WO2021013201A1 - 一种高富水临海地区地连续墙接头止水装置及方法 - Google Patents

一种高富水临海地区地连续墙接头止水装置及方法 Download PDF

Info

Publication number
WO2021013201A1
WO2021013201A1 PCT/CN2020/103604 CN2020103604W WO2021013201A1 WO 2021013201 A1 WO2021013201 A1 WO 2021013201A1 CN 2020103604 W CN2020103604 W CN 2020103604W WO 2021013201 A1 WO2021013201 A1 WO 2021013201A1
Authority
WO
WIPO (PCT)
Prior art keywords
wall
water
joint
shaped steel
continuous wall
Prior art date
Application number
PCT/CN2020/103604
Other languages
English (en)
French (fr)
Inventor
王永洪
张明义
白晓宇
王海刚
马加骁
刘雪颖
Original Assignee
青岛理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910669495.XA external-priority patent/CN110528501A/zh
Priority claimed from CN201910669480.3A external-priority patent/CN110528500A/zh
Application filed by 青岛理工大学 filed Critical 青岛理工大学
Publication of WO2021013201A1 publication Critical patent/WO2021013201A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D29/00Independent underground or underwater structures; Retaining walls
    • E02D29/02Retaining or protecting walls
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D29/00Independent underground or underwater structures; Retaining walls
    • E02D29/16Arrangement or construction of joints in foundation structures
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/18Bulkheads or similar walls made solely of concrete in situ

