WO2021014620A1 - Method for producing anti-shrinkage animal hair fibers - Google Patents

Method for producing anti-shrinkage animal hair fibers Download PDF

Info

Publication number
WO2021014620A1
WO2021014620A1 PCT/JP2019/029069 JP2019029069W WO2021014620A1 WO 2021014620 A1 WO2021014620 A1 WO 2021014620A1 JP 2019029069 W JP2019029069 W JP 2019029069W WO 2021014620 A1 WO2021014620 A1 WO 2021014620A1
Authority
WO
WIPO (PCT)
Prior art keywords
animal hair
sliver
solvent
diamine
fiber
Prior art date
Application number
PCT/JP2019/029069
Other languages
French (fr)
Japanese (ja)
Inventor
亮 梅原
吉紀 水森
典雄 早川
秀行 藤井
俊次 後藤
大郎 藤田
好央 長田
俊文 大橋
秀行 中島
Original Assignee
株式会社トーア紡コーポレーション
株式会社ソトー
森保染色株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トーア紡コーポレーション, 株式会社ソトー, 森保染色株式会社 filed Critical 株式会社トーア紡コーポレーション
Priority to CN201980096523.1A priority Critical patent/CN113853461B/en
Priority to PCT/JP2019/029069 priority patent/WO2021014620A1/en
Priority to JP2021534491A priority patent/JP7283670B2/en
Publication of WO2021014620A1 publication Critical patent/WO2021014620A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/10Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing oxygen
    • D06M13/184Carboxylic acids; Anhydrides, halides or salts thereof
    • D06M13/207Substituted carboxylic acids, e.g. by hydroxy or keto groups; Anhydrides, halides or salts thereof
    • D06M13/21Halogenated carboxylic acids; Anhydrides, halides or salts thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/322Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing nitrogen
    • D06M13/325Amines
    • D06M13/332Di- or polyamines
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/50Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with organometallic compounds; with organic compounds containing boron, silicon, selenium or tellurium atoms
    • D06M13/51Compounds with at least one carbon-metal or carbon-boron, carbon-silicon, carbon-selenium, or carbon-tellurium bond
    • D06M13/513Compounds with at least one carbon-metal or carbon-boron, carbon-silicon, carbon-selenium, or carbon-tellurium bond with at least one carbon-silicon bond
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/59Polyamides; Polyimides

