WO2021012844A1 - 一种金属薄板的线型光斑激光弯曲成形方法 - Google Patents

一种金属薄板的线型光斑激光弯曲成形方法 Download PDF

Info

Publication number
WO2021012844A1
WO2021012844A1 PCT/CN2020/096562 CN2020096562W WO2021012844A1 WO 2021012844 A1 WO2021012844 A1 WO 2021012844A1 CN 2020096562 W CN2020096562 W CN 2020096562W WO 2021012844 A1 WO2021012844 A1 WO 2021012844A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
bending
spot
light spot
plate
Prior art date
Application number
PCT/CN2020/096562
Other languages
English (en)
French (fr)
Inventor
王续跃
李承航
闫英
李紫慧
郭东明
Original Assignee
大连理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大连理工大学 filed Critical 大连理工大学
Priority to US17/055,939 priority Critical patent/US20210162479A1/en
Publication of WO2021012844A1 publication Critical patent/WO2021012844A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D5/00Bending sheet metal along straight lines, e.g. to form simple curves
    • B21D5/008Bending sheet metal along straight lines, e.g. to form simple curves combined with heating or cooling of the bends
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0294Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a localised treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D11/00Bending not restricted to forms of material mentioned in only one of groups B21D5/00, B21D7/00, B21D9/00; Bending not provided for in groups B21D5/00 - B21D9/00; Twisting
    • B21D11/20Bending sheet metal, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D11/00Bending not restricted to forms of material mentioned in only one of groups B21D5/00, B21D7/00, B21D9/00; Bending not provided for in groups B21D5/00 - B21D9/00; Twisting
    • B21D11/20Bending sheet metal, not otherwise provided for
    • B21D11/203Round bending
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D31/00Other methods for working sheet metal, metal tubes, metal profiles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D5/00Bending sheet metal along straight lines, e.g. to form simple curves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/035Aligning the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/073Shaping the laser spot
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • B23K26/0821Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head using multifaceted mirrors, e.g. polygonal mirror
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/12Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure
    • B23K26/123Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure in an atmosphere of particular gases
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D11/00Process control or regulation for heat treatments
    • C21D11/005Process control or regulation for heat treatments for cooling