Definitions

  • the invention belongs to the technical field of foundation pit support, and relates to a water-stop device and method for continuous wall joints in high water-rich coastal areas, in particular to a water-stop device with I-shaped steel as the joint.
  • Diaphragm wall is an important form of deep foundation pit supporting structure. Its basic technological process includes: guide wall construction, slurry preparation, trench construction, steel cage production, steel cage hoisting, joint treatment, underwater concrete pouring, etc. Among them, the construction at the joint of the underground continuous wall (especially in a high water-rich coastal area) is a technical problem affecting the anti-seepage and water-stopping of the underground continuous wall.
  • the commonly used construction methods at the joints of underground continuous walls include the following:
  • One is the circular joint pipe technology: it is placed into one or both ends of the trough section after clearing the bottom and changing the slurry. After the concrete has initially set, use a pipe puller to pull out. It is characterized by low cost, mature method and wide application, but it is difficult to grasp the time of extubation and the waterproof effect is not ideal;
  • the second is the "one" or "ten” type steel plate joint: after forming the groove, it is placed into the groove section with the steel cage As a one-time waterproof device, the steel plate is embedded in the two continuous walls before and after the construction.
  • the joints are not in contact with the concrete and easy to contain sand; the third is "work" or "king" steel Joint: After forming the groove, put it into the corresponding groove section as a one-time waterproof device.
  • the steel cage is embedded in the steel wing plate. Its characteristics are suitable for water-rich stratum, good integrity and outstanding waterproof effect.
  • the disadvantage is that it is expensive; It is the waterproof joint of the jet grouting pile: After the continuous wall is poured, the jet grouting pile is driven in the outside of the joint for waterproofing. The characteristic is that it is suitable for the weak bottom layer and has a general waterproof effect.
  • the disadvantage is that the construction period is long and the cost is expensive; the fifth is rubber stop Hose joint:
  • the special joint pipe is brought into the predetermined position, and the joint pipe is pulled out after the next groove section is slotted. It is suitable for shallow continuous walls and prevents bypass, but its construction is complicated and the overall rigidity is poor, such as CN200910193231.
  • 8 discloses a device and method for installing a flexible waterstop of an underground continuous wall joint.
  • the installation device is a joint pipe structure made of steel plate or section steel with a width and thickness ratio close to 1, which is in contact with concrete. At least one installation groove can be installed on the side of the rubber waterstop, and the width of the opening of the installation groove is slightly smaller than the width of the groove cavity.
  • 201810132066.4 discloses a grouting-type underground continuous wall joint and its construction method. Its characteristic is that the ground wall joint is provided with two grouting pipes on the side of the soil facing side. When the ground wall joint is connected by a rigid joint, the two grouting pipes are fixed on the side of the rigid joint facing the soil by a ring.
  • the concrete construction of the two ends of the steel cage facing the soil surface includes: the construction of the guide wall, the unit trough section and the underground continuous wall; however, due to the poor engineering geological conditions, the trough quality of the underground continuous wall is a difficult point, and the construction cost of the water stop method high.
  • the purpose of the present invention is to overcome the shortcomings of the prior art, design and provide a continuous wall joint water stop device and method in the high water-rich seaside area, to achieve anti-seepage and stop at the underground continuous wall joint during construction and support water.
  • the main structure of the water-stop device for the joint of the underground continuous wall in the high water-rich seaside area of the present invention includes I-shaped steel plates, horizontal reinforcements of continuous walls, vertical main reinforcements of continuous walls, U-shaped stirrups, galvanized iron sheets, and beading steel bars.
  • Steel flower tube, grouting pipe, first wall rebar cage, second wall rebar cage and sandbag; diaphragm wall horizontal reinforcement and continuous wall vertical main reinforcement are mechanically connected, steel flower pipe is tied and lapped on the first wall rebar cage ;
  • the galvanized iron sheet is installed on the outside of the I-shaped steel plate, and the galvanized iron sheet is spot-welded and welded with the layered steel bar.
  • the I-beam is welded to the first wall reinforcement cage, and the weld length is 100mm; the U-shaped stirrup and the horizontal reinforcement of the continuous wall Surface welding connection, grouting pipe and second wall reinforcement cage are tied and overlapped.
  • the second wall reinforcement cage is fixed in the I-shaped steel wing plate during hoisting; sandbags are piled on the outside of the I-shaped steel joint web, underneath The filling height is the height of the underground continuous wall.
  • the I-shaped steel plate of the present invention is welded by H-shaped steel plates, the width of the flange is 400mm, the thickness of the flange is 10mm, the height of the web is 160mm, and the thickness of the web is 10mm.
  • the type and size of the horizontal reinforcement of the continuous wall and the vertical main reinforcement of the continuous wall according to the present invention are selected according to engineering requirements.
  • the type and spacing of the U-shaped stirrups of the present invention are the same as those of the horizontal ribs of the continuous wall, and the bending angle of the U-shaped stirrups is 45°, so that the second wall web reinforcement cage is better embedded in the I-beam when hoisting Inside the wing board, it is convenient for construction.
  • the galvanized iron sheet of the present invention has a thickness of 0.3 mm and a width of 500 mm.
  • the galvanized iron sheet When concrete is poured in the trough section, the galvanized iron sheet is stretched outwards, and the galvanized iron sheet prevents the concrete from flowing into adjacent trough sections without troughs.
  • the type and size of the layered steel bar of the present invention is C20, and it is spot welded with galvanized iron sheet at a distance of 100 mm from the edge of the I-shaped steel plate.
  • the diameter of the steel flower tube of the present invention is A50, its wall thickness is 3mm, and the height is equivalent to the height of the underground continuous wall.
  • the two steel flower tubes are tied to the first wall reinforcement cage at a distance of 100 mm from the I-shaped steel plate 1 level.
  • the function of the steel flower tube is to carry out grouting reinforcement before the excavation of the foundation pit after the water-stop structure is formed to ensure the water-stop effect at the joint.
  • the size of the grouting pipe is the same as that of the steel flower tube.
  • the present invention adopts the method for sealing the joint of the underground continuous wall in the high water-rich seaside area by adopting the water-stopping device for the joint of the underground continuous wall in the high water-rich seaside area.
  • the specific process is as follows:
  • pouring guide wall Use the existing construction technology to level the site ⁇ measure and stake out ⁇ excavate the guide wall trench and dispose of waste soil ⁇ tie the guide wall reinforcement, install the outer formwork of the vertical wall ⁇ pour the wall concrete ⁇ remove the formwork and add horizontal Support ⁇ layered backfill earthwork in the trough;
  • the mud configuration process is: first add water to After 1/3 of the mixing drum, start the pulping machine, add bentonite powder while constantly adding water to the quantitative water tank, stir for 10 minutes, add CMC liquid and alkali powder and other additives and continue stirring for 10 minutes to stop stirring and put it into the new slurry tank Medium, wait for 24h after standing and puffing;
  • the first trench is used as a test trench section, various parameters and data of the trench construction are collected, and the connecting wall is conventionally formed after the trench is formed.
  • the first phase is determined according to the design drawings and guide walls.
  • the trough-forming machine is used for excavation; when the trough is formed, the wall is protected by mud.
  • the trough is checked and accepted according to the relevant specifications.
