JP2013194335A - Fiber structure with water and oil repellency and method for producing the same - Google Patents

Fiber structure with water and oil repellency and method for producing the same Download PDF

Info

Publication number
JP2013194335A
JP2013194335A JP2012061604A JP2012061604A JP2013194335A JP 2013194335 A JP2013194335 A JP 2013194335A JP 2012061604 A JP2012061604 A JP 2012061604A JP 2012061604 A JP2012061604 A JP 2012061604A JP 2013194335 A JP2013194335 A JP 2013194335A
Authority
JP
Japan
Prior art keywords
fluorine
fiber
water
fibers
fiber structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012061604A
Other languages
Japanese (ja)
Other versions
JP6063135B2 (en
Inventor
Hideki Kawabata
秀樹 河端
Nagahiro Kuroda
修広 黒田
Kunihiro Akashi
國弘 明石
Hisao Shimada
尚夫 嶋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Toyobo Specialties Trading Co Ltd
Original Assignee
Toyobo Co Ltd
Toyobo Specialties Trading Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd, Toyobo Specialties Trading Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2012061604A priority Critical patent/JP6063135B2/en
Publication of JP2013194335A publication Critical patent/JP2013194335A/en
Application granted granted Critical
Publication of JP6063135B2 publication Critical patent/JP6063135B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Polymerisation Methods In General (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fiber structure that comprises a cellulosic fiber and/or a protein-based fiber with water and oil repellency and has high durability against washing and friction, and a method for producing the same.SOLUTION: The fiber structure comprises a cellulosic fiber and/or a protein-based fiber with water and oil repellency, and in the cellulosic fiber and/or the protein-based fiber, a fluorine-containing vinyl monomer is graft-polymerized at a ratio of 0.5 to 150 wt.%. The method for producing a fiber structure includes subjecting at least one fluorine-containing vinyl monomer having a C1-6 polyfluoroalkyl group as a component selected from a fluorine-containing olefin compound, a fluorine-containing acrylate compound, and a fluorine-containing methacrylate compound to a radical polymerization reaction with a cellulosic fiber and/or a protein-based fiber dispersed by using a nonionic surfactant with HLB of 7 to 18 in an aqueous dispersion.

Description

本発明は、撥水撥油加工された繊維構造物及びその製造方法に関し、特に洗濯及びドライクリーニング、さらには着用時の摩擦などに対する撥水撥油性の耐久性を向上させたセルロース系繊維及び/又は蛋白質系繊維を含む繊維構造物及びその製造方法に関するものである。   TECHNICAL FIELD The present invention relates to a water- and oil-repellent processed fiber structure and a method for producing the same, and in particular, a cellulosic fiber having improved durability of water- and oil-repellent properties against washing and dry cleaning, and friction during wearing. Alternatively, the present invention relates to a fiber structure containing protein fibers and a method for producing the same.

従来、布帛等の繊維構造物に高度の撥水撥油性を与える方法として、フッ素系化合物よりなる撥水撥油加工剤を付与し繊維表面に撥水撥油剤皮膜を形成させる方法が行われている。しかし、これらの加工剤皮膜は脆く、さらには繊維に対する接着性が乏しいため、洗濯及びドライクリーニング、さらには着用時の布同士及び布と他の物体との摩擦などにより、加工剤皮膜が繊維より簡単に脱落し、撥水撥油性が大幅に低下する問題があった。   Conventionally, as a method for imparting a high degree of water / oil repellency to a fiber structure such as a fabric, a method of forming a water / oil repellent film on the fiber surface by applying a water / oil repellent finishing agent made of a fluorine-based compound has been performed. Yes. However, these processing agent coatings are brittle and have poor adhesion to the fibers, so that the processing agent coatings are more than the fibers due to washing and dry cleaning, and the friction between the fabrics and between the fabric and other objects when worn. There was a problem that it dropped off easily and the water and oil repellency was greatly lowered.

特にセルロース系繊維などの親水性繊維では耐久性が悪く、これを改善するものとして以下の様な提案がなされている。即ち、パーフルオロアルキル基含有アクリレートまたはメタクリレートと、トリアジン化合物,ブロックイソシアネート系化合物で構成された樹脂皮膜で布帛の構成繊維が被覆されている撥水性繊維布帛(特許文献1参照)や、綿繊維の内部又は表面が、綿繊維と反応しうる活性水素基を2個以上持つ化合物によって架橋又は充填され、かつ該綿繊維の最外層表面が主として撥水撥油加工剤の皮膜で被覆された綿単繊維を有する繊維構造物(特許文献2参照)が提案されている。しかし、これらの方法でも撥水撥油性の耐久性が十分ではなかったり、風合が硬くなったり、染料の変色が起りやすいという問題があった。   In particular, hydrophilic fibers such as cellulosic fibers have poor durability, and the following proposals have been made to improve this. That is, a water-repellent fiber fabric (see Patent Document 1) in which the constituent fibers of the fabric are coated with a resin film composed of a perfluoroalkyl group-containing acrylate or methacrylate and a triazine compound or a blocked isocyanate compound, or a cotton fiber A cotton unit whose inside or surface is cross-linked or filled with a compound having two or more active hydrogen groups capable of reacting with cotton fibers, and whose outermost layer surface is mainly coated with a film of a water / oil repellent agent. A fiber structure having fibers (see Patent Document 2) has been proposed. However, even with these methods, there are problems that the durability of water and oil repellency is not sufficient, the texture becomes hard, and the dye is likely to be discolored.

一方、セルロース材料の存在下で、フッ素基含有アクリル系モノマーを重合させてセルロース材料を処理する方法も提案されている。例えば、フッ素基含有アクリル系モノマーを繊維表面で共重合させる方法が提案されている(特許文献3参照)。しかし、この方法は、ポリエステル布帛にフッ素基含有アクリル系モノマーを付与した後、蒸気等を与えて繊維の表面を改質するものであり、セルロース繊維等のフィブリル化したり繊維表面が損傷しやすい繊維についても十分な効果を得ることは難しかった。また、有機溶媒中でセルロース系材料とフッソ含有化合物とを反応させることによって材料内部まで改質されたセルロース材料が提案されている(特許文献4参照)。しかし、この方法では、非プロトン性の極性有機溶媒中で処理を行なう必要がある。その為、処理した材料に有機溶媒が残留して、衣料等に用いた場合に皮膚障害等の危険があったり、処理する作業環境への配慮として、暴露防止設備にしなければならない問題があった。   On the other hand, a method for treating a cellulose material by polymerizing a fluorine group-containing acrylic monomer in the presence of the cellulose material has also been proposed. For example, a method of copolymerizing a fluorine group-containing acrylic monomer on the fiber surface has been proposed (see Patent Document 3). However, in this method, after adding a fluorine group-containing acrylic monomer to a polyester fabric, the surface of the fiber is modified by applying steam or the like, and the fiber surface is easily fibrillated or the fiber surface is easily damaged. It was difficult to get a sufficient effect. In addition, a cellulose material modified to the inside of the material by reacting a cellulose-based material with a fluorine-containing compound in an organic solvent has been proposed (see Patent Document 4). However, this method requires the treatment in an aprotic polar organic solvent. For this reason, organic solvents remain in the treated material, and there is a risk of skin damage when used for clothing, etc., and there is a problem that the exposure prevention equipment must be used as a consideration for the work environment to be treated. .

特開平09−137382号公報JP 09-137382 A 特開2003−201672号公報JP 2003-201672 A 特開昭58−36271号公報JP 58-36271 A WO97/36934号公報WO 97/36934

本発明は、上述の従来技術の問題を解消するためになされたものであり、その目的は、従来技術では得られなかった高度な耐久性を有する撥水撥油性を持ったセルロース系繊維及び/又は蛋白質系繊維を含む繊維構造物、及びその製造方法を提供することにある。   The present invention has been made in order to solve the above-described problems of the prior art, and the object thereof is to achieve a highly durable cellulosic fiber having water and oil repellency and / or high durability that cannot be obtained by the prior art. Another object is to provide a fiber structure containing protein fibers and a method for producing the same.

本発明者らは、フッ素系撥水撥油加工を施されたセルロース系繊維や蛋白質系繊維の洗濯や摩擦による撥水撥油性低下を防止する方法について鋭意検討した結果、洗濯及び摩擦による撥水撥油加工剤の脱落を防止するだけではなく、洗濯及び摩擦により布帛表面の単繊維がフィブリル化したり、繊維表面が損傷しても、撥水撥油性、特に撥油性の低下を防止することが必要であることを見出した。そして、その手段として、フッ素含有ビニル系モノマーを繊維内部にグラフト重合させることにより、たとえ単繊維がフィブリル化したり、繊維表面が損傷して、繊維内部が露出したとしても撥水撥油性を保持することが可能となることを見い出した。   As a result of diligent research on methods for preventing water- and oil-repellency degradation caused by washing and friction of cellulosic fibers and protein-based fibers that have been subjected to fluorine-based water- and oil-repellent processing, the present inventors have found that Not only prevents the oil-repellent finishing agent from dropping off, but also prevents water and oil repellency, especially oil repellency, from deteriorating even when the single fiber on the fabric surface is fibrillated or damaged by washing and friction. I found it necessary. And as a means, graft-polymerizing a fluorine-containing vinyl monomer inside the fiber maintains the water and oil repellency even if the single fiber is fibrillated or the fiber surface is damaged and the inside of the fiber is exposed. I found it possible.