Definitions

  • the invention belongs to the technical field of high-efficiency, high-precision and high-performance laser bending forming of sheet metal, and relates to a laser bending forming method of a linear light spot of a metal sheet, which is a laser bending in which the linear light spot is simultaneously heated on the bending line of the metal sheet Forming method.
  • Laser bending is a flexible, moldless, no external force and non-contact rapid prototyping technology, which is easy to realize automatic processing.
  • the existing metal sheet laser bending technology generally belongs to the point spot moving heat source, that is, the linear scanning sequential heating bending technology.
  • the free end of the sheet is warped and deformed due to the heat accumulation of the moving heat source and the influence of the sheet boundary conditions. In some cases, the accuracy requirements are relatively high. If it is high, this kind of deformation may cause greater quality problems.
  • the current research believes that there are two main reasons for the warping phenomenon: one is the non-uniformly distributed temperature field along the scanning line generated by the laser energy input of the moving heat source of the spot spot; the other is the different points on the scanning line of the sheet. Geometric constraints. It is urgent to improve the uniformity of the bending angle of the panel by improving the uniformity of the temperature field on the bending line and reducing the amount of warpage.
  • the patent "An energy control method to reduce the amount of warpage in laser bending of metal sheets” adopts a combination of three-stage variable speed and energy compensation method. Low speed is used in the section with small bending angle, and high speed is used in the section with large bending angle. , And carry out energy compensation adjustment to correct warpage deformation.
  • this method has the disadvantages of complicated processing technology, time-consuming and low efficiency.
  • the methods for reducing the warpage in the above documents need to be improved.
  • the existing laser processing equipment is mainly a point light spot moving heat source loading method, and the current research and application status at home and abroad is basically to conduct experiments under the existing equipment conditions and obtain research results and laws.
  • the present invention uses a multi-mode laser scanning rotating mirror or a single piezoelectric deforming mirror to distribute the laser Gaussian spot spot Converted into a uniformly distributed linear light spot, and loaded on the bending line area at the same time, the thin metal plate is bent and formed, so that the temperature field on the bending line of the thin metal plate is evenly distributed, so as to reduce warpage deformation, improve the consistency of the bending angle, and improve the bending The purpose of efficiency.
  • a method for forming a linear light spot laser bending of a thin metal plate the specific steps are as follows:
  • Step 1 Workpiece preparation: According to the size and technical requirements, process the metal sheet of the required specifications, including the rectangular plate 2 and the sector plate 10, the width of the rectangular plate 2 is W, and the outer radius of the sector plate 10 is R;
  • Step 3 Workpiece installation and laser debugging: Use the clamping plate 1 to clamp one end of the metal sheet in the length direction, and the other end is freely suspended and fixed on the laser processing table; according to the processing technical requirements, the position of the bending line is selected based on the free end , The distance between the straight bending line 8 of the rectangular plate 2 and the free end is D, and the arc bending line 13 of the sector plate 10 is a concentric circle with the outer circle of the plate, the radius is R 1 , and the distance from the free end is RR 1 ;
  • the laser head 4 is placed at the mid-point position above the bending line, and the angle of the multi-mode laser scanning rotating mirror 6 or the single piezoelectric deformable mirror 11 is adjusted to make the linear spot 9 coincide with the linear bending line 8, or make the arc line shape
  • the spot 14 coincides with the arc bending line 13, and ensure that there is a 2mm laser loading margin on both sides of the bending line length; set the working parameters of the laser head 4: laser power
  • Step 4 Auxiliary blowing debugging: adjust the position of auxiliary blowing nozzle 3 to prevent the workpiece from hitting the blowing head during processing; use inert gas for auxiliary blowing gas to prevent high temperature oxidation; adjust the air pressure to 0.1MPa-0.5MPa , To ensure stable blowing during processing;
  • Step 5 Laser loading: Turn on the laser and load the laser at the bending line. According to the required bending angle, keep the loading time T for a single time; after each loading, cool to below 100°C, repeat the loading several times and cool to complete Bending of sheet metal.
  • the rectangular plate 2 has a length L of 40mm-120mm and a width W of 30mm-100mm; the sector-shaped plate 10 has an outer radius R of 50mm-200mm, and a central angle n of 30°-60°; the thickness of the plate is 1mm-2mm.
  • the present invention adopts laser bending forming in which the linear light spot is heated at the same time on the bending line of the metal sheet to solve the problems of temperature field heat accumulation and boundary heat dissipation in laser moving scanning bending In this way, a simple, efficient, low-cost, and low-warpage bending method is proposed. Under the same laser process parameters, it has the outstanding characteristics of large laser forming bending angle, small warpage and short bending man-hours.
