WO2021014769A1 - Control device and control method for vehicle - Google Patents

Control device and control method for vehicle Download PDF

Info

Publication number
WO2021014769A1
WO2021014769A1 PCT/JP2020/021759 JP2020021759W WO2021014769A1 WO 2021014769 A1 WO2021014769 A1 WO 2021014769A1 JP 2020021759 W JP2020021759 W JP 2020021759W WO 2021014769 A1 WO2021014769 A1 WO 2021014769A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
monitoring
electric motor
torque
target torque
Prior art date
Application number
PCT/JP2020/021759
Other languages
French (fr)
Japanese (ja)
Inventor
神尾 茂
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN202080052298.4A priority Critical patent/CN114126911B/en
Publication of WO2021014769A1 publication Critical patent/WO2021014769A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • B60L9/16Electric propulsion with power supply external to the vehicle using ac induction motors
    • B60L9/18Electric propulsion with power supply external to the vehicle using ac induction motors fed from dc supply lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/50Control strategies for responding to system failures, e.g. for fault diagnosis, failsafe operation or limp mode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present disclosure relates to a technology for controlling the running of a vehicle traveling by an electric motor.
  • Japanese Patent Application Laid-Open No. 2016-147585 provides a fail-safe process that monitors the occurrence of an abnormality in a microcomputer that controls a vehicle actuator by self-diagnosis and shifts the actuator to a safe state when an abnormality is detected.
  • the technology to be implemented is disclosed.
  • Some vehicles traveling by electric motor perform fail-safe processing when an abnormality in the control signal of the electric motor is detected during acceleration or deceleration of the vehicle in order to suppress the occurrence of malfunction of the electric motor.
  • further improvement is required for detecting the abnormality of the control signal of the electric motor and taking appropriate measures.
  • One form of the present disclosure is provided as a control device that controls the running of a traveling vehicle by the driving force of an electric motor.
  • the control device of this form determines a target torque to be generated in the electric motor according to the accelerator opening degree, and outputs a control signal for instructing the driving of the electric motor at the target torque, and the accelerator opening.
  • a monitoring unit that determines the monitoring torque according to the degree and commands the execution of fail-safe processing of the electric motor when the determination conditions including the condition that the positive and negative of the target torque and the monitoring torque do not match are satisfied. , Equipped with.
  • this type of control device by determining whether the positive or negative of the target torque and the monitoring torque are reversed, it is possible to easily detect the occurrence of an abnormality in the control signal that leads to erroneous control of the rotation direction of the motor. It is possible to take appropriate measures against the abnormality. Therefore, the reliability of the control of the electric motor can be improved.
  • FIG. 1 is a schematic view showing the configuration of a vehicle equipped with a control device.
  • FIG. 2 is a schematic block diagram showing the functional configuration of the control device.
  • FIG. 3 is a schematic block diagram showing the functional configuration of the vehicle control unit.
  • FIG. 4 is a schematic block diagram showing the functional configuration of the monitoring unit.
  • FIG. 5 is an explanatory diagram showing a flow of control processing executed by the control device.
  • FIG. 6 is an explanatory diagram showing a flow of the target torque determination process.
  • FIG. 7 is an explanatory diagram showing an example of the required torque map.
  • FIG. 8 is an explanatory diagram showing a flow of monitoring torque determination processing.
  • FIG. 1 is a schematic view showing the configuration of a vehicle equipped with a control device.
  • FIG. 2 is a schematic block diagram showing the functional configuration of the control device.
  • FIG. 3 is a schematic block diagram showing the functional configuration of the vehicle control unit.
  • FIG. 4 is a schematic block diagram showing the functional configuration of the monitoring unit
  • FIG. 9 is an explanatory diagram showing an example of the monitoring torque map.
  • FIG. 10 is an explanatory diagram showing a flow of acceleration control monitoring processing.
  • FIG. 11 is an explanatory diagram showing an example of the upper limit threshold map.
  • FIG. 12 is an explanatory diagram showing an example of the detection time map.
  • FIG. 13 is an explanatory diagram showing a flow of deceleration control monitoring processing.
  • FIG. 14 is an explanatory diagram showing an example of the lower limit threshold map.
  • FIG. 15 is an explanatory diagram showing a flow of the code inversion monitoring process of the first embodiment.
  • FIG. 16 is an explanatory diagram showing a flow of code reversal monitoring processing of the second embodiment.
  • the control device 100 in the first embodiment is mounted on the vehicle 10 and used.
  • the control device 100 includes a vehicle control unit 110 that controls the running of the vehicle 10 and a monitoring unit 120 that monitors the control signal of the vehicle control unit 110. Details of the vehicle control unit 110 and the monitoring unit 120 will be described later.
  • the control device 100 may include at least a part of the functions of the electric motor control unit 21 described later.
  • the vehicle 10 includes an electric motor 20 and travels by transmitting the driving force generated by the electric motor 20 to the wheels 11.
  • the motor generator 20 is a motor generator that also functions as a generator, and is composed of, for example, a three-phase AC motor.
  • the vehicle 10 is configured as an electric vehicle that travels only by the driving force of the electric motor 20.
  • the vehicle 10 is not limited to the electric vehicle.
  • the vehicle 10 may be composed of a hybrid vehicle or a plug-in hybrid vehicle including an internal combustion engine that generates a driving force together with the electric motor 20, and includes an electric motor that does not have a function as a generator. It may be composed of automobiles.
  • the vehicle 10 further includes an electric motor control unit 21, an accelerator opening sensor 31, a vehicle speed sensor 32, a shift position sensor 33, and a traveling mode switch 34.
  • the electric motor control unit 21 includes an inverter (not shown) and controls the drive of the electric motor 20 under the control of the control device 100. In the first embodiment, the electric motor control unit 21 also has a function of controlling power generation by the electric motor 20.
  • the electric motor control unit 21 generates torque in the electric motor 20 according to the target torque Tt described later set by the control device 100.
  • the electric motor control unit 21 causes the electric motor 20 to output the torque due to the forward rotation of the vehicle 10 in a magnitude corresponding to the absolute value of the target torque Tt.
  • the electric motor control unit 21 causes the electric motor 20 to output the torque due to the rotation of the vehicle 10 in the negative direction in a magnitude corresponding to the absolute value of the target torque Tt.
  • the electric motor control unit 21 causes the electric motor 20 to output a torque that causes the vehicle 10 to creep when the target torque Tt is 0 [Nm]. This torque is small enough to be canceled by the parking brake or the driver's braking operation. Hereinafter, this torque may also be referred to as "creep torque”.
  • the accelerator opening sensor 31 detects the operation of the accelerator pedal by the driver. In the present specification, the operation of the accelerator pedal is also simply referred to as “accelerator operation”.
  • the accelerator opening sensor 31 is a sensor that detects the amount of depression of the accelerator pedal, detects the amount of depression of the accelerator pedal, and outputs a signal indicating the detection result to the control device 100 as the accelerator opening Acc.
  • “accelerator on” means that the accelerator pedal is depressed and the accelerator opening degree Acc>. It means a state of 0 degrees.
  • the accelerator opening degree Acc output from the accelerator opening degree sensor 31 corresponds to an acceleration command for the vehicle 10 that controls the acceleration of the vehicle 10.
  • the accelerator opening degree Acc as an acceleration command does not have to be output from the accelerator opening degree sensor 31.
  • the accelerator opening degree Acc may be output to the control device 100 in order to control the running of the vehicle 10, for example, by a program for realizing the automatic driving function and the driving support function of the vehicle 10.
  • the vehicle speed sensor 32 is a sensor used for detecting the vehicle speed V, which is the speed of the vehicle 10, and outputs a signal indicating the detection result to the control device 100.
  • the vehicle speed sensor 32 is provided on each wheel 11 and detects the rotational speed of the wheel 11.
  • the signal output by the vehicle speed sensor 32 is a voltage value proportional to the rotation speed of the wheel 11 or a pulse wave indicating an interval according to the rotation speed of the wheel 11.
  • the control device 100 calculates the vehicle speed V, which is the speed of the vehicle 10, by using the detection signal from the vehicle speed sensor 32.
  • the control device 100 can also acquire information such as the mileage of the control device 100 by using the output signal of the vehicle speed sensor 32.
  • the shift position sensor 33 is a sensor that detects the position of the shift lever that is mechanically moved by the driver, and outputs a shift position signal SP, which is a signal indicating the detection result, to the control device 100.
  • the control device 100 switches the traveling status of the vehicle 10 according to the position of the shift lever.
  • the position of the shift lever is, for example, drive D when moving the vehicle 10 forward, reverse R when moving the vehicle 10 backward, neutral N when blocking the transmission of the driving force to the gear, and parking / stopping the vehicle 10. Including parking P at the time.
  • the position of the shift lever may also include a brake B for restricting the movement of the vehicle 10, a manual M for accepting a manual operation of a gear change by the driver, and the like.
  • the control device 100 switches the traveling state of the vehicle 10 by mechanically moving the shift lever by the driver.
  • the shift position signal SP may be configured to be switched by an electric switch operation regardless of the movement of the shift lever.
  • the travel mode switch 34 is a switch for the driver to switch the output characteristics of the torque output by the electric motor 20.
  • the travel mode Mo selected and set by the travel mode switch 34 is output to the control device 100.
  • the traveling modes of the vehicle 10 include, for example, an eco-mode in which fuel consumption is more important than torque, a sports mode in which fuel is more important than fuel consumption, and a balance between fuel consumption and torque. There is a normal mode to let you.
  • the vehicle control unit 110 of the control device 100 determines the target torque Tt to be generated in the electric motor 20 in response to the acceleration command for the vehicle 10 represented by the accelerator opening degree Acc.
  • the vehicle control unit 110 determines the target torque Tt using the vehicle speed V, the shift position signal SP, and the traveling mode Mo in addition to the accelerator opening degree Acc. Details of the process for determining the target torque Tt will be described later.
  • the vehicle control unit 110 outputs a control signal for commanding the drive of the electric motor 20 at the target torque Tt to the electric motor control unit 21 and the monitoring unit 120.
  • the monitoring unit 120 determines the monitoring torque Ttw according to the acceleration command for the vehicle 10 represented by the accelerator opening degree Acc. In the first embodiment, the monitoring unit 120 determines the monitoring torque Ttw by using the vehicle speed V and the shift position signal SP in addition to the accelerator opening degree Acc. The monitoring unit 120 has a function of determining whether or not there is an abnormality in the control signal output from the vehicle control unit 110 to the electric motor control unit 21 by using the monitoring torque Ttw and the target torque Tt determined by the vehicle control unit 110. Have. Details of the step of determining the monitoring torque Ttw and the step of detecting an abnormality in the control signal will be described later.
  • the monitoring unit 120 When the monitoring unit 120 detects an abnormality in the control signal based on the determination, the monitoring unit 120 outputs a fail-safe signal FSS instructing the execution of the fail-safe processing of the motor 20 to the motor control unit 21.
  • the output torque of the electric motor 20 in the fail-safe process of the electric motor 20, is set to a predetermined creep torque Tcr [Nm] or 0 [Nm] that causes a creep phenomenon in the vehicle 10. Will be done.
  • the relay provided in the power line connected to the electric motor 20 may be cut off.
  • the electric motor control unit 21 normally outputs an electric motor control signal MGS that sets a target torque Tt to the electric motor 20 according to a control signal from the vehicle control unit 110.
  • the electric motor 20 is driven according to the target torque Tt.
  • the electric motor control unit 21 receives the fail-safe signal FSS from the monitoring unit 120, the electric motor control unit 21 outputs the electric motor control signal MGS instructing the execution of the fail-safe process to the electric motor 20.
  • the electric motor 20 interrupts the drive at the target torque Tt and starts executing the fail-safe process.
  • the vehicle control unit 110 includes at least one central processing unit (CPU) 111, a memory 112, an input / output interface 113, and a bus 114.
  • the CPU 111, the memory 112, and the input / output interface 113 are connected to each other via the bus 114 so as to be capable of bidirectional communication.
  • the CPU 111 may be a single CPU or a plurality of CPUs that execute each program. Alternatively, the CPU 111 may be a multi-core type CPU capable of simultaneously executing a plurality of programs.
  • the memory 112 is composed of a storage element such as a RAM that can be read and written by the CPU 111.
  • the vehicle control unit 110 exerts various functions for controlling the running of the control device 100 by having the CPU 111 read a program or an instruction into the memory 112 and execute the program.
  • the CPU 111 of the vehicle control unit 110 When executing the target torque determination process described later, the CPU 111 of the vehicle control unit 110 reads the target torque calculation program P1 stored in advance in a non-volatile and read-only storage device (not shown) such as a ROM into the memory 112. And execute. Further, in the target torque determination process, the CPU 111 of the vehicle control unit 110 reads out and uses the required torque map M1 stored in advance in the storage device (not shown) described above in the memory 112 in order to determine the target torque Tt. .. The required torque map M1 may be read into the memory 112 when it is used.
  • the above-mentioned accelerator opening sensor 31, vehicle speed sensor 32, shift position sensor 33, traveling mode switch 34, electric motor control unit 21, and monitoring unit 120 are connected to the input / output interface 113 via signal lines, respectively.
  • the CPU 111 receives inputs of the accelerator opening degree Acc, the vehicle speed V, the shift position signal SP, and the traveling mode Mo via the input / output interface 113. Further, the CPU 111 outputs the target torque Tt determined by the target torque determination process to the electric motor control unit 21 and the monitoring unit 120 via the input / output interface 113.
  • the monitoring unit 120 includes at least one central processing unit (CPU) 121, a memory 122, an input / output interface 123, and a bus 124.
  • the CPU 121, the memory 122, and the input / output interface 123 are connected to each other via the bus 124 so as to be capable of bidirectional communication.
  • the CPU 121 may be a single CPU or a plurality of CPUs that execute each program. Alternatively, the CPU 121 may be a multi-core type CPU capable of simultaneously executing a plurality of programs.
  • the memory 122 is composed of a storage element such as a RAM that can be read and written by the CPU 121.
  • the monitoring unit 120 exerts various functions for monitoring the control signal output from the vehicle control unit 110 to the electric motor control unit 21 by the CPU 121 reading a program or instruction into the memory 122 and executing the program or instruction.
  • the CPU 121 reads the monitoring program P2 stored in advance in a non-volatile and read-only storage device (not shown) such as a ROM into the memory 122 and executes the monitoring torque determination process described later and various types. Execute monitoring processing. Further, the CPU 121 of the monitoring unit 120 reads and uses the monitoring torque map M2 previously stored in the storage device (not shown) described above in the memory 122 in order to determine the monitoring torque Ttw in the monitoring torque determination process. Further, in various monitoring processes described later, the CPU 121 reads the upper limit threshold value map MP ⁇ , the lower limit threshold value map MP ⁇ , and the detection time map MPt stored in the above-mentioned storage device into the memory 122 and uses them. The maps M2, MP ⁇ , MP ⁇ , and MPt may be read into the memory 122 when they are used, and may not be read into the memory 122 at the same time.
  • the above-mentioned accelerator opening sensor 31, vehicle speed sensor 32, shift position sensor 33, vehicle control unit 110, and electric motor control unit 21 are connected to the input / output interface 123 via signal lines, respectively.
  • the CPU 121 receives inputs of the target torque Tt, the accelerator opening degree Acc, the vehicle speed V, and the shift position signal SP via the input / output interface 123. Further, when the CPU 121 decides to execute the fail-safe process in various monitoring processes, the CPU 121 outputs the fail-safe signal FSS to the electric motor control unit 21 via the input / output interface 123.
  • the control device 100 repeatedly executes the flow of the control process shown in FIG. 5 at a predetermined control cycle while the vehicle 10 is started. This control process is executed while the vehicle 10 is activated and the vehicle 10 is in a normal driving state.
  • step S10 the vehicle control unit 110 executes the target torque determination process
  • step S20 the monitoring unit 120 executes the monitoring torque determination process.
  • steps S30, S40, and S50 the monitoring unit 120 executes acceleration control monitoring processing, deceleration control monitoring processing, and code inversion monitoring processing, respectively.
  • the processing flow of each step S10 to S50 will be described in order.
  • the vehicle control unit 110 determines the target torque Tt of the electric motor 20 according to the detected accelerator opening degree Acc.
  • step S100 the vehicle control unit 110 acquires the accelerator opening degree Acc, the vehicle speed V, and the traveling mode Mo.
  • step S102 the vehicle control unit 110 acquires the required torque Ta by using the accelerator opening degree Acc, the vehicle speed V, the traveling mode Mo, and the required torque map M1 shown in FIG. 7.
  • the required torque map M1 is set to have a relationship in which the required torque Ta is uniquely output with respect to the input accelerator opening degree Acc.
  • the vehicle control unit 110 acquires the required torque Ta with respect to the accelerator opening degree Acc by using the required torque map M1.
  • the required torque Ta is obtained as a value of 0 or more.
  • the relationship of the required torque Ta with respect to the accelerator opening degree Acc in the required torque map M1 is switched according to the traveling mode Mo. Therefore, even if the accelerator opening degree Acc is the same, the traveling mode Mo is required to be different.
  • the torque Ta is set to a different value.
  • the characteristic line L1 showing the relationship when the running mode Mo is in the sports mode is shown by a solid line
  • the characteristic line L2 showing the relationship when the running mode Mo is in the eco mode is a dashed line. It is indicated by.
  • FIG. 7 for convenience, the illustration of the characteristic line showing the relationship when the traveling mode Mo is the normal mode is omitted.
  • Both the characteristic line L1 and the characteristic line L2 show a relationship in which the required torque Ta increases as the accelerator opening degree Acc increases.
  • the larger the accelerator opening degree Acc the smaller the rate of increase of the required torque Ta with respect to the accelerator opening degree Acc.
  • the larger the accelerator opening degree Acc the larger the rate of increase of the required torque Ta with respect to the accelerator opening degree Acc.
  • the required torque Ta is set to a value corresponding to the vehicle speed V.
  • the required torque map M1 is used after the set relationship is corrected according to the vehicle speed V.
  • the required torque map M1 may have a characteristic line indicating the relationship between the accelerator opening degree Acc and the required torque Ta set for each vehicle speed V.
  • a plurality of required torque maps M1 for each vehicle speed V may be prepared in advance and selectively used according to the vehicle speed V.
  • step S104 of FIG. 6 the vehicle control unit 110 executes a shift determination for determining the position of the shift lever using the shift position signal SP.
  • the vehicle control unit 110 sets the target torque Tt to the required torque Ta in step S106 when the shift position signal SP is other than the reverse R, that is, when SP ⁇ R.
  • the vehicle control unit 110 sets the target torque Tt to a value ⁇ Ta obtained by reversing the positive / negative of the required torque Ta in step S108.
  • the vehicle control unit 110 outputs the determined target torque Tt to the electric motor control unit 21 and the monitoring unit 120.
  • the target torque determination process in step S10 shown in FIG. 5 is completed, and the monitoring torque determination process in step S20 is started.
  • the monitoring unit 120 determines the monitoring torque Ttw according to the accelerator opening degree Acc.
  • the monitoring unit 120 acquires the accelerator opening degree Acc and the vehicle speed V.
  • the monitoring unit 120 calculates the monitoring required torque Taw using the accelerator opening degree Acc, the vehicle speed V, and the monitoring torque map M2 shown in FIG.
  • the monitoring torque map M2 a relationship is set in which the monitoring request torque Taw is uniquely output with respect to the input accelerator opening degree Acc.
  • the monitoring unit 120 acquires the monitoring required torque Taw with respect to the accelerator opening degree Acc by using the monitoring torque map M2.
  • the monitoring required torque Taw is obtained as a value of 0 or more.
  • the relationship of the monitoring required torque Taw with respect to the accelerator opening degree Acc is represented by the characteristic line L1w corresponding to the characteristic line L1 of the sports mode in the required torque map M1 of FIG. ..
  • the characteristic line L1w shows a relationship in which the required torque Ta increases as the accelerator opening degree Acc increases.