本発明は、かかる知見に基づいてなされたものであり、以下の(1)〜(4)を要旨とするものである。
(1)撥水撥油性を有するセルロース系繊維及び/又は蛋白質系繊維を含む繊維構造物であって、セルロース系繊維及び/又は蛋白質系繊維がフッ素含有ビニル系モノマーを0.5〜150重量%の割合でグラフト重合されていることを特徴とする繊維構造物。
(2)フッ素含有ビニル系モノマーが、炭素数1〜6のポリフルオロアルキル基を成分とした、フッ素含有オレフィン化合物、フッ素含有アクリレート化合物、及びフッ素含有メタクリレート化合物から選択される少なくとも一種の化合物であることを特徴とする(1)に記載の繊維構造物。
(3)洗濯初期において撥油性が5〜7級、かつ撥水性が5〜12級であり、洗濯30回後でも撥油性及び撥水性がともに3級以上であることを特徴とする(1)または(2)に記載の繊維構造物。
(4)炭素数1〜6のポリフルオロアルキル基を成分とした、フッ素含有オレフィン化合物、フッ素含有アクリレート化合物、及びフッ素含有メタクリレート化合物から選択される少なくとも一種のフッソ系含有ビニル系モノマーを、HLB7〜18のノニオン系界面活性剤で分散させた水分散液中でセルロース系繊維及び/又は蛋白質系繊維にラジカル重合反応させることを含むことを特徴とする(1)〜(3)のいずれかに記載の繊維構造物の製造方法。
This invention is made | formed based on this knowledge, and makes the following (1)-(4) a summary.
(1) A fiber structure containing cellulosic fibers and / or protein fibers having water and oil repellency, wherein the cellulose fibers and / or protein fibers contain 0.5 to 150% by weight of a fluorine-containing vinyl monomer. A fiber structure characterized by being graft-polymerized at a ratio of
(2) The fluorine-containing vinyl-based monomer is at least one compound selected from a fluorine-containing olefin compound, a fluorine-containing acrylate compound, and a fluorine-containing methacrylate compound containing a C 1-6 polyfluoroalkyl group as a component. The fiber structure according to (1), characterized in that:
(3) Oil repellency is 5 to 7 and water repellency is 5 to 12 in the initial stage of washing, and both oil repellency and water repellency are 3 or more even after 30 washings (1) Or the fiber structure as described in (2).
(4) At least one fluorine-containing vinyl monomer selected from a fluorine-containing olefin compound, a fluorine-containing acrylate compound, and a fluorine-containing methacrylate compound containing a polyfluoroalkyl group having 1 to 6 carbon atoms as a component, The method according to any one of (1) to (3), which comprises subjecting a cellulose fiber and / or a protein fiber to a radical polymerization reaction in an aqueous dispersion dispersed with 18 nonionic surfactant. Manufacturing method of fiber structure.

本発明によれば、綿やレーヨンのようにフィブリル化し易いセルロース系繊維や絹や羊毛等の損傷しやすい蛋白質系繊維を使用した繊維構造物において、耐久性の高い撥水撥油性、特に撥油性の高いものを提供することができる。   According to the present invention, in a fiber structure using cellulosic fibers that are easily fibrillated, such as cotton and rayon, and protein fibers that are easily damaged such as silk and wool, highly durable water and oil repellency, especially oil repellency. Can be provided.

本発明の繊維構造物は、撥水撥油性を有するセルロース系繊維及び/又は蛋白質系繊維を含むものであり、このセルロース系繊維及び/又は蛋白質系繊維がフッ素含有ビニル系モノマーを0.5〜150重量%の割合でグラフト重合されていることを特徴とする。本発明の繊維構造物は、かかる特徴により洗濯初期において撥油性が5〜7級、かつ撥水性が5〜12級であり、洗濯30回後でも撥油性及び撥水性がともに3級以上であることができる。   The fiber structure of the present invention includes a cellulose fiber and / or a protein fiber having water and oil repellency, and the cellulose fiber and / or the protein fiber contains a fluorine-containing vinyl monomer in an amount of 0.5 to 0.5. It is characterized by being graft polymerized at a ratio of 150% by weight. The fiber structure of the present invention has oil repellency of 5 to 7 grade and water repellency of 5 to 12 grade in the initial stage of washing due to such characteristics, and both oil repellency and water repellency are grade 3 or more even after 30 washings. be able to.

本発明の繊維構造物に使用されるセルロース系繊維としては、綿、麻等の天然のセルロース繊維や、レーヨン、ポリノジック、キュプラ等の再生繊維、テンセルなどの溶剤紡糸セルロース繊維が挙げられる。蛋白質系繊維としては、絹、羊毛、カシミヤ他の獣毛等の天然繊維、蛋白質を共重合したり、練り込んだ合成繊維等が挙げられる。   Examples of cellulosic fibers used in the fiber structure of the present invention include natural cellulose fibers such as cotton and hemp, regenerated fibers such as rayon, polynosic and cupra, and solvent-spun cellulose fibers such as tencel. Examples of the protein fiber include natural fibers such as silk, wool, cashmere and other animal hairs, and synthetic fibers obtained by copolymerizing or kneading proteins.

セルロース系繊維は、単繊維内部が一様ではなく様々な微細構造を形成している。例えば綿繊維では、単繊維は、蝋質、ペクチン質を多く含み精練工程で除去される一次壁と、セルロースを主成分とする二次壁からなる。二次壁はさらに、ラメラ、フィブリル、ミクロフィブリル、エレメンタリーフィブリルと呼ばれる微細なセルロース組織よりなる高次構造体を形成しており、この組織間には微小な空隙が存在する。従って、摩擦などにより大きな外力を受けた場合に繊維組織が一様に削り取られるのではなく、まず最も大きな微細組織であるラメラ間で繊維組織が引き裂かれ、単繊維がフィブリル化する。   Cellulosic fibers are not uniform in the interior of a single fiber and form various fine structures. For example, in the case of cotton fibers, a single fiber is composed of a primary wall that contains a large amount of waxy and pectin materials and is removed by a scouring process, and a secondary wall mainly composed of cellulose. The secondary wall further forms a higher-order structure composed of fine cellulose structures called lamellae, fibrils, microfibrils, and elementary fibrils, and minute voids exist between these structures. Therefore, when a large external force is applied due to friction or the like, the fiber structure is not evenly cut off, but first, the fiber structure is torn between lamellas, which are the largest fine structure, and the single fiber is fibrillated.

この摩擦による綿繊維のフィブリル化は、乾燥状態でも発生するが、特に水などにより綿繊維が膨潤しラメラ間の空隙が広がっている場合に発生しやすい。従って、洗濯などにより綿布帛が水膨潤状態で布帛同士及び洗濯機槽壁などと擦れ、布帛表面が強度の摩擦を受けた場合、布帛表面の単繊維がラメラ間でフィブリル化する。この洗濯により発生したフィブリルは非常に小さいため肉眼では見えないが、洗濯後の綿布帛表面を走査型電子顕微鏡写真で500倍以上に拡大してみると、単繊維表面から数μm以下のヒゲ状のフィブリルが繊維組織がめくれる様に発生していることが観察される。同様に蛋白質系繊維もフィブリル化しやすいことが知られており、羊毛等の獣毛繊維も表面のキューティクルが剥がれたり損傷すると、繊維内部は親水性が高いので撥水撥油性が低下してしまう。   Although the fibrillation of the cotton fiber due to this friction occurs even in a dry state, it is likely to occur particularly when the cotton fiber swells due to water or the like and the gap between lamellae is widened. Accordingly, when the cotton fabric is swelled by washing or the like and rubs with the fabric and the wall of the washing machine tub, and the fabric surface is subjected to strong friction, the single fiber on the fabric surface is fibrillated between lamellae. The fibrils generated by this washing are so small that they cannot be seen with the naked eye, but when the surface of the washed cotton fabric is magnified 500 times or more with a scanning electron micrograph, it has a beard shape of several μm or less from the surface of a single fiber. It is observed that the fibrils are generated so that the fiber structure is turned up. Similarly, protein fibers are also known to be easily fibrillated, and when animal hair fibers such as wool are peeled off or damaged, the inside of the fibers is highly hydrophilic and the water and oil repellency is reduced.

そこで繊維の単繊維内部にまで撥水撥油効果を持たせる技術を検討した。単繊維内部にまで撥水撥油効果を持たせることができれば、ラメラ間に水が侵入し難くなりフィブリル化が起りにくくなる。また、フィブリル化が起ったとしてもフィブリルが剥がれた繊維内側の部分にも撥水撥油性があるため、繊維の洗濯や摩擦に対する耐久性を向上させることができると考えた。   Therefore, we investigated a technology to provide water and oil repellent effects even inside the single fiber. If the water and oil repellent effect can be given to the inside of the single fiber, it becomes difficult for water to enter between the lamellae and fibrillation hardly occurs. Moreover, even if fibrillation occurred, the fiber inner part where the fibrils were peeled off was also water and oil repellant, so that the durability against washing and friction of the fibers could be improved.

ここで単繊維内部まで撥水撥油の加工剤を浸透させるためには、加工剤の分子径や粒子径が単繊維内部に浸透する大きさであるか、または単繊維を膨潤させることが必要である。   Here, in order to infiltrate the water and oil repellent processing agent into the inside of the single fiber, it is necessary that the molecular diameter or particle size of the processing agent penetrates into the inside of the single fiber, or it is necessary to swell the single fiber. It is.