Definitions

  • the present invention is a method for producing shrink-proof animal hair fibers having excellent water-resistant washability, and in particular, environmentally friendly in which the discharge of adsorptive organic chlorine compounds from the production process and the residue of chlorine compounds in the fibers are minimized.
  • a method for producing shrink-proof animal hair fiber is provided.
  • liquid / liquid interfacial polymerization method composed of a non-aqueous system
  • fabric treatment of woven fabrics, knitted fabrics, and non-woven fabrics described in Patent Documents 5 and 6 described later examples of treatment on a sliver which is a continuum of animal hair fiber bundles. There is no.
  • the Split Pad Chlorinator method of Fleissner, Germany is based on research and development at CSIRO, in which wool is chlorinated and then Hercosett resin (Hercosett) is coated on the fibers, so-called chlorine. It was a chemical / resin treatment. These have spread widely mainly in China, are mass-produced, and are offered at low manufacturing costs. From these points, most of the shrink-proofing treatment of wool can be summarized as continuous shrink-proofing treatment using a wool top sliver and a chlorination treatment method.
  • Adsorbable organic chlorine compounds (AOX-Absorbable Organic Halogens) are discharged into rivers. It has been reported that when fish ingest it and humans ingest it through the food chain, it causes the development of "cancer". Furthermore, it has been confirmed that chlorine reacts with proteins in wool and remains as residual chlorine in wool fibers.
  • the shrink-proofing process for knitted fabrics and woven fabrics made of wool fibers is due to the treatment of an aqueous solution using an oxidizing agent such as a chlorine agent. Therefore, treatment spots are likely to occur, leading to dyeing spots and the like, and considerable production control is required. In that respect, in the sliver treatment, after the shrink-proof treatment, the treatment spots are corrected by a gil step, a combing step, or the like, so that the shrink-proof balance is maintained and a uniform wool shrink-proof spun yarn can be produced. In this sense, continuous shrink-proof processing using a wool sliver is currently the mainstay.
  • this method is a method in which the surface of wool is subjected to chlorine oxidation treatment to inhibit the water-repellent function, which is the original property of wool, and to impart only shrink resistance. Therefore, it is a major research and development task today to impart shrinkage resistance without impairing the water repellency of wool fibers.
  • a hydrophilic resin for example, a polyamide epichlorohydrin resin (Dick Hercules, Harcosett 57 Hercosett) for the first time by making the wool surface hydrophilic. ..
  • a hydrophobic wool For example, as shown in the central portion of FIG. 3, a "seagrass kelp" -like coating occurred on the surface of the wool fibers, or as shown on both sides of the central portion in FIG. 3, adhesion occurred between the fibers.
  • FIG. 4 shows the fiber surface when adhesion occurs between the fibers.
  • FIG. 3 is a photograph showing the treated wool fibers when the hydrophobic wool surface is to be coated with a water-soluble hercoset resin.
  • FIG. 4 is an electron micrograph showing the surface state of wool fibers when adhesion occurs between the fibers (magnification: 1000 times).
  • One of the features of the present invention is that the surface of wool fibers is coated with a hydrophobic synthetic polymer to impart shrinkage resistance and maintain the original hydrophobicity of wool without damaging the original properties of wool. ..
  • the basic technology that leads to this concept is a liquid-liquid interface polymerization method that utilizes an interface consisting of an aqueous phase and an organic phase.
  • Technological development for wool tops and woolen fabrics using this interfacial polymerization method (Patent Document 2) can be traced back to the 1963s, but the organic phase is harmful to health and the environment, such as perchlorethylene and toluene. Since a solvent composed of carbon tetrachloride or the like is used, it has not been industrially successful.
  • the woolen fabric is immersed in an aqueous phase containing diamine, squeezed, and immediately immersed in a toluene organic solvent in which dichloride dichloride is dissolved, and interfacial polymerization is performed using the liquid-liquid interface formed on the surface of the wool fiber.
  • a toluene organic solvent in which dichloride dichloride is dissolved
  • interfacial polymerization is performed using the liquid-liquid interface formed on the surface of the wool fiber.
  • the dibasic acid dichloride reacts with water to become a dicarboxylic acid, which results in slowing down the interfacial polymerization reaction. How to solve the hydrolysis of this dibasic acid dichloride has become a big issue, and the present situation is hindering its practical application.
  • perchlorethylene has been used as a new pollution-free solvent-silicone solvent (Mitsubishi Heavy Industries, Ltd., Shin-Etsu Chemical Co., Ltd.-dia-silicone and green earth, etc. It is being replaced by a cleaning limited company (Green Earth Ltd. Co.-silicone dry).
  • Green Earth Co., Ltd. discloses cyclic silicon of octamethyl-cyclotetrasiloxane (tetramer), decamethyl-cyclopentasiloxane (pentamer) and dodecamethyl-cyclohexasiloxane (hexamar) in Patent Documents 3 and 4.
  • the silicone solvent manufactured by Mitsubishi Heavy Industries, Ltd. is commercially available as a linear decamethyltetrasiloxane.
  • the critical interfacial tension of wool fibers is said to be 45-50 dyn / cm for single fibers and 30 dyn / cm for fiber populations.
  • the critical interfacial tension of Green Earth's silicone solvent is 17.8 dyn / cm, and the silicone solvent can be easily extended to the surface of each single fiber in the wool fiber population, resulting in uniform interfacial polymerization. It means that it will be done in.
  • the critical interfacial tension of water is around 72-76 dyn / cm, and in order to "wet" the surface of wool fibers with water, even if a penetrant is added to the aqueous solution, it is completely "wet". It's difficult. Therefore, the aqueous solution treatment lacks the uniformity of the treatment as compared with the solvent treatment, and treating the hydrophobic polymer with the aqueous solution medium poses a problem in terms of uniformity.
  • Non-Patent Document 1 shows the laws and regulations for tetrachlorethylene
  • the silicone solvent is a solvent that has no odor, no chemical burns, and is easy to handle, and is a convenient solvent for performing an interfacial polymerization treatment (Non-Patent Document 1).
  • the silicone solvent used in the present invention is a solvent that meets these needs and is immiscible with water. For this reason, a liquid-liquid interface is formed between the aqueous phase and the solvent phase.
  • a 0.1 mol / l hexamethylenediamine aqueous solution is placed in a container at room temperature, and then a silicon solvent is formed at room temperature.
  • FIG. 5 shows an experiment underlying the invention of the present invention.
  • I indicates a liquid-liquid interface formed by water and a silicon solvent, and due to the relationship of specific gravity, water is indicated at the bottom and silicon solvent is indicated at the top, and II in FIG. 5 is a liquid-liquid interface. Shows the formation of nylon polymer (white).
  • Patent Documents 5 and 6 include dibasic acid chloride after immersing the woolen fabric in an aqueous diamine solution, squeezing it, and air-drying it to remove water on the fibers to form a solid surface.
  • a method of immersing in a silicon solvent solution to form a solid-liquid interface and performing interfacial polymerization has been proposed.
  • the diamine aqueous solution is used at room temperature (about 25 ° C.) without being heated in order to prevent hydrolysis of animal hair fibers.
  • An object of the present invention is to provide a shrink-proof animal hair fiber having sufficiently excellent water resistance and washability without impairing the texture and other characteristics while maintaining the original water repellency which is one of the characteristics of the animal hair fiber. It is intended to provide a method for efficiently manufacturing in the form of a sliver. An object of the present invention is further to provide a method for producing shrink-proof animal hair fiber, which does not cause the outflow of adsorptive organic chlorine compound (AOX) discharged from the treatment step and does not contain residual chlorine substance in the animal hair fiber. It is what we are trying to provide.
  • AOX adsorptive organic chlorine compound
  • a sliver which is a continuum of animal hair fibers, is immersed in an alkaline agent-containing diamine aqueous solution at 30 to 45 ° C., and in a state where diamine is attached, the sliver is immersed in a silicon solvent in which dibasic acid chloride is dissolved.
  • the present invention relates to a method for producing shrink-proof animal hair fiber, which comprises coating the surface of animal hair fiber with polyamide.
  • the animal hair fiber sliver is immersed in a heated alkaline agent-containing diamine aqueous solution and squeezed to prepare a solution in which dibasic acid chloride is dissolved in a silicon solvent that does not cause environmental destruction or deterioration of the working environment.
  • polyamide is formed on the fiber surface by interfacial polymerization at the liquid / liquid interface.
  • the silicon solvent adhering to the animal hair fiber sliver is not dried and evaporated to recover the solvent, but the sliver is immediately immersed in a formic acid aqueous solution to remove oligomers, neutralized and washed with water. dry.
  • the silicon solvent adhering to the animal hair fiber top sliver is recovered by a separation method based on the difference in specific gravity of the waste liquid after the washing treatment. Surface cleanliness is a very important factor when polymerizing animal hair fibers, but since top slivers in recent years are mass-produced and low-cost methods, washing raw hair of animal hair fibers has many problems and remains. Insufficient control of impurities such as fat content, fiber pH, and mud and sand. In the present invention, it is preferable to clean the fiber surface and coat it with a hydrophobic polymer.
  • the present invention excellent shrink resistance can be imparted by treating with a hydrophobic polymer without impairing the original water repellency of animal hair fibers.
  • the air is hydrophobic and the animal hair fibers treated according to the method of the present invention exhibit strong hydrophobicity, and as a result, the present invention retains heat in order to strongly retain the microair layer between the animal hair fibers. It is possible to provide animal hair fiber products having high water repellency and high water repellency.
  • the present invention also provides a method for continuously producing an environment-friendly shrink-proof animal hair fiber sliver that does not allow adsorbent organochlorine compounds to flow out during process treatment and does not contain residual chlorine compounds in the fibers.
  • the present invention is a method relating to a method for producing shrink-proof animal hair fiber, which was achieved as a result of diligent research by improving the interfacial polymerization method announced by the Western Regional Research Laboratory (WRRL) of the US Department of Agriculture and Industry in 1963.
  • WRRL Western Regional Research Laboratory
  • a synthetic polymer is synthesized on the surface of animal hair fibers (particularly wool fibers) using a silicon solvent without environmental regulations, and the entire surface of the animal hair fibers is reticulated (see FIG. 1) with the polymer. Cover each animal hair fiber one by one.
  • FIG. 1 is a photomicrograph of the surface of shrink-proof animal hair fibers produced by the production method of the present invention when observed with an optical microscope at a magnification of 400 times.
  • the animal hair fiber sliver is immersed in an alkaline agent-containing diamine aqueous solution at a predetermined temperature to attach diamine.
  • the animal hair fiber in the present invention means one or more kinds of natural keratinous fibers selected from the group consisting of wool, cashmere, mohair, angora, camel and the like.
  • a sliver is a bundle of fibers arranged in a straight line without twisting, and is usually a continuous fiber group having a length of several hundred meters or more.
  • the sliver may have been subjected to one or more treatments selected from so-called cleaning treatments, card treatments, gil treatments, and combing treatments.
  • the cleaning treatment is a treatment performed for the purpose of removing (or removing) oils and fats on the surface of animal hair fibers and impurities such as mud and sand.
  • the card treatment is a treatment performed for the purpose of loosening animal hair fibers into a continuous fiber bundle.
  • the gil treatment is a treatment performed for the purpose of aligning and making the fiber bundles uniform.
  • the combing treatment is a treatment performed for the purpose of removing short fibers and impurities in the fiber bundle and further aligning the fibers in parallel.
  • the sliver is preferably washed from the viewpoint of coating the fiber surface with polyamide.
  • the remaining amount of fat and oil of the sliver is not particularly limited, but from the viewpoint of coating the fiber surface with polyamide, for example, it is usually 0.8% owf or less (particularly 0.3 to 0.8% owf). Is preferable, and more preferably 0.3 to 0.5% owf.
  • Animal hair fiber sliver may be obtained by purchasing a so-called top sliver from the market.
  • the animal hair fiber sliver may be purchased from the market and washed before use.
  • the animal hair fiber top sliver is used with a back washer to reduce the remaining amount of fat and oil to 0.4 to 0.8% owf (1.3% owf before the washing treatment) and pH to be about 7.0. And completely remove mud, sand, etc., and use the top sliver after drying treatment.
  • the mass of animal hair fiber sliver per unit length is usually 10 to 40 g / m, particularly 20 to 30 g / m.
  • Animal hair fiber sliver may be used by mixing other fibers.
  • synthetic fibers such as polyester, acrylic, nylon, aramid and vinyl chloride and regenerated cellulose fibers such as silk, cotton, linen and rayon may be included.
  • the diamine aqueous solution has a temperature of 30 to 45 ° C. and contains an alkaline agent.
  • Animal hair fibers (particularly wool fibers) have different degrees of "scale” rise depending on the water temperature. For example, in “cold water”, there is no rise in “scale”. Further, for example, in warm water (40 ° C.), a rise is seen, and water permeates into the animal hair fiber. Further, for example, water vapor (100 ° C.) easily permeates and diffuses inside the animal hair fiber. Therefore, the absorption of amines depends on the treatment temperature.
  • the present invention by setting the temperature of the diamine aqueous solution to the above temperature, the "scale" of the animal hair fiber rises, the uptake of high-concentration diamine occurs, and a high-concentration diamine phase is formed in the epidermis layer. Therefore, in the next step, it was found that the dibasic acid chloride dissolved in the silicon solvent attacks the diamine phase and the interfacial polymerization reaction is established. It was also found that the animal hair fiber sliver can be continuously shrink-proofed. As a result, as shown in FIG. 1, it was possible to uniformly coat the animal hair single fibers with a nylon coating in a net-like manner.
  • the temperature of the diamine aqueous solution is too low, the permeation of the diamine aqueous solution into the animal hair fibers is suppressed, so that the amount of diamine adsorbed on the surface of the fibers is small and the interfacial polymerization reaction with the dibasic acid chloride is limited. .. As a result, the amount of polyamide coating produced is small, and the water resistance system washability is lowered. On the other hand, if the temperature of the diamine aqueous solution is raised too much in order to increase the amount of diamine absorbed, animal hair fibers (particularly wool fibers) are hydrolyzed.
  • Animal hair fiber is an amphoteric protein and is composed of acidic amino acids, basic amino acids, and neutral amino acids.
  • Diamine in an aqueous diamine solution is adsorbed on acidic amino acids and lipids having carboxyl residues in animal hair fibers. Further, the temperature of the diamine aqueous solution is raised to the above temperature, and an alkaline agent is added to the diamine aqueous solution as described later. As a result, the absorption of diamine into animal hair fibers and the extermination of hydrochloric acid by hydrolysis of dibasic acid chloride in the next step are promoted. Therefore, it is considered that the polyamide is uniformly coated on the surface of the animal hair fiber in the next step.
  • the temperature of the diamine aqueous solution is preferably 35 to 45 ° C., more preferably 36 to 44 ° C., still more preferably 38 to 42 ° C., most preferably, from the viewpoint of further improving shrinkage resistance, texture and water repellency. It is preferably 39 to 41 ° C.
  • the details of the phenomenon in which the shrinkage resistance, texture and water repellency are further improved when the diamine aqueous solution has a temperature in the above-mentioned preferable range are not clear, but it is considered to be based on the following mechanism.
  • the body temperature of an animal having animal hair fibers is usually about 39 to 40 ° C., and the closer to this temperature, the higher the rising effect of the above-mentioned "scale” on animal hair fibers.
  • the surface of animal hair fibers is coated in a finer mesh and more uniformly. As a result, shrinkage resistance, texture and water repellency are further improved.
  • the diamine in the diamine aqueous solution used in the present invention is usually a water-soluble diamine.
  • the water-soluble diamine include aliphatic diamines such as ethylenediamine, trimethylenediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, and octamethylenediamine; and paraphenylenediamine, metaphenylenediamine, paraxylenediamine, and metaxylenediamine.
  • Aromatic diamines can be mentioned.
  • the diamine is not particularly limited to these, and two or more of these diamines may be used in combination.
  • Preferred diamines are aliphatic diamines, especially hexamethylenediamine.
  • the concentration of diamine in the diamine aqueous solution is not particularly limited, and is usually 0.01 to 0.7 mol / L, preferably 0.02 to 0.15 mol from the viewpoint of further improving shrinkage resistance, texture and water repellency. / L, more preferably 0.03 to 0.08 mol / L.
  • the concentration of diamine in the diamine aqueous solution is the concentration with respect to the total amount of the diamine aqueous solution.
  • the diamine aqueous solution contains an alkaline agent and may further contain an additive such as a penetrant.
  • the alkaline agent is used to exterminate (that is, remove) hydrochloric acid produced by the reaction of diamine and dibasic acid chloride.
  • hydrochloric acid is not exterminated, so that the formation of polyamide is inhibited, and as a result, the shrinkage resistance is lowered.
  • the alkaline agent is not particularly limited as long as it is a substance capable of neutralizing hydrochloric acid. Specific examples of the alkaline agent include sodium hydroxide, sodium carbonate, sodium silicate, potassium hydroxide and the like.
  • the concentration of the alkaline agent in the diamine aqueous solution is not particularly limited, and is usually 0.01 to 0.7 mol / L, preferably 0.02 to 0 from the viewpoint of further improving shrinkage resistance, texture and water repellency. It is .15 mol / L, more preferably 0.03 to 0.08 mol / L.
  • the concentration of the alkaline agent should be as low as possible in consideration of yellowing of animal hair fibers and the like.
  • Penetrants are used to promote the penetration of diamines into animal hair fibers.
  • specific examples of the penetrant include nonionic surfactants such as polyoxyalkylene alkyl ethers and the like.
  • a nonionic surfactant is available as, for example, commercially available SSK630 (polyoxyalkylene alkyl ether) manufactured by Matsumoto Yushi Pharmaceutical Co., Ltd.
  • the concentration of the penetrant in the diamine aqueous solution is not particularly limited, and is usually 0.1 to 2.0% soln. From the viewpoint of further improving shrinkage resistance, texture and water repellency, it is preferably 0.5 to 2.0%. It is 1.5% soln., More preferably 0.8 to 1.2% soln. "% Soln.” Is a unit based on the volume ratio.
  • the contact time between the sliver and the diamine aqueous solution is not particularly limited as long as the polyamide is formed on the surface of the animal hair fiber in the next step, and is usually 1 second to 10 minutes, further improving the shrinkage resistance, texture and water repellency. From the viewpoint of the balance with the production efficiency, it is preferably 2 seconds to 5 minutes, more preferably 5 seconds to 3 minutes, further preferably 10 seconds to 3 minutes, particularly preferably 20 seconds to 3 minutes, sufficiently preferably. 30 seconds to 3 minutes, most preferably 1.5 minutes to 3 minutes.
  • the contact time between the sliver and the diamine aqueous solution can be controlled by adjusting the operating speed described later.
  • the drawing treatment method is not particularly limited as long as it can squeeze out the excess liquid contained in the sliver, and examples thereof include a method using a mangle.
  • the aperture ratio is not particularly limited, and is usually 50 to 90%, preferably 60 to 90%, and more preferably 70 to 90%.
  • the drawing ratio is a value represented by ⁇ x / (x + y) ⁇ ⁇ 100 (%), where x is the mass of the liquid adhering to the sliver and y is the mass of the sliver. The same applies to the drawing ratio in the following steps.
  • the solvent used in this process must be an environmentally friendly solvent that is not subject to legal restrictions (that is, a solvent that is not subject to legal regulations for environmental protection).
  • the solvent used in this step needs to be a solvent that is immiscible with water, thereby forming a liquid-liquid interface.
  • the solvent used in this step needs to be inert as a third condition.
  • a silicon solvent particularly a silicone solvent is used.
  • Specific examples of the silicon solvent include linear silicon (particularly linear silicone) manufactured by Mitsubishi Heavy Industries Industrial Equipment Co., Ltd., that is, decamethyltetrasiloxane, and cyclic silicon manufactured by Green Earth Co., Ltd. (particularly cyclic).
  • the preferred solvent is a silicone solvent (particularly a siloxane solvent), and examples thereof include linear or cyclic silicones (particularly linear or cyclic siloxane). More preferred solvents are linear or cyclic siloxanes. Particularly preferred is diamond silicone manufactured by Mitsubishi Heavy Industries Industrial Equipment Co., Ltd.
  • dibasic acid chloride used in the present invention examples include aliphatic dicarboxylic acid chlorides such as succinic acid chloride, adipic acid chloride, pimelic acid chloride, suberic acid chloride, azelaic acid chloride, sebatic acid chloride, and cyclohexanedicarboxylic acid chloride; terephthalic acid.
  • Aromatic dicarboxylic acid chlorides such as chloride, isophthalic acid chloride, orthophthalic acid chloride; and bischloroformates such as hexanediol bischloroformate and decandiol bischloroformate.
  • the dibasic acid chloride is not particularly limited to these, and two or more of these dibasic acid chlorides may be used in combination.
  • the dibasic acid chloride usually requires that at least one hydroxyl group out of two hydroxyl groups derived from two carboxyl groups is substituted with a chlorine atom, but preferably two hydroxyl groups are substituted with a chlorine atom.
  • Preferred dibasic acid chlorides are aliphatic dicarboxylic acid chlorides, especially sebatic acid dichloride.
  • the concentration of dibasic acid chloride in the silicon solvent is not particularly limited, and is usually 0.01 to 0.7 mol / L, from the viewpoint of further improving shrinkage resistance, texture and water repellency. Therefore, it is preferably 0.02 to 0.15 mol / L, and more preferably 0.03 to 0.08 mol / L.
  • the concentration of dibasic acid chloride in the silicon solvent is the concentration with respect to the total amount of the silicon solvent and the dibasic acid chloride (that is, the total amount of the dibasic acid chloride solution).
  • the silicon solvent (that is, the dibasic acid chloride solution) may further contain an additive such as a water absorbent (for example, Molecular Sieve 4A1 / 8 (Molecular Sieve)).
  • a water absorbent for example, Molecular Sieve 4A1 / 8 (Molecular Sieve)
  • the temperature of the silicon solvent (that is, the dibasic acid chloride solution) is not particularly limited, and is preferably room temperature (for example, 15 to 25 ° C.) from the viewpoint of further improving the shrinkage resistance, texture and water repellency and the balance between production efficiency. is there.
  • the contact time between the sliver and the silicon solvent (that is, the dibasic acid chloride solution) is not particularly limited as long as polyamide is formed on the surface of the animal hair fiber in this step, and is usually 1 second to 1 minute, and is shrink-proof. From the viewpoint of further improving the texture and water repellency and the balance between the production efficiency, it is preferably 1 to 30 seconds, and more preferably 5 to 20 seconds.
  • the contact time between the sliver and the silicon solvent (that is, the dibasic acid chloride solution) can be controlled by adjusting the operating speed described later.
  • the drawing treatment method the same method as the drawing treatment method in the diamine aqueous solution dipping step is used, and for example, a method using a mangle is used.
  • the aperture ratio is not particularly limited, and is usually 50 to 90%, preferably 60 to 90%, and more preferably 70 to 90%.
  • the drying step is usually carried out without particular limitation.
  • a water washing step, an acid washing step, and a softening treatment step may be performed before the drying step.
  • the first water washing step, the acid washing step, the second water washing step, the softening treatment step and the drying step are sequentially performed.
  • the excess polyamide can be removed.
  • the diamine component, the dibasic acid chloride component and the alkaline agent component on the fiber surface are removed by immersing the sliver in water.
  • the oligomer formed in the step of dipping in the dibasic acid chloride solution may also be exterminated.
  • the temperature of water in the first washing step is not particularly limited, and is preferably room temperature (for example, 15 to 25 ° C.) from the viewpoint of further improving shrinkage resistance, texture and water repellency and balancing production efficiency.
  • the contact time between the sliver and water in the first washing step is not particularly limited as long as the above-mentioned extermination is achieved, and is usually 1 second to 1 minute, further improving shrinkage resistance, texture and water repellency, and manufacturing efficiency. From the viewpoint of the balance with the above, it is preferably 5 to 40 seconds, more preferably 10 to 30 seconds.
  • the contact time between the sliver and water can be controlled by adjusting the operating speed described later.
  • the first washing step after immersing the sliver in water, it is usually subjected to squeezing treatment.
  • the drawing treatment method the same method as the drawing treatment method in the diamine aqueous solution dipping step is used, and for example, a method using a mangle is used.
  • the aperture ratio is not particularly limited, and is usually 50 to 90%, preferably 60 to 90%, and more preferably 70 to 90%.
  • a silicon solvent that is, a dibasic acid chloride solution
  • the silicon solvent adhering to the sliver is mixed with the water in this step, and such a silicon solvent can be separated and recovered by utilizing the difference in specific gravity with water.
  • the silicon solvent is positioned higher based on the difference in specific gravity with water, while the water is positioned lower. Therefore, the silicon solvent can be separated and recovered from the upper part in the tank.
  • the oligomer formed during the formation of polyamide on the fiber surface is removed by immersing the sliver in an aqueous acid solution.
  • the residual diamine component and the polyamide excessively formed in the dipping step in the dibasic acid chloride solution may be removed.
  • the acid in the aqueous acid solution is not particularly limited, and examples thereof include aliphatic monocarboxylic acids such as formic acid.
  • the acid used in this step is not particularly limited to these, and two or more of these acids may be used in combination.
  • Preferred acids are aliphatic monocarboxylic acids, especially formic acid.
  • the concentration of the acid in the aqueous acid solution is not particularly limited, and is usually 0.01 to 10%, preferably 0.1 to 10% from the viewpoint of further improvement of shrinkage resistance, texture and water repellency and a balance between production efficiency. It is 5%, more preferably 0.5 to 2%.
  • the unit of concentration "%" is the volume ratio to the total amount.
  • the temperature of the acid aqueous solution in the acid cleaning step is not particularly limited, and is preferably room temperature (for example, 15 to 25 ° C.) from the viewpoint of further improving shrinkage resistance, texture and water repellency, and balancing production efficiency.
  • the contact time between the sliver and the aqueous acid solution is not particularly limited as long as the above-mentioned extermination is achieved, and is usually 1 second to 1 minute, which is a balance between further improvement of shrinkage resistance, texture and water repellency and production efficiency. From the viewpoint, it is preferably 5 to 40 seconds, more preferably 10 to 30 seconds.
  • the contact time between the sliver and the acid aqueous solution can be controlled by adjusting the operating speed described later.
  • the acid cleaning step after immersing the sliver in the acid aqueous solution, it is usually subjected to drawing treatment.
  • drawing treatment method the same method as the drawing treatment method in the diamine aqueous solution dipping step is used, and for example, a method using a mangle is used.
  • the aperture ratio is not particularly limited, and is usually 50 to 90%, preferably 60 to 90%, and more preferably 70 to 90%.
  • the diamine component, the dibasic acid chloride component and the alkaline agent component on the fiber surface are more sufficiently removed by immersing the sliver in water.
  • the temperature of water in the second washing step is not particularly limited, and is preferably room temperature (for example, 15 to 25 ° C.) from the viewpoint of further improving shrinkage resistance, texture and water repellency and balancing production efficiency.
  • the contact time between the sliver and water in the second washing step is not particularly limited as long as the above-mentioned extermination is achieved, and is usually 1 second to 1 minute, further improving shrinkage resistance, texture and water repellency, and manufacturing. From the viewpoint of balance with efficiency, it is preferably 5 to 40 seconds, and more preferably 10 to 30 seconds.
  • the contact time between the sliver and water can be controlled by adjusting the operating speed described later.
  • the drawing treatment method the same method as the drawing treatment method in the diamine aqueous solution dipping step is used, and for example, a method using a mangle is used.
  • the aperture ratio is not particularly limited, and is usually 50 to 90%, preferably 60 to 90%, and more preferably 70 to 90%.
  • the sliver is immersed in an aqueous solution of a softener to impart flexibility to the fibers.
  • the softener in the aqueous softener solution is not particularly limited as long as it is a drug known as a drug capable of imparting flexibility in the field of fibers (particularly animal hair fiber or wool fiber), and examples thereof include paraffin compounds.
  • the paraffinic compound is available as a commercially available Bryan LC-35 (nonionic, solid paraffin softener) manufactured by Matsumoto Yushi Seiyaku Co., Ltd.
  • the concentration of the softener in the aqueous softener solution is not particularly limited, and is usually 0.01 to 10%, and is preferably 0. From the viewpoint of further improvement of shrinkage resistance, texture and water repellency and a balance between production efficiency. It is 1 to 5%, more preferably 0.5 to 2%.
  • the unit of concentration "%" is the volume ratio to the total amount.
  • the temperature of the aqueous softener solution in the softening treatment step is not particularly limited, and is preferably 20 to 50 ° C., more preferably 30 to 30 to 50 ° C. from the viewpoint of further improving shrinkage resistance, texture and water repellency and balancing production efficiency. It is 50 ° C.
  • the contact time between the sliver and the aqueous softener solution is not particularly limited as long as the fibers are provided with flexibility, and is usually 1 second to 1 minute, which further improves shrinkage resistance, texture and water repellency, and improves production efficiency. From the viewpoint of balance, it is preferably 5 to 40 seconds, more preferably 10 to 30 seconds.
  • the contact time between the sliver and the aqueous softener solution can be controlled by adjusting the operating speed described later.
  • the softening process after immersing the sliver in the softener aqueous solution, it is usually subjected to drawing treatment.
  • drawing treatment method the same method as the drawing treatment method in the diamine aqueous solution dipping step is used, and for example, a method using a mangle is used.
  • the aperture ratio is not particularly limited, and is usually 50 to 90%, preferably 60 to 90%, and more preferably 70 to 90%.
  • the drying step the sliver wet in the previous steps is dried.
  • any drying method known in the field of fibers can be used.
  • Specific examples of the drying method include a suction drying method in which drying is performed while sucking, a suction drum dryer manufactured by Milling Sner, and the like.
  • the drying temperature in the drying step is not particularly limited as long as it can achieve drying without damaging the fibers (particularly animal hair fiber or wool fiber), and further improvement of shrinkage resistance, texture and water repellency and production efficiency. From the viewpoint of the balance with the above, the temperature is preferably 50 to 100 ° C, more preferably 70 to 90 ° C.
  • the operating speed is not particularly limited as long as the above-mentioned contact time is secured, and is preferably 0.1 to 10 m / min, more preferably 0.1 to 10 m / min, from the viewpoint of further improving shrinkage resistance, texture and water repellency, and balancing manufacturing efficiency. Is 0.5 to 3 m / min, more preferably 1.5 to 3 m / min.
  • one or more post-treatments selected from gil treatment and combing treatment may be performed on the sliver that has completed the drying step.
  • the gil treatment and the combing treatment are the same treatments as the gil treatment and the combing treatment mentioned in the description of the diamine aqueous solution immersion step, respectively.
  • the sliver is immersed in an aqueous diamine solution and then in a silicon solvent in which dibasic acid chloride is dissolved to coat the surface of the animal hair fiber with the polyamide, which is an adsorptive organochlorine compound discharged. (AOX) and the organochlorine compounds remaining in the fiber are controlled to a minimum.
  • the content of the adsorptive organochlorine compound (AOX) in the total effluent when squeezed in the dipping step in the dibasic acid chloride solution is less than 1 mg / kg.
  • the value measured by the activated carbon adsorption-combustion method specifically, the value measured based on ISO9652 (2004) is used.
  • the chloride ion concentration contained in the obtained sliver (animal hair fiber) is 2.0 mg / L or less, particularly 1.2 mg / L or less.
  • the chloride ion concentration (a value measured by a boiling extraction method based on a liquid chromatograph method, specifically, a value measured based on the JIS K 0127 general rule chloride ion concentration is used.
  • the water resistance was evaluated according to the Woolmark test method TM 31 based on ISO 6330.
  • the top sliver obtained in each of the Examples / Comparative Examples was spun to 2/28 Nm, the number of twists was set to 370 times / m for single yarn Z and 213 times / m for twin yarn, and after spinning, flat knitted fabric was knitted. Then, the knitting density was adjusted so as to have a cover factor of 0.41, and the obtained knitted fabric was subjected to a shrinkage resistance evaluation test.
  • Water resistance was evaluated according to IWS TM 31 based on ISO 6330. As an evaluation rule "Elongation”: Indicates an increase in length or width dimension caused by washing, expressed as a positive (+) dimensional change.
  • “Shrinkage” Indicates a decrease in length or width dimension caused by washing, expressed as a negative (-) dimensional change. Evaluated by the ISO 6330 5A and 7A wash cycle programs, both programs are carried out with a load of 1 kg, and the wash cycle and number of washes are determined by the product. As a calculation formula, the relaxation dimensional change rate in the width (WS) and length (LS) directions, the felt dimensional change rate, and the total dimensional change rate are calculated by the following formulas.
  • Area dimensional change rate (%) WS + LS ⁇ (WS x LS) / 100 ⁇ ⁇ : Area dimensional change rate ⁇ 3.0 (best); ⁇ : 3.0 ⁇ absolute value of area dimensional change rate ⁇ 5.0 (excellent); ⁇ : 5.0 ⁇ absolute value of area dimensional change rate ⁇ 8.0 (good); ⁇ : 8.0 ⁇ Absolute value of area dimensional change rate ⁇ 10.0 (possible (no problem in practical use)) X: 10.0 ⁇ absolute value of area dimensional change rate (there is a problem in practical use).
  • the pre-test knitted fabric (sample) produced by the shrinkage resistance evaluation was compared with the untreated knitted fabric as a control, and the texture was evaluated according to the following criteria.
  • the untreated knitted fabric as a control was produced by the same method as the knitted fabric production method in the shrinkage resistance evaluation except that an untreated sliver was used.
  • the texture is a feel based on the roughness and hardness of the knitted fabric.
  • The knitted fabric (sample) showed a better texture than the untreated knitted fabric (excellent); ⁇ : The knitted fabric (sample) showed the same texture as the untreated knitted fabric (good); ⁇ : The knitted fabric (sample) was slightly coarser and harder than the untreated knitted fabric, but was within a practically acceptable range; X: The knitted fabric (sample) was clearly coarser and harder than the untreated knitted fabric (there was a problem in practical use).
  • the water repellency of the knitted fabric surface was tested according to the spray test of JIS L 1092-1992 and the evaluation criteria described, and evaluated based on the criteria in Table 3.
  • the knitted fabric to be evaluated is the knitted fabric (sample) before the test manufactured by the shrinkage resistance evaluation. 2 or more was a range where there was no problem in practical use, 3 was "good”, 4 was “excellent”, and 5 was "best”.
  • the chloride ion concentration contained in the wool fiber obtained in Example 1 was measured according to the following method. According to JIS K 0127 chloride ion concentration, the wool sample was boiled in distilled water, and the extracted chlorine ion was measured by ion chromatography. The measurement was requested to the Environmental Materials Office of the Industrial Technology Center of the "Aichi Industrial Science and Technology Center".
  • Example 1 shrink-proof animal hair fibers were continuously produced according to the following method.
  • Second step Next, the sliver that has undergone the first step is subjected to the second bath in the second tank (a silicon solvent in which sebatate dichloride is dissolved at 0.2 mol / L (specifically, decamethyl-cyclopentasiloxane (pentamer)). )), Soaked in a solvent containing molecular sheave 4A 1/8 "pellets, temperature 25 ° C.) for 10 seconds, and squeezed to 80% with a mangle.
  • a silicon solvent in which sebatate dichloride is dissolved at 0.2 mol / L specifically, decamethyl-cyclopentasiloxane (pentamer)
  • Third step The sliver that had undergone the second step was washed with water by immersing it in water in the third tank (at a temperature of 25 ° C. for 20 seconds, and squeezed to 80% with a mangle. In this step, water was used. Sodium oxide was exterminated, low molecular weight nylon resin was exterminated, and sebatic acid, which is a white precipitate produced, was exterminated.
  • the sliver that had undergone the third step was immersed in a 1% formic acid aqueous solution (temperature 25 ° C.) in the fourth tank for 20 seconds, and squeezed to 80% with a mangle. In this step, if excess polyamide is formed between the fibers, the excess polyamide is removed.
  • the sliver that had undergone the fourth step was washed with water by immersing it in water (temperature 25 ° C.) in the fifth tank for 20 seconds, and squeezed to 80% with a mangle.
  • the sliver that has undergone the 5th step is immersed in a softener aqueous solution (softener; 1% solution of Bryan LC35 manufactured by Matsumoto Yushi Pharmaceutical Co., Ltd., temperature 40 ° C.) in the 6th tank for 20 seconds. After washing with water, the temperature was reduced to 80% with a mangle.
  • softener 1% solution of Bryan LC35 manufactured by Matsumoto Yushi Pharmaceutical Co., Ltd., temperature 40 ° C.
  • the sliver that had undergone the 6th step was dried at 85 ° C. with a suction drum dryer to obtain shrink-proof animal hair fibers.
  • Example 2 The concentration of hexamethylenediamine in the first bath was changed to 0.1 mol / L, the concentration of sodium hydroxide in the first bath was changed to 0.1 mol / L, and the concentration of dichloride sebatate in the second bath was 0.1 mol.
  • the shrink-proof animal hair fiber was produced and evaluated by the same method as in Example 1 except that it was changed to / L.
  • Example 3 The concentration of hexamethylenediamine in the first bath was changed to 0.05 mol / L, the concentration of sodium hydroxide in the first bath was changed to 0.05 mol / L, and the concentration of dichloride sebatate in the second bath was changed to 0.05 mol.
  • the shrink-proof animal hair fiber was produced and evaluated by the same method as in Example 1 except that it was changed to / L.
  • Example 4 The shrink-proof animal hair fiber was produced and evaluated by the same method as in Example 1 except that the operating speed was changed to 4 m / min.
  • the processing time (contact time) of each step in this example was 1/2 of the processing time of each corresponding step in Example 1.
  • Example 5 The operating speed was changed to 4 m / min, the concentration of hexamethylenediamine in the first bath was changed to 0.1 mol / L, the concentration of sodium hydroxide in the first bath was changed to 0.1 mol / L, and the second bath.
  • the shrink-proof animal hair fiber was produced and evaluated by the same method as in Example 1 except that the concentration of sebacate dichloride was changed to 0.1 mol / L.
  • the processing time (contact time) of each step in this example was 1/2 of the processing time of each corresponding step in Example 1.
  • Example 6 The operating speed was changed to 4 m / min, the concentration of hexamethylenediamine in the first bath was changed to 0.05 mol / L, the concentration of sodium hydroxide in the first bath was changed to 0.05 mol / L, and the second bath.
  • the shrink-proof animal hair fiber was produced and evaluated by the same method as in Example 1 except that the concentration of sebacate dichloride was changed to 0.05 mol / L.
  • the processing time (contact time) of each step in this example was 1/2 of the processing time of each corresponding step in Example 1.
  • Example 7 The shrink-proof animal hair fiber was produced and evaluated by the same method as in Example 3 except that the temperature of the first bath was changed to 37 ° C.
  • Example 8 The shrink-proof animal hair fiber was produced and evaluated by the same method as in Example 3 except that the temperature of the first bath was changed to 35 ° C.
  • Example 1 The shrink-proof animal hair fiber was produced and evaluated by the same method as in Example 1 except that the temperature of the first bath was changed to 25 ° C.
  • Example 3 The evaluation was carried out by the same method as in Example 1 except that the wool top sliver was used as it was for evaluation without carrying out the first to seventh steps.
  • Example 2 Based on Example 1, hexamethylenediamine was subjected to interfacial polymerization treatment at 0.2 mol / L, sodium hydroxide, 0.2 mol / L, and a liquid temperature of 40 ° C. As a result, the amount of nylon polymer formed on the fibers of the wool top sliver increased within the permissible range, and the result of the washing test by TM31 was an area dimensional change rate of -9.0%.
  • Example 2 the amount of nylon polymer formed on the fibers was considerably small in the interfacial polymerization treatment of hexamethylenediamine 0.1 mol / L sodium hydroxide, 0.1 mol / L, liquid temperature 40 ° C. became. In the TM31 test, it showed -7.5%, and wool yarn with improved shrinkage resistance was produced.
  • Example 3 Under the conditions of Example 3, hexamethylenediamine was treated at 0.05 mol / L, sodium hydroxide at 0.05 mol / L, and a liquid temperature of 40 ° C. As a result, the nylon polymer formed on the fiber uniformly coats the wool surface as shown in FIG. 1, and therefore should be fully satisfied with the TM 31 test of -2.7%. I got the result. This was the optimum condition for eliminating the anisotropy (DFE) of the surface friction coefficient, which is the cause of felting of wool fibers, by coating the surface of wool fibers with nylon polymer uniformly and in a mesh pattern. .. When this condition is exceeded, the nylon polymer gums up, the adhesion between wool fibers increases, and the shrinkage resistance decreases.
  • DFE anisotropy
  • Example 4 the operating speed of the machine was changed to 4 m / min, and the solution treatment reaction times of the hexamethylenediamine bath, the sebatic acid dichloride bath and the formic acid treatment bath were changed to evaluate the shrinkage resistance.
  • the contact time of each drug was halved, a decrease in shrink resistance was observed.
  • sodium hydroxide plays a role of neutralizing "hydrochloric acid” generated in the interfacial polymerization reaction of hexadiamine and sebacate dichloride and catalytically accelerating the polymerization reaction. By increasing the salt concentration, the interfacial polymerization of this case is promoted.
  • hydrochloric acid is generated by the reaction between sebatic acid dichloride and water, and the neutralizing action of sodium hydroxide further contributes to the polymerization reaction.
  • Carbon tetrachloride, benzene, toluene, trichlorethylene, chloroform, Socal 25, Stoddard Solvent, perchloroethylene, etc. which are disclosed for liquid-liquid interfacial polymerization, are substances regulated from the standpoint of preserving the global environment. The production process using this is very restrictive. As a means to solve this problem, there is a silicon solvent. The present invention has clarified that an interfacial polymerization reaction is possible even when a silicon solvent is used.
  • the processing of animal hair fibers using a solvent has been avoided due to problems such as air pollution, water pollution, occupational hygiene, working environment, waste treatment, soil pollution, etc., but the inorganic silicon solvent implemented in the present invention has been avoided.
  • the present invention is the first in the wool industry to control the adsorptive organic chlorine compound AOX (Absorbable Organic Halogens) discharged from the treatment process and the "residual chlorine compound" in the animal hair fiber at the same time to the minimum. It provides a method for continuously producing a novel shrink-proof animal hair fiber sliver.
  • AOX Absorbable Organic Halogens