  • the larger the accelerator opening degree Acc the smaller the rate of increase of the required torque Ta with respect to the accelerator opening degree Acc.
  • the characteristic line L2w corresponding to the eco-mode characteristic line L2 in the required torque map M1 of FIG. 7 is shown by a broken line.
  • a monitoring request for the accelerator opening degree Acc is used by using the relationship represented by the characteristic line L1w corresponding to the characteristic line L1 of the sports mode in the required torque map M1.
  • Torque Taw is acquired. Therefore, even if the traveling modes Mo are different, the monitoring required torque Taw obtained with respect to the accelerator opening degree Acc is the same.
  • the relationship represented by the characteristic line L1 of the sport mode is the relationship in which the value of the required torque Ta obtained with respect to the accelerator opening degree Acc is the largest. Therefore, the monitoring required torque Taw obtained by using the relationship represented by the characteristic line L1w corresponding to the characteristic line L1 of the sports mode is always set to a value equal to or higher than the required torque Ta regardless of the traveling mode Mo.
  • the monitoring required torque Taw is set to a value corresponding to the vehicle speed V.
  • the monitoring torque map M2 is used after the set relationship is corrected according to the vehicle speed V.
  • the monitoring torque map M2 may have a characteristic line indicating the relationship between the accelerator opening degree Acc and the monitoring required torque Taw for each vehicle speed V.
  • a plurality of monitoring torque maps M2 for each vehicle speed V may be prepared in advance and may be selectively used according to the vehicle speed V.
  • step S114 of FIG. 8 the monitoring unit 120 executes a shift determination for determining the position of the shift lever using the shift position signal SP.
  • the shift position signal SP is other than the reverse R, that is, when SP ⁇ R
  • the monitoring unit 120 sets the monitoring torque Ttw to the monitoring request torque Taw in step S116.
  • the monitoring unit 120 sets the monitoring torque Ttw to a value ⁇ Taw in which the positive / negative of the monitoring request torque Taw is reversed in step S118.
  • the monitoring torque determination process in step S20 shown in FIG. 5 is completed, and the acceleration control monitoring process in step S30 is started. If it is detected that the vehicle 10 is not accelerating based on the detected acceleration command or brake command, the monitoring unit 120 may skip the acceleration control monitoring process in step S30. ..
  • the acceleration control monitoring process is a process in which the monitoring unit 120 detects and deals with an abnormality in the control signal when accelerating the vehicle 10.
  • the monitoring unit 120 sets the upper limit threshold value ⁇ according to the vehicle speed V.
  • the monitoring unit 120 acquires and sets the upper limit threshold value ⁇ by using the vehicle speed V and the upper limit threshold value map MP ⁇ shown in FIG.
  • the upper limit threshold value ⁇ is a predetermined boundary value that indicates the upper limit of the allowable error range between the target torque Tt and the monitoring torque Ttw.
  • the upper limit threshold map MP ⁇ has a relationship in which the upper limit threshold ⁇ is uniquely determined with respect to the vehicle speed V. According to the upper threshold map MP ⁇ , the upper threshold ⁇ is obtained as a value larger than 0. Further, according to the upper limit threshold map MP ⁇ , the larger the input vehicle speed V, the larger the output upper limit threshold ⁇ . Further, in relation to the upper limit threshold map MP ⁇ , the larger the vehicle speed V, the smaller the rate of change of the upper limit threshold ⁇ with respect to the vehicle speed V.
  • step S205 the monitoring unit 120 sets the detection time t according to the accelerator opening degree Acc.
  • the monitoring unit 120 acquires and sets the detection time t by using the accelerator opening degree Acc and the detection time map MPt shown in FIG.
  • the detection time t indicates a limit value of a time during which an abnormality in the control signal is allowed to be continuously detected.
  • the detection time t is obtained as a value greater than 0.
  • the relationship shown by the characteristic line Lt in which the detection time t becomes smaller as the accelerator opening degree Acc is larger is set in the detection time map MPt. There is. As a result, it is possible to suppress an increase in vehicle speed while an abnormality is detected.
  • the reduction rate of the detection time t is relatively large in the region where the accelerator opening degree Acc is about several degrees. As a result, for example, it is possible to prevent erroneous detection of an abnormality in the control signal when only a slight accelerator operation is performed. Further, in the detection time map MPt of the first embodiment, when the accelerator opening degree Acc becomes larger than about several degrees, the reduction rate of the detection time t becomes remarkably small, and the detection time t is relative to the accelerator opening degree Acc. Does not decrease much. As a result, even when a half throttle or a partial throttle is frequently used, it is possible to detect an abnormality in the control signal with stable accuracy. The detection time t acquired in the acceleration control monitoring process is also used in the deceleration control monitoring process described later.
  • step S210 the monitoring unit 120 determines whether or not the difference obtained by subtracting the monitoring torque Ttw from the target torque Tt is equal to or greater than the upper limit threshold value ⁇ .
  • Tt ⁇ Ttw ⁇ ⁇ 1 is added to the counter C in step S212.
  • the counter C is a variable having an initial value of 0 and representing the number of times that an abnormality in the control signal is continuously detected while the acceleration control monitoring process is repeated in a predetermined execution cycle.
  • Tt—Ttw ⁇ ⁇ the monitoring unit 120 determines that an abnormality in the control signal during acceleration of the vehicle 10 has been detected, and increments the counter C.
  • FIG. 9 shows the upper limit boundary line BU in which the characteristic line L1w is shifted by + ⁇ .
  • the monitoring unit 120 detects an abnormality in the control signal when the target torque Tt is included in the acceleration hazard region which is a region above the upper limit boundary line BU.
  • the monitoring required torque Taw acquired using the monitoring torque map M2 is acquired using the relationship corresponding to the sports mode represented by the characteristic line L1w. Therefore, the monitoring required torque Taw is always set to a value equal to or higher than the required torque Ta obtained in the sports mode regardless of the current traveling mode Mo. The reason for this is that when the driving mode Mo is in the sports mode, there is the highest possibility that an abnormality in the control signal that is subject to fail-safe processing occurs, and it is desirable to make a judgment based on the sports mode. ..
  • step S210 of FIG. 10 when Tt-Ttw ⁇ , 0 is assigned to the counter C in step S214.
  • the monitoring unit 120 determines that the abnormality of the control signal during acceleration of the vehicle 10 is not continuously detected, and initializes the counter C.
  • step S220 the monitoring unit 120 determines whether or not the counter C is equal to or longer than the detection time t acquired in step S205.
  • the counter C indicates the number of times that the abnormality of the control signal is continuously and repeatedly detected in a predetermined cycle, and indicates the time during which the abnormality of the control signal is continued. That is, the fact that C ⁇ t indicates that the abnormality of the control signal at the time of accelerating the vehicle 10 continues beyond the permissible time. Therefore, when C ⁇ t, the monitoring unit 120 determines in step S230 to execute the fail-safe process, assuming that the acceleration determination conditions including the conditions of steps S210 and S220 are satisfied.
  • the monitoring unit 120 outputs a fail-safe signal FSS instructing the execution of the fail-safe process to the electric motor control unit 21, and ends the acceleration control monitoring process.
  • the electric motor control unit 21 outputs an electric motor control signal MGS that commands the electric motor 20 to execute the fail-safe process.
  • FSS fail-safe signal
  • MGS electric motor control signal
  • step S220 when C ⁇ t, the monitoring unit 120 ends the acceleration control monitoring process as it is. In this case, it can be determined that the abnormality of the control signal during the acceleration control of the vehicle 10 is not continuously detected so as to be necessary to deal with it. After that, the monitoring unit 120 starts executing the deceleration control monitoring process in step S40 shown in FIG. If it is detected that the vehicle 10 is decelerating based on the detected acceleration command or brake command, the monitoring unit 120 may skip the deceleration control monitoring process in step S40. ..
  • the deceleration control monitoring process is a process in which the monitoring unit 120 detects an abnormality in the control signal when decelerating the vehicle 10 and deals with it.
  • the monitoring unit 120 sets the lower limit threshold value ⁇ according to the vehicle speed V.
  • the monitoring unit 120 acquires and sets the lower limit threshold value ⁇ by using the vehicle speed V and the lower limit threshold value map MP ⁇ shown in FIG.
  • the lower limit threshold value ⁇ is a predetermined boundary value that indicates an acceptable lower limit of the target torque Tt during deceleration.
  • the lower limit threshold map MP ⁇ has a relationship in which the lower limit threshold ⁇ is uniquely determined with respect to the vehicle speed V. According to the lower threshold map MP ⁇ , the lower threshold ⁇ is obtained as a value smaller than 0. Further, according to the lower limit threshold map MP ⁇ , the larger the input vehicle speed V, the smaller the output lower limit threshold ⁇ . Further, in relation to the lower limit threshold map MP ⁇ , the larger the vehicle speed V, the smaller the rate of change of the lower limit threshold ⁇ with respect to the vehicle speed V.
  • step S305 the monitoring unit 120 acquires the detection time t.
  • the monitoring unit 120 also uses the detection time t acquired in the acceleration control monitoring process in the deceleration control monitoring process.
  • the monitoring unit 120 uses the detection time map MPt as in step S205 of the acceleration control monitoring process to detect the detection time according to the accelerator opening degree Acc. Set t.
  • step S310 the monitoring unit 120 determines whether or not the target torque Tt is equal to or less than the lower limit threshold value ⁇ .
  • Tt ⁇ ⁇ 1 is added to the counter C in step S312. That is, when Tt ⁇ ⁇ , the monitoring unit 120 determines that an abnormality in the control signal during deceleration of the vehicle 10 has been detected, and increments the counter C.
  • FIG. 7 shows a lower limit boundary line BL indicating a torque corresponding to the lower limit threshold value ⁇ .
  • the monitoring unit 120 detects an abnormality in the control signal when the target torque Tt is included in the deceleration hazard region which is a region below the lower limit boundary line BL.
  • the lower limit boundary line BL is determined according to the vehicle speed V and is constant regardless of the accelerator opening degree Acc.
  • step S310 when Tt> ⁇ , 0 is assigned to the counter C in step S314.
  • Tt> ⁇ the monitoring unit 120 determines that the abnormality of the control signal during deceleration of the vehicle 10 is not continuously detected, and initializes the counter C.
  • step S320 the monitoring unit 120 determines whether or not the counter C is equal to or longer than the detection time t acquired in step S305.
  • the monitoring unit 120 outputs a fail-safe signal FSS instructing the execution of the fail-safe process to the electric motor control unit 21, and ends the deceleration control monitoring process.
  • the electric motor control unit 21 outputs an electric motor control signal MGS that commands the electric motor 20 to execute the fail-safe process.
  • the normal driving state of the vehicle 10 is interrupted, so that the control process of FIG. 5 ends in the middle.
  • the monitoring unit 120 ends the acceleration control monitoring process as it is. In this case, it can be determined that the abnormality of the control signal during the deceleration control of the vehicle 10 is not continuously detected so as to be necessary to deal with it. After that, the monitoring unit 120 starts executing the code reversal monitoring process in step S50 shown in FIG.
  • the code reversal monitoring process is a process in which the monitoring unit 120 detects and deals with the occurrence of an abnormality in the control signal in which the positive / negative of the target torque Tt output from the vehicle control unit 110 to the electric motor control unit 21 is reversed.
  • the positive / negative reversal of the target torque Tt can occur, for example, due to a communication error between the vehicle control unit 110 and the electric motor control unit 21.
  • step S410 the monitoring unit 120 executes a shift determination for determining the position of the shift lever using the shift position signal SP. This is because the determination condition is switched between the case where the shift position signal SP is the reverse R and the case where the shift position signal SP is other than the reverse R.
  • the monitoring unit 120 sets the target torque Tt to a negative value of the predetermined determination threshold value ⁇ in step S420. -Judge whether it is smaller than ⁇ .
  • the determination threshold value ⁇ is a value corresponding to a predetermined creep torque Tcr [Nm], and is a positive value.
  • the determination threshold value ⁇ may be set to 0 [Nm] instead of the value corresponding to the creep torque Tcr [Nm].
  • the monitoring unit 120 determines whether the monitoring torque Ttw is positive or negative in step S422, and verifies whether or not the negative target torque is due to an abnormality in the control signal. In step S422, the monitoring unit 120 determines whether or not the monitoring torque Ttw is larger than the determination threshold value ⁇ .
  • step S422 when Ttw> ⁇ , the positive and negative of the target torque and the monitoring torque Ttw do not match. Therefore, in this case, the monitoring unit 120 adds 1 to the counter CFD in step S424, assuming that an abnormality in the control signal in which the positive / negative of the target torque is reversed has occurred.
  • the counter CFD is a variable that represents the number of times that positive / negative inversion of the target torque Tt is continuously detected while the initial value is 0 and the code inversion monitoring process is repeated in a predetermined execution cycle.
  • the monitoring unit 120 is a control signal in which the positive / negative of the target torque Tt output to the motor control unit 21 is inverted when Tt ⁇ and Ttw> ⁇ . It is determined that the abnormality of is detected, and the counter CFD is incremented.
  • the monitoring unit 120 assumes that the positive and negative of the target torque are not reversed, substitutes 0 for the counter CFD in step S426, and initializes the counter CFD. To do. Further, when Ttw> ⁇ is not satisfied in step 422, the positive and negative values match the monitoring torque Ttw even if the target torque is a negative value. In this case, it is considered that the target torque is appropriately set to a negative value in terms of control of the electric motor 20. Therefore, the monitoring unit 120 substitutes 0 for the counter CFD and initializes the counter CFD in step S426, assuming that the positive and negative of the target torque are not reversed.
  • step S432 when Ttw ⁇ - ⁇ , the positive and negative of the target torque and the monitoring torque Ttw do not match. Therefore, in this case, the monitoring unit 120 adds 1 to the counter CFD in step S434, assuming that an abnormality in the control signal in which the positive / negative of the target torque is reversed has occurred.
  • the monitoring unit 120 assumes that the positive and negative of the target torque are not reversed, substitutes 0 for the counter CFD in step S436, and initializes the counter CFD. .. Further, when Ttw ⁇ - ⁇ is not satisfied in step 432, even if the target torque is a positive value, the positive and negative values match the monitoring torque Ttw. In this case, it is considered that the target torque is appropriately set to a positive value in terms of control of the electric motor 20. Therefore, the monitoring unit 120 substitutes 0 for the counter CFD and initializes the counter CFD in step S436, assuming that the positive and negative of the target torque are not reversed.
  • step S440 the monitoring unit 120 determines whether or not the counter CFD is equal to or longer than the predetermined detection time ct.
  • the counter CFD indicates the number of times that the abnormality of the control signal in which the positive / negative inversion of the target torque Tt occurs is continuously and repeatedly detected in a predetermined control cycle, and the time during which the abnormality is continued is indicated. Represents. That is, the fact that CFD ⁇ tt indicates that the abnormality of the control signal in which the positive / negative inversion of the target torque Tt occurs continues beyond the permissible time.
  • the monitoring unit 120 fails in step S450, assuming that the determination conditions including the conditions of steps S420 and S422, or the conditions of steps S430 and S432 and the conditions of step S440 are satisfied. Decide to perform safe processing.
  • the monitoring unit 120 outputs a fail-safe signal FSS instructing the execution of the fail-safe processing to the electric motor control unit 21, and ends the code inversion monitoring processing.
  • the electric motor control unit 21 outputs an electric motor control signal MGS that commands the electric motor 20 to execute the fail-safe process. As a result, the normal driving state of the vehicle 10 is interrupted, so that the control process of FIG. 5 ends.
  • step S440 if CFD ⁇ tk, the monitoring unit 120 ends the code inversion monitoring process and restarts the flow of the control process shown in FIG. 5 from step S10.
  • the detection time ct which is the determination condition in step S440, is set to a number smaller than 1.
  • the abnormality of the control signal in which the positive / negative of the target torque Tt of the electric motor 20 is reversed by the code inversion monitoring process is defined as the target torque Tt and the monitoring torque Ttw. Can be appropriately detected by a simple determination method using. Further, in the code reversal monitoring process, the execution of the fail-safe process of the electric motor 20 is determined when the determination condition including the condition that the positive and negative of the target torque Tt and the monitoring torque Ttw do not match is satisfied.
  • the electric motor control unit 21 when the vehicle 10 is accelerated, the electric motor control unit 21 is connected to the electric motor when at least a determination condition including a condition that Tt—Ttw is equal to or higher than the upper limit threshold value ⁇ corresponding to the vehicle speed V is satisfied. Command the execution of 20 fail-safe processes. Therefore, it is suppressed that the vehicle 10 accelerates more than expected for the acceleration command. Further, the control device 100 of the first embodiment satisfies the determination condition including the condition that the target torque Tt becomes smaller than the lower limit threshold value ⁇ corresponding to the vehicle speed V when the vehicle 10 is decelerated, the electric motor control unit 21 Is instructed to execute the fail-safe process of the electric motor 20.
  • the code inversion monitoring process is executed in addition to the acceleration control monitoring process and the deceleration control monitoring process. Therefore, for example, when the vehicle 10 is traveling with the creep torque Tcr, the abnormality of the control signal due to the positive / negative reversal of the target torque Tt, which is not detected by the acceleration control monitoring process or the deceleration control monitoring process, is defined as a reference. It can be detected accurately by the reverse monitoring process.
  • the control device 100 of the second embodiment is the positive / negative of the target torque Tt reversed when the vehicle speed V is 0 [km / h] and the acceleration command is not given? Whether or not to determine is executed.
  • the target torque Tt when the electric motor 20 is generating power from being erroneously determined that the positive and negative values are reversed from the original values. Therefore, it is possible to more appropriately and more accurately detect the occurrence of an abnormality in the control signal in which the positive and negative of the target torque Tt are reversed.
  • various effects similar to those described in the first embodiment can be obtained. ..
  • -Other embodiment 1 In each of the above embodiments, at least one of the acceleration control monitoring process and the deceleration control monitoring process may not be executed.
  • the vehicle control unit 110 does not have to execute the control switching according to the traveling mode Mo. Further, the vehicle control unit 110 may be configured to be capable of traveling in a mode different from the eco mode, the sports mode, and the normal mode.
  • the determination conditions for determining the execution of the fail-safe process in each of the above embodiments include the condition of step S220 of FIG. 10, the condition of step S320 of FIG. 13, and the condition of step S440 of FIGS. 15 and 16. It may be omitted.
  • the technique of the present disclosure can also be realized in various forms other than the vehicle control method and the control system.
  • it can be realized in the form of a vehicle control device, a vehicle equipped with the vehicle, a traffic management system, a computer program for realizing the control method, and a storage medium in which the computer program is recorded.
  • the controls and methods thereof described in the present disclosure are realized by a dedicated computer provided by configuring a processor and memory programmed to perform one or more functions, embodied by a computer program. May be done.
  • the controls and methods thereof described in the present disclosure may be implemented by a dedicated computer provided by configuring the processor with one or more dedicated hardware logic circuits.
  • the controls and methods thereof described in the present disclosure are a combination of a processor and memory programmed to perform one or more functions and a processor composed of one or more hardware logic circuits. It may be realized by one or more dedicated computers configured by.
  • the computer program may be stored in a computer-readable non-transitional tangible recording medium as an instruction executed by the computer.
  • the technique of the present disclosure is not limited to the above-described embodiment and other embodiments, and can be realized by various configurations within a range not deviating from the purpose.
  • the technical features in the embodiments corresponding to the technical features in each form described in the column of the outline of the invention may be used to solve some or all of the above-mentioned problems, or one of the above-mentioned effects. It is possible to replace or combine as appropriate to achieve a part or all.
  • the technical features are not limited to those described in the present specification as not essential, and if the technical features are not described as essential in the present specification, they may be appropriately deleted. Is possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