本発明で使用されるフッ素含有ビニル系モノマーは非常に小さい分子であるため、単繊維間の空隙にも容易に浸透することができ、収束した繊維束の内部にも均一に処理することができる。また、水により膨潤して開いたラメラ間の間隙(0.05μm以下)内にまで侵入することが可能である。一般的に使われるフッ素系撥水撥油剤は高分子であるため、単繊維内部まで入り込むことは難しい。また、この高分子は繊維表面に被膜を作るが、この皮膜は、洗濯や摩擦により脱落したり、単繊維がフィブリル化したり損傷したりすることによる撥水撥油性の低下を防止するのは困難である。さらに、高分子のままでは、収束した繊維束の内部にも均一に処理することは難しいため、繊維束中の繊維がズレたり切れたりすることにより、皮膜のない部分が露出してしまい撥水撥油性が低下してしまう。   Since the fluorine-containing vinyl monomer used in the present invention is a very small molecule, it can easily penetrate into the voids between the single fibers and can be uniformly processed even inside the converged fiber bundle. . Moreover, it is possible to penetrate into a gap (0.05 μm or less) between lamellas swollen by water. Since commonly used fluorine-based water and oil repellents are polymers, it is difficult to penetrate into single fibers. In addition, this polymer forms a coating on the fiber surface, but it is difficult to prevent this coating from dropping due to washing or friction, or preventing water and oil repellency from decreasing due to fibrillation or damage of single fibers. It is. Furthermore, since it is difficult to uniformly treat the inside of the converged fiber bundle with the polymer as it is, the fiber in the fiber bundle is displaced or cut, so that a portion without a film is exposed and water repellent Oil repellency will decrease.

本発明では、繊維内部にまでフッ素含有ビニル系モノマーを浸透させるためにセルロース系繊維及び/又は蛋白質系繊維を膨潤させる溶媒を用いてフッ素含有ビニル系モノマーを溶解し付与する必要がある。この繊維を膨潤させる溶媒は、特に限定されないが、安全性やコストの面から水が好ましい。   In the present invention, it is necessary to dissolve and apply the fluorine-containing vinyl monomer using a solvent that swells the cellulose fiber and / or the protein fiber in order to allow the fluorine-containing vinyl monomer to penetrate into the fiber. The solvent for swelling the fibers is not particularly limited, but water is preferable from the viewpoint of safety and cost.

フッ素含有ビニル系モノマーとしては、例えば、フッ素含有アクリレート化合物(ROCOCH=CH)、フッ素含有メタクリレート化合物(ROCOC(CH)=CH)、フッ素含有オレフィン化合物(RCF=CF、RCF=CClF、RCF=CH、RCH=CH、RC=CF、RC=CH)が挙げられる。式中、RはF、Cl、C1〜30のポリフルオロアルキル基、C1〜30のポリフルオロアルケニル基、C1〜30のポリフルオロアルコキシ基、またはC2〜300のポリフルオロポリエーテル基であり、例えば、Rは、パーフルオロアルキル基、パーフルオロアルケニル基、パーフルオロアルコキシ基、またはパーフルオロポリエーテル基であることができる。 Examples of the fluorine-containing vinyl monomer include a fluorine-containing acrylate compound (ROCOCH = CH 2 ), a fluorine-containing methacrylate compound (ROCOC (CH 3 ) = CH 2 ), a fluorine-containing olefin compound (RCF = CF 2 , RCF = CClF, RCF═CH 2 , RCH═CH 2 , R 2 C═CF 2 , R 2 C═CH 2 ). In the formula, R is F, Cl, a C1-30 polyfluoroalkyl group, a C1-30 polyfluoroalkenyl group, a C1-30 polyfluoroalkoxy group, or a C2-300 polyfluoropolyether group. For example, R can be a perfluoroalkyl group, a perfluoroalkenyl group, a perfluoroalkoxy group, or a perfluoropolyether group.

本発明では、使用されるフッ素含有ビニル系モノマーは、炭素数1〜6のポリフルオロアルキル基を成分としたフッ素含有ビニル系モノマーであることが好ましい。具体的なフッ素含有アクリレート化合物やフッ素含有メタクリレート化合物としては、2,2,2−トリフルオロエチルアクリレート{CH=CHCOOCHCF}、2,2,2−トリフルオロエチルメタアクリレート{CH=C(CH)COOCHCF},2,2,3,3−テトラフルオロプロピルアクリレート{CH=C(COOCH(CFH),1H,1H,5H−オクタフルオロペンチルアクリレート{CH=CHCOOCH(CFH},1H,1H,5H−オクタフルオロペンチルメタアクリレート{CH=C(CH)COOCH(CFH},2−(パーフルオロブチル)エチルアクリレート{F(CFCHCHOCOCH=CH},2−(パーフルオロブチル)エチルメタクリレート{F(CFCHCHOCOC(CH)=CH},2−(パーフルオロヘキシル)アクリレート{F(CFCHCHOCOCH=CH}、2−(パーフルオロヘキシル)メタクリレート{F(CFCHCH0C0C(CH)=CH}が挙げられる。また、フッ素含有オレフィン化合物としては、パーフルオロヘキシルエチレン{F(CFCH=CH}等が挙げられる。 In the present invention, the fluorine-containing vinyl monomer to be used is preferably a fluorine-containing vinyl monomer containing a C 1-6 polyfluoroalkyl group as a component. Specific fluorine-containing acrylate compounds and fluorine-containing methacrylate compounds include 2,2,2-trifluoroethyl acrylate {CH 2 ═CHCOOCH 2 CF 3 }, 2,2,2-trifluoroethyl methacrylate {CH 2 = C (CH 3) COOCH 2 CF 3}, 2,2,3,3- tetrafluoro propyl acrylate {CH 2 = C (COOCH 2 (CF 2) 2 H), 1H, 1H, 5H- octafluoropentyl acrylate { CH 2 = CHCOOCH 2 (CF 2 ) 4 H}, 1H, 1H, 5H- octafluoropentyl methacrylate {CH 2 = C (CH 3 ) COOCH 2 (CF 2) 4 H}, 2- ( perfluorobutyl) Ethyl acrylate {F (CF 2 ) 4 CH 2 CH 2 OCOCH═CH 2 }, 2- (perfluorobutyl) ethyl methacrylate {F (CF 2) 4 CH 2 CH 2 OCOC (CH 3) = CH 2}, 2- ( perfluorohexyl) acrylate {F (CF 2) 6 CH 2 CH 2 OCOCH = CH 2 }, 2- (perfluorohexyl) methacrylate {F (CF 2 ) 6 CH 2 CH 2 0C0C (CH 3 ) = CH 2 }. Examples of the fluorine-containing olefin compound include perfluorohexylethylene {F (CF 2 ) 6 CH═CH 2 }.

炭素数1〜6のポリフルオロアルキル基を成分としたフッ素含有ビニル系モノマーであると、後述するノニオン界面活性剤を使うだけで水系で安定的に加工を行うことができる。炭素数7以上になると、水系では加工安定性が悪くなりやすい。そのため、特別な界面活性剤を用いたり、アセトニトリル、ジメチルスルホキシド、ジメチルホルムアミド等の非プロトン性の極性有機溶媒を使って加工する必要がでてくる。   When it is a fluorine-containing vinyl-based monomer having a polyfluoroalkyl group having 1 to 6 carbon atoms as a component, it can be stably processed in an aqueous system only by using a nonionic surfactant described later. When the number of carbon atoms is 7 or more, the processing stability tends to deteriorate in an aqueous system. Therefore, it is necessary to use a special surfactant or process using an aprotic polar organic solvent such as acetonitrile, dimethyl sulfoxide, dimethylformamide or the like.

本発明の繊維構造物では、フッ素含有ビニル系モノマーに加えて、それ以外のモノマーを共重合したり、重複して加工しても構わない。それ以外のモノマーとしては、例えば、アクリル酸(メタクリル酸)、アクリルアミド、アリルアミン等が挙げられる。   In the fiber structure of the present invention, in addition to the fluorine-containing vinyl monomer, other monomers may be copolymerized or processed in duplicate. Examples of other monomers include acrylic acid (methacrylic acid), acrylamide, and allylamine.

本発明では、繊維構造物に使用されるセルロース系繊維及び/又は蛋白質系繊維のフッ素含有ビニル系モノマーのグラフト重合率は0.5〜150重量%、好ましくは2.0〜100重量%である。このグラフト重合率が前記範囲を超えると、ポリマー化した繊維表面に過剰に存在して経済的に不利である。また、ワタに加工する場合は、紡績性が低下して歩留りや均一な紡績糸が作りにくくなる。一方、前記範囲より少ないと、十分な改質効果を得ることができない。グラフト重合率は、繊維に対するビニル系モノマーの使用割合及び反応条件で調節することができる。なお、このグラフト重合率とは、重合後のセルロース繊維の重量を100重量%としたときのグラフトポリマーの重量比率(百分率)である。   In the present invention, the graft polymerization rate of the fluorine-containing vinyl monomer of the cellulosic fiber and / or protein fiber used in the fiber structure is 0.5 to 150% by weight, preferably 2.0 to 100% by weight. . When the graft polymerization rate exceeds the above range, it is excessively present on the polymerized fiber surface, which is economically disadvantageous. Further, when processing into cotton, the spinnability is lowered, and it becomes difficult to produce a yield and a uniform spun yarn. On the other hand, if the amount is less than the above range, a sufficient reforming effect cannot be obtained. The graft polymerization rate can be adjusted by the use ratio of the vinyl monomer to the fiber and the reaction conditions. The graft polymerization rate is a weight ratio (percentage) of the graft polymer when the weight of the cellulose fiber after polymerization is 100% by weight.

フッ素含有ビニル系モノマーは、それ自体が水に不溶性であるため、可溶化剤を併用することが好ましい。可溶化剤としては、フッ素含有ビニル系モノマーを水に安定的に分散させ得るものであれば、ノニオン系界面活性剤、アニオン系界面活性剤、カチオン系界面活性剤、両性界面活性剤等のいかなる界面活性剤も用いることができるが、ノニオン系界面活性剤が好ましい。   Since the fluorine-containing vinyl monomer itself is insoluble in water, it is preferable to use a solubilizer in combination. As the solubilizer, any nonionic surfactant, anionic surfactant, cationic surfactant, amphoteric surfactant, etc. can be used as long as it can stably disperse the fluorine-containing vinyl monomer in water. Surfactants can also be used, but nonionic surfactants are preferred.