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

Provided is a method for efficiently producing anti-shrinkage animal hair fibers having sufficiently high water-resistant launderability in a sliver form while maintaining inherent water repellency as one of features of animal hair fibers without deteriorating the texture and other features. The method for producing anti-shrinkage animal hair fibers is characterized in that a sliver, which is a continuous body of animal hair fibers, is immersed in a diamine aqueous solution containing an alkaline agent at 30-45°C, and immersed in a silicon solvent with a dibasic acid chloride dissolved therein in a state in which the diamine is attached to the sliver, thereby coating the animal hair fibers with a polyamide.

Description

防縮性獣毛繊維の製造方法Manufacturing method of shrink-proof animal hair fiber
 本発明は、耐水系洗濯性に優れた防縮性獣毛繊維の製造方法、特に、製造工程からの吸着性有機塩素化合物の排出および繊維内の塩素化合物の残留を最小限に制御した環境に優しい防縮性獣毛繊維の製造方法を提供する。 INDUSTRIAL APPLICABILITY The present invention is a method for producing shrink-proof animal hair fibers having excellent water-resistant washability, and in particular, environmentally friendly in which the discharge of adsorptive organic chlorine compounds from the production process and the residue of chlorine compounds in the fibers are minimized. Provided is a method for producing shrink-proof animal hair fiber.
 羊毛繊維の防縮処理に関しては、すでに、1953年、R.W.Moncrieffの総説があり、London The National Trade Press LTDから出版されている。報告されている主な処理方法は、次亜塩素酸、亜塩素酸、過塩素酸または塩素ガスを用いる塩素化処理、過マンガン酸カリウムおよびオゾンによる酸化処理、クロラミン処理、ならびに酵素処理であった。しかし、その主流は塩素化処理であり、今日も継続され、編物、織物、ソックス等に適用されるに至っている。非水系からなる液/液界面重合方法では、後述する特許文献5,6に記載する織物、編物、不織布の布帛処理の実例があるが、獣毛繊維束の連続体であるスライバーへの処理実例はない。 Regarding the shrink-proof treatment of wool fibers, there was already a review by R.W.Moncrieff in 1953, which was published by London The National Trade Press LTD. The main treatment methods reported were chlorination with hypochlorous acid, chloric acid, perchloric acid or chlorine gas, oxidation with potassium permanganate and ozone, chloramine treatment, and enzyme treatment. .. However, the mainstream is chlorination, which continues today and has been applied to knitting, woven fabrics, socks, etc. In the liquid / liquid interfacial polymerization method composed of a non-aqueous system, there are examples of fabric treatment of woven fabrics, knitted fabrics, and non-woven fabrics described in Patent Documents 5 and 6 described later, but examples of treatment on a sliver which is a continuum of animal hair fiber bundles. There is no.
 その反面、水系では、非常に多くの開発があり、近年に至って、羊毛の篠状のスライバーを連続的に処理する方法が、1986年、カナダのクロイ社(Kroy Unshrinkable Wools Ltd)が開発した(特許文献1)。それ以前に、オーストラリア、連邦科学産業研究機構(Commonwealth Scientific and Industrial Research Organization, CSIRO)が、羊毛トップスライバーを用いた次亜塩素酸による塩素化処理を開発、続いてポリアミド・エピクロロヒドリンナイロン樹脂( Hercules Powder社製Hercosett 57 )による連続防縮方法(Cl/Hercosett)を開発した。更に、ドイツ、Fleissner社のSplit Pad Chlorinator方法は、処理原理として、CSIROでの研究開発に基づいて、羊毛を塩素化処理し、続いてハーコセット樹脂(Hercosett)を繊維上に被覆する、所謂、塩素化/樹脂処理であった。これ等は、中国を中心に広く浸透し、大量生産が行われ、製造コストも安価に提供されている。これ等の点から、羊毛の防縮加工の大半は、羊毛トップスライバーを用い、塩素化処理方法を用いる連続防縮処理として纏めることが出来る。 On the other hand, there is a great deal of development in water systems, and in recent years, a method for continuously treating woolen sliver has been developed by Kroy Unshrinkable Wools Ltd of Canada in 1986 (Kroy Unshrinkable Wools Ltd). Patent Document 1). Prior to that, Australia's Commonwealth Scientific and Industrial Research Organization (CSIRO) developed a hypochlorous acid chlorination treatment using a wool top sliver, followed by a polyamide / epichlorohydrin nylon resin. We have developed a continuous shrink-proof method (Cl / Hercosett) using (Hercules Powder 57). Furthermore, the Split Pad Chlorinator method of Fleissner, Germany, is based on research and development at CSIRO, in which wool is chlorinated and then Hercosett resin (Hercosett) is coated on the fibers, so-called chlorine. It was a chemical / resin treatment. These have spread widely mainly in China, are mass-produced, and are offered at low manufacturing costs. From these points, most of the shrink-proofing treatment of wool can be summarized as continuous shrink-proofing treatment using a wool top sliver and a chlorination treatment method.
 塩素化/樹脂方法は、塩素を用いる関係上、連続処理工程中に、塩素と界面活性剤との反応、還元剤処理中の羊毛から流出する可溶性タンパク質との反応、柔軟剤との反応等により、吸着性有機塩素化合物(AOX -Absorbable Organic Halogens)を河川に排出させる。それを魚類が摂取し、食物連鎖により、人間が摂取すると「癌」の発生を来すことが報告されている。更に、塩素は羊毛中のタンパク質に反応して、残留塩素として羊毛繊維内に残存することも確認されている。 Since chlorine is used in the chlorination / resin method, the reaction between chlorine and a surfactant, the reaction with a soluble protein flowing out from the wool during the treatment with a reducing agent, the reaction with a softener, etc. during the continuous treatment step , Adsorbable organic chlorine compounds (AOX-Absorbable Organic Halogens) are discharged into rivers. It has been reported that when fish ingest it and humans ingest it through the food chain, it causes the development of "cancer". Furthermore, it has been confirmed that chlorine reacts with proteins in wool and remains as residual chlorine in wool fibers.
 今日、羊毛防縮加工での最大の開発項目は、塩素を使用しない、環境に優しい、大量生産方式の連続防縮加工処理の開発が、叫ばれているが、いまだに開発されていない。しかも、 近年において、羊毛繊維の防縮加工は、スライバー処理する方法が大勢で、その生産性、製造コストの面で優位性を誇り、トップから紡績糸にすることにより、編物、織物、ソックス、セーター等の製品化が可能である点、防縮スライバーが、世界の羊毛業界、特に、中国で大量に生産されている。 Today, the biggest development item in wool shrink-proofing is the development of chlorine-free, environmentally friendly, mass-produced continuous shrink-proofing treatment, but it has not been developed yet. Moreover, in recent years, there are many methods of shrink-proofing wool fibers that are sliver-treated, which is superior in terms of productivity and manufacturing cost. By using spun yarn from the top, knitting, woven fabrics, socks, and sweaters In that it is possible to commercialize such products, shrink-proof slivers are mass-produced in the world wool industry, especially in China.
 羊毛繊維からなる編物、織物への防縮加工は、塩素剤等の酸化剤を使用する水溶液処理のため、織物、編物を構成する糸の撚り、編み,織り密度のため、処理液の浸透斑のため、処理斑が発生し易く、染色斑等につながり、可なりの生産管理が必要である。その点、スライバー処理は、防縮処理後に、ギル工程、コーミング工程等によって、処理斑が是正するため、防縮の均整性が保たれ、均一な羊毛防縮紡績糸の製造が可能である。この意味で、現在では、羊毛のスライバーを用いる連続防縮加工が主力となっている。 The shrink-proofing process for knitted fabrics and woven fabrics made of wool fibers is due to the treatment of an aqueous solution using an oxidizing agent such as a chlorine agent. Therefore, treatment spots are likely to occur, leading to dyeing spots and the like, and considerable production control is required. In that respect, in the sliver treatment, after the shrink-proof treatment, the treatment spots are corrected by a gil step, a combing step, or the like, so that the shrink-proof balance is maintained and a uniform wool shrink-proof spun yarn can be produced. In this sense, continuous shrink-proof processing using a wool sliver is currently the mainstay.
 羊毛スライバーに対して処理する際、処理の均整性が重大な要因となり、未防縮成分が、その集団内に、10%程度含まれると、その全体が未防縮繊維と同じ収縮挙動を示すことが経験的に確認されている。この点から、処理を均一するための装置が、ドイツ、フライスナー社、カナダ、クロイ社によって開発され、世界中に広がっている。特に、中国に於いてその普及がすさまじい。これは、羊毛単繊維を均一に次亜塩素酸や塩素ガスで塩素酸化する装置であり、防縮性を完成させるために、水溶性のポリアミドエピクロロヒドリン樹脂を羊毛表面に、後の工程で被覆する方法である。しかし、この方法は、羊毛表面を塩素酸化処理する事により、羊毛本来の性質である撥水機能を阻害して、防縮性のみを付与させる方法である。そのことから、羊毛繊維の撥水性を損なうことなく防縮性を付与することが、今日の大きな研究開発の課題である。 When treating wool sliver, the proportionality of the treatment becomes an important factor, and when about 10% of the non-shrinkage component is contained in the population, the whole shows the same shrinkage behavior as the non-shrinkage fiber. It has been confirmed empirically. From this point, equipment for uniform processing has been developed by Germany, Millingner, Canada and Croy and is spreading all over the world. Especially in China, its spread is tremendous. This is a device that uniformly oxidizes wool monofibers with hypochlorous acid or chlorine gas, and in order to complete shrink resistance, a water-soluble polyamide epichlorohydrin resin is applied to the wool surface in a later step. It is a method of coating. However, this method is a method in which the surface of wool is subjected to chlorine oxidation treatment to inhibit the water-repellent function, which is the original property of wool, and to impart only shrink resistance. Therefore, it is a major research and development task today to impart shrinkage resistance without impairing the water repellency of wool fibers.
 羊毛繊維を樹脂加工する際、羊毛表面を親水性化する事によって、初めて、親水性の樹脂、例えば、ポリアミドエピクロロヒドリン樹脂(ディックハーキュレス社、ハーコセット57 Hercosett )を被覆することが可能である。しかし、疎水性の羊毛に水溶性のハーコセット樹脂を均一に被覆する事は出来なかった。例えば、図3の中央部に示すように、羊毛繊維表面に「海草昆布」状の被覆が起こったり、または図3における当該中央部の両側に示すように、繊維間で接着が起こったりした。それらの結果、ギル等による繊維開繊は出来なかった。特に繊維間で接着が起こったときの繊維表面を図4に示す。図3は、疎水性の羊毛表面に水溶性のハーコセット樹脂を被覆しようとしたときの、処理後の羊毛繊維を示す写真である。図4は、繊維間で接着が起こったときの、羊毛繊維の表面状態を示す電子顕微鏡写真である(倍率1000倍)。 When the wool fiber is processed into a resin, it is possible to coat a hydrophilic resin, for example, a polyamide epichlorohydrin resin (Dick Hercules, Harcosett 57 Hercosett) for the first time by making the wool surface hydrophilic. .. However, it was not possible to uniformly coat the hydrophobic wool with the water-soluble hercoset resin. For example, as shown in the central portion of FIG. 3, a "seagrass kelp" -like coating occurred on the surface of the wool fibers, or as shown on both sides of the central portion in FIG. 3, adhesion occurred between the fibers. As a result, fiber opening by Gil and others was not possible. In particular, FIG. 4 shows the fiber surface when adhesion occurs between the fibers. FIG. 3 is a photograph showing the treated wool fibers when the hydrophobic wool surface is to be coated with a water-soluble hercoset resin. FIG. 4 is an electron micrograph showing the surface state of wool fibers when adhesion occurs between the fibers (magnification: 1000 times).
 1963年、アメリカ農工務省のWestern Regional Research  Laboratory (WRRL)で開発された界面重合方法は、毛織物に適用されたが、羊毛トップの研究開発例のみである。当時、用いた溶剤は、パークロロエチレン、四塩化炭素、クロロホルム、キシレン、トルエン、ベンゼン等であった。しかしながら、これらの溶剤は、今日では、健康や環境に対して有害物質であり、安全な作業環境で作業が出来ない事から、全く工業化は出来ない。更に、ジアミンの分解や二塩基酸ジクロライドの加水分解とその生成物の濾過、更に溶剤中の水分駆除、等々の問題で、半世紀近く注目されなかった。 The interfacial polymerization method developed by the Western Regional Research Laboratory (WRRL) of the US Department of Agriculture and Industry in 1963 was applied to woolen fabrics, but it is only an example of research and development of wool tops. At that time, the solvents used were perchlorethylene, carbon tetrachloride, chloroform, xylene, toluene, benzene and the like. However, these solvents are toxic to health and the environment today and cannot be industrialized at all because they cannot work in a safe working environment. Furthermore, it has not attracted attention for nearly half a century due to problems such as decomposition of diamine, hydrolysis of dichloride dibasic acid and filtration of its products, and removal of water in the solvent.
 繊維加工技術の内、繊維表面を取り扱ったものが実に多い。合成繊維の表面は疎水性であり、それを改良するために親水化する各種の技術が開発されているが、羊毛繊維は動物繊維であり、全ての動物繊維の表面は、その生体を保護するために水を撥じく、疎水性である。羊毛繊維を親水化すると水の吸着・脱着に伴う熱損失が激しくなりそれだけ生体の生命維持に影響することになる。今日、羊毛繊維の表面処理について開発されたものの大半は、親水化する技術である。その代表的なものに、羊毛の水洗濯時の収縮を抑える防縮加工として、塩素化剤や過硫酸らによる前処理を羊毛繊維表面に施して親水化し、その表面を親水性のポリマーで被覆する方法が全世界中に普及している(塩素化樹脂方法‐CL/Hercosett法:一例として、特許文献1(クロイ・アンシュリンカブル・ウールズ・リミテッド)がある)。羊毛を親水化することによって防縮性は付与されるが、水に対する親和性が増すため、保温性が低下し、再汚染され易く、セーター等の水洗濯で「伸び」や「たらつき」、繊維強度の低下、光熱黄変を助長する結果となる。 Of the fiber processing technologies, there are many that deal with the fiber surface. The surface of synthetic fibers is hydrophobic, and various techniques for hydrophilization have been developed to improve it, but wool fibers are animal fibers, and the surface of all animal fibers protects the living body. Because it repels water, it is hydrophobic. When wool fibers are made hydrophilic, heat loss due to adsorption and desorption of water becomes severe, which affects the life support of living organisms. Most of what has been developed today for surface treatment of wool fibers is a hydrophilization technique. As a typical example, as a shrink-proofing process that suppresses shrinkage of wool during washing with water, pretreatment with a chlorinating agent or persulfate is applied to the surface of the wool fiber to make it hydrophilic, and the surface is coated with a hydrophilic polymer. The method is widely used all over the world (chlorinated resin method-CL / Hercosett method: as an example, there is Patent Document 1 (Kroy Unshrinkable Wools Limited)). Hydrophilization of wool imparts shrink-proof properties, but it increases its affinity for water, which reduces heat retention and is prone to recontamination. It "stretches", "flutters", and fibers when washed with water such as sweaters. As a result, the intensity is reduced and photothermal yellowing is promoted.
 本発明の特徴の1つは、羊毛の本来の性質を損傷することなく、羊毛繊維表面に疎水性の合成高分子を被覆して防縮性を付与し羊毛本来の疎水性を保持する点である。この構想を導く基本技術は、水相と有機相からなる界面を利用する液・液界面重合方法である。この界面重合方法を利用した羊毛トップや毛織物への技術開発(特許文献2)は古く1963年代まで遡ることができるが、有機相に健康や環境に対して有害物質であるパークロロエチレン、トルエン、四塩化炭素等からなる溶剤を用いるため工業的には成功を収めることが出来なかった。 One of the features of the present invention is that the surface of wool fibers is coated with a hydrophobic synthetic polymer to impart shrinkage resistance and maintain the original hydrophobicity of wool without damaging the original properties of wool. .. The basic technology that leads to this concept is a liquid-liquid interface polymerization method that utilizes an interface consisting of an aqueous phase and an organic phase. Technological development for wool tops and woolen fabrics using this interfacial polymerization method (Patent Document 2) can be traced back to the 1963s, but the organic phase is harmful to health and the environment, such as perchlorethylene and toluene. Since a solvent composed of carbon tetrachloride or the like is used, it has not been industrially successful.
 更に、ジアミンを含む水溶液相に毛織物を浸漬して絞り、直ちに、二塩基酸ジクロライドを溶解したトルエン有機溶剤に浸漬して、羊毛繊維表面で形成した液・液界面を利用して界面重合を行なっているが、毛織物に付着した水が、必然的に有機溶剤相に浸入するため、二塩基酸ジクロライドは水と反応してジカルボン酸となり界面重合反応を減速する結果となる。この二塩基酸ジクロライドの加水分解をどの様に解決するかが大きな課題となり、実用化を阻害しているのが現状である。 Further, the woolen fabric is immersed in an aqueous phase containing diamine, squeezed, and immediately immersed in a toluene organic solvent in which dichloride dichloride is dissolved, and interfacial polymerization is performed using the liquid-liquid interface formed on the surface of the wool fiber. However, since the water adhering to the woolen fabric inevitably infiltrates into the organic solvent phase, the dibasic acid dichloride reacts with water to become a dicarboxylic acid, which results in slowing down the interfacial polymerization reaction. How to solve the hydrolysis of this dibasic acid dichloride has become a big issue, and the present situation is hindering its practical application.
 近年、環境保全の問題からドライクリーニング業界では、パークロロエチレンを無公害型の新規溶剤-シリコーン溶剤(三菱重工産業機器(株)・信越化学工業(株)社製-ダイヤシリコーン及びグリーン・アース・クリーニング・リミテッド・カンパニー(Green Earth Ltd. Co.社製-シリコーンドライ)等に代替することが行なわれている。 In recent years, due to environmental protection issues, in the dry cleaning industry, perchlorethylene has been used as a new pollution-free solvent-silicone solvent (Mitsubishi Heavy Industries, Ltd., Shin-Etsu Chemical Co., Ltd.-dia-silicone and green earth, etc. It is being replaced by a cleaning limited company (Green Earth Ltd. Co.-silicone dry).
 グリーン・アース社は、特許文献3および特許文献4でオクタメチル-シクロテトラシロキサン(テトラマー)、デカメチル-シクロペンタシロキサン(ペンタマー)およびドデカメチル-シクロヘキサシロキサン(ヘキサマー)の環状シリコンを開示している。一方、三菱重工産業機器(株)社製のシリコーン溶剤は直鎖状のデカメチルテトラシロキサンとして市販されている。 Green Earth Co., Ltd. discloses cyclic silicon of octamethyl-cyclotetrasiloxane (tetramer), decamethyl-cyclopentasiloxane (pentamer) and dodecamethyl-cyclohexasiloxane (hexamar) in Patent Documents 3 and 4. On the other hand, the silicone solvent manufactured by Mitsubishi Heavy Industries, Ltd. is commercially available as a linear decamethyltetrasiloxane.
 羊毛繊維の臨界界面張力は、単繊維で45-50dyn/cm、繊維集団で30dyn/cmと言われている。グリーン・アース社のシリコーン溶剤の臨界界面張力は、17.8dyn/cmであり、羊毛繊維集団内の各単繊維の表面にも容易にシリコーン溶剤が拡張することが可能であり、界面重合が均一に行なわれることを意味している。一方、羊毛繊維の水溶液処理では、水の臨界界面張力が、72-76dyn/cm前後であり、羊毛繊維表面を水に「ぬらす」ために、浸透剤を水溶液に入れても完全に「ぬらす」ことは難しい。そのため、水溶液処理は、溶剤処理と比較して処理の均一性に欠けることになり、疎水性のポリマーを水溶液媒体で処理することは、均一性から問題となる。 The critical interfacial tension of wool fibers is said to be 45-50 dyn / cm for single fibers and 30 dyn / cm for fiber populations. The critical interfacial tension of Green Earth's silicone solvent is 17.8 dyn / cm, and the silicone solvent can be easily extended to the surface of each single fiber in the wool fiber population, resulting in uniform interfacial polymerization. It means that it will be done in. On the other hand, in the aqueous solution treatment of wool fibers, the critical interfacial tension of water is around 72-76 dyn / cm, and in order to "wet" the surface of wool fibers with water, even if a penetrant is added to the aqueous solution, it is completely "wet". It's difficult. Therefore, the aqueous solution treatment lacks the uniformity of the treatment as compared with the solvent treatment, and treating the hydrophobic polymer with the aqueous solution medium poses a problem in terms of uniformity.
 日本国内では、環境保全のための法規制が設定されているが、テトラクロロエチレンについての法規制について列記すると表1のようになる(非特許文献1)。 In Japan, laws and regulations for environmental protection are set, but Table 1 shows the laws and regulations for tetrachlorethylene (Non-Patent Document 1).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 一方、シリコーン溶剤の法規制は表2のように、非常に環境に優しい溶剤である(非特許文献1より)。従って、シリコーン溶剤は、更に、臭気がなく、化学火傷もなく、取り扱い易い溶剤であり、界面重合処理を行なうには好都合な溶剤である(非特許文献1)。 On the other hand, as shown in Table 2, the laws and regulations of silicone solvents are very environmentally friendly solvents (from Non-Patent Document 1). Therefore, the silicone solvent is a solvent that has no odor, no chemical burns, and is easy to handle, and is a convenient solvent for performing an interfacial polymerization treatment (Non-Patent Document 1).
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 有機溶剤を用いる場合、作業環境法や労働安全衛生法に規制されない安全な操業が出来ることが必要であり、更に、大気汚染防止法や水質汚濁防止法にも規制されない溶剤であることが必要である。しかし、本発明に用いたシリコン溶剤はこれらの必要性に適合し、又、水と混入しない(Water Immiscible)溶剤である。このため、水相と溶剤相の間で、液・液の界面が形成されており、最初、室温で、容器に0.1mol/l ヘキサメチレンジアミン水溶液を入れ、次に、室温で、シリコン溶剤液に0.1mol/l 二塩基酸クロライドを溶解した溶液をこの容器に注ぎ込んだ所、水相と溶剤相の界面で、図5に示すように、ナイロン・ポリマーが形成されていることを確認し本発明を追行するに至った。図5は、本発明の考案の基礎となる実験を示す。図5中の I は、水とシリコン溶剤とで形成される液・液界面を示し、比重の関係から底部は水を上部はシリコン溶剤を示し、図5中のII は、液・液界面でのナイロン・ポリマー(白色)の形成を示す。 When using an organic solvent, it is necessary to be able to operate safely without being regulated by the Work Environment Law or the Industrial Safety and Health Law, and it is also necessary to use a solvent that is not regulated by the Air Pollution Control Law or the Water Pollution Control Law. is there. However, the silicone solvent used in the present invention is a solvent that meets these needs and is immiscible with water. For this reason, a liquid-liquid interface is formed between the aqueous phase and the solvent phase. First, a 0.1 mol / l hexamethylenediamine aqueous solution is placed in a container at room temperature, and then a silicon solvent is formed at room temperature. When a solution of 0.1 mol / l dibasic acid chloride was poured into this container, it was confirmed that a nylon polymer was formed at the interface between the aqueous phase and the solvent phase, as shown in FIG. However, the present invention has been pursued. FIG. 5 shows an experiment underlying the invention of the present invention. In FIG. 5, I indicates a liquid-liquid interface formed by water and a silicon solvent, and due to the relationship of specific gravity, water is indicated at the bottom and silicon solvent is indicated at the top, and II in FIG. 5 is a liquid-liquid interface. Shows the formation of nylon polymer (white).
 これは、水相のジアミンが有機溶剤相へと拡散し、二塩基酸クロライドと反応してナイロン・ポリマーを室温の液・液界面で、直ちに、形成されるものである。しかし、二塩基酸クロライドと水との反応が付随して起こり、ジカルボン酸となりナイロン・ポリマーの形成を阻害する結果となり、それ故に、液・液界面重合方法の実用化を阻害していた。 This is because the diamine of the aqueous phase diffuses into the organic solvent phase and reacts with the dibasic acid chloride to immediately form a nylon polymer at the liquid-liquid interface at room temperature. However, the reaction between the dibasic acid chloride and water occurs concomitantly and becomes a dicarboxylic acid, which results in inhibiting the formation of a nylon polymer, and therefore hinders the practical application of the liquid-liquid interfacial polymerization method.
 この問題を解決するために、特許文献5,6では、毛織物をジアミン水溶液に浸漬して絞り、風乾して繊維上の水分を駆除して固体表面を形成させた後、二塩基酸クロライドを含むシリコン溶剤液に浸漬して、固・液界面を形成して界面重合を行なう方法が提案されている。このような方法において、ジアミン水溶液は、獣毛繊維の加水分解を防止するため、加熱されることなく、室温(約25℃)で使用されている。 In order to solve this problem, Patent Documents 5 and 6 include dibasic acid chloride after immersing the woolen fabric in an aqueous diamine solution, squeezing it, and air-drying it to remove water on the fibers to form a solid surface. A method of immersing in a silicon solvent solution to form a solid-liquid interface and performing interfacial polymerization has been proposed. In such a method, the diamine aqueous solution is used at room temperature (about 25 ° C.) without being heated in order to prevent hydrolysis of animal hair fibers.
特公昭61-39430号公報Special Publication No. 61-39430 USA Patent,3,078,138, Patented Feb. 19,1963USA Patent, 3,078,138, Patented Feb. 19,1963 特表2002-520508号公報Special Table 2002-520508 特表2003-518426号公報Special Table 2003-518426 特許第5214181号公報Japanese Patent No. 5214181 特許第5629794号公報Japanese Patent No. 5629794
 しかしながら、特許文献5,6に記載のような方法を、獣毛繊維の連続体であるスライバーに対して連続的に適用すると、風乾工程が煩雑であり、防縮性獣毛繊維の製造効率が低下した。そこで、風乾工程を省略すると、耐水系洗濯性が低下し、防縮性が十分に得られなかった。 However, when the method described in Patent Documents 5 and 6 is continuously applied to a sliver which is a continuum of animal hair fibers, the air-drying process becomes complicated and the production efficiency of shrink-proof animal hair fibers is lowered. did. Therefore, if the air-drying step is omitted, the water-resistant washability is lowered, and sufficient shrinkage resistance cannot be obtained.
