WO2021013129A1 - 一种伺服控制系统和伺服控制方法 - Google Patents

一种伺服控制系统和伺服控制方法 Download PDF

Info

Publication number
WO2021013129A1
WO2021013129A1 PCT/CN2020/103044 CN2020103044W WO2021013129A1 WO 2021013129 A1 WO2021013129 A1 WO 2021013129A1 CN 2020103044 W CN2020103044 W CN 2020103044W WO 2021013129 A1 WO2021013129 A1 WO 2021013129A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
signal
absolute
driver
sine
Prior art date
Application number
PCT/CN2020/103044
Other languages
English (en)
French (fr)
Inventor
胡余生
彭玉礼
钟成堡
谢芳
周溪
任华栋
王思月
王广
Original Assignee
珠海格力电器股份有限公司
珠海凯邦电机制造有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司, 珠海凯邦电机制造有限公司 filed Critical 珠海格力电器股份有限公司
Publication of WO2021013129A1 publication Critical patent/WO2021013129A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • G05B19/0423Input/output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors

Definitions

  • the present disclosure relates to the technical field of signal processing, and in particular to a servo control system and a servo control method.
  • the inventor knows that the position transmission between the absolute encoder and the drive is to realize information interaction through respective communication modules. Taking asynchronous communication as an example, from the drive requesting encoder position information to completing position reception, the shortest time required is 31us. Due to the time delay of position information, the response speed and control accuracy of the servo control system are restricted.
  • the inventor realizes that the current absolute encoder processing circuit is relatively complex, including photoelectric signal conversion, sine-cosine signal conditioning, signal comparison, analog-to-digital sampling, microprocessor and other signal processing modules; however, the actual application of the encoder
  • the volume has strict requirements, which limits the selectivity of the encoder processing circuit chip, and restricts the improvement of the function and performance of the encoder.
  • the embodiment of the present disclosure provides a servo control system, including: an absolute encoder and a driver connected to each other, the absolute encoder includes a sine-cosine signal module and an absolute signal module; the driver includes a square wave signal conversion module, an analog-to-digital Conversion module, subdivision module, counting module and position output module;
  • the sine and cosine signal module is configured to send the sine and cosine signals of the absolute encoder to the square wave signal conversion module and the analog-to-digital conversion module of the driver;
  • the square wave signal conversion module is configured to convert a sine cosine signal into a square wave signal, and send the square wave signal to a counting module;
  • the analog-to-digital conversion module is configured to convert a sine and cosine signal into a digital signal, and send the digital signal to the subdivision module;
  • the subdivision module is configured to subdivide the position of the digital signal to obtain a subdivision position, and send the subdivision position to a position output module;
  • the absolute signal module is configured to send the absolute signal of the absolute encoder to the counting module of the driver;
  • the counting module is configured to adjust the position of the absolute signal according to the square wave signal to obtain an absolute position, and send the absolute position to a position output module;
  • the position output module is configured to combine the subdivided position and the absolute position to obtain encoder position information.
  • the counting module is configured to calculate an initial count value according to an absolute signal and a square wave signal; increase or decrease the initial count value according to the square wave signal to obtain the absolute position.
  • the driver further includes a sine-cosine signal conditioning module configured to amplify the received sine-cosine signal and send it to the square wave signal conversion module and the analog-to-digital conversion module.
  • a sine-cosine signal conditioning module configured to amplify the received sine-cosine signal and send it to the square wave signal conversion module and the analog-to-digital conversion module.
  • the sine and cosine signal conditioning module includes an operational amplifier.
  • the sine and cosine signal module is connected to the sine and cosine signal conditioning module in a differential output manner.
  • the absolute signal module and the counting module communicate through a communication module.
  • the communication interface of the communication module includes at least one of an RS485 interface, an SPI interface, or a BISS interface.
  • the driver further includes: a deviation detection and correction module configured to detect and correct the digital signal output by the analog-to-digital conversion module, and send the corrected signal to Subdivide the module.
  • the communication module is configured to transmit the absolute position signal decoded by the absolute encoder to the counting module.
  • the embodiment of the present disclosure provides a servo control method, including:
  • the driver receives the sine and cosine signals and absolute signals sent by the absolute encoder;
  • the driver converts the sine and cosine signal into a square wave signal and a digital signal
  • the driver subdivides the position of the digital signal to obtain the subdivided position
  • the driver adjusts the position of the absolute signal according to the square wave signal to obtain an absolute position
  • the driver combines the subdivision position and the absolute position to obtain encoder position information.
  • obtaining the absolute position by the driver includes: the driver calculates the initial count value according to the absolute signal and the square wave signal; and the driver increases or decreases the initial count value according to the square wave signal to obtain the absolute position.
  • the method further includes: the absolute encoder sends a sine and cosine signal and an absolute signal to the driver.
  • Fig. 1 is a schematic structural diagram of a servo control system in some embodiments of the present disclosure.
  • Fig. 2 is a schematic flowchart of a servo control method in some embodiments of the present disclosure.
  • the embodiments of the present disclosure provide a servo control system.