ノニオン系界面活性剤としては、ポリオキシアルキレンエーテル類,ポリオキシアルキレンアルキルエーテル類,ポリオキシアルキレン脂肪酸エステル類,ポリオキシアルキレン脂肪酸ジエステル類,ポリオキシアルキレン樹脂酸エステル類,ポリオキシアルキレン(硬化)ヒマシ油類,ポリオキシアルキレンアルキルフェノール類,ポリオキシアルキレンアルキルフェニルエーテル類,ポリオキシアルキレンフェニルエーテル類,ポリオキシアルキレンアルキルエステル類,ポリオキシアルキレンアルキルエステル類,ソルビタン脂肪酸エステル,ポリオキシアルキレンソルビタンアルキルエステル類,ポリオキシアルキレンソルビタン脂肪酸エステル類,ポリオキシアルキレンソルビット脂肪酸エステル類,ポリオキシアルキレングリセリン脂肪酸エステル類,ポリグリセリンアルキルエーテル類,ポリグリセリン脂肪酸エステル類,ショ糖脂肪酸エステル類,脂肪酸アルカノールアミド,アルキルグルコシド類,ポリオキシアルキレン脂肪酸ビスフェニルエーテル類,ポリプロピレングリコール,ポリエーテル変性シリコーン、すなわち、ポリオキシアルキレン変性ジオルガノポリシロキサン,ポリグリセリル変性シリコーン,グリセリル変性シリコーン,糖変性シリコーン,パーフルオロポリエーテル系界面活性剤,ポリオキシエチレン・ポリオキシプロピレンブロックコポリマー,アルキルポリオキシエチレン・ポリオキシプロピレンブロックコポリマーエーテルが例示される。この中でもポリオキシアルキレンアルキルエーテル類,ポリオキシアルキレン脂肪酸エステル類等のポリオキシエチレン付加型ノニオン系界面活性剤が好ましく用いられる。   Nonionic surfactants include polyoxyalkylene ethers, polyoxyalkylene alkyl ethers, polyoxyalkylene fatty acid esters, polyoxyalkylene fatty acid diesters, polyoxyalkylene resin acid esters, polyoxyalkylene (cured) castor. Oils, polyoxyalkylene alkylphenols, polyoxyalkylene alkyl phenyl ethers, polyoxyalkylene phenyl ethers, polyoxyalkylene alkyl esters, polyoxyalkylene alkyl esters, sorbitan fatty acid esters, polyoxyalkylene sorbitan alkyl esters, Polyoxyalkylene sorbitan fatty acid esters, polyoxyalkylene sorbit fatty acid esters, polyoxyalkylene glyce Fatty acid esters, polyglycerin alkyl ethers, polyglycerin fatty acid esters, sucrose fatty acid esters, fatty acid alkanolamides, alkyl glucosides, polyoxyalkylene fatty acid bisphenyl ethers, polypropylene glycol, polyether-modified silicones, Polyoxyalkylene-modified diorganopolysiloxane, polyglyceryl-modified silicone, glyceryl-modified silicone, sugar-modified silicone, perfluoropolyether surfactant, polyoxyethylene / polyoxypropylene block copolymer, alkylpolyoxyethylene / polyoxypropylene block copolymer Ether is exemplified. Among these, polyoxyethylene addition type nonionic surfactants such as polyoxyalkylene alkyl ethers and polyoxyalkylene fatty acid esters are preferably used.

ノニオン系界面活性剤は、HLB7〜18のものが好ましい。より好ましくはHLB8〜16,更に好ましくはHLB10〜14である。具体的には、ポリオキシエチレンソルビット脂肪酸エステル(HLB12.5)、ポリオキシエチレンソルビタン脂肪酸エステル(HLB11)、ポリオキシエチレングリセリン脂肪酸エステル等が好適に用いられる。また、エマルションの安定性を確保するために、ノニオン系界面活性剤に加えて、少量のイオン性界面活性剤、及び/又は高ポリオキシエチレン鎖長を有する界面活性剤を用いてもよい。   The nonionic surfactant is preferably an HLB 7-18. More preferably, it is HLB8-16, More preferably, it is HLB10-14. Specifically, polyoxyethylene sorbit fatty acid ester (HLB12.5), polyoxyethylene sorbitan fatty acid ester (HLB11), polyoxyethylene glycerin fatty acid ester and the like are preferably used. Further, in order to ensure the stability of the emulsion, in addition to the nonionic surfactant, a small amount of an ionic surfactant and / or a surfactant having a high polyoxyethylene chain length may be used.

本発明では、セルロース系繊維及び/又は蛋白質系繊維へのフッ素含有ビニル系モノマーのグラフト重合は、フッ素含有ビニル系モノマーを上述の界面活性剤で分散させた水分散液中でこれらの繊維にラジカル重合反応させることが好ましい。このときフッ素含有ビニル系モノマーと共に使用される重合開始剤としては、過酸化水素と二価鉄塩などのレドックス系、ベンゾイルパーオキサイド、過硫酸カリウムやアンモニウムなどの過酸化物、2,2−アゾビス塩酸塩などのアゾ系重合開始剤、硝酸二アンモニウムセリウムなどのセリウム塩などが挙げられる。好ましくは、レドックス系重合開始剤や過酸化物を用いるのがよい。さらに好ましくは、水溶性のレドックス系重合開始剤や過酸化物を用いるのがよい。これらを用いると、N置換を行なわなくてもグラフト重合が進むので、設備改造が不要で汎用設備で加工できる利点がある。 In the present invention, graft polymerization of a fluorine-containing vinyl monomer to cellulosic fibers and / or protein fibers is carried out by radically adhering these fibers in an aqueous dispersion in which the fluorine-containing vinyl monomer is dispersed with the surfactant described above. It is preferable to carry out a polymerization reaction. The polymerization initiator used together with the fluorine-containing vinyl monomer at this time includes redox compounds such as hydrogen peroxide and divalent iron salts, peroxides such as benzoyl peroxide, potassium persulfate and ammonium, and 2,2-azobis. Examples thereof include azo polymerization initiators such as hydrochloride and cerium salts such as diammonium cerium nitrate. Preferably, a redox polymerization initiator or a peroxide is used. More preferably, a water-soluble redox polymerization initiator or peroxide is used. When these are used, since graft polymerization proceeds without N 2 substitution, there is an advantage that modification is not required and processing can be performed with general-purpose equipment.

重合開始剤の付与は、加工浴(水分散液)中に添加する方法や予め繊維に付与する方法等が採用できる。例えば、過酸化水素と二価鉄塩を含有するレドックス系で反応させる場合、水分散液中で繊維に対してフッ素含有ビニル系モノマーをグラフト重合させることができる。二価鉄塩としては、水中において二価鉄イオンを放出し得るものであればいずれのものも用いられる。具体的には、硫酸第一鉄、塩化第一鉄、硫酸第一鉄アンモニウム、硝酸第一鉄等が挙げられる。この二価鉄塩と過酸化水素の組合せは、レドックス系触媒を構成し、フッ素含有ビニル系モノマーのグラフト重合反応を促進させる。水溶液中の過酸化水素濃度は、0.001〜0.5モル/l、好ましくは0.01〜0.2モル/lである。また、鉄塩濃度は、0.5〜10ミリモル/l、好ましくは0.5〜3.0ミリモル/lである。   The polymerization initiator can be applied by a method of adding it to a processing bath (aqueous dispersion) or a method of applying it to the fiber in advance. For example, when the reaction is performed in a redox system containing hydrogen peroxide and a divalent iron salt, a fluorine-containing vinyl monomer can be graft-polymerized on the fiber in an aqueous dispersion. Any divalent iron salt may be used as long as it can release divalent iron ions in water. Specific examples include ferrous sulfate, ferrous chloride, ferrous ammonium sulfate, and ferrous nitrate. The combination of the divalent iron salt and hydrogen peroxide constitutes a redox catalyst and promotes the graft polymerization reaction of the fluorine-containing vinyl monomer. The concentration of hydrogen peroxide in the aqueous solution is 0.001 to 0.5 mol / l, preferably 0.01 to 0.2 mol / l. The iron salt concentration is 0.5 to 10 mmol / l, preferably 0.5 to 3.0 mmol / l.

また、この水分散液中には、必要に応じて、酸を添加することができる。酸の添加により加工浴のpHを適正な範囲に保持することで、フッ素含有ビニル系モノマーの反応率(グラフト重合率)を向上させることができる。加工前の加工浴の適正なpHは1〜5である。より好ましくは1.5〜3.5である。使用される酸としては、例えば、硫酸、塩酸、リン酸、ギ酸等が挙げられる。   In addition, an acid can be added to the aqueous dispersion as necessary. By maintaining the pH of the processing bath within an appropriate range by adding an acid, the reaction rate (graft polymerization rate) of the fluorine-containing vinyl monomer can be improved. The proper pH of the processing bath before processing is 1-5. More preferably, it is 1.5-3.5. Examples of the acid used include sulfuric acid, hydrochloric acid, phosphoric acid, formic acid and the like.