 本発明の目的は、獣毛繊維の特質の一つである本来の撥水性を保持しつつ、風合いやその他の特性を損なうことなく、耐水系洗濯性に十分に優れた防縮性獣毛繊維をスライバー形態で効率よく製造する方法を提供しようとするものである。
 本発明の目的は、更に、処理工程から排出される吸着性有機塩素化合物(AOX)の流出がなく、加えて、獣毛繊維内に残留塩素物質を含まない防縮性獣毛繊維の製造方法を提供しようとするものである。
An object of the present invention is to provide a shrink-proof animal hair fiber having sufficiently excellent water resistance and washability without impairing the texture and other characteristics while maintaining the original water repellency which is one of the characteristics of the animal hair fiber. It is intended to provide a method for efficiently manufacturing in the form of a sliver.
An object of the present invention is further to provide a method for producing shrink-proof animal hair fiber, which does not cause the outflow of adsorptive organic chlorine compound (AOX) discharged from the treatment step and does not contain residual chlorine substance in the animal hair fiber. It is what we are trying to provide.
 本発明は、獣毛繊維の連続体であるスライバーを、30~45℃のアルカリ剤含有ジアミン水溶液に浸漬してジアミンが付着した状態で、二塩基酸クロライドを溶解したシリコン溶剤に浸漬して、ポリアミドを獣毛繊維表面に被覆することを特徴とする、防縮性獣毛繊維の製造方法に関する。 In the present invention, a sliver, which is a continuum of animal hair fibers, is immersed in an alkaline agent-containing diamine aqueous solution at 30 to 45 ° C., and in a state where diamine is attached, the sliver is immersed in a silicon solvent in which dibasic acid chloride is dissolved. The present invention relates to a method for producing shrink-proof animal hair fiber, which comprises coating the surface of animal hair fiber with polyamide.
 本発明者等は、上記課題の解決のために鋭意研究を重ねてきた結果、本発明に到達した。即ち、本発明においては、獣毛繊維のスライバーを、加温したアルカリ剤含有ジアミン水溶液に浸漬して絞り、環境破壊や作業環境の悪化を引き起こさないシリコン溶剤に二塩基酸クロライドを溶解した溶液に浸漬することにより、液/液界面での界面重合による繊維表面へのポリアミドの形成を行う。その後の好ましい実施態様においては、獣毛繊維スライバーに付着したシリコン溶剤を乾燥蒸発させて溶剤回収することなく、当該スライバーをギ酸水溶液に直ちに浸漬してオリゴマーを駆除し、中和・水洗を行い、乾燥する。一方、獣毛繊維トップスライバーに付着したシリコン溶剤は、水洗処理後の廃液の比重差による分離方法で回収する。獣毛繊維にポリマー処理する際、表面のクリーン性が非常に重要な要因であるが、近年のトップスライバーは、大量生産低コスト方式のため、獣毛繊維の原毛洗いは、問題が多く、残脂量、繊維のpH、泥砂等の夾雑物の管理が不十分であった。本発明においては、繊維表面をクリーンにして、疎水性のポリマーを被覆することが好ましい。 The present inventors have reached the present invention as a result of repeated diligent research to solve the above problems. That is, in the present invention, the animal hair fiber sliver is immersed in a heated alkaline agent-containing diamine aqueous solution and squeezed to prepare a solution in which dibasic acid chloride is dissolved in a silicon solvent that does not cause environmental destruction or deterioration of the working environment. By immersing, polyamide is formed on the fiber surface by interfacial polymerization at the liquid / liquid interface. In a subsequent preferred embodiment, the silicon solvent adhering to the animal hair fiber sliver is not dried and evaporated to recover the solvent, but the sliver is immediately immersed in a formic acid aqueous solution to remove oligomers, neutralized and washed with water. dry. On the other hand, the silicon solvent adhering to the animal hair fiber top sliver is recovered by a separation method based on the difference in specific gravity of the waste liquid after the washing treatment. Surface cleanliness is a very important factor when polymerizing animal hair fibers, but since top slivers in recent years are mass-produced and low-cost methods, washing raw hair of animal hair fibers has many problems and remains. Insufficient control of impurities such as fat content, fiber pH, and mud and sand. In the present invention, it is preferable to clean the fiber surface and coat it with a hydrophobic polymer.
 本発明によれば、獣毛繊維の本来の撥水性能を損なうことなく、疎水性のポリマーで処理することによって優れた防縮性を付与することが出来る。空気は疎水性であり、本発明の方法に従って処理された獣毛繊維は強固な疎水性を示し、その結果、獣毛繊維間の微小空気層を強く保持するために、本発明は、保温性が高く、かつ、撥水性のある獣毛繊維製品を提供することが可能である。又、本発明は、工程処理中に、吸着性有機塩素化合物を流出しない、繊維内に残留塩素化合物を含まない、環境に優しい防縮性獣毛繊維スライバーの連続的製造方法を提供する。 According to the present invention, excellent shrink resistance can be imparted by treating with a hydrophobic polymer without impairing the original water repellency of animal hair fibers. The air is hydrophobic and the animal hair fibers treated according to the method of the present invention exhibit strong hydrophobicity, and as a result, the present invention retains heat in order to strongly retain the microair layer between the animal hair fibers. It is possible to provide animal hair fiber products having high water repellency and high water repellency. The present invention also provides a method for continuously producing an environment-friendly shrink-proof animal hair fiber sliver that does not allow adsorbent organochlorine compounds to flow out during process treatment and does not contain residual chlorine compounds in the fibers.
本発明の製造方法により製造された防縮性獣毛繊維の表面を倍率400倍で光学顕微鏡観察したときの顕微鏡写真である。It is a micrograph when the surface of the shrink-proof animal hair fiber produced by the production method of this invention was observed with an optical microscope at a magnification of 400 times. 本発明の製造方法を実施するための装置を示す模式図である。It is a schematic diagram which shows the apparatus for carrying out the manufacturing method of this invention. 疎水性の羊毛表面に水溶性のハーコセット樹脂を被覆したときの、処理後の羊毛繊維を示す写真である。It is a photograph which shows the wool fiber after the treatment when the hydrophobic wool surface was coated with the water-soluble harcoset resin. 繊維間で接着が起こったときの、羊毛繊維の表面状態を示す電子顕微鏡写真である(倍率1000倍)。It is an electron micrograph (magnification 1000 times) which shows the surface state of a wool fiber when adhesion occurs between fibers. 本発明の考案の基礎となる実験を示し、 I は、水とシリコン溶剤とで形成される液・液界面を示し、II は、液・液界面でのポリアミド(白色)の形成を示す。The experiment underlying the invention of the present invention is shown, where I indicates the liquid-liquid interface formed by water and a silicon solvent, and II indicates the formation of polyamide (white) at the liquid-liquid interface.
 本発明は、1963年、アメリカ農工務省のWestern Regional Research Laboratory (WRRL)が発表した界面重合方法を改良し、鋭意研究した結果、到達した防縮性獣毛繊維の製造方法に関する方法である。詳しくは、環境規制のないシリコン溶剤を用いて、獣毛繊維(特に羊毛繊維)表面上に合成高分子を合成し、当該高分子で、獣毛繊維表面全体を網状(図1参照)に、獣毛繊維一本一本ごとに被覆する。これにより、完全な防縮性を獣毛繊維に付与することに成功し、現在の羊毛繊維業界の最大の問題を解決しようとするものである。図1は、本発明の製造方法により製造された防縮性獣毛繊維の表面を倍率400倍で光学顕微鏡観察したときの顕微鏡写真である。 The present invention is a method relating to a method for producing shrink-proof animal hair fiber, which was achieved as a result of diligent research by improving the interfacial polymerization method announced by the Western Regional Research Laboratory (WRRL) of the US Department of Agriculture and Industry in 1963. Specifically, a synthetic polymer is synthesized on the surface of animal hair fibers (particularly wool fibers) using a silicon solvent without environmental regulations, and the entire surface of the animal hair fibers is reticulated (see FIG. 1) with the polymer. Cover each animal hair fiber one by one. As a result, we have succeeded in imparting complete shrinkage resistance to animal hair fibers, and are trying to solve the biggest problem in the current wool fiber industry. FIG. 1 is a photomicrograph of the surface of shrink-proof animal hair fibers produced by the production method of the present invention when observed with an optical microscope at a magnification of 400 times.
(ジアミン水溶液への浸漬工程)
 本発明の獣毛繊維の製造方法においては、獣毛繊維のスライバーを、所定温度のアルカリ剤含有ジアミン水溶液に浸漬して、ジアミンを付着させる。
(Immersion step in diamine aqueous solution)
In the method for producing animal hair fiber of the present invention, the animal hair fiber sliver is immersed in an alkaline agent-containing diamine aqueous solution at a predetermined temperature to attach diamine.
 本発明における獣毛繊維とは、羊毛、カシミヤ、モヘア、アンゴラ、キャメル等からなる群から選択される1種以上の天然ケラチン質繊維を意味する。スライバーとは、撚りがかかっていない篠状に並べられた繊維束のことであり、通常は数百メートル以上の長さを有する連続形態の繊維集団である。スライバーは、いわゆる洗浄処理、カード処理、ギル処理、コーミング処理、から選択される1つ以上の処理が行われたものであってもよい。洗浄処理は、獣毛繊維表面の油脂および泥・砂等の夾雑物を駆除(または除去)することを目的として行われる処理である。カード処理は、獣毛繊維をほぐして連続した繊維束にすることを目的として行われる処理である。ギル処理は、繊維束を引き揃えて均一にすることを目的として行われる処理である。コーミング処理は、繊維束の中の短い繊維や夾雑物を除去し、さらに繊維を平行に引き揃えることを目的として行われる処理である。本発明においては、繊維表面へのポリアミドの被覆の観点から、スライバーは洗浄されていることが好ましい。詳しくは、スライバーの油脂残量は、特に限定されないが、繊維表面へのポリアミドの被覆の観点から、例えば、通常0.8%owf 以下(特に0.3~0.8%owf)であることが好ましく、より好ましくは0.3~0.5%owfである。 The animal hair fiber in the present invention means one or more kinds of natural keratinous fibers selected from the group consisting of wool, cashmere, mohair, angora, camel and the like. A sliver is a bundle of fibers arranged in a straight line without twisting, and is usually a continuous fiber group having a length of several hundred meters or more. The sliver may have been subjected to one or more treatments selected from so-called cleaning treatments, card treatments, gil treatments, and combing treatments. The cleaning treatment is a treatment performed for the purpose of removing (or removing) oils and fats on the surface of animal hair fibers and impurities such as mud and sand. The card treatment is a treatment performed for the purpose of loosening animal hair fibers into a continuous fiber bundle. The gil treatment is a treatment performed for the purpose of aligning and making the fiber bundles uniform. The combing treatment is a treatment performed for the purpose of removing short fibers and impurities in the fiber bundle and further aligning the fibers in parallel. In the present invention, the sliver is preferably washed from the viewpoint of coating the fiber surface with polyamide. Specifically, the remaining amount of fat and oil of the sliver is not particularly limited, but from the viewpoint of coating the fiber surface with polyamide, for example, it is usually 0.8% owf or less (particularly 0.3 to 0.8% owf). Is preferable, and more preferably 0.3 to 0.5% owf.
 獣毛繊維のスライバーは、市場から、いわゆるトップスライバーを購入することにより入手してもよい。獣毛繊維のスライバーは、市場から購入したものを洗浄処理して用いてもよい。 Animal hair fiber sliver may be obtained by purchasing a so-called top sliver from the market. The animal hair fiber sliver may be purchased from the market and washed before use.
 好ましい実施態様においては、獣毛繊維トップスライバーをバックウォッシャーを用いて、油脂残量を0.4~0.8%owf (洗浄処理前は、1.3%owf)、pHを7.0程度とし、かつ泥および砂等を完全に駆除し、乾燥処理後のトップスライバーを用いる。 In a preferred embodiment, the animal hair fiber top sliver is used with a back washer to reduce the remaining amount of fat and oil to 0.4 to 0.8% owf (1.3% owf before the washing treatment) and pH to be about 7.0. And completely remove mud, sand, etc., and use the top sliver after drying treatment.
 獣毛繊維のスライバーの単位長さあたりの質量は通常、10~40g/m、特に20~30g/mである。 The mass of animal hair fiber sliver per unit length is usually 10 to 40 g / m, particularly 20 to 30 g / m.
 獣毛繊維のスライバーは、他繊維を混合して使用されてよい。他繊維との混合使用として、ポリエステル、アクリル、ナイロン、アラミド、塩化ビニール等の合成繊維や絹、綿、麻、レーヨン等の再生セルロース繊維が含まれてもよい。 Animal hair fiber sliver may be used by mixing other fibers. For mixed use with other fibers, synthetic fibers such as polyester, acrylic, nylon, aramid and vinyl chloride and regenerated cellulose fibers such as silk, cotton, linen and rayon may be included.
 ジアミン水溶液は、30~45℃の温度を有し、かつアルカリ剤を含有する。獣毛繊維(特に羊毛繊維)は、水温によって、「スケール」の立ち上がりの程度が異なる。例えば、「冷水」では、「スケール」の立ち上がりはない。また例えば、温水 (40℃)では立ち上がりが見られ、獣毛繊維内部に水が浸透する。また例えば、水蒸気(100℃)は、容易に、獣毛繊維内部に浸透拡散する。このため、アミンの吸収は処理温度に依存している。本発明では、ジアミン水溶液の温度を上記温度にすることにより、獣毛繊維の「スケール」が立ち上がり、濃度の高いジアミンの取り込みが起こり、その表皮層に濃度の高いジアミン相を形成する。そのため、次工程で、シリコン溶剤に溶解した二塩基酸クロリドが当該ジアミン相を攻撃して界面重合反応が成立することを見出した。また、獣毛繊維のスライバーを連続的に防縮加工処理することが可能となることを見出した。それらの結果、図1に示す様に、獣毛単繊維、一本一本にナイロン被膜を網状かつ均一に被覆することが出来た。ジアミン水溶液の温度が低過ぎると、ジアミン水溶液の獣毛繊維への浸透が抑制されるため、当該繊維の表面でのジアミンの吸着量は少なく、二塩基酸クロリドとの界面重合反応が制限される。その結果、ポリアミドの被覆生成量は少なく、耐水系洗濯性が低下する。これに対して、ジアミンの吸収量を増やすために、ジアミン水溶液の温度を上げ過ぎると、獣毛繊維(特に羊毛繊維)の加水分解が起きる。 The diamine aqueous solution has a temperature of 30 to 45 ° C. and contains an alkaline agent. Animal hair fibers (particularly wool fibers) have different degrees of "scale" rise depending on the water temperature. For example, in "cold water", there is no rise in "scale". Further, for example, in warm water (40 ° C.), a rise is seen, and water permeates into the animal hair fiber. Further, for example, water vapor (100 ° C.) easily permeates and diffuses inside the animal hair fiber. Therefore, the absorption of amines depends on the treatment temperature. In the present invention, by setting the temperature of the diamine aqueous solution to the above temperature, the "scale" of the animal hair fiber rises, the uptake of high-concentration diamine occurs, and a high-concentration diamine phase is formed in the epidermis layer. Therefore, in the next step, it was found that the dibasic acid chloride dissolved in the silicon solvent attacks the diamine phase and the interfacial polymerization reaction is established. It was also found that the animal hair fiber sliver can be continuously shrink-proofed. As a result, as shown in FIG. 1, it was possible to uniformly coat the animal hair single fibers with a nylon coating in a net-like manner. If the temperature of the diamine aqueous solution is too low, the permeation of the diamine aqueous solution into the animal hair fibers is suppressed, so that the amount of diamine adsorbed on the surface of the fibers is small and the interfacial polymerization reaction with the dibasic acid chloride is limited. .. As a result, the amount of polyamide coating produced is small, and the water resistance system washability is lowered. On the other hand, if the temperature of the diamine aqueous solution is raised too much in order to increase the amount of diamine absorbed, animal hair fibers (particularly wool fibers) are hydrolyzed.
 獣毛繊維(特に羊毛繊維)は、両性のタンパク質であり、酸性アミノ酸、塩基性アミノ酸,中性アミノ酸から構成されている。ジアミン水溶液中のジアミンは、獣毛繊維のカルボキシル残基を持つ酸性アミノ酸や脂質に吸着される。更に、ジアミン水溶液を上記温度まで昇温し、かつ後述のようにジアミン水溶液にアルカリ剤を加える。これらの結果、獣毛繊維へのジアミンの吸収と、次工程の二塩基酸クロライドの加水分解による塩酸の駆除とが促進される。このため、次工程において、ポリアミドが獣毛繊維表面に均一に被覆されるものと考えられる。 Animal hair fiber (especially wool fiber) is an amphoteric protein and is composed of acidic amino acids, basic amino acids, and neutral amino acids. Diamine in an aqueous diamine solution is adsorbed on acidic amino acids and lipids having carboxyl residues in animal hair fibers. Further, the temperature of the diamine aqueous solution is raised to the above temperature, and an alkaline agent is added to the diamine aqueous solution as described later. As a result, the absorption of diamine into animal hair fibers and the extermination of hydrochloric acid by hydrolysis of dibasic acid chloride in the next step are promoted. Therefore, it is considered that the polyamide is uniformly coated on the surface of the animal hair fiber in the next step.
 ジアミン水溶液の温度は、防縮性、風合いおよび撥水性のさらなる向上の観点から、好ましくは35~45℃であり、より好ましくは36~44℃であり、さらに好ましくは38~42℃であり、最も好ましくは39~41℃である。ジアミン水溶液が上記した好ましい範囲の温度を有するときに、防縮性、風合いおよび撥水性がさらに向上する現象の詳細は明らかではないが、以下のメカニズムに基づくものと考えられる。すなわち、獣毛繊維を有する獣(特に羊)の体温は通常、約39~40℃であり、この温度に近づくほど、獣毛繊維における上記した「スケール」の立ち上がり効果が高くなるため、ポリアミドが獣毛繊維表面に、より細かな網状にかつより均一に被覆される。その結果、防縮性、風合いおよび撥水性がさらに向上する。 The temperature of the diamine aqueous solution is preferably 35 to 45 ° C., more preferably 36 to 44 ° C., still more preferably 38 to 42 ° C., most preferably, from the viewpoint of further improving shrinkage resistance, texture and water repellency. It is preferably 39 to 41 ° C. The details of the phenomenon in which the shrinkage resistance, texture and water repellency are further improved when the diamine aqueous solution has a temperature in the above-mentioned preferable range are not clear, but it is considered to be based on the following mechanism. That is, the body temperature of an animal having animal hair fibers (particularly sheep) is usually about 39 to 40 ° C., and the closer to this temperature, the higher the rising effect of the above-mentioned "scale" on animal hair fibers. The surface of animal hair fibers is coated in a finer mesh and more uniformly. As a result, shrinkage resistance, texture and water repellency are further improved.
 本発明で用いるジアミン水溶液中のジアミンは通常、水溶性ジアミンである。水溶性ジアミンとしては、エチレンジアミン、トリメチレンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン、オクタメチレンジアミン等の脂肪族ジアミン;およびパラフェニレンジアミン、メタフェニレンジアミン、パラキシレンジアミン、メタキシレンジアミン等の芳香族ジアミンが挙げられる。ジアミンは、特にこれらに限定されるものではなく、又、これらのジアミン2種以上を組み合わせて使用してもよい。好ましいジアミンは脂肪族ジアミン、特にヘキサメチレンジアミンである。 The diamine in the diamine aqueous solution used in the present invention is usually a water-soluble diamine. Examples of the water-soluble diamine include aliphatic diamines such as ethylenediamine, trimethylenediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, and octamethylenediamine; and paraphenylenediamine, metaphenylenediamine, paraxylenediamine, and metaxylenediamine. Aromatic diamines can be mentioned. The diamine is not particularly limited to these, and two or more of these diamines may be used in combination. Preferred diamines are aliphatic diamines, especially hexamethylenediamine.
 ジアミン水溶液におけるジアミンの濃度は特に限定されず、通常は、0.01~0.7mol/Lであり、防縮性、風合いおよび撥水性のさらなる向上の観点から、好ましくは0.02~0.15mol/L、より好ましくは0.03~0.08mol/Lである。ジアミン水溶液におけるジアミンの濃度は、ジアミン水溶液全量に対する濃度である。 The concentration of diamine in the diamine aqueous solution is not particularly limited, and is usually 0.01 to 0.7 mol / L, preferably 0.02 to 0.15 mol from the viewpoint of further improving shrinkage resistance, texture and water repellency. / L, more preferably 0.03 to 0.08 mol / L. The concentration of diamine in the diamine aqueous solution is the concentration with respect to the total amount of the diamine aqueous solution.
 ジアミン水溶液はアルカリ剤を含み、さらに浸透剤等の添加剤を含んでもよい。 The diamine aqueous solution contains an alkaline agent and may further contain an additive such as a penetrant.
 アルカリ剤は、ジアミンと二塩基酸クロライドとが反応して生成される塩酸を駆除(すなわち除去)するために使用される。ジアミン水溶液がアルカリ剤を含まない場合、塩酸が駆除されないため、ポリアミドの形成が阻害され、結果として防縮性が低下する。アルカリ剤としては、塩酸を中和し得る物質であれば特に限定されない。アルカリ剤の具体例として、例えば、水酸化ナトリウム、炭酸ナトリウム、珪酸ナトリウム、水酸化カリウム等が挙げられる。ジアミン水溶液中におけるアルカリ剤の濃度は特に限定されず、通常は、0.01~0.7mol/Lであり、防縮性、風合いおよび撥水性のさらなる向上の観点から、好ましくは0.02~0.15mol/L、より好ましくは0.03~0.08mol/Lである。アルカリ剤の濃度は、獣毛繊維への黄変等を考慮して、出来るだけ低い方がよい。 The alkaline agent is used to exterminate (that is, remove) hydrochloric acid produced by the reaction of diamine and dibasic acid chloride. When the diamine aqueous solution does not contain an alkaline agent, hydrochloric acid is not exterminated, so that the formation of polyamide is inhibited, and as a result, the shrinkage resistance is lowered. The alkaline agent is not particularly limited as long as it is a substance capable of neutralizing hydrochloric acid. Specific examples of the alkaline agent include sodium hydroxide, sodium carbonate, sodium silicate, potassium hydroxide and the like. The concentration of the alkaline agent in the diamine aqueous solution is not particularly limited, and is usually 0.01 to 0.7 mol / L, preferably 0.02 to 0 from the viewpoint of further improving shrinkage resistance, texture and water repellency. It is .15 mol / L, more preferably 0.03 to 0.08 mol / L. The concentration of the alkaline agent should be as low as possible in consideration of yellowing of animal hair fibers and the like.
 浸透剤は、ジアミンの獣毛繊維への浸透を促進するために使用される。浸透剤の具体例として、例えば、ポリオキシアルキレンアルキルエーテル等の非イオン系界面活性剤等が挙げられる。このような非イオン系界面活性剤は、例えば、市販の松本油脂製薬(株)製SSK630(ポリオキシアルキレンアルキルエーテル)等として入手可能である。ジアミン水溶液中における浸透剤の濃度は特に限定されず、通常は、0.1~2.0%soln.であり、防縮性、風合いおよび撥水性のさらなる向上の観点から、好ましくは0.5~1.5%soln.、より好ましくは0.8~1.2%soln.である。「%soln.」は体積割合に基づく単位である。 Penetrants are used to promote the penetration of diamines into animal hair fibers. Specific examples of the penetrant include nonionic surfactants such as polyoxyalkylene alkyl ethers and the like. Such a nonionic surfactant is available as, for example, commercially available SSK630 (polyoxyalkylene alkyl ether) manufactured by Matsumoto Yushi Pharmaceutical Co., Ltd. The concentration of the penetrant in the diamine aqueous solution is not particularly limited, and is usually 0.1 to 2.0% soln. From the viewpoint of further improving shrinkage resistance, texture and water repellency, it is preferably 0.5 to 2.0%. It is 1.5% soln., More preferably 0.8 to 1.2% soln. "% Soln." Is a unit based on the volume ratio.
 スライバーとジアミン水溶液との接触時間は、次工程で獣毛繊維表面にポリアミドが形成される限り特に限定されず、通常は1秒間~10分間であり、防縮性、風合いおよび撥水性のさらなる向上と製造効率とのバランスの観点から、好ましくは2秒間~5分間であり、より好ましくは5秒間~3分間、さらに好ましくは10秒間~3分間、特に好ましくは20秒間~3分間、十分に好ましくは30秒間~3分間、最も好ましくは1.5分間~3分間である。スライバーとジアミン水溶液との接触時間は、後述する稼働速度を調整することにより、制御することができる。 The contact time between the sliver and the diamine aqueous solution is not particularly limited as long as the polyamide is formed on the surface of the animal hair fiber in the next step, and is usually 1 second to 10 minutes, further improving the shrinkage resistance, texture and water repellency. From the viewpoint of the balance with the production efficiency, it is preferably 2 seconds to 5 minutes, more preferably 5 seconds to 3 minutes, further preferably 10 seconds to 3 minutes, particularly preferably 20 seconds to 3 minutes, sufficiently preferably. 30 seconds to 3 minutes, most preferably 1.5 minutes to 3 minutes. The contact time between the sliver and the diamine aqueous solution can be controlled by adjusting the operating speed described later.
 本工程において、スライバーをジアミン水溶液に浸漬した後は、通常、絞り処理に付す。絞り処理方法は、スライバー内に含まれる過剰な液体を絞り出すことができる方法であれば特に限定されず、例えば、マングルを用いる方法が挙げられる。絞り率は特に限定されず、通常は50~90%であり、好ましくは60~90%であり、より好ましくは70~90%である。絞り率とは、スライバーに付着した液体分の質量をx、スライバーの質量をyとしたとき、{x/(x+y)}×100(%)で表される値である。以下の工程における絞り率も同様である。 In this step, after immersing the sliver in the diamine aqueous solution, it is usually subjected to drawing treatment. The drawing treatment method is not particularly limited as long as it can squeeze out the excess liquid contained in the sliver, and examples thereof include a method using a mangle. The aperture ratio is not particularly limited, and is usually 50 to 90%, preferably 60 to 90%, and more preferably 70 to 90%. The drawing ratio is a value represented by {x / (x + y)} × 100 (%), where x is the mass of the liquid adhering to the sliver and y is the mass of the sliver. The same applies to the drawing ratio in the following steps.
(二塩基酸クロライド溶液への浸漬工程)
 ジアミンが付着したスライバーを、二塩基酸クロライドを溶解したシリコン溶剤(すなわち二塩基酸クロライド溶液)に浸漬して、ポリアミドを獣毛繊維表面に被覆する。
(Immersion step in dibasic acid chloride solution)