  • the wall brush is used to remove the hard objects that have not fallen off. Perform tank wall cleaning; this process is to control the verticality and mud parameters of the formal tank construction process to ensure the continuity of project implementation and achieve the purpose of guiding construction;
  • the first wall reinforcement cage is made according to the existing technology according to the construction requirements, and then welded with the I-shaped steel plate, and the galvanized iron sheet and bead reinforcement are installed at the same time;
  • Step (3) After cleaning the tank, the quality of the tank and the mud index are checked. After passing the test, the joint box is hoisted, the first steel bar cage is lowered to the predetermined position, and sandbags are filled outside the I-shaped steel plate joint to prevent Concrete outflow; in order to reduce the vertical settlement of the underground diaphragm wall and the corresponding surface settlement, the I-shaped steel plate joints are grouted and reinforced with preset steel pipes, and then the first underground section is poured underwater through the embedded grouting pipe Continuous wall, pull out the joint box after pouring is completed;
  • the construction method using I-steel as the joint of the underground continuous wall is more suitable in the high water-rich coastal area, and the waterproof effect is ideal; sandbags filled with galvanized iron and I-steel can effectively prevent concrete Flow around; and the special steel wire brush on the market is used to brush the wall, which has a good wall brushing effect, which is conducive to strengthening the integrity of the concrete and enhancing the waterproof effect; the setting of the steel flower tube further ensures the water stop effect at the joint.
  • Fig. 1 is a schematic diagram of the main structure of the water-stop device for the joint of the underground continuous wall in the high water-rich coastal area of the present invention.
  • Fig. 2 is a three-dimensional view of the main structure of the water stop device for the joint of the underground continuous wall in the high-water-rich coastal area of the present invention.
  • Fig. 3 is a schematic diagram of the structure of the I-shaped steel plate according to the present invention.
  • Figure 4 is a schematic diagram of the steel flower tube structure of the present invention.
  • the main structure of the water stop device for the joint of the underground continuous wall in the high water-rich coastal area in this embodiment includes the I-shaped steel plate 1, the horizontal reinforcement of the continuous wall 2, the vertical main reinforcement of the continuous wall 3, the U-shaped stirrup 4, the galvanized iron sheet 5, and the pressure strip.
  • the I-shaped steel plate 1 in this embodiment is welded by H-shaped steel plates, the width of the flange is 400 mm, the thickness of the flange is 10 mm, the height of the web is 160 mm, and the thickness of the web is 10 mm.
  • the type and size of the horizontal ribs 2 of the continuous wall and the vertical main ribs 3 of the continuous wall in this embodiment are selected according to engineering needs.
  • the model and spacing of the U-shaped stirrups 4 in this embodiment are the same as the horizontal ribs 2 of the continuous wall.
  • the bending angle of the U-shaped stirrups 4 is 45°, so that the second wall width reinforcement cage 10 can be better embedded during hoisting. It is fixed in the I-steel 1 wing plate for easy construction.
  • the galvanized iron sheet 5 in this embodiment has a thickness of 0.3 mm and a width of 500 mm. When concrete is poured in the trough section, the galvanized iron sheet 5 is stretched outwards. The galvanized iron sheet 5 prevents the concrete from flowing into the adjacent ungrooved trough sections.
  • the type and size of the bead reinforcement 6 in this embodiment is C20, and it is spot welded with the galvanized iron sheet 5 at a distance of 100 mm from the edge of the I-shaped steel plate 1.
  • the diameter of the steel flower tube 7 in this embodiment is A50, its wall thickness is 3mm, and the height is equivalent to the height of the underground continuous wall.
  • the two steel flower tubes 7 are connected to the first wall reinforcement cage at a distance of 100 mm from the I-shaped steel plate 1 level. 9 Binding connection, the function of the steel flower tube 7 is to carry out grouting reinforcement before the excavation of the foundation pit after the water-stop structure is formed to ensure the water-stop effect at the joint.
  • the size of the grouting pipe 8 is the same as that of the steel flower tube 7.
  • the joint water stop device described in embodiment 1 is applied to the construction of an underground continuous wall of a subway station.
  • the specific construction process is as follows:
  • the construction quality of the guide wall is directly related to the construction quality of the underground continuous wall.
  • the construction of the guide wall must be carried out in strict accordance with the specifications and standards, and the construction quality must be strictly controlled.
  • the guide wall section adopts inverted “L” cast-in-situ reinforced concrete, uniformly distributed HRB400C12 ⁇ 200 steel frame, the guide wall uses C30 concrete, the guide wall must be excavated manually before the excavation, and the excavator must have a dedicated side station Supervise the construction, then tie the guide wall steel bars and the vertical formwork, pour C30 concrete, remove the formwork and add lateral support, and finally backfill the earth in layers in the trench;
  • the mud mix ratio design is carried out to make the configured mud index meet the construction requirements (the mud proportion is controlled at 1.1g/cm 3 ⁇ 1.25g/cm 3 and viscosity between 25 ⁇ 30s), the slurry configuration method is: first add water to 1/3 of the mixing drum, start the pulping machine, and then add bentonite while constantly adding water to the quantitative water tank After stirring for 10 minutes, add CMC liquid and alkali powder and other additives and continue stirring for 10 minutes to stop the stirring and put it into the new slurry tank, wait for 24 hours to stand and expand before use
  • Phase I trench excavation In order to control the verticality and mud parameters of the formal trenching construction process, ensure the continuity of the project implementation, and achieve the purpose of guiding the construction, the first trench is used as a test trench section, and the trench construction is collected Various parameters and data, etc., after the test trough is formed, the connecting wall is conventionally formed. According to the design drawings and the guide wall, the excavation position of the phase I trough section is determined. In this example, the XCMG 480 hydraulic grab trough machine is used to form the trough. Mud is used to protect the wall when forming the trough. After the trough is formed, the trough hole is inspected and accepted according to relevant specifications.
  • the wall brush is used to remove the hard objects that have not fallen off.
  • the wall brush uses a special wall brush.
  • the wall brush is 3 Meters, weighing 4 tons, one side is an inclined steel shovel, used to remove the abrasive belt, concrete, etc. that adhere to the steel plate; the other side is a wire brush, used to remove the soil adhered to the steel plate, and finally dig The slot machine cleans the bottom of the slot wall;
  • the steel bars are derusted before production, and the reinforcement cage is produced by the moulding process.
  • the welding quality is strictly controlled during welding.
  • the first wall reinforcement cage 9 is made according to the construction requirements with existing technology.
  • the I-shaped steel plate 1 is welded, and at the same time, a 0.3mm thick and 500mm wide anti-winding galvanized iron sheet 5 is installed on the I-beam joint at the outside of the I-shaped steel.
  • the overlap width of the galvanized iron sheet 5 and the I-shaped steel 1 is not less than 100mm, and a bead is used Steel 6 fixed welding;
  • Step (3) After the trough cleaning is completed, the quality of the trough and the mud index are inspected, and the joint box is hoisted after being qualified, and the first steel cage 9 is hoisted as a whole with a double crane, and a 130t crawler crane is used.
  • the main crane, a 55t crawler crane is used as the auxiliary crane.
  • the steel cage lifting points are set at 4 points for the main crane and 6 points for the auxiliary crane to be lowered to the predetermined position.
  • Sandbags 11 are filled outside the I-shaped steel plate 1 joint to prevent concrete from flowing out;
  • the I-shaped steel plate 1 joint is used for grouting reinforcement with the preset steel flower tube 7, and then the first underground continuous wall is poured underwater through the embedded grouting tube 8 Wall, pull out the joint box after pouring is completed;

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Bulkheads Adapted To Foundation Construction (AREA)

Abstract

本发明属于基坑支护技术领域,涉及一种高富水临海地区地连续墙接头止水装置及方法,连续墙水平筋和连续墙竖向主筋机械连接,钢花管绑扎搭接在第一墙幅钢筋笼上;镀锌铁皮安装在工字型钢板的外侧,镀锌铁皮和压条钢筋点焊焊接,工字型钢板与第一墙幅钢筋笼焊接连接,u形箍筋和连续墙水平筋单面焊接连接,注浆管和第二墙幅钢筋笼绑扎搭接,第二墙幅钢筋笼在吊装嵌固于工字型钢板翼板内;沙袋堆在工字型钢板接头腹板外侧,下填高度为地下连续墙高度;其防水效果理想,能够有效防止混凝土绕流,钢花管的设置确保了接缝处止水效果。

Description

一种高富水临海地区地连续墙接头止水装置及方法 技术领域:
本发明属于基坑支护技术领域,涉及一种高富水临海地区地连续墙接头止水装置及方法,特别是一种以工字形钢为接头的止水装置。
背景技术:
地下连续墙是一种重要的深基坑支护结构形式,其基本的工艺流程包括:导墙施工、泥浆制备、成槽施工、钢筋笼制作、钢筋笼吊装、接头处理、水下混凝土灌注等,其中地下连续墙接头处(特别是在一种高富水临海地区)的施工)是影响地下连续墙防渗止水的技术难题。
目前,常用的地下连续墙接头处施工方法包括以下几种:一是圆形接头管技术:是清底换浆后置入槽段的一端或两端,混凝土初凝后,用拔管器拔起,其特点是造价低廉,方法成熟,适用广泛,但拔管时间难掌握,防水效果不理想;二是“一”或“十”型钢板接头:成槽后,随钢筋笼置入槽段,做为一次性防水装置,钢板两侧嵌入前后施工两幅连续墙内,其特点使用广泛,造价便宜,但接缝处混凝土接触不良,易夹砂;三是“工”或“王”型钢接头:成槽后,置入相应槽段做为一次性防水装置,钢筋笼嵌入型钢板翼板内,其特点是适应于富水地层,整体性好,防水效果突出,不足是造价昂贵;四是旋喷桩防水接头:连续墙浇筑完成后,在接缝处外侧,打入旋喷桩防水,特点是适用于软弱底层,防水效果一般,缺点是施工周期长,造价昂贵;五是橡胶止水带接头:由特质的接头管带入既定位置,下个槽段开槽后拔出接头管,其适用于较浅连续墙,防绕流,但其施工复杂,整体刚度差,如CN200910193231.8公开了一种地下连续墙接头柔性止水带安装装置及方法,所述安装装置为由钢板或型钢制作成的宽度和厚度之比接近1的接头管结构,其与混凝土相接触的一侧设有至少一个可 安装橡胶止水带的安装槽,且所述安装槽的开口处的宽度比槽腔的宽度略小。由于接头管的宽厚比接近1。近年来出现了注浆式接头,如201810132066.4公开了一种可注浆式地下连续墙接头及其施工方法,其特点是地墙接头在迎土面一侧设有两注浆管组成可注浆的地下连续墙接头,所述地墙接头采用刚性接头连接时,两注浆管由圆环将其固定在刚性接头迎土面的一侧,采用柔性接头连接时,两注浆管分别固定在钢筋笼迎土面的两端,具体施工包括:导墙、单元槽段和地下连续墙的施工;但是由于工程地质条件差,地下连续墙成槽质量是重难点,而且该止水方法施工成本高。
因此,基于各种地下连续墙接头处施工方法以及工程地质情况的不同,合理选择地下连续墙接头处的结构形式变得尤为重要。
发明内容:
本发明的目的在于克服现有技术存在的缺点,设计提供一种在高富水临海地区地连续墙接头止水装置及方法,实现在地下连续墙接头处在施工以及支护过程中时防渗止水。
为了实现上述目的,本发明所述高富水临海地区地下连续墙接头止水装置的主体结构包括工字型钢板、连续墙水平筋、连续墙竖向主筋、u形箍筋、镀锌铁皮、压条钢筋、钢花管、注浆管、第一墙幅钢筋笼、第二墙幅钢筋笼和沙袋;连续墙水平筋和连续墙竖向主筋机械连接,钢花管绑扎搭接在第一墙幅钢筋笼上;镀锌铁皮安装在工字型钢板的外侧,镀锌铁皮和压条钢筋点焊焊接,工字钢与第一墙幅钢筋笼焊接连接,焊缝长度为100mm;u形箍筋和连续墙水平筋单面焊接连接,注浆管和第二墙幅钢筋笼绑扎搭接,第二墙幅钢筋笼在吊装嵌固于工字型钢板翼板内;沙袋堆在工字型钢板接头腹板外侧,下填高度为地下连续墙高度。
本发明所述工字型钢板由H型钢板焊接而成,其翼缘的宽度为 400mm,翼缘的厚度为10mm,腹板的高度为160mm,腹板的厚度为10mm。
本发明所述连续墙水平筋和连续墙竖向主筋根据工程需要选择型号和大小。
本发明所述u形箍筋的型号及间距与连续墙水平筋相同,u形箍筋的弯起角度为45°,使第二墙幅钢筋笼在吊装时更好的嵌固于工字钢翼板内,便于施工。
本发明所述镀锌铁皮的厚为0.3mm,宽为500mm,当在槽段混凝土浇筑时向外撑开,镀锌铁皮防止混凝土流入相邻未成槽的槽段。
本发明所述压条钢筋的型号和大小采用C20,在距离工字型钢板边缘100mm处与镀锌铁皮点焊焊接。
本发明所述钢花管的直径为A50,其壁厚为3mm,高度与地下连续墙的高度相当,两根钢花管在距离工字型钢板1水平100mm处与第一墙幅钢筋笼绑扎连接,钢花管的作用是在止水结构成形后基坑开挖前进行注浆补强,确保接缝处止水效果,注浆管的大小与钢花管相同。
本发明在高富水临海地区地下连续墙接头止水方法,采用高富水临海地区地下连续墙接头止水装置实现,具体过程为:
(1)浇筑导墙:采用现有施工工艺依次进行场地平整→测量放样→开挖导墙沟及处理废土→绑扎导墙钢筋、安装立墙外侧模板→浇筑墙体混凝土→拆除模板加横向支撑→槽内分层回填土方;
(2)泥浆制备:在成槽过程中,泥浆起到护壁、携渣、冷却机具、切土润滑的作用,性能良好的泥浆能确保成槽时槽壁的稳定,防止塌槽,同时在砼浇灌时对保证砼的浇灌质量起着极其重要的作用;根据所在地质、地下水性质及施工经验进行泥浆配合比设计,使配置 的泥浆指标符合施工要求,泥浆配置的过程为:先将水加至搅拌筒1/3后,启动制浆机,再在定量水箱不断加水的同时,加入膨润土粉,搅拌10min后,加入CMC液和碱粉等外加剂继续搅拌10min即可停止搅拌放入新浆池中,待静置膨化24h后使用;
(3)Ⅰ期槽段开挖:将首开槽作为试验槽段,收集成槽施工的各类参数和数据等,试成槽后地连墙常规成槽,根据设计图纸及导墙确定Ⅰ期槽段开挖位置,成槽机进行开挖作业;成槽时采用泥浆护壁,成槽后根据相关规范对槽孔进行验收,槽段完成后用刷壁器斜铲铲除未脱落的硬物,进行槽壁清理;该过程为控制正式成槽施工过程的垂直度、泥浆参数,保证工程实施的连续性,达到指导施工的目的;
(4)钢筋笼制作:将第一墙幅钢筋笼采用现有技术按施工要求制作好后与工字型钢板焊接,同时安装好镀锌铁皮和压条钢筋;
(5)步骤(3)清槽结束后经检验成槽质量和泥浆指标,合格后吊放接头箱,将第一幅钢筋笼下放到既定位置,在工字型钢板接头外侧填筑沙袋,防止混凝土外流;为减少地下连续墙墙竖向沉降和相应的地表沉降,在工字型钢板接头处用预设的钢花管进行注浆加固,然后通过预埋的注浆管水下浇筑首幅地下连续墙,浇筑完成后起拔接头箱;
(6)相邻槽段Ⅱ期完成后,先用刷壁器斜铲铲除未脱落的硬物,再用刷壁器钢丝刷自上而下分段刷洗Ⅰ期槽端头工字钢板,上下刷数遍,直至刷子上不带泥屑,孔底淤积不再增加,刷壁后使新老混凝土接合处干净密实;
(7)吊放接头箱,将第二墙幅钢筋笼吊装嵌固于工字型钢板翼板内,通过注浆管水下浇筑混凝土,浇筑完成后起拔接头箱;
(8)其余墙幅按照上述步骤,依次浇筑,直至最后一幅连续墙浇筑完成。
本发明与现有技术相比,在高富水临海地区,以工字钢为地下连续墙接头的施工方法比较适用,防水效果较理想;用镀锌铁皮及工字钢外侧填筑沙袋能够有效防止混凝土绕流;而且采用市场销售专门的钢丝刷刷壁,有着良好的刷壁效果,有利于加强混凝土的整体性,增强防水效果;钢花管的设置进一步确保了接缝处止水效果。
附图说明:
图1为本发明所述高富水临海地区地下连续墙接头止水装置的主体结构原理示意图。
图2为本发明所述高富水临海地区地下连续墙接头止水装置的主体结构的三维立体图。
图3为本发明所述工字型钢板结构示意图。
图4为本发明所述钢花管结构示意图。
具体实施方式:
下面通过实施例并结合附图对本发明作进一步说明。
实施例1:
本实施例所述高富水临海地区地下连续墙接头止水装置的主体结构包括工字型钢板1、连续墙水平筋2、连续墙竖向主筋3、u形箍筋4、镀锌铁皮5、压条钢筋6、钢花管7、注浆管8、第一墙幅钢筋笼9、第二墙幅钢筋笼10和沙袋11;连续墙水平筋2和连续墙竖向主筋3机械连接,钢花管7绑扎搭接在第一墙幅钢筋笼9上;镀锌铁皮5安装在工字型钢板1的外侧,镀锌铁皮5和压条钢筋6点焊焊接,工字钢1与第一墙幅钢筋笼9焊接连接,焊缝长度为100mm;u形箍筋4和连续墙水平筋2单面焊接连接,注浆管8和第二墙幅钢筋笼10绑扎搭接,第二墙幅钢筋笼10在吊装嵌固于工字型钢板1翼板内;沙袋11堆在工字型钢板1接头腹板外侧,下填高度为地下连续墙高度。
本实施例所述工字型钢板1由H型钢板焊接而成,其翼缘的宽度为400mm,翼缘的厚度为10mm,腹板的高度为160mm,腹板的厚度为10mm。
本实施例所述连续墙水平筋2和连续墙竖向主筋3根据工程需要选择型号和大小。
本实施例所述u形箍筋4的型号及间距与连续墙水平筋2相同,U形箍筋4的弯起角度为45°,使第二墙幅钢筋笼10在吊装时更好的嵌固于工字钢1翼板内,便于施工。
本实施例所述镀锌铁皮5的厚为0.3mm,宽为500mm,当在槽段混凝土浇筑时向外撑开,镀锌铁皮5防止混凝土流入相邻未成槽的槽段。
本实施例所述压条钢筋6的型号和大小采用C20,在距离工字型钢板1边缘100mm处与镀锌铁皮5点焊焊接。
本实施例所述钢花管7的直径为A50,其壁厚为3mm,高度与地下连续墙的高度相当,两根钢花管7在距离工字型钢板1水平100mm处与第一墙幅钢筋笼9绑扎连接,钢花管7的作用是在止水结构成形后基坑开挖前进行注浆补强,确保接缝处止水效果,注浆管8的大小与钢花管7相同。
实施例2:
本实施例将实施例1所述接头止水装置应用于某地铁站地下连续墙的施工,具体施工过程为:
(1)浇筑导墙:测量放线完成后,开始施工导墙,导墙的施工质量直接关系到地下连续墙的施工质量,导墙施工必须严格按照规范标准要求进行,必须严格控制施工质量,导墙断面采用倒“L”型现浇钢筋混凝土,均布HRB400C12×200钢筋骨架,导墙使用C30混凝土, 导墙开挖前必须先人工开挖探槽,挖掘机作业时必须有专人旁站监督施工,然后绑扎导墙钢筋和立模板,浇筑C30混凝土,拆除模板加横向支撑,最后槽内分层回填土方;
(2)泥浆制备:在成槽过程中,泥浆起到护壁、携渣、冷却机具、切土润滑的作用,性能良好的泥浆能确保成槽时槽壁的稳定,防止塌槽,同时在砼浇灌时对保证砼的浇灌质量起着极其重要的作用;根据所在地质、地下水性质及青岛市地区施工经验进行泥浆配合比设计,使配置的泥浆指标符合施工要求(泥浆比重控制在1.1g/cm 3~1.25g/cm 3左右、粘度25~30s之间),泥浆配置方法为:先将水加至搅拌筒1/3后,启动制浆机,再在定量水箱不断加水的同时,加入膨润土粉,搅拌10min后,加入CMC液和碱粉等外加剂继续搅拌10min即可停止搅拌放入新浆池中,待静置膨化24h后使用;
(3)Ⅰ期槽段开挖:为控制正式成槽施工过程的垂直度、泥浆参数,保证工程实施的连续性,达到指导施工的目的,将首开槽作为试验槽段,收集成槽施工的各类参数和数据等,试成槽后地连墙常规成槽,根据设计图纸及导墙确定Ⅰ期槽段开挖位置,本实施例中用徐工480型液压抓斗成槽机成槽,成槽时采用泥浆护壁,成槽后根据相关规范对槽孔进行验收,槽段完成后用刷壁器斜铲铲除未脱落的硬物,刷壁器使用特制刷壁器,刷壁器高3米,重4吨,一侧为斜钢铲,用来铲除钢板上粘附较牢固的砂带、混凝土等物;另一侧为钢丝刷,用来刷除钢板上粘附的泥土,最后挖槽机进行槽壁清底;
(4)钢筋笼制作:制作前先钢筋除锈,采用胎具法成型工艺制作钢筋笼,焊接时严格控制焊接质量,将第一墙幅钢筋笼9采用现有技术按施工要求制作好后与工字型钢板1焊接,同时在工字钢接头在工字钢外侧安装0.3mm厚、500mm宽的防绕镀锌铁皮5,镀锌铁皮5与 工字钢1搭接宽度不小于100mm,采用一条压条钢筋6固定焊接;
(5)步骤(3)清槽结束后经检验成槽质量和泥浆指标,合格后吊放接头箱,将第一幅钢筋笼9采用双机抬吊进行整体吊装,采用一台130t履带吊作主吊,一台55t履带吊作副吊,钢筋笼吊点设置为主吊4点、副吊6点下放到既定位置,在工字型钢板1接头外侧填筑沙袋11,防止混凝土外流;为减少地下连续墙墙竖向沉降和相应的地表沉降,在工字型钢板1接头处用预设的钢花管7进行注浆加固,然后通过预埋的注浆管8水下浇筑首幅地下连续墙,浇筑完成后起拔接头箱;
(6)相邻槽段Ⅱ期完成后,先用刷壁器斜铲铲除未脱落的砂带等硬物,再用刷壁器钢丝刷自上而下分段刷洗Ⅰ期槽端头工字钢板,上下刷数遍,直至刷子上不带泥屑,孔底淤积不再增加,刷壁后使新老混凝土接合处干净密实;
(7)吊放接头箱,将第二墙幅钢筋笼10吊装嵌固于工字型钢板1翼板内,通过注浆管8水下浇筑混凝土,浇筑完成后起拔接头箱;
(8)其余墙幅按照上述步骤,依次浇筑,直至最后一幅连续墙浇筑完成。

Claims (7)

  1. 一种高富水临海地区地下连续墙接头止水装置,其特征在于,主体结构包括工字型钢板、连续墙水平筋、连续墙竖向主筋、u形箍筋、镀锌铁皮、压条钢筋、钢花管、注浆管、第一墙幅钢筋笼、第二墙幅钢筋笼和沙袋;连续墙水平筋和连续墙竖向主筋机械连接,钢花管绑扎搭接在第一墙幅钢筋笼上;镀锌铁皮安装在工字型钢板的外侧,镀锌铁皮和压条钢筋点焊焊接,工字型钢板与第一墙幅钢筋笼焊接连接;u形箍筋和连续墙水平筋单面焊接连接,注浆管和第二墙幅钢筋笼绑扎搭接,第二墙幅钢筋笼在吊装嵌固于工字型钢板翼板内;沙袋堆在工字型钢板接头腹板外侧,下填高度为地下连续墙高度。
  2. 根据权利要求1所述高富水临海地区地下连续墙接头止水装置,其特征在于,所述工字型钢板由H型钢板焊接而成,其翼缘的宽度为400mm,翼缘的厚度为10mm,腹板的高度为160mm,腹板的厚度为10mm。
  3. 根据权利要求1所述高富水临海地区地下连续墙接头止水装置,其特征在于,所述u形箍筋的型号及间距与连续墙水平筋相同,u形箍筋的弯起角度为45°。
  4. 根据权利要求1所述高富水临海地区地下连续墙接头止水装置,其特征在于,所述镀锌铁皮的厚为0.3mm,宽为500mm,当在槽段混凝土浇筑时向外撑开,镀锌铁皮防止混凝土流入相邻未成槽的槽段。
  5. 根据权利要求1所述高富水临海地区地下连续墙接头止水装置,其特征在于,所述压条钢筋在距离工字型钢板边缘100mm处与镀锌铁皮点焊焊接。
  6. 根据权利要求1所述高富水临海地区地下连续墙接头止水装置,其特征在于,所述钢花管的直径为A50,其壁厚为3mm,高度与地下连续墙的高度相当,两根钢花管在距离工字型钢板水平100 mm处与第一墙幅钢筋笼绑扎连接,注浆管的大小与钢花管相同。
  7. 一种高富水临海地区地下连续墙接头止水方法,其特征在于,采用如权利要求1-6任一项所述的高富水临海地区地下连续墙接头止水装置实现高富水临海地区地下连续墙接头止水,具体过程为:
    (1)浇筑导墙:依次进行场地平整→测量放样→开挖导墙沟及处理废土→绑扎导墙钢筋、安装立墙外侧模板→浇筑墙体混凝土→拆除模板加横向支撑→槽内分层回填土方;
    (2)泥浆制备:泥浆配置的过程为:先将水加至搅拌筒1/3后,启动制浆机,再在定量水箱不断加水的同时,加入膨润土粉,搅拌10min后,加入CMC液和碱粉继续搅拌10min即可停止搅拌放入新浆池中,待静置膨化24h后使用;
    (3)Ⅰ期槽段开挖:将首开槽作为试验槽段,收集成槽施工的各类参数和数据等,试成槽后地连墙常规成槽,确定Ⅰ期槽段开挖位置,成槽机进行开挖作业;成槽时采用泥浆护壁,成槽后对槽孔进行验收,槽段完成后用刷壁器斜铲铲除未脱落的硬物,进行槽壁清理;
    (4)钢筋笼制作:将第一墙幅钢筋笼制作好后与工字型钢板焊接,同时安装好镀锌铁皮和压条钢筋;
    (5)步骤(3)清槽结束后经检验成槽质量和泥浆指标,合格后吊放接头箱,将第一幅钢筋笼下放到既定位置,在工字型钢板接头外侧填筑沙袋,防止混凝土外流;为减少地下连续墙墙竖向沉降和相应的地表沉降,在工字型钢板接头处用预设的钢花管进行注浆加固,然后通过预埋的注浆管水下浇筑首幅地下连续墙,浇筑完成后起拔接头箱;
    (6)相邻槽段Ⅱ期完成后,先用刷壁器斜铲铲除未脱落的硬物,再用刷壁器钢丝刷自上而下分段刷洗Ⅰ期槽端头工字钢板,上下刷数遍 ,直至刷子上不带泥屑,孔底淤积不再增加,刷壁后使新老混凝土接合处干净密实;
    (7)吊放接头箱,将第二墙幅钢筋笼吊装嵌固于工字型钢板翼板内,通过注浆管水下浇筑混凝土,浇筑完成后起拔接头箱;
    (8)其余墙幅按照上述步骤,依次浇筑,直至最后一幅连续墙浇筑完成。
PCT/CN2020/103604 2019-07-24 2020-07-22 一种高富水临海地区地连续墙接头止水装置及方法 WO2021013201A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201910669495.X 2019-07-24
CN201910669495.XA CN110528501A (zh) 2019-07-24 2019-07-24 一种高富水临海地区地连续墙接头止水装置
CN201910669480.3A CN110528500A (zh) 2019-07-24 2019-07-24 一种高富水临海地区地连续墙接头止水方法
CN201910669480.3 2019-07-24

Publications (1)

Publication Number Publication Date
WO2021013201A1 true WO2021013201A1 (zh) 2021-01-28

Family

ID=74192526

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/103604 WO2021013201A1 (zh) 2019-07-24 2020-07-22 一种高富水临海地区地连续墙接头止水装置及方法

Country Status (1)

Country Link
WO (1) WO2021013201A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112962679A (zh) * 2021-02-07 2021-06-15 中国建筑第八工程局有限公司 地下室外墙的框架柱施工缝结构

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07233526A (ja) * 1994-02-23 1995-09-05 Shimizu Corp 地中連続壁
KR20080057435A (ko) * 2006-12-20 2008-06-25 재단법인 포항산업과학연구원 지하 강합성 연속벽체
CN103924621A (zh) * 2014-03-31 2014-07-16 广西建工集团第五建筑工程有限责任公司 地下连续墙槽段h型钢接头止浆板防砼绕流装置及防砼绕流施工方法
CN104963363A (zh) * 2015-06-16 2015-10-07 中铁三局集团有限公司 地下连续墙接缝防绕流围护装置及施工方法
CN105220683A (zh) * 2015-10-27 2016-01-06 中国一冶集团有限公司 一种工字钢接头式地下连续墙绕流处理装置及方法
CN106836191A (zh) * 2017-01-20 2017-06-13 中国建筑第四工程局有限公司 一种低净空下地铁围护结构地连墙的施工方法
CN107653872A (zh) * 2017-11-07 2018-02-02 中建局集团建设发展有限公司 超深地连墙刚性接头综合止水系统及其施工方法
CN110528501A (zh) * 2019-07-24 2019-12-03 青岛理工大学 一种高富水临海地区地连续墙接头止水装置
CN110528500A (zh) * 2019-07-24 2019-12-03 青岛理工大学 一种高富水临海地区地连续墙接头止水方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07233526A (ja) * 1994-02-23 1995-09-05 Shimizu Corp 地中連続壁
KR20080057435A (ko) * 2006-12-20 2008-06-25 재단법인 포항산업과학연구원 지하 강합성 연속벽체
CN103924621A (zh) * 2014-03-31 2014-07-16 广西建工集团第五建筑工程有限责任公司 地下连续墙槽段h型钢接头止浆板防砼绕流装置及防砼绕流施工方法
CN104963363A (zh) * 2015-06-16 2015-10-07 中铁三局集团有限公司 地下连续墙接缝防绕流围护装置及施工方法
CN105220683A (zh) * 2015-10-27 2016-01-06 中国一冶集团有限公司 一种工字钢接头式地下连续墙绕流处理装置及方法
CN106836191A (zh) * 2017-01-20 2017-06-13 中国建筑第四工程局有限公司 一种低净空下地铁围护结构地连墙的施工方法
CN107653872A (zh) * 2017-11-07 2018-02-02 中建局集团建设发展有限公司 超深地连墙刚性接头综合止水系统及其施工方法
CN110528501A (zh) * 2019-07-24 2019-12-03 青岛理工大学 一种高富水临海地区地连续墙接头止水装置
CN110528500A (zh) * 2019-07-24 2019-12-03 青岛理工大学 一种高富水临海地区地连续墙接头止水方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112962679A (zh) * 2021-02-07 2021-06-15 中国建筑第八工程局有限公司 地下室外墙的框架柱施工缝结构

Similar Documents

Publication Publication Date Title
CN102322064A (zh) 湿陷性黄土地区地铁车站深基坑地下连续墙施工方法
CN111733828A (zh) 一种大断面深基坑围护桩及预应力锚索支护施工技术
CN207512745U (zh) 一种沉箱装置及其基坑结构
CN110528501A (zh) 一种高富水临海地区地连续墙接头止水装置
CN101892632A (zh) 河道在不断流工况条件下结构体系的施工方法
CN107938692A (zh) 一种排水及回灌施工方法及结构
CN113235601A (zh) 湿陷性黄土临近建筑物的深基坑施工风险控制结构及工法
CN113174958A (zh) 一种劣质地况下临近道路基坑施工方法
CN112695763A (zh) 一种深厚淤泥地层基坑开挖方法
CN113847050A (zh) 熔岩山区特长公路隧道的施工方法
CN102235007B (zh) 上钉下桩组合的深基支护方法
CN211312489U (zh) 一种高富水临海地区地连续墙接头止水装置
WO2021013201A1 (zh) 一种高富水临海地区地连续墙接头止水装置及方法
CN117626947A (zh) 旋挖钻钻孔灌注桩施工方法
CN211898541U (zh) 一种用于风井始发端端头加固结构的导墙结构
CN112176954A (zh) 一种新开挖航道的施工方法
CN110528500A (zh) 一种高富水临海地区地连续墙接头止水方法
CN213926387U (zh) 一种地下结构外墙预留套管简易封堵结构
CN114991165A (zh) 一种地铁深基坑邻近铁路营业线的施工方法
CN210315908U (zh) 一种沉管式检查井
CN114703831A (zh) 一种复杂地质条件下钢筋混凝土灌注桩施工方法
CN210507415U (zh) 一种地连墙接头止水装置
CN113818482A (zh) 一种减少不均匀沉降的新旧管廊连接方法
CN111042049A (zh) 一种雨水管施工工艺
CN216920368U (zh) 一种大型圆基坑三轴搅拌桩支护结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20844867

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20844867

Country of ref document: EP

Kind code of ref document: A1