加工されるセルロース系繊維及び/又は蛋白質系繊維(絶乾重量)に対する水分散液の重量比(浴比)は、5〜100、好ましくは5〜20である。反応温度は、40〜110℃、好ましくは50〜90℃であり、反応時間は、60〜240分、好ましくは90〜180分である。フッ素含有ビニル系モノマーの使用割合は、加工されるセルロース系繊維及び/又は蛋白質系繊維(絶乾重量)100重量部に対して、1〜200重量部、好ましくは10〜100重量部である。使用割合が少ないと、フッ素の導入割合が少なくなるために改質効果が十分でなく、一方、多ければ多いほどフッ素の導入割合は増加するが、効果の格別の向上は得られず、経済的に不利である。さらに、この水分散液中には、従来公知の金属封鎖剤、例えばリン酸系やホスホン酸の他、EDTA、NTA等を添加することができる。前記の化合物をセルロース系繊維及び/又は蛋白質系繊維と反応させる方法としては、これら加工剤を単繊維内部に浸透させた後、例えば加熱することによって反応を遂行させる方法が最も簡便である。   The weight ratio (bath ratio) of the aqueous dispersion to the cellulosic fibers and / or protein fibers (absolute dry weight) to be processed is 5 to 100, preferably 5 to 20. The reaction temperature is 40 to 110 ° C., preferably 50 to 90 ° C., and the reaction time is 60 to 240 minutes, preferably 90 to 180 minutes. The proportion of the fluorine-containing vinyl monomer used is 1 to 200 parts by weight, preferably 10 to 100 parts by weight, based on 100 parts by weight of cellulose fiber and / or protein fiber (absolutely dry weight) to be processed. If the amount used is small, the reforming effect is not sufficient because the proportion of fluorine introduced is small. On the other hand, the proportion of fluorine introduced increases as the amount increases, but the improvement in the effect cannot be obtained. Disadvantageous. Furthermore, conventionally well-known metal sequestering agents, for example, EDTA, NTA, etc. can be added to the aqueous dispersion, in addition to phosphoric acid and phosphonic acid. The simplest method for reacting the compound with cellulose fibers and / or protein fibers is to allow these processing agents to permeate the inside of the single fiber and then carry out the reaction by heating, for example.

上述のグラフト重合されたセルロース系繊維及び/又は蛋白質系繊維は、ワタの状態で他の繊維と混紡、混繊等を行った後でセルロース織編物等の繊維構造物に使用してもよい。他の繊維の混用率は最大70%であることが好ましい。他の繊維としては、グラフト重合されていないセルロース繊維(即ち、未加工綿)や、前記例示したセルロース繊維以外の合成繊維、半合成繊維、天然繊維が挙げられる。また、フッ素含有ビニル系モノマー以外のモノマーで加工したグラフト加工繊維を用いてもよく、フッ素含有ビニル系モノマー以外のモノマーとしては、アクリル酸(メタクリル酸)やアクリルアミド、アリルアミン等などを混合して構わない。   The above-mentioned graft-polymerized cellulose fibers and / or protein fibers may be used in fiber structures such as cellulose woven and knitted fabrics after being spun and mixed with other fibers in a cotton state. The mixing ratio of other fibers is preferably 70% at the maximum. Examples of other fibers include cellulose fibers that are not graft-polymerized (that is, unprocessed cotton), synthetic fibers other than the cellulose fibers exemplified above, semi-synthetic fibers, and natural fibers. In addition, grafted fibers processed with monomers other than fluorine-containing vinyl monomers may be used. As monomers other than fluorine-containing vinyl monomers, acrylic acid (methacrylic acid), acrylamide, allylamine, etc. may be mixed. Absent.

本発明の耐久性のある撥水撥油性を有する繊維構造物を得るための加工手法としては、浸漬法、パッド法、コーティング法、スプレー法などが利用できる。これらの中でも繊維全体に均一に付与するためには浸漬法が好ましい。浸漬法の具体的な方法としては、綿やスライバー、及び糸を加工する場合には、オーバーマイヤー染色機が好適に用いられる。また、布帛形態で加工する場合は、ジッカー染色機や液流染色機が好ましく用いられる。繊維製品を加工する場合は、ウインスやドラムワッシャー等が使用できる。   As a processing method for obtaining a durable fiber structure having water and oil repellency according to the present invention, a dipping method, a pad method, a coating method, a spray method, or the like can be used. Among these, the dipping method is preferable in order to uniformly apply to the entire fiber. As a specific method of the dipping method, an overmeier dyeing machine is preferably used when processing cotton, sliver, and yarn. Moreover, when processing with a fabric form, a zicker dyeing machine or a liquid dyeing machine is preferably used. When processing textile products, wins, drum washers and the like can be used.

繊維表面の摩擦を低減させるため及び加工後の風合いを好ましいものとするために、シリコン系、ポリエチレン系、脂肪族系等の平滑剤や軟剤なども併用できる。これら化合物の繊維構造物への付与量は、布帛の風合いを著しく損なわない範囲内で使用するのが望ましく、繊維構造物への付与量は繊維重量に対して20%以内、好ましくは10%以内である。本発明の撥水撥油性を有する繊維構造物に対して、布帛にした後で更に撥水撥油加工処理を施しても構わない。その場合の撥水撥油加工剤としては、一般に使用されているフッ素系、シリコン系化合物を水又は溶剤に溶解、分散、乳化させたものを使用することができる。これらの中でも撥油性の面からフッ素系の撥水撥油加工剤が望ましい。   In order to reduce the friction on the fiber surface and to make the texture after processing preferable, a silicon-based, polyethylene-based, aliphatic-based smoothing agent, softener, and the like can be used in combination. The amount of these compounds applied to the fiber structure is desirably used within a range that does not significantly impair the texture of the fabric, and the amount applied to the fiber structure is within 20%, preferably within 10% of the fiber weight. It is. The fiber structure having water / oil repellency of the present invention may be further subjected to water / oil / oil repellency treatment after being made into a fabric. As the water and oil repellent finishing agent in that case, a commonly used fluorine-based or silicon-based compound dissolved, dispersed, or emulsified in water or a solvent can be used. Among these, a fluorine-based water and oil repellent finish is desirable from the viewpoint of oil repellency.

本発明の繊維構造物は、ワタやスライバー等の繊維、粗糸や精紡糸、フィラメント、加工糸等の糸、織物、編物、不織布等であり、これらは合成繊維、天然繊維、再生繊維などの他の繊維との混合物であっても差し支えない。本発明の繊維構造物の用途としては、繊維製品全般であるが、具体的には、肌着、寝具、作業服、ユニフォーム、ドレスシャツ、ブラウス、スポーツシャツ、カーテン、インテリア用品、寝具、救命具、靴下、手袋等が挙げられる。   The fiber structure of the present invention includes fibers such as cotton and sliver, yarns such as roving and fine spinning, filaments, processed yarns, woven fabrics, knitted fabrics, non-woven fabrics, and the like. These include synthetic fibers, natural fibers, and recycled fibers. It may be a mixture with other fibers. The textile structure of the present invention is used for textile products in general, and specifically, underwear, bedding, work clothes, uniforms, dress shirts, blouses, sports shirts, curtains, interior goods, bedding, lifesaving equipment, socks , Gloves and the like.

以下、実施例により本発明を更に詳細に説明するが、これらの実施例によって本発明は何ら限定されるものではない。なお、実施例中の特性値の評価は以下の方法で行なった。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited at all by these Examples. In addition, evaluation of the characteristic value in an Example was performed with the following method.

(撥水性)
ワタを測定する場合は、ミニチュアカード機に通して、繊維方向の揃ったウエブとして測定試料とした。また、糸を測定する場合は、大きさ約10cm四方の厚紙に糸を隣同士隙間が空かないように捲きつけて、(約0.1g/dtexの張力をかけながら)隙間なく糸が揃った状態の板巻にしたものを測定試料とした。編物、織物、不織布を測定する場合はそのまま測定試料とした。
(Water repellency)
When measuring cotton, it passed through the miniature card machine, and it was set as the measurement sample as a web with the uniform fiber direction. When measuring the yarn, the yarn was laid on a thick paper about 10 cm square so that there was no gap between the yarns, and the yarn was aligned without any gap (while applying a tension of about 0.1 g / dtex). A plate wound in a state was used as a measurement sample. When measuring a knitted fabric, a woven fabric or a non-woven fabric, it was used as a measurement sample as it was.

下記の1〜12の等級のイソプロピルアルコール(IPA)濃度を変えた水溶液を、水平に置いた試料に滴下して浸透度合から等級判定する。判定はDUPONT法を用いる。
<12種類の等級判定液の作成>
下記のIPAと水の重量%を変化させた12種類の等級のIPA水溶液を調製する。

Figure 2013194335
1級から順に編地上にスポイドで一滴づつ乗せ、10秒後の編地への浸透度合を見る。10秒経たずに浸透した時点で、その等級がその試料の撥水性となる。 The following grades 1 to 12 of grades of isopropyl alcohol (IPA) with different concentrations are dropped on a horizontally placed sample and graded from the degree of penetration. The determination uses the DUPONT method.
<Preparation of 12 kinds of grade determination solutions>
The following 12 grades of IPA aqueous solution with varying IPA and weight% of water are prepared.
Figure 2013194335
In order from the first grade, drop each drop onto the knitted fabric with a dropper, and see the degree of penetration into the knitted fabric after 10 seconds. When it penetrates in less than 10 seconds, the grade becomes the water repellency of the sample.

