (B), having an angle of repose of 50.0 ° or less, and a loosening bulk density of 0.40 g / m 3 or less. Agent.
[1-2] The powdery hydraulic composition according to [1-1], wherein the weight ratio ((A) / (B)) of the component (A) to the component (B) is 99: 1 to 51:49. Additives for products.
[1-3] A hydraulic composition containing the additive for a powdery hydraulic composition according to [1-1] or [1-2].
 固形状の添加剤及びその用途としては、下記の〔2-1〕~〔2-6〕が好ましい。
 〔2-1〕成分(A)及び(B)を少なくとも含み、崩壊角が27.0°以上、かつ、粒度分布が100μm以上、である粉末の固形化物である、固形状水硬性組成物用添加剤。
 〔2-2〕崩壊角が30.0°以上である、〔2-1〕に記載の固形状水硬性組成物用添加剤。
 〔2-3〕下記数式(α)で表される差角が19.0°以下である、〔2-1〕又は〔2-2〕に記載の固形状水硬性組成物用添加剤。
  差角=安息角-崩壊角・・・・・・(α)
 〔2-4〕成分(A)の成分(B)に対する重量比率((A)/(B))が50:50~1:99である、〔2-1〕~〔2-3〕のいずれか1項に記載の固形状水硬性組成物用添加剤。
 〔2-5〕〔2-1〕~〔2-4〕のいずれか1項に記載の固形状水硬性組成物用添加剤を含む、錠剤成形品。
 〔2-6〕〔2-1〕~〔2-4〕のいずれか1項に記載の固形状水硬性組成物用添加剤を含む、水硬性組成物。
The following [2-1] to [2-6] are preferable as the solid additive and its use.
[2-1] For a solid hydraulic composition which is a solidified powder containing at least the components (A) and (B), having a decay angle of 27.0 ° or more and a particle size distribution of 100 μm or more. Additive.
[2-2] The additive for a solid hydraulic composition according to [2-1], which has a decay angle of 30.0 ° or more.
[2-3] The additive for a solid hydraulic composition according to [2-1] or [2-2], wherein the difference angle represented by the following mathematical formula (α) is 19.0 ° or less.
Difference angle = angle of repose-collapse angle ... (α)
[2-4] Any of [2-1] to [2-3], wherein the weight ratio ((A) / (B)) of the component (A) to the component (B) is 50:50 to 1:99. The additive for a solid hydraulic composition according to item 1.
[2-5] A tablet molded product containing the additive for a solid hydraulic composition according to any one of [2-1] to [2-4].
[2-6] A hydraulic composition containing the additive for a solid hydraulic composition according to any one of [2-1] to [2-4].
 本発明によれば、リグニン誘導体に代表されるような従来の粉末状水硬性組成物用添加剤と同等の粉体流動性を有し、かつ初期分散性、及び分散保持性に優れる水硬性組成物用添加剤に適した粉末状組成物を提供することができる。 According to the present invention, a water-hard composition having powder fluidity equivalent to that of a conventional additive for a powdery water-hard composition such as a lignin derivative, and having excellent initial dispersibility and dispersion retention. A powdery composition suitable for a product additive can be provided.
 また、本発明によれば、固形化が容易で、かつ得られる固形化物が水硬性組成物に対して良好な溶解性を有し、更に分散性にも優れる水硬性組成物用添加剤の製造に適した粉末状組成物を提供することができる。 Further, according to the present invention, it is easy to solidify, and the obtained solidified product has good solubility in a hydraulic composition and is also excellent in dispersibility for producing an additive for a hydraulic composition. A powdery composition suitable for the above can be provided.
 以下、本発明をその好適な実施形態に即して詳細に説明する。
 なお、本明細書中、「AA~BB」と表記する場合、AA以上BB以下を表す。また、「(メタ)アクリル」と表記する場合、アクリル及び/又はメタクリルを表す。
Hereinafter, the present invention will be described in detail according to its preferred embodiment.
In addition, in this specification, when it is expressed as "AA-BB", it means AA or more and BB or less. In addition, when it is expressed as "(meth) acrylic", it means acrylic and / or methacrylic.
[1.粉末状組成物]
 本発明の粉末状組成物は、成分(A):リグニン誘導体と、成分(B):所定の構成単位を有する共重合体を含み、安息角が50.0°以下、ゆるめ嵩密度が0.40g/m以下、崩壊角が27.0°以上、及び粒度分布が100μm以上の少なくとも1つを満たす。
[1. Powdered composition]
The powdery composition of the present invention contains a component (A): a lignin derivative and a component (B): a copolymer having a predetermined structural unit, has an angle of repose of 50.0 ° or less, and has a loose bulk density of 0. It satisfies at least one of 40 g / m 3 or less, a collapse angle of 27.0 ° or more, and a particle size distribution of 100 μm or more.
[1-1.物性]
 粉末状組成物の安息角は、通常50.0°以下であり、好ましくは48.0°以下である。安息角が50.0°以下だと、粉体流動性及び作業性が向上し得る。
 下限は、通常35.0°以上であるが、特に限定されない。
 なお、安息角は、固形分を95%以上に調製した試料にて、粉体性試験装置(パウダテスタPT-X(ホソカワミクロン社製))を用いて測定された値である。
[1-1. Physical characteristics]
The angle of repose of the powdered composition is usually 50.0 ° or less, preferably 48.0 ° or less. When the angle of repose is 50.0 ° or less, the powder fluidity and workability can be improved.
The lower limit is usually 35.0 ° or more, but is not particularly limited.
The angle of repose is a value measured using a powder test device (Powder Tester PT-X (manufactured by Hosokawa Micron Co., Ltd.)) in a sample prepared with a solid content of 95% or more.
 粉末状組成物のゆるめ嵩密度は、通常0.40g/m以下であり、好ましくは0.36g/m以下である。ゆるめ嵩密度が0.40g/m以下であると、優れた粉体流動性を得ることができる。また、水硬性組成物投入時の拡散性及び初期分散性が良化する。
 下限は、通常0.25g/m以上であるが、特に限定されない。
 なお、ゆるめ嵩密度は、固形分を95%以上に調整した試料にて、粉体性試験装置(パウダテスタPT-X(ホソカワミクロン社製))を用いて測定された値である。
The loose bulk density of the powdered composition is usually 0.40 g / m 3 or less, preferably 0.36 g / m 3 or less. When the loosening bulk density is 0.40 g / m 3 or less, excellent powder fluidity can be obtained. In addition, the diffusibility and initial dispersibility at the time of adding the hydraulic composition are improved.
The lower limit is usually 0.25 g / m 3 or more, but is not particularly limited.
The loose bulk density is a value measured using a powder property test device (Powder Tester PT-X (manufactured by Hosokawa Micron Co., Ltd.)) in a sample having a solid content adjusted to 95% or more.
 粉末状組成物の崩壊角は、通常27.0°以上であり、好ましくは30.0°以上である。崩壊角が27.0°以上だと、粉体性が低下するため、優れた錠剤適性を有し得る。また、粉末状組成物を固形化して得られる固形化物を水硬性組成物に添加した際、優れた崩壊性を得ることができる。
 崩壊角の上限は、通常45.0°以下であるが、特に限定されない。
 なお、崩壊角は、固形分を95%以上に調整した試料にて、粉体試験装置(パウダテスタPT-X(ホソカワミクロン社製))を用いて測定された値である。
The decay angle of the powdery composition is usually 27.0 ° or more, preferably 30.0 ° or more. When the disintegration angle is 27.0 ° or more, the powder property is lowered, so that it can have excellent tablet suitability. Further, when a solidified product obtained by solidifying a powdery composition is added to a hydraulic composition, excellent disintegration property can be obtained.
The upper limit of the collapse angle is usually 45.0 ° or less, but is not particularly limited.
The decay angle is a value measured using a powder test device (Powder Tester PT-X (manufactured by Hosokawa Micron Co., Ltd.)) on a sample having a solid content adjusted to 95% or more.
 粉末状組成物の粒度分布は、通常60μm以上、65以上、70以上、又は100μm以上であり、好ましくは105μm以上、より好ましくは107μm以上、さらに好ましくは200μm以上である。粒度分布が上記範囲、中でも100μm以上だと、分子間相互作用が強固となり、粒子同士の凝集力が向上するため、錠剤成形性が向上し得る。
 粒度分布の上限は、通常500μm以下であるが、特に限定されない。
 なお、粒度分布は、粉末サンプル3gをレーザー回折式粒度分布測定装置(マスターサイザー3000(Malvern社製))により、乾式条件で測定し得られた分子量分布より、横軸を粒度(μm)、縦軸を体積(%)として表し、蓄積分布が50%となる値である。
The particle size distribution of the powdery composition is usually 60 μm or more, 65 or more, 70 or more, or 100 μm or more, preferably 105 μm or more, more preferably 107 μm or more, still more preferably 200 μm or more. When the particle size distribution is in the above range, particularly 100 μm or more, the intermolecular interaction is strengthened and the cohesive force between the particles is improved, so that the tablet moldability can be improved.
The upper limit of the particle size distribution is usually 500 μm or less, but is not particularly limited.
Regarding the particle size distribution, the horizontal axis is the particle size (μm) and the vertical axis is from the molecular weight distribution obtained by measuring 3 g of the powder sample with a laser diffraction type particle size distribution measuring device (Mastersizer 3000 (manufactured by Malvern)) under dry conditions. The axis is represented as a volume (%), and the accumulation distribution is a value of 50%.
 粉末状組成物の差角は、19.0°以下が好ましい。差角が19.0°以下だと、粉体性が低下するため、優れた錠剤適性を有し得る。また、固形化物を水硬性組成物に添加した際、優れた崩壊性を得ることができる。
 差角の下限は、通常5.0°以上であるが、特に限定されない。
 なお、差角は下記数式(α)で表される。
  差角=安息角-崩壊角・・・・・・(α)
 差角は、固形分を95%以上に調整した試料にて、粉体性試験装置(パウダテスタPT-X(ホソカワミクロン社製))を用いて測定された安息角、及び崩壊角の差による値である。
The difference angle of the powdery composition is preferably 19.0 ° or less. When the difference angle is 19.0 ° or less, the powder property is lowered, so that it can have excellent tablet suitability. Further, when the solidified product is added to the hydraulic composition, excellent disintegration property can be obtained.
The lower limit of the difference angle is usually 5.0 ° or more, but is not particularly limited.
The difference angle is expressed by the following mathematical formula (α).
Difference angle = angle of repose-collapse angle ... (α)
The difference angle is a value based on the difference between the angle of repose and the collapse angle measured using a powder test device (Powder Tester PT-X (manufactured by Hosokawa Micron)) on a sample whose solid content is adjusted to 95% or more. is there.
[1-2.成分(A)]
 本発明の粉末状組成物は、成分(A)を少なくとも含む。
 成分(A)は、リグニン誘導体である。リグニン誘導体は、リグニン骨格を有する化合物であればよく、好ましくはリグニンスルホン酸又はその塩、クラフトリグニン、若しくはこれらの組み合わせである。ここで、リグニンスルホン酸は、リグニン又はその誘導体の少なくとも一部がスルホン酸(塩)基で置換されている化合物をいう。クラフトリグニンとは、リグニン又はその誘導体の少なくとも一部にチオール基を有する化合物をいう。
 成分(A)は、リグニン誘導体1種でもよく、2種以上の組み合わせでもよい。
[1-2. Ingredient (A)]
The powdery composition of the present invention contains at least the component (A).
The component (A) is a lignin derivative. The lignin derivative may be a compound having a lignin skeleton, and is preferably lignin sulfonic acid or a salt thereof, kraft lignin, or a combination thereof. Here, lignin sulfonic acid refers to a compound in which at least a part of lignin or a derivative thereof is substituted with a sulfonic acid (salt) group. Kraft lignin refers to a compound having a thiol group in at least a part of lignin or a derivative thereof.
The component (A) may be one kind of lignin derivative or a combination of two or more kinds.
 リグニン誘導体の化学構造を、一般式などで一律に特定することは困難である。その理由は、リグニン誘導体を構成するリグニンが非常に複雑な分子構造をしているためである。 It is difficult to uniformly specify the chemical structure of a lignin derivative using a general formula or the like. The reason is that the lignin constituting the lignin derivative has a very complicated molecular structure.
 本発明の粉末状組成物を粉末状水硬性組成物用添加剤として用いる場合、成分(A)の含有量は、成分(A)及び成分(B)の合計量に対し、51重量%以上が好ましく、55重量%以上がより好ましく、60重量%以上がより更に好ましい。成分(A)の含有量が51重量%以上であると、良好な粉体流動性を有する粉末状物を収率よく得ることができる。 When the powdery composition of the present invention is used as an additive for a powdery hydraulic composition, the content of the component (A) is 51% by weight or more based on the total amount of the component (A) and the component (B). Preferably, 55% by weight or more is more preferable, and 60% by weight or more is even more preferable. When the content of the component (A) is 51% by weight or more, a powdery substance having good powder fluidity can be obtained in good yield.
 本発明の粉末状組成物を固形状水硬性組成物用添加剤として用いる場合、成分(A)の含有量は、成分(A)及び成分(B)の合計量に対し、50重量%未満が好ましく、45重量%以下がより好ましい。成分(A)の含有量が50重量%未満であると、良好な成形性を有する固形状物を収率よく得ることができる。 When the powdered composition of the present invention is used as an additive for a solid hydraulic composition, the content of the component (A) is less than 50% by weight based on the total amount of the component (A) and the component (B). It is preferably 45% by weight or less, more preferably 45% by weight or less. When the content of the component (A) is less than 50% by weight, a solid product having good moldability can be obtained in good yield.
 リグニン誘導体としては、調製したものを使用してもよく、市販品を用いてもよい。ここで、リグニン誘導体の調製方法を以下に例示する。しかしながら、リグニン誘導体は、下記の調製方法で調製されたものに限定されない。 As the lignin derivative, a prepared one may be used, or a commercially available product may be used. Here, a method for preparing a lignin derivative is exemplified below. However, the lignin derivative is not limited to the one prepared by the following preparation method.
 (リグニン誘導体の調製方法)
 リグニン誘導体の調製方法としては、例えば、リグノセルロース原料を亜硫酸処理して調製する方法、好ましくは、リグノセルロース原料を亜硫酸蒸解処理して調製する方法が挙げられる。
(Method of preparing lignin derivative)
Examples of the method for preparing the lignin derivative include a method for preparing the lignocellulose raw material by treating it with sulfurous acid, and preferably a method for preparing the lignocellulose raw material by treating it with sulfurous acid.
 リグノセルロース原料は、構成体中にリグノセルロースを含むものであれば特に限定されるものではない。例えば、木材、非木材等のパルプ原料が挙げられる。
 木材としては、例えば、エゾマツ、アカマツ、スギ、ヒノキ等の針葉樹木材;シラカバ、ブナ等の広葉樹木材が挙げられる。木材の樹齢、採取部位は問わない。そのため、互いに樹齢の異なる樹木から採取された木材や、互いに樹木の異なる部位から採取された木材を組み合わせて用いてもよい。
 非木材としては、例えば、竹、ケナフ、葦、稲が挙げられる。
 リグノセルロース原料は、これらの材料を1種単独で使用してもよく、2種以上を組み合わせて使用してもよい。
The lignocellulose raw material is not particularly limited as long as it contains lignocellulose in its constituents. For example, pulp raw materials such as wood and non-wood can be mentioned.
Examples of the wood include coniferous wood such as Ezomatsu, Picea glehnii, Sugi, and Hinoki; and broad-leaved wood such as birch and beech. The age of the wood and the collection site do not matter. Therefore, wood collected from trees of different ages or wood collected from different parts of the trees may be used in combination.
Examples of non-wood include bamboo, kenaf, reeds, and rice.
As the lignocellulose raw material, these materials may be used alone or in combination of two or more.
 亜硫酸処理は、亜硫酸及び亜硫酸塩の少なくともいずれかをリグノセルロース原料に接触させて行うことができ、中間生成物を得る処理である。亜硫酸処理の条件は、特に限定されず、リグノセルロース原料に含まれるリグニンの側鎖のα炭素原子にスルホン酸(塩)基が導入され得る条件であればよい。 The sulfite treatment is a treatment in which at least one of sulfite and sulfite can be brought into contact with the lignocellulose raw material to obtain an intermediate product. The conditions for the sulfurous acid treatment are not particularly limited as long as the sulfonic acid (salt) group can be introduced into the α carbon atom of the side chain of lignin contained in the lignocellulose raw material.
 亜硫酸処理は、亜硫酸蒸解法により行うことが好ましい。これにより、リグノセルロース原料中のリグニンをより定量的にスルホン化することができる。
 亜硫酸蒸解法は、亜硫酸及び亜硫酸塩の少なくともいずれかの溶液(例えば、水溶液:蒸解液)中で、リグノセルロース原料を高温下で反応させる方法である。当該方法は、サルファイトパルプの製造方法として工業的に確立されており、実施されている。そのため、亜硫酸処理を亜硫酸蒸解法により行うことにより、経済性及び実施容易性を高めることができる。
The sulfurous acid treatment is preferably carried out by a sulfurous acid cooking method. As a result, lignin in the lignocellulose raw material can be sulfonated more quantitatively.
The sulfurous acid cooking method is a method in which a lignocellulose raw material is reacted at a high temperature in at least one solution of sulfite and sulfite (for example, an aqueous solution: a cooking solution). This method has been industrially established and practiced as a method for producing sulfite pulp. Therefore, by performing the sulfurous acid treatment by the sulfurous acid cooking method, economic efficiency and ease of implementation can be improved.
 亜硫酸塩の塩としては、亜硫酸蒸解を行う場合、例えば、マグネシウム塩、カルシウム塩、ナトリウム塩、アンモニウム塩が挙げられる。 Examples of the sulfite salt include magnesium salt, calcium salt, sodium salt, and ammonium salt when sulfurous acid cooking is performed.
 亜硫酸及び亜硫酸塩の少なくともいずれかの溶液における亜硫酸(SO)濃度は、特に限定されないけれども、溶液100mLに対するSOの重量(g)の比率は、1g/100mL以上が好ましい。 The concentration of sulfurous acid (SO 2 ) in at least one solution of sulfite and sulfite is not particularly limited, but the ratio of the weight (g) of SO 2 to 100 mL of the solution is preferably 1 g / 100 mL or more.
 亜硫酸処理のpH値は特に限定されないが、10以下が好ましく、亜硫酸蒸解を行う場合には5以下がより好ましい。pH値の下限は、0.1以上が好ましく、亜硫酸蒸解を行う場合には0.5以上がより好ましい。亜硫酸処理の際のpH値は、0.1~10が好ましく、亜硫酸蒸解を行う場合には0.5~5がより好ましい。 The pH value of the sulfurous acid treatment is not particularly limited, but is preferably 10 or less, and more preferably 5 or less when sulfurous acid cooking is performed. The lower limit of the pH value is preferably 0.1 or more, and more preferably 0.5 or more when sulfurous acid cooking is performed. The pH value during sulfurous acid treatment is preferably 0.1 to 10, and more preferably 0.5 to 5 when sulfurous acid cooking is performed.
 亜硫酸処理の温度は特に限定されないが、170℃以下が好ましい。下限は、70℃以上が好ましい。 The temperature of the sulfurous acid treatment is not particularly limited, but is preferably 170 ° C. or lower. The lower limit is preferably 70 ° C. or higher.
 亜硫酸処理においては、カウンターカチオン(塩)を供給する化合物を添加することが好ましい。カウンターカチオンを供給する化合物を添加することにより、亜硫酸処理におけるpH値を一定に保つことができる。カウンターカチオンを供給する化合物としては、例えば、MgO、Mg(OH)、CaO、Ca(OH)、CaCO、NH、NHOH、NaOH、NaHCO、NaCOが挙げられる。カウンターカチオンは、ナトリウムイオン、マグネシウムイオン、カルシウムイオンが好ましい。
 なお、無機塩としてはリグニン誘導体中では通常3~20% 程度含まれ、公知の方法で測定することができる。
In the sulfite treatment, it is preferable to add a compound that supplies a counter cation (salt). By adding a compound that supplies a counter cation, the pH value in the sulfite treatment can be kept constant. Examples of the compound that supplies the counter cation include MgO, Mg (OH) 2 , CaO, Ca (OH) 2 , CaCO 3 , NH 3 , NH 4 OH, NaOH, NaOH, Na HCO 3 , and Na 2 CO 3 . The counter cation is preferably sodium ion, magnesium ion or calcium ion.
The inorganic salt is usually contained in about 3 to 20% in the lignin derivative, and can be measured by a known method.
 亜硫酸処理において、亜硫酸及び亜硫酸塩の少なくともいずれかの溶液を用いる場合、溶液には必要に応じて、SOのほかに、上記カウンターカチオン(塩)、蒸解浸透剤(例えば、アントラキノンスルホン酸塩、アントラキノン、テトラヒドロアントラキノン等の環状ケトン化合物)を含ませてもよい。 When at least one solution of sulfite and sulfite is used in the sulfite treatment, in addition to SO 2 , the above counter cation (salt) and a cooking penetrant (for example, anthraquinone sulfonate, for example, are used in the solution, if necessary. Cyclic ketone compounds such as anthraquinone and tetrahydroanthraquinone) may be included.
 亜硫酸処理を行う際に用いる設備に限定はなく、例えば、一般に知られている溶解パルプの製造設備等を用いることができる。 The equipment used for the sulfurous acid treatment is not limited, and for example, generally known equipment for producing dissolved pulp can be used.
 亜硫酸及び亜硫酸塩の少なくともいずれかの溶液から中間生成物を分離するには、常法に従って行えばよい。分離方法としては、例えば、亜硫酸蒸解後の亜硫酸蒸解排液の分離方法が挙げられる。 To separate the intermediate product from at least one solution of sulfite and sulfite, it may be done according to a conventional method. Examples of the separation method include a method for separating the sulfurous acid digestion effluent after the sulfurous acid cooking.
 次に、中間組成物を洗浄及び脱水する工程を経て亜硫酸処理物を得る。洗浄及び脱水により、中間組成物に含まれる、亜硫酸処理により除去しきれない成分を除去し得る。 Next, a sulfite-treated product is obtained through a step of washing and dehydrating the intermediate composition. By washing and dehydrating, the components contained in the intermediate composition that cannot be completely removed by the sulfurous acid treatment can be removed.
 洗浄は、亜硫酸蒸解法により得られる未晒亜硫酸パルプの洗浄と同様にして行えばよい。洗浄は、一段階の洗浄であってもよく、多段階の洗浄であってもよい。多段階の洗浄をすることにより、洗浄を十分に行うことができる。なお、多段階の洗浄を行う場合、脱水はその都度行ってもよく、一部の回のみ行ってもよい。
 洗浄は、通常、洗浄機を用いる。洗浄に使用する洗浄機は、特に限定されるものではない。例えば、置換洗浄型洗浄機、希釈脱水洗浄型洗浄機が挙げられる。
The washing may be carried out in the same manner as the washing of unbleached sulfite pulp obtained by the sulfite cooking method. The cleaning may be a one-step cleaning or a multi-stage cleaning. By performing multi-step cleaning, cleaning can be sufficiently performed. When performing multi-step washing, dehydration may be performed each time, or may be performed only a part of the times.
Cleaning is usually performed using a washing machine. The washing machine used for washing is not particularly limited. For example, a replacement washing type washing machine and a dilution dehydration washing type washing machine can be mentioned.
 脱水は、通常の条件で行うことができ、例えば、亜硫酸蒸解法において得られる洗浄後の未晒亜硫酸パルプの脱水と同様にして行えばよい。
 脱水は、通常、脱水機を用いる。脱水に使用する脱水機は、特に限定されるものではない。例えば、ドラム型絞り脱水機、ロータリープレス、連続圧搾脱水機が挙げられる。
Dehydration can be carried out under normal conditions, and may be carried out in the same manner as, for example, dehydration of unbleached sulfite pulp after washing obtained in the sulfite cooking method.
A dehydrator is usually used for dehydration. The dehydrator used for dehydration is not particularly limited. For example, a drum type drawing dehydrator, a rotary press, and a continuous pressing dehydrator can be mentioned.
 その後、必要に応じて、洗浄、脱水した亜硫酸処理物を分離精製して、所望のリグニン誘導体が得られる。分離精製は、例えば、アルカリ酸化処理する工程、限外濾過処理工程が挙げられる。 Then, if necessary, the washed and dehydrated sulfite-treated product is separated and purified to obtain the desired lignin derivative. Examples of the separation and purification include an alkali oxidation treatment step and an ultrafiltration treatment step.
 アルカリ酸化処理する場合、亜硫酸処理物をアルカリ酸化処理した後、不溶物を遠心分離し、上澄み液として回収し得る。 In the case of alkali oxidation treatment, the sulfite-treated product can be subjected to alkali oxidation treatment, and then the insoluble matter can be centrifuged and recovered as a supernatant.
 アルカリ酸化処理は、亜硫酸処理物をアルカリ性条件下におけばよい。アルカリ性条件下におくとは、通常、pH値が8以上、好ましくはpH値が9以上の水溶液下におくことをいう。pH値の上限は、通常、14である。 Alkaline oxidation treatment may be performed by placing the sulfurous acid-treated product under alkaline conditions. "Keeping under alkaline conditions" usually means putting under an aqueous solution having a pH value of 8 or more, preferably a pH value of 9 or more. The upper limit of the pH value is usually 14.
 アルカリ酸化処理においては、通常、アルカリ性物質を亜硫酸処理物に接触させる。アルカリ性物質は、特に限定されないが、例えば、水酸化カルシウム、水酸化マグネシウム、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、アンモニアが挙げられる。中でも、水酸化ナトリウムが好ましい。
 なお、アルカリ性物質は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
In the alkali oxidation treatment, an alkaline substance is usually brought into contact with the sulfurous acid-treated product. The alkaline substance is not particularly limited, and examples thereof include calcium hydroxide, magnesium hydroxide, sodium hydroxide, potassium hydroxide, sodium carbonate, and ammonia. Of these, sodium hydroxide is preferable.
The alkaline substance may be used alone or in combination of two or more.
 亜硫酸処理物にアルカリ性物質を接触させる方法としては、亜硫酸処理物の分散液又は溶液(例えば、水分散液、水溶液)を調製し、該分散液又は溶液中にアルカリ性物質を添加する方法や、亜硫酸処理物にアルカリ性物質の溶液又は分散液(例えば、水分散液、水溶液)を添加する方法が例示される。 As a method of bringing an alkaline substance into contact with the sulfurous acid-treated product, a method of preparing a dispersion or solution (for example, an aqueous dispersion or an aqueous solution) of the sulfite-treated product and adding the alkaline substance to the dispersion or solution, or sulfurous acid An example is a method of adding a solution or dispersion of an alkaline substance (for example, an aqueous dispersion or an aqueous solution) to the treated product.
 アルカリ酸化処理の温度は特に限定されないが、40℃以上が好ましく、60℃以上がより好ましい。上限は、150℃以下が好ましい。 The temperature of the alkali oxidation treatment is not particularly limited, but is preferably 40 ° C. or higher, and more preferably 60 ° C. or higher. The upper limit is preferably 150 ° C. or lower.
 アルカリ酸化処理におけるアルカリ性物質の量は、亜硫酸処理物の固形分重量に対して、或いは、アルカリ処理抽出物を水性溶媒(例えば、水)に分散した水溶液又は分散液を調製する場合、水溶液又は分散液の重量に対して、0.5~20重量%が好ましく、1.0~15重量%がより好ましい。 The amount of the alkaline substance in the alkali oxidation treatment is determined based on the solid content weight of the sulfite-treated product, or when preparing an aqueous solution or dispersion in which the alkali-treated extract is dispersed in an aqueous solvent (for example, water). It is preferably 0.5 to 20% by weight, more preferably 1.0 to 15% by weight, based on the weight of the liquid.
 アルカリ酸化処理の時間は特に限定されないが、0.1時間以上が好ましく、0.5時間以上がより好ましい。上限は、10時間以下が好ましく、6時間以下がより好ましい。 The time of the alkali oxidation treatment is not particularly limited, but 0.1 hours or more is preferable, and 0.5 hours or more is more preferable. The upper limit is preferably 10 hours or less, more preferably 6 hours or less.
 アルカリ酸化処理に先立ち、必要に応じて、亜硫酸処理物の溶解、分散処理、濃度の調整(水等の水性溶媒の溶液又は分散液の調製)を行ってもよい。分散処理は、ディスクリファイナーの通過、ミキサー、ディスパーザーへの添加、ニーダー処理等により行うことができる。濃度の調整は、例えば、水等の水性溶媒を用いて行うことができる。 Prior to the alkali oxidation treatment, the sulfite-treated product may be dissolved, dispersed, and adjusted in concentration (preparation of a solution or dispersion of an aqueous solvent such as water), if necessary. The dispersion treatment can be performed by passing through a disc refiner, adding to a mixer or a disperser, a kneader treatment, or the like. The concentration can be adjusted using, for example, an aqueous solvent such as water.
 限外濾過処理工程は、限外濾過膜(以下、「UF膜」ともいう)を用いて行い得る。UF膜としては、公知のUF膜を用いることができる。例えば、中空糸膜、スパイラル膜、チューブラー膜、平膜が挙げられる。
 UF膜の素材は公知のものを用いることができる。例えば、酢酸セルロース、芳香族ポリアミド、ポリビニルアルコール、ポリスルホン、ポリフッ化ビニリデン、ポリエチレン、ポリアクリロニトリル、セラミックが挙げられる。なお、UF膜は市販品であってもよい。
The ultrafiltration treatment step can be performed using an ultrafiltration membrane (hereinafter, also referred to as “UF membrane”). As the UF membrane, a known UF membrane can be used. For example, a hollow fiber membrane, a spiral membrane, a tubular membrane, and a flat membrane can be mentioned.
A known material for the UF membrane can be used. For example, cellulose acetate, aromatic polyamide, polyvinyl alcohol, polysulfone, polyvinylidene fluoride, polyethylene, polyacrylonitrile, ceramics can be mentioned. The UF membrane may be a commercially available product.
 UF膜の分画分子量は、5,000~30,000が好ましく、10,000~25,000がより好ましく、15,000~23,000がさらに好ましい。分画分子量が5,000以上のUF膜を用いると、黒液の分離速度が過度に遅くなることを防止し得る。また、分画分子量が30,000以下のUF膜を用いると、黒液からリグニンが分離されなくなることを防止し得る。 The fractional molecular weight of the UF membrane is preferably 5,000 to 30,000, more preferably 10,000 to 25,000, and even more preferably 15,000 to 23,000. When a UF membrane having a molecular weight cut-off of 5,000 or more is used, it is possible to prevent the black liquor from becoming excessively slow. Further, when a UF membrane having a molecular weight cut-off of 30,000 or less is used, it is possible to prevent lignin from being separated from the black liquor.
 UF膜を用いた限外濾過処理による濃縮倍率は任意に設定できる。すなわち、濃縮液の流出量が任意の量になった時に、限外濾過処理を停止すればよい。 The concentration ratio by ultrafiltration using the UF membrane can be set arbitrarily. That is, the ultrafiltration treatment may be stopped when the outflow amount of the concentrated liquid reaches an arbitrary amount.
 限外濾過処理時の黒液の温度は特に限定されない。例えば、20~80℃が好ましく、UF膜材質の耐熱面を考慮すると、20~70℃がより好ましい。
 限外濾過処理時の黒液のpH値は、2~11が好ましい。
 限外濾過処理時の黒液の固形分濃度(w/w)は、2~30%が好ましく、5~15%がより好ましい。
The temperature of the black liquor during the ultrafiltration treatment is not particularly limited. For example, 20 to 80 ° C. is preferable, and 20 to 70 ° C. is more preferable in consideration of the heat resistant surface of the UF membrane material.
The pH value of the black liquor during the ultrafiltration treatment is preferably 2 to 11.
The solid content concentration (w / w) of the black liquor during the ultrafiltration treatment is preferably 2 to 30%, more preferably 5 to 15%.
[1-3.成分(B)]
 本発明の粉末状組成物は、成分(B)を少なくとも含む。
 成分(B)は、一般式(1)で表される単量体に由来する構成単位(I)、一般式(2)で表される単量体に由来する構成単位(II)、及び一般式(3)で表される単量体に由来する構成単位(III)からなる群から選択される少なくとも2種の構成単位を有する共重合体である。
 成分(B)の共重合体は1種でもよく、2種以上の組み合わせでもよい。
[1-3. Ingredient (B)]
The powdered composition of the present invention contains at least the component (B).
The component (B) is a structural unit (I) derived from the monomer represented by the general formula (1), a structural unit (II) derived from the monomer represented by the general formula (2), and general. It is a copolymer having at least two kinds of structural units selected from the group consisting of the structural unit (III) derived from the monomer represented by the formula (3).
The copolymer of the component (B) may be one kind or a combination of two or more kinds.
 本発明の粉末状組成物を粉末状水硬性組成物用添加剤として用いる場合、成分(B)の含有量は、成分(A)及び成分(B)の合計量に対し、1~49重量%が好ましく、1~45重量%がより好ましく、1~40重量%が更に好ましい。成分(B)の含有量が斯かる範囲であると、乾燥後により良好な水溶性を有する粉末状物を得ることができる。 When the powdered composition of the present invention is used as an additive for a powdered hydraulic composition, the content of the component (B) is 1 to 49% by weight based on the total amount of the component (A) and the component (B). Is preferable, 1 to 45% by weight is more preferable, and 1 to 40% by weight is further preferable. When the content of the component (B) is in such a range, a powdery substance having better water solubility can be obtained after drying.
 本発明の粉末状組成物を、固形状水硬性組成物用添加剤の原料として用いる場合、成分(B)の含有量は、成分(A)及び成分(B)の合計量に対し、50~90重量%が好ましく、55~90重量%がより好ましい。成分(B)の含有量が斯かる範囲であると、乾燥後により良好な水溶性を有する固形状物を得ることができる。
 以下、各構成単位の詳細を記載する。
When the powdered composition of the present invention is used as a raw material for an additive for a solid hydraulic composition, the content of the component (B) is 50 to 50 to the total amount of the component (A) and the component (B). 90% by weight is preferable, and 55 to 90% by weight is more preferable. When the content of the component (B) is in such a range, a solid substance having better water solubility can be obtained after drying.
The details of each structural unit will be described below.
(構成単位(I))
 構成単位(I)は、下記一般式(1)で表される単量体に由来する構成単位である。
(Constituent unit (I))
The structural unit (I) is a structural unit derived from the monomer represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 一般式(1)中、R~Rは、それぞれ独立に、水素原子又は炭素原子数1~3のアルキル基を表す。pは、0~2の整数を表す。qは、0~1の整数を表す。AOは、同一又は異なっていてもよい、炭素原子数2~18のオキシアルキレン基を表す。nは、1~300の整数を表す。Rは、水素原子又は炭素原子数1~30の炭化水素基を表す。
 Rは、水素原子であることが好ましい。Rは、水素原子又は炭素原子数1~3のアルキル基が好ましく、水素原子又はメチル基がより好ましい。Rは、水素原子が好ましい。
In the general formula (1), R 1 to R 3 independently represent an alkyl group having a hydrogen atom or a carbon atom number of 1 to 3. p represents an integer of 0 to 2. q represents an integer of 0 to 1. A 1 O represents an oxyalkylene group having 2 to 18 carbon atoms, which may be the same or different. n represents an integer from 1 to 300. R 4 represents a hydrogen atom or a hydrocarbon group having 1 to 30 carbon atoms.
R 1 is preferably a hydrogen atom. R 2 is preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and more preferably a hydrogen atom or a methyl group. R 3 is preferably a hydrogen atom.
 一般式(1)中、AOは、同一又は異なっていてもよい、炭素原子数2~18のオキシアルキレン基を表す。該オキシアルキレン基(アルキレングリコール単位)としては、例えば、オキシエチレン基(エチレングリコール単位)、オキシプロピレン基(プロピレングリコール単位)、オキシブチレン基(ブチレングリコール単位)が挙げられる。中でも、オキシエチレン基、オキシプロピレン基が好ましい。 In the general formula (1), A 1 O represents an oxyalkylene group having 2 to 18 carbon atoms, which may be the same or different. Examples of the oxyalkylene group (alkylene glycol unit) include an oxyethylene group (ethylene glycol unit), an oxypropylene group (propylene glycol unit), and an oxybutylene group (butylene glycol unit). Of these, an oxyethylene group and an oxypropylene group are preferable.
 上記「同一又は異なっていてもよい」とは、一般式(1)中にAOが複数含まれる場合(nが2以上の場合)、それぞれのAOが同一のオキシアルキレン基であってもよく、互いに異なる(2種類以上の)オキシアルキレン基であってもよいことを意味する。一般式(1)中にAOが複数含まれる場合の態様としては、オキシエチレン基、オキシプロピレン基及びオキシブチレン基からなる群から選択される2以上のオキシアルキレン基が混在する態様が挙げられる。より詳細には、オキシエチレン基とオキシプロピレン基とが混在する態様、又はオキシエチレン基とオキシブチレン基とが混在する態様であることが好ましく、オキシエチレン基とオキシプロピレン基とが混在する態様であることがより好ましい。
 異なるオキシアルキレン基が混在する態様において、2種類以上のオキシアルキレン基の付加は、ブロック状の付加であってもよく、ランダム状の付加であってもよい。
The above-mentioned "may be the same or different" means that when a plurality of A 1 O are contained in the general formula (1) (when n is 2 or more), each A 1 O is the same oxyalkylene group. It means that they may be different (two or more kinds) oxyalkylene groups from each other. As an embodiment in which a plurality of A 1 O are contained in the general formula (1), an embodiment in which two or more oxyalkylene groups selected from the group consisting of an oxyethylene group, an oxypropylene group and an oxybutylene group are mixed can be mentioned. Be done. More specifically, it is preferable that the oxyethylene group and the oxypropylene group are mixed, or the oxyethylene group and the oxybutylene group are mixed, and the oxyethylene group and the oxypropylene group are mixed. More preferably.
In an embodiment in which different oxyalkylene groups are mixed, the addition of two or more types of oxyalkylene groups may be block-like addition or random addition.
 一般式(1)中のnは、オキシアルキレン基の平均付加モル数であり、1~300の整数を表す。nは、1~200であることが好ましい。平均付加モル数とは、単量体1モルに付加しているオキシアルキレン基のモル数の平均値を意味する。 N in the general formula (1) is the average number of moles of the oxyalkylene group added, and represents an integer of 1 to 300. n is preferably 1 to 200. The average number of moles added means the average value of the number of moles of oxyalkylene groups added to 1 mole of the monomer.
 一般式(1)中、Rは、水素原子又は炭素原子数1~30の炭化水素基を表す。Rは、水素原子又は炭素原子数1~10の炭化水素基が好ましく、水素原子又は炭素原子数1~5の炭化水素基がより好ましく、水素原子又はメチル基がさらに好ましい。Rの炭素原子数がこの範囲であれば、炭素原子数が大きくなりすぎないため、水硬性組成物用添加剤とした場合に分散性が良好に発揮される。 In the general formula (1), R 4 represents a hydrogen atom or a hydrocarbon group having 1 to 30 carbon atoms. R 4 is preferably a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms, more preferably a hydrogen atom or a hydrocarbon group having 1 to 5 carbon atoms, and even more preferably a hydrogen atom or a methyl group. When the number of carbon atoms of R 4 is in this range, the number of carbon atoms does not become too large, so that the dispersibility is satisfactorily exhibited when it is used as an additive for a hydraulic composition.
 一般式(1)で表される単量体の製造方法としては、例えば、アリルアルコール、メタリルアルコール、3-メチル-3-ブテン-1-オール等の不飽和アルコールにアルキレンオキサイドを1~300モル付加する方法が挙げられる。この方法で製造され得る単量体としては、例えば、(ポリ)エチレングリコールアリルエーテル、(ポリ)エチレングリコールメタリルエーテル、(ポリ)エチレングリコール3-メチル-3-ブテニルエーテル、(ポリ)エチレングリコール(ポリ)プロピレングリコールアリルエーテル、(ポリ)エチレングリコール(ポリ)プロピレングリコールメタリルエーテル、(ポリ)エチレン(ポリ)プロピレングリコールアリルエーテル、(ポリ)エチレン(ポリ)プロピレングリコールメタリルエーテル、(ポリ)エチレン(ポリ)プロピレングリコール3-メチル-3-ブテニルエーテル、(ポリ)エチレン(ポリ)ブチレングリコールアリルエーテル、(ポリ)エチレン(ポリ)ブチレングリコールメタリルエーテル、(ポリ)エチレン(ポリ)ブチレングリコール3-メチル-3-ブテニルエーテル、メトキシ(ポリ)エチレングリコールアリルエーテル、メトキシ(ポリ)エチレングリコールメタリルエーテル、メトキシ(ポリ)エチレングリコール3-メチル-3-ブテニルエーテル、メトキシ(ポリ)エチレン(ポリ)プロピレングリコールアリルエーテル、メトキシ(ポリ)エチレン(ポリ)プロピレングリコールメタリルエーテル、メトキシ(ポリ)エチレン(ポリ)プロピレングリコール3-メチル-3-ブテニルエーテル、メトキシ(ポリ)エチレン(ポリ)ブチレングリコールアリルエーテル、メトキシ(ポリ)エチレン(ポリ)ブチレングリコールメタリルエーテル、メトキシ(ポリ)エチレン(ポリ)ブチレングリコール3-メチル-3-ブテニルエーテルが挙げられる。
 これらの中でも、親水性及び疎水性のバランスの観点から、(ポリ)エチレングリコール(メタ)アリルエーテル、(ポリ)エチレングリコール(ポリ)プロピレングリコール(メタ)アリルエーテル、(ポリ)エチレン(ポリ)プロピレングリコール(メタ)アリルエーテル、(ポリ)エチレングリコール3-メチル-3-ブテニルエーテル、(ポリ)エチレン(ポリ)プロピレングリコール3-メチル-3-ブテニルエーテルが好ましい。
As a method for producing a monomer represented by the general formula (1), for example, 1 to 300 alkylene oxides are added to unsaturated alcohols such as allyl alcohol, methallyl alcohol, and 3-methyl-3-buten-1-ol. A method of adding moles can be mentioned. Examples of the monomer produced by this method include (poly) ethylene glycol allyl ether, (poly) ethylene glycol metalyl ether, (poly) ethylene glycol 3-methyl-3-butenyl ether, and (poly) ethylene glycol. (Poly) propylene glycol allyl ether, (poly) ethylene glycol (poly) propylene glycol metallic ether, (poly) ethylene (poly) propylene glycol allyl ether, (poly) ethylene (poly) propylene glycol metallic ether, (poly) ethylene ( Poly) propylene glycol 3-methyl-3-butenyl ether, (poly) ethylene (poly) butylene glycol allyl ether, (poly) ethylene (poly) butylene glycol metallic ether, (poly) ethylene (poly) butylene glycol 3-methyl -3-Butenyl ether, methoxy (poly) ethylene glycol allyl ether, methoxy (poly) ethylene glycol metallic ether, methoxy (poly) ethylene glycol 3-methyl-3-butenyl ether, methoxy (poly) ethylene (poly) propylene Glycolallyl ether, methoxy (poly) ethylene (poly) propylene glycol metallic ether, methoxy (poly) ethylene (poly) propylene glycol 3-methyl-3-butenyl ether, methoxy (poly) ethylene (poly) butylene glycol allyl ether, Examples thereof include methoxy (poly) ethylene (poly) butylene glycol metallic ether and methoxy (poly) ethylene (poly) butylene glycol 3-methyl-3-butenyl ether.
Among these, from the viewpoint of the balance between hydrophilicity and hydrophobicity, (poly) ethylene glycol (meth) allyl ether, (poly) polyethylene glycol (poly) propylene glycol (meth) allyl ether, (poly) ethylene (poly) propylene Glycol (meth) allyl ether, (poly) ethylene glycol 3-methyl-3-butenyl ether, and (poly) ethylene (poly) propylene glycol 3-methyl-3-butenyl ether are preferred.
 また、一般式(1)で表される単量体の他の製造方法としては、(メタ)アクリル酸等の不飽和モノカルボン酸と、(ポリ)エチレングリコール、(ポリ)エチレン(ポリ)プロピレングリコール、(ポリ)エチレン(ポリ)ブチレングリコール、メトキシ(ポリ)エチレングリコール、メトキシ(ポリ)エチレン(ポリ)プロピレングリコール、メトキシ(ポリ)エチレン(ポリ)ブチレングリコール等の(ポリ)アルキレングリコールと、をエステル化する方法が挙げられる。この方法で製造され得る単量体としては、例えば、(ポリ)エチレングリコール(メタ)アクリレート、(ポリ)エチレン(ポリ)プロピレングリコール(メタ)アクリレート、(ポリ)エチレン(ポリ)ブチレングリコール(メタ)アクリレート等の(ポリ)アルキレングリコール(メタ)アクリレート;メトキシ(ポリ)エチレングリコール(メタ)アクリレート、メトキシ(ポリ)エチレン(ポリ)プロピレングリコール(メタ)アクリレート、メトキシ(ポリ)エチレン(ポリ)ブチレングリコール(メタ)アクリレート等の(ポリ)アルキレングリコール(メタ)アクリレート等のメトキシ(ポリ)アルキレングリコール(メタ)アクリレートが挙げられる。
 これらの中でも、(ポリ)アルキレングリコール(メタ)アクリレート、メトキシ(ポリ)エチレングリコール(メタ)アクリレートが好ましく、メトキシ(ポリ)エチレングリコール(メタ)アクリレートがより好ましい。
Other methods for producing the monomer represented by the general formula (1) include unsaturated monocarboxylic acids such as (meth) acrylic acid, (poly) ethylene glycol, and (poly) ethylene (poly) propylene. Glycol, (poly) ethylene (poly) butylene glycol, methoxy (poly) ethylene glycol, methoxy (poly) ethylene (poly) propylene glycol, methoxy (poly) ethylene (poly) butylene glycol and other (poly) alkylene glycols. Examples include methods of esterification. Examples of the monomer produced by this method include (poly) ethylene glycol (meth) acrylate, (poly) ethylene (poly) propylene glycol (meth) acrylate, and (poly) ethylene (poly) butylene glycol (meth). (Poly) alkylene glycol (meth) acrylate such as acrylate; methoxy (poly) ethylene glycol (meth) acrylate, methoxy (poly) ethylene (poly) propylene glycol (meth) acrylate, methoxy (poly) ethylene (poly) butylene glycol ( Examples thereof include methoxy (poly) alkylene glycol (meth) acrylate such as (poly) alkylene glycol (meth) acrylate such as meta) acrylate.
Among these, (poly) alkylene glycol (meth) acrylate and methoxy (poly) ethylene glycol (meth) acrylate are preferable, and methoxy (poly) ethylene glycol (meth) acrylate is more preferable.
 共重合体が構成単位(I)を有する場合、構成単位(I)を1種のみ有するものであってもよく、互いに異なる単量体に由来する2種以上の構成単位(I)を有していてもよい。 When the copolymer has a structural unit (I), it may have only one structural unit (I), and has two or more structural units (I) derived from different monomers. You may be.
(構成単位(II))
 構成単位(II)は、下記一般式(2)で表される単量体に由来する構成単位である。
(Constituent unit (II))
The structural unit (II) is a structural unit derived from the monomer represented by the following general formula (2).
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 一般式(2)中、R~Rは、それぞれ独立に、水素原子、メチル基、又は-(CHCOOM基を表す。但し、-(CHCOOM基を表す場合、-COOM基又は他の-(CHCOOM基と無水物基を形成してもよい。無水物基を形成する場合、それらの基のM又はMは存在しない。M~Mは、それぞれ独立に、水素原子、アルカリ金属、アルカリ土類金属、アンモニウム基、アルキルアンモニウム基、又は置換アルキルアンモニウム基を表す。rは、0~2の整数を表す。
 Rは、水素原子が好ましい。Rは、水素原子、メチル基又は(CHCOOMが好ましい。Rは、水素原子が好ましい。
In the general formula (2), R 5 ~ R 7 are each independently a hydrogen atom, a methyl group, or - represents a (CH 2) r COOM 2 group. However, - (CH 2) When referring to r COOM 2 group, -COOM 1 group or other - (CH 2) may be formed r COOM 2 groups and anhydride groups. When forming anhydride groups, M 1 or M 2 of those groups is absent. M 1 to M 2 independently represent a hydrogen atom, an alkali metal, an alkaline earth metal, an ammonium group, an alkylammonium group, or a substituted alkylammonium group. r represents an integer of 0 to 2.
R 5 is preferably a hydrogen atom. R 6 is preferably a hydrogen atom, a methyl group or (CH 2 ) r COMM 2 . R 7 is preferably a hydrogen atom.
 M及びMは、同一若しくは異なっていてもよい、水素原子、アルカリ金属、アルカリ土類金属、アンモニウム基、アルキルアンモニウム基又は置換アルキルアンモニウム基である。M、Mは、それぞれ、水素原子、アルカリ金属、又はアルカリ土類金属が好ましい。 M 1 and M 2 are hydrogen atoms, alkali metals, alkaline earth metals, ammonium groups, alkylammonium groups or substituted alkylammonium groups, which may be the same or different. As M 1 and M 2 , hydrogen atoms, alkali metals, or alkaline earth metals are preferable, respectively.
 rは、0~2の整数を表す。rは、0又は1が好ましく、0がより好ましい。 R represents an integer of 0 to 2. r is preferably 0 or 1, more preferably 0.
 一般式(2)で表される単量体としては、例えば、不飽和モノカルボン酸系単量体、不飽和ジカルボン酸系単量体等が挙げられる。不飽和モノカルボン酸系単量体の具体例としては、アクリル酸、メタクリル酸、クロトン酸等と、これらの一価金属塩、アンモニウム塩、有機アミン塩が挙げられる。不飽和ジカルボン酸の具体例としては、マレイン酸、イタコン酸、シトラコン酸、フマル酸等と、これらの一価金属塩、アンモニウム塩及び有機アミン塩等、又は、これらの無水物が挙げられる。一般式(2)で表される単量体としては、アクリル酸、メタクリル酸、マレイン酸が好ましい。 Examples of the monomer represented by the general formula (2) include unsaturated monocarboxylic acid-based monomers and unsaturated dicarboxylic acid-based monomers. Specific examples of unsaturated monocarboxylic acid-based monomers include acrylic acid, methacrylic acid, crotonic acid, and these monovalent metal salts, ammonium salts, and organic amine salts. Specific examples of the unsaturated dicarboxylic acid include maleic acid, itaconic acid, citraconic acid, fumaric acid and the like, their monovalent metal salts, ammonium salts and organic amine salts and the like, or anhydrides thereof. As the monomer represented by the general formula (2), acrylic acid, methacrylic acid, and maleic acid are preferable.
 共重合体が構成単位(II)を有する場合、構成単位(II)を1種のみ有するものであってもよく、互いに異なる単量体に由来する2種以上の構成単位(II)を有していてもよい。 When the copolymer has a structural unit (II), it may have only one structural unit (II), or has two or more structural units (II) derived from different monomers. You may be.
(構成単位(III))
 構成単位(III)は、下記一般式(3)で表される単量体に由来する構成単位である。
(Constituent unit (III))
The structural unit (III) is a structural unit derived from the monomer represented by the following general formula (3).
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 一般式(3)中、R~R10は、それぞれ独立に、水素原子又は炭素原子数1~3のアルキル基を表す。R11は、炭素原子数1~4のヘテロ原子を含んでよい炭化水素基を表す。sは、0~2の整数を表す。
 炭素原子数1~3のアルキル基の例は、R~Rにおける例と同様である。Rは、水素原子が好ましい。Rは、水素原子が好ましい。R10は、水素原子が好ましい。
In the general formula (3), R 8 to R 10 each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms. R 11 represents a hydrocarbon group which may contain a heteroatom having 1 to 4 carbon atoms. s represents an integer of 0 to 2.
Examples of alkyl groups having 1 to 3 carbon atoms are the same as those in R 1 ~ R 3. R 8 is preferably a hydrogen atom. R 9 is preferably a hydrogen atom. R 10 is preferably a hydrogen atom.
 一般式(3)中、R11は、炭素原子数1~4のヘテロ原子を含んでもよい炭化水素基を表す。炭素原子数は、1~3が好ましく、2~3がより好ましく、3がさらに好ましい。ヘテロ原子としては、例えば、酸素原子、窒素原子、リン原子、ケイ素原子が挙げられる。これらの中でも、酸素原子が好ましい。炭素原子数1~4の炭化水素基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基が挙げられる。R11が含むヘテロ原子の数は、1つであってもよく、2つ以上であってもよい。2つ以上のヘテロ原子を含む場合、それぞれのヘテロ原子は、同一であってもよく、互いに異なっていてもよい。 In the general formula (3), R 11 represents a hydrocarbon group which may contain a heteroatom having 1 to 4 carbon atoms. The number of carbon atoms is preferably 1 to 3, more preferably 2 to 3, and even more preferably 3. Examples of the hetero atom include an oxygen atom, a nitrogen atom, a phosphorus atom, and a silicon atom. Among these, an oxygen atom is preferable. Examples of the hydrocarbon group having 1 to 4 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, a butyl group, an isobutyl group and a sec-butyl group. The number of heteroatoms contained in R 11 may be one or two or more. When two or more heteroatoms are contained, each heteroatom may be the same or different from each other.
 R11は、ヘテロ原子を含む炭素原子数1~4の炭化水素基が好ましく、酸素原子を含む炭素原子数1~4の炭化水素基がより好ましい。該基としては、例えば、2-ヒドロキシエチル基、2-ヒドロキシプロピル基、4-ヒドロキシブチル基、及びグリセリル基が挙げられる。これらの中でも、2-ヒドロキシエチル基、2-ヒドロキシプロピル基が好ましい。 R 11 is preferably a hydrocarbon group having 1 to 4 carbon atoms containing a heteroatom, and more preferably a hydrocarbon group having 1 to 4 carbon atoms containing an oxygen atom. Examples of the group include a 2-hydroxyethyl group, a 2-hydroxypropyl group, a 4-hydroxybutyl group, and a glyceryl group. Among these, 2-hydroxyethyl group and 2-hydroxypropyl group are preferable.
 一般式(3)中、sは、0~2の整数を表す。sは、0が好ましい。 In the general formula (3), s represents an integer of 0 to 2. s is preferably 0.
 一般式(3)で表される単量体としては、例えば、不飽和モノカルボン酸のモノエステル体が挙げられる。不飽和モノカルボン酸モノエステルとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、グリセリル(メタ)アクリレートが挙げられる。これらの中でも、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレートが好ましい。 Examples of the monomer represented by the general formula (3) include monoesters of unsaturated monocarboxylic acids. Examples of the unsaturated monocarboxylic acid monoester include methyl (meth) acrylate, ethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, and 4-hydroxybutyl (meth) acrylate. , Glyceryl (meth) acrylate. Among these, 2-hydroxyethyl (meth) acrylate and 2-hydroxypropyl (meth) acrylate are preferable.
 共重合体が構成単位(III)を有する場合、構成単位(III)を1種のみ有するものであってもよく、互いに異なる単量体に由来する2種以上の構成単位(III)を有していてもよい。 When the copolymer has a structural unit (III), it may have only one structural unit (III), and has two or more structural units (III) derived from different monomers. You may be.
 共重合体が、上記構成単位(I)~(III)からなる群より選択される少なくとも2つの構成単位を有すると、成分(A)との共存性が高まり、セメント組成物中で成分(A)をより均一に分散することができる。 When the copolymer has at least two structural units selected from the group consisting of the above structural units (I) to (III), the coexistence with the component (A) is enhanced, and the component (A) in the cement composition is enhanced. ) Can be dispersed more evenly.
 共重合体は、構成単位(I)~(III)とは別に、構成単位(IV)を有していてもよい。 The copolymer may have a structural unit (IV) in addition to the structural units (I) to (III).
(構成単位(IV))
 構成単位(IV)は、上記一般式(1)~(3)で表される単量体と共重合可能な単量体に由来する構成単位である。上記一般式(1)~(3)で表される単量体と共重合可能な単量体は、上記一般式(1)~(3)により表される単量体と構造上区別される。構成単位(IV)を構成する単量体は特に限定されなく、例えば、下記の各単量体を挙げることができる。
 なお、これらの単量体は1種単独で、又は2種以上を組み合わせて用いることが可能である。
(Constituent unit (IV))
The structural unit (IV) is a structural unit derived from a monomer copolymerizable with the monomers represented by the general formulas (1) to (3). The monomers copolymerizable with the monomers represented by the general formulas (1) to (3) are structurally distinguished from the monomers represented by the general formulas (1) to (3). .. The monomer constituting the structural unit (IV) is not particularly limited, and examples thereof include the following monomers.
It should be noted that these monomers can be used alone or in combination of two or more.
 一般式(IV-1)で表される単量体; Monomer represented by the general formula (IV-1);
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 一般式(IV-1)で表される単量体としては、例えば、4,4’-ジヒドロキシジフェニルプロパン、4,4’-ジヒドロキシジフェニルメタン、4,4’-ジヒドロキシジフェニルスルホン等のビスフェノール類の3及び3’位アリル置換物等が挙げられる。 Examples of the monomer represented by the general formula (IV-1) include 3 of bisphenols such as 4,4'-dihydroxydiphenylpropane, 4,4'-dihydroxydiphenylmethane, and 4,4'-dihydroxydiphenylsulfone. And 3'-position allyl substitutions and the like.
 一般式(IV-2)で表される単量体; Monomer represented by the general formula (IV-2);
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 上記一般式(IV-2)で表される単量体としては、例えば、4,4’-ジヒドロキシジフェニルプロパン、4,4’-ジヒドロキシジフェニルメタン、4,4’-ジヒドロキシジフェニルスルホン等のビスフェノール類の3位アリル置換物等が挙げられる。 Examples of the monomer represented by the general formula (IV-2) include bisphenols such as 4,4′-dihydroxydiphenylpropane, 4,4′-dihydroxydiphenylmethane, and 4,4′-dihydroxydiphenylsulfone. Examples thereof include 3-position allyl substitution products.
 一般式(IV-3)で表される単量体; Monomer represented by the general formula (IV-3);
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 一般式(IV-3)で表される単量体としては、例えば、アリルフェノールが挙げられる。 Examples of the monomer represented by the general formula (IV-3) include allylphenol.
 マレイン酸、無水マレイン酸、フマル酸、イタコン酸、シトラコン酸等の不飽和ジカルボン酸類と炭素原子数1~30のアルコールとのハーフエステル、ジエステル類; Half-esters and diesters of unsaturated dicarboxylic acids such as maleic acid, maleic anhydride, fumaric acid, itaconic acid, and citraconic acid and alcohols having 1 to 30 carbon atoms;
 上記不飽和ジカルボン酸類と炭素原子数1~30のアミンとのハーフアミド、ジアミド類; Half-amides and diamides of the unsaturated dicarboxylic acids and amines having 1 to 30 carbon atoms;
 上記アルコール又はアミンに、炭素原子数2~18のアルキレンオキシドを1~500モル付加させた(ポリ)オキシアルキレンアルキルエーテル又は(ポリ)オキシアルキレンアルキルアミンと、上記不飽和ジカルボン酸類との、ハーフエステル、ハーフアミド、ジエステル類、ジアミド類; A half ester of a (poly) oxyalkylene alkyl ether or (poly) oxyalkylene alkyl amine obtained by adding 1 to 500 mol of an alkylene oxide having 2 to 18 carbon atoms to the alcohol or amine and the unsaturated dicarboxylic acids. , Halfamides, diesters, diamides;
 上記不飽和ジカルボン酸類と、炭素原子数2~18のグリコール又はこれらのグリコールの付加モル数2~500のポリアルキレングリコールと、のハーフエステル、ジエステル類; Half-esters and diesters of the unsaturated dicarboxylic acids and glycols having 2 to 18 carbon atoms or polyalkylene glycols having 2 to 500 moles of these glycols;
 マレアミド酸と、炭素原子数2~18のグリコール又はこれらのグリコールの付加モル数2~500のポリアルキレングリコールと、のハーフアミド類; Half-amides of maleamic acid and glycols having 2 to 18 carbon atoms or polyalkylene glycols having 2 to 500 moles of these glycols added;
 (メタ)アクリル酸等の不飽和モノカルボン酸類に対して炭素原子数2~18のアルキレンオキシドが1~500モル付加した、(ポリ)エチレングリコールモノ(メタ)アクリレート、(ポリ)プロピレングリコールモノ(メタ)アクリレート、(ポリ)ブチレングリコールモノ(メタ)アクリレート等(但し、一般式(1)~(3)で表される単量体を除く); (Poly) ethylene glycol mono (meth) acrylate and (poly) propylene glycol mono (poly) propylene glycol mono (poly) propylene glycol mono (meth) acrylate in which 1 to 500 mol of alkylene oxide having 2 to 18 carbon atoms is added to unsaturated monocarboxylic acids such as (meth) acrylic acid. Meta) acrylate, (poly) butylene glycol mono (meth) acrylate, etc. (excluding monomers represented by the general formulas (1) to (3));
 トリエチレングリコールジ(メタ)アクリレート、(ポリ)エチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、(ポリ)エチレングリコール(ポリ)プロピレングリコールジ(メタ)アクリレート等の(ポリ)アルキレングリコールジ(メタ)アクリレート類; (Poly) alkylene glycols such as triethylene glycol di (meth) acrylate, (poly) ethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, (poly) ethylene glycol (poly) propylene glycol di (meth) acrylate Di (meth) acrylates;
 ヘキサンジオールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート等の多官能(メタ)アクリレート類; Polyfunctional (meth) acrylates such as hexanediol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, and trimethylolpropane di (meth) acrylate;
 トリエチレングリコールジマレート、ポリエチレングリコールジマレート等の(ポリ)アルキレングリコールジマレート類; (Poly) alkylene glycol dimalates such as triethylene glycol dimalate and polyethylene glycol dimalate;
 ビニルスルホネート、(メタ)アリルスルホネート、2-(メタ)アクリロキシエチルスルホネート、3-(メタ)アクリロキシプロピルスルホネート、3-(メタ)アクリロキシ-2-ヒドロキシプロピルスルホネート、3-(メタ)アクリロキシ-2-ヒドロキシプロピルスルホフェニルエーテル、3-(メタ)アクリロキシ-2-ヒドロキシプロピルオキシスルホベンゾエート、4-(メタ)アクリロキシブチルスルホネート、(メタ)アクリルアミドメチルスルホン酸、(メタ)アクリルアミドエチルスルホン酸、2-メチルプロパンスルホン酸(メタ)アクリルアミド、スチレンスルホン酸等の不飽和スルホン酸類、並びに、それらの一価金属塩、二価金属塩、アンモニウム塩及び有機アミン塩; Vinyl Sulfonate, (Meta) Allyl Sulfonate, 2- (Meta) Acryloxyethyl Sulfonate, 3- (Meta) Acryloxypropyl Sulfonate, 3- (Meta) Acryloxy-2-Hydroxypropyl Sulfonate, 3- (Meta) Acryloxy-2 -Hydroxypropyl sulfophenyl ether, 3- (meth) acryloxy-2-hydroxypropyloxysulfobenzoate, 4- (meth) acryloxybutyl sulfonate, (meth) acrylamide methyl sulfonic acid, (meth) acrylamide ethyl sulfonic acid, 2- Unsaturated sulfonic acids such as methylpropanesulfonic acid (meth) acrylamide and styrenesulfonic acid, and their monovalent metal salts, divalent metal salts, ammonium salts and organic amine salts;
 メチル(メタ)アクリルアミド等の不飽和モノカルボン酸類と炭素原子数1~30のアミンとのアミド類; Amides of unsaturated monocarboxylic acids such as methyl (meth) acrylamide and amines with 1 to 30 carbon atoms;
 スチレン、α-メチルスチレン、ビニルトルエン、p-メチルスチレン等のビニル芳香族類; Vinyl aromatics such as styrene, α-methylstyrene, vinyltoluene, p-methylstyrene;
 1,5-ペンタンジオールモノ(メタ)アクリレート、1,6-ヘキサンジオールモノ(メタ)アクリレート等のアルカンジオールモノ(メタ)アクリレート類(但し、一般式(3)で表される単量体を除く。); Alkanediol mono (meth) acrylates such as 1,5-pentanediol mono (meth) acrylate and 1,6-hexanediol mono (meth) acrylate (however, the monomer represented by the general formula (3) is excluded. .);
 ブタジエン、イソプレン、2-メチル-1,3-ブタジエン、2-クロル-1,3-ブタジエン等のジエン類; Dienes such as butadiene, isoprene, 2-methyl-1,3-butadiene, 2-chlor-1,3-butadiene;
 (メタ)アクリルアミド、(メタ)アクリルアルキルアミド、N-メチロール(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド等の不飽和アミド類; Unsaturated amides such as (meth) acrylamide, (meth) acrylic alkylamide, N-methylol (meth) acrylamide, N, N-dimethyl (meth) acrylamide;
 (メタ)アクリロニトリル、α-クロロアクリロニトリル等の不飽和シアン類; Unsaturated cyanides such as (meth) acrylonitrile and α-chloroacrylonitrile;
 酢酸ビニル、プロピオン酸ビニル等の不飽和エステル類; Unsaturated esters such as vinyl acetate and vinyl propionate;
 (メタ)アクリル酸アミノエチル、(メタ)アクリル酸メチルアミノエチル、(メタ)アクリル酸ジメチルアミノエチル、(メタ)アクリル酸ジメチルアミノプロピル、(メタ)アクリル酸ジブチルアミノエチル、ビニルピリジン等の不飽和アミン類(但し、一般式(3)で表される単量体を除く。); Unsaturation of (meth) aminoethyl acrylate, methylaminoethyl (meth) acrylate, dimethylaminoethyl (meth) acrylate, dimethylaminopropyl (meth) acrylate, dibutylaminoethyl (meth) acrylate, vinylpyridine, etc. Amines (excluding monomers represented by the general formula (3));
 ジビニルベンゼン等のジビニル芳香族類;トリアリルシアヌレート等のシアヌレート類; Divinyl aromatics such as divinylbenzene; cyanurates such as triallyl cyanurate;
 (メタ)アリルアルコール、グリシジル(メタ)アリルエーテル等のアリル類; Allyls such as (meth) allyl alcohol and glycidyl (meth) allyl ether;
 メトキシポリエチレングリコールモノビニルエーテル、ポリエチレングリコールモノビニルエーテル、メトキシポリエチレングリコールモノ(メタ)アリルエーテル、ポリエチレングリコールモノ(メタ)アリルエーテル等のビニルエーテル又はアリルエーテル類(但し、一般式(1)で表される単量体を除く。); Vinyl ethers such as methoxypolyethylene glycol monovinyl ether, polyethylene glycol monovinyl ether, methoxypolyethylene glycol mono (meth) allyl ether, polyethylene glycol mono (meth) allyl ether, or allyl ethers (however, a single amount represented by the general formula (1)). Excluding the body.);
 ポリジメチルシロキサンプロピルアミノマレインアミド酸、ポリジメチルシロキサンアミノプロピレンアミノマレインアミド酸、ポリジメチルシロキサン-ビス-(プロピルアミノマレインアミド酸)、ポリジメチルシロキサン-ビス-(ジプロピレンアミノマレインアミド酸)、ポリジメチルシロキサン-(1-プロピル-3-アクリレート)、ポリジメチルシロキサン-(1-プロピル-3-メタクリレート)、ポリジメチルシロキサン-ビス-(1-プロピル-3-アクリレート)、ポリジメチルシロキサン-ビス-(1-プロピル-3-メタクリレート)等のシロキサン誘導体(但し、一般式(3)で表される単量体を除く。)。 Polydimethylsiloxane propylaminomale amidoic acid, polydimethylsiloxane aminopropylene aminomale amidoic acid, polydimethylsiloxane-bis- (propylaminomale amidoic acid), polydimethylsiloxane-bis- (dipropylene aminomale amidoic acid), polydimethyl Siloxane- (1-propyl-3-acrylate), polydimethylsiloxane- (1-propyl-3-methacrylate), polydimethylsiloxane-bis- (1-propyl-3-acrylate), polydimethylsiloxane-bis- (1) A siloxane derivative such as -propyl-3-methacrylate) (excluding the monomer represented by the general formula (3)).
 共重合体は、構成単位(IV)を1種のみ有するものであってもよく、互いに異なる単量体に由来する2種以上の構成単位(IV)を有していてもよい。 The copolymer may have only one type of structural unit (IV), or may have two or more types of structural units (IV) derived from different monomers.
 共重合体において、各構成単位(I)~(IV)は、それぞれ、1種類の単量体から構成される構成単位であってもよく、2種類以上の単量体を組み合わせて構成される構成単位であってもよい。これらの中でも、共重合体は、構成単位(I)及び構成単位(II)の組み合わせである共重合体、又は構成単位(I)~(III)の組み合わせである共重合体が好ましい。 In the copolymer, each of the structural units (I) to (IV) may be a structural unit composed of one type of monomer, or may be composed of a combination of two or more types of monomers. It may be a structural unit. Among these, the copolymer is preferably a copolymer which is a combination of the structural unit (I) and the structural unit (II), or a copolymer which is a combination of the structural units (I) to (III).
(共重合体の調製方法)
 共重合体は、それぞれ所定の単量体を、公知の方法によって共重合して調製し得る。該方法としては、例えば、溶媒中での重合、塊状重合等の重合方法が挙げられる。
(Method for preparing copolymer)
Each copolymer can be prepared by copolymerizing predetermined monomers by a known method. Examples of the method include polymerization methods such as polymerization in a solvent and bulk polymerization.
 溶媒中での重合に使用される溶媒としては、例えば、水;メチルアルコール、エチルアルコール、イソプロピルアルコール等の低級アルコール;ベンゼン、トルエン、キシレン等の芳香族炭化水素;シクロヘキサン、n-ヘキサン等の脂肪族炭化水素;酢酸エチル等のエステル類;アセトン、メチルエチルケトン等のケトン類等が挙げられる。原料単量体及び得られる共重合体の溶解性の観点から、水及び低級アルコールの少なくともいずれかの溶媒を用いることが好ましく、水を用いることがより好ましい。 Examples of the solvent used for polymerization in the solvent include water; lower alcohols such as methyl alcohol, ethyl alcohol and isopropyl alcohol; aromatic hydrocarbons such as benzene, toluene and xylene; and fats such as cyclohexane and n-hexane. Group hydrocarbons; esters such as ethyl acetate; ketones such as acetone and methyl ethyl ketone. From the viewpoint of solubility of the raw material monomer and the obtained copolymer, it is preferable to use at least one solvent of water and a lower alcohol, and it is more preferable to use water.
 溶媒中で重合反応を行う場合、各単量体と重合開始剤を各々反応容器に連続滴下してもよく、各単量体の混合物と重合開始剤を各々反応容器に連続滴下してもよい。また、反応容器に溶媒を仕込み、単量体と溶媒の混合物と、重合開始剤溶液を各々反応容器に連続滴下してもよく、単量体の一部又は全部を反応容器に仕込み、重合開始剤を連続滴下してもよい。 When the polymerization reaction is carried out in a solvent, each monomer and the polymerization initiator may be continuously added dropwise to the reaction vessel, or a mixture of each monomer and the polymerization initiator may be continuously added dropwise to the reaction vessel. .. Further, the solvent may be charged into the reaction vessel, and the mixture of the monomer and the solvent and the polymerization initiator solution may be continuously added dropwise to the reaction vessel, and a part or all of the monomer may be charged into the reaction vessel to start the polymerization. The agent may be continuously added dropwise.
 重合反応に使用し得る重合開始剤は、特に限定されない。水溶媒中で重合反応を行う際に使用し得る重合開始剤としては、例えば、過硫酸アンモニウム、過硫酸ナトリウム、過硫酸カリウム等の過硫酸塩;t-ブチルハイドロパーオキサイド、過酸化水素等の水溶性過酸化物が挙げられる。この際、L-アスコルビン酸、亜硫酸水素ナトリウム、モール塩等の促進剤を併用してもよい。低級アルコール、芳香族炭化水素、脂肪族炭化水素、エステル類又はケトン類等の有機溶媒中で重合反応を行う際に使用し得る重合開始剤としては、例えば、ベンゾイルパーオキサイド、ラウリルパーオキサイド等のパーオキサイド;クメンパーオキサイド等のハイドロパーオキサイド;アゾビスイソブチロニトリル等のアゾ化合物等が挙げられる。この際、アミン化合物等の促進剤を併用してもよい。水-低級アルコール混合溶剤中で重合反応を行う場合に使用し得る重合開始剤は、前述の重合開始剤、又は重合開始剤と促進剤との組合せの中から適宜選択すればよい。
 重合温度は、用いる溶媒、重合開始剤の種類等の重合条件によって適宜異なるけれども、通常は40~120℃である。
The polymerization initiator that can be used in the polymerization reaction is not particularly limited. Examples of the polymerization initiator that can be used when carrying out the polymerization reaction in an aqueous solvent include persulfates such as ammonium persulfate, sodium persulfate and potassium persulfate; and water-soluble substances such as t-butyl hydroperoxide and hydrogen peroxide. Examples include sex peroxides. At this time, an accelerator such as L-ascorbic acid, sodium bisulfite, or molle salt may be used in combination. Examples of the polymerization initiator that can be used when carrying out the polymerization reaction in an organic solvent such as a lower alcohol, an aromatic hydrocarbon, an aliphatic hydrocarbon, an ester or a ketone include benzoyl peroxide and lauryl peroxide. Examples thereof include hydrocarbons; hydroperoxides such as cumene peroxide; and azo compounds such as azobisisobutyronitrile. At this time, an accelerator such as an amine compound may be used in combination. The polymerization initiator that can be used when the polymerization reaction is carried out in a water-lower alcohol mixed solvent may be appropriately selected from the above-mentioned polymerization initiator or a combination of the polymerization initiator and the accelerator.
The polymerization temperature is usually 40 to 120 ° C., although it varies depending on the polymerization conditions such as the solvent used and the type of the polymerization initiator.
 重合反応においては、必要に応じて連鎖移動剤を用いて分子量を調整することができる。連鎖移動剤としては、例えば、メルカプトエタノール、チオグリセロール、チオグリコール酸、2-メルカプトプロピオン酸、3-メルカプトプロピオン酸、チオリンゴ酸、チオグリコール酸オクチル、2-メルカプトエタンスルホン酸等の既知のチオール系化合物;亜リン酸、次亜リン酸、又はそれらの塩(次亜リン酸ナトリウム、次亜リン酸カリウム等)、亜硫酸、亜硫酸水素、亜二チオン酸、メタ重亜硫酸、又はそれらの塩(亜硫酸ナトリウム、亜硫酸カリウム、亜硫酸水素ナトリウム、亜硫酸水素カリウム、亜二チオン酸ナトリウム、亜二チオン酸カリウム、メタ重亜硫酸ナトリウム、メタ重亜硫酸カリウム等)の低級酸化物又はそれらの塩等が挙げられる。
 これらの連鎖移動剤は、1種単独で用いてもよく、2種以上を併用してもよい。
In the polymerization reaction, the molecular weight can be adjusted by using a chain transfer agent, if necessary. Known thiol-based chain transfer agents include, for example, mercaptoethanol, thioglycerol, thioglycolic acid, 2-mercaptopropionic acid, 3-mercaptopropionic acid, thioalinic acid, octyl thioglycolate, 2-mercaptoethanesulfonic acid and the like. Compounds; phosphite, hypophosphoric acid, or salts thereof (sodium bisulfite, potassium hypophosphate, etc.), sulfite, hydrogen sulfite, dithionic acid, metabisulfite, or salts thereof (sulfite) Examples thereof include lower oxides of sodium, potassium sulfite, sodium hydrogen sulfite, potassium hydrogen sulfite, sodium bisulfite, potassium bisulfite, sodium metabisulfite, potassium metabisulfite, etc.) or salts thereof.
These chain transfer agents may be used alone or in combination of two or more.
 共重合体を得る際に水溶媒中で重合反応を行う場合、重合反応時のpHは通常不飽和結合を有する単量体の影響で強酸性となる。但し、これを適当なpHに調整してもよい。重合反応の際にpHの調整が必要な場合、リン酸、硫酸、硝酸、アルキルリン酸、アルキル硫酸、アルキルスルホン酸、(アルキル)ベンゼンスルホン酸等の酸性物質を用いてpHの調整を行えばよい。これら酸性物質の中では、pH緩衝作用がある等の理由から、リン酸を用いることが好ましい。但し、エステル系の単量体が有するエステル結合の不安定さを解消するために、pH2~7で重合反応を行うことが好ましい。また、pHの調整に用い得るアルカリ性物質に特に限定はなく、NaOH、Ca(OH)等のアルカリ性物質が一般的である。pH調整は、重合反応前の単量体に対して行ってもよく、重合反応後の共重合体溶液に対して行ってもよい。また、これらは重合反応前に一部のアルカリ性物質を添加して重合を行った後、さらに共重合体に対してpH調整(例えば、pH3~7となるように調整)を行ってもよい。 When the polymerization reaction is carried out in an aqueous solvent to obtain a copolymer, the pH at the time of the polymerization reaction is usually strongly acidic due to the influence of a monomer having an unsaturated bond. However, this may be adjusted to an appropriate pH. If it is necessary to adjust the pH during the polymerization reaction, adjust the pH using an acidic substance such as phosphoric acid, sulfuric acid, nitric acid, alkylphosphate, alkylsulfuric acid, alkylsulfonic acid, or (alkyl) benzenesulfonic acid. Good. Among these acidic substances, it is preferable to use phosphoric acid for reasons such as having a pH buffering action. However, in order to eliminate the instability of the ester bond of the ester-based monomer, it is preferable to carry out the polymerization reaction at pH 2 to 7. The alkaline substance that can be used for adjusting the pH is not particularly limited, and alkaline substances such as NaOH and Ca (OH) 2 are generally used. The pH adjustment may be performed on the monomer before the polymerization reaction or on the copolymer solution after the polymerization reaction. Further, these may be polymerized by adding a part of alkaline substances before the polymerization reaction, and then the pH of the copolymer may be adjusted (for example, adjusted to pH 3 to 7).
 共重合体は、液状物として調製し得る。液状の溶媒としては、水性溶媒が例示される。水性溶媒としては、水、炭素数1~6のアルコール(エチルアルコール、メチルアルコール、エチレングリコール及びジエチレングリコール等)及び炭素数1~6のケトン(メチルイソブチルケトン及びアセトン等)等が挙げられる。これらの水性溶媒は、1種単独で用いてもよく、2種以上を混合して用いてもよい。水性溶媒としては、水が好ましい。
 共重合体における固形分濃度の下限は、5重量%以上が好ましく、15重量%以上がより好ましい。また、その上限は、70重量%以下が好ましく、65重量%以下がより好ましい。
The copolymer can be prepared as a liquid. Examples of the liquid solvent include aqueous solvents. Examples of the aqueous solvent include water, alcohols having 1 to 6 carbon atoms (ethyl alcohol, methyl alcohol, ethylene glycol, diethylene glycol, etc.), ketones having 1 to 6 carbon atoms (methylisobutylketone, acetone, etc.), and the like. These aqueous solvents may be used alone or in combination of two or more. Water is preferable as the aqueous solvent.
The lower limit of the solid content concentration in the copolymer is preferably 5% by weight or more, more preferably 15% by weight or more. The upper limit thereof is preferably 70% by weight or less, more preferably 65% by weight or less.
 成分(B)は、共重合体の原料である上記一般式(1)~(3)からなる群から選択される少なくとも1種の単量体を含んでいてもよい。共重合体を得る際には、必要に応じて反応溶媒の除去、濃縮、精製等の処理を行ってもよい。これらの処理方法は、従来公知の方法であってもよい。 The component (B) may contain at least one monomer selected from the group consisting of the above general formulas (1) to (3), which is a raw material of the copolymer. When the copolymer is obtained, the reaction solvent may be removed, concentrated, purified or the like, if necessary. These treatment methods may be conventionally known methods.
 共重合体の重量平均分子量(Mw)の下限は、5000以上が好ましく、7000以上がより好ましく、10000以上が更に好ましい。成分(B)としてこの重量平均分子量を有する共重合体を用いることにより、セメント組成物分散剤とした際にセメント組成物の分散性が十分発揮され得る。そのため、流動性又は作業性を改善し得る。重量平均分子量の上限は、60000以下が好ましく、45000以下がより好ましく、30000以下が更に好ましい。成分(B)としてこの重量平均分子量を有する共重合体を用いることにより、セメント組成物中の粒子の凝集作用が抑制され、作業性を良好にし得る。重量平均分子量は、5000~60000が好ましく、7000~45000がより好ましく、10000~30000が更に好ましい。 The lower limit of the weight average molecular weight (Mw) of the copolymer is preferably 5000 or more, more preferably 7000 or more, and further preferably 10000 or more. By using a copolymer having this weight average molecular weight as the component (B), the dispersibility of the cement composition can be sufficiently exhibited when it is used as a cement composition dispersant. Therefore, fluidity or workability can be improved. The upper limit of the weight average molecular weight is preferably 60,000 or less, more preferably 45,000 or less, and even more preferably 30,000 or less. By using a copolymer having this weight average molecular weight as the component (B), the agglutination action of particles in the cement composition can be suppressed, and workability can be improved. The weight average molecular weight is preferably 5000 to 60,000, more preferably 7,000 to 45,000, and even more preferably 10,000 to 30,000.
 共重合体の分子量分布(Mw/Mn)の下限は、1.0以上が好ましく、1.2以上がより好ましい。上限は、3.0以下が好ましく、2.5以下がより好ましい。分子量分布は、1.0~3.0の範囲が好ましく、1.2~3.0の範囲がより好ましく、1.2~2.5の範囲がさらに好ましい。 The lower limit of the molecular weight distribution (Mw / Mn) of the copolymer is preferably 1.0 or more, more preferably 1.2 or more. The upper limit is preferably 3.0 or less, more preferably 2.5 or less. The molecular weight distribution is preferably in the range of 1.0 to 3.0, more preferably in the range of 1.2 to 3.0, and even more preferably in the range of 1.2 to 2.5.
 重量平均分子量は、ゲルパーミエイションクロマトグラフィー(GPC)にてポリエチレングリコール換算の公知の方法にて測定することができる。GPCの測定条件は特に限定されるものではなく、例えば、以下の条件を挙げることができる。なお、後段の実施例における重量平均分子量は、この条件で測定した値である。
  測定装置;東ソー製
  使用カラム;Shodex Column OH-pak SB-806HQ、SB-804HQ、SB-802.5HQ
  溶離液;0.05mM硝酸ナトリウム/アセトニトリル 8/2(v/v)
  標準物質;ポリエチレングリコール(東ソー社製又はGLサイエンス社製)
  検出器;示差屈折計(東ソー社製)
  検量線;ポリエチレングリコール基準
The weight average molecular weight can be measured by gel permeation chromatography (GPC) by a known method in terms of polyethylene glycol. The measurement conditions for GPC are not particularly limited, and examples thereof include the following conditions. The weight average molecular weight in the latter example is a value measured under this condition.
Measuring device; Tosoh column used: Shodex Volume OH-pak SB-806HQ, SB-804HQ, SB-802.5HQ
Eluent; 0.05 mM sodium nitrate / acetonitrile 8/2 (v / v)
Standard substance: Polyethylene glycol (manufactured by Tosoh or GL Science)
Detector; differential refractometer (manufactured by Tosoh Corporation)
Calibration curve; polyethylene glycol standard
 本発明の粉末状組成物を粉末状水硬性組成物用添加剤として用いる場合、成分(A)の成分(B)に対する重量比率((A)/(B))は、99:1~51:49が好ましく、90:10~55:45がより好ましく、80:20~60:40が更に好ましい。成分(A)の成分(B)に対する重量比率((A)/(B))が上記範囲を満たすことで、良好な粉体性を維持したまま、十分な初期分散性を発揮し得る。 When the powdery composition of the present invention is used as an additive for a powdery hydraulic composition, the weight ratio ((A) / (B)) of the component (A) to the component (B) is 99: 1 to 51: 49 is preferable, 90:10 to 55:45 is more preferable, and 80:20 to 60:40 is further preferable. When the weight ratio ((A) / (B)) of the component (A) to the component (B) satisfies the above range, sufficient initial dispersibility can be exhibited while maintaining good powder properties.
 本発明の粉末状組成物を固形状水硬性組成物用添加剤として用いる場合、成分(A)の成分(B)に対する重量比率((A)/(B))は、1:99~50:50が好ましく、10:90~45:55がより好ましく、20:80~40:60が更に好ましい。成分(A)の成分(B)に対する重量比率((A)/(B))が上記範囲を満たすことで、良好な錠剤成形性を維持したまま、十分な水溶性、及び初期分散性を発揮し得る。 When the powdered composition of the present invention is used as an additive for a solid hydraulic composition, the weight ratio ((A) / (B)) of the component (A) to the component (B) is 1: 99 to 50: 50 is preferable, 10:90 to 45:55 is more preferable, and 20:80 to 40:60 is even more preferable. When the weight ratio ((A) / (B)) of the component (A) to the component (B) satisfies the above range, sufficient water solubility and initial dispersibility are exhibited while maintaining good tablet moldability. Can be done.
[1-3.他の成分]
 本発明の粉末状組成物は、本発明の効果を妨げない範囲において、上記の成分(A)及び成分(B)以外の任意成分を含有してもよい。
 粉末状組成物を水硬性組成物用添加剤として用いる場合、任意成分としては、例えば、水溶性高分子、硬化促進剤、増粘剤、高分子エマルジョン、空気連行剤、セメント湿潤剤、膨張剤、防水剤、凝集剤、乾燥収縮低減剤、強度増進剤、消泡剤、AE剤、界面活性剤等の公知の水硬性組成物用添加剤、賦形剤、滑剤が挙げられる。これらは1種単独で使用してもよく、2種以上を組み合わせて用いてもよい。
[1-3. Other ingredients]
The powdery composition of the present invention may contain any component other than the above-mentioned component (A) and component (B) as long as the effect of the present invention is not impaired.
When the powdered composition is used as an additive for a water-hardening composition, optional components include, for example, a water-soluble polymer, a curing accelerator, a thickener, a polymer emulsion, an air entraining agent, a cement wetting agent, and a swelling agent. , Known additives for water-hard composition such as waterproofing agent, coagulant, drying shrinkage reducing agent, strength enhancer, defoaming agent, AE agent, surfactant and the like, excipients and lubricants. These may be used individually by 1 type, and may be used in combination of 2 or more type.
 水溶性高分子としては、ポリアルキレングリコールがある。より具体的には、ポリエチレングリコール、ポリプロピレングリコール、ポリエチレンポリプロピレングリコール、ポリエチレンポリブチレングリコール等が挙げられる。水溶性高分子の含有量は、成分(A)に対して、0.01~50重量%であることが好ましい。 Polyalkylene glycol is a water-soluble polymer. More specifically, polyethylene glycol, polypropylene glycol, polyethylene polypropylene glycol, polyethylene polybutylene glycol and the like can be mentioned. The content of the water-soluble polymer is preferably 0.01 to 50% by weight with respect to the component (A).
 硬化促進剤としては、塩化カルシウム、亜硝酸カルシウム、硝酸カルシウム等の可溶性カルシウム塩類;塩化鉄、塩化マグネシウム等の塩化物類;チオ硫酸塩;ギ酸;ギ酸カルシウム等のギ酸塩類が挙げられる。硬化促進剤は、1種単独で使用してもよく、2種以上を組み合わせて使用してもよい。硬化促進剤の含有量は、成分(A)に対して、0.01~50重量%であることが好ましい。 Examples of the curing accelerator include soluble calcium salts such as calcium chloride, calcium nitrite and calcium nitrate; chlorides such as iron chloride and magnesium chloride; thiosulfate; formic acid; and formates such as calcium formate. The curing accelerator may be used alone or in combination of two or more. The content of the curing accelerator is preferably 0.01 to 50% by weight with respect to the component (A).
[2.固形状組成物]
 本発明の固形状組成物は、上述の粉末状組成物の固形化物である。本明細書において固形化物とは、固形化処理により得られる処理物を言う。固形化処理としては、例えば、乾燥固形化処理、造粒処理(打錠、押出)、各種成形処理が挙げられるが、特に限定されない。固形状組成物の剤形としては、例えば、錠剤、ペレットが挙げられる。
[2. Solid composition]
The solid composition of the present invention is a solidified product of the above-mentioned powdery composition. In the present specification, the solidified product means a processed product obtained by the solidification treatment. Examples of the solidification treatment include a dry solidification treatment, a granulation treatment (locking, extrusion), and various molding treatments, but the solidification treatment is not particularly limited. Examples of the dosage form of the solid composition include tablets and pellets.
[3.水硬性組成物用添加剤]
 本発明の水硬性組成物用添加剤は、上述の粉末状組成物及び固形状組成物から選ばれる少なくとも1種を有効成分とする。添加剤の剤形は、粉末状、固形状(例えば、錠剤、ペレット)が好ましい。添加剤の剤形が粉末状の場合、安息角及びゆるめ嵩密度が上記の条件を満たす粉末状組成物を有効成分とすることが好ましい。添加剤の剤形が固形状の場合、崩壊角及び粒度分布が上記の条件を満たす粉末状組成物の固形化物が好ましく、さらに崩壊角及び差角の少なくともいずれかが上記の条件を満たす粉末状組成物の固形化物を有効成分とすることがより好ましい。
[3. Additives for hydraulic compositions]
The additive for a hydraulic composition of the present invention contains at least one selected from the above-mentioned powdery composition and solid composition as an active ingredient. The dosage form of the additive is preferably powder or solid (for example, tablets or pellets). When the dosage form of the additive is in the form of powder, it is preferable to use a powdery composition in which the angle of repose and the loose bulk density satisfy the above conditions as the active ingredient. When the dosage form of the additive is solid, a solid product of a powdery composition in which the collapse angle and particle size distribution satisfy the above conditions is preferable, and further, a powder form in which at least one of the collapse angle and the difference angle satisfies the above conditions. It is more preferable to use the solidified product of the composition as an active ingredient.
 本明細書において、粉末状水硬性組成物用添加剤とは、製造工程において乾燥固形化処理を経ているが造粒処理を経ていない水硬性組成物用添加剤を意味し、固形状水硬性組成物用添加剤とは、製造工程において乾燥固形化処理、造粒処理等の固形化処理を経ている水硬性組成物用添加剤を意味する。 In the present specification, the additive for a powdery hydraulic composition means an additive for a hydraulic composition that has undergone a dry solidification treatment but not a granulation treatment in the manufacturing process, and has a solid hydraulic composition. The additive for a material means an additive for a hydraulic composition that has undergone a solidification treatment such as a dry solidification treatment and a granulation treatment in a manufacturing process.
 水硬性組成物用添加剤の水分量は、通常50重量%以下、好ましくは30重量%以下、より好ましくは10重量%以下である。水硬性組成物用添加剤の水分量は、赤外線水分計(株式会社ケツト科学研究所製)を用いて測定し得る。後段の実施例の固形分(%)は、本機器で測定を行った。 The water content of the additive for the hydraulic composition is usually 50% by weight or less, preferably 30% by weight or less, and more preferably 10% by weight or less. The water content of the additive for the hydraulic composition can be measured using an infrared moisture meter (manufactured by Ketsuto Scientific Research Institute Co., Ltd.). The solid content (%) of the examples in the latter stage was measured with this instrument.
 水硬性組成物用添加剤は、粉末状組成物及び固形状組成物以外の成分を含んでいてもよい。例えば、他の水硬性組成物用添加剤、前記1-3で例示した各剤が挙げられる。 The additive for hydraulic composition may contain components other than the powdery composition and the solid composition. For example, other additives for hydraulic composition, each agent exemplified in 1-3 above can be mentioned.
[4.粉末状組成物の製造方法]
 本発明は、成分(A)及び成分(B)を少なくとも含む液状物を乾燥粉末化する方法を提供する。
 各成分の詳細は、[1.粉末状組成物]に記載した内容と同様である。
[4. Method for producing powdered composition]
The present invention provides a method for drying and pulverizing a liquid substance containing at least the component (A) and the component (B).
For details of each component, see [1. It is the same as the content described in [Powdered composition].
 乾燥方法としては、公知の方法で行い得る。例えば、カルシウム、マグネシウム等の二価金属の水酸化物で中和して多価金属塩とした後に乾燥する方法;シリカ系微粉末等の無機粉体に担持して乾燥する方法;乾燥装置(例えば、ドラム型乾燥装置、ディスク型乾燥装置又はベルト式乾燥装置)の支持体上に薄膜状に乾燥固化する方法;スプレードライヤによって乾燥固化する方法が挙げられる。乾燥固化処理後の水分含量は、通常50重量%以上、好ましくは30%重量%以下、より好ましくは10重量%以下である。
 乾燥粉末化後に得られる粉末状組成物はそのまま粉末状水硬性組成物用添加剤として用いることができ、また、さらに固形化処理を行うことにより固形化物を得て、固形状水硬性組成物用添加剤として用いることができる。固形化処理としては例えば乾燥固形化処理、造粒処理(打錠、押出)、各種成形処理が挙げられるが、特に限定されない。
As a drying method, a known method can be used. For example, a method of neutralizing with a hydroxide of a divalent metal such as calcium or magnesium to obtain a polyvalent metal salt and then drying; a method of supporting and drying on an inorganic powder such as a silica-based fine powder; a drying device ( For example, a method of drying and solidifying in a thin film on a support of a drum type drying device, a disk type drying device or a belt type drying device; a method of drying and solidifying with a spray dryer can be mentioned. The water content after the dry solidification treatment is usually 50% by weight or more, preferably 30% by weight or less, and more preferably 10% by weight or less.
The powdered composition obtained after dry powdering can be used as it is as an additive for a powdered hydraulic composition, or a solidified product can be obtained by further solidifying treatment for a solid hydraulic composition. It can be used as an additive. Examples of the solidification treatment include a dry solidification treatment, a granulation treatment (locking, extrusion), and various molding treatments, but the solidification treatment is not particularly limited.
[5.水硬性組成物]
 本発明の水硬性組成物は、上記4に記載の水硬性組成物用添加剤を含有する。より詳細には、水硬性組成物は、水硬性組成物用添加剤を、セメント等の水硬性材料に添加して調製したセメントペースト、モルタル、コンクリート、プラスター等である。
[5. Hydraulic composition]
The hydraulic composition of the present invention contains the additive for hydraulic composition according to 4 above. More specifically, the hydraulic composition is a cement paste, mortar, concrete, plaster or the like prepared by adding an additive for a hydraulic composition to a hydraulic material such as cement.
 水硬性材料としては、例えば、セメント、石膏(半水石膏、二水石膏等)、ドロマイトが挙げられる。最も一般的な水硬性材料はセメントである。 Examples of hydraulic materials include cement, gypsum (hemihydrate gypsum, dihydrate gypsum, etc.), and dolomite. The most common hydraulic material is cement.
 セメントとしては、特に限定はない。例えば、ポルトランドセメント(普通、早強、超早強、中庸熱、耐硫酸塩及びそれぞれの低アルカリ形)、各種混合セメント(高炉セメント、シリカセメント、フライアッシュセメント)、白色ポルトランドセメント、アルミナセメント、超速硬セメント(1クリンカー速硬性セメント、2クリンカー速硬性セメント、リン酸マグネシウムセメント)、グラウト用セメント、油井セメント、低発熱セメント(低発熱型高炉セメント、フライアッシュ混合低発熱型高炉セメント、ビーライト高含有セメント)、超高強度セメント、セメント系固化材、エコセメント(都市ごみ焼却灰、下水汚泥焼却灰の1種以上を原料として製造されたセメント)等が挙げられる。セメントには、高炉スラグ、フライアッシュ、シンダーアッシュ、クリンカーアッシュ、ハスクアッシュ、シリカヒューム、珪砂粉(シリカパウダー)、石灰石粉末等の微粉体、石膏等が添加されていてもよい。 There are no particular restrictions on cement. For example, Portoland cement (normal, early-strength, ultra-fast-strength, moderate heat, sulfate-resistant and each low-alkali form), various mixed cements (blast furnace cement, silica cement, fly ash cement), white Portorand cement, alumina cement, Ultra-fast-hardening cement (1 clinker fast-hardening cement, 2 clinker fast-hardening cement, magnesium phosphate cement), grout cement, oil well cement, low heat-generating cement (low-heat-generating blast furnace cement, fly ash mixed low-heat-generating blast furnace cement, belite High-content cement), ultra-high-strength cement, cement-based solidifying material, eco-cement (cement manufactured from one or more of municipal waste incineration ash and sewage sludge incineration ash) and the like. Fine powder such as blast furnace slag, fly ash, cinder ash, clinker ash, husk ash, silica fume, silica sand powder (silica powder), limestone powder, gypsum and the like may be added to the cement.
 また、水硬性組成物は骨材を含んでいてもよい。骨材は、細骨材及び粗骨材のいずれであってもよい。骨材としては、例えば、砂、砂利、砕石、水砕スラグ、再生骨材等、珪石質、珪砂粉(シリカパウダー)、粘土質、ジルコン質、ハイアルミナ質、炭化珪素質、黒鉛質、クロム質、クロマグ質、マグネシア質等の耐火骨材が挙げられる。 Further, the hydraulic composition may contain aggregate. The aggregate may be either a fine aggregate or a coarse aggregate. Aggregates include, for example, sand, gravel, crushed stone, granulated slag, recycled aggregate, etc., silica stone, silica sand powder (silica powder), clay, zircon, high alumina, silicon carbide, graphite, chromium. Examples thereof include fire-resistant aggregates such as quality, chromagous, and magnesia.
 水硬性組成物における水硬性組成物用添加剤の添加量については、特に限定はない。例えば、水硬性組成物が、モルタル又はコンクリートである場合、次の添加量であると、水硬性組成物用添加剤がセメントマトリックス中に均一に分散されると共に、フレッシュコンクリートの増粘が抑制され、流動性が良好なセメント組成物を調製し得る。なお、添加量は、水硬性材料(セメント)の全重量に対する比率である。 The amount of the additive for the hydraulic composition added to the hydraulic composition is not particularly limited. For example, when the hydraulic composition is mortar or concrete, the following addition amount uniformly disperses the additive for the hydraulic composition in the cement matrix and suppresses the thickening of fresh concrete. , A cement composition having good fluidity can be prepared. The amount added is a ratio to the total weight of the hydraulic material (cement).
 水硬性組成物用添加剤の添加量(固形分添加量)の下限は、0.001重量%以上が好ましく、0.01重量%以上がより好ましく、0.1重量%以上がさらに好ましい。また、その上限は、30重量%以下が好ましく、25重量%以下がより好ましく、20重量%以下がさらに好ましい。即ち、0.001~30重量%が好ましく、0.01~25重量%がより好ましく、0.1~20重量%がさらに好ましい。 The lower limit of the addition amount (solid content addition amount) of the additive for the hydraulic composition is preferably 0.001% by weight or more, more preferably 0.01% by weight or more, still more preferably 0.1% by weight or more. The upper limit thereof is preferably 30% by weight or less, more preferably 25% by weight or less, and even more preferably 20% by weight or less. That is, 0.001 to 30% by weight is preferable, 0.01 to 25% by weight is more preferable, and 0.1 to 20% by weight is further preferable.
 上記の水硬性組成物は、例えば、レディーミクストコンクリート、コンクリート2次製品(プレキャストコンクリート)用のコンクリート、遠心成形用コンクリート、振動締め固め用コンクリート、蒸気養生コンクリート、軽量気泡コンクリート、Autoclaved Lightweight aerated Concrete、吹付けコンクリート等のコンクリートとして有効である。
 また、中流動コンクリート(スランプ値が22~25cmの範囲のコンクリート)、高流動コンクリート(スランプ値が25cm以上で、スランプフロー値が50~70cmの範囲のコンクリート)、自己充填性コンクリート、セルフレベリング材等の高い流動性が要求されるモルタル又はコンクリート、としても有効である。
The above-mentioned water-hardening compositions include, for example, ready-mixed concrete, concrete for secondary concrete products (precast concrete), centrifugal-forming concrete, vibration-compacting concrete, steam-curing concrete, lightweight aerated concrete, Autoclaved Lightweight aerated Concrete, and the like. It is effective as concrete such as sprayed concrete.
In addition, medium-fluidity concrete (concrete with a slump value in the range of 22 to 25 cm), high-fluidity concrete (concrete with a slump value of 25 cm or more and a slump flow value in the range of 50 to 70 cm), self-filling concrete, self-leveling material. It is also effective as mortar or concrete that requires high fluidity such as.
 以下、本発明を実施例により詳細に説明する。以下の実施例は、本発明を好適に説明するためのものであって、本発明を限定するものではない。なお、物性値等の測定方法は、別途記載がない限り、上記に記載した測定方法である。また、「部」とは、特に断りがない限り、重量部を示す。 Hereinafter, the present invention will be described in detail by way of examples. The following examples are for the purpose of preferably explaining the present invention, and do not limit the present invention. Unless otherwise specified, the method for measuring the physical property value or the like is the measurement method described above. Further, “part” means a part by weight unless otherwise specified.
 [安息角(°)]:角度計測方式を「Peak Operation」とした粉体性試験装置(パウダテスタPT-X(ホソカワミクロン社製))にて、目開き710μm、線径450μmのふるいを用いて測定し、流動性の指標とした。安息角が50.0°以下だと、粉体流動性に優れ、作業性が向上する。 [Angle of repose (°)]: Measured with a powder test device (Powder Tester PT-X (manufactured by Hosokawa Micron)) using the angle measurement method "Peak Operation" using a sieve with an opening of 710 μm and a wire diameter of 450 μm. It was used as an index of liquidity. When the angle of repose is 50.0 ° or less, the powder fluidity is excellent and the workability is improved.
 [ゆるめ嵩密度(g/m)]:粉体性試験装置(パウダテスタPT-X(ホソカワミクロン社製))により、目開き710μm、線径450μmのふるいを用いて測定した。ゆるめ嵩密度が0.40g/mを超えると、水硬性組成物投入後の拡散性が悪化し、初期分散性が悪化する。 [Loose bulk density (g / m 3 )]: Measured by a powder property tester (Powder Tester PT-X (manufactured by Hosokawa Micron)) using a sieve having a mesh size of 710 μm and a wire diameter of 450 μm. When the loosening bulk density exceeds 0.40 g / m 3 , the diffusivity after the addition of the hydraulic composition deteriorates, and the initial dispersibility deteriorates.
 [崩壊角(°)]:角度計測方式を「Peak Operation」とした粉体性試験装置(パウダテスタPT-X(ホソカワミクロン社製))により、目開き710μm、線径450μmのふるいを用いて測定した。崩壊角が27.0°以上だと、優れた錠剤適性と崩壊性を有し得ると判定される。 [Collapse angle (°)]: Measured using a powder test device (Powder Tester PT-X (manufactured by Hosokawa Micron)) with an angle measurement method of "Peak Operation" using a sieve with a mesh size of 710 μm and a wire diameter of 450 μm. .. When the disintegration angle is 27.0 ° or more, it is determined that excellent tablet suitability and disintegration property can be obtained.
 [差角(°)]:下記数式(α)で表される式を用いて、差角を算出した。
  差角=安息角-崩壊角・・・・・・(α)
 差角が19.0°以下だと、優れた錠剤適性と崩壊性を有し得ると判定される。
[Difference angle (°)]: The difference angle was calculated using the formula expressed by the following mathematical formula (α).
Difference angle = angle of repose-collapse angle ... (α)
When the difference angle is 19.0 ° or less, it is judged that excellent tablet suitability and disintegration property can be obtained.
 [粒度分布(μm)]:粉末サンプル3gをレーザー回折式粒度分布測定装置(マスターサイザー3000(Malvern社製))により、乾式条件で測定し得られた分子量分布より、横軸を粒度(μm)、縦軸を体積(%)として表し、蓄積分布が50%となる値を算出した。粒度分布が100μm以上だと、粒子同士の凝集力が向上するため、錠剤適性が向上し得ると判定される。 [Particle size distribution (μm)]: From the molecular weight distribution obtained by measuring 3 g of a powder sample with a laser diffraction type particle size distribution measuring device (Mastersizer 3000 (manufactured by Malvern)) under dry conditions, the horizontal axis is the particle size (μm). , The vertical axis is represented as volume (%), and the value at which the accumulation distribution is 50% is calculated. When the particle size distribution is 100 μm or more, it is determined that the tablet suitability can be improved because the cohesive force between the particles is improved.
 [モルタルフロー(mm)]:調製したモルタルについて、「JIS A 1171:2016(ポリマーセメントモルタルの試験方法)」のフロー試験に準拠して、モルタルフローを測定した。 [Mortar flow (mm)]: The mortar flow of the prepared mortar was measured according to the flow test of "JIS A 1171: 2016 (test method for polymer cement mortar)".
 [粉体流動性の評価]
 ステンレス製ロート(内径φ10mm)に、製造した固形状セメント分散剤1gを内壁面に載せた。その後、漏斗に対し手で振動を与えながら、固形状セメント分散剤が漏斗を通過するかを評価した。固形状セメント分散剤の通過具合から下記の基準で粉体流動性を判断した。
A:固形状セメント分散剤が漏斗を通過し、粉体流動性に優れる。
B:固形状セメント分散剤が漏斗壁面に付着するものの、漏斗を通過し、粉体流動性にやや優れる。
C:固形状セメント分散剤が漏斗を通過せず、粉体流動性に劣る。
[Evaluation of powder fluidity]
1 g of the produced solid cement dispersant was placed on the inner wall surface of a stainless steel funnel (inner diameter φ10 mm). Then, while manually vibrating the funnel, it was evaluated whether the solid cement dispersant passed through the funnel. The powder fluidity was judged based on the following criteria based on the passing condition of the solid cement dispersant.
A: The solid cement dispersant passes through the funnel and has excellent powder fluidity.
B: Although the solid cement dispersant adheres to the wall surface of the funnel, it passes through the funnel and has slightly excellent powder fluidity.
C: The solid cement dispersant does not pass through the funnel and is inferior in powder fluidity.
 [錠剤成形性(固まり易さ)の評価]:10gの試料を直径10cmの円筒形の金型に入れ、50℃の乾燥機で30分乾燥させた後、容器から取り出し、目視で評価した。
〇:固まっており、持つことが可能
△:一部固まっている
×:固まっておらず、金型を外すと粉体に戻る
[Evaluation of tablet moldability (easiness of solidification)]: A 10 g sample was placed in a cylindrical mold having a diameter of 10 cm, dried in a dryer at 50 ° C. for 30 minutes, removed from the container, and visually evaluated.
〇: Hardened and can be held △: Partially hardened ×: Not hardened and returns to powder when the mold is removed
 [崩壊性試験]:500mLメスシリンダーに500mLの10~15℃の水を入れ、上記錠剤成形性評価で作製した錠剤サンプルを添加し、崩壊したサンプルが底に落ちるまでの時間を測定した。崩壊時間が20秒以下だと、崩壊性に優れる。 [Disintegration test]: 500 mL of water at 10 to 15 ° C. was placed in a 500 mL graduated cylinder, the tablet sample prepared by the above tablet moldability evaluation was added, and the time until the disintegrated sample fell to the bottom was measured. If the disintegration time is 20 seconds or less, the disintegration property is excellent.
(製造例1:成分(A-1)の製造)
 亜硫酸マグネシウムを用いて木材(ラジアータパイン)を溶液pH2の条件下で140℃、3時間蒸解し、得られた亜硫酸蒸解廃液をpH5.0に調整した。これを、分画分子量20000のポリスルホン系限外濾過膜を用いて限外濾過処理を行い、その濃縮液をリグニン誘導体(A-1)とした。
(Production Example 1: Production of component (A-1))
Wood (radiata pine) was steamed at 140 ° C. for 3 hours under the condition of solution pH 2 using magnesium sulfite, and the obtained sulfurous acid cooking waste liquid was adjusted to pH 5.0. This was subjected to ultrafiltration treatment using a polysulfone-based ultrafiltration membrane having a molecular weight cut off of 20000, and the concentrated solution was used as a lignin derivative (A-1).
(製造例2:成分(A-2)の製造)
 亜硫酸マグネシウムを用いて木材(ラジアータパイン)を溶液pH2の条件下で140℃、3時間蒸解し、得られた亜硫酸蒸解廃液を40%NaOHでpH12とした後、140℃で30分間アルカリ空気酸化した。そして、不溶解物を遠心分離し、その上澄み液をリグニン誘導体(A-2)とした。
(Production Example 2: Production of component (A-2))
Wood (radiata pine) was steamed at 140 ° C. for 3 hours under the condition of solution pH 2 using magnesium sulfite, and the obtained sulfite cooking waste liquid was adjusted to pH 12 with 40% NaOH and then alkaline air-oxidized at 140 ° C. for 30 minutes. .. Then, the insoluble matter was centrifuged, and the supernatant was used as a lignin derivative (A-2).
(製造例3:成分(A-3)の製造)
 亜硫酸カルシウムを用いて木材(ラジアータパイン)を溶液pH2の条件下で140℃、3時間蒸解し、得られた亜硫酸蒸解廃液をpH7.0に調整し、これをリグニン誘導体(A-3)とした。
(Production Example 3: Production of component (A-3))
Wood (radiata pine) was steamed at 140 ° C. for 3 hours under the condition of solution pH 2 using calcium sulfite, and the obtained sulfurous acid cooking waste liquid was adjusted to pH 7.0, and this was used as a lignin derivative (A-3). ..
(製造例4:成分(B-1)の調製)
 温度計、攪拌装置、還流装置、窒素導入管及び滴下装置を備えたガラス反応容器に、水2733部、メタリルアルコールのエチレンオキサイド付加物(エチレンオキサイドの平均付加モル数53個)600部を投入し、攪拌しながら反応容器を窒素置換した。窒素雰囲気下で40℃に昇温した後、アクリル酸126部、3-メルカプトプロピオン酸5部、及び水654部を混合したモノマー水溶液と過酸化水素2部、及び水244部の混合液とL-アスコルビン酸5部、及び水245部の混合液とを、各々2時間で、40℃に保持し反応容器に連続滴下した。滴下終了後、温度を保持した状態でさらに1時間反応させることにより共重合体の水溶液を得た。液中の共重合体は、共重合体(B-1)(重量平均分子量22,000、Mw/Mn1.60)であった。
(Production Example 4: Preparation of component (B-1))
2733 parts of water and 600 parts of ethylene oxide adduct of metallic alcohol (average number of moles of ethylene oxide added: 53) were put into a glass reaction vessel equipped with a thermometer, agitator, a reflux device, a nitrogen introduction tube and a dropping device. Then, the reaction vessel was replaced with nitrogen while stirring. After raising the temperature to 40 ° C. in a nitrogen atmosphere, a mixture of 126 parts of acrylic acid, 5 parts of 3-mercaptopropionic acid, and 654 parts of water, a monomer aqueous solution and 2 parts of hydrogen peroxide, and 244 parts of water and L A mixed solution of 5 parts of ascorbic acid and 245 parts of water was kept at 40 ° C. for 2 hours each and continuously added dropwise to the reaction vessel. After completion of the dropping, the reaction was carried out for another 1 hour while maintaining the temperature to obtain an aqueous solution of the copolymer. The copolymer in the liquid was a copolymer (B-1) (weight average molecular weight 22,000, Mw / Mn 1.60).
(製造例5:成分(B-2)の調製)
 温度計、攪拌装置、還流装置、窒素導入管及び滴下装置を備えたステンレス製反応容器に水7900kgを仕込み、攪拌下で反応容器を窒素置換した。窒素雰囲気下で100℃に昇温した後、メトキシポリエチレングリコールメタアクリレート(MPEG-MA)(エチレンオキサイドの平均付加モル数14)2503kg(33モル%)、メタクリル酸(MAA)405kg(67モル%)、及び水2666kgを混合したモノマー水溶液と、過硫酸ナトリウム50kg、及び水500kgの攪拌混合液を、各々2時間かけて100℃に保持した反応容器に連続滴下した。温度を100℃に保持した状態で1時間重合反応を行った。その後、反応容器の後段に位置する追加装置にて、70℃まで冷却し、水酸化ナトリウムでpH6に中和すると同時に加水することで、濃度20%の共重合体の水溶液を得た。液中の共重合体は、共重合体(B-2)(重量平均分子量Mw19,300、Mw/Mn1.54)であった。
(Production Example 5: Preparation of component (B-2))
7900 kg of water was charged into a stainless steel reaction vessel equipped with a thermometer, a stirrer, a recirculation device, a nitrogen introduction tube and a dropping device, and the reaction vessel was replaced with nitrogen under stirring. After raising the temperature to 100 ° C. in a nitrogen atmosphere, 2503 kg (33 mol%) of methoxypolyethylene glycol methacrylate (MPEG-MA) (average number of moles of ethylene oxide added 14), 405 kg (67 mol%) of methacrylic acid (MAA). , And a stirring mixed solution of 50 kg of sodium persulfate and 500 kg of water mixed with 2666 kg of water were continuously added dropwise to a reaction vessel kept at 100 ° C. over 2 hours. The polymerization reaction was carried out for 1 hour while keeping the temperature at 100 ° C. Then, the mixture was cooled to 70 ° C. with an additional device located at the rear stage of the reaction vessel, neutralized to pH 6 with sodium hydroxide, and at the same time hydrated to obtain an aqueous solution of a copolymer having a concentration of 20%. The copolymer in the liquid was a copolymer (B-2) (weight average molecular weight Mw19,300, Mw / Mn1.54).
(製造例6:成分(B-3)の調製)
 温度計、攪拌装置、還流装置、窒素導入管及び滴下装置を備えたガラス反応容器に、水254部を仕込み、攪拌下で反応容器内を窒素置換した。窒素雰囲気下で100℃に昇温した後、メタクリル酸35部、メトキシポリエチレングリコールメタアクリレート(エチレンオキサイドの平均付加モル数14個)214部、3-メルカプトプロピオン酸3部、及び水40部を混合したモノマー水溶液と、過硫酸アンモニウム3部、及び水36部の混合液とを、各々2時間で、100℃に保持した反応容器に連続滴下した。更に、温度を100℃に保持した状態で1時間反応を行った。その後、31%の水酸化ナトリウム水溶液にてpH7に調製することにより共重合体の水溶液を得た。液中の共重合体は、共重合体(B-3)(重量平均分子量13,000、Mw/Mn1.41)であった。
(Production Example 6: Preparation of component (B-3))
254 parts of water was charged into a glass reaction vessel equipped with a thermometer, a stirrer, a reflux device, a nitrogen introduction tube and a dropping device, and the inside of the reaction vessel was replaced with nitrogen under stirring. After raising the temperature to 100 ° C. in a nitrogen atmosphere, 35 parts of methacrylic acid, 214 parts of methoxypolyethylene glycol methacrylate (average number of moles of ethylene oxide added: 14), 3 parts of 3-mercaptopropionic acid, and 40 parts of water are mixed. A mixed solution of 3 parts of ammonium persulfate and 36 parts of water was continuously added dropwise to a reaction vessel kept at 100 ° C. for 2 hours each. Further, the reaction was carried out for 1 hour while maintaining the temperature at 100 ° C. Then, the pH was adjusted to 7 with a 31% aqueous sodium hydroxide solution to obtain an aqueous copolymer. The copolymer in the liquid was a copolymer (B-3) (weight average molecular weight 13,000, Mw / Mn1.41).
(製造例7:成分(B-4)の調製)
 温度計、攪拌装置、還流装置、窒素導入管及び滴下装置を備えたガラス反応容器に、水654部、及びポリエチレングリコールモノアリルエーテル(エチレンオキサイドの平均付加モル数10個)18部を投入し、攪拌しながら反応容器を窒素置換した。窒素雰囲気下で80℃に昇温した後、メタクリル酸10部、アクリル酸0.1部、メトキシポリエチレングリコールメタクリレート(エチレンオキサイドの平均付加モル数25個)50部、2-ヒドロキシプロピルアクリレート80部、及び水142部を混合したモノマー水溶液と、過硫酸アンモニウム3部、及び水43部の混合液とを、各々2時間で、100℃に保持した反応容器に連続滴下した。滴下終了後、温度を100℃に保持した状態でさらに1時間反応させることにより共重合体の水溶液を得た。この液を30%NaOH水溶液でpH4に調整した。液中の共重合体は、共重合体(B-4)(重量平均分子量24,500、Mw/Mn2.15)であった。
(Production Example 7: Preparation of component (B-4))
654 parts of water and 18 parts of polyethylene glycol monoallyl ether (average number of added moles of ethylene oxide: 10) were put into a glass reaction vessel equipped with a thermometer, agitator, a reflux device, a nitrogen introduction tube and a dropping device. The reaction vessel was replaced with nitrogen with stirring. After raising the temperature to 80 ° C. in a nitrogen atmosphere, 10 parts of methacrylic acid, 0.1 part of acrylic acid, 50 parts of methoxypolyethylene glycol methacrylate (average number of moles of ethylene oxide added 25), 80 parts of 2-hydroxypropyl acrylate, A monomer aqueous solution containing 142 parts of water and a mixed solution of 3 parts of ammonium persulfate and 43 parts of water were continuously added dropwise to a reaction vessel kept at 100 ° C. for 2 hours each. After completion of the dropping, the reaction was carried out for another 1 hour while maintaining the temperature at 100 ° C. to obtain an aqueous solution of the copolymer. This solution was adjusted to pH 4 with a 30% aqueous NaOH solution. The copolymer in the liquid was a copolymer (B-4) (weight average molecular weight 24,500, Mw / Mn2.15).
(実施例1:粉末状水硬性組成物用添加剤の製造)
 表1に記載した処方の、成分(A-1)及び成分(B-1)を、ドラムドライヤにより140℃で乾燥した粉末状物である。該粉末状物の固形分は95%であった。
(Example 1: Production of additive for powdery hydraulic composition)
It is a powdery substance obtained by drying the component (A-1) and the component (B-1) of the formulations shown in Table 1 at 140 ° C. with a drum dryer. The solid content of the powder was 95%.
(実施例2:粉末状水硬性組成物用添加剤の製造)
 表1に記載した処方の、成分(A-2)及び成分(B-2)の混合物を、ドラムドライヤにより140℃で乾燥した粉末状物である。該粉末状物の固形分は96%であった。
(Example 2: Production of additive for powdery hydraulic composition)
A powdery product obtained by drying a mixture of the component (A-2) and the component (B-2) according to the formulation shown in Table 1 at 140 ° C. with a drum dryer. The solid content of the powder was 96%.
(実施例3~5:粉末状水硬性組成物用添加剤の製造)
 表1に記載した処方の、成分(A-1)及び成分(B-2)を、ドラムドライヤにより140℃で乾燥した粉末状物である。実施例3の該粉末状物の固形分は95%であり、実施例4の該粉末状物の固形分は97%であり、実施例5の該粉末状物の固形分は97%であった。
(Examples 3 to 5: Production of additives for powdery hydraulic composition)
It is a powdery substance obtained by drying the component (A-1) and the component (B-2) of the formulations shown in Table 1 at 140 ° C. with a drum dryer. The solid content of the powdered product of Example 3 was 95%, the solid content of the powdered product of Example 4 was 97%, and the solid content of the powdered product of Example 5 was 97%. It was.
(実施例6:粉末状水硬性組成物用添加剤の製造)
 表1に記載した処方の、成分(A-1)及び成分(B-3)を、ドラムドライヤにより140℃で乾燥した粉末状物である。実施例6の該粉末状物の固形分は95%であった。
(Example 6: Production of additive for powdery hydraulic composition)
It is a powdery substance obtained by drying the component (A-1) and the component (B-3) of the formulations shown in Table 1 at 140 ° C. with a drum dryer. The solid content of the powdered product of Example 6 was 95%.
(実施例7:粉末状水硬性組成物用添加剤の製造)
 表1に記載した処方の、成分(A-1)及び成分(B-4)を、ドラムドライヤにより140℃で乾燥した粉末状物である。実施例7の該粉末状物の固形分は96%であった。
(Example 7: Production of additive for powdery hydraulic composition)
It is a powdery substance obtained by drying the component (A-1) and the component (B-4) of the formulations shown in Table 1 at 140 ° C. with a drum dryer. The solid content of the powdered product of Example 7 was 96%.
(比較例1:粉末状水硬性組成物用添加剤の製造)
 製造例1で製造した成分(A-1)をスプレードライヤ(入口温度300℃、出口温度100℃)により乾燥した粉末状物である。該粉末状物の固形分は94%であった。
(Comparative Example 1: Production of Additive for Powdered Hydraulic Composition)
It is a powdery substance obtained by drying the component (A-1) produced in Production Example 1 with a spray dryer (inlet temperature 300 ° C., outlet temperature 100 ° C.). The solid content of the powder was 94%.
(比較例2:液状水硬性組成物用添加剤の製造)
 製造例6で製造した成分(B-3)をそのまま用いた液状物である。
(Comparative Example 2: Production of Additive for Liquid Hydraulic Composition)
It is a liquid product using the component (B-3) produced in Production Example 6 as it is.
(比較例3:液状水硬性組成物用添加剤の製造)
 製造例7で製造した成分(B-4)をそのまま用いた液状物である。
(Comparative Example 3: Production of Additive for Liquid Hydraulic Composition)
It is a liquid product using the component (B-4) produced in Production Example 7 as it is.
 上記の水硬性組成物用添加剤の詳細について、下記表1に示す。 Details of the above additives for hydraulic composition are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
(実施例8~10:固形状水硬性組成物用添加剤の製造)
 表2に記載した処方の、成分(A-1)及び成分(B-3)を、ドラムドライヤにより140℃で乾燥した粉末状物である。実施例8の該固形状物の固形分は97%であり、実施例9の該固形状物の固形分は98%であり、実施例10の該固形状物の固形分は97%であった。
(Examples 8 to 10: Production of additives for solid hydraulic composition)
It is a powdery substance obtained by drying the component (A-1) and the component (B-3) of the formulations shown in Table 2 at 140 ° C. with a drum dryer. The solid content of the solid matter of Example 8 was 97%, the solid content of the solid matter of Example 9 was 98%, and the solid content of the solid matter of Example 10 was 97%. It was.
(実施例11:固形状水硬性組成物用添加剤の製造)
 表2に記載した処方の、成分(A-1)及び成分(B-1)の混合物を、ドラムドライヤにより140℃で乾燥した粉末状物である。該粉末状物の固形分は97%であった。
(Example 11: Production of additive for solid hydraulic composition)
The mixture of the component (A-1) and the component (B-1) of the formulation shown in Table 2 is a powdery product dried at 140 ° C. by a drum dryer. The solid content of the powder was 97%.
(実施例12:固形状水硬性組成物用添加剤の製造)
 表2に記載した処方の、成分(A-1)及び成分(B-2)を、ドラムドライヤにより140℃で乾燥した粉末状物である。該粉末状物の固形分は97%であった。
(Example 12: Production of additive for solid hydraulic composition)
It is a powdery substance obtained by drying the component (A-1) and the component (B-2) of the formulations shown in Table 2 at 140 ° C. with a drum dryer. The solid content of the powder was 97%.
(実施例13:固形状水硬性組成物用添加剤の製造)
 表2に記載した処方の、成分(A-2)及び成分(B-2)の混合物を、ドラムドライヤにより140℃で乾燥した塊状物である。該塊状物の固形分は96%であった。
(Example 13: Production of additive for solid hydraulic composition)
A mixture of the component (A-2) and the component (B-2) of the formulation shown in Table 2 is a mass dried at 140 ° C. with a drum dryer. The solid content of the mass was 96%.
(実施例14:固形状水硬性組成物用添加剤の製造)
 表2に記載した処方の、成分(A-3)及び成分(B-2)の混合物を、ドラムドライヤにより140℃で乾燥した塊状物を、サンプルミル(協立理工(株)製、型式:SK-M2型)で30秒粉砕した粉砕物である。該粉砕物の固形分は98%であった。
(Example 14: Production of additive for solid hydraulic composition)
A lump of the mixture of the component (A-3) and the component (B-2) of the formulation shown in Table 2 dried at 140 ° C. with a drum dryer was prepared as a sample mill (manufactured by Kyoritsu Riko Co., Ltd., model: It is a crushed product crushed for 30 seconds with SK-M2 type). The solid content of the pulverized product was 98%.
(実施例15:固形状水硬性組成物用添加剤の製造)
 表1に記載した処方の、成分(A-1)及び成分(B-3)の混合物を、ドラムドライヤにより140℃で乾燥した粉末状物である。該粉末状物の固形分は97%であった。
(Example 15: Production of additive for solid hydraulic composition)
The mixture of the component (A-1) and the component (B-3) of the formulation shown in Table 1 is a powdery product dried at 140 ° C. with a drum dryer. The solid content of the powder was 97%.
(比較例4:液状水硬性組成物用添加剤)
 製造例5で製造した成分(B-2)をそのまま用いた液状物である。
(Comparative Example 4: Additive for Liquid Hydraulic Composition)
It is a liquid product using the component (B-2) produced in Production Example 5 as it is.
 上記の水硬性組成物用添加剤の詳細について、下記表2に示す。 Details of the above additives for hydraulic composition are shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 表1に示す各水硬性組成物用添加剤について、モルタルを作製し、モルタルフロー試験を行った。モルタルの作製条件を以下に示す。 For each additive for hydraulic composition shown in Table 1, mortar was prepared and a mortar flow test was conducted. The conditions for producing mortar are shown below.
 環境温度(20℃)において、表3のように配合したセメント、水、砂及び表4及び5に示す水硬性組成物用添加剤を投入して、モルタルミキサによる機械練りにより低速60秒間、高速90秒練混ぜて、実施例及び比較例のモルタル(水硬性組成物)を得た。このモルタルを用いて、モルタルフロー値の測定を行った。試験結果を表4に示す。 At the environmental temperature (20 ° C.), the cement, water, sand and the additives for the hydraulic composition shown in Tables 4 and 5 were added as shown in Table 3, and the mixture was mechanically kneaded with a mortar mixer at low speed for 60 seconds at high speed. The mixture was mixed for 90 seconds to obtain mortars (hydraulic compositions) of Examples and Comparative Examples. Using this mortar, the mortar flow value was measured. The test results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
  なお、表3中の記号の詳細を以下に記す。
  C:以下のセメント3種を等量混合
  普通ポルトランドセメント(宇部三菱セメント株式会社製、比重3.16)
  普通ポルトランドセメント(太平洋セメント株式会社製、比重3.16)
  普通ポルトランドセメント(株式会社トクヤマ製、比重3.16)
  W:水道水
  S:細骨材(掛川産陸砂 密度2.58)
The details of the symbols in Table 3 are shown below.
C: Equivalent mixture of the following three types of cement Ordinary Portland cement (manufactured by Ube-Mitsubishi Cement Co., Ltd., specific gravity 3.16)
Ordinary Portland cement (manufactured by Taiheiyo Cement Co., Ltd., specific gravity 3.16)
Ordinary Portland cement (manufactured by Tokuyama Corporation, specific gravity 3.16)
W: Tap water S: Fine aggregate (land sand density 2.58 from Kakegawa)
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 表4からわかる通り、リグニン誘導体と、所定の構成単位で構成される共重合体を少なくとも含み、安息角が50.0°以下、かつゆるめ嵩密度が0.40g/m以下であれば、リグニン誘導体と同等の粉体流動性を示し、かつリグニン誘導体よりも優れた初期分散性、及び分散保持性を示すことがわかる。
 また、実施例6(A-1とB-3を使用)と比較例2(B-3のみ使用)、並びに実施例7(A-1とB-4を使用)と比較例3(B-4のみ使用)を比較すると、実施例3、及び実施例4の粉末状水硬性組成物用添加剤は、比較例2、及び比較例3の液状水硬性組成物用添加剤よりも混練後30分時にもモルタルフローが大きいことから、優れた分散性を有していることがわかる。なお、実施例8(表2)の粉末状物について、固形分添加量1.20%として同様の試験を行ったところ、混練直後及び混練後30分時のモルタルフローがそれぞれ200mm、190mm、粉体流動性がB評価であった。
As can be seen from Table 4, if the lignin derivative and the copolymer composed of a predetermined structural unit are contained at least, the angle of repose is 50.0 ° or less, and the loosening bulk density is 0.40 g / m 3 or less. It can be seen that the powder fluidity is equivalent to that of the lignin derivative, and the initial dispersibility and dispersion retention are superior to those of the lignin derivative.
Further, Example 6 (using A-1 and B-3) and Comparative Example 2 (using only B-3), and Example 7 (using A-1 and B-4) and Comparative Example 3 (B-). Comparing (using only 4), the additives for powdered hydraulic composition of Example 3 and Example 4 are 30 after kneading than the additives for liquid hydraulic composition of Comparative Example 2 and Comparative Example 3. Since the mortar flow is large even at the minute, it can be seen that it has excellent dispersibility. When the same test was performed on the powdered material of Example 8 (Table 2) with the solid content added at 1.20%, the mortar flows immediately after kneading and 30 minutes after kneading were 200 mm and 190 mm, respectively, and the powder. Body fluidity was rated B.
 表2に示す水硬性組成物用添加剤について、モルタルを作製し、モルタルフロー試験を行った。モルタルの作製条件は、表1に示す添加剤に替えて表2に示す添加剤(錠剤成形性の測定方法で記載された方法で得られた錠剤)を用いたことを除き、上述の条件と同一である。試験結果を表5に示す。 For the additives for hydraulic composition shown in Table 2, mortar was prepared and a mortar flow test was conducted. The mortar preparation conditions were the same as those described above, except that the additives shown in Table 2 (tablets obtained by the method described in the method for measuring tablet moldability) were used instead of the additives shown in Table 1. It is the same. The test results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
 表5からわかる通り、実施例8~14はいずれも錠剤成形性及び崩壊性にバランスよく優れていた。このことから、リグニン誘導体と、所定の構成単位で構成される共重合体を少なくとも含み、崩壊角が27.0°以下、かつ粒度分布が100μm以上であれば、固形化が容易であり、得られる固形化物が水硬性組成物に対して良好な溶解性を有していることが分かる。
 また、実施例10(A-1とB-3を使用)と比較例2(B-3のみ使用)、並びに実施例12(A-1とB-2を使用)と比較例4(B-2のみ使用)を比較すると、実施例10及び実施例12の固形状の水硬性組成物用添加剤は、比較例2及び比較例4の液状の水硬性組成物用添加剤と混練直後及び30分時のモルタルフローが同等か又は大きいことから、同等以上の分散性を有していることがわかる。
 さらに、実施例13は塊状物であるが、モルタルフロー性能は実施例8~12及び14と同様に優れることがわかる。
 実施例15は、分散性が良好であり、粉体流動性試験では良好な評価(例えばB以上)が得られるものと予測される。
 
As can be seen from Table 5, all of Examples 8 to 14 were excellent in tablet moldability and disintegration property in a well-balanced manner. From this, if the lignin derivative and the copolymer composed of a predetermined structural unit are contained at least, the decay angle is 27.0 ° or less, and the particle size distribution is 100 μm or more, solidification is easy, and the result is obtained. It can be seen that the solidified product obtained has good solubility in the hydraulic composition.
Further, Example 10 (using A-1 and B-3) and Comparative Example 2 (using only B-3), and Example 12 (using A-1 and B-2) and Comparative Example 4 (B-). Comparing (using only 2), the solid hydraulic composition additives of Examples 10 and 12 were immediately after kneading and 30 with the liquid hydraulic composition additives of Comparative Examples 2 and 4. Since the mortar flow at minutes is the same or larger, it can be seen that the mortar flow has the same or higher dispersibility.
Further, although Example 13 is a lump, it can be seen that the mortar flow performance is as excellent as in Examples 8 to 12 and 14.
Example 15 has good dispersibility, and it is expected that a good evaluation (for example, B or higher) can be obtained in the powder fluidity test.

Claims (11)

  1.  成分(A):リグニン誘導体、及び
     成分(B):下記一般式(1)で表される単量体に由来する構成単位(I)、下記一般式(2)で表される単量体に由来する構成単位(II)、及び下記一般式(3)で表される単量体に由来する構成単位(III)からなる群から選択される少なくとも2種の構成単位を有する共重合体、
     を少なくとも含み、安息角が50.0°以下、ゆるめ嵩密度が0.40g/m以下、崩壊角が27.0°以上、及び、粒度分布が100μm以上、から選ばれる少なくとも1つを満たす粉末状組成物。
    Figure JPOXMLDOC01-appb-C000001
     (前記一般式(1)中、R~Rは、それぞれ独立に、水素原子又は炭素原子数1~3のアルキル基を表す。pは、0~2の整数を表す。qは、0~1の整数を表す。AOは、同一又は異なっていてもよい、炭素原子数2~18のオキシアルキレン基を表す。nは、1~300の整数を表す。Rは、水素原子又は炭素原子数1~30の炭化水素基を表す。)
    Figure JPOXMLDOC01-appb-C000002
     (前記一般式(2)中、R~Rは、それぞれ独立に、水素原子、メチル基、又は-(CHCOOM基を表す。但し、-(CHCOOM基を表す場合、-COOM基又は他の-(CHCOOM基と無水物基を形成してもよい。無水物基を形成する場合、それらの基のM又はMは存在しない。M~Mは、それぞれ独立に、水素原子、アルカリ金属、アルカリ土類金属、アンモニウム基、アルキルアンモニウム基、又は置換アルキルアンモニウム基を表す。rは、0~2の整数を表す。)
    Figure JPOXMLDOC01-appb-C000003
     (前記一般式(3)中、R~R10は、それぞれ独立に、水素原子又は炭素原子数1~3のアルキル基を表す。R11は、炭素原子数1~4のヘテロ原子を含んでよい炭化水素基を表す。sは、0~2の整数を表す。)
    Component (A): Lignin derivative, and component (B): Structural unit (I) derived from the monomer represented by the following general formula (1), to the monomer represented by the following general formula (2). A copolymer having at least two structural units selected from the group consisting of the derived structural unit (II) and the structural unit (III) derived from the monomer represented by the following general formula (3).
    Satisfy at least one selected from an angle of repose of 50.0 ° or less, a loose bulk density of 0.40 g / m 3 or less, a collapse angle of 27.0 ° or more, and a particle size distribution of 100 μm or more. Powdery composition.
    Figure JPOXMLDOC01-appb-C000001
    (In the general formula (1), R 1 to R 3 independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms. P represents an integer of 0 to 2. q is 0. Represents an integer of 1 to 1. A 1 O represents an oxyalkylene group having 2 to 18 carbon atoms, which may be the same or different. N represents an integer of 1 to 300. R 4 represents a hydrogen atom. Or it represents a hydrocarbon group having 1 to 30 carbon atoms.)
    Figure JPOXMLDOC01-appb-C000002
    (In the general formula (2), R 5 ~ R 7 are each independently a hydrogen atom, a methyl group, or - represents a (CH 2) r COOM 2 group where, -. (CH 2) r COOM 2 group when referring to, -COOM 1 group or other -. (CH 2) may be formed r COOM 2 groups and anhydride groups when forming anhydride groups, the M 1 or M 2 of these groups present No. M 1 to M 2 independently represent a hydrogen atom, an alkali metal, an alkaline earth metal, an ammonium group, an alkylammonium group, or a substituted alkylammonium group. R represents an integer of 0 to 2. )
    Figure JPOXMLDOC01-appb-C000003
    (In the general formula (3), R 8 to R 10 each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms. R 11 contains a hetero atom having 1 to 4 carbon atoms. Represents a hydrocarbon group that may be used. S represents an integer of 0 to 2.)
  2.  崩壊角が30.0°以上である、請求項1に記載の組成物。 The composition according to claim 1, wherein the collapse angle is 30.0 ° or more.
  3.  下記数式(α)で表される差角が19.0°以下である、請求項1又は2に記載の組成物。
      差角=安息角-崩壊角・・・・・・(α)
    The composition according to claim 1 or 2, wherein the difference angle represented by the following mathematical formula (α) is 19.0 ° or less.
    Difference angle = angle of repose-collapse angle ... (α)
  4.  安息角が50.0°以下、かつ、ゆるめ嵩密度が0.40g/m以下である、請求項1~3のいずれか1項に記載の組成物。 The composition according to any one of claims 1 to 3, wherein the angle of repose is 50.0 ° or less and the loosening bulk density is 0.40 g / m 3 or less.
  5.  成分(A)の成分(B)に対する重量比率((A)/(B))が99:1~51:49である、請求項4に記載の組成物。 The composition according to claim 4, wherein the weight ratio ((A) / (B)) of the component (A) to the component (B) is 99: 1 to 51:49.
  6.  崩壊角が27.0°以上、かつ、粒度分布が100μm以上である、請求項1~3のいずれか1項に記載の組成物。 The composition according to any one of claims 1 to 3, wherein the decay angle is 27.0 ° or more and the particle size distribution is 100 μm or more.
  7.  成分(A)の成分(B)に対する重量比率((A)/(B))が50:50~1:99である、請求項6に記載の組成物。 The composition according to claim 6, wherein the weight ratio ((A) / (B)) of the component (A) to the component (B) is 50:50 to 1:99.
  8.  請求項1~7のいずれか1項に記載の組成物の固形化物である、固形状組成物。 A solid composition which is a solidified product of the composition according to any one of claims 1 to 7.
  9.  固形化物が、請求項6又は7に記載の組成物の固形化物である、請求項8に記載の組成物。 The composition according to claim 8, wherein the solidified product is a solidified product of the composition according to claim 6 or 7.
  10.  請求項1~9のいずれか1項に記載の組成物を有効成分とする、水硬性組成物用添加剤。 An additive for a hydraulic composition containing the composition according to any one of claims 1 to 9 as an active ingredient.
  11.  請求項10に記載の添加剤を含む、水硬性組成物。 A hydraulic composition containing the additive according to claim 10.
PCT/JP2020/028230 2019-07-25 2020-07-21 Powder composition and use of same WO2021015190A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021534042A JPWO2021015190A1 (en) 2019-07-25 2020-07-21

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-137271 2019-07-25
JP2019-137322 2019-07-25
JP2019137322 2019-07-25
JP2019137271 2019-07-25

Publications (1)

Publication Number Publication Date
WO2021015190A1 true WO2021015190A1 (en) 2021-01-28

Family

ID=74192467

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/028230 WO2021015190A1 (en) 2019-07-25 2020-07-21 Powder composition and use of same

Country Status (2)

Country Link
JP (1) JPWO2021015190A1 (en)
WO (1) WO2021015190A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003277114A (en) * 2002-03-22 2003-10-02 Taiheiyo Cement Corp Composite cement dispersant
JP2005272216A (en) * 2004-03-25 2005-10-06 Taiheiyo Cement Corp Method for producing powdery cement dispersing agent
JP2008208016A (en) * 2007-02-28 2008-09-11 Nippon Shokubai Co Ltd Powdery cement dispersant

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003277114A (en) * 2002-03-22 2003-10-02 Taiheiyo Cement Corp Composite cement dispersant
JP2005272216A (en) * 2004-03-25 2005-10-06 Taiheiyo Cement Corp Method for producing powdery cement dispersing agent
JP2008208016A (en) * 2007-02-28 2008-09-11 Nippon Shokubai Co Ltd Powdery cement dispersant

Also Published As

Publication number Publication date
JPWO2021015190A1 (en) 2021-01-28

Similar Documents

Publication Publication Date Title
JP3683176B2 (en) Cement admixture and cement composition
JP4531044B2 (en) Cement admixture, cement composition and method for its construction, and method for producing hardened cement
JP5769930B2 (en) Dispersant
US20130005861A1 (en) Formulation and its use
JP6975157B2 (en) Additives for cement compositions and cement compositions
JP5715260B2 (en) Polycarboxylic acid polymer for hydraulic material additive
JP2006522734A (en) Cement admixture and cement composition
WO2011029711A1 (en) Formulation and its use
JP6188412B2 (en) Copolymers and their uses
JP5722535B2 (en) Cement admixture and cement composition using the same
WO2021066166A1 (en) Lignin derivative and use therefor
JP6819321B2 (en) A method for producing a cement composition.
JPWO2020209057A1 (en) Cement Additives, Cement Admixtures, Cement Compositions, Molds, and Methods for Improving Strength of Molds
JP6553883B2 (en) Cement admixture and cement composition containing the same
WO2023182439A1 (en) Cement-based hydraulic-setting material
JP6249630B2 (en) Copolymers and their uses
JP7126871B2 (en) Method for producing cement composition
JP7366719B2 (en) hydraulic composition
JP7539864B2 (en) Solid cement dispersant, its manufacturing method, and cement composition
WO2021015190A1 (en) Powder composition and use of same
JP2016145126A (en) Cement admixture and cement composition containing the same
JP6534271B2 (en) Cement dispersant and cement composition
JP7228431B2 (en) Solid cement dispersant, method for producing the same, and cement composition
JP4822613B2 (en) Cement admixture and cement composition
JP7241643B2 (en) Additive for cement, cement composition, method for improving cement strength

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20844174

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021534042

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20844174

Country of ref document: EP

Kind code of ref document: A1