  • Figure 1 is a schematic diagram of rectangular plate linear beam laser bending forming
  • Figure 2 is a schematic diagram of laser bending forming of concentric circular arc line-shaped fan-shaped plates.
  • Figure 3 is a cloud diagram of the numerical simulation displacement field of a rectangular plate with a linear beam while heating and laser bending.
  • Figure 4 is a cloud diagram of the displacement field of a rectangular plate with a moving heat source and a linear scanning laser bending numerical simulation.
  • the laser bending forming method of the linear light spot of a thin metal plate of the present invention is shown in Fig. 1 and Fig. 2 for the principle of the linear laser bending forming of the rectangular plate and the concentric circular arc linear light spot of the fan-shaped plate.
  • Step 1 Workpiece preparation: According to the size and technical requirements, process a thin metal plate of the required specification with a thickness of 1mm-2mm; for the rectangular plate 2, the length L is 40mm-120mm, and the width W is 30mm-100mm; for the sector plate 10 , The outer radius R is 50mm-200mm, the central angle n is 30°-60°; the plate thickness is 1mm-2mm.
  • Step 3 Workpiece installation and laser debugging: Use the clamping plate 1 to clamp one end of the metal sheet in the length direction, and the other end is freely suspended and fixed on the laser processing table; according to the processing technical requirements, the position of the bending line is selected based on the free end , The distance between the straight bending line 8 of the rectangular plate 2 and the free end is D, and the arc bending line 13 of the sector plate 10 is a concentric circle with the outer circle of the plate, the radius is R 1 , and the distance from the free end is RR 1 ;
  • the laser head 4 is placed at the mid-point position above the bending line, and the angle of the multi-mode laser scanning rotating mirror 6 or the single piezoelectric deformable mirror 11 is adjusted to make the linear spot 9 coincide with the linear bending line 8, or make the arc line shape
  • the spot 14 coincides with the arc bending line 13, and ensure that there is a 2mm laser loading margin on both sides of the bending line length; set the working parameters of the laser head 4: laser power
  • Step 4 Auxiliary blowing debugging: adjust the position of auxiliary blowing nozzle 3 to prevent the workpiece from hitting the blowing head during processing; use inert gas for auxiliary blowing gas to prevent high temperature oxidation; adjust the air pressure to 0.1MPa-0.5MPa , To ensure stable blowing during processing;
  • ANSYS software is used to perform three-dimensional finite element simulation of the rectangular plate linear spot laser linear bending process, combined with the Gaussian distribution point spot moving heat source, the linear scanning laser bending process, and three factors such as forming accuracy, bending efficiency, and bending performance are given. Analysis and comparison of aspects.
  • the rectangular plate is modeled with a length of 60mm and a width of 50mm, and a restraining load is applied to one end in the length direction to simulate the clamping and fixing of the clamping plate.
  • spot spot diameter is 1.8mm
  • laser power is 140W
  • laser pulse width is 2ms
  • pulse frequency is 40Hz
  • scanning speed is 400mm/min
  • the bending line position is free to take the distance At 25mm from the end, the simulation result displacement field cloud picture is shown in Figure 3.
  • the linear beam spot is loaded simultaneously and the point beam pulse laser moves and scans at a time.
  • the bending angles are 1.64° and 1.38°, respectively.
  • the linear beam spot is loaded at the same time than the point beam moves and scans. 18.84%, which significantly increases the angle of sheet bending;
  • the warping deformation chord height is 0.115 mm and .0.217 mm respectively. Simultaneous loading of the linear light spot reduces the warping deformation by 47% compared with the movement scanning of the spot light spot, which greatly reduces the warpage of the sheet bending forming;
  • the single scanning time of the pulse laser of the spot spot is 7.5s
  • the cooling time of the plate to 100°C is about 5s-8s
  • the linear laser spot is loaded at the same time for about 0.025s.
  • the overall cooling time of the plate to 100°C is about 8s.
  • the linear light spot 9 can be obtained by the multi-mode laser scanning rotating mirror 6.
  • the principle of the multi-mode laser scanning rotating mirror 6 is to use a polyhedral prism as a scanning element, and use the reflection of the prism to make the beam swing rapidly, and to widen the beam into a linear spot;
  • the circular arc-shaped light spot 14 can be first obtained by the single piezoelectric deformable mirror 11 to obtain the circular-shaped light spot, and then the arc-shaped light spot of the required length is intercepted and used.
  • the principle of the single piezoelectric deformable mirror 11 is to first combine the light wave diffraction theory and related algorithms to iterate the required wavefront phase, and then use the beam wavefront information as feedback to control the wavefront phase required for reconstruction of the deformable mirror to obtain the diameter and width Controllable arc linear light spot.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Laser Beam Processing (AREA)

Abstract

一种金属薄板的线型光斑激光弯曲成形方法,使用多模激光扫描转镜(6)或单压电变形镜(11)将激光高斯分布的点光斑(5)转换成均匀分布的线型光斑(9,14),同时加载于弯折线(8,13)区域,对金属薄板进行弯曲成形,使得在金属薄板弯折线上的温度场均匀分布,达到减少翘曲变形,提高弯曲角度一致性,提高弯曲效率的目的。

Description

一种金属薄板的线型光斑激光弯曲成形方法 技术领域
本发明属于金属板材的高效、高精度和高性能激光弯曲成形技术领域,涉及一种金属薄板的线型光斑激光弯曲成形方法,是一种线型光斑在金属薄板弯折线上同时加热的激光弯曲成形方法。
背景技术
激光弯曲成形是一种柔性、无模、无外力和非接触的快速成形技术,易于实现自动化加工。现有的金属板材激光弯曲技术,一般属于点光斑移动热源,即直线扫描依次加热弯曲技术,板材自由端由于移动热源热量累计和板材边界条件影响,产生翘曲变形,在某些对精度要求较高的场合,这种变形量可能造成较大质量问题。目前的研究认为,翘曲现象产生的主要原因有两个方面:一是点光斑移动热源激光能量输入产生的沿扫描线非均匀分布的温度场;二是板材扫描线上不同点受到的不同的几何约束。通过改善弯折线上温度场均匀性,降低翘曲量,来提高板件弯曲角度一致性的方法迫切需要。
文献“沈洪. 激光弯曲成形的精度控制研究[D].上海:上海交通大学,2007. ”从激光扫描所产生的温度场着手,分析在温度梯度成形机理下,产生翘曲变形的原因主要有两个:一是点源激光热源移动扫描过程中,扫描开始阶段温度升高后由于热扩散作用,基本维持在900°C,在结束点位置热扩散急剧下降,热量累积导致温度高于起始点,这种非均匀的热量分布导致翘曲变形的产生;二是由于板材自身的几何约束。文中介绍了减轻翘曲现象的方法,采用匀加速匀减速结合方法进行有限元模拟,但是现实条件下难以实现匀加速匀减速加工。
专利“一种降低金属薄板激光弯曲成形翘曲量的能量调控方法”中采用三段变速度和能量补偿法相结合的策略,在弯曲角度小的段位采用低速度,弯曲角度大的段位采用高速度,并进行能量补偿调控,对翘曲变形进行校正。但是这种方法存在着加工工艺复杂,耗费工时,效率较低的缺点。
以上文献中降低翘曲变形的方法存在待改进之处,一是工艺复杂,实际应用中难以实现;二是成形效率较低,成本较高。现有激光加工设备主要为点光斑移动热源加载方式,而国内外研究和应用现状,基本上是在现有设备条件下进行试验并得到研究结果和规律。
技术问题
针对金属薄板点光斑移动热源激光直线扫描弯曲过程中弯折线上温度场分布不均产生翘曲变形的问题,本发明使用多模激光扫描转镜或单压电变形镜将激光高斯分布的点光斑转换成均匀分布的线型光斑,同时加载于弯折线区域,对金属薄板进行弯曲成形,使得在金属薄板弯折线上的温度场均匀分布,达到减少翘曲变形,提高弯曲角度一致性,提高弯曲效率的目的。
技术解决方案
本发明的技术方案:
一种金属薄板的线型光斑激光弯曲成形方法,具体步骤如下:
步骤一:工件制备:按照尺寸技术要求,加工出所需规格的金属薄板,包括矩形板2和扇形板10,矩形板2的宽度为W,扇形板10的外圆半径为R;
步骤二:线型光斑设定:对于矩形板2的直线弯曲,将多模激光扫描转镜6安装在激光器激光头4下方,使激光器激光头4发出的激光高斯分布的点光斑5转换为均匀分布的直线型光斑9,并调整多模激光扫描转镜6的参数,使光斑宽度W 1为1mm-2mm,并保证光斑长度L 1与宽度W关系为L 1=W+4mm;对于扇形板10的圆弧线弯曲,将单压电变形镜11安装在激光器激光头4下方,使激光器激光头4发出的激光高斯分布的点光斑5转换为均匀分布的圆弧线型光斑14,调整光斑宽度W 2为1mm-2mm,圆弧弯折线13的圆弧长度L 2与圆弧线型光斑14长度L 3之间的关系为L 3=L 2+4mm;
步骤三:工件安装及激光调试:用夹持板1将金属薄板长度方向的一端夹持,另一端自由悬空,固定在激光加工工作台上;根据加工技术要求,弯折线位置均基于自由端选取,矩形板2的直线弯折线8与自由端距离为D,扇形板10的圆弧弯折线13与板材外圆为同心圆,半径为R 1,与自由端距离为R-R 1;利用机床联动移动激光器激光头4,置于弯折线上方中点位置,调整多模激光扫描转镜6或单压电变形镜11的角度,使直线型光斑9与直线弯折线8重合,或使圆弧线型光斑14与圆弧弯折线13重合,并保证弯折线长度方向两侧各有2mm激光加载余量;设置激光器激光头4的工作参数:激光功率为100W-180W、脉冲宽度为1ms-3ms、脉冲频率为30Hz-50Hz、扫描速度400mm/min-800mm/min;
步骤四:辅助吹气调试:调整辅助吹气喷嘴3位置,以防止加工过程中工件碰到吹气头;辅助吹气的气体使用惰性气体,以防止高温氧化;调整气压至0.1MPa-0.5MPa,以保证加工过程中吹气平稳;
步骤五:激光加载:开启激光器,在弯折线处加载激光,根据所需要的弯曲角度,单次保持加载时间T;每次加载完成后冷却至100°C以下,重复加载多次并冷却,完成金属薄板的弯曲成形。
所述的矩形板2,长度L为40mm-120mm,宽度W为30mm-100mm;所述的扇形板10,外圆半径R为50mm-200mm,圆心角n为30°-60°;板厚为1mm-2mm。
有益效果
本发明的有益效果:本发明在理论分析和有限元仿真基础上,针对激光移动扫描弯曲中温度场热量累积和边界散热等问题,采用线型光斑在金属薄板弯折线上同时加热的激光弯曲成形方式,提出一种简单高效、成本低、低翘曲量的弯曲方法,在相同激光工艺参数下,具有激光成形弯曲角度大、翘曲量小和弯曲工时短等突出特点。
附图说明
图1为矩形板直线型光斑激光弯曲成形示意图;
图2为扇形板同心圆弧线型光斑激光弯曲成形示意图。
图3为矩形板直线型光斑同时加热激光弯曲数值模拟位移场云图。
图4为矩形板点光斑移动热源直线扫描激光弯曲数值模拟位移场云图。
图中:1夹持板;2矩形板;3辅助吹气喷嘴;4激光器激光头;5点光斑;6多模激光扫描转镜;7矩形板弯曲角度;8直线弯折线;9直线型光斑;10扇形板;11单压电变形镜;12扇形板弯曲角度;13圆弧弯折线;14圆弧线型光斑。
本发明的实施方式
以下结合附图和技术方案,进一步说明本发明的具体实施方式。
本发明的一种金属薄板的线型光斑激光弯曲成形方法,对于矩形板直线型和扇形板同心圆弧线型光斑激光弯曲成形原理分别如图1和图2所示。
具体步骤如下:
步骤一:工件制备:按照尺寸技术要求,加工出所需规格的金属薄板,板厚为1mm-2mm;对于矩形板2,长度L为40mm-120mm,宽度W为30mm-100mm;对于扇形板10,外圆半径R为50mm-200mm,圆心角n为30°-60°;板厚为1mm-2mm。
步骤二:线型光斑设定:对于矩形板2的直线弯曲,将多模激光扫描转镜6安装在激光器激光头4下方,使激光器激光头4发出的激光高斯分布的点光斑5转换为均匀分布的直线型光斑9,并调整多模激光扫描转镜6的参数,使光斑宽度W 1为1mm-2mm,并保证光斑长度L 1与宽度W关系为L 1=W+4mm;对于扇形板10的圆弧线弯曲,将单压电变形镜11安装在激光器激光头4下方,使激光器激光头4发出的激光高斯分布的点光斑5转换为均匀分布的圆弧线型光斑14,调整光斑宽度W 2为1mm-2mm,圆弧弯折线13的圆弧长度L 2与圆弧线型光斑14长度L 3之间的关系为L 3=L 2+4mm;
步骤三:工件安装及激光调试:用夹持板1将金属薄板长度方向的一端夹持,另一端自由悬空,固定在激光加工工作台上;根据加工技术要求,弯折线位置均基于自由端选取,矩形板2的直线弯折线8与自由端距离为D,扇形板10的圆弧弯折线13与板材外圆为同心圆,半径为R 1,与自由端距离为R-R 1;利用机床联动移动激光器激光头4,置于弯折线上方中点位置,调整多模激光扫描转镜6或单压电变形镜11的角度,使直线型光斑9与直线弯折线8重合,或使圆弧线型光斑14与圆弧弯折线13重合,并保证弯折线长度方向两侧各有2mm激光加载余量;设置激光器激光头4的工作参数:激光功率为100W-180W、脉冲宽度为1ms-3ms、脉冲频率为30Hz-50Hz、扫描速度400mm/min-800mm/min;
步骤四:辅助吹气调试:调整辅助吹气喷嘴3位置,以防止加工过程中工件碰到吹气头;辅助吹气的气体使用惰性气体,以防止高温氧化;调整气压至0.1MPa-0.5MPa,以保证加工过程中吹气平稳;
步骤五:激光加载:开启激光器,在弯折线处加载激光,根据所需要的弯曲角度,单次保持加载时间T,T是由矩形板弯曲角度7或扇形板弯曲角度12决定;每次加载完成后冷却至100°C以下,重复加载多次并冷却,完成金属薄板的弯曲成形。
本实施例利用ANSYS软件对矩形板线型光斑激光直线弯曲成形过程进行三维有限元仿真,结合高斯分布点光斑移动热源直线扫描激光弯曲成形过程,给出成形精度、弯曲效率、弯曲性能等三个方面的分析和对比。
对于高斯分布点光斑移动热源直线扫描激光弯曲成形过程,矩形板建模长60mm,宽50mm,在长度方向上的一端施加约束载荷,模拟夹持板夹持固定。高斯分布点光斑移动热源直线扫描弯曲成形三维有限元仿真中,点光斑直径为1.8mm,激光功率为140W,激光脉宽2ms,脉冲频率40Hz,扫描速度为400mm/min,弯折线位置取距离自由端25mm处,模拟结果位移场云图如图3所示。为了对比高斯分布点光斑移动热源直线扫描弯曲成形,在本发明的线型光斑同时加热弯曲成形的三维有限元仿真中,须保证线型光斑同时加热与点光斑移动扫描加热的能量等效输入,因此根据计算,在弯折线上施加宽为1.13mm,长为54mm,热流密度为0.19×10 9 W/m 2的线型光斑,激光脉宽、脉冲频率与弯折线位置保持不变,加载时间为点源激光脉冲的一个周期0.025s,模拟结果位移场云图如图4所示。
根据图3和图4对比分析加载后的Z向位移场分布云图,计算产生的弯曲角度及翘曲形变,分析可知:
(1)在相同激光工艺参数条件下,线型光斑同时加载和点光斑脉冲激光一次移动扫描加载后弯曲角度分别为1.64°和1.38°,线型光斑同时加载比点光斑移动扫描弯曲角度增大了18.84%,明显增大了板材弯曲成形的角度;
(2)经计算,翘曲变形弦高分别为0.115 mm和.0.217 mm,线型光斑同时加载比点光斑移动扫描翘曲变形量减少了47%,大大降低了板材弯曲成形的翘曲量;
(3)根据板宽和扫描速度计算,点光斑脉冲激光单次移动扫描时间为7.5s,板材整体冷却至100°C时间约为5s-8s,线型激光光斑同时加载单次约0.025s,板材整体冷却至100°C时间约为8s,计算可得,单次加载情况下,线型光斑同时加载相较于点光斑移动扫描可以节省工时约35.8%-48.23%,大大缩短了板材弯曲成形的工时。
本发明技术方案中所描述的线型光斑可以通过实验装置获取:
直线型光斑9可以通过多模激光扫描转镜6获得,多模激光扫描转镜6的原理是把多面体棱镜作为扫描元件,利用棱镜反射使光束快速摆动,把光束拉宽成线型光斑;
圆弧线型光斑14可以先通过单压电变形镜11获得环型光斑,再截取需要长度的圆弧线光斑进行使用。单压电变形镜11的原理是首先结合光波衍射理论和相关算法迭代出所需的波前相位,进而以光束波前信息为反馈控制变形镜重构所需的波前相位,获得直径与宽度可控的圆弧线型光斑。

Claims (2)

  1. 一种金属薄板的线型光斑激光弯曲成形方法,其特征在于,具体步骤如下:
    步骤一:工件制备:按照尺寸技术要求,加工出所需规格的金属薄板,包括矩形板(2)和扇形板(10),矩形板(2)的宽度为W,扇形板(10)的外圆半径为R;
    步骤二:线型光斑设定:对于矩形板(2)的直线弯曲,将多模激光扫描转镜(6)安装在激光器激光头(4)下方,使激光器激光头(4)发出的激光高斯分布的点光斑(5)转换为均匀分布的直线型光斑(9),并调整多模激光扫描转镜(6)的参数,使光斑宽度W 1为1mm-2mm,并保证光斑长度L 1与宽度W关系为L 1=W+4mm;对于扇形板(10)的圆弧线弯曲,将单压电变形镜(11)安装在激光器激光头(4)下方,使激光器激光头(4)发出的激光高斯分布的点光斑(5)转换为均匀分布的圆弧线型光斑(14),调整光斑宽度W 2为1mm-2mm,圆弧弯折线(13)的圆弧长度L 2与圆弧线型光斑(14)长度L 3之间的关系为L 3=L 2+4mm;
    步骤三:工件安装及激光调试:用夹持板(1)将金属薄板长度方向的一端夹持,另一端自由悬空,固定在激光加工工作台上;根据加工技术要求,弯折线位置均基于自由端选取,矩形板(2)的直线弯折线(8)与自由端距离为D,扇形板(10)的圆弧弯折线(13)与板材外圆为同心圆,半径为R 1,与自由端距离为R-R 1;利用机床联动移动激光器激光头(4),置于弯折线上方中点位置,调整多模激光扫描转镜(6)或单压电变形镜(11)的角度,使直线型光斑(9)与直线弯折线(8)重合,或使圆弧线型光斑(14)与圆弧弯折线(13)重合,并保证弯折线长度方向两侧各有2mm激光加载余量;设置激光器激光头(4)的工作参数:激光功率为100W-180W、脉冲宽度为1ms-3ms、脉冲频率为30Hz-50Hz、扫描速度400mm/min-800mm/min;
    步骤四:辅助吹气调试:调整辅助吹气喷嘴(3)位置,以防止加工过程中工件碰到吹气头;辅助吹气的气体使用惰性气体,以防止高温氧化;调整气压至0.1MPa-0.5MPa,以保证加工过程中吹气平稳;
    步骤五:激光加载:开启激光器,在弯折线处加载激光,根据所需要的弯曲角度,单次保持加载时间T;每次加载完成后冷却至100 C以下,重复加载多次并冷却,完成金属薄板的弯曲成形。
  2. 根据权利要求1所述的一种金属薄板的线型光斑激光弯曲成形方法,其特征在于,所述的矩形板(2),长度L为40mm-120mm,宽度W为30mm-100mm;所述的扇形板(10),外圆半径R为50mm-200mm,圆心角n为30 -60 ;板厚为1mm-2mm。
PCT/CN2020/096562 2019-07-23 2020-06-17 一种金属薄板的线型光斑激光弯曲成形方法 WO2021012844A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/055,939 US20210162479A1 (en) 2019-07-23 2020-06-17 Line-shape spot laser bending method for metal sheets

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910664048.5A CN110314980B (zh) 2019-07-23 2019-07-23 一种金属薄板的线型光斑激光弯曲成形方法
CN201910664048.5 2019-07-23

Publications (1)

Publication Number Publication Date
WO2021012844A1 true WO2021012844A1 (zh) 2021-01-28

Family

ID=68124200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/096562 WO2021012844A1 (zh) 2019-07-23 2020-06-17 一种金属薄板的线型光斑激光弯曲成形方法

Country Status (3)

Country Link
US (1) US20210162479A1 (zh)
CN (1) CN110314980B (zh)
WO (1) WO2021012844A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114101472A (zh) * 2021-11-30 2022-03-01 内蒙古工业大学 一种铝合金蠕变时效成型设备

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110314980B (zh) * 2019-07-23 2020-04-24 大连理工大学 一种金属薄板的线型光斑激光弯曲成形方法
JP7364548B2 (ja) 2020-10-28 2023-10-18 株式会社神戸製鋼所 アルミニウム材の加工方法及び加工品
CN113198879B (zh) * 2021-04-28 2022-04-12 江苏卓海电气装备有限公司 大型风电高速齿轮箱箱体的弯折加工装置
CN113218306B (zh) * 2021-04-28 2022-02-15 大连理工大学 一种基于fpga的光斑位置探测系统与方法
CN114309260B (zh) * 2021-12-22 2022-08-30 大连理工大学 一种提高纤维金属层板单曲面激光弯曲成形精度的方法
CN115284001A (zh) * 2022-06-29 2022-11-04 上海航天精密机械研究所 一种空气舵折面蒙皮全流程激光加工方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1307947A (zh) * 2001-02-19 2001-08-15 李文川 激光金属变形方法
CN101332537A (zh) * 2008-07-30 2008-12-31 山东大学 板材激光冲击与热应力复合成形方法及装置
WO2011058775A1 (ja) * 2009-11-13 2011-05-19 株式会社 アマダ レーザフォーミング加工方法およびレーザフォーミング加工装置
CN103056521A (zh) * 2012-11-29 2013-04-24 中国航空工业集团公司北京航空制造工程研究所 一种基于连续激光扫描的钛合金板材成形工艺
CN105057409A (zh) * 2015-08-03 2015-11-18 湖北鸿路钢结构有限公司 一种能消除钛合金板料在激光成形中的边缘效应和氧化的方法
CN206717293U (zh) * 2017-05-23 2017-12-08 深圳市众联智强科技有限公司 一种新型自动变更光斑长宽的玻璃切割光学装置
CN108856474A (zh) * 2018-07-12 2018-11-23 大连理工大学 一种降低金属薄板激光弯曲成形翘曲量的能量调控方法
CN110314980A (zh) * 2019-07-23 2019-10-11 大连理工大学 一种金属薄板的线型光斑激光弯曲成形方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6710295B1 (en) * 2000-06-15 2004-03-23 Hitachi Global Storage Technologies Netherlands, B.V. Slider curvature modification by substrate melting effect produced with a pulsed laser beam
DE10228294A1 (de) * 2002-06-25 2004-01-29 Schuler Held Lasertechnik Gmbh & Co. Kg Vorrichtung und Verfahren zum werkzeuglosen Profilieren
CN100355514C (zh) * 2005-05-20 2007-12-19 江苏大学 中厚板材激光喷丸成形的方法和装置
US20070080148A1 (en) * 2005-10-07 2007-04-12 Toshiki Hirano Short-pulsed laser treatment for angularity adjust with minimized heat loading of a hard disk drive component
CN101559539B (zh) * 2009-05-19 2011-12-21 中国石油大学(华东) 金属板材激光高精度热弯曲成形
CN101943890B (zh) * 2010-08-23 2012-07-25 中国科学院力学研究所 一种提升激光辅助弯曲成形能力的方法
CN106424324B (zh) * 2016-11-22 2018-01-23 华南师范大学 激光分段扫描板材弯曲成形装置及方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1307947A (zh) * 2001-02-19 2001-08-15 李文川 激光金属变形方法
CN101332537A (zh) * 2008-07-30 2008-12-31 山东大学 板材激光冲击与热应力复合成形方法及装置
WO2011058775A1 (ja) * 2009-11-13 2011-05-19 株式会社 アマダ レーザフォーミング加工方法およびレーザフォーミング加工装置
CN103056521A (zh) * 2012-11-29 2013-04-24 中国航空工业集团公司北京航空制造工程研究所 一种基于连续激光扫描的钛合金板材成形工艺
CN105057409A (zh) * 2015-08-03 2015-11-18 湖北鸿路钢结构有限公司 一种能消除钛合金板料在激光成形中的边缘效应和氧化的方法
CN206717293U (zh) * 2017-05-23 2017-12-08 深圳市众联智强科技有限公司 一种新型自动变更光斑长宽的玻璃切割光学装置
CN108856474A (zh) * 2018-07-12 2018-11-23 大连理工大学 一种降低金属薄板激光弯曲成形翘曲量的能量调控方法
CN110314980A (zh) * 2019-07-23 2019-10-11 大连理工大学 一种金属薄板的线型光斑激光弯曲成形方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114101472A (zh) * 2021-11-30 2022-03-01 内蒙古工业大学 一种铝合金蠕变时效成型设备
CN114101472B (zh) * 2021-11-30 2023-04-21 内蒙古工业大学 一种铝合金蠕变时效成型设备

Also Published As

Publication number Publication date
CN110314980B (zh) 2020-04-24
US20210162479A1 (en) 2021-06-03
CN110314980A (zh) 2019-10-11

Similar Documents

Publication Publication Date Title
WO2021012844A1 (zh) 一种金属薄板的线型光斑激光弯曲成形方法
US20050133485A1 (en) Laser irradiation device and method for bending processing
WO2010134496A1 (ja) 曲げ加工装置
CN207756917U (zh) 金属粉末激光熔融增材制造装置
CN103817433A (zh) 一种激光加工光斑控制方法及其专有装置
CN103639590B (zh) 一种基于空心光束激光冲击的薄金属板材曲率半径调整方法及装置
CN108823567A (zh) 一种金属薄板高效激光熔覆装置与方法
CN111822553A (zh) 金属板材激光热成形拉弯新工艺
CN103302399B (zh) 一种基于高能脉冲激光力效应的微平整装置及其方法
US10662490B2 (en) Hardening apparatus for a long member, and a hardening method for a long member
CN103567634A (zh) 一种使用激光微熔技术制造应变式传感器的方法
JP2012091995A (ja) ガラス曲板の製造方法
JPS62134118A (ja) 板ばねの形状精度修正方法
CN110064838A (zh) 一种基于同一激光器获得多种钣金成形效果的激光加工方法
CN112570510A (zh) 用于减小零件回弹的激光辅助滚压成形方法、装置及系统
JP2001293521A (ja) 管の曲げ加工装置
JP6296189B1 (ja) 加熱装置、半導体製造装置
CN206794504U (zh) 一种激光加热位置机械可调用于渐进成形的工具头
CN106391796B (zh) 一种减小板材边缘效应的方法
CA3043958C (en) Laser pressure welding
WO2020136909A1 (ja) 熱塑性板の曲げ加工方法、及び加工治具、及び凹面熱塑性板
CN109048052B (zh) 一种抑制激光焊接薄板弯曲变形的扫描方法
JP6376236B2 (ja) 加熱装置、半導体製造装置
CN107282727B (zh) 一种金属板材激光柔性弯曲成形圆弧槽的方法
CN206244640U (zh) 一种真空玻璃制作设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20844580

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20844580

Country of ref document: EP

Kind code of ref document: A1