(撥油性)
AATCC−TM118―1983の表3に示された試験溶液を撥水性の測定と同じ試料の上、2ケ所に数滴(直径約1mm)置き、30秒後の浸透状態により判定する。数値が大きいほど、撥油性が優れていることを示す。1級から順に確認し、10秒経たずに浸透を確認した時点の等級がその試料の撥油性となる。

Figure 2013194335
(Oil repellency)
A test solution shown in Table 3 of AATCC-TM118-1983 is placed on the same sample as the measurement of water repellency, a few drops (about 1 mm in diameter) are placed in two places, and the state of penetration after 30 seconds is judged. It shows that oil repellency is excellent, so that a numerical value is large. The grade at the time of confirming in order from the first grade and confirming permeation without passing 10 seconds becomes the oil repellency of the sample.
Figure 2013194335

(洗濯試験)
ワタ状の繊維、不織布については、30gをポリエステルタフタで作った袋に入れて洗濯した。糸条のものは、30g程度のカセにしてから、同じくポリエステルタフタの袋に入れて洗濯した。織物及び編物は、40×40cm角の大きさに採取して、端がほつれないように処理したものを洗濯した。試料をJIS−L−0217−1976の103法により、連続9回分の洗濯処理後(洗濯45分→脱水1分→すすぎ36分→脱水1分)、さらに1回洗濯処理(洗濯5分→脱水1分→すすぎ2分→脱水→すすぎ2分→脱水1分)を行った後、JIS−L−1042−1986のI−2法により高温タンブル乾燥を30分行い、10洗(10回洗濯)とした。以後、この操作を3及び5回繰り返したものを30洗(30回洗濯)及び50洗(50回洗濯)とした。
(Laundry test)
About cotton-like fiber and the nonwoven fabric, 30g was put in the bag made from the polyester taffeta, and was washed. The yarn was made into about 30 g of casserole, and then put in a polyester taffeta bag for washing. The woven fabric and the knitted fabric were collected in a size of 40 × 40 cm square and washed so that the ends were not frayed. Samples were washed 9 times in succession according to method 103 of JIS-L-0217-1976 (45 minutes for washing → 1 minute for dehydration → 36 minutes for rinsing → 1 minute for dehydration), and then once again (5 minutes for washing → dehydration) 1 minute → rinse 2 minutes → dehydration → rinse 2 minutes → dehydration 1 minute), followed by high temperature tumble drying for 30 minutes according to I-2 method of JIS-L-1042-1986, 10 washings (10 washings) It was. Thereafter, this operation was repeated 3 and 5 times to make 30 washings (30 washings) and 50 washings (50 washings).

(グラフト重合率)
グラフト重合率(%)は、グラフト重合反応前の繊維の絶乾重量(W0)から、グラフト重合した後の絶乾重量(W1)への重量増加率を下記式に基づいて計算した。
グラフト重合率(%)=100×(W1−W0)/W0
(Graft polymerization rate)
The graft polymerization rate (%) was calculated based on the following formula based on the following formula: the weight increase rate from the absolute dry weight (W0) of the fiber before the graft polymerization reaction to the absolute dry weight (W1) after the graft polymerization.
Graft polymerization rate (%) = 100 × (W1-W0) / W0

形態がワタの場合、グラフト加工前のワタをおおよそ20gを採取して秤量瓶に入れ、絶乾(105℃×5時間)してから蓋を閉めて、室温にて放冷してから試料の絶乾重量(WO)を精秤する。このワタを綿金巾3号の晒布の袋に入れて、n=3でオーバーマイヤー染色機でワタグラフト加工時に加工ワタ本体と一緒に同時処理して水洗後に取出す。取出したサンプルを乾燥させて、金巾袋から試料サンプルを全部取出して秤量瓶に入れて、絶乾・放冷してから、秤量(W1)して上記式からグラフト率を求める。チーズ糸の場合は、チーズ1本全体の絶乾重量を測定して、グラフト加工後の絶乾重量を測定した後、チューブ芯の重量をグラフト重合前後のチーズ重量からそれぞれ引いて計算する。織編物の場合は、グラフト加工前後のそれぞれの1m当りの絶乾重量を測定して、グラフト重合率を求める。n=5で測定してその平均値とする。 If the form is cotton, approximately 20 g of cotton before grafting is collected and placed in a weighing bottle, completely dried (105 ° C. × 5 hours), closed, and allowed to cool at room temperature, Weigh the absolute dry weight (WO). This cotton is put in a cotton cloth No. 3 bleached cloth bag, n = 3, and simultaneously processed together with the processed cotton body at the time of cotton grafting with an overmeier dyeing machine, and taken out after washing with water. The sample taken out is dried, and all the sample samples are taken out from the gold sack and placed in a weighing bottle, completely dried and allowed to cool, then weighed (W1), and the graft ratio is obtained from the above formula. In the case of cheese yarn, the absolute dry weight of one whole cheese is measured, the absolute dry weight after grafting is measured, and then the weight of the tube core is subtracted from the cheese weight before and after the graft polymerization. In the case of a woven or knitted fabric, the graft polymerization rate is determined by measuring the absolute dry weight per 1 m 2 before and after the grafting. Measure with n = 5 and use the average value.

実施例1
木綿(スーピマ)のワタをオーバーマイヤー染色機を使って下記処方で精練漂白を処理温度95℃,60分間で処理して、湯洗・水洗を行った。
苛性ソーダ(日本曹達製) 1g/L
精練剤(日華化学(株)製ピッチランL250) 1g/L
過酸化水素安定剤(日華化学(株)製PLC7000) 1g/L
35%過酸化水素 4ml/L
浴比1:10
引き続き、下記処方にてグラフト重合処理(処理温度80℃,60分)を行った
2−(パーフルオロヘキシル)エチルアクリレート 100%owf
ポリオキシエチレンソルビット脂肪酸エステル 20%owf
金属イオン封鎖剤 (NTA−H−2Na) 0.45%owf
硫酸(60°Be) 0.8%owf
硫酸第1鉄アンモニウム(特級試薬) 0.45%owf
35%過酸化水素 3.9%owf
浴比1:10
その後、水洗・湯洗を繰り返した後、脱水、乾燥を行い、グラフト重合ワタを作製した。このグラフト重合ワタのグラフト重合率は約89.5%であった。実施例1のグラフト重合ワタの詳細と評価結果を表1に示す。
Example 1
Cotton (Supima) cotton was scoured and bleached at a processing temperature of 95 ° C. for 60 minutes with the following formulation using an Overmeier dyeing machine, followed by hot water washing and water washing.
Caustic soda (manufactured by Nippon Soda) 1g / L
Scouring agent (Pitch Run L250 manufactured by Nikka Chemical Co., Ltd.) 1g / L
Hydrogen peroxide stabilizer (PLC7000 manufactured by Nikka Chemical Co., Ltd.) 1g / L
35% hydrogen peroxide 4ml / L
Bath ratio 1:10
Subsequently, 2- (perfluorohexyl) ethyl acrylate 100% owf was subjected to graft polymerization treatment (treatment temperature 80 ° C., 60 minutes) according to the following formulation.
Polyoxyethylene sorbite fatty acid ester 20% owf
Metal ion sequestering agent (NTA-H-2Na) 0.45% owf
Sulfuric acid (60 ° Be) 0.8% owf
Ferrous ammonium sulfate (special grade reagent) 0.45% owf
35% hydrogen peroxide 3.9% owf
Bath ratio 1:10
Thereafter, washing with water and washing with hot water were repeated, followed by dehydration and drying to produce graft polymerization cotton. The graft polymerization rate of this graft polymerization cotton was about 89.5%. The details and evaluation results of the graft polymerization cotton of Example 1 are shown in Table 1.

実施例2
実施例1の2−(パーフルオロヘキシル)エチルアクリレートの濃度を10%owfに、ポリオキシエチレンソルビット脂肪酸エステルの濃度を4%owfに変更した以外は実施例1と同様にグラフト重合ワタを作製した。実施例2のグラフト重合ワタの詳細と評価結果を表1に示す。
Example 2
A graft polymerization cotton was prepared in the same manner as in Example 1 except that the concentration of 2- (perfluorohexyl) ethyl acrylate in Example 1 was changed to 10% owf and the concentration of polyoxyethylene sorbite fatty acid ester was changed to 4% owf. . The details and evaluation results of the graft polymerization cotton of Example 2 are shown in Table 1.

実施例3
実施例1の2−(パーフルオロヘキシル)エチルアクリレートの濃度を1%owfに、ポリオキシエチレンソルビット脂肪酸エステルの濃度を1%owfに変更した以外は実施例1と同様にグラフト重合ワタを作製した。実施例3のグラフト重合ワタの詳細と評価結果を表1に示す。
Example 3
A graft-polymerized cotton was produced in the same manner as in Example 1 except that the concentration of 2- (perfluorohexyl) ethyl acrylate in Example 1 was changed to 1% owf and the concentration of polyoxyethylene sorbite fatty acid ester was changed to 1% owf. . The details and evaluation results of the graft polymerization cotton of Example 3 are shown in Table 1.

実施例4
実施例1の2−(パーフルオロヘキシル)エチルアクリレート100%owfを2,2,2−トリフルオロエチルアクリレート10%owfに、ポリオキシエチレンソルビット脂肪酸エステルの濃度を4%owfに変更した以外は実施例1と同様にグラフト重合ワタを作製した。実施例4のグラフト重合ワタの詳細と評価結果を表1に示す。
Example 4
Except that 100% owf of 2- (perfluorohexyl) ethyl acrylate in Example 1 was changed to 10% owf of 2,2,2-trifluoroethyl acrylate, and the concentration of polyoxyethylene sorbite fatty acid ester was changed to 4% owf. A graft-polymerized cotton was prepared in the same manner as in Example 1. The details and evaluation results of the graft polymerization cotton of Example 4 are shown in Table 1.

実施例5
実施例1の2−(パーフルオロヘキシル)エチルアクリレート100%owfを1H,1H,5H−オクタフルオロペンチルメタアクリレート10%owfに、ポリオキシエチレンソルビット脂肪酸エステルの濃度を4%owfに変更した以外は実施例1と同様にグラフト重合ワタを作製した。実施例5のグラフト重合ワタの詳細と評価結果を表1に示す。
Example 5
Except that 100% owf of 2- (perfluorohexyl) ethyl acrylate in Example 1 was changed to 10% owf of 1H, 1H, 5H-octafluoropentyl methacrylate, and the concentration of polyoxyethylene sorbite fatty acid ester was changed to 4% owf. A graft-polymerized cotton was produced in the same manner as in Example 1. The details and evaluation results of the graft polymerization cotton of Example 5 are shown in Table 1.