  • the communication delay time between the absolute encoder and the drive can be effectively shortened, and the response speed and control accuracy of the servo control system can be improved; at the same time, it is effective Reduce the volume, cost and complexity of the processing circuit of the absolute encoder, and improve the function and performance of the absolute encoder.
  • the technical solution provided by the embodiments of the present disclosure includes an absolute encoder and a driver connected to each other.
  • the absolute encoder includes a sine-cosine signal module and an absolute signal module;
  • the driver includes a square wave signal conversion module, an analog-to-digital conversion module, a subdivision module, Counting module and position output module; absolute encoder and drive communicate with each other through their respective modules.
  • the technical solutions provided by the embodiments of the present disclosure not only make the circuit structure of the encoder simpler and reduce the volume, but also improve the response speed and control accuracy of the servo control system by transplanting the subdivision function of the encoder into the driver.
  • the absolute encoder is, for example, a sin-cos absolute encoder.
  • the absolute encoder generates sine and cosine signals through the relative movement of the incremental grating.
  • the absolute encoder generates an absolute code signal (also called an absolute signal) through the relative movement of the absolute grating.
  • Unique location information is called absolute location.
  • the position information obtained by interpolation is called the subdivision position.
  • the phase information of the sine and cosine signal is converted into position information as the subdivision position.
  • Some embodiments of the present disclosure provide a servo control system 10, as shown in FIG. 1, including: an absolute encoder 11 and a driver 12 connected to each other.
  • the absolute encoder 11 includes: a sine and cosine signal module 111 and an absolute signal module 112.
  • the driver 12 includes: a square wave signal conversion module 121, an analog-to-digital conversion (Analog to Digital Conversion, ADC) module 122, a subdivision module 123, a counting module 124, and a position output module 125.
  • ADC Analog to Digital Conversion
  • the sine-cosine signal module 111 sends the sine-cosine signal of the absolute encoder 11 to the square wave signal conversion module 121 and the digital-to-analog conversion module 122 of the driver 12; the square wave signal conversion module 121 converts the sine and cosine signal into a square wave signal, And send the square wave signal to the counting module 124; the analog-to-digital conversion module 122 converts the sine and cosine signal into a digital signal, and sends the digital signal to the subdivision module 123; the subdivision module 123 performs position subdivision on the digital signal to obtain subdivision Position and send the subdivided position to the position output module 125; the absolute signal module 112 sends the absolute signal of the absolute encoder 11 to the counting module 124 of the driver 12; the counting module 124 adjusts the position of the absolute signal according to the square wave signal to obtain Absolute position, and send the absolute position to the position output module 125; the position output module 125 combines the subdivision position and the absolute position to obtain encoder position information.
  • the counting module 124 adjusts the position of the absolute signal according to the square wave signal to obtain the absolute position, which specifically includes:
  • the counting module 124 calculates the initial counting value according to the absolute signal and the square wave signal
  • the counting module 124 increases and decreases the initial count value according to the square wave signal to obtain the absolute position.
  • the counting module 124 counts the absolute code signal of the absolute encoder and the square wave signal obtained through the square wave signal conversion module 121 to obtain an initial count value, and then adds or subtracts the initial count value according to the square wave signal Processing, and finally get the absolute position value.
  • the initial count value is 4 times the absolute signal + n, where n is 0, 1, 2, 3, and the value of n is determined according to the square wave signal interval.
  • the driver 12 further includes: a sine-cosine signal conditioning module 126 configured to amplify the received sine-cosine signal and send it to the square wave signal conversion module 121 and Mode conversion module 122.
  • a sine-cosine signal conditioning module 126 configured to amplify the received sine-cosine signal and send it to the square wave signal conversion module 121 and Mode conversion module 122.
  • the sine and cosine signal conditioning module 126 includes an operational amplifier.
  • the operational amplifier is a high-speed voltage feedback CMOS operational amplifier.
  • the high-speed voltage feedback CMOS operational amplifier has stable gain and large output current.
  • the differential gain reaches 0.02%, the differential phase is 0.09°, and the quiescent current is only 4.9mA per channel.
  • the amplified sine and cosine signals are more accurately converted into digital signals by the digital-to-analog conversion module 122, so that subsequent processing can be performed more accurately.
  • the analog-to-digital conversion module 122 includes an ADS8555 chip, where the ADS8555 chip is a synchronous sampling analog-to-digital converter, supports a data rate up to 630kSPS, has excellent AC performance, a signal-to-noise ratio of 91.5 dB, and The distortion is -94DB.
  • the ADS8555 chip is a synchronous sampling analog-to-digital converter, supports a data rate up to 630kSPS, has excellent AC performance, a signal-to-noise ratio of 91.5 dB, and The distortion is -94DB.
  • the sine and cosine signal module 111 is connected to the sine and cosine signal conditioning module 126 in a differential output manner. Use the differential output mode for signal transmission, so that the output signal has strong anti-interference ability.
  • the absolute signal module 112 and the counting module 124 communicate through communication modules 113 and 127.
  • the communication interfaces of the communication modules 113 and 127 are at least one of RS485 interface, SPI (Serial Peripheral Interface) interface, or BISS (Bidirectional Synchronous Serial Interface) interface.
  • the driver 12 further includes: a deviation detection and correction module 128 configured to detect and correct the digital signal output by the analog-to-digital conversion module 122, and the corrected signal Send to the subdivision module 123.
  • the deviation detection and correction module 128 detects the amplitude, DC, and phase deviations of the sine and cosine signals, and then realizes the correction of the sine and cosine signals according to the detected deviations to improve the accuracy of subsequent encoder position subdivision.
  • the communication modules 113 and 127 are configured to transmit the absolute position signal decoded by the absolute encoder 11 to the counting module 124.
  • the position output module 125 first splices the absolute position of the counting module 124 block and the subdivided position of the subdivision module 123, and then provides the final encoder position information to the subsequent modules of the drive for use, and is configured To achieve precise motor control.
  • the subdivision module 123 uses arctangent to realize the position subdivision of the digital signal.
  • the subdivision module 123 performs a high-rate subdivision operation on the received digital signal, wherein the specific calculation method of the high-rate subdivision operation uses a method known to those skilled in the art for calculation, and this disclosure will not describe in detail.
  • the present disclosure transplants the subdivision function of the encoder to the servo drive, which not only can improve the subdivision performance of the encoder, but also can effectively reduce the volume, cost and complexity of the processing circuit of the absolute encoder, which is more conducive to the miniaturization of the encoder.
  • the encoder subdivided signal is transmitted to the driver in the form of an analog signal, and then processed by modules such as sinusoidal signal conditioning, ADC (analog-to-digital conversion), deviation detection and correction, and subdivision to realize the conversion of the phase information of the sinusoidal signal into the position information of the encoder , Improve the resolution of the encoder.
  • the driver 12 For the absolute code of the absolute encoder 11, when the system is powered on, the driver 12 first obtains the absolute code of the encoder through the communication modules 113 and 127, and then loads the absolute code to the counting module 124, which calculates based on the absolute code and square wave signal The initial value of the count is obtained; for the subsequent acquisition of the absolute code (ie, absolute position) of the encoder, the driver 12 can complete the calculation independently only according to the square wave signal, and there is no need to communicate with the encoder.
  • the absolute code ie, absolute position
  • the process of obtaining the encoder position of the drive is simplified from the process of serial request, waiting and serial reading to the process of internal parameter interaction of the drive. Therefore, the communication delay time between the absolute encoder and the drive can be effectively shortened, and the servo control system is improved. Response speed and control accuracy.
  • Fig. 2 is a schematic flowchart of a servo control method in some embodiments of the present disclosure.
  • the servo control method 20 of this embodiment includes steps 21-26.
  • step 21 the absolute encoder sends a sine and cosine signal and an absolute signal to the driver.
  • step 22 the driver receives the sine cosine signal and the absolute signal sent by the absolute encoder.
  • step 23 the driver converts the sine and cosine signals into square wave signals and digital signals.
  • step 24 the driver subdivides the position of the digital signal to obtain the subdivided position.
  • step 25 the driver adjusts the position of the absolute signal according to the square wave signal to obtain the absolute position.
  • obtaining the absolute position by the driver in step 25 includes: steps 251-252.
  • step 251 the driver calculates the initial count value according to the absolute signal and the square wave signal
  • step 252 the driver increases and decreases the initial count value according to the square wave signal to obtain the absolute position.
  • step 26 the driver combines the subdivision position and the absolute position to obtain encoder position information.
  • the processing unit is implemented in one or more application specific integrated circuits (ASICs), digital signal processors (Digital Signal Processing, DSP), digital signal processing devices (DSP Device, DSPD), programmable logic Device (Programmable Logic Device, PLD), Field-Programmable Gate Array (Field-Programmable Gate Array, FPGA), general-purpose processors, controllers, microcontrollers, microprocessors, and other electronics used to perform the functions described in this disclosure Unit or its combination.
  • ASICs application specific integrated circuits
  • DSP digital signal processors
  • DSP Device digital signal processing devices
  • PLD programmable logic Device
  • Field-Programmable Gate Array Field-Programmable Gate Array
  • FPGA Field-Programmable Gate Array
  • the technology described herein is implemented by a unit that performs the functions described herein.
  • the software code is stored in the memory and executed by the processor.
  • the memory is implemented in the processor or external to the processor.
  • the disclosed devices and methods can be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the units is only a logical function division, and there are other divisions in actual implementation, such as combining or integrating multiple units or components into Another system, or some features are ignored, or not implemented.
  • the displayed or discussed mutual couplings or direct couplings or communication connections are indirect couplings or communication connections between devices or units through some interfaces, and are in electrical, mechanical or other forms.
  • each functional unit in the various embodiments of the present disclosure is integrated into one processing unit, or each unit physically exists alone, or two or more units are integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it is stored in a computer readable storage medium.
  • the technical solutions of the embodiments of the present disclosure are essentially or the part that contributes to the prior art or the part of the technical solutions is embodied in the form of a software product, and the computer software product is stored in a storage medium, A number of instructions are included to make a computer device (a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present disclosure.
  • the aforementioned storage media include: U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk and other media that store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

一种伺服控制系统(10)和伺服控制方法,系统(10)包括:相互连接的绝对编码器(11)和驱动器(12),绝对编码器(11)包括正余弦信号模块(111)和绝对信号模块(112);驱动器(12)包括方波信号转换模块(121)、模数转换模块(122)、细分模块(123)、计数模块(124)和位置输出模块(125);绝对编码器(11)和驱动器(12)通过各自的模块相互通信。将编码器的细分功能移植到驱动器(12)中,不仅使得编码器的电路结构简单、体积减小,而且使得伺服控制系统(10)的响应速度和控制精度得到提升。

Description

一种伺服控制系统和伺服控制方法
相关申请的交叉引用
本公开是以CN申请号为201910678960.6,申请日为2019年7月25的申请为基础,并主张其优先权,该CN申请的公开内容在此作为整体引入本公开中。
技术领域
本公开涉及信号处理技术领域,尤其涉及一种伺服控制系统和伺服控制方法。
背景技术
发明人知晓,绝对编码器与驱动器的位置传输是通过各自的通信模块实现信息交互。以异步通信为例,从驱动器请求编码器位置信息到完成位置接收,最短需要31us,由于位置信息存在时间延迟,制约了伺服控制系统的响应速度和控制精度。
发明人意识到,目前绝对编码器的处理电路较复杂,包含光电信号转换、正余弦信号调理、信号比较、模数采样和微处理器等多种信号处理模块;然而,实际应用场合对编码器体积有严格的要求,限制了编码器处理电路芯片的选择性,制约了编码器的功能和性能的提升。
发明内容
本公开实施例提供了一种伺服控制系统,包括:相互连接的绝对编码器和驱动器,所述绝对编码器包括正余弦信号模块和绝对信号模块;所述驱动器包括方波信号转换模块、模数转换模块、细分模块、计数模块和位置输出模块;
所述正余弦信号模块被配置为将绝对编码器的正余弦信号发送至驱动器的方波信号转换模块和模数转换模块;
所述方波信号转换模块被配置为将正余弦信号转换成方波信号,并将所述方波信号发送至计数模块;
所述模数转换模块被配置为将正余弦信号转换成数字信号,并将所述数字信号发送至细分模块;
所述细分模块被配置为将所述数字信号进行位置细分,得到细分位置,并将所述细分位置发送至位置输出模块;
所述绝对信号模块被配置为将绝对编码器的绝对信号发送至驱动器的计数模块;
所述计数模块被配置为将所述绝对信号根据所述方波信号进行位置调整,得到绝对位置,并将所述绝对位置发送至位置输出模块;
所述位置输出模块被配置为将所述细分位置和所述绝对位置进行组合,得到编码器位置信息。
在一些实施例中,所述计数模块被配置为根据绝对信号和方波信号计算出计数初值;根据所述方波信号对所述计数初值进行增减计算,得到所述绝对位置。
在一些实施例中,所述驱动器还包括:正余弦信号调理模块,所述正余弦调理模块被配置为将接收到的正余弦信号进行放大后发送至方波信号转换模块和模数转换模块。
在一些实施例中,所述正余弦信号调理模块包括:运算放大器。
在一些实施例中,所述正余弦信号模块采用差分输出的方式与所述正余弦信号调理模块连接。
在一些实施例中,所述绝对信号模块与所述计数模块间通过通信模块进行通信。
在一些实施例中,所述通信模块的通信接口包括:RS485接口、SPI接口、或BISS接口中的至少一项。
在一些实施例中,所述驱动器还包括:偏差检测校正模块,所述偏差检测校正模块被配置为对所述模数转换模块输出的数字信号进行检测并校正,并将校正后的信号发送至细分模块。
在一些实施例中,所述通信模块被配置为将绝对编码器解码后的绝对位置信号传输至所述计数模块。
本公开实施例提供了一种伺服控制方法,包括:
驱动器接收绝对编码器发送的正余弦信号和绝对信号;
驱动器将所述正余弦信号转换成方波信号和数字信号;
驱动器将所述数字信号进行位置细分,得到细分位置;
驱动器将所述绝对信号根据所述方波信号进行位置调整,得到绝对位置;
驱动器将所述细分位置和所述绝对位置进行组合,得到编码器位置信息。
在一些实施例中,驱动器得到绝对位置包括:驱动器根据绝对信号和方波信号计算出计数初值;驱动器根据所述方波信号对所述计数初值进行增减计算,得到所述绝对位置。
在一些实施例中,所述方法还包括:绝对编码器向驱动器发送正余弦信号和绝对信号。
附图说明
图1是本公开一些实施例中伺服控制系统的结构示意图。
图2是本公开一些实施例中伺服控制方法的流程示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
本公开实施例提供了一种伺服控制系统,通过绝对编码器与驱动器的一体化设计,能够有效缩短绝对编码器与驱动器的通信延迟时间,提升伺服控制系统的响应速度和控制精度;同时,有效降低绝对编码器的体积、成本和处理电路的复杂性,提升绝对编码器的功能和性能。
本公开实施例提供的技术方案包括相互连接的绝对编码器和驱动器,该绝对编码器包括正余弦信号模块和绝对信号模块;该驱动器包括方波信号转换模块、模数转换模块、细分模块、计数模块和位置输出模块;绝对编码器和驱动器通过各自的模块相互通信。本公开实施例提供的技术方案通过将编码器的细分功能移植到驱动器中,不仅使得编码器的电路结构简单、体积减小,而且使得伺服控制系统的响应速度和控制精度得到提升。
在一些实施例中,绝对编码器例如是正余弦绝对编码器。绝对编码器通过增量光栅的相对运动,产生正余弦信号。绝对编码器通过绝对光栅的相对运动,产生绝对编码信号(也称绝对信号)。具有唯一性的位置信息,称为绝对位置。利用正余弦信号,通过插值的方法获得的位置信息,称为细分位置。例如,利用幅值反正切的方法,将正余弦信号的相位信息转化为位置信息,作为细分位置。
本公开的一些实施例提供了一种伺服控制系统10,如图1所示,包括:相互连接的绝对编码器11和驱动器12。
具体地,绝对编码器11包括:正余弦信号模块111和绝对信号模块112。
驱动器12包括:方波信号转换模块121、模数转换(Analog to Digital Conversion,ADC)模块122、细分模块123、计数模块124和位置输出模块125。
其中,正余弦信号模块111将绝对编码器11的正余弦信号发送至驱动器12的方波信号转换模块121和数模转换模块122;方波信号转换模块121将正余弦信号转换成方波信号,并将方波信号发送至计数模块124;模数转换模块122将正余弦信号转换成数字信号,并将数字信号发送至细分模块123;细分模块123将数字信号进行位置细分得到细分位置,并将细分位置发送至位置输出模块125;绝对信号模块112将绝对编码器11的绝对信号发送至驱动器12的计数模块124;计数模块124将绝对信号根据方波信号进行位置调整,得到绝对位置,并将绝对位置发送至位置输出模块125;位置输出模块125将细分位置和绝对位置进行组合得到编码器位置信息。
在本公开实施例中,通过将编码器的细分功能移植到驱动器中,不仅使得编码器的电路结构简单、体积减小;而且,编码器的位置反馈不再是通过与编码器通信的方式实现,而是驱动器内部数据的交换,时间大大降低,能够有效提升系统的响应速度;另外,驱动器的软硬件资源远比编码器丰富,能够提高其控制精度。
在本公开的一些实施方式中,计数模块124将绝对信号根据方波信号进行位置调整,得到绝对位置,具体包括:
计数模块124根据绝对信号和方波信号计算出计数初值;
计数模块124根据方波信号对计数初值进行增减计算,得到绝对位置。
也就是,计数模块124会对绝对编码器的绝对编码信号以及经过方波信号转换模块121得到的方波信号进行计数,得到一个计数初值,然后根据方波信号对上述计数初值进行加减处理,最后得到绝对位置值。例如,计数初值是绝对信号的4倍+n,其中,n为0、1、2、3,n的值根据方波信号区间进行确定。
在本公开的一些实施方式中,驱动器12还包括:正余弦信号调理模块126,该正余弦调理模块126被配置为将接收到的正余弦信号进行放大后发送至方波信号转换模块121和数模转换模块122。
在一些实施例中,该正余弦信号调理模块126包括运算放大器。该运算放大器是高速电压反馈CMOS运算放大器,高速电压反馈CMOS运算放大器增益稳定,输出大电流,差分增益达到0.02%,差分相位为0.09°,静态电流仅为每通道4.9mA。经过放大后的正余弦信号通过数模转换模块122更精确地转换为数字信号,从而更准 确地进行后续处理。
在一些实施例中,模数转换模块122包括ADS8555芯片,其中,ADS8555芯片是同步采样模拟数字转换器,支持高达630kSPS的数据速率,具有卓越的AC性能,信噪比为91.5分贝,总谐波失真为-94DB。
在本公开的一些实施方式中,正余弦信号模块111采用差分输出的方式与正余弦信号调理模块126连接。利用差分输出方式进行信号的传输,使得输出信号的抗干扰能力强。
在本公开的一些实施方式中,绝对信号模块112与计数模块124间通过通信模块113,127进行通信。通信模块113,127的通信接口是RS485接口、SPI(Serial Peripheral Interface,串行外设接口)接口或BISS(Bidirectional Synchronous Serial Interface,双向同步串行接口)接口中的至少一项。
在本公开的一些实施方式中,驱动器12还包括:偏差检测校正模块128,该偏差检测校正模块128被配置为对模数转换模块122输出的数字信号进行检测并校正,并将矫正后的信号发送至细分模块123。
具体地,该偏差检测校正模块128对正余弦信号进行幅值、直流和相位的偏差检测,然后根据检测到的偏差实现对正余弦信号的校正,提升后续编码器位置细分的精度。
在本公开的一些实施方式中,通信模块113,127被配置为将绝对编码器11解码后的绝对位置信号传输至计数模块124。
在本公开的一些实施方式中,位置输出模块125先将计数模124块的绝对位置和细分模块123的细分位置进行拼接,然后将最终编码器位置信息提供给驱动器后续模块使用,被配置为实现电机精确控制。
具体地,细分模块123是利用反正切实现对数字信号的位置细分。细分模块123对接收到的数字信号的进行高倍率细分运算,其中,高倍率细分运算的具体计算方法利用本领域技术人员公知的方法进行计算,本公开不做详细说明。
本公开将编码器的细分功能移植至伺服驱动器,不但能够提升编码器细分性能,而且能够有效降低绝对编码器的体积、成本和处理电路的复杂性,更利于编码器小型化。编码器细分信号通过模拟信号的形式传输给驱动器,然后通过正弦信号调理、ADC(模数转换)、偏差检测校正、细分等模块处理,实现正弦信号的相位信息转化为编码器的位置信息,提升编码器的分辨率。
对绝对编码器11的绝对编码,系统上电时,驱动器12首先通过通信模块113,127获得编码器绝对编码,然后将绝对编码加载至计数模块124,计数模块124根据绝对编码和方波信号计算出计数初值;后续的编码器绝对码(即,绝对位置)的获得,驱动器12只需根据方波信号就能独自完成计算,不需再与编码器通信。
最终驱动器编码器位置的获得过程由串行请求、等待和串行读取的过程简化为驱动器内部参数交互的过程,因此,能够有效缩短绝对编码器与驱动器的通信延迟时间,提升伺服控制系统的响应速度和控制精度。
图2是本公开一些实施例中伺服控制方法的流程示意图。
如图2所示,该实施例的伺服控制方法20包括步骤21-26。
在步骤21,绝对编码器向驱动器发送正余弦信号和绝对信号。
在步骤22,驱动器接收绝对编码器发送的正余弦信号和绝对信号。
在步骤23,驱动器将正余弦信号转换成方波信号和数字信号。
在步骤24,驱动器将数字信号进行位置细分,得到细分位置。
在步骤25,驱动器将绝对信号根据方波信号进行位置调整,得到绝对位置。
在一些实施例中,步骤25的驱动器得到绝对位置包括:步骤251-252。
在步骤251,驱动器根据绝对信号和方波信号计算出计数初值;
在步骤252,驱动器根据方波信号对计数初值进行增减计算,得到绝对位置。
在步骤26,驱动器将细分位置和绝对位置进行组合,得到编码器位置信息。
需要说明的是,在本文中,诸如“第一”和“第二”等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。
可以理解的是,本文描述的这些实施例用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,处理单元实现在一个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processing,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本公开所述功能的其它电子单元或其组合中。
对于软件实现,通过执行本文所述功能的单元来实现本文所述的技术。软件代码存储在存储器中并通过处理器执行。存储器在处理器中或在处理器外部实现。
本领域普通技术人员意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
在本公开所提供的实施例中,应该理解到,所揭露的装置和方法,通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时有另外的划分方式,例如多个单元或组件结合或者集成到另一个系统,或一些特征忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接是通过一些接口,装置或单元的间接耦合或通信连接,是电性,机械或其它的形式。
另外,在本公开各个实施例中的各功能单元集成在一个处理单元中,或者各个单元单独物理存在,或者两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,存储在一个计算机可读取存储介质中。基于这样的理解,本公开实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(是个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种存储程序代码的介质。
需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
最后应说明的是:以上实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的精神和范围。

Claims (12)

  1. 一种伺服控制系统,包括:相互连接的绝对编码器和驱动器,其中,所述绝对编码器包括正余弦信号模块和绝对信号模块;所述驱动器包括方波信号转换模块、模数转换模块、细分模块、计数模块和位置输出模块;
    所述正余弦信号模块被配置为将绝对编码器的正余弦信号发送至驱动器的方波信号转换模块和模数转换模块;
    所述方波信号转换模块被配置为将正余弦信号转换成方波信号,并将所述方波信号发送至计数模块;
    所述模数转换模块被配置为将正余弦信号转换成数字信号,并将所述数字信号发送至细分模块;
    所述细分模块被配置为将所述数字信号进行位置细分,得到细分位置,并将所述细分位置发送至位置输出模块;
    所述绝对信号模块被配置为将绝对编码器的绝对信号发送至驱动器的计数模块;
    所述计数模块被配置为将所述绝对信号根据所述方波信号进行位置调整,得到绝对位置,并将所述绝对位置发送至位置输出模块;
    所述位置输出模块被配置为将所述细分位置和所述绝对位置进行组合,得到编码器位置信息。
  2. 根据权利要求1所述的一种伺服控制系统,其中,
    所述计数模块被配置为根据绝对信号和方波信号计算出计数初值;根据所述方波信号对所述计数初值进行增减计算,得到所述绝对位置。
  3. 根据权利要求1所述的一种伺服控制系统,其中,所述驱动器还包括:正余弦信号调理模块,
    所述正余弦调理模块被配置为将接收到的正余弦信号进行放大后发送至方波信号转换模块和模数转换模块。
  4. 根据权利要求3所述的一种伺服控制系统,其中,所述正余弦信号调理模块包括:运算放大器。
  5. 根据权利要求3所述的一种伺服控制系统,其中,所述正余弦信号模块采用差分输出的方式与所述正余弦信号调理模块连接。
  6. 根据权利要求1所述的一种伺服控制系统,其中,所述绝对信号模块与所述 计数模块间通过通信模块进行通信。
  7. 根据权利要求6所述的一种伺服控制系统,其中,所述通信模块的通信接口包括:RS485接口、SPI接口、或BISS接口中的至少一项。
  8. 根据权利要求1所述的一种伺服控制系统,其中,所述驱动器还包括:偏差检测校正模块,
    所述偏差检测校正模块被配置为对所述模数转换模块输出的数字信号进行检测并校正,并将校正后的信号发送至细分模块。
  9. 根据权利要求7所述的一种伺服控制系统,其中,所述通信模块被配置为将绝对编码器解码后的绝对位置信号传输至所述计数模块。
  10. 一种伺服控制方法,包括:
    驱动器接收绝对编码器发送的正余弦信号和绝对信号;
    驱动器将所述正余弦信号转换成方波信号和数字信号;
    驱动器将所述数字信号进行位置细分,得到细分位置;
    驱动器将所述绝对信号根据所述方波信号进行位置调整,得到绝对位置;
    驱动器将所述细分位置和所述绝对位置进行组合,得到编码器位置信息。
  11. 根据权利要求10所述的一种伺服控制方法,其中,驱动器得到绝对位置包括:
    驱动器根据绝对信号和方波信号计算出计数初值;
    驱动器根据所述方波信号对所述计数初值进行增减计算,得到所述绝对位置。
  12. 根据权利要求10所述的一种伺服控制方法,还包括:
    绝对编码器向驱动器发送正余弦信号和绝对信号。
PCT/CN2020/103044 2019-07-25 2020-07-20 一种伺服控制系统和伺服控制方法 WO2021013129A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910678960.6A CN110531650A (zh) 2019-07-25 2019-07-25 一种伺服控制系统
CN201910678960.6 2019-07-25

Publications (1)

Publication Number Publication Date
WO2021013129A1 true WO2021013129A1 (zh) 2021-01-28

Family

ID=68661073

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/103044 WO2021013129A1 (zh) 2019-07-25 2020-07-20 一种伺服控制系统和伺服控制方法

Country Status (2)

Country Link
CN (1) CN110531650A (zh)
WO (1) WO2021013129A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110531650A (zh) * 2019-07-25 2019-12-03 珠海格力电器股份有限公司 一种伺服控制系统
CN112033451A (zh) * 2020-08-03 2020-12-04 珠海格力电器股份有限公司 一种编码器的测量装置、方法和编码器
CN112880712A (zh) * 2021-01-18 2021-06-01 珠海格力电器股份有限公司 光磁绝对式编码器、运动设备的位置确定方法及装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020180625A1 (en) * 2001-05-23 2002-12-05 Tamagawa Seiki Kabushiki Kaisha Calculation processing device of resolver signal
CN102111158A (zh) * 2010-11-23 2011-06-29 广州数控设备有限公司 对位置传感器的正余弦信号细分和数据编码的装置及实现方法
CN202041221U (zh) * 2011-03-02 2011-11-16 西安交通大学 一种正余弦编码器细分装置
CN202282756U (zh) * 2011-09-29 2012-06-20 宁波海迈克数控技术有限公司 一种伺服驱动器
CN202710997U (zh) * 2012-07-20 2013-01-30 南京科远驱动技术有限公司 一种用于伺服驱动系统的编码器接口ip核
CN207147415U (zh) * 2017-09-01 2018-03-27 微微一百检测技术(北京)有限公司 信号细分装置
CN110531650A (zh) * 2019-07-25 2019-12-03 珠海格力电器股份有限公司 一种伺服控制系统
CN210199544U (zh) * 2019-07-25 2020-03-27 珠海格力电器股份有限公司 一种伺服控制系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020180625A1 (en) * 2001-05-23 2002-12-05 Tamagawa Seiki Kabushiki Kaisha Calculation processing device of resolver signal
CN102111158A (zh) * 2010-11-23 2011-06-29 广州数控设备有限公司 对位置传感器的正余弦信号细分和数据编码的装置及实现方法
CN202041221U (zh) * 2011-03-02 2011-11-16 西安交通大学 一种正余弦编码器细分装置
CN202282756U (zh) * 2011-09-29 2012-06-20 宁波海迈克数控技术有限公司 一种伺服驱动器
CN202710997U (zh) * 2012-07-20 2013-01-30 南京科远驱动技术有限公司 一种用于伺服驱动系统的编码器接口ip核
CN207147415U (zh) * 2017-09-01 2018-03-27 微微一百检测技术(北京)有限公司 信号细分装置
CN110531650A (zh) * 2019-07-25 2019-12-03 珠海格力电器股份有限公司 一种伺服控制系统
CN210199544U (zh) * 2019-07-25 2020-03-27 珠海格力电器股份有限公司 一种伺服控制系统

Also Published As

Publication number Publication date
CN110531650A (zh) 2019-12-03

Similar Documents

Publication Publication Date Title
WO2021013129A1 (zh) 一种伺服控制系统和伺服控制方法
CN103176450A (zh) 伺服驱动装置及伺服控制系统
CN210199544U (zh) 一种伺服控制系统
CN107643090B (zh) 自整角机/旋转变压器的数字角转换方法
CN113949225B (zh) 一种正余弦编码器的信号处理装置
CN112468103A (zh) 一种提高共模抑制比的差分采样电路及方法
CN209197769U (zh) 正余弦编码器信号处理装置以及正余弦编码器
CN205388479U (zh) 基于各向异性磁阻的旋转编码器
CN201315576Y (zh) 电气信号压缩系统
CN102594352A (zh) 采样保持电路和采用该电路的流水线模数转换器动态范围扩展方法
CN104316085B (zh) 基于双速感应同步机的绝对值旋转编码器
CN110784223B (zh) 单芯片数字型象限分割技术的轴角-数字转换电路与方法
CN208969463U (zh) 用于正余弦编码器的信号接收处理电路
CN116264465A (zh) 一种基于vadc的旋变软解码方法及系统
CN104811181A (zh) 一种带有输入偏置和有源滤波的电流电压转换电路及方法
CN210536536U (zh) 一种基于ad2s1210的单通道旋变调理电路
CN209689647U (zh) 编码器读头及编码器
CN101277115A (zh) 运放共享乘法数字模拟转换电路及其应用
CN209166465U (zh) 一种兼容多协议多类型的正余弦编码器信号处理装置
CN112332817A (zh) 一种适用于1-28Gbps SerDes的宽速率高线性度相位插值器
CN109217743B (zh) 一种绝对式磁角度编码器输出电压控制系统及方法
CN204119212U (zh) 一种高速可设定分辨率的高精度ad采样电路
CN103808424A (zh) Rtd温度检测系统
CN216697093U (zh) 一种高精度电压电流转换电路
CN213581886U (zh) 高精度电流型输出变送器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20844849

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20844849

Country of ref document: EP

Kind code of ref document: A1