The sliver to which the diamine is attached is immersed in a silicon solvent in which dibasic acid chloride is dissolved (that is, a dibasic acid chloride solution) to coat the surface of the animal hair fiber with polyamide.
 本工程で使用される溶剤は、第一条件として、法的規制を受けない環境に優しい溶剤(すなわち環境保全のための法規制対象でない溶剤)であることが必要である。本工程で使用される溶剤は、第二条件として水と混入しない(Water Immiscible)溶剤であることが必要であり、それによって液・液界面が形成される。本工程で使用される溶剤は、第三条件として溶剤が不活性であることが必要である。これらの条件に適合する溶剤として、シリコン溶剤、特にシリコーン溶剤が使用される。シリコン溶剤の具体例として、例えば、三菱重工産業機器(株)社製の直鎖状シリコン(特に直鎖状シリコーン)、即ち、デカメチルテトラシロキサン、およびグリーン・アース社製の環状シリコン(特に環状シリコーン)、即ち、オクタメチル-シクロテトラシロキサン(テトラマー)、デカメチル-シクロペンタシロキサン(ペンタマー)およびドデカメチル-シクロヘキサシロキサン(ヘキサマー)が挙げられる。従って、好ましい溶剤としては、シリコーン溶剤(特にシロキサン溶剤)であり、直鎖状または環状シリコーン(特に直鎖状または環状シロキサン)が例示される。より好ましい溶剤は、直鎖状または環状シロキサン類である。特に好ましくは、三菱重工産業機器(株)社製のダイヤシリコーンが挙げられる。 As a first condition, the solvent used in this process must be an environmentally friendly solvent that is not subject to legal restrictions (that is, a solvent that is not subject to legal regulations for environmental protection). As a second condition, the solvent used in this step needs to be a solvent that is immiscible with water, thereby forming a liquid-liquid interface. The solvent used in this step needs to be inert as a third condition. As a solvent suitable for these conditions, a silicon solvent, particularly a silicone solvent is used. Specific examples of the silicon solvent include linear silicon (particularly linear silicone) manufactured by Mitsubishi Heavy Industries Industrial Equipment Co., Ltd., that is, decamethyltetrasiloxane, and cyclic silicon manufactured by Green Earth Co., Ltd. (particularly cyclic). Silicone), ie, octamethyl-cyclotetrasiloxane (tetramer), decamethyl-cyclopentasiloxane (pentamer) and dodecamethyl-cyclohexasiloxane (hexamar). Therefore, the preferred solvent is a silicone solvent (particularly a siloxane solvent), and examples thereof include linear or cyclic silicones (particularly linear or cyclic siloxane). More preferred solvents are linear or cyclic siloxanes. Particularly preferred is diamond silicone manufactured by Mitsubishi Heavy Industries Industrial Equipment Co., Ltd.
 本発明で使用する二塩基酸クロライドとしては、コハク酸クロライド、アジピン酸クロライド、ピメリン酸クロライド、スベリン酸クロライド、アゼライン酸クロライド、セバチン酸クロライド、シクロヘキサンジカルボン酸クロライド等の脂肪族ジカルボン酸クロライド;テレフタル酸クロライド、イソフタル酸クロライド、オルソフタル酸クロライド等の芳香族ジカルボン酸クロライド;およびヘキサンディオールビスクロロフォルメイト、デカンディオールビスクロロフォルメイト等のビスクロロフォルメイトが挙げられる。二塩基酸クロライドは、特にこれらに限定されるものではなく、又、これらの二塩基酸クロライド2種以上を組み合わせて使用してもよい。二塩基酸クロライドは通常、2つのカルボキシル基に由来の2つのヒドロキシル基のうち、少なくとも1つのヒドロキシル基が塩素原子により置換されていればよいが、好ましくは2つのヒドロキシル基が塩素原子により置換されている。好ましい二塩基酸クロライドは脂肪族ジカルボン酸クロライド、特にセバチン酸二塩化物である。 Examples of the dibasic acid chloride used in the present invention include aliphatic dicarboxylic acid chlorides such as succinic acid chloride, adipic acid chloride, pimelic acid chloride, suberic acid chloride, azelaic acid chloride, sebatic acid chloride, and cyclohexanedicarboxylic acid chloride; terephthalic acid. Aromatic dicarboxylic acid chlorides such as chloride, isophthalic acid chloride, orthophthalic acid chloride; and bischloroformates such as hexanediol bischloroformate and decandiol bischloroformate. The dibasic acid chloride is not particularly limited to these, and two or more of these dibasic acid chlorides may be used in combination. The dibasic acid chloride usually requires that at least one hydroxyl group out of two hydroxyl groups derived from two carboxyl groups is substituted with a chlorine atom, but preferably two hydroxyl groups are substituted with a chlorine atom. ing. Preferred dibasic acid chlorides are aliphatic dicarboxylic acid chlorides, especially sebatic acid dichloride.
 シリコン溶剤(すなわち二塩基酸クロライド溶液)における二塩基酸クロライドの濃度は特に限定されず、通常は、0.01~0.7mol/Lであり、防縮性、風合いおよび撥水性のさらなる向上の観点から、好ましくは0.02~0.15mol/L、より好ましくは0.03~0.08mol/Lである。シリコン溶剤における二塩基酸クロライドの濃度は、シリコン溶剤と二塩基酸クロライドとの全量(すなわち二塩基酸クロライド溶液全量)に対する濃度である。 The concentration of dibasic acid chloride in the silicon solvent (that is, dibasic acid chloride solution) is not particularly limited, and is usually 0.01 to 0.7 mol / L, from the viewpoint of further improving shrinkage resistance, texture and water repellency. Therefore, it is preferably 0.02 to 0.15 mol / L, and more preferably 0.03 to 0.08 mol / L. The concentration of dibasic acid chloride in the silicon solvent is the concentration with respect to the total amount of the silicon solvent and the dibasic acid chloride (that is, the total amount of the dibasic acid chloride solution).
 シリコン溶剤(すなわち二塩基酸クロライド溶液)は水吸収剤(例えば、モレキュラー・シーブ4A1/8(Molecular Sieve))等の添加剤をさらに含んでもよい。 The silicon solvent (that is, the dibasic acid chloride solution) may further contain an additive such as a water absorbent (for example, Molecular Sieve 4A1 / 8 (Molecular Sieve)).
 シリコン溶剤(すなわち二塩基酸クロライド溶液)の温度は、特に限定されず、防縮性、風合いおよび撥水性のさらなる向上と製造効率とのバランスの観点から、好ましくは室温(例えば15~25℃)である。 The temperature of the silicon solvent (that is, the dibasic acid chloride solution) is not particularly limited, and is preferably room temperature (for example, 15 to 25 ° C.) from the viewpoint of further improving the shrinkage resistance, texture and water repellency and the balance between production efficiency. is there.
 スライバーとシリコン溶剤(すなわち二塩基酸クロライド溶液)との接触時間は、本工程で獣毛繊維表面にポリアミドが形成される限り特に限定されず、通常は1秒間~1分間であり、防縮性、風合いおよび撥水性のさらなる向上と製造効率とのバランスの観点から、好ましくは1~30秒間であり、より好ましくは5~20秒間である。スライバーとシリコン溶剤(すなわち二塩基酸クロライド溶液)との接触時間は、後述する稼働速度を調整することにより、制御することができる。 The contact time between the sliver and the silicon solvent (that is, the dibasic acid chloride solution) is not particularly limited as long as polyamide is formed on the surface of the animal hair fiber in this step, and is usually 1 second to 1 minute, and is shrink-proof. From the viewpoint of further improving the texture and water repellency and the balance between the production efficiency, it is preferably 1 to 30 seconds, and more preferably 5 to 20 seconds. The contact time between the sliver and the silicon solvent (that is, the dibasic acid chloride solution) can be controlled by adjusting the operating speed described later.
 本工程において、スライバーをシリコン溶剤(すなわち二塩基酸クロライド溶液)に浸漬した後は、通常、絞り処理に付す。絞り処理方法は、ジアミン水溶液への浸漬工程における絞り処理方法と同様の方法が使用され、例えば、マングルを用いる方法が使用される。絞り率は特に限定されず、通常は50~90%であり、好ましくは60~90%であり、より好ましくは70~90%である。 In this step, after immersing the sliver in a silicon solvent (that is, a dibasic acid chloride solution), it is usually subjected to drawing treatment. As the drawing treatment method, the same method as the drawing treatment method in the diamine aqueous solution dipping step is used, and for example, a method using a mangle is used. The aperture ratio is not particularly limited, and is usually 50 to 90%, preferably 60 to 90%, and more preferably 70 to 90%.
(他の工程)
 二塩基酸クロライド溶液への浸漬工程を終えた後は、特に限定されず、通常乾燥工程を行う。本発明においては、乾燥工程までの間に、水洗工程、酸洗浄工程、柔軟処理工程を行ってもよい。好ましい実施態様においては、二塩基酸クロライド溶液への浸漬工程を終えた後、第1水洗工程、酸洗浄工程、第2水洗工程、柔軟処理工程および乾燥工程を順次、行う。特に酸洗浄工程を行うことにより、獣毛繊維間に余分なポリアミドが生成している場合、当該余分なポリアミドを駆除することができる。
(Other processes)
After the dipping step in the dibasic acid chloride solution is completed, the drying step is usually carried out without particular limitation. In the present invention, a water washing step, an acid washing step, and a softening treatment step may be performed before the drying step. In a preferred embodiment, after the dipping step in the dibasic acid chloride solution is completed, the first water washing step, the acid washing step, the second water washing step, the softening treatment step and the drying step are sequentially performed. In particular, when an excess polyamide is formed between the animal hair fibers by performing an acid cleaning step, the excess polyamide can be removed.
・第1水洗工程
 第1水洗工程においては、スライバーを水に浸漬することにより、繊維表面にあるジアミン成分、二塩基酸クロライド成分およびアルカリ剤成分を駆除する。本工程においては、二塩基酸クロライド溶液への浸漬工程で形成されたオリゴマーも駆除されてもよい。
-First water washing step In the first water washing step, the diamine component, the dibasic acid chloride component and the alkaline agent component on the fiber surface are removed by immersing the sliver in water. In this step, the oligomer formed in the step of dipping in the dibasic acid chloride solution may also be exterminated.
 第1水洗工程における水の温度は、特に限定されず、防縮性、風合いおよび撥水性のさらなる向上と製造効率とのバランスの観点から、好ましくは室温(例えば15~25℃)である。 The temperature of water in the first washing step is not particularly limited, and is preferably room temperature (for example, 15 to 25 ° C.) from the viewpoint of further improving shrinkage resistance, texture and water repellency and balancing production efficiency.
 第1水洗工程におけるスライバーと水との接触時間は、上記した駆除が達成される限り特に限定されず、通常は1秒間~1分間であり、防縮性、風合いおよび撥水性のさらなる向上と製造効率とのバランスの観点から、好ましくは5~40秒間であり、より好ましくは10~30秒間である。スライバーと水との接触時間は、後述する稼働速度を調整することにより、制御することができる。 The contact time between the sliver and water in the first washing step is not particularly limited as long as the above-mentioned extermination is achieved, and is usually 1 second to 1 minute, further improving shrinkage resistance, texture and water repellency, and manufacturing efficiency. From the viewpoint of the balance with the above, it is preferably 5 to 40 seconds, more preferably 10 to 30 seconds. The contact time between the sliver and water can be controlled by adjusting the operating speed described later.
 第1水洗工程において、スライバーを水に浸漬した後は、通常、絞り処理に付す。絞り処理方法は、ジアミン水溶液への浸漬工程における絞り処理方法と同様の方法が使用され、例えば、マングルを用いる方法が使用される。絞り率は特に限定されず、通常は50~90%であり、好ましくは60~90%であり、より好ましくは70~90%である。 In the first washing step, after immersing the sliver in water, it is usually subjected to squeezing treatment. As the drawing treatment method, the same method as the drawing treatment method in the diamine aqueous solution dipping step is used, and for example, a method using a mangle is used. The aperture ratio is not particularly limited, and is usually 50 to 90%, preferably 60 to 90%, and more preferably 70 to 90%.
 本工程に供されるスライバーには、シリコン溶剤(すなわち二塩基酸クロライド溶液)が付着している。このため、本工程の水には、スライバーに付着していたシリコン溶剤が混合されるが、このようなシリコン溶剤は、水との比重差を利用して分離および回収することができる。詳しくは、本工程で使用される水を収容した槽内において、シリコン溶剤は水との比重差に基づいて上位に位置づけられる一方、水は下位に位置づけられる。このため、槽内の上部からシリコン溶剤を分離および回収することができる。 A silicon solvent (that is, a dibasic acid chloride solution) is attached to the sliver used in this step. Therefore, the silicon solvent adhering to the sliver is mixed with the water in this step, and such a silicon solvent can be separated and recovered by utilizing the difference in specific gravity with water. Specifically, in the tank containing the water used in this step, the silicon solvent is positioned higher based on the difference in specific gravity with water, while the water is positioned lower. Therefore, the silicon solvent can be separated and recovered from the upper part in the tank.
・酸洗浄工程
 酸洗浄工程においては、スライバーを酸水溶液に浸漬することにより、繊維表面にある、ポリアミド生成時に形成されたオリゴマーを駆除する。本工程においては、残留するジアミン成分および二塩基酸クロライド溶液への浸漬工程で過剰に形成されたポリアミドが駆除されてもよい。
-Acid cleaning step In the acid cleaning step, the oligomer formed during the formation of polyamide on the fiber surface is removed by immersing the sliver in an aqueous acid solution. In this step, the residual diamine component and the polyamide excessively formed in the dipping step in the dibasic acid chloride solution may be removed.
 酸水溶液中の酸は、特に限定されず、例えば、ギ酸等の脂肪族モノカルボン酸等が挙げられる。本工程で使用される酸は、特にこれらに限定されるものではなく、又、これらの酸2種以上を組み合わせて使用してもよい。好ましい酸は脂肪族モノカルボン酸、特にギ酸である  The acid in the aqueous acid solution is not particularly limited, and examples thereof include aliphatic monocarboxylic acids such as formic acid. The acid used in this step is not particularly limited to these, and two or more of these acids may be used in combination. Preferred acids are aliphatic monocarboxylic acids, especially formic acid.
 酸水溶液における酸の濃度は特に限定されず、通常は、0.01~10%であり、防縮性、風合いおよび撥水性のさらなる向上と製造効率とのバランスの観点から、好ましくは0.1~5%、より好ましくは0.5~2%である。ここで、濃度の単位「%」は、全量に対する体積割合のことである。 The concentration of the acid in the aqueous acid solution is not particularly limited, and is usually 0.01 to 10%, preferably 0.1 to 10% from the viewpoint of further improvement of shrinkage resistance, texture and water repellency and a balance between production efficiency. It is 5%, more preferably 0.5 to 2%. Here, the unit of concentration "%" is the volume ratio to the total amount.
 酸洗浄工程における酸水溶液の温度は、特に限定されず、防縮性、風合いおよび撥水性のさらなる向上と製造効率とのバランスの観点から、好ましくは室温(例えば15~25℃)である。 The temperature of the acid aqueous solution in the acid cleaning step is not particularly limited, and is preferably room temperature (for example, 15 to 25 ° C.) from the viewpoint of further improving shrinkage resistance, texture and water repellency, and balancing production efficiency.
 スライバーと酸水溶液との接触時間は、上記した駆除が達成される限り特に限定されず、通常は1秒間~1分間であり、防縮性、風合いおよび撥水性のさらなる向上と製造効率とのバランスの観点から、好ましくは5~40秒間であり、より好ましくは10~30秒間である。スライバーと酸水溶液との接触時間は、後述する稼働速度を調整することにより、制御することができる。 The contact time between the sliver and the aqueous acid solution is not particularly limited as long as the above-mentioned extermination is achieved, and is usually 1 second to 1 minute, which is a balance between further improvement of shrinkage resistance, texture and water repellency and production efficiency. From the viewpoint, it is preferably 5 to 40 seconds, more preferably 10 to 30 seconds. The contact time between the sliver and the acid aqueous solution can be controlled by adjusting the operating speed described later.
 酸洗浄工程において、スライバーを酸水溶液に浸漬した後は、通常、絞り処理に付す。絞り処理方法は、ジアミン水溶液への浸漬工程における絞り処理方法と同様の方法が使用され、例えば、マングルを用いる方法が使用される。絞り率は特に限定されず、通常は50~90%であり、好ましくは60~90%であり、より好ましくは70~90%である。 In the acid cleaning step, after immersing the sliver in the acid aqueous solution, it is usually subjected to drawing treatment. As the drawing treatment method, the same method as the drawing treatment method in the diamine aqueous solution dipping step is used, and for example, a method using a mangle is used. The aperture ratio is not particularly limited, and is usually 50 to 90%, preferably 60 to 90%, and more preferably 70 to 90%.
・第2水洗工程
 第2水洗工程においては、スライバーを水に浸漬することにより、繊維表面にあるジアミン成分、二塩基酸クロライド成分およびアルカリ剤成分をより十分に駆除する。
-Second water washing step In the second water washing step, the diamine component, the dibasic acid chloride component and the alkaline agent component on the fiber surface are more sufficiently removed by immersing the sliver in water.
 第2水洗工程における水の温度は、特に限定されず、防縮性、風合いおよび撥水性のさらなる向上と製造効率とのバランスの観点から、好ましくは室温(例えば15~25℃)である。 The temperature of water in the second washing step is not particularly limited, and is preferably room temperature (for example, 15 to 25 ° C.) from the viewpoint of further improving shrinkage resistance, texture and water repellency and balancing production efficiency.
 第2水洗工程におけるスライバーと水との接触時間は、上記した駆除が達成される限り特に限定されず、通常は1秒間~1分間であり、防縮性、風合いおよび撥水性のさらなる向上よびと製造効率とのバランスの観点から、好ましくは5~40秒間であり、より好ましくは10~30秒間である。スライバーと水との接触時間は、後述する稼働速度を調整することにより、制御することができる。 The contact time between the sliver and water in the second washing step is not particularly limited as long as the above-mentioned extermination is achieved, and is usually 1 second to 1 minute, further improving shrinkage resistance, texture and water repellency, and manufacturing. From the viewpoint of balance with efficiency, it is preferably 5 to 40 seconds, and more preferably 10 to 30 seconds. The contact time between the sliver and water can be controlled by adjusting the operating speed described later.
 第2水洗工程において、スライバーを水に浸漬した後は、通常、絞り処理に付す。絞り処理方法は、ジアミン水溶液への浸漬工程における絞り処理方法と同様の方法が使用され、例えば、マングルを用いる方法が使用される。絞り率は特に限定されず、通常は50~90%であり、好ましくは60~90%であり、より好ましくは70~90%である。 In the second washing step, after the sliver is immersed in water, it is usually subjected to squeezing treatment. As the drawing treatment method, the same method as the drawing treatment method in the diamine aqueous solution dipping step is used, and for example, a method using a mangle is used. The aperture ratio is not particularly limited, and is usually 50 to 90%, preferably 60 to 90%, and more preferably 70 to 90%.
・柔軟処理工程
 柔軟処理工程においては、スライバーを柔軟剤水溶液に浸漬することにより、繊維に柔軟性を付与する。
-Softening process In the softening process, the sliver is immersed in an aqueous solution of a softener to impart flexibility to the fibers.
 柔軟剤水溶液中の柔軟剤は、繊維(特に獣毛繊維または羊毛繊維の分野で柔軟性を付与し得る薬剤として知られている薬剤であれば特に限定されず、例えば、パラフィン系化合物等が挙げられる。パラフィン系化合物は、市販の松本油脂製薬(株)製ブリアンLC-35(非イオン性、固形パラフィン柔軟剤)として入手可能である。 The softener in the aqueous softener solution is not particularly limited as long as it is a drug known as a drug capable of imparting flexibility in the field of fibers (particularly animal hair fiber or wool fiber), and examples thereof include paraffin compounds. The paraffinic compound is available as a commercially available Bryan LC-35 (nonionic, solid paraffin softener) manufactured by Matsumoto Yushi Seiyaku Co., Ltd.
 柔軟剤水溶液における柔軟剤の濃度は特に限定されず、通常は、0.01~10%であり、防縮性、風合いおよび撥水性のさらなる向上と製造効率とのバランスの観点から、好ましくは0.1~5%、より好ましくは0.5~2%である。ここで、濃度の単位「%」は、全量に対する体積割合のことである。 The concentration of the softener in the aqueous softener solution is not particularly limited, and is usually 0.01 to 10%, and is preferably 0. From the viewpoint of further improvement of shrinkage resistance, texture and water repellency and a balance between production efficiency. It is 1 to 5%, more preferably 0.5 to 2%. Here, the unit of concentration "%" is the volume ratio to the total amount.
 柔軟処理工程における柔軟剤水溶液の温度は、特に限定されず、防縮性、風合いおよび撥水性のさらなる向上と製造効率とのバランスの観点から、好ましくは20~50℃であり、より好ましくは30~50℃である。 The temperature of the aqueous softener solution in the softening treatment step is not particularly limited, and is preferably 20 to 50 ° C., more preferably 30 to 30 to 50 ° C. from the viewpoint of further improving shrinkage resistance, texture and water repellency and balancing production efficiency. It is 50 ° C.
 スライバーと柔軟剤水溶液との接触時間は、繊維に柔軟性が付与される限り特に限定されず、通常は1秒間~1分間であり、防縮性、風合いおよび撥水性のさらなる向上と製造効率とのバランスの観点から、好ましくは5~40秒間であり、より好ましくは10~30秒間である。スライバーと柔軟剤水溶液との接触時間は、後述する稼働速度を調整することにより、制御することができる。
The contact time between the sliver and the aqueous softener solution is not particularly limited as long as the fibers are provided with flexibility, and is usually 1 second to 1 minute, which further improves shrinkage resistance, texture and water repellency, and improves production efficiency. From the viewpoint of balance, it is preferably 5 to 40 seconds, more preferably 10 to 30 seconds. The contact time between the sliver and the aqueous softener solution can be controlled by adjusting the operating speed described later.
 柔軟処理工程において、スライバーを柔軟剤水溶液に浸漬した後は、通常、絞り処理に付す。絞り処理方法は、ジアミン水溶液への浸漬工程における絞り処理方法と同様の方法が使用され、例えば、マングルを用いる方法が使用される。絞り率は特に限定されず、通常は50~90%であり、好ましくは60~90%であり、より好ましくは70~90%である。 In the softening process, after immersing the sliver in the softener aqueous solution, it is usually subjected to drawing treatment. As the drawing treatment method, the same method as the drawing treatment method in the diamine aqueous solution dipping step is used, and for example, a method using a mangle is used. The aperture ratio is not particularly limited, and is usually 50 to 90%, preferably 60 to 90%, and more preferably 70 to 90%.
・乾燥工程
 乾燥工程においては、これまでの工程で湿潤したスライバーを乾燥させる。
-Drying step In the drying step, the sliver wet in the previous steps is dried.
 乾燥方法は、繊維(特に獣毛繊維または羊毛繊維)の分野で知られている、あらゆる乾燥方法が使用可能である。乾燥方法の具体例として、例えば、吸引を行いながら乾燥を行うサクション乾燥方法、フライスナー製サクションドラムドライヤー等が挙げられる。 As the drying method, any drying method known in the field of fibers (particularly animal hair fiber or wool fiber) can be used. Specific examples of the drying method include a suction drying method in which drying is performed while sucking, a suction drum dryer manufactured by Milling Sner, and the like.
 乾燥工程における乾燥温度は、繊維(特に獣毛繊維または羊毛繊維)にダメージを与えることなく、乾燥を達成できる温度であれば特に限定されず、防縮性、風合いおよび撥水性のさらなる向上と製造効率とのバランスの観点から、好ましくは50~100℃であり、より好ましくは70~90℃である。 The drying temperature in the drying step is not particularly limited as long as it can achieve drying without damaging the fibers (particularly animal hair fiber or wool fiber), and further improvement of shrinkage resistance, texture and water repellency and production efficiency. From the viewpoint of the balance with the above, the temperature is preferably 50 to 100 ° C, more preferably 70 to 90 ° C.
 本発明においては、上記した工程を連続的に行うことが好ましい。稼働速度は、上記した接触時間が確保される限り特に限定されず、防縮性、風合いおよび撥水性のさらなる向上と製造効率とのバランスの観点から、好ましくは0.1~10m/分、より好ましくは0.5~3m/分、さらに好ましくは1.5~3m/分である。 In the present invention, it is preferable to continuously perform the above steps. The operating speed is not particularly limited as long as the above-mentioned contact time is secured, and is preferably 0.1 to 10 m / min, more preferably 0.1 to 10 m / min, from the viewpoint of further improving shrinkage resistance, texture and water repellency, and balancing manufacturing efficiency. Is 0.5 to 3 m / min, more preferably 1.5 to 3 m / min.
 本発明においては、乾燥工程を終えたスライバーに対して、ギル処理、コーミング処理、から選択される1つ以上の後処理が行われてもよい。ギル処理およびコーミング処理はそれぞれ、ジアミン水溶液への浸漬工程の説明で言及したギル処理およびコーミング処理と同様の処理である。 In the present invention, one or more post-treatments selected from gil treatment and combing treatment may be performed on the sliver that has completed the drying step. The gil treatment and the combing treatment are the same treatments as the gil treatment and the combing treatment mentioned in the description of the diamine aqueous solution immersion step, respectively.
 本発明においては、スライバーを、ジアミン水溶液に浸漬し、次に、二塩基酸クロライドを溶解したシリコン溶剤に浸漬して、ポリアミドを獣毛繊維表面に被覆する際、排出される吸着性有機塩素化合物(AOX)及び該繊維内に残存する有機塩素化合物を最小限に制御されている。 In the present invention, the sliver is immersed in an aqueous diamine solution and then in a silicon solvent in which dibasic acid chloride is dissolved to coat the surface of the animal hair fiber with the polyamide, which is an adsorptive organochlorine compound discharged. (AOX) and the organochlorine compounds remaining in the fiber are controlled to a minimum.
 詳しくは、二塩基酸クロライド溶液への浸漬工程で絞り処理したときの全排液における吸着性有機塩素化合物(AOX)の含有量が1mg/kg未満である。当該含有量は、活性炭吸着―燃焼法で測定された値、詳しくはISO9562(2004)に基づいて測定された値を用いている。 Specifically, the content of the adsorptive organochlorine compound (AOX) in the total effluent when squeezed in the dipping step in the dibasic acid chloride solution is less than 1 mg / kg. As the content, the value measured by the activated carbon adsorption-combustion method, specifically, the value measured based on ISO9652 (2004) is used.
 また、得られたスライバー(獣毛繊維)に含まれる塩化物イオン濃度は2.0mg/L以下、特に1.2mg/L以下である。塩化物イオン濃度は、(液体クロマトグラフ法に基づく煮沸抽出法で測定された値、詳しくはJIS K 0127通則 塩化物イオン濃度に基づいて測定された値を用いている。 Further, the chloride ion concentration contained in the obtained sliver (animal hair fiber) is 2.0 mg / L or less, particularly 1.2 mg / L or less. For the chloride ion concentration, (a value measured by a boiling extraction method based on a liquid chromatograph method, specifically, a value measured based on the JIS K 0127 general rule chloride ion concentration is used.
 以下、実施例及び比較例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前述の趣旨に適合しうる範囲で適当に変更して実施することはいずれも本発明の技術範囲に含まれる。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited by the following Examples as well as the present invention, and is appropriately modified to the extent that it can be adapted to the above-mentioned object. Anything that is carried out is within the scope of the present invention.
(加工処理試料)
 オーストラリア産メリノ羊毛(平均繊維径18.5μm)を、バックウォッシャー上がりのトップスライバーの油脂残量が0.3~0.5%owfとなるように、洗浄処理して用いた。
(Processed sample)
Australian merino wool (average fiber diameter 18.5 μm) was washed and used so that the residual oil content of the top sliver after the backwasher was 0.3 to 0.5% owf.
(防縮性評価)
 ISO 6330 に基づくWool Mark 試験法 TM 31に従って耐水系洗濯性を評価した。実施例/比較例の各々で得られたトップスライバーを2/28Nmに紡出し、撚数を単糸 Z 370回/m, 双糸 S213回/mに設定し、紡績後、平編地し編製し、カバーファクター0.41になるように編密度を調整し、得られた編地を防縮性の評価試験に供した。
 ISO 6330に基づくIWS TM 31に従って耐水系洗濯性を評価した。評価規定として、
「伸び」:洗濯によって引き起こされた長さ或いは幅寸法の増加を示し、正(+)の寸法変化として表す。
「収縮」:洗濯によって引き起こされた長さ或いは幅寸法の減少を示し、負(-)の寸法変化として表す。
と定義されており、ISO 6330 5A 及び7A洗濯サイクルプログラムによって評価され、両プログラムとも負荷を 1kg に軽減して行い、洗濯サイクル及び洗濯回数は製品によって決定される。
 計算式として、幅(WS)及び長さ(LS)方向の緩和寸法変化率、フェルト寸法変化率、合計寸法変化率を下記の式で算出する。
  緩和寸法変化率(%)=(RM―OM)/OM x 100
  フェルト寸法変化率(%)=(FM―RM)/RM x 100
  合計寸法変化率(%)  =(FM-OM)/OM x 100
  OM= 原長
  RM = 緩和処理後の測定値
  FM = フェルト処理後の測定値
 面積寸法変化率は、下記の式で算出する。
  面積寸法変化率(%)= WS + LS ―(WS x LS ) /100
 ◎◎:面積寸法変化率≦3.0(最良);
 ◎:3.0<面積寸法変化率の絶対値≦5.0(優良);
 ○:5.0<面積寸法変化率の絶対値≦8.0(良);
 △:8.0<面積寸法変化率の絶対値≦10.0(可(実用上問題なし))
 ×:10.0<面積寸法変化率の絶対値(実用上問題あり)。
(Evaluation of shrink resistance)
The water resistance was evaluated according to the Woolmark test method TM 31 based on ISO 6330. The top sliver obtained in each of the Examples / Comparative Examples was spun to 2/28 Nm, the number of twists was set to 370 times / m for single yarn Z and 213 times / m for twin yarn, and after spinning, flat knitted fabric was knitted. Then, the knitting density was adjusted so as to have a cover factor of 0.41, and the obtained knitted fabric was subjected to a shrinkage resistance evaluation test.
Water resistance was evaluated according to IWS TM 31 based on ISO 6330. As an evaluation rule
"Elongation": Indicates an increase in length or width dimension caused by washing, expressed as a positive (+) dimensional change.
"Shrinkage": Indicates a decrease in length or width dimension caused by washing, expressed as a negative (-) dimensional change.
Evaluated by the ISO 6330 5A and 7A wash cycle programs, both programs are carried out with a load of 1 kg, and the wash cycle and number of washes are determined by the product.
As a calculation formula, the relaxation dimensional change rate in the width (WS) and length (LS) directions, the felt dimensional change rate, and the total dimensional change rate are calculated by the following formulas.
Relaxed dimension change rate (%) = (RM-OM) / OM x 100
Felt dimension change rate (%) = (FM-RM) / RM x 100
Total dimensional change rate (%) = (FM-OM) / OM x 100
OM = Original length RM = Measured value after relaxation treatment FM = Measured value after felt treatment The area dimensional change rate is calculated by the following formula.
Area dimensional change rate (%) = WS + LS ― (WS x LS) / 100
◎ ◎: Area dimensional change rate ≤ 3.0 (best);
⊚: 3.0 <absolute value of area dimensional change rate ≤ 5.0 (excellent);
◯: 5.0 <absolute value of area dimensional change rate ≤ 8.0 (good);
Δ: 8.0 <Absolute value of area dimensional change rate ≤ 10.0 (possible (no problem in practical use))
X: 10.0 <absolute value of area dimensional change rate (there is a problem in practical use).
(風合い評価)
 防縮性評価で製造された試験前の編地(試料)を、対照としての未処理の編地と比較し、風合いについて、以下の基準にて評価した。対照としての未処理の編地は、未処理のスライバーを用いたこと以外、防縮性評価における編地の製造方法と同様の方法により、製造されたものである。風合いは、編地の粗さおよび硬さに関する手触りに基づく感触である。
 ◎:編地(試料)は、未処理の編地よりも良好な風合いを示した(優良);
 ○:編地(試料)は、未処理の編地と同程度の風合いを示した(良);
 △:編地(試料)は、未処理の編地よりも、僅かに粗くかつ堅かったが、実用上問題のない範囲であった;
 ×:編地(試料)は、未処理の編地よりも、明らかに粗くかつ堅かった(実用上問題あり)。
(Texture evaluation)
The pre-test knitted fabric (sample) produced by the shrinkage resistance evaluation was compared with the untreated knitted fabric as a control, and the texture was evaluated according to the following criteria. The untreated knitted fabric as a control was produced by the same method as the knitted fabric production method in the shrinkage resistance evaluation except that an untreated sliver was used. The texture is a feel based on the roughness and hardness of the knitted fabric.
⊚: The knitted fabric (sample) showed a better texture than the untreated knitted fabric (excellent);
◯: The knitted fabric (sample) showed the same texture as the untreated knitted fabric (good);
Δ: The knitted fabric (sample) was slightly coarser and harder than the untreated knitted fabric, but was within a practically acceptable range;
X: The knitted fabric (sample) was clearly coarser and harder than the untreated knitted fabric (there was a problem in practical use).
(撥水性評価)
 JIS L 1092-1992 のスプレー試験及び記載された評価基準に従って、編地表面の撥水性能を試験し、表3の基準に基づいて評価した。評価対象の編地は、防縮性評価で製造された試験前の編地(試料)である。2以上が実用上問題のない範囲であり、3は「良」、4は「優良」、5は「最良」であった。
(Water repellency evaluation)
The water repellency of the knitted fabric surface was tested according to the spray test of JIS L 1092-1992 and the evaluation criteria described, and evaluated based on the criteria in Table 3. The knitted fabric to be evaluated is the knitted fabric (sample) before the test manufactured by the shrinkage resistance evaluation. 2 or more was a range where there was no problem in practical use, 3 was "good", 4 was "excellent", and 5 was "best".
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
(吸着性有機塩素化合物の定量)
 吸着性有機塩素化合物(Absorbable Organic Halogens)の測定は、ISO9562(2004)に準用し、加工時の各工程中に排出される排液をサンプリングし、その液中にふくまれるAOX量を活性炭吸着―燃焼法で測定した。測定は、株式会社カネカテクノリサーチ分析部高砂分析センターに依頼した。以下の結果における「本件の製造処理排液」は実施例1における第2工程で絞ったときの排液である。
(Quantification of adsorptive organic chlorine compounds)
The measurement of adsorptive organic chlorine compounds (Absorbable Organic Halogens) is applied mutatis mutandis to ISO9652 (2004), the waste liquid discharged during each process during processing is sampled, and the amount of AOX contained in the liquid is adsorbed on activated carbon. It was measured by the combustion method. The measurement was requested to the Takasago Analysis Center, Analysis Department, Kaneka Corporation. The "manufacturing process drainage of the present case" in the following results is the drainage when squeezed in the second step in Example 1.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
(塩化物イオン濃度の測定)
 実施例1で得られた羊毛繊維に含まれる塩化物イオン濃度は以下の方法にしたがって測定した。JIS K 0127 塩化物イオン濃度に従って、羊毛サンプルを蒸留水で煮沸し、抽出された塩素イオンをイオンクロマトグラフィーで測定した。測定は、「あいち産業科学技術総合センター」の産業技術センター環境材料室に依頼した。
(Measurement of chloride ion concentration)
The chloride ion concentration contained in the wool fiber obtained in Example 1 was measured according to the following method. According to JIS K 0127 chloride ion concentration, the wool sample was boiled in distilled water, and the extracted chlorine ion was measured by ion chromatography. The measurement was requested to the Environmental Materials Office of the Industrial Technology Center of the "Aichi Industrial Science and Technology Center".
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
(実施例1)
 図2に示す装置を用い、以下の方法に従って、防縮性獣毛繊維を連続的に製造した。
 第1工程:よく洗浄された羊毛トップスライバー(Aust.Merino Wool Top 18.5μm)25g/m、(一本))を、稼働速度2m/分で、第1槽内の第1浴(ヘキサメチレンジアミン0.2mol/L、水酸化ナトリウム0.2mol/Lおよび浸透剤1g/L soln. 松本油脂製薬(株)製 SSK630 からなる水溶液、温度40℃)に、2分間、浸漬処理し、マングルで80%に絞った。
(Example 1)
Using the apparatus shown in FIG. 2, shrink-proof animal hair fibers were continuously produced according to the following method.
First step: A well-washed wool top sliver (Aust. Merino Wool Top 18.5 μm) 25 g / m, (one), at an operating speed of 2 m / min, in the first bath (hexamethylenediamine) in the first tank. 0.2 mol / L, 0.2 mol / L sodium hydroxide and 1 g / L soln. Penetrant 1 g / L soln. An aqueous solution consisting of SSK630 manufactured by Matsumoto Yushi Seiyaku Co., Ltd., temperature 40 ° C.) for 2 minutes, soaked in 80% with mangle. Squeezed.
 第2工程:次に、第1工程を経たスライバーを、第2槽内の第2浴(セバチン酸二塩化物を0.2mol/Lで溶解したシリコン溶剤(詳しくは、デカメチル-シクロペンタシロキサン(ペンタマー))であって、モレキュラー・シーブ4A 1/8” ペレットを含む溶剤、温度25℃)に、10秒間、浸漬し、マングルで80%に絞った。 Second step: Next, the sliver that has undergone the first step is subjected to the second bath in the second tank (a silicon solvent in which sebatate dichloride is dissolved at 0.2 mol / L (specifically, decamethyl-cyclopentasiloxane (pentamer)). )), Soaked in a solvent containing molecular sheave 4A 1/8 "pellets, temperature 25 ° C.) for 10 seconds, and squeezed to 80% with a mangle.
 第3工程:第2工程を経たスライバーを、第3槽内の水(温度25℃に、20秒間、浸漬することにより、水洗処理を行い、マングルで80%に絞った。本工程では、水酸化ナトリウムの駆除、低分子量のナイロン樹脂の駆除、生成した白色沈澱物であるセバチン酸の駆除を行った。 Third step: The sliver that had undergone the second step was washed with water by immersing it in water in the third tank (at a temperature of 25 ° C. for 20 seconds, and squeezed to 80% with a mangle. In this step, water was used. Sodium oxide was exterminated, low molecular weight nylon resin was exterminated, and sebatic acid, which is a white precipitate produced, was exterminated.
 第4工程:第3工程を経たスライバーを、第4槽内の1%ギ酸水溶液(温度25℃)に、20秒間、浸漬し、マングルで80%に絞った。本工程では、繊維間に余分なポリアミドが生成している場合、当該余分なポリアミドを駆除する。 Fourth step: The sliver that had undergone the third step was immersed in a 1% formic acid aqueous solution (temperature 25 ° C.) in the fourth tank for 20 seconds, and squeezed to 80% with a mangle. In this step, if excess polyamide is formed between the fibers, the excess polyamide is removed.
 第5工程:第4工程を経たスライバーを、第5槽内の水(温度25℃)に、20秒間、浸漬することにより、水洗処理を行い、マングルで80%に絞った。 Fifth step: The sliver that had undergone the fourth step was washed with water by immersing it in water (temperature 25 ° C.) in the fifth tank for 20 seconds, and squeezed to 80% with a mangle.
 第6工程:第5工程を経たスライバーを、第6槽内の柔軟剤水溶液(柔軟剤;松本油脂製薬(株)製ブリアンLC35の1%溶液、温度40℃)に、20秒間、浸漬することにより、水洗処理を行い、マングルで80%に絞った。 6th step: The sliver that has undergone the 5th step is immersed in a softener aqueous solution (softener; 1% solution of Bryan LC35 manufactured by Matsumoto Yushi Pharmaceutical Co., Ltd., temperature 40 ° C.) in the 6th tank for 20 seconds. After washing with water, the temperature was reduced to 80% with a mangle.
 第7工程:第6工程を経たスライバーを、サクションドラム乾燥機で85℃にて乾燥し、防縮性獣毛繊維を得た。 7th step: The sliver that had undergone the 6th step was dried at 85 ° C. with a suction drum dryer to obtain shrink-proof animal hair fibers.
 羊毛繊維の防縮加工の性能を評価するために設定したIWS TM 31に記載する方法で作成した試料の耐水系洗濯性の評価を行なった。
 ドラムドライヤーで乾燥後、インターセクチング ギルでドラフト6倍で開繊し、紡出番手2/28Nm に紡績し、規定の防縮性評価試験に供した。
 Wool Mark 試験法 TM 31に記載する Wascator 試験機を用い、5Aプログラムで5回、洗濯した後、面積寸法変化率を求めた。
The water resistance of the sample prepared by the method described in IWS TM 31, which was set to evaluate the performance of the shrink-proof processing of wool fiber, was evaluated.
After drying with a drum dryer, the fibers were opened with an intersecting gil at a draft of 6 times, spun to a spinning count of 2/28 Nm, and subjected to a specified shrinkage resistance evaluation test.
The area dimensional change rate was determined after washing 5 times with the 5A program using the Wascator testing machine described in the Wool Mark test method TM 31.
(実施例2)
 第1浴のヘキサメチレンジアミンの濃度を0.1mol/Lに、第1浴の水酸化ナトリウムの濃度を0.1mol/Lに変えたこと、および第2浴のセバチン酸二塩化物の濃度を0.1mol/L に変えたこと以外、実施例1と同様の方法により、防縮性獣毛繊維の製造および評価を行った。
(Example 2)
The concentration of hexamethylenediamine in the first bath was changed to 0.1 mol / L, the concentration of sodium hydroxide in the first bath was changed to 0.1 mol / L, and the concentration of dichloride sebatate in the second bath was 0.1 mol. The shrink-proof animal hair fiber was produced and evaluated by the same method as in Example 1 except that it was changed to / L.
(実施例3)
 第1浴のヘキサメチレンジアミンの濃度を0.05mol/Lに、第1浴の水酸化ナトリウムの濃度を0.05mol/Lに変えたこと、および第2浴のセバチン酸二塩化物の濃度を0.05mol/L に変えたこと以外、実施例1と同様の方法により、防縮性獣毛繊維の製造および評価を行った。
(Example 3)
The concentration of hexamethylenediamine in the first bath was changed to 0.05 mol / L, the concentration of sodium hydroxide in the first bath was changed to 0.05 mol / L, and the concentration of dichloride sebatate in the second bath was changed to 0.05 mol. The shrink-proof animal hair fiber was produced and evaluated by the same method as in Example 1 except that it was changed to / L.
(実施例4)
 稼働速度を4m/分 に変えたこと以外、実施例1と同様の方法により、防縮性獣毛繊維の製造および評価を行った。本実施例における各工程の処理時間(接触時間)はいずれも、実施例1において対応する各工程の処理時間に対して1/2であった。
(Example 4)
The shrink-proof animal hair fiber was produced and evaluated by the same method as in Example 1 except that the operating speed was changed to 4 m / min. The processing time (contact time) of each step in this example was 1/2 of the processing time of each corresponding step in Example 1.
(実施例5)
 稼働速度を4m/分 に変えたこと、第1浴のヘキサメチレンジアミンの濃度を0.1mol/Lに、第1浴の水酸化ナトリウムの濃度を0.1mol/Lに変えたこと、および第2浴のセバチン酸二塩化物の濃度を0.1mol/L に変えたこと以外、実施例1と同様の方法により、防縮性獣毛繊維の製造および評価を行った。本実施例における各工程の処理時間(接触時間)はいずれも、実施例1において対応する各工程の処理時間に対して1/2であった。
(Example 5)
The operating speed was changed to 4 m / min, the concentration of hexamethylenediamine in the first bath was changed to 0.1 mol / L, the concentration of sodium hydroxide in the first bath was changed to 0.1 mol / L, and the second bath. The shrink-proof animal hair fiber was produced and evaluated by the same method as in Example 1 except that the concentration of sebacate dichloride was changed to 0.1 mol / L. The processing time (contact time) of each step in this example was 1/2 of the processing time of each corresponding step in Example 1.
(実施例6)
 稼働速度を4m/分 に変えたこと、第1浴のヘキサメチレンジアミンの濃度を0.05mol/Lに、第1浴の水酸化ナトリウムの濃度を0.05mol/Lに変えたこと、および第2浴のセバチン酸二塩化物の濃度を0.05mol/L に変えたこと以外、実施例1と同様の方法により、防縮性獣毛繊維の製造および評価を行った。本実施例における各工程の処理時間(接触時間)はいずれも、実施例1において対応する各工程の処理時間に対して1/2であった。
(Example 6)
The operating speed was changed to 4 m / min, the concentration of hexamethylenediamine in the first bath was changed to 0.05 mol / L, the concentration of sodium hydroxide in the first bath was changed to 0.05 mol / L, and the second bath. The shrink-proof animal hair fiber was produced and evaluated by the same method as in Example 1 except that the concentration of sebacate dichloride was changed to 0.05 mol / L. The processing time (contact time) of each step in this example was 1/2 of the processing time of each corresponding step in Example 1.
(実施例7)
 第1浴の温度を37℃に変えたこと以外、実施例3と同様の方法により、防縮性獣毛繊維の製造および評価を行った。
(Example 7)
The shrink-proof animal hair fiber was produced and evaluated by the same method as in Example 3 except that the temperature of the first bath was changed to 37 ° C.
(実施例8)
 第1浴の温度を35℃に変えたこと以外、実施例3と同様の方法により、防縮性獣毛繊維の製造および評価を行った。
(Example 8)
The shrink-proof animal hair fiber was produced and evaluated by the same method as in Example 3 except that the temperature of the first bath was changed to 35 ° C.
(比較例1)
 第1浴の温度を25℃に変えたこと以外、実施例1と同様の方法により、防縮性獣毛繊維の製造および評価を行った。
(Comparative Example 1)
The shrink-proof animal hair fiber was produced and evaluated by the same method as in Example 1 except that the temperature of the first bath was changed to 25 ° C.
(比較例2)
 第1浴が水酸化ナトリウムを含まなかったこと以外、実施例1と同様の方法により、防縮性獣毛繊維の製造および評価を行った。
(Comparative Example 2)
The shrink-proof animal hair fiber was produced and evaluated by the same method as in Example 1 except that the first bath did not contain sodium hydroxide.
(比較例3)
 第1工程~第7工程を実施することなく、羊毛トップスライバーをそのまま評価に供したこと以外、実施例1と同様の方法により、評価を行った。
(Comparative Example 3)
The evaluation was carried out by the same method as in Example 1 except that the wool top sliver was used as it was for evaluation without carrying out the first to seventh steps.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 実施例1を基準として、ヘキサメチレンジアミン 0.2mol/L,水酸化ナトリウム、0.2mol/L ,液温 40℃で界面重合処理行った。その結果、羊毛トップスライバーの繊維上に形成されたナイロンポリマー量が許容範囲内で増え、TM31による洗濯試験の結果で面積寸法変化率-9.0%であった。 Based on Example 1, hexamethylenediamine was subjected to interfacial polymerization treatment at 0.2 mol / L, sodium hydroxide, 0.2 mol / L, and a liquid temperature of 40 ° C. As a result, the amount of nylon polymer formed on the fibers of the wool top sliver increased within the permissible range, and the result of the washing test by TM31 was an area dimensional change rate of -9.0%.
 実施例2に於いて、ヘキサメチレンジアミン 0.1mol/L  水酸化ナトリウム、0.1mol/L ,液温 40℃での界面重合処理では、繊維上に形成されたナイロンポリマーの生成量は、可なり少なくなった。TM31の試験では-7.5%を示し、防縮性がある程度向上した羊毛糸が出来た。 In Example 2, the amount of nylon polymer formed on the fibers was considerably small in the interfacial polymerization treatment of hexamethylenediamine 0.1 mol / L sodium hydroxide, 0.1 mol / L, liquid temperature 40 ° C. became. In the TM31 test, it showed -7.5%, and wool yarn with improved shrinkage resistance was produced.
 実施例3の条件で、ヘキサメチレンジアミン 0.05mol/L, 水酸化ナトリウム0.05mol/L,液温40℃で処理した。その結果、繊維上に形成されたナイロンポリマーは、図1に示す様に、羊毛表面に均一に、被膜しており、そのため、TM 31の試験で -2.7%と言う十分に満足すべき結果を得た。
 これは、羊毛繊維表面にナイロン・ポリマーを均一かつ網状に被覆する事により、羊毛繊維のフェルト化の原因である表面摩擦係数の異方性(DFE)を無くする為の最適な条件であった。この条件を超えると、ナイロン・ポリマーがガムアップし、羊毛繊維間の接着が増え、防縮性を低下すると言う結果を得た。
Under the conditions of Example 3, hexamethylenediamine was treated at 0.05 mol / L, sodium hydroxide at 0.05 mol / L, and a liquid temperature of 40 ° C. As a result, the nylon polymer formed on the fiber uniformly coats the wool surface as shown in FIG. 1, and therefore should be fully satisfied with the TM 31 test of -2.7%. I got the result.
This was the optimum condition for eliminating the anisotropy (DFE) of the surface friction coefficient, which is the cause of felting of wool fibers, by coating the surface of wool fibers with nylon polymer uniformly and in a mesh pattern. .. When this condition is exceeded, the nylon polymer gums up, the adhesion between wool fibers increases, and the shrinkage resistance decreases.
 実施例4、5、6では、機械の稼働速度を4m/分に変え、ヘキサメチレンジアミン浴、セバチン酸二塩化物浴、ギ酸処理浴の溶液処理反応時間を変えて、防縮性を評価した。各薬剤の接触時間を約半分にすると、防縮性の低下が見られた。 In Examples 4, 5 and 6, the operating speed of the machine was changed to 4 m / min, and the solution treatment reaction times of the hexamethylenediamine bath, the sebatic acid dichloride bath and the formic acid treatment bath were changed to evaluate the shrinkage resistance. When the contact time of each drug was halved, a decrease in shrink resistance was observed.
 比較例1,2に於いて、ヘキサメチレンジアミン処理の液温を25℃にした場合、 ヘキサメチレンジアミン水溶液の羊毛繊維への浸透が抑制されるため、羊毛繊維の表面でのヘキサメチレンジアミンの吸着量は少なく、セバチン酸二塩化物と界面重合反応が制限され、ナイロンポリマーの被覆生成量は少なく、耐水系洗濯性の低下を持たらす結果となった。 In Comparative Examples 1 and 2, when the liquid temperature of the hexamethylenediamine treatment was set to 25 ° C., the permeation of the hexamethylenediamine aqueous solution into the wool fibers was suppressed, so that hexamethylenediamine was adsorbed on the surface of the wool fibers. The amount was small, the interfacial polymerization reaction with sebatic acid dichloride was limited, and the amount of nylon polymer coated was small, resulting in a decrease in water resistance and washability.
 比較例2の場合、水酸化ナトリウムは、ヘキサジアミンとセバチン酸二塩化物との界面重合反応で生じる「塩酸」を中和し、重合反応を触媒的に加速する役割を演じている。塩濃度を増すことにより、本件の界面重合は促進される。一方、セバチン酸二塩化物と水との反応で塩酸が発生し、水酸化ナトリウムの中和作用で、更に、重合反応に貢献している。 In the case of Comparative Example 2, sodium hydroxide plays a role of neutralizing "hydrochloric acid" generated in the interfacial polymerization reaction of hexadiamine and sebacate dichloride and catalytically accelerating the polymerization reaction. By increasing the salt concentration, the interfacial polymerization of this case is promoted. On the other hand, hydrochloric acid is generated by the reaction between sebatic acid dichloride and water, and the neutralizing action of sodium hydroxide further contributes to the polymerization reaction.
 液・液界面重合について開示されている、四塩化炭素、ベンゼン、トルエン、トリクロロエチレン、クロロホルム、Socal 25, Stoddard Solvent、パークロロエチレン等は、地球環境の保全の立場から、規制される物質であり、これを使用した生産処理は非常に制約されるものである。この問題を解決する手段として、シリコン溶剤がある。本発明は、シリコン溶剤を用いても界面重合反応が可能であることを明らかにした。 Carbon tetrachloride, benzene, toluene, trichlorethylene, chloroform, Socal 25, Stoddard Solvent, perchloroethylene, etc., which are disclosed for liquid-liquid interfacial polymerization, are substances regulated from the standpoint of preserving the global environment. The production process using this is very restrictive. As a means to solve this problem, there is a silicon solvent. The present invention has clarified that an interfacial polymerization reaction is possible even when a silicon solvent is used.
 溶剤を用いた獣毛繊維の加工処理は、大気汚染、水質汚濁、労働衛生、作業環境、廃棄物処理、土壌汚染等々の問題から敬遠されてきたが、本発明で実施した無機系のシリコン溶剤を用いることによって、獣毛トップ・スライバーの連続防縮製造が可能となった。本発明は、更に、処理工程中から排出される吸着性有機塩素化合物 AOX( Absorbable Organic Halogens  )と、獣毛繊維内に「残留塩素化合物」を、同時に、最小限に制御した、羊毛業界初めての新規な防縮性獣毛繊維スライバーの連続的製造方法を提供するものである。 The processing of animal hair fibers using a solvent has been avoided due to problems such as air pollution, water pollution, occupational hygiene, working environment, waste treatment, soil pollution, etc., but the inorganic silicon solvent implemented in the present invention has been avoided. By using the above, continuous shrink-proof production of animal hair top sliver became possible. The present invention is the first in the wool industry to control the adsorptive organic chlorine compound AOX (Absorbable Organic Halogens) discharged from the treatment process and the "residual chlorine compound" in the animal hair fiber at the same time to the minimum. It provides a method for continuously producing a novel shrink-proof animal hair fiber sliver.

Claims (12)

  1.  獣毛繊維の連続体であるスライバーを、30~45℃のアルカリ剤含有ジアミン水溶液に浸漬してジアミンが付着した状態で、二塩基酸クロライドを溶解したシリコン溶剤に浸漬して、ポリアミドを獣毛繊維表面に被覆することを特徴とする、防縮性獣毛繊維の製造方法。 A sliver, which is a continuum of animal hair fibers, is immersed in an alkaline agent-containing diamine aqueous solution at 30 to 45 ° C., and the polyamide is immersed in a silicon solvent in which dibasic acid chloride is dissolved to attach the diamine to the animal hair. A method for producing shrink-proof animal hair fiber, which comprises coating the fiber surface.
  2.  前記シリコン溶剤が、水に混入せず、かつ環境保全のための法規制対象でない溶剤である、請求項1に記載の防縮性獣毛繊維の製造方法。 The method for producing shrink-proof animal hair fiber according to claim 1, wherein the silicon solvent is a solvent that does not mix with water and is not subject to legal regulations for environmental protection.
  3.  前記シリコン溶剤が、デカメチルテトラシロキサン、テトラマー、ペンタマー、ヘキサマーからなる直鎖状あるいは環状シロキサン類を含む群から選ばれたシロキサン溶剤である、請求項1に記載の防縮性獣毛繊維の製造方法。 The method for producing shrink-proof animal hair fiber according to claim 1, wherein the silicon solvent is a siloxane solvent selected from the group containing linear or cyclic siloxanes composed of decamethyltetrasiloxane, tetramer, pentamer, and hexamer. ..
  4.  前記ジアミン水溶液におけるジアミンの濃度が0.01~0.7mol/Lである、請求項1に記載の防縮性獣毛繊維の製造方法。 The method for producing shrink-proof animal hair fiber according to claim 1, wherein the concentration of diamine in the aqueous diamine solution is 0.01 to 0.7 mol / L.
  5.  前記スライバーの前記ジアミン水溶液との接触時間が1秒間~10分間である、請求項1に記載の防縮性獣毛繊維の製造方法。 The method for producing shrink-proof animal hair fiber according to claim 1, wherein the contact time of the sliver with the diamine aqueous solution is 1 second to 10 minutes.
  6.  前記シリコン溶剤における二塩基酸クロライドの濃度が0.01~0.7mol/Lである、請求項1に記載の防縮性獣毛繊維の製造方法。 The method for producing shrink-proof animal hair fiber according to claim 1, wherein the concentration of dibasic acid chloride in the silicon solvent is 0.01 to 0.7 mol / L.
  7.  前記スライバーの前記シリコン溶剤との接触時間が1秒間~1分間である、請求項1に記載の防縮性獣毛繊維の製造方法。 The method for producing shrink-proof animal hair fiber according to claim 1, wherein the contact time of the sliver with the silicone solvent is 1 second to 1 minute.
  8.  前記アルカリ剤が塩酸を中和する物質である、請求項1に記載の防縮性獣毛繊維の製造方法。 The method for producing shrink-proof animal hair fiber according to claim 1, wherein the alkaline agent is a substance that neutralizes hydrochloric acid.
  9.  前記スライバーを、前記ジアミン水溶液に浸漬し、次に、前記二塩基酸クロライドを溶解したシリコン溶剤に浸漬して、ポリアミドを獣毛繊維表面に被覆する際、排出される吸着性有機塩素化合物(AOX)及び該繊維内に残存する有機塩素化合物を最小限に制御された製造方法である、請求項1に記載の防縮性獣毛繊維の製造方法。 The adsorbent organochlorine compound (AOX) discharged when the sliver is immersed in the diamine aqueous solution and then in a silicon solvent in which the dibasic acid chloride is dissolved to coat the surface of animal hair fibers with polyamide. ) And the method for producing shrink-proof animal hair fiber according to claim 1, which is a production method in which the amount of the organic chlorine compound remaining in the fiber is controlled to the minimum.
  10.  前記獣毛繊維にポリアミドを被覆後、スライバーを水に浸漬して、繊維表面にあるジアミン成分、二塩基酸クロライド成分およびアルカリ剤成分を駆除し、前記シリコン溶剤を水との比重差を利用して溶剤分離回収する、請求項1に記載の防縮性獣毛繊維の製造方法。 After coating the animal hair fiber with polyamide, the sliver is immersed in water to remove the diamine component, dibasic acid chloride component and alkaline agent component on the fiber surface, and the silicon solvent uses the difference in specific gravity with water. The method for producing shrink-proof animal hair fiber according to claim 1, wherein the solvent is separated and recovered.
  11.  前記スライバーを、前記水への浸漬後、酸水溶液に浸漬して繊維表面に生成したオリゴマーを駆除する、請求項10に記載の防縮性獣毛繊維の製造方法。 The method for producing shrink-proof animal hair fiber according to claim 10, wherein the sliver is immersed in the water and then immersed in an acid aqueous solution to exterminate the oligomer formed on the fiber surface.
  12.  前記獣毛繊維は、羊毛、カシミヤ、モヘヤ、アンゴラ、キャメルからなる天然ケラチン質繊維であり、その繊維集団として、繊維束の連続形態を有する前記スライバーを処理する、請求項1に記載の防縮性獣毛繊維の製造方法。 The shrink-proof property according to claim 1, wherein the animal hair fiber is a natural keratinous fiber composed of wool, cashmere, mohair, angora, and camel, and the sliver having a continuous form of a fiber bundle is treated as the fiber group thereof. Method for producing animal hair fiber.
PCT/JP2019/029069 2019-07-24 2019-07-24 Method for producing anti-shrinkage animal hair fibers WO2021014620A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980096523.1A CN113853461B (en) 2019-07-24 Method for manufacturing shrink-proof animal hair fiber
PCT/JP2019/029069 WO2021014620A1 (en) 2019-07-24 2019-07-24 Method for producing anti-shrinkage animal hair fibers
JP2021534491A JP7283670B2 (en) 2019-07-24 2019-07-24 Method for producing shrink-proof animal hair fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/029069 WO2021014620A1 (en) 2019-07-24 2019-07-24 Method for producing anti-shrinkage animal hair fibers

Publications (1)

Publication Number Publication Date
WO2021014620A1 true WO2021014620A1 (en) 2021-01-28

Family

ID=74192544

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/029069 WO2021014620A1 (en) 2019-07-24 2019-07-24 Method for producing anti-shrinkage animal hair fibers

Country Status (2)

Country Link
JP (1) JP7283670B2 (en)
WO (1) WO2021014620A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51149999A (en) * 1975-05-15 1976-12-23 Kroy Unshrinkable Wools Ltd Antiicrease finish of wool sliver
JPH04108184A (en) * 1990-08-21 1992-04-09 Unitika Ltd Durable antistatic and non-shrink treatment of animal hair fiber
JPH10266078A (en) * 1997-03-25 1998-10-06 Toyobo Co Ltd Simultaneous shrink-resistant and functional processings of structure of animal hair fiber such as wool
JP2013136867A (en) * 2013-02-27 2013-07-11 Akira Umehara Method of subjecting animal hair fiber to shrink-resistant treatment by means of hydrophobic treatment
CN103255644A (en) * 2013-06-13 2013-08-21 太仓协大申泰羊毛衫有限公司 Low temperature dyeing method of wool fibers
CN109403011A (en) * 2018-10-24 2019-03-01 江苏华东纺织产品检测有限公司 A kind of hydrogen peroxide bleaching treatment process of wool fiber

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51149999A (en) * 1975-05-15 1976-12-23 Kroy Unshrinkable Wools Ltd Antiicrease finish of wool sliver
JPH04108184A (en) * 1990-08-21 1992-04-09 Unitika Ltd Durable antistatic and non-shrink treatment of animal hair fiber
JPH10266078A (en) * 1997-03-25 1998-10-06 Toyobo Co Ltd Simultaneous shrink-resistant and functional processings of structure of animal hair fiber such as wool
JP2013136867A (en) * 2013-02-27 2013-07-11 Akira Umehara Method of subjecting animal hair fiber to shrink-resistant treatment by means of hydrophobic treatment
CN103255644A (en) * 2013-06-13 2013-08-21 太仓协大申泰羊毛衫有限公司 Low temperature dyeing method of wool fibers
CN109403011A (en) * 2018-10-24 2019-03-01 江苏华东纺织产品检测有限公司 A kind of hydrogen peroxide bleaching treatment process of wool fiber

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Seven Wonders of Wool 'Mechanism of wool felting", MURATADO CORPORATION, 13 February 2006 (2006-02-13), Retrieved from the Internet <URL:http://www.muratado.co.jp/csrreport/useful/2006/02/post-3.html> [retrieved on 20190926] *
"Why the wool wash temperature is 30°C?", SEKKEN HYAKKA CO., LTD., May 2010 (2010-05-01), XP055785464, Retrieved from the Internet <URL:https://www.live-science.com/honkan/qanda/qalaundry05.html> [retrieved on 20190926] *

Also Published As

Publication number Publication date
JPWO2021014620A1 (en) 2021-12-23
CN113853461A (en) 2021-12-28
JP7283670B2 (en) 2023-05-30

Similar Documents

Publication Publication Date Title
JP5694295B2 (en) New cleaning method
JP4185593B2 (en) Water / oil repellent, antifouling and antibacterial finishing methods for polyester / rayon blends or cross fabrics
JP2008508440A (en) Cloth durability treatment
CN1375024A (en) Durable finishes for textiles
NO157307B (en) SILENCER CONTAINER FOR AA INCLUDED IN A SILENCE ENGINE FOR A COMBUSTION ENGINE AND PROCEDURE AND EQUIPMENT FOR FILLING SUCH A SILENCE WITH A GLASS FIBER FILLING.
JP5629794B2 (en) Animal hair fiber products
US20060191075A1 (en) Methods and compositions for cleaning articles
JP2018506661A (en) Chlorine-free shrink-proofing processes and equipment used for wool raw materials and products
JP2019081993A (en) Damage process for textile product
WO2021014620A1 (en) Method for producing anti-shrinkage animal hair fibers
JP2006152508A (en) Stain-proofing fiber structure and its processing method
CN113853461B (en) Method for manufacturing shrink-proof animal hair fiber
JP5214181B2 (en) Method for preventing shrinkage of animal hair fibers by hydrophobization treatment
JP5477611B2 (en) Fabric having antifouling property and free from oil stain after oil draining process and method for producing the same
JP2009102770A (en) Natural fiber sliver subjected to electroconductive finishing, method for producing the same, electroconductive spun yarn obtained from the sliver, and fiber product using the electroconductive spun yarn
US20060123561A1 (en) Use of water structurants to provide fabric care benefits in a non-aqueous fabric treatment system
JP2013194335A (en) Fiber structure with water and oil repellency and method for producing the same
JPH08284066A (en) Water-absorbing antibacterial synthetic fiber and its production
JP7068842B2 (en) Knitted fabric containing cellulosic fiber and its manufacturing method
JP6069721B1 (en) Sewing thread, protective material, protective clothing and protective equipment using the sewing thread
JP2008163475A (en) Fiber structure
JPS648751B2 (en)
JPS6039483A (en) Production of permanent water repellent processed cloth
JPH08134780A (en) Method for water and oil repellent processing of wool fiber
JPS6329038B2 (en)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19938877

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021534491

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19938877

Country of ref document: EP

Kind code of ref document: A1