実施例6
実施例1の2−(パーフルオロヘキシル)エチルアクリレート100%owfをパーフルオロヘキシルエチレン10%owfに、ポリオキシエチレンソルビット脂肪酸エステルの濃度を4%owfに変更した以外は実施例1と同様にグラフト重合ワタを作製した。実施例6のグラフト重合ワタの詳細と評価結果を表1に示す。
Example 6
Grafting as in Example 1 except that 100% owf of 2- (perfluorohexyl) ethyl acrylate of Example 1 was changed to 10% owf of perfluorohexylethylene and the concentration of polyoxyethylene sorbite fatty acid ester was changed to 4% owf. Polymerized cotton was produced. The details and evaluation results of the graft polymerization cotton of Example 6 are shown in Table 1.

実施例7
レーヨン繊維(ダイワボウレーヨン製RBタイプ、1.4dtex、繊維長38mm)のワタを100質量%で混綿機(OHARA社製)を用いてワタを解した後、カード機(石川製作所製)を用いてカードスライバーとし、続いて練条機(原織機製作所製)に2回通してスライバーとした。その後、該スライバーを粗紡機(豊田自動織機社製)に通して粗糸を作製し、さらに該粗糸をリング精紡機(豊田自動織機社製)により紡出して英式番手30の紡績糸を得た。該紡績糸をチーズ染色用に1kg巻返したものをグラフト重合に用いた。
該チーズをチーズ染色機を使って下記処方にて処理温度95℃,60分間の精練処理して、湯洗・水洗を行った。
苛性ソーダ(日本曹達製) 0.5g/L
精練剤(日華化学(株)製ピッチランL250) 1g/L
浴比1:10
引き続き、下記処方にてグラフト重合処理(処理温度80℃,60分)を行った。
グラフト重合処方は、実施例1の2−(パーフルオロヘキシル)エチルアクリレート100%owfを2−(パーフルオロブチル)エチルメタクリレート10%owfに、ポリオキシエチレンソルビット脂肪酸エステルの濃度を4%owfに変更した以外は実施例1と同様にグラフト重合糸を作製した。実施例7のグラフト重合糸の詳細と評価結果を表1に示す。
Example 7
After 100% by weight of cotton of rayon fiber (RB type made by Daiwabo Rayon, 1.4 dtex, fiber length 38 mm) is used with a cotton blender (OHARA), a card machine (Ishikawa Seisakusho) is used. It was set as a card sliver, and then passed twice through a drawing machine (manufactured by Haro loom) to make a sliver. Thereafter, the sliver is passed through a roving machine (manufactured by Toyota Industries Co., Ltd.) to produce a roving yarn, and the roving is spun by a ring spinning machine (manufactured by Toyota Industries Co., Ltd.). Obtained. What spun 1 kg of this spun yarn for cheese dyeing was used for graft polymerization.
The cheese was scoured at a processing temperature of 95 ° C. for 60 minutes using a cheese dyeing machine, followed by hot water washing and water washing.
Caustic soda (manufactured by Nippon Soda) 0.5g / L
Scouring agent (Pitch Run L250 manufactured by Nikka Chemical Co., Ltd.) 1g / L
Bath ratio 1:10
Subsequently, a graft polymerization treatment (treatment temperature 80 ° C., 60 minutes) was performed according to the following formulation.
The graft polymerization formulation was changed from 100% owf of 2- (perfluorohexyl) ethyl acrylate in Example 1 to 10% owf of 2- (perfluorobutyl) ethyl methacrylate and the concentration of polyoxyethylene sorbite fatty acid ester to 4% owf. A graft polymerized yarn was produced in the same manner as in Example 1 except that. The details and evaluation results of the graft polymerized yarn of Example 7 are shown in Table 1.

実施例8
繊度が20μm、平均繊維長が84mmのオーストラリア産メリノウールのワタを下記処方で、洗毛を60℃×30分間処理した後、湯洗・水洗した。
高級アルコール硫酸エステル塩(スパミンH) 1g/L
ノニオン系界面活性剤(サンモールSEN−10) 1g/L
ソーダ灰 1g/L
浴比1:10
引き続いて、実施例1と同様にグラフト重合処理を行った。その後、湯洗、水洗、脱水、乾燥を行ったものを評価に供した。実施例8のグラフト重合ワタの詳細と評価結果を表1に示す。
Example 8
An Australian merino wool cotton having a fineness of 20 μm and an average fiber length of 84 mm was treated according to the following prescription with 60 ° C. for 30 minutes, followed by washing with hot water and washing with water.
Higher alcohol sulfate (spamin H) 1g / L
Nonionic surfactant (Sanmor SEN-10) 1g / L
Soda ash 1g / L
Bath ratio 1:10
Subsequently, a graft polymerization treatment was performed in the same manner as in Example 1. Then, what performed hot water washing, water washing, dehydration, and drying was used for evaluation. The details and evaluation results of the graft polymerization cotton of Example 8 are shown in Table 1.

実施例9
木綿(スーピマ)100質量%のワタを混綿機(OHARA社製)を用いてワタを解した後、カード機(石川製作所製)を用いてカードスライバーとし、続いて練条機(原織機製作所製)に2回通してスライバーとした。その後、該スライバーを粗紡機(豊田自動織機社製)に通して粗糸を作製し、さらに該粗糸をリング精紡機(豊田自動織機社製)により紡出して、撚係数K=4.0(撚係数=撚数÷(番手)1/2)の英式番手24の紡績糸を得た。この糸を経緯に用いて、平織で経密度68本/inch,緯密度63本/inchの細布を作成した。この織物をビーム染色機を用いて処理温度95℃,60分間の精練漂白処理して、湯洗・水洗を行った。
苛性ソーダ(日本曹達製) 3g/L
精練剤(日華化学(株)製ピッチランL250) 1g/L
過酸化水素安定剤(日華化学(株)製PLC7000) 1g/L
35%過酸化水素 10ml/L
トリポリ燐酸ソーダ(多田薬品株製) 2g/L
浴中柔軟剤(テキスポートD600) 1g/L
浴比1:30
引き続き、下記処方にてグラフト重合処理(処理温度80℃,60分)を行った。
2−(パーフルオロヘキシル)エチル アクリレート 100%owf
ポリオキシエチレンソルビット脂肪酸エステル 20%owf
金属イオン封鎖剤 (NTA−H−2Na) 0.45%owf
硫酸(60°Be) 0.8%owf
硫酸第1鉄アンモニウム(特級試薬) 0.45%owf
35%過酸化水素 3.9%owf
浴比1:10
その後、水洗・湯洗を繰り返した後、染色機から取出し、マングルで脱水してテンターにて120℃で乾燥した。実施例9のグラフト重合織物の詳細と評価結果を表1に示す。
Example 9
After removing 100% cotton cotton (Supima) cotton using a blending machine (OHARA), a card machine (Ishikawa Seisakusho) is used as a card sliver, followed by a drawing machine (Haraori Seisakusho). ) Was passed twice as a sliver. Thereafter, the sliver is passed through a roving machine (manufactured by Toyota Industries Co., Ltd.) to produce a roving yarn, and the roving yarn is further spun by a ring spinning machine (manufactured by Toyota Industries Co., Ltd.), with a twist coefficient K = 4.0. A spun yarn with an English count of 24 (twist coefficient = twist number / (count) 1/2) was obtained. Using this yarn for the weft, a plain weave fabric with a warp density of 68 / inch and a weft density of 63 / inch was prepared. This fabric was subjected to scouring and bleaching treatment at a treatment temperature of 95 ° C. for 60 minutes using a beam dyeing machine, followed by hot water washing and water washing.
Caustic soda (manufactured by Nippon Soda) 3g / L
Scouring agent (Pitch Run L250 manufactured by Nikka Chemical Co., Ltd.) 1g / L
Hydrogen peroxide stabilizer (PLC7000 manufactured by Nikka Chemical Co., Ltd.) 1g / L
35% hydrogen peroxide 10ml / L
Sodium tripolyphosphate (manufactured by Tada Pharmaceutical Co., Ltd.) 2g / L
Softener in bath (Texport D600) 1g / L
Bath ratio 1:30
Subsequently, a graft polymerization treatment (treatment temperature 80 ° C., 60 minutes) was performed according to the following formulation.
2- (Perfluorohexyl) ethyl acrylate 100% owf
Polyoxyethylene sorbite fatty acid ester 20% owf
Metal ion sequestering agent (NTA-H-2Na) 0.45% owf
Sulfuric acid (60 ° Be) 0.8% owf
Ferrous ammonium sulfate (special grade reagent) 0.45% owf
35% hydrogen peroxide 3.9% owf
Bath ratio 1:10
Thereafter, washing with water and washing with hot water were repeated, and the product was taken out from the dyeing machine, dehydrated with a mangle and dried at 120 ° C. with a tenter. The details and evaluation results of the graft polymerized fabric of Example 9 are shown in Table 1.

比較例1
旭硝子株式会社製のフッ素系撥水剤(アサヒガードAG−E061)の50重量%水溶液を作成した。木綿(スーピマ)のワタに、スプレーで上記液を付着量20%owfになるように吹付けた。混綿することで撥水剤をワタ全体にマイグレーションさせたのち、熱風乾燥機で熱処理(120℃×10分間)したものを評価に供した。比較例1のフッ素系撥水剤処理ワタの詳細と評価結果を表1に示す。
Comparative Example 1
A 50% by weight aqueous solution of a fluorine-based water repellent (Asahi Guard AG-E061) manufactured by Asahi Glass Co., Ltd. was prepared. The above liquid was sprayed onto cotton cotton with a spray amount of 20% owf. After migrating the water repellent to the whole cotton by blending, it was subjected to heat treatment (120 ° C. × 10 minutes) with a hot air dryer for evaluation. Table 1 shows details and evaluation results of the fluorine-based water repellent treated cotton of Comparative Example 1.