A control device (100) controls traveling of a vehicle (10) which travels by means of a driving force of an electric motor (20). The control device (100) is provided with: a vehicle control unit (110) that determines target torque Tt to be generated by the electric motor in accordance with an accelerator operation carried out by a driver, and outputs a control signal for an instruction of driving of the electric motor at the target torque; and a monitoring unit (120) that determines monitoring torque Ttw in accordance with the accelerator operation, and instructs execution of a fail-safe process on the electric motor when determination conditions, including a condition that the target torque and the monitoring torque do not match each other in terms of being positive/negative, are satisfied.

Description

車両の制御装置および制御方法Vehicle control device and control method 関連出願の相互参照Cross-reference of related applications
 本願は、その全ての開示が参照によりここに組み込まれる、2019年7月25日に出願された、出願番号2019-136926の日本国特許出願に基づく優先権を主張する。 The present application claims priority based on the Japanese patent application of application number 2019-136926 filed on July 25, 2019, all of which are incorporated herein by reference.
 本開示は、電動機で走行する車両の走行を制御する技術に関する。 The present disclosure relates to a technology for controlling the running of a vehicle traveling by an electric motor.
 従来から、車両においては、電動機を含む電子機器の異常を検出した場合に、安全側の制御をおこなうフェイルセーフ処理を実行する技術が知られている。例えば、特開2016-147585号公報には、自己診断により、車両のアクチュエータを制御するマイクロコンピュータの異常発生を監視し、異常を検出したときに、アクチュエータを安全状態に移行ささせるフェイルセーフ処理を実行する技術が開示されている。 Conventionally, in vehicles, a technique for executing a fail-safe process that controls the safety side when an abnormality in an electronic device including an electric motor is detected has been known. For example, Japanese Patent Application Laid-Open No. 2016-147585 provides a fail-safe process that monitors the occurrence of an abnormality in a microcomputer that controls a vehicle actuator by self-diagnosis and shifts the actuator to a safe state when an abnormality is detected. The technology to be implemented is disclosed.
 電動機によって走行する車両には、電動機の誤動作の発生を抑制するために、車両の加速時や減速時に電動機の制御信号の異常を検出した場合に、フェイルセーフ処理が実行されるものがある。電動機の制御の信頼性を高めるために、そうした電動機の制御信号の異常を検出して適切に対策することについては、なお一層の改良が求められている。 Some vehicles traveling by electric motor perform fail-safe processing when an abnormality in the control signal of the electric motor is detected during acceleration or deceleration of the vehicle in order to suppress the occurrence of malfunction of the electric motor. In order to improve the reliability of the control of the electric motor, further improvement is required for detecting the abnormality of the control signal of the electric motor and taking appropriate measures.
 本開示は、例えば、以下の形態として実現することが可能である。 The present disclosure can be realized, for example, in the following form.
 本開示の一形態は、電動機の駆動力により走行する車両の走行を制御する制御装置として提供される。この形態の制御装置は、アクセル開度に応じて、前記電動機に発生させる目標トルクを決定し、前記目標トルクでの前記電動機の駆動を指令する制御信号を出力する車両制御部と、前記アクセル開度に応じて監視トルクを決定し、前記目標トルクと前記監視トルクの正負が一致していない条件を含む判定条件が満たされたときに、前記電動機のフェイルセーフ処理の実行を指令する監視部と、を備える。 One form of the present disclosure is provided as a control device that controls the running of a traveling vehicle by the driving force of an electric motor. The control device of this form determines a target torque to be generated in the electric motor according to the accelerator opening degree, and outputs a control signal for instructing the driving of the electric motor at the target torque, and the accelerator opening. A monitoring unit that determines the monitoring torque according to the degree and commands the execution of fail-safe processing of the electric motor when the determination conditions including the condition that the positive and negative of the target torque and the monitoring torque do not match are satisfied. , Equipped with.
 この形態の制御装置によれば、目標トルクと監視トルクの正負が反転しているか否かを判定することにより、電動機の回転方向の誤制御につながるような制御信号の異常の発生を簡易に検出でき、その異常に適切に対策することができる。よって、電動機の制御の信頼性を高めることができる。 According to this type of control device, by determining whether the positive or negative of the target torque and the monitoring torque are reversed, it is possible to easily detect the occurrence of an abnormality in the control signal that leads to erroneous control of the rotation direction of the motor. It is possible to take appropriate measures against the abnormality. Therefore, the reliability of the control of the electric motor can be improved.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、制御装置を搭載する車両の構成を示す概略図、 図2は、制御装置の機能的構成を示す概略ブロック図、 図3は、車両制御部の機能的構成を示す概略ブロック図、 図4は、監視部の機能的構成を示す概略ブロック図、 図5は、制御装置が実行する制御処理のフローを示す説明図、 図6は、目標トルク決定処理のフローを示す説明図、 図7は、要求トルクマップの一例を示す説明図、 図8は、監視トルク決定処理のフローを示す説明図、 図9は、監視トルクマップの一例を示す説明図、 図10は、加速制御監視処理のフローを示す説明図、 図11は、上限閾値マップの一例を示す説明図、 図12は、検出時間マップの一例を示す説明図、 図13は、減速制御監視処理のフローを示す説明図、 図14は、下限閾値マップの一例を示す説明図、 図15は、第1実施形態の符号反転監視処理のフローを示す説明図、 図16は、第2実施形態の符号反転監視処理のフローを示す説明図。
The above objectives and other objectives, features and advantages of the present disclosure will be clarified by the following detailed description with reference to the accompanying drawings. The drawing is
FIG. 1 is a schematic view showing the configuration of a vehicle equipped with a control device. FIG. 2 is a schematic block diagram showing the functional configuration of the control device. FIG. 3 is a schematic block diagram showing the functional configuration of the vehicle control unit. FIG. 4 is a schematic block diagram showing the functional configuration of the monitoring unit. FIG. 5 is an explanatory diagram showing a flow of control processing executed by the control device. FIG. 6 is an explanatory diagram showing a flow of the target torque determination process. FIG. 7 is an explanatory diagram showing an example of the required torque map. FIG. 8 is an explanatory diagram showing a flow of monitoring torque determination processing. FIG. 9 is an explanatory diagram showing an example of the monitoring torque map. FIG. 10 is an explanatory diagram showing a flow of acceleration control monitoring processing. FIG. 11 is an explanatory diagram showing an example of the upper limit threshold map. FIG. 12 is an explanatory diagram showing an example of the detection time map. FIG. 13 is an explanatory diagram showing a flow of deceleration control monitoring processing. FIG. 14 is an explanatory diagram showing an example of the lower limit threshold map. FIG. 15 is an explanatory diagram showing a flow of the code inversion monitoring process of the first embodiment. FIG. 16 is an explanatory diagram showing a flow of code reversal monitoring processing of the second embodiment.
1.第1実施形態:
 図1を参照する。第1実施形態における制御装置100は、車両10に搭載されて用いられている。制御装置100は、車両10の走行を制御する車両制御部110と、車両制御部110の制御信号を監視する監視部120と、を備える。車両制御部110と監視部120の詳細については後述する。なお、他の実施形態では、制御装置100は、後述する電動機制御部21の少なくとも一部の機能を含んでいてもよい。
1. 1. First Embodiment:
See FIG. The control device 100 in the first embodiment is mounted on the vehicle 10 and used. The control device 100 includes a vehicle control unit 110 that controls the running of the vehicle 10 and a monitoring unit 120 that monitors the control signal of the vehicle control unit 110. Details of the vehicle control unit 110 and the monitoring unit 120 will be described later. In another embodiment, the control device 100 may include at least a part of the functions of the electric motor control unit 21 described later.
 車両10は、電動機20を備え、電動機20が発生する駆動力を車輪11に伝達して走行する。第1実施形態では、電動機20は、発電機としても機能する電動発電機であり、例えば、三相交流モータによって構成される。第1実施形態では、車両10は、電動機20の駆動力のみによって走行する電気自動車として構成されている。なお、車両10は、電気自動車に限定されない。他の実施形態では、車両10は、電動機20とともに駆動力を発生する内燃機関を備えるハイブリッド自動車やプラグインハイブリッド自動車によって構成されてもよく、発電機としての機能を有していない電動機を備える電気自動車によって構成されてもよい。 The vehicle 10 includes an electric motor 20 and travels by transmitting the driving force generated by the electric motor 20 to the wheels 11. In the first embodiment, the motor generator 20 is a motor generator that also functions as a generator, and is composed of, for example, a three-phase AC motor. In the first embodiment, the vehicle 10 is configured as an electric vehicle that travels only by the driving force of the electric motor 20. The vehicle 10 is not limited to the electric vehicle. In another embodiment, the vehicle 10 may be composed of a hybrid vehicle or a plug-in hybrid vehicle including an internal combustion engine that generates a driving force together with the electric motor 20, and includes an electric motor that does not have a function as a generator. It may be composed of automobiles.
 車両10は、さらに、電動機制御部21と、アクセル開度センサ31と、車速センサ32と、シフトポジションセンサ33と、走行モードスイッチ34と、を備えている。電動機制御部21は、図示しないインバータを備え、制御装置100の制御下において、電動機20の駆動を制御する。第1実施形態では、電動機制御部21は電動機20による発電を制御する機能も有する。 The vehicle 10 further includes an electric motor control unit 21, an accelerator opening sensor 31, a vehicle speed sensor 32, a shift position sensor 33, and a traveling mode switch 34. The electric motor control unit 21 includes an inverter (not shown) and controls the drive of the electric motor 20 under the control of the control device 100. In the first embodiment, the electric motor control unit 21 also has a function of controlling power generation by the electric motor 20.
 電動機制御部21は、制御装置100によって設定される後述の目標トルクTtに従って、電動機20にトルクを発生させる。電動機制御部21は、目標トルクTtが正のときには、電動機20に、車両10を前進させる正方向の回転によるトルクを、目標トルクTtの絶対値に応じた大きさで出力させる。また、電動機制御部21は、目標トルクTtが負のときには、電動機20に、車両10を後進させる負方向の回転によるトルクを、目標トルクTtの絶対値に応じた大きさで出力させる。 The electric motor control unit 21 generates torque in the electric motor 20 according to the target torque Tt described later set by the control device 100. When the target torque Tt is positive, the electric motor control unit 21 causes the electric motor 20 to output the torque due to the forward rotation of the vehicle 10 in a magnitude corresponding to the absolute value of the target torque Tt. Further, when the target torque Tt is negative, the electric motor control unit 21 causes the electric motor 20 to output the torque due to the rotation of the vehicle 10 in the negative direction in a magnitude corresponding to the absolute value of the target torque Tt.
 第1実施形態では、電動機制御部21は、目標トルクTtが0[N・m]のときには、車両10にクリープ現象を生じさせるトルクを電動機20に出力させる。このトルクは、パーキングブレーキや運転者のブレーキ操作によって打ち消される程度に小さい。以下、このトルクを「クリープトルク」とも呼ぶ場合がある。 In the first embodiment, the electric motor control unit 21 causes the electric motor 20 to output a torque that causes the vehicle 10 to creep when the target torque Tt is 0 [Nm]. This torque is small enough to be canceled by the parking brake or the driver's braking operation. Hereinafter, this torque may also be referred to as "creep torque".
 アクセル開度センサ31は、運転者によるアクセルペダルの操作を検出する。本明細書では、アクセルペダルの操作を単に「アクセル操作」とも呼ぶ。アクセル開度センサ31は、アクセルペダルの踏み込み量を検出するセンサであり、アクセルペダルの踏み込み量を検出し、その検出結果を示す信号を、アクセル開度Accとして制御装置100に出力する。以下の説明において、「アクセルオフ」は、アクセルペダルが踏み込まれていないアクセル開度Acc=0度である状態を意味し、「アクセルオン」は、アクセルペダルが踏み込まれて、アクセル開度Acc>0度である状態を意味する。 The accelerator opening sensor 31 detects the operation of the accelerator pedal by the driver. In the present specification, the operation of the accelerator pedal is also simply referred to as "accelerator operation". The accelerator opening sensor 31 is a sensor that detects the amount of depression of the accelerator pedal, detects the amount of depression of the accelerator pedal, and outputs a signal indicating the detection result to the control device 100 as the accelerator opening Acc. In the following description, "accelerator off" means a state in which the accelerator pedal is not depressed and the accelerator opening degree Acc = 0 degrees, and "accelerator on" means that the accelerator pedal is depressed and the accelerator opening degree Acc>. It means a state of 0 degrees.
 アクセル開度センサ31から出力されるアクセル開度Accは、車両10の加速度を制御する車両10に対する加速指令に相当する。なお、加速指令としてのアクセル開度Accは、アクセル開度センサ31から出力されなくてもよい。アクセル開度Accは、例えば、車両10の自動運転機能や運転支援機能を実現するためのプログラムが、車両10の走行を制御するために、制御装置100に出力するものとしてもよい。 The accelerator opening degree Acc output from the accelerator opening degree sensor 31 corresponds to an acceleration command for the vehicle 10 that controls the acceleration of the vehicle 10. The accelerator opening degree Acc as an acceleration command does not have to be output from the accelerator opening degree sensor 31. The accelerator opening degree Acc may be output to the control device 100 in order to control the running of the vehicle 10, for example, by a program for realizing the automatic driving function and the driving support function of the vehicle 10.
 車速センサ32は、車両10の速度である車速Vの検出に用いられるセンサであり、検出結果を示す信号を制御装置100に出力する。第1実施形態では、車速センサ32は、各車輪11に設けられており、車輪11の回転速度を検出する。第1実施形態では、車速センサ32が出力する信号は、車輪11の回転速度に比例する電圧値または車輪11の回転速度に応じた間隔を示すパルス波である。制御装置100は、車速センサ32からの検出信号を用いて、車両10の速度である車速Vを算出する。なお、制御装置100は、車速センサ32の出力信号を用いて、制御装置100の走行距離等の情報も取得することができる。 The vehicle speed sensor 32 is a sensor used for detecting the vehicle speed V, which is the speed of the vehicle 10, and outputs a signal indicating the detection result to the control device 100. In the first embodiment, the vehicle speed sensor 32 is provided on each wheel 11 and detects the rotational speed of the wheel 11. In the first embodiment, the signal output by the vehicle speed sensor 32 is a voltage value proportional to the rotation speed of the wheel 11 or a pulse wave indicating an interval according to the rotation speed of the wheel 11. The control device 100 calculates the vehicle speed V, which is the speed of the vehicle 10, by using the detection signal from the vehicle speed sensor 32. The control device 100 can also acquire information such as the mileage of the control device 100 by using the output signal of the vehicle speed sensor 32.
 シフトポジションセンサ33は、運転者によって機械的に移動されるシフトレバーの位置を検出するセンサであり、その検出結果を示す信号であるシフトポジション信号SPを制御装置100に出力する。制御装置100は、シフトレバーの位置に応じて車両10の走行ステータスを切り替える。シフトレバーの位置は、例えば、車両10を前進させる際のドライブDや、車両10を後退させる際の後進R、ギヤへの駆動力の伝達を遮断する際のニュートラルN、車両10を駐停車させる際のパーキングPを含む。シフトレバーの位置は、その他に、車両10の移動を規制するブレーキBや、運転者によるギヤチェンジのマニュアル操作を受け付けるようにするマニュアルMなどが含まれてもよい。制御装置100は、運転者によるシフトレバーの機械的な移動により、車両10の走行状態を切り替える。なお、車両10では、シフトポジション信号SPは、シフトレバーの移動によらず、電気的なスイッチ操作によって切り替えられるように構成されていてもよい。 The shift position sensor 33 is a sensor that detects the position of the shift lever that is mechanically moved by the driver, and outputs a shift position signal SP, which is a signal indicating the detection result, to the control device 100. The control device 100 switches the traveling status of the vehicle 10 according to the position of the shift lever. The position of the shift lever is, for example, drive D when moving the vehicle 10 forward, reverse R when moving the vehicle 10 backward, neutral N when blocking the transmission of the driving force to the gear, and parking / stopping the vehicle 10. Including parking P at the time. The position of the shift lever may also include a brake B for restricting the movement of the vehicle 10, a manual M for accepting a manual operation of a gear change by the driver, and the like. The control device 100 switches the traveling state of the vehicle 10 by mechanically moving the shift lever by the driver. In the vehicle 10, the shift position signal SP may be configured to be switched by an electric switch operation regardless of the movement of the shift lever.
 走行モードスイッチ34は、運転者が電動機20によって出力されるトルクの出力特性を切り替えるためのスイッチである。走行モードスイッチ34において選択・設定された走行モードMoは制御装置100に出力される。第1実施形態では、車両10の走行モードとしては、例えば、トルクの大きさよりも燃費を重視するエコモードや、燃費よりもトルクの大きさを重視するスポーツモード、燃費とトルクの大きさとをバランスさせるノーマルモードなどがある。 The travel mode switch 34 is a switch for the driver to switch the output characteristics of the torque output by the electric motor 20. The travel mode Mo selected and set by the travel mode switch 34 is output to the control device 100. In the first embodiment, the traveling modes of the vehicle 10 include, for example, an eco-mode in which fuel consumption is more important than torque, a sports mode in which fuel is more important than fuel consumption, and a balance between fuel consumption and torque. There is a normal mode to let you.
 図2を参照する。制御装置100の車両制御部110は、アクセル開度Accによって表される車両10に対する加速指令に応じて、電動機20に発生させる目標トルクTtを決定する。第1実施形態では、車両制御部110は、アクセル開度Accに加えて、車速Vと、シフトポジション信号SPと、走行モードMoと、を用いて目標トルクTtを決定する。目標トルクTtを決定する工程の詳細は後述する。車両制御部110は、その目標トルクTtでの電動機20の駆動を指令する制御信号を、電動機制御部21と監視部120とに出力する。 Refer to Fig. 2. The vehicle control unit 110 of the control device 100 determines the target torque Tt to be generated in the electric motor 20 in response to the acceleration command for the vehicle 10 represented by the accelerator opening degree Acc. In the first embodiment, the vehicle control unit 110 determines the target torque Tt using the vehicle speed V, the shift position signal SP, and the traveling mode Mo in addition to the accelerator opening degree Acc. Details of the process for determining the target torque Tt will be described later. The vehicle control unit 110 outputs a control signal for commanding the drive of the electric motor 20 at the target torque Tt to the electric motor control unit 21 and the monitoring unit 120.
 監視部120は、アクセル開度Accによって表される車両10に対する加速指令に応じて監視トルクTtwを決定する。第1実施形態では、監視部120は、アクセル開度Accに加えて、車速Vと、シフトポジション信号SPと、を用いて監視トルクTtwを決定する。監視部120は、その監視トルクTtwと、車両制御部110が決定した目標トルクTtとを用いて、車両制御部110から電動機制御部21に出力される制御信号の異常の有無を判定する機能を有する。監視トルクTtwを決定する工程および制御信号の異常を検出する工程の詳細については後述する。 The monitoring unit 120 determines the monitoring torque Ttw according to the acceleration command for the vehicle 10 represented by the accelerator opening degree Acc. In the first embodiment, the monitoring unit 120 determines the monitoring torque Ttw by using the vehicle speed V and the shift position signal SP in addition to the accelerator opening degree Acc. The monitoring unit 120 has a function of determining whether or not there is an abnormality in the control signal output from the vehicle control unit 110 to the electric motor control unit 21 by using the monitoring torque Ttw and the target torque Tt determined by the vehicle control unit 110. Have. Details of the step of determining the monitoring torque Ttw and the step of detecting an abnormality in the control signal will be described later.
 監視部120は、判定により、制御信号の異常を検出した場合には、電動機20のフェイルセーフ処理の実行を指令するフェイルセーフ信号FSSを電動機制御部21に出力する。第1実施形態では、電動機20のフェイルセーフ処理では、電動機20の出力トルクが、車両10にクリープ現象を生じさせる予め定められたクリープトルクTcr[N・m]または0[N・m]に設定される。電動機20のフェイルセーフ処理では、電動機20に接続されている電力線に設けられているリレーが遮断されてもよい。 When the monitoring unit 120 detects an abnormality in the control signal based on the determination, the monitoring unit 120 outputs a fail-safe signal FSS instructing the execution of the fail-safe processing of the motor 20 to the motor control unit 21. In the first embodiment, in the fail-safe process of the electric motor 20, the output torque of the electric motor 20 is set to a predetermined creep torque Tcr [Nm] or 0 [Nm] that causes a creep phenomenon in the vehicle 10. Will be done. In the fail-safe process of the electric motor 20, the relay provided in the power line connected to the electric motor 20 may be cut off.
 電動機制御部21は、通常は、車両制御部110からの制御信号に従って、目標トルクTtを設定する電動機制御信号MGSを電動機20に出力する。電動機20は、目標トルクTtに従って駆動する。電動機制御部21は、監視部120からフェイルセーフ信号FSSを受け付けたときには、上記のフェイルセーフ処理の実行を指令する電動機制御信号MGSを電動機20に出力する。電動機20は、目標トルクTtでの駆動を中断し、フェイルセーフ処理の実行を開始する。 The electric motor control unit 21 normally outputs an electric motor control signal MGS that sets a target torque Tt to the electric motor 20 according to a control signal from the vehicle control unit 110. The electric motor 20 is driven according to the target torque Tt. When the electric motor control unit 21 receives the fail-safe signal FSS from the monitoring unit 120, the electric motor control unit 21 outputs the electric motor control signal MGS instructing the execution of the fail-safe process to the electric motor 20. The electric motor 20 interrupts the drive at the target torque Tt and starts executing the fail-safe process.
 図3を参照する。車両制御部110は、少なくとも1つの中央処理装置(CPU)111と、メモリ112と、入出力インタフェース113と、バス114と、を備えている。CPU111、メモリ112および入出力インタフェース113は、バス114を介して双方向通信可能に接続されている。CPU111は、単体のCPUであってもよいし、各プログラムを実行する複数のCPUであってもよい。あるいは、CPU111は、複数のプログラムを同時実行可能なマルチコアタイプのCPUであってもよい。メモリ112は、例えば、RAMなど、CPU111による読み書きが可能な記憶素子によって構成される。車両制御部110は、CPU111がメモリ112にプログラムや命令を読み込んで実行することによって、制御装置100の走行を制御するための種々の機能を発揮する。 Refer to FIG. The vehicle control unit 110 includes at least one central processing unit (CPU) 111, a memory 112, an input / output interface 113, and a bus 114. The CPU 111, the memory 112, and the input / output interface 113 are connected to each other via the bus 114 so as to be capable of bidirectional communication. The CPU 111 may be a single CPU or a plurality of CPUs that execute each program. Alternatively, the CPU 111 may be a multi-core type CPU capable of simultaneously executing a plurality of programs. The memory 112 is composed of a storage element such as a RAM that can be read and written by the CPU 111. The vehicle control unit 110 exerts various functions for controlling the running of the control device 100 by having the CPU 111 read a program or an instruction into the memory 112 and execute the program.
 後述する目標トルク決定処理の実行の際には、車両制御部110のCPU111は、ROMなどの図示しない不揮発的かつ読み出し専用の記憶装置に予め格納されている目標トルク算出プログラムP1をメモリ112に読み出して実行する。また、車両制御部110のCPU111は、その目標トルク決定処理において、目標トルクTtを決定するために、メモリ112に、前述の図示しない記憶装置に予め格納されている要求トルクマップM1を読み出して用いる。なお、要求トルクマップM1は使用されるときにメモリ112に読み出されればよい。 When executing the target torque determination process described later, the CPU 111 of the vehicle control unit 110 reads the target torque calculation program P1 stored in advance in a non-volatile and read-only storage device (not shown) such as a ROM into the memory 112. And execute. Further, in the target torque determination process, the CPU 111 of the vehicle control unit 110 reads out and uses the required torque map M1 stored in advance in the storage device (not shown) described above in the memory 112 in order to determine the target torque Tt. .. The required torque map M1 may be read into the memory 112 when it is used.
 入出力インタフェース113には、上述したアクセル開度センサ31、車速センサ32、シフトポジションセンサ33、走行モードスイッチ34、電動機制御部21および監視部120がそれぞれ信号線を介して接続されている。目標トルク決定処理では、CPU111は、入出力インタフェース113を介して、アクセル開度Acc、車速V、シフトポジション信号SP、および、走行モードMoの入力を受け付ける。また、CPU111は、目標トルク決定処理で決定された目標トルクTtを、入出力インタフェース113を介して、電動機制御部21および監視部120に出力する。 The above-mentioned accelerator opening sensor 31, vehicle speed sensor 32, shift position sensor 33, traveling mode switch 34, electric motor control unit 21, and monitoring unit 120 are connected to the input / output interface 113 via signal lines, respectively. In the target torque determination process, the CPU 111 receives inputs of the accelerator opening degree Acc, the vehicle speed V, the shift position signal SP, and the traveling mode Mo via the input / output interface 113. Further, the CPU 111 outputs the target torque Tt determined by the target torque determination process to the electric motor control unit 21 and the monitoring unit 120 via the input / output interface 113.
 図4を参照する。監視部120は、少なくとも1つの中央処理装置(CPU)121と、メモリ122と、入出力インタフェース123と、バス124と、を備えている。CPU121、メモリ122および入出力インタフェース123は、バス124を介して双方向通信可能に接続されている。CPU121は、単体のCPUであってもよいし、各プログラムを実行する複数のCPUであってもよい。あるいは、CPU121は、複数のプログラムを同時実行可能なマルチコアタイプのCPUであってもよい。メモリ122は、例えばRAMなど、CPU121による読み書きが可能な記憶素子によって構成される。監視部120は、CPU121がメモリ122にプログラムや命令を読み込んで実行することによって、車両制御部110が電動機制御部21に出力する制御信号を監視するための種々の機能を発揮する。 Refer to FIG. The monitoring unit 120 includes at least one central processing unit (CPU) 121, a memory 122, an input / output interface 123, and a bus 124. The CPU 121, the memory 122, and the input / output interface 123 are connected to each other via the bus 124 so as to be capable of bidirectional communication. The CPU 121 may be a single CPU or a plurality of CPUs that execute each program. Alternatively, the CPU 121 may be a multi-core type CPU capable of simultaneously executing a plurality of programs. The memory 122 is composed of a storage element such as a RAM that can be read and written by the CPU 121. The monitoring unit 120 exerts various functions for monitoring the control signal output from the vehicle control unit 110 to the electric motor control unit 21 by the CPU 121 reading a program or instruction into the memory 122 and executing the program or instruction.
 監視部120は、CPU121が、ROMなどの図示しない不揮発的かつ読み出し専用の記憶装置に予め格納されている監視プログラムP2をメモリ122に読み出して実行することにより、後述する監視トルク決定処理や種々の監視処理を実行する。また、監視部120のCPU121は、監視トルク決定処理において、監視トルクTtwを決定するために、メモリ122に、前述の図示しない記憶装置に予め格納されている監視トルクマップM2を読み出して用いる。また、CPU121は、後述する種々の監視処理において、前述の記憶装置に予め格納されている上限閾値マップMPαや、下限閾値マップMPβ、検出時間マップMPtをメモリ122に読み出して用いる。なお、各マップM2,MPα,MPβ,MPtはそれぞれ、使用されるときにメモリ122に読み出されればよく、それぞれが同時にメモリ122に読み出されなくてもよい。 In the monitoring unit 120, the CPU 121 reads the monitoring program P2 stored in advance in a non-volatile and read-only storage device (not shown) such as a ROM into the memory 122 and executes the monitoring torque determination process described later and various types. Execute monitoring processing. Further, the CPU 121 of the monitoring unit 120 reads and uses the monitoring torque map M2 previously stored in the storage device (not shown) described above in the memory 122 in order to determine the monitoring torque Ttw in the monitoring torque determination process. Further, in various monitoring processes described later, the CPU 121 reads the upper limit threshold value map MPα, the lower limit threshold value map MPβ, and the detection time map MPt stored in the above-mentioned storage device into the memory 122 and uses them. The maps M2, MPα, MPβ, and MPt may be read into the memory 122 when they are used, and may not be read into the memory 122 at the same time.
 入出力インタフェース123には、上述したアクセル開度センサ31、車速センサ32、シフトポジションセンサ33、車両制御部110および電動機制御部21がそれぞれ信号線を介して接続されている。監視トルク決定処理や種々の監視処理では、CPU121は、入出力インタフェース123を介して、目標トルクTt、アクセル開度Acc、車速V、シフトポジション信号SPの入力を受け付ける。また、CPU121は、種々の監視処理においてフェイルセーフ処理の実行を決定した場合には、入出力インタフェース123を介して、電動機制御部21にフェイルセーフ信号FSSを出力する。 The above-mentioned accelerator opening sensor 31, vehicle speed sensor 32, shift position sensor 33, vehicle control unit 110, and electric motor control unit 21 are connected to the input / output interface 123 via signal lines, respectively. In the monitoring torque determination process and various monitoring processes, the CPU 121 receives inputs of the target torque Tt, the accelerator opening degree Acc, the vehicle speed V, and the shift position signal SP via the input / output interface 123. Further, when the CPU 121 decides to execute the fail-safe process in various monitoring processes, the CPU 121 outputs the fail-safe signal FSS to the electric motor control unit 21 via the input / output interface 123.
 図5を参照する。制御装置100は、車両10の起動中に、図5に示す制御処理のフローを予め定められた制御周期で繰り返し実行する。この制御処理は、車両10が起動され、車両10が通常の運転状態にある間に実行される。ステップS10では、車両制御部110が目標トルク決定処理を実行し、ステップS20では、監視部120が監視トルク決定処理を実行する。ステップS30,S40,S50ではそれぞれ、監視部120が加速制御監視処理、減速制御監視処理、および、符号反転監視処理を実行する。以下、各ステップS10~S50の処理のフローを順に説明する。 Refer to FIG. The control device 100 repeatedly executes the flow of the control process shown in FIG. 5 at a predetermined control cycle while the vehicle 10 is started. This control process is executed while the vehicle 10 is activated and the vehicle 10 is in a normal driving state. In step S10, the vehicle control unit 110 executes the target torque determination process, and in step S20, the monitoring unit 120 executes the monitoring torque determination process. In steps S30, S40, and S50, the monitoring unit 120 executes acceleration control monitoring processing, deceleration control monitoring processing, and code inversion monitoring processing, respectively. Hereinafter, the processing flow of each step S10 to S50 will be described in order.
 図6を参照する。目標トルク決定処理では、車両制御部110は、検出されているアクセル開度Accに応じて電動機20の目標トルクTtを決定する。ステップS100では、車両制御部110は、アクセル開度Accと、車速Vと、走行モードMoと、を取得する。ステップS102では、車両制御部110は、アクセル開度Accと、車速Vと、走行モードMoと、図7に示す要求トルクマップM1とを用いて要求トルクTaを取得する。 Refer to FIG. In the target torque determination process, the vehicle control unit 110 determines the target torque Tt of the electric motor 20 according to the detected accelerator opening degree Acc. In step S100, the vehicle control unit 110 acquires the accelerator opening degree Acc, the vehicle speed V, and the traveling mode Mo. In step S102, the vehicle control unit 110 acquires the required torque Ta by using the accelerator opening degree Acc, the vehicle speed V, the traveling mode Mo, and the required torque map M1 shown in FIG. 7.
 要求トルクマップM1には、入力されるアクセル開度Accに対して一意に要求トルクTaが出力される関係が設定されている。車両制御部110は、要求トルクマップM1を用いて、アクセル開度Accに対する要求トルクTaを取得する。要求トルクTaは0以上の値として得られる。 The required torque map M1 is set to have a relationship in which the required torque Ta is uniquely output with respect to the input accelerator opening degree Acc. The vehicle control unit 110 acquires the required torque Ta with respect to the accelerator opening degree Acc by using the required torque map M1. The required torque Ta is obtained as a value of 0 or more.
 第1実施形態では、要求トルクマップM1におけるアクセル開度Accに対する要求トルクTaの関係は、走行モードMoに応じて切り替えられるため、同じアクセル開度Accであっても、走行モードMoが異なると要求トルクTaは異なる値に設定される。図7の要求トルクマップM1の例では、走行モードMoがスポーツモードの場合の関係を示す特性線L1が実線で示され、走行モードMoがエコモードの場合の関係を示す特性線L2が一点鎖線で示されている。図7では、便宜上、走行モードMoがノーマルモードの場合の関係を示す特性線の図示は省略されている。特性線L1および特性線L2はいずれも、アクセル開度Accが大きいほど要求トルクTaが大きくなる関係を示している。特性線L1では、アクセル開度Accが大きいほど、アクセル開度Accに対する要求トルクTaの増加率が小さくなる。特性線L2では、アクセル開度Accが大きいほど、アクセル開度Accに対する要求トルクTaの増加率が大きくなる。 In the first embodiment, the relationship of the required torque Ta with respect to the accelerator opening degree Acc in the required torque map M1 is switched according to the traveling mode Mo. Therefore, even if the accelerator opening degree Acc is the same, the traveling mode Mo is required to be different. The torque Ta is set to a different value. In the example of the required torque map M1 of FIG. 7, the characteristic line L1 showing the relationship when the running mode Mo is in the sports mode is shown by a solid line, and the characteristic line L2 showing the relationship when the running mode Mo is in the eco mode is a dashed line. It is indicated by. In FIG. 7, for convenience, the illustration of the characteristic line showing the relationship when the traveling mode Mo is the normal mode is omitted. Both the characteristic line L1 and the characteristic line L2 show a relationship in which the required torque Ta increases as the accelerator opening degree Acc increases. On the characteristic line L1, the larger the accelerator opening degree Acc, the smaller the rate of increase of the required torque Ta with respect to the accelerator opening degree Acc. On the characteristic line L2, the larger the accelerator opening degree Acc, the larger the rate of increase of the required torque Ta with respect to the accelerator opening degree Acc.
 第1実施形態では、要求トルクTaは、車速Vに応じた値に設定される。第1実施形態では、要求トルクマップM1は、設定されている関係が車速Vに応じて補正されて用いられる。他の実施形態では、要求トルクマップM1には、アクセル開度Accと要求トルクTaとの関係を示す特性線が車速Vごとに設定されていてもよい。あるいは、車速Vごとの複数の要求トルクマップM1が予め準備され、車速Vに応じて選択的に用いられてもよい。 In the first embodiment, the required torque Ta is set to a value corresponding to the vehicle speed V. In the first embodiment, the required torque map M1 is used after the set relationship is corrected according to the vehicle speed V. In another embodiment, the required torque map M1 may have a characteristic line indicating the relationship between the accelerator opening degree Acc and the required torque Ta set for each vehicle speed V. Alternatively, a plurality of required torque maps M1 for each vehicle speed V may be prepared in advance and selectively used according to the vehicle speed V.
 図6のステップS104では、車両制御部110は、シフトポジション信号SPを用いてシフトレバーの位置を判定するシフト判定を実行する。車両制御部110は、シフトポジション信号SPが後進R以外である場合、つまり、SP≠Rである場合には、ステップS106において、目標トルクTtを、要求トルクTaに設定する。車両制御部110は、シフトポジション信号SPが後進Rである場合、つまり、SP=Rである場合には、ステップS108において、目標トルクTtを、要求トルクTaの正負を反転させた値-Taに設定する。上述したように、車両制御部110は、決定された目標トルクTtを電動機制御部21と監視部120とに出力する。これにより、図5に示すステップS10の目標トルク決定処理が終了し、ステップS20の監視トルク決定処理が開始される。 In step S104 of FIG. 6, the vehicle control unit 110 executes a shift determination for determining the position of the shift lever using the shift position signal SP. The vehicle control unit 110 sets the target torque Tt to the required torque Ta in step S106 when the shift position signal SP is other than the reverse R, that is, when SP ≠ R. When the shift position signal SP is the reverse R, that is, when SP = R, the vehicle control unit 110 sets the target torque Tt to a value −Ta obtained by reversing the positive / negative of the required torque Ta in step S108. Set. As described above, the vehicle control unit 110 outputs the determined target torque Tt to the electric motor control unit 21 and the monitoring unit 120. As a result, the target torque determination process in step S10 shown in FIG. 5 is completed, and the monitoring torque determination process in step S20 is started.
 図8を参照する。監視トルク決定処理では、監視部120によって、アクセル開度Accに応じて監視トルクTtwが決定される。ステップS110では、監視部120は、アクセル開度Accと、車速Vとを取得する。ステップS112では、監視部120は、アクセル開度Accと、車速Vと、図9に示す監視トルクマップM2とを用いて監視要求トルクTawを算出する。 Refer to FIG. In the monitoring torque determination process, the monitoring unit 120 determines the monitoring torque Ttw according to the accelerator opening degree Acc. In step S110, the monitoring unit 120 acquires the accelerator opening degree Acc and the vehicle speed V. In step S112, the monitoring unit 120 calculates the monitoring required torque Taw using the accelerator opening degree Acc, the vehicle speed V, and the monitoring torque map M2 shown in FIG.
 監視トルクマップM2には、入力されるアクセル開度Accに対して一意に監視要求トルクTawが出力される関係が設定されている。監視部120は、監視トルクマップM2を用いて、アクセル開度Accに対する監視要求トルクTawを取得する。監視要求トルクTawは0以上の値として得られる。図9に示す監視トルクマップM2の例では、アクセル開度Accに対する監視要求トルクTawの関係は、図7の要求トルクマップM1におけるスポーツモードの特性線L1に相当する特性線L1wによって表されている。特性線L1wは、アクセル開度Accが大きいほど要求トルクTaが大きくなる関係を示している。特性線L1wでは、アクセル開度Accが大きいほど、アクセル開度Accに対する要求トルクTaの増加率が小さくなる。 In the monitoring torque map M2, a relationship is set in which the monitoring request torque Taw is uniquely output with respect to the input accelerator opening degree Acc. The monitoring unit 120 acquires the monitoring required torque Taw with respect to the accelerator opening degree Acc by using the monitoring torque map M2. The monitoring required torque Taw is obtained as a value of 0 or more. In the example of the monitoring torque map M2 shown in FIG. 9, the relationship of the monitoring required torque Taw with respect to the accelerator opening degree Acc is represented by the characteristic line L1w corresponding to the characteristic line L1 of the sports mode in the required torque map M1 of FIG. .. The characteristic line L1w shows a relationship in which the required torque Ta increases as the accelerator opening degree Acc increases. On the characteristic line L1w, the larger the accelerator opening degree Acc, the smaller the rate of increase of the required torque Ta with respect to the accelerator opening degree Acc.
 図9では、参考のために、図7の要求トルクマップM1におけるエコモードの特性線L2に相当する特性線L2wを破線で図示してある。第1実施形態では、走行モードMoがエコモードであっても、要求トルクマップM1におけるスポーツモードの特性線L1に相当する特性線L1wで表される関係を用いて、アクセル開度Accに対する監視要求トルクTawが取得される。そのため、走行モードMoが異なっていても、アクセル開度Accに対して得られる監視要求トルクTawは同じである。ここで、図7に示す要求トルクマップM1において、スポーツモードの特性線L1で表される関係は、アクセル開度Accに対して得られる要求トルクTaの値が最も大きくなる関係である。よって、スポーツモードの特性線L1に相当する特性線L1wで表される関係を用いて得られる監視要求トルクTawは、走行モードMoにかかわらず、常に要求トルクTa以上の値に設定される。 In FIG. 9, for reference, the characteristic line L2w corresponding to the eco-mode characteristic line L2 in the required torque map M1 of FIG. 7 is shown by a broken line. In the first embodiment, even if the traveling mode Mo is in the eco mode, a monitoring request for the accelerator opening degree Acc is used by using the relationship represented by the characteristic line L1w corresponding to the characteristic line L1 of the sports mode in the required torque map M1. Torque Taw is acquired. Therefore, even if the traveling modes Mo are different, the monitoring required torque Taw obtained with respect to the accelerator opening degree Acc is the same. Here, in the required torque map M1 shown in FIG. 7, the relationship represented by the characteristic line L1 of the sport mode is the relationship in which the value of the required torque Ta obtained with respect to the accelerator opening degree Acc is the largest. Therefore, the monitoring required torque Taw obtained by using the relationship represented by the characteristic line L1w corresponding to the characteristic line L1 of the sports mode is always set to a value equal to or higher than the required torque Ta regardless of the traveling mode Mo.
 第1実施形態では、監視要求トルクTawは、車速Vに応じた値に設定される。第1実施形態では、監視トルクマップM2は、設定されている関係が車速Vに応じて補正されて用いられる。他の実施形態では、監視トルクマップM2には、アクセル開度Accと監視要求トルクTawとの関係を示す特性線が車速Vごとに設定されていてもよい。あるいは、車速Vごとの複数の監視トルクマップM2が予め準備されており、車速Vに応じて選択的に用いられてもよい。 In the first embodiment, the monitoring required torque Taw is set to a value corresponding to the vehicle speed V. In the first embodiment, the monitoring torque map M2 is used after the set relationship is corrected according to the vehicle speed V. In another embodiment, the monitoring torque map M2 may have a characteristic line indicating the relationship between the accelerator opening degree Acc and the monitoring required torque Taw for each vehicle speed V. Alternatively, a plurality of monitoring torque maps M2 for each vehicle speed V may be prepared in advance and may be selectively used according to the vehicle speed V.
 図8のステップS114では、監視部120は、シフトポジション信号SPを用いてシフトレバーの位置を判定するシフト判定を実行する。監視部120は、シフトポジション信号SPが後進R以外である場合、つまり、SP≠Rである場合には、ステップS116において、監視トルクTtwを、監視要求トルクTawに設定する。監視部120は、シフトポジション信号SPが後進Rである場合、つまり、SP=Rである場合には、ステップS118において、監視トルクTtwを、監視要求トルクTawの正負を反転させた値-Tawに設定する。以上により、図5に示すステップS20の監視トルク決定処理が終了し、ステップS30の加速制御監視処理が開始される。なお、監視部120は、検出されている加速指令やブレーキ指令に基づいて、車両10が加速中ではないことが検出されている場合には、ステップS30の加速制御監視処理をスキップしてもよい。 In step S114 of FIG. 8, the monitoring unit 120 executes a shift determination for determining the position of the shift lever using the shift position signal SP. When the shift position signal SP is other than the reverse R, that is, when SP ≠ R, the monitoring unit 120 sets the monitoring torque Ttw to the monitoring request torque Taw in step S116. When the shift position signal SP is the reverse R, that is, when SP = R, the monitoring unit 120 sets the monitoring torque Ttw to a value −Taw in which the positive / negative of the monitoring request torque Taw is reversed in step S118. Set. As a result, the monitoring torque determination process in step S20 shown in FIG. 5 is completed, and the acceleration control monitoring process in step S30 is started. If it is detected that the vehicle 10 is not accelerating based on the detected acceleration command or brake command, the monitoring unit 120 may skip the acceleration control monitoring process in step S30. ..
 図10を参照する。加速制御監視処理は、車両10を加速させるときの制御信号の異常を監視部120が検出して対処する処理である。ステップS200では、監視部120は、車速Vに応じて上限閾値αを設定する。監視部120は、車速Vと、図11に示す上限閾値マップMPαと、を用いて上限閾値αを取得して設定する。上限閾値αは、目標トルクTtと監視トルクTtwとの許容できる誤差範囲の上限を示す予め実験的に定められた境界値である。 Refer to FIG. The acceleration control monitoring process is a process in which the monitoring unit 120 detects and deals with an abnormality in the control signal when accelerating the vehicle 10. In step S200, the monitoring unit 120 sets the upper limit threshold value α according to the vehicle speed V. The monitoring unit 120 acquires and sets the upper limit threshold value α by using the vehicle speed V and the upper limit threshold value map MPα shown in FIG. The upper limit threshold value α is a predetermined boundary value that indicates the upper limit of the allowable error range between the target torque Tt and the monitoring torque Ttw.
 上限閾値マップMPαには、車速Vに対して上限閾値αが一意に定まる関係が設定されている。上限閾値マップMPαによれば、上限閾値αは0より大きい値として得られる。また、上限閾値マップMPαによれば、入力される車速Vが大きいほど出力される上限閾値αが大きくなる。また、上限閾値マップMPαの関係では、車速Vが大きいほど車速Vに対する上限閾値αの変化率が小さくなる。 The upper limit threshold map MPα has a relationship in which the upper limit threshold α is uniquely determined with respect to the vehicle speed V. According to the upper threshold map MPα, the upper threshold α is obtained as a value larger than 0. Further, according to the upper limit threshold map MPα, the larger the input vehicle speed V, the larger the output upper limit threshold α. Further, in relation to the upper limit threshold map MPα, the larger the vehicle speed V, the smaller the rate of change of the upper limit threshold α with respect to the vehicle speed V.
 ステップS205では、監視部120は、アクセル開度Accに応じて検出時間tを設定する。監視部120は、アクセル開度Accと、図12に示す検出時間マップMPtと、を用いて検出時間tを取得して設定する。検出時間tは、制御信号の異常が継続して検出されることが許容される時間の限界値を示す。検出時間tは、0より大きい値として得られる。図12に示す第1実施形態の検出時間マップMPtの例では、検出時間マップMPtには、アクセル開度Accが大きいほど検出時間tが小さくなる特性線Ltで示されている関係が設定されている。これにより、異常が検出されている間の車速の増大を抑制できる。また、第1実施形態の検出時間マップMPtでは、アクセル開度Accが数度程度の領域では、検出時間tの減少割合が比較的大きい。これにより、例えば、わずかなアクセル操作がされただけのときに制御信号の異常が誤検出されることが抑制される。また、第1実施形態の検出時間マップMPtでは、アクセル開度Accが、数度程度より大きくなったときには、検出時間tの減少割合が著しく小さくなり、アクセル開度Accに対して、検出時間tがあまり減少しなくなる。これにより、ハーフスロットルやパーシャルスロットルが多用された場合でも、制御信号の異常を、安定した精度で検出することが可能である。なお、加速制御監視処理で取得された検出時間tは、後述する減速制御監視処理においても用いられる。 In step S205, the monitoring unit 120 sets the detection time t according to the accelerator opening degree Acc. The monitoring unit 120 acquires and sets the detection time t by using the accelerator opening degree Acc and the detection time map MPt shown in FIG. The detection time t indicates a limit value of a time during which an abnormality in the control signal is allowed to be continuously detected. The detection time t is obtained as a value greater than 0. In the example of the detection time map MPt of the first embodiment shown in FIG. 12, the relationship shown by the characteristic line Lt in which the detection time t becomes smaller as the accelerator opening degree Acc is larger is set in the detection time map MPt. There is. As a result, it is possible to suppress an increase in vehicle speed while an abnormality is detected. Further, in the detection time map MPt of the first embodiment, the reduction rate of the detection time t is relatively large in the region where the accelerator opening degree Acc is about several degrees. As a result, for example, it is possible to prevent erroneous detection of an abnormality in the control signal when only a slight accelerator operation is performed. Further, in the detection time map MPt of the first embodiment, when the accelerator opening degree Acc becomes larger than about several degrees, the reduction rate of the detection time t becomes remarkably small, and the detection time t is relative to the accelerator opening degree Acc. Does not decrease much. As a result, even when a half throttle or a partial throttle is frequently used, it is possible to detect an abnormality in the control signal with stable accuracy. The detection time t acquired in the acceleration control monitoring process is also used in the deceleration control monitoring process described later.
 ステップS210では、監視部120は、目標トルクTtから監視トルクTtwを減算した差分が上限閾値α以上であるか否かを判定する。Tt-Ttw≧αである場合には、ステップS212において、カウンタCに1が加算される。カウンタCは、初期値が0であり、加速制御監視処理が所定の実行周期で繰り返されている間に、制御信号の異常が連続して検出された回数を表す変数である。監視部120は、Tt-Ttw≧αである場合には、車両10の加速時における制御信号の異常が検出されたと判定して、カウンタCをインクリメントする。 In step S210, the monitoring unit 120 determines whether or not the difference obtained by subtracting the monitoring torque Ttw from the target torque Tt is equal to or greater than the upper limit threshold value α. When Tt−Ttw ≧ α, 1 is added to the counter C in step S212. The counter C is a variable having an initial value of 0 and representing the number of times that an abnormality in the control signal is continuously detected while the acceleration control monitoring process is repeated in a predetermined execution cycle. When Tt—Ttw ≧ α, the monitoring unit 120 determines that an abnormality in the control signal during acceleration of the vehicle 10 has been detected, and increments the counter C.
 ここで、図9を参照する。図9には、特性線L1wを+αだけシフトさせた上限境界線BUが示されている。第1実施形態の加速制御監視処理において、監視部120が制御信号の異常を検出するのは、目標トルクTtが上限境界線BUより上の領域である加速ハザード領域に含まれる場合である。 Here, refer to FIG. FIG. 9 shows the upper limit boundary line BU in which the characteristic line L1w is shifted by + α. In the acceleration control monitoring process of the first embodiment, the monitoring unit 120 detects an abnormality in the control signal when the target torque Tt is included in the acceleration hazard region which is a region above the upper limit boundary line BU.
 上述したように、監視トルクマップM2を用いて取得される監視要求トルクTawは、特性線L1wが表すスポーツモードに対応する関係を用いて取得される。そのため、監視要求トルクTawは、現在の走行モードMoにかかわらず、常にスポーツモードで得られる要求トルクTa以上の値に設定される。この理由は、走行モードMoがスポーツモードであるときがフェイルセーフ処理の対象となるような制御信号の異常が生じる可能性が最も高く、スポーツモードを基準に判定を行った方が望ましいためである。 As described above, the monitoring required torque Taw acquired using the monitoring torque map M2 is acquired using the relationship corresponding to the sports mode represented by the characteristic line L1w. Therefore, the monitoring required torque Taw is always set to a value equal to or higher than the required torque Ta obtained in the sports mode regardless of the current traveling mode Mo. The reason for this is that when the driving mode Mo is in the sports mode, there is the highest possibility that an abnormality in the control signal that is subject to fail-safe processing occurs, and it is desirable to make a judgment based on the sports mode. ..
 図10のステップS210において、Tt-Ttw<αである場合には、ステップS214において、カウンタCに0が代入される。監視部120は、Tt-Ttw<αである場合には、車両10の加速時における制御信号の異常は継続して検出されていないと判定して、カウンタCを初期化する。 In step S210 of FIG. 10, when Tt-Ttw <α, 0 is assigned to the counter C in step S214. When Tt—Ttw <α, the monitoring unit 120 determines that the abnormality of the control signal during acceleration of the vehicle 10 is not continuously detected, and initializes the counter C.
 ステップS220では、監視部120は、カウンタCが、ステップS205で取得した検出時間t以上であるか否かを判定する。上記のように、カウンタCは、制御信号の異常が所定の周期で連続して繰り返し検出された回数を示しており、制御信号の異常が継続されている時間を表している。つまり、C≧tであることは、車両10の加速時における制御信号の異常が許容できる時間を越えて継続されていることを示している。そのため、C≧tである場合には、監視部120は、ステップS210とステップS220の条件を含む加速時判定条件が満たされたものとして、ステップS230で、フェイルセーフ処理の実行を決定する。監視部120は、電動機制御部21に、フェイルセーフ処理の実行を指令するフェイルセーフ信号FSSを出力して、加速制御監視処理を終了する。電動機制御部21は、電動機20にフェイルセーフ処理の実行を指令する電動機制御信号MGSを出力する。これにより、車両10の通常の運転状態が中断されるため、図5の制御処理は途中で終了することになる。 In step S220, the monitoring unit 120 determines whether or not the counter C is equal to or longer than the detection time t acquired in step S205. As described above, the counter C indicates the number of times that the abnormality of the control signal is continuously and repeatedly detected in a predetermined cycle, and indicates the time during which the abnormality of the control signal is continued. That is, the fact that C ≧ t indicates that the abnormality of the control signal at the time of accelerating the vehicle 10 continues beyond the permissible time. Therefore, when C ≧ t, the monitoring unit 120 determines in step S230 to execute the fail-safe process, assuming that the acceleration determination conditions including the conditions of steps S210 and S220 are satisfied. The monitoring unit 120 outputs a fail-safe signal FSS instructing the execution of the fail-safe process to the electric motor control unit 21, and ends the acceleration control monitoring process. The electric motor control unit 21 outputs an electric motor control signal MGS that commands the electric motor 20 to execute the fail-safe process. As a result, the normal driving state of the vehicle 10 is interrupted, so that the control process of FIG. 5 ends in the middle.
 一方、ステップS220において、C<tである場合には、監視部120はそのまま加速制御監視処理を終了する。この場合には、車両10の加速制御の際における制御信号の異常が、対処が必要なほど継続して検出されていないと判定できるためである。この後、監視部120は、図5に示すステップS40の減速制御監視処理の実行を開始する。なお、監視部120は、検出されている加速指令やブレーキ指令に基づいて、車両10が減速中であることが検出されている場合には、ステップS40の減速制御監視処理をスキップしてもよい。 On the other hand, in step S220, when C <t, the monitoring unit 120 ends the acceleration control monitoring process as it is. In this case, it can be determined that the abnormality of the control signal during the acceleration control of the vehicle 10 is not continuously detected so as to be necessary to deal with it. After that, the monitoring unit 120 starts executing the deceleration control monitoring process in step S40 shown in FIG. If it is detected that the vehicle 10 is decelerating based on the detected acceleration command or brake command, the monitoring unit 120 may skip the deceleration control monitoring process in step S40. ..
 図13を参照する。減速制御監視処理は、車両10を減速させるときの制御信号の異常を監視部120が検出して対処する処理である。ステップS300では、監視部120は、車速Vに応じて下限閾値βを設定する。監視部120は、車速Vと、図14に示す下限閾値マップMPβと、を用いて下限閾値βを取得して設定する。下限閾値βは、減速時における目標トルクTtの許容できる下限を示す予め実験的に定められた境界値である。 Refer to FIG. The deceleration control monitoring process is a process in which the monitoring unit 120 detects an abnormality in the control signal when decelerating the vehicle 10 and deals with it. In step S300, the monitoring unit 120 sets the lower limit threshold value β according to the vehicle speed V. The monitoring unit 120 acquires and sets the lower limit threshold value β by using the vehicle speed V and the lower limit threshold value map MPβ shown in FIG. The lower limit threshold value β is a predetermined boundary value that indicates an acceptable lower limit of the target torque Tt during deceleration.
 下限閾値マップMPβには、車速Vに対して下限閾値βが一意に定まる関係が設定されている。下限閾値マップMPβによれば、下限閾値βは0より小さい値として得られる。また、下限閾値マップMPβによれば、入力される車速Vが大きいほど出力される下限閾値βが小さくなる。また、下限閾値マップMPβの関係では、車速Vが大きいほど車速Vに対する下限閾値βの変化率が小さくなる。 The lower limit threshold map MPβ has a relationship in which the lower limit threshold β is uniquely determined with respect to the vehicle speed V. According to the lower threshold map MPβ, the lower threshold β is obtained as a value smaller than 0. Further, according to the lower limit threshold map MPβ, the larger the input vehicle speed V, the smaller the output lower limit threshold β. Further, in relation to the lower limit threshold map MPβ, the larger the vehicle speed V, the smaller the rate of change of the lower limit threshold β with respect to the vehicle speed V.
 ステップS305では、監視部120は、検出時間tを取得する。第1実施形態では、監視部120は、加速制御監視処理で取得した検出時間tを減速制御監視処理においても用いる。なお、加速制御監視処理の実行をスキップしている場合には、監視部120は、加速制御監視処理のステップS205と同様に、検出時間マップMPtを用いて、アクセル開度Accに応じた検出時間tを設定する。 In step S305, the monitoring unit 120 acquires the detection time t. In the first embodiment, the monitoring unit 120 also uses the detection time t acquired in the acceleration control monitoring process in the deceleration control monitoring process. When the execution of the acceleration control monitoring process is skipped, the monitoring unit 120 uses the detection time map MPt as in step S205 of the acceleration control monitoring process to detect the detection time according to the accelerator opening degree Acc. Set t.
 ステップS310では、監視部120は、目標トルクTtが下限閾値β以下であるか否かを判定する。Tt≦βである場合には、ステップS312において、カウンタCに1が加算される。つまり、監視部120は、Tt≦βである場合には、車両10の減速時における制御信号の異常が検出されたと判定して、カウンタCをインクリメントする。 In step S310, the monitoring unit 120 determines whether or not the target torque Tt is equal to or less than the lower limit threshold value β. When Tt ≦ β, 1 is added to the counter C in step S312. That is, when Tt ≦ β, the monitoring unit 120 determines that an abnormality in the control signal during deceleration of the vehicle 10 has been detected, and increments the counter C.
 図7を参照する。図7には、下限閾値βに相当するトルクを示す下限境界線BLが示されている。第1実施形態の減速制御監視処理において、監視部120が制御信号の異常を検出するのは、目標トルクTtが下限境界線BLより下の領域である減速ハザード領域に含まれる場合である。減速制御監視処理では、下限境界線BLは、車速Vに応じて定まり、アクセル開度Accにかかわらず一定である。 Refer to FIG. FIG. 7 shows a lower limit boundary line BL indicating a torque corresponding to the lower limit threshold value β. In the deceleration control monitoring process of the first embodiment, the monitoring unit 120 detects an abnormality in the control signal when the target torque Tt is included in the deceleration hazard region which is a region below the lower limit boundary line BL. In the deceleration control monitoring process, the lower limit boundary line BL is determined according to the vehicle speed V and is constant regardless of the accelerator opening degree Acc.
 一方、図13に示すステップS310において、Tt>βである場合には、ステップS314において、カウンタCに0が代入される。監視部120は、Tt>βである場合には、車両10の減速時における制御信号の異常は継続して検出されていないと判定して、カウンタCを初期化する。 On the other hand, in step S310 shown in FIG. 13, when Tt> β, 0 is assigned to the counter C in step S314. When Tt> β, the monitoring unit 120 determines that the abnormality of the control signal during deceleration of the vehicle 10 is not continuously detected, and initializes the counter C.
 ステップS320では、監視部120は、カウンタCが、ステップS305で取得した検出時間t以上であるか否かを判定する。C≧tであることは、車両10の減速時における制御信号の異常が許容できる検出時間tを越えて継続されていることを示している。そのため、C≧tである場合には、監視部120は、ステップS310の条件とステップS320の条件とを含む減速時判定条件が満たされたものとして、ステップS330で、フェイルセーフ処理の実行を決定する。監視部120は、電動機制御部21に、フェイルセーフ処理の実行を指令するフェイルセーフ信号FSSを出力して、減速制御監視処理を終了する。電動機制御部21は、電動機20にフェイルセーフ処理の実行を指令する電動機制御信号MGSを出力する。これにより、車両10の通常の運転状態が中断されるため、図5の制御処理は途中で終了することになる。 In step S320, the monitoring unit 120 determines whether or not the counter C is equal to or longer than the detection time t acquired in step S305. The fact that C ≧ t indicates that the abnormality of the control signal during deceleration of the vehicle 10 continues beyond the permissible detection time t. Therefore, when C ≧ t, the monitoring unit 120 decides to execute the fail-safe process in step S330, assuming that the deceleration determination condition including the condition of step S310 and the condition of step S320 is satisfied. To do. The monitoring unit 120 outputs a fail-safe signal FSS instructing the execution of the fail-safe process to the electric motor control unit 21, and ends the deceleration control monitoring process. The electric motor control unit 21 outputs an electric motor control signal MGS that commands the electric motor 20 to execute the fail-safe process. As a result, the normal driving state of the vehicle 10 is interrupted, so that the control process of FIG. 5 ends in the middle.
 一方、ステップS320においてC<tである場合には、監視部120はそのまま加速制御監視処理を終了する。この場合には、車両10の減速制御の際における制御信号の異常が、対処が必要なほど継続して検出されていないと判定できるためである。この後、監視部120は、図5に示すステップS50の符号反転監視処理の実行を開始する。 On the other hand, if C <t in step S320, the monitoring unit 120 ends the acceleration control monitoring process as it is. In this case, it can be determined that the abnormality of the control signal during the deceleration control of the vehicle 10 is not continuously detected so as to be necessary to deal with it. After that, the monitoring unit 120 starts executing the code reversal monitoring process in step S50 shown in FIG.
 図15を参照する。符号反転監視処理は、車両制御部110から電動機制御部21に出力される目標トルクTtの正負が反転する制御信号の異常の発生を、監視部120が検出して対処する処理である。目標トルクTtの正負の反転は、例えば、車両制御部110と電動機制御部21との間の通信エラーなどによって生じ得る。 Refer to FIG. The code reversal monitoring process is a process in which the monitoring unit 120 detects and deals with the occurrence of an abnormality in the control signal in which the positive / negative of the target torque Tt output from the vehicle control unit 110 to the electric motor control unit 21 is reversed. The positive / negative reversal of the target torque Tt can occur, for example, due to a communication error between the vehicle control unit 110 and the electric motor control unit 21.
 ステップS410では、監視部120は、シフトポジション信号SPを用いてシフトレバーの位置を判定するシフト判定を実行する。シフトポジション信号SPが後進Rである場合と後進R以外である場合とで判定条件が切り替わるためである。 In step S410, the monitoring unit 120 executes a shift determination for determining the position of the shift lever using the shift position signal SP. This is because the determination condition is switched between the case where the shift position signal SP is the reverse R and the case where the shift position signal SP is other than the reverse R.
 監視部120は、シフトポジション信号SPが後進R以外である場合、つまり、SP≠Rである場合には、ステップS420において、目標トルクTtが予め定められた判定閾値γを負にした値である-γより小さいか否かを判定する。判定閾値γは、予め定められたクリープトルクTcr[N・m]に相当する値であり、正の値である。判定閾値γは、クリープトルクTcr[N・m]に相当する値の代わりに、0[N・m]が設定されてもよい。 When the shift position signal SP is other than the reverse R, that is, when SP ≠ R, the monitoring unit 120 sets the target torque Tt to a negative value of the predetermined determination threshold value γ in step S420. -Judge whether it is smaller than γ. The determination threshold value γ is a value corresponding to a predetermined creep torque Tcr [Nm], and is a positive value. The determination threshold value γ may be set to 0 [Nm] instead of the value corresponding to the creep torque Tcr [Nm].
 ステップS420において、Tt<-γである場合には、目標トルクの正負が反転して、シフトポジション信号SPが後進Rではないのにもかかわらず、目標トルクが負になっている可能性がある。そこで、監視部120は、ステップS422において監視トルクTtwの正負を判定して、目標トルクが負になっていることが制御信号の異常によるものであるか否かを検証する。監視部120は、ステップS422において、監視トルクTtwが判定閾値γより大きいか否かを判定する。 If Tt <-γ in step S420, the positive / negative of the target torque may be reversed, and the target torque may be negative even though the shift position signal SP is not the reverse R. .. Therefore, the monitoring unit 120 determines whether the monitoring torque Ttw is positive or negative in step S422, and verifies whether or not the negative target torque is due to an abnormality in the control signal. In step S422, the monitoring unit 120 determines whether or not the monitoring torque Ttw is larger than the determination threshold value γ.
 ステップS422において、Ttw>γである場合には、目標トルクと監視トルクTtwの正負が一致しない。そのため、この場合には、監視部120は、目標トルクの正負が反転する制御信号の異常が発生しているものとして、ステップS424において、カウンタCFDに1を加算する。カウンタCFDは、初期値が0であり、符号反転監視処理が所定の実行周期で繰り返されている間に、目標トルクTtの正負の反転が連続して検出された回数を表す変数である。以上のように、SP≠Rであるときには、監視部120は、Tt<―γ、かつ、Ttw>γである場合に、電動機制御部21に出力される目標トルクTtの正負が反転する制御信号の異常が検出されたと判定して、カウンタCFDをインクリメントする。 In step S422, when Ttw> γ, the positive and negative of the target torque and the monitoring torque Ttw do not match. Therefore, in this case, the monitoring unit 120 adds 1 to the counter CFD in step S424, assuming that an abnormality in the control signal in which the positive / negative of the target torque is reversed has occurred. The counter CFD is a variable that represents the number of times that positive / negative inversion of the target torque Tt is continuously detected while the initial value is 0 and the code inversion monitoring process is repeated in a predetermined execution cycle. As described above, when SP ≠ R, the monitoring unit 120 is a control signal in which the positive / negative of the target torque Tt output to the motor control unit 21 is inverted when Tt <−γ and Ttw> γ. It is determined that the abnormality of is detected, and the counter CFD is incremented.
 一方、ステップ420においてTt<-γではなかった場合には、監視部120は、目標トルクの正負は反転していないものとして、ステップS426において、カウンタCFDに0を代入し、カウンタCFDを初期化する。また、ステップ422においてTtw>γではなかった場合、目標トルクが負の値であっても、監視トルクTtwと正負が一致する。この場合には、目標トルクが電動機20の制御上、適切に負の値に設定されていると考えられる。そのため、監視部120は、目標トルクの正負は反転していないものとして、ステップS426において、カウンタCFDに0を代入し、カウンタCFDを初期化する。 On the other hand, when Tt <-γ is not satisfied in step 420, the monitoring unit 120 assumes that the positive and negative of the target torque are not reversed, substitutes 0 for the counter CFD in step S426, and initializes the counter CFD. To do. Further, when Ttw> γ is not satisfied in step 422, the positive and negative values match the monitoring torque Ttw even if the target torque is a negative value. In this case, it is considered that the target torque is appropriately set to a negative value in terms of control of the electric motor 20. Therefore, the monitoring unit 120 substitutes 0 for the counter CFD and initializes the counter CFD in step S426, assuming that the positive and negative of the target torque are not reversed.
 ステップS410のシフト判定において、シフトポジション信号SPが後進Rである場合、つまり、SP=Rである場合には、監視部120は、ステップS430において、目標トルクTtが判定閾値γより大きいか否かを判定する。ステップS430においてTt>γである場合には、目標トルクの正負が反転して、シフトポジション信号SPが後進Rであるのにもかかわらず、目標トルクが正になっている可能性がある。そこで、監視部120は、ステップS432において監視トルクTtwの正負を判定して、目標トルクが正になっていることが制御信号の異常によるものであるか否かを検証する。監視部120は、ステップS432において、監視トルクTtwが判定閾値γより大きいか否かを判定する。 In the shift determination in step S410, when the shift position signal SP is reverse R, that is, when SP = R, the monitoring unit 120 determines in step S430 whether the target torque Tt is larger than the determination threshold value γ. To judge. When Tt> γ in step S430, there is a possibility that the positive / negative of the target torque is reversed and the target torque is positive even though the shift position signal SP is the reverse R. Therefore, the monitoring unit 120 determines whether the monitoring torque Ttw is positive or negative in step S432, and verifies whether or not the positive target torque is due to an abnormality in the control signal. In step S432, the monitoring unit 120 determines whether or not the monitoring torque Ttw is larger than the determination threshold value γ.
 ステップS432において、Ttw<-γである場合には、目標トルクと監視トルクTtwの正負が一致しない。そのため、この場合には、監視部120は、目標トルクの正負が反転する制御信号の異常が発生しているものとして、ステップS434において、カウンタCFDに1を加算する。以上のように、SP=Rであるときには、監視部120は、Tt>γ、かつ、Ttw<-γである場合に、電動機制御部21に出力される目標トルクTtの正負が反転する制御信号の異常が検出されたと判定して、カウンタCFDをインクリメントする。 In step S432, when Ttw <-γ, the positive and negative of the target torque and the monitoring torque Ttw do not match. Therefore, in this case, the monitoring unit 120 adds 1 to the counter CFD in step S434, assuming that an abnormality in the control signal in which the positive / negative of the target torque is reversed has occurred. As described above, when SP = R, the monitoring unit 120 has a control signal in which the positive / negative of the target torque Tt output to the motor control unit 21 is inverted when Tt> γ and Ttw <−γ. It is determined that the abnormality of is detected, and the counter CFD is incremented.
 一方、ステップ430においてTt>γではなかった場合には、監視部120は、目標トルクの正負は反転していないものとして、ステップS436において、カウンタCFDに0を代入し、カウンタCFDを初期化する。また、ステップ432においてTtw<-γではなかった場合、目標トルクが正の値であっても、監視トルクTtwと正負が一致する。この場合には、目標トルクが電動機20の制御上、適切に正の値に設定されていると考えられる。そのため、監視部120は、目標トルクの正負は反転していないものとして、ステップS436において、カウンタCFDに0を代入し、カウンタCFDを初期化する。 On the other hand, when Tt> γ is not satisfied in step 430, the monitoring unit 120 assumes that the positive and negative of the target torque are not reversed, substitutes 0 for the counter CFD in step S436, and initializes the counter CFD. .. Further, when Ttw <-γ is not satisfied in step 432, even if the target torque is a positive value, the positive and negative values match the monitoring torque Ttw. In this case, it is considered that the target torque is appropriately set to a positive value in terms of control of the electric motor 20. Therefore, the monitoring unit 120 substitutes 0 for the counter CFD and initializes the counter CFD in step S436, assuming that the positive and negative of the target torque are not reversed.
 ステップS440では、監視部120は、カウンタCFDが予め定められた検出時間tc以上であるか否かを判定する。上記のように、カウンタCFDは、目標トルクTtの正負の反転が生じる制御信号の異常が所定の制御周期で連続して繰り返し検出された回数を示しており、そうした異常が継続されている時間を表している。つまり、CFD≧tcであることは、目標トルクTtの正負の反転が生じる制御信号の異常が許容できる時間を越えて継続されていることを示している。 In step S440, the monitoring unit 120 determines whether or not the counter CFD is equal to or longer than the predetermined detection time ct. As described above, the counter CFD indicates the number of times that the abnormality of the control signal in which the positive / negative inversion of the target torque Tt occurs is continuously and repeatedly detected in a predetermined control cycle, and the time during which the abnormality is continued is indicated. Represents. That is, the fact that CFD ≧ tt indicates that the abnormality of the control signal in which the positive / negative inversion of the target torque Tt occurs continues beyond the permissible time.
 CFD≧tcである場合には、監視部120は、ステップS420,S422の条件、または、ステップS430,S432の条件と、ステップS440の条件とを含む判定条件が満たされたとして、ステップS450でフェイルセーフ処理の実行を決定する。監視部120は、電動機制御部21に、フェイルセーフ処理の実行を指令するフェイルセーフ信号FSSを出力して、符号反転監視処理を終了する。電動機制御部21は、電動機20にフェイルセーフ処理の実行を指令する電動機制御信号MGSを出力する。これにより、車両10の通常の運転状態が中断されるため、図5の制御処理は終了する。 When CFD ≧ tc, the monitoring unit 120 fails in step S450, assuming that the determination conditions including the conditions of steps S420 and S422, or the conditions of steps S430 and S432 and the conditions of step S440 are satisfied. Decide to perform safe processing. The monitoring unit 120 outputs a fail-safe signal FSS instructing the execution of the fail-safe processing to the electric motor control unit 21, and ends the code inversion monitoring processing. The electric motor control unit 21 outputs an electric motor control signal MGS that commands the electric motor 20 to execute the fail-safe process. As a result, the normal driving state of the vehicle 10 is interrupted, so that the control process of FIG. 5 ends.
 ステップS440において、CFD≧tcではない場合には、監視部120は、符号反転監視処理を終了し、図5に示す制御処理のフローをステップS10から再度開始する。なお、第1実施形態では、ステップS440での判定条件である検出時間tcは、1より小さい数に設定される。これによって、1回でも目標トルクTtの正負が反転する異常が検出されたときに、ステップS450においてフェイルセーフ処理の実行が決定される。 In step S440, if CFD ≧ tk, the monitoring unit 120 ends the code inversion monitoring process and restarts the flow of the control process shown in FIG. 5 from step S10. In the first embodiment, the detection time ct, which is the determination condition in step S440, is set to a number smaller than 1. As a result, when an abnormality in which the positive / negative of the target torque Tt is reversed is detected even once, the execution of the fail-safe process is determined in step S450.
 以上のように、第1実施形態の制御装置100によれば、符号反転監視処理によって、電動機20の目標トルクTtの正負が反転している制御信号の異常を、目標トルクTtと監視トルクTtwとを用いた簡易な判定方法で、適切に検出することができる。また、符号反転監視処理では、目標トルクTtと監視トルクTtwの正負が一致していない条件を含む判定条件が満たされたときに、電動機20のフェイルセーフ処理の実行が決定される。これにより、電動機制御部21に出力される目標トルクTtの正負が反転する制御信号の異常に対して適切に対処され、運転者の操作に反して電動機20の回転方向が逆に制御されるような不具合の発生を回避できる。よって、電動機20の制御の信頼性を高めることができる。 As described above, according to the control device 100 of the first embodiment, the abnormality of the control signal in which the positive / negative of the target torque Tt of the electric motor 20 is reversed by the code inversion monitoring process is defined as the target torque Tt and the monitoring torque Ttw. Can be appropriately detected by a simple determination method using. Further, in the code reversal monitoring process, the execution of the fail-safe process of the electric motor 20 is determined when the determination condition including the condition that the positive and negative of the target torque Tt and the monitoring torque Ttw do not match is satisfied. As a result, the abnormality of the control signal in which the positive and negative of the target torque Tt output to the electric motor control unit 21 is reversed is appropriately dealt with, and the rotation direction of the electric motor 20 is controlled in the opposite direction against the operation of the driver. It is possible to avoid the occurrence of various problems. Therefore, the reliability of the control of the electric motor 20 can be improved.
 第1実施形態の制御装置100は、車両10の加速時には、少なくとも、Tt-Ttwが車速Vに応じた上限閾値α以上となる条件を含む判定条件が満たされた場合に電動機制御部21に電動機20のフェイルセーフ処理の実行を指令する。よって、車両10が、加速指令に対して想定されているのより大きい加速をすることが抑制される。また、第1実施形態の制御装置100は、車両10の減速時に、目標トルクTtが車速Vに応じた下限閾値βよりも小さくなる条件を含む判定条件が満たされた場合に、電動機制御部21に電動機20のフェイルセーフ処理の実行を指令する。よって、車両10が運転者に異常な重力加速度の負荷を与えるような減速をすることが抑制される。第1実施形態の制御装置100によれば、加速制御監視処理および減速制御監視処理に加えて、符号反転監視処理が実行される。そのため、例えば、車両10がクリープトルクTcrで走行している場合などに、加速制御監視処理や減速制御監視処理では検出されなかったような目標トルクTtの正負の反転による制御信号の異常を、符号反転監視処理によって精度よく検出することが可能である。 In the control device 100 of the first embodiment, when the vehicle 10 is accelerated, the electric motor control unit 21 is connected to the electric motor when at least a determination condition including a condition that Tt—Ttw is equal to or higher than the upper limit threshold value α corresponding to the vehicle speed V is satisfied. Command the execution of 20 fail-safe processes. Therefore, it is suppressed that the vehicle 10 accelerates more than expected for the acceleration command. Further, the control device 100 of the first embodiment satisfies the determination condition including the condition that the target torque Tt becomes smaller than the lower limit threshold value β corresponding to the vehicle speed V when the vehicle 10 is decelerated, the electric motor control unit 21 Is instructed to execute the fail-safe process of the electric motor 20. Therefore, it is suppressed that the vehicle 10 decelerates so as to give the driver an abnormal load of gravitational acceleration. According to the control device 100 of the first embodiment, the code inversion monitoring process is executed in addition to the acceleration control monitoring process and the deceleration control monitoring process. Therefore, for example, when the vehicle 10 is traveling with the creep torque Tcr, the abnormality of the control signal due to the positive / negative reversal of the target torque Tt, which is not detected by the acceleration control monitoring process or the deceleration control monitoring process, is defined as a reference. It can be detected accurately by the reverse monitoring process.
2.第2実施形態:
 図16を参照する。第2実施形態における符号反転監視処理は、ステップS400,S402が追加されている点以外は、第1実施形態の符号反転処理と同様である。第2実施形態における制御装置100およびそれを備える車両10の構成は、以下において、特に説明しない限り、第1実施形態で図1~図4を参照して説明した構成とほぼ同じである。
2. 2. Second embodiment:
See FIG. The code reversal monitoring process in the second embodiment is the same as the code reversal process in the first embodiment except that steps S400 and S402 are added. Unless otherwise specified, the configuration of the control device 100 and the vehicle 10 including the control device 100 in the second embodiment is substantially the same as the configuration described with reference to FIGS. 1 to 4 in the first embodiment.
 第2実施形態の符号反転監視処理では、制御装置100の監視部120は、まず、ステップS400において、車速Vが0[km/h]であるか否かを判定する。車速Vが0[km/h]である場合には、監視部120は、ステップS402において、加速指令がされていないアクセルオフの状態、つまり、Acc=0であるか否かを判定する。監視部120は、アクセルオフの状態である場合には、ステップS410以降の処理を、第1実施形態で説明したのと同様に実行する。ステップS400において、車速Vが0[km/h]ではない場合、または、ステップS402において、加速指令が検出されている場合には、監視部120は、符号反転監視処理をそのまま終了する。 In the code reversal monitoring process of the second embodiment, the monitoring unit 120 of the control device 100 first determines in step S400 whether or not the vehicle speed V is 0 [km / h]. When the vehicle speed V is 0 [km / h], the monitoring unit 120 determines in step S402 whether or not the accelerator is off, that is, Acc = 0, when the acceleration command is not given. When the accelerator is off, the monitoring unit 120 executes the processes after step S410 in the same manner as described in the first embodiment. If the vehicle speed V is not 0 [km / h] in step S400, or if the acceleration command is detected in step S402, the monitoring unit 120 ends the code reversal monitoring process as it is.
 以上のように、第2実施形態の制御装置100によれば、車速Vが0[km/h]であり、かつ、加速指令がされていないときに、目標トルクTtの正負が反転しているか否かの判定が実行される。これにより、例えば、電動機20に発電させているときの目標トルクTtについて、本来の値から正負が反転していると誤判定されてしまうことが抑制される。よって、目標トルクTtの正負が反転する制御信号の異常の発生をより適切に、より精度よく、検出することができる。その他に、第2実施形態の制御装置100および制御装置100によって実現される車両10の制御方法によれば、上記の第1実施形態で説明したのと同様な種々の作用効果を奏することができる。 As described above, according to the control device 100 of the second embodiment, is the positive / negative of the target torque Tt reversed when the vehicle speed V is 0 [km / h] and the acceleration command is not given? Whether or not to determine is executed. As a result, for example, it is possible to prevent the target torque Tt when the electric motor 20 is generating power from being erroneously determined that the positive and negative values are reversed from the original values. Therefore, it is possible to more appropriately and more accurately detect the occurrence of an abnormality in the control signal in which the positive and negative of the target torque Tt are reversed. In addition, according to the control device 100 of the second embodiment and the control method of the vehicle 10 realized by the control device 100, various effects similar to those described in the first embodiment can be obtained. ..
3.他の実施形態:
 上記の各実施形態で説明した種々の構成は、例えば、以下のように改変することも可能である。以下に説明する他の実施形態はいずれも、上記の各実施形態と同様に、開示を実施するための形態の一例として位置づけられる。
3. 3. Other embodiments:
The various configurations described in each of the above embodiments can be modified, for example, as follows. Each of the other embodiments described below, like each of the above embodiments, is positioned as an example of an embodiment for carrying out the disclosure.
・他の実施形態1:
 上記の各実施形態において、加速制御監視処理と減速制御監視処理の少なくとも一方は実行されなくてもよい。
-Other embodiment 1:
In each of the above embodiments, at least one of the acceleration control monitoring process and the deceleration control monitoring process may not be executed.
・他の実施形態2:
 上記の各実施形態において、車両制御部110は、走行モードMoに応じた制御の切り替えを実行しなくてもよい。また、車両制御部110は、エコモードやスポーツモード、ノーマルモードとは異なるモードでの走行が可能に構成されていてもよい。
-Other embodiment 2:
In each of the above embodiments, the vehicle control unit 110 does not have to execute the control switching according to the traveling mode Mo. Further, the vehicle control unit 110 may be configured to be capable of traveling in a mode different from the eco mode, the sports mode, and the normal mode.
・他の実施形態3:
 上記の各実施形態でのフェイルセーフ処理の実行が決定される判定条件としては、図10のステップS220の条件、図13のステップS320の条件、および、図15および図16のステップS440の条件は省略されてもよい。
-Other embodiment 3:
The determination conditions for determining the execution of the fail-safe process in each of the above embodiments include the condition of step S220 of FIG. 10, the condition of step S320 of FIG. 13, and the condition of step S440 of FIGS. 15 and 16. It may be omitted.
4.その他:
 本開示の技術は、車両の制御方法や制御システム以外の種々の形態で実現することも可能である。例えば、車両の制御装置や、それを備える車両、交通管理システム、前記の制御方法を実現するためのコンピュータプログラム、そのコンピュータプログラムが記録された記憶媒体形態で実現することができる。
4. Others:
The technique of the present disclosure can also be realized in various forms other than the vehicle control method and the control system. For example, it can be realized in the form of a vehicle control device, a vehicle equipped with the vehicle, a traffic management system, a computer program for realizing the control method, and a storage medium in which the computer program is recorded.
 本開示に記載の制御部及びその手法は、コンピュータプログラムにより具体化された、一つ乃至、複数の機能を実行するようにプログラムされたプロセッサ及びメモリを構成することによって提供された専用コンピュータにより実現されてもよい。あるいは、本開示に記載の制御部及びその手法は、一つ以上の専用ハードウェア論理回路によってプロセッサを構成することによって提供された専用コンピュータにより実現されてもよい。もしくは、本開示に記載の制御部及びその手法は、一つ、乃至、複数の機能を実行するようにプログラムされたプロセッサ及びメモリと一つ以上のハードウェア論理回路によって構成されたプロセッサとの組み合わせにより構成された一つ以上の専用コンピュータにより、実現されてもよい。また、コンピュータプログラムは、コンピュータにより実行されるインストラクションとして、コンピュータ読み取り可能な非遷移有形記録媒体に記憶されていてもよい。 The controls and methods thereof described in the present disclosure are realized by a dedicated computer provided by configuring a processor and memory programmed to perform one or more functions, embodied by a computer program. May be done. Alternatively, the controls and methods thereof described in the present disclosure may be implemented by a dedicated computer provided by configuring the processor with one or more dedicated hardware logic circuits. Alternatively, the controls and methods thereof described in the present disclosure are a combination of a processor and memory programmed to perform one or more functions and a processor composed of one or more hardware logic circuits. It may be realized by one or more dedicated computers configured by. Further, the computer program may be stored in a computer-readable non-transitional tangible recording medium as an instruction executed by the computer.
 本開示の技術は、上述の実施形態や他の実施形態に限られるものではなく、その趣旨を逸脱しない範囲において種々の構成で実現することができる。例えば、発明の概要の欄に記載した各形態中の技術的特徴に対応する実施形態中の技術的特徴は、上述の課題の一部又は全部を解決するために、あるいは、上述の効果の一部又は全部を達成するために、適宜、差し替えや、組み合わせを行うことが可能である。また、その技術的特徴が本明細書中に必須ではないと説明されているものに限らず、その技術的特徴が本明細書中に必須であると説明されていなければ、適宜、削除することが可能である。 The technique of the present disclosure is not limited to the above-described embodiment and other embodiments, and can be realized by various configurations within a range not deviating from the purpose. For example, the technical features in the embodiments corresponding to the technical features in each form described in the column of the outline of the invention may be used to solve some or all of the above-mentioned problems, or one of the above-mentioned effects. It is possible to replace or combine as appropriate to achieve a part or all. In addition, the technical features are not limited to those described in the present specification as not essential, and if the technical features are not described as essential in the present specification, they may be appropriately deleted. Is possible.

Claims (6)

  1.  電動機(20)の駆動力により走行する車両(10)の走行を制御する制御装置(100)であって、
     アクセル開度(Acc)に応じて前記電動機に発生させる目標トルク(Tt)を決定し、前記目標トルクでの前記電動機の駆動を指令する制御信号を出力する車両制御部(110)と、
     前記アクセル開度に応じて監視トルク(Ttw)を決定し、前記目標トルクと前記監視トルクの正負が一致していない条件を含む判定条件が満たされたときに、前記電動機のフェイルセーフ処理の実行を指令する監視部(120)と、
     を備える、制御装置。
    A control device (100) that controls the running of a vehicle (10) that runs by the driving force of an electric motor (20).
    A vehicle control unit (110) that determines a target torque (Tt) to be generated in the electric motor according to the accelerator opening (Acc) and outputs a control signal instructing the drive of the electric motor at the target torque.
    The monitoring torque (Ttw) is determined according to the accelerator opening, and when the determination condition including the condition that the positive / negative of the target torque and the monitoring torque do not match is satisfied, the fail-safe process of the electric motor is executed. The monitoring unit (120) that commands
    A control device.
  2.  請求項1記載の制御装置であって、
     前記監視部は、前記車両の速度が0であり、かつ、前記アクセル開度が0であるときに、前記目標トルクと前記監視トルクの正負が一致しているか否かの判定を実行する、制御装置。
    The control device according to claim 1.
    The monitoring unit executes a control for determining whether or not the target torque and the positive / negative of the monitoring torque match when the speed of the vehicle is 0 and the accelerator opening is 0. apparatus.
  3.  請求項1または請求項2記載の制御装置であって、
     前記監視部は、前記車両が加速しているときには、前記目標トルクから前記監視トルクを減算した値が前記車両の速度に応じて予め定められた上限閾値(α)以上となる条件を含む加速時判定条件が満たされた場合に、前記電動機のフェイルセーフ処理の実行を指令する、制御装置。
    The control device according to claim 1 or 2.
    When the vehicle is accelerating, the monitoring unit includes a condition that the value obtained by subtracting the monitoring torque from the target torque is equal to or higher than a predetermined upper limit threshold value (α) according to the speed of the vehicle. A control device that commands execution of fail-safe processing of the electric motor when the determination condition is satisfied.
  4.  請求項1から請求項3のいずれか一項に記載の制御装置であって、
     前記監視部は、前記車両が減速しているときには、前記目標トルクが前記車両の速度に応じて予め定められた下限閾値(β)以下をとなる条件を含む減速時判定条件が満たされた場合に、前記電動機のフェイルセーフ処理の実行を指令する、制御装置。
    The control device according to any one of claims 1 to 3.
    When the monitoring unit satisfies the deceleration determination condition including the condition that the target torque is equal to or less than a predetermined lower limit threshold value (β) according to the speed of the vehicle when the vehicle is decelerating. A control device that commands the execution of fail-safe processing of the electric motor.
  5.  車両であって、
     前記車両の走行に用いられる駆動力を発生する電動機と、
     請求項1から請求項4のいずれか一項に記載の制御装置と、
    を備える、車両。
    It ’s a vehicle,
    An electric motor that generates the driving force used to drive the vehicle, and
    The control device according to any one of claims 1 to 4.
    A vehicle equipped with.
  6.  電動機の駆動力により走行する車両の制御方法であって、
     アクセル開度に応じて前記電動機の目標トルクを決定する工程と、
     前記アクセル開度に応じて監視トルクを決定し、前記目標トルクと前記監視トルクの正負が一致していない条件を含む判定条件が満たされた場合に、前記電動機のフェイルセーフ処理を実行する工程と、
     を備える、制御方法。
    It is a control method for a vehicle that travels by the driving force of an electric motor.
    The process of determining the target torque of the electric motor according to the accelerator opening, and
    A step of determining a monitoring torque according to the accelerator opening degree and executing a fail-safe process of the electric motor when a determination condition including a condition in which the positive / negative of the target torque and the monitoring torque do not match is satisfied. ,
    A control method that comprises.
PCT/JP2020/021759 2019-07-25 2020-06-02 Control device and control method for vehicle WO2021014769A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080052298.4A CN114126911B (en) 2019-07-25 2020-06-02 Control device and control method for vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019136926A JP7326962B2 (en) 2019-07-25 2019-07-25 VEHICLE CONTROL DEVICE AND CONTROL METHOD
JP2019-136926 2019-07-25

Publications (1)

Publication Number Publication Date
WO2021014769A1 true WO2021014769A1 (en) 2021-01-28

Family

ID=74194168

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/021759 WO2021014769A1 (en) 2019-07-25 2020-06-02 Control device and control method for vehicle

Country Status (3)

Country Link
JP (1) JP7326962B2 (en)
CN (1) CN114126911B (en)
WO (1) WO2021014769A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114347803B (en) * 2022-01-25 2023-03-31 厦门金龙联合汽车工业有限公司 New energy vehicle torque safety monitoring and processing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05316603A (en) * 1992-05-12 1993-11-26 Toyota Motor Corp Controller for electromobile
JPH0787603A (en) * 1993-09-17 1995-03-31 Matsushita Electric Ind Co Ltd Protective unit for electric automobile
JP2000023499A (en) * 1998-07-06 2000-01-21 Toyota Motor Corp Motor controller

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4623062B2 (en) * 2007-07-27 2011-02-02 トヨタ自動車株式会社 Vehicle driving force control device
JP4458300B2 (en) * 2007-10-25 2010-04-28 本田技研工業株式会社 Electric vehicle and regeneration control method for electric vehicle
JP5492745B2 (en) * 2010-11-16 2014-05-14 株式会社日立製作所 Electric vehicle traveling control device
CN104859452B (en) * 2014-05-23 2017-07-11 北汽福田汽车股份有限公司 A kind of electric automobile during traveling safety monitoring method and system
JP6298037B2 (en) * 2015-12-24 2018-03-20 トヨタ自動車株式会社 Driving device control system
JP6325588B2 (en) * 2016-03-03 2018-05-16 株式会社Subaru Vehicle control device
JP6520884B2 (en) * 2016-10-12 2019-05-29 トヨタ自動車株式会社 Vehicle control device
KR20180065741A (en) * 2016-12-08 2018-06-18 주식회사 앤앤씨모터스 System and method for calculating torch by vehicle control unit for high effectiveness network vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05316603A (en) * 1992-05-12 1993-11-26 Toyota Motor Corp Controller for electromobile
JPH0787603A (en) * 1993-09-17 1995-03-31 Matsushita Electric Ind Co Ltd Protective unit for electric automobile
JP2000023499A (en) * 1998-07-06 2000-01-21 Toyota Motor Corp Motor controller

Also Published As

Publication number Publication date
CN114126911A (en) 2022-03-01
JP2021022978A (en) 2021-02-18
JP7326962B2 (en) 2023-08-16
CN114126911B (en) 2024-08-09

Similar Documents

Publication Publication Date Title
US10036341B2 (en) Method and device for operating a drive system for a motor vehicle including an acceleration monitoring system
JP7205170B2 (en) Electric motor control device and control method for vehicle
JP4483882B2 (en) Brake hold control device
WO1996016831A1 (en) Braking control device for an electric car
US8862303B2 (en) Industrial vehicle
JP5299375B2 (en) Vehicle abnormality diagnosis device
JP6729142B2 (en) Driving force control method and driving force control device
JP7147312B2 (en) Electric motor control device and control method for vehicle
KR20210145036A (en) Rapid acceleration limting method and vehicle using the same
JP7230360B2 (en) Electric motor control device and control method for vehicle
WO2021014769A1 (en) Control device and control method for vehicle
JP5288289B2 (en) Vehicle control device
US11518249B2 (en) Applying braking force during shifting events involving switch-back state for a vehicle
JP6455026B2 (en) Control device for hybrid vehicle
JP5320827B2 (en) Chassis dynamometer
JP4912257B2 (en) Vehicle travel control device
JP7409280B2 (en) Rotating electrical machine control device
WO2021141053A1 (en) Rotating electric machine control device
JPH08182109A (en) Running controller for electric vehicle
JP2018065524A (en) Control device of hybrid vehicle
JP7187878B2 (en) Electric motor control device and control method for vehicle
CN111845715A (en) Vehicle control device
JP2020157984A (en) Vehicle driving system
JP7419098B2 (en) Abnormal accelerator operation determination system
JP2005170600A (en) Safety device of industrial vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20844734

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20844734

Country of ref document: EP

Kind code of ref document: A1