Figure 2013194335
Figure 2013194335

本発明の繊維構造物は、洗濯やドライクリーニング、さらには着用時の摩擦などによってもあまり低下しない高度な撥水撥油性を有するセルロース系繊維及び/又は蛋白質系繊維から構成されるので、肌着、寝具、作業服、ユニフォーム、ドレスシャツ、ブラウス、スポーツシャツ、カーテン、インテリア用品、寝具、救命具、靴下、手袋等の用途に極めて有用である。   The fiber structure of the present invention is composed of cellulosic fibers and / or protein fibers having high water and oil repellency that is not significantly reduced by washing, dry cleaning, and even friction during wearing. It is extremely useful for applications such as bedding, work clothes, uniforms, dress shirts, blouses, sports shirts, curtains, interior goods, bedding, life preservers, socks and gloves.

Claims (4)

撥水撥油性を有するセルロース系繊維及び/又は蛋白質系繊維を含む繊維構造物であって、セルロース系繊維及び/又は蛋白質系繊維がフッ素含有ビニル系モノマーを0.5〜150重量%の割合でグラフト重合されていることを特徴とする繊維構造物。   A fiber structure comprising cellulosic fibers and / or protein fibers having water and oil repellency, wherein the cellulosic fibers and / or protein fibers contain a fluorine-containing vinyl monomer in a proportion of 0.5 to 150% by weight. A fiber structure characterized by being graft-polymerized. フッ素含有ビニル系モノマーが、炭素数1〜6のポリフルオロアルキル基を成分とした、フッ素含有オレフィン化合物、フッ素含有アクリレート化合物、及びフッ素含有メタクリレート化合物から選択される少なくとも一種の化合物であることを特徴とする請求項1に記載の繊維構造物。   The fluorine-containing vinyl-based monomer is at least one compound selected from a fluorine-containing olefin compound, a fluorine-containing acrylate compound, and a fluorine-containing methacrylate compound, each having a polyfluoroalkyl group having 1 to 6 carbon atoms as a component. The fiber structure according to claim 1. 洗濯初期において撥油性が5〜7級、かつ撥水性が5〜12級であり、洗濯30回後でも撥油性及び撥水性がともに3級以上であることを特徴とする請求項1または2に記載の繊維構造物。   The oil repellency is 5 to 7 grade and the water repellency is 5 to 12 grade in the initial stage of washing, and both the oil repellency and water repellency are 3 or more even after 30 washings. The described fiber structure. 炭素数1〜6のポリフルオロアルキル基を成分とした、フッ素含有オレフィン化合物、フッ素含有アクリレート化合物、及びフッ素含有メタクリレート化合物から選択される少なくとも一種のフッソ系含有ビニル系モノマーを、HLB7〜18のノニオン系界面活性剤で分散させた水分散液中でセルロース系繊維及び/又は蛋白質系繊維にラジカル重合反応させることを含むことを特徴とする請求項1〜3のいずれかに記載の繊維構造物の製造方法。   At least one fluorine-containing vinyl monomer selected from a fluorine-containing olefin compound, a fluorine-containing acrylate compound, and a fluorine-containing methacrylate compound containing a polyfluoroalkyl group having 1 to 6 carbon atoms as a nonion of HLB7 to 18 The fiber structure according to any one of claims 1 to 3, further comprising a radical polymerization reaction of cellulosic fibers and / or protein fibers in an aqueous dispersion dispersed with a surfactant. Production method.
JP2012061604A 2012-03-19 2012-03-19 Method for producing fiber structure having water and oil repellency Expired - Fee Related JP6063135B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012061604A JP6063135B2 (en) 2012-03-19 2012-03-19 Method for producing fiber structure having water and oil repellency

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012061604A JP6063135B2 (en) 2012-03-19 2012-03-19 Method for producing fiber structure having water and oil repellency

Publications (2)

Publication Number Publication Date
JP2013194335A true JP2013194335A (en) 2013-09-30
JP6063135B2 JP6063135B2 (en) 2017-01-18

Family

ID=49393636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012061604A Expired - Fee Related JP6063135B2 (en) 2012-03-19 2012-03-19 Method for producing fiber structure having water and oil repellency

Country Status (1)

Country Link
JP (1) JP6063135B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104562684A (en) * 2015-02-12 2015-04-29 王俊 Water and oil proofing agent and preparation method thereof
CN111501341A (en) * 2020-04-10 2020-08-07 蚌埠学院 Preparation method of hydrophobic modified silk fiber material
CN115450042A (en) * 2022-10-14 2022-12-09 安徽深呼吸纺织科技有限公司 Waterproof flame-retardant textile and preparation method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3912449A (en) * 1973-01-31 1975-10-14 Trinidad Mares Process for preparing water repellent cotton textiles and the product
JPS55127414A (en) * 1979-03-26 1980-10-02 Mitsui Toatsu Chem Inc Anionic chlorohydrin resin for processing fiber
JPS63268721A (en) * 1987-04-14 1988-11-07 アンスティテュ テクスティル ド フランス Method of ensuring water resistance of polymer by grafting polymer with fluorinated monomer and substance thereby
JPH03260174A (en) * 1990-03-08 1991-11-20 Kao Corp Sizing agent composition
JPH06313270A (en) * 1993-04-23 1994-11-08 Gunze Ltd Graft polymerization on fiber
JPH0913270A (en) * 1995-06-26 1997-01-14 Norin Suisansyo Sanshi Konchu Nogyo Gijutsu Kenkyusho Modified protein fiber or its fiber product and production thereof
JP2001164467A (en) * 1999-12-03 2001-06-19 Fukui Prefecture Method for producing grafted fiber by film sealing method
US6293972B1 (en) * 1996-03-29 2001-09-25 Daikin Industries Ltd. Process for fluorinating cellulosic materials and fluorinated cellulosic materials
WO2006022122A1 (en) * 2004-08-25 2006-03-02 Daikin Industries, Ltd. Water-repellent/oil-repellent composition

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3912449A (en) * 1973-01-31 1975-10-14 Trinidad Mares Process for preparing water repellent cotton textiles and the product
JPS55127414A (en) * 1979-03-26 1980-10-02 Mitsui Toatsu Chem Inc Anionic chlorohydrin resin for processing fiber
JPS63268721A (en) * 1987-04-14 1988-11-07 アンスティテュ テクスティル ド フランス Method of ensuring water resistance of polymer by grafting polymer with fluorinated monomer and substance thereby
JPH03260174A (en) * 1990-03-08 1991-11-20 Kao Corp Sizing agent composition
JPH06313270A (en) * 1993-04-23 1994-11-08 Gunze Ltd Graft polymerization on fiber
JPH0913270A (en) * 1995-06-26 1997-01-14 Norin Suisansyo Sanshi Konchu Nogyo Gijutsu Kenkyusho Modified protein fiber or its fiber product and production thereof
US6293972B1 (en) * 1996-03-29 2001-09-25 Daikin Industries Ltd. Process for fluorinating cellulosic materials and fluorinated cellulosic materials
JP2001164467A (en) * 1999-12-03 2001-06-19 Fukui Prefecture Method for producing grafted fiber by film sealing method
WO2006022122A1 (en) * 2004-08-25 2006-03-02 Daikin Industries, Ltd. Water-repellent/oil-repellent composition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104562684A (en) * 2015-02-12 2015-04-29 王俊 Water and oil proofing agent and preparation method thereof
CN111501341A (en) * 2020-04-10 2020-08-07 蚌埠学院 Preparation method of hydrophobic modified silk fiber material
CN115450042A (en) * 2022-10-14 2022-12-09 安徽深呼吸纺织科技有限公司 Waterproof flame-retardant textile and preparation method thereof

Also Published As

Publication number Publication date
JP6063135B2 (en) 2017-01-18

Similar Documents

Publication Publication Date Title
JP6030957B2 (en) Oil repellent and / or water repellent composition for textile materials
Khan et al. Sustainable washing for denim garments by enzymatic treatment
JP7157307B2 (en) Water and oil repellents and textile products
WO2017006849A1 (en) Stainproof fiber structure
JP2020153057A (en) Woven or knitted fabric and method for producing the same
JP6063135B2 (en) Method for producing fiber structure having water and oil repellency
JP5865648B2 (en) Method for producing antifouling fabric
JP2013136686A (en) Surface treating agent
JP2006291372A (en) Water-repelling processing method for fiber structural product and the resultant water-repelling-processed fiber structural product
EP4092185A1 (en) Fibrillated regenerated cellulose fiber, and fabric using same
JP6503439B1 (en) Woven and knitted fabric and method of manufacturing the same
JP3627411B2 (en) Textile structure and manufacturing method thereof
JP6214945B2 (en) Water repellent pollen prevention fabric
JP2007009337A (en) Method for processing polyester/cotton fabric and processed product
JPWO2007083596A1 (en) Fiber structure
KR102463941B1 (en) Manufacturing method of water-repellent blended fabric
JP7501694B2 (en) Stain-resistant textile structure
JP7313802B2 (en) Antifouling fabric and manufacturing method thereof
JP2009228181A (en) Fiber structure
JP3230710B2 (en) Water and oil repellent fiber structure
JP6454500B2 (en) Wiping cloth and manufacturing method of wiping cloth
JPS6036508B2 (en) Hydrophilic processing method for fiber materials
JP2015166502A (en) polyester fiber structure
JP2014145134A (en) Vinylon blended yarn fabric and its manufacturing method
JP2007262619A (en) Fiber structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161216

R150 Certificate of patent or registration of utility model

Ref document number: 